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Abstract
In modeling fluid–solid interaction (FSI), considering the impact of fluid
compressibility is necessary to describe sound propagation. Furthermore, in
micro-scale, fluid viscosity is important. We present a finite element formula-
tion for modeling a flexible solid coupled to a compressible viscous fluid. We
use the linearized Navier–Stokes equations for a Newtonian fluid and describe
the linear elastic solid using the linearized balance of momentum. For coupling
between fluid and solid, we develop a non-conforming finite element formu-
lation, and propose an estimation for the necessary penalty factor by applying
a scaling approach. The formulation is validated based on several test cases
for various material combinations and shows good agreement with analyti-
cal solutions. Further, Nitsche-based and symmetrization-free formulations are
compared, and spatial convergence is studied. Finally, we present an application
example of a miniature Helmholtz resonator, which depicts a notable impact of
the solid interaction on the viscous flow. In sum, our study indicates the poten-
tial for widespread use of the presented numerical approach in modeling FSI in
miniature systems.
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1 INTRODUCTION

The interaction of a viscous fluid with an elastic structure has been studied in various fields, from porous media to micro-
electromechanical systems applications.1-3 In such applications, the mechanical displacement is small and the effect of
the arising mechanical deformations on the flow can be neglected, and linearized partial differential equations (PDEs) are
solved on the initial configuration. Furthermore, in most of these applications, the steady state solution is of interest and
the coupled PDEs are solved in the frequency domain. A major challenge, however, is the different requirements for the
computational meshes of the individual sub-domains of the solid and the compressible viscous fluid. The non-conforming
finite element methods (FEMs), for example, Nitsche-based methods, allow the coupling of two or more sub-domains
with quite different mesh sizes. In doing so, the flexibility of choosing an optimal grid for each sub-domain is obtained.
In cases, where the mechanical deformations are large and have to be considered for the physical equations being solved
in the fluid domain, the arbitrary Lagrangian–Eulerian (ALE) formulation for modeling fluid–solid interaction (FSI) is
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6128 HASSANPOUR GUILVAIEE et al.

often used.4-6 The ALE method allows modeling large solid deformation and its effect on the fluid domain. This usually
requires suitable mesh-moving algorithms.7

The Nitsche method, which was originally introduced for handling Dirichlet boundary conditions,8 has been widely
used in various fields, including heat and mass transfer, solid mechanics, fluid mechanics, acoustics, and multi-physics
problems.9-12 Regarding fluid-structure interaction, compared to most formulations involving Lagrange multipliers, the
Nitsche method avoids the arising saddle point problems.13-15 Hansbo and Hermansson16 studied an eigenproblem for
the coupling of non-viscous compressible fluid and flexible solid using the Nitsche method. Later, Hansbo et al. presented
a space-time FEM applying the Nitsche method for coupling viscous incompressible fluids and linearly elastic struc-
tures.17 Rüberg et al. used the Nitsche method combined with a stabilization technique to model the interaction between
an incompressible viscous fluid and a thin structure.18 They presented a fixed-grid finite element technique valid for
curved grid lines and a nonuniform cell size. Burman et al.19 extended the Nitsche-based method by introducing a
ghost-penalty stabilization term for incompressible fluid-structure interaction. Dettmer et al.20 applied the non-symmetric
and penalty-free Nitsche method in an immersed boundary FEM. They employed the ghost-penalty terms to reduce the
system matrix condition number resulting from the small cut cells. They extended their work by presenting a robust FEM
to model incompressible viscous FSI, using the Nitsche method, to enforce the kinematic conditions at the interface.7
Building on these studies, we present a novel formulation for coupling an elastic structure and a compressible, viscous
fluid. Our work focuses on two main issues: first, we study the numerical penalty factor’s impact at the fluid–solid inter-
face, offering guidelines for its choice. Second, we present an application example highlighting the advantages of solid
interaction on a miniature Helmholtz resonator using the non-conforming grid technique.

Viscous effects are pronounced when the thickness of the viscous boundary layer is in the same order of magnitude
as characteristic problem dimensions, such as in electronic and medical devices (miniature microphones, loudspeakers,
hearing aids).21,22 Common approaches that include viscous effects to describe fluid behavior are the impedance-like
boundary condition23-25 and low reduced frequency models, in which the pressure is assumed constant over the
cross-section.26-28 Although being computationally efficient, these models have geometry restrictions. The low reduced
frequency model is used for cases where the acoustic wavelength is considerably larger than the viscous boundary layer
thickness and the geometry length scale. The impedance-like boundary condition is suggested for cases where the vis-
cous boundary layer thickness is sufficiently small compared to the relevant features of the investigated geometry. On the
contrary, the full linearized Navier–Stokes (FLNS) formulation fulfills the fluid-structure coupling conditions and can
simulate a compressible viscous fluid. However, FLNS formulation is computationally more demanding.26,28-30

The current study develops a finite element formulation to model the interaction between compressible viscous flu-
ids and solids. For the fluid, we use FLNS, and for the solid, we use the balance of momentum for linear elastic solid.
We then implemented and solved our model in the open-source program openCFS.31 We further propose a formulation
for choosing a suitable value of the penalty factor. Later, we verify our model with multiple examples that consider var-
ious combinations of materials. Finally, as an application example, we use our method to design a 2-dimensional (2D)
miniature Helmholtz resonator with a flexible end-plate and further study the impact of FSI on the Helmholtz resonator
characteristics.

2 PROBLEM FORMULATION

We consider an elastic solid coupled to a viscous, compressible fluid along with a common interface. Figure 1 shows a
typical fluid-structure interaction geometry with an elastic solid region Ωs, a compressible viscous fluid Ωf, the common
interface Γsf between both regions and the boundaries Γt, Γ0, Γr, and Γs where suitable boundary conditions have to be
applied. The behavior of the solid is described by the balance of momentum and a suitable constitutive law (Hooke’s law).
The governing equations in the fluid domain Ωf are the balance of mass and momentum as well as an equation of state
and constitutive law (Newtonian fluid).

To linearize the non-linear governing equations of the fluid, we apply the perturbation ansatz for the unknowns
density, pressure, and velocity

𝜌(x, t) = 𝜌f(x) + 𝜌(x, t) p(x, t) = pf(x) + p(x, t) v(x, t) = vf(x) + v(x, t), (1)

where the bar ̄(.) denotes the total quantity, which is split into a temporally constant background quantity denoted by index
(.)f, and the perturbation quantity, which is assumed to be small. For simplicity, we assume that there is no background

 10970207, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7106 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [12/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HASSANPOUR GUILVAIEE et al. 6129

F I G U R E 1 Simple sketch of a solid–fluid interaction problem including elastic solid Ωs and viscous fluid Ωf domains with their
interface Γsf . The outer normal vector of the solid and fluid domains are ns and nf, respectively.

velocity (vf = 0). To obtain the linearized balance of mass and momentum, we first insert the perturbation ansatz (1) into
the balance of mass and momentum. Then by excluding the non-linear terms and using the linearized equation of state
𝜌 = p

c2 (c donates the speed of sound), and only retaining linear terms of the remaining solution variables (pressure p and
velocity v), one obtains the linearized balance of mass and momentum

1
c2
𝜕p
𝜕t
+ 𝜵 ⋅ (𝜌fv) = 0 in Ωf, (2)

𝜌f
𝜕v
𝜕t
− 𝜵 ⋅ 𝝈f = ff in Ωf. (3)

The adiabatic speed of sound c =
√

Kf∕𝜌f is computed from the adiabatic bulk modulus Kf and the background fluid
density 𝜌f. The operators 𝜵 and 𝜵⋅ are the gradient and the divergence operators, respectively, and t denotes the time. The
external volume force density acting in the fluid domain is ff. The fluid stress tensor 𝝈f for an isotropic Newtonian fluid
is written as

𝝈f = −pI + 𝝉

= −pI + 𝜇
(
𝜵v + (𝜵v)T

)
+
(
𝜇b −

2
3
𝜇

)
(𝜵 ⋅ v)I, (4)

where 𝝉 is the viscous stress tensor, 𝜇 the dynamic (or shear) viscosity and 𝜇b the bulk (or volume) viscosity.
The elastic solid in Ωs is governed by the conservation of momentum

𝜌s
𝜕

2u
𝜕t2 − 𝜵 ⋅ 𝝈s = fs in Ωs, (5)

where the solid density is denoted by 𝜌s, u is the displacement vector, 𝝈s is the mechanical stress tensor, and fs
is the external force per unit volume acting in the solid domain. For linear elastic material behavior, 𝝈s may be
written as

𝝈s = C ∶ 𝝐, (6)

where ∶ denotes the double contraction between the stiffness tensor C and the strain tensor 𝝐. Assuming small
displacements, we can compute the strain tensor by

𝝐 = 1
2
(
𝜵u + (𝜵u)T

)
. (7)

Finally, we need to apply boundary and coupling conditions. On the wall boundary of solid Γs and fluid Γ0, we enforce
zero displacements and velocity vector, respectively. On the symmetry boundaries, their vector components perpendicular
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6130 HASSANPOUR GUILVAIEE et al.

to the boundaries are zero. At the interface Γsf between solid and fluid, one needs to enforce the dynamic and kinematic
conditions requiring continuity of traction and velocity, respectively. Traction continuity is enforced by requiring

𝝈s ⋅ ns = −𝝈f ⋅ nf on Γsf, (8)

where nf and ns are normal vectors of the interface pointing out of the fluid and solid domain, respectively (see Figure 1).
The second interface condition is velocity continuity at the interface, which requires

𝜕u
𝜕t
= v on Γsf. (9)

3 FINITE ELEMENT FORMULATION

To obtain the weak form of the formulation needed for the finite element solution of FSI, we multiply the strong forms
by appropriate test functions and integrate them over the whole computational domain. The conservation of mass in its
weak form is derived from Equation (2) and reads

∫
Ωf

p′𝜌f𝜵 ⋅ v dΩ + ∫
Ωf

p′ 1
c2
𝜕p
𝜕t

dΩ = 0. (10)

The weak form of conservation of momentum for fluid and solid are derived from Equations (3) and (5) by applying the
Green’s theorem

∫
Ωf

𝜌fv′ ⋅
𝜕v
𝜕t

dΩ + ∫
Ωf

𝜵v′ ∶ 𝝈f dΩ − ∫
Γf

(v′ ⋅ 𝝈f) ⋅ nf dΓ = 0, (11)

∫
Ωs

𝜌su′ ⋅ 𝜕
2u
𝜕t2 dΩ + ∫

Ωs

𝜵u′ ∶ 𝝈s dΩ − ∫
Γs

(u′ ⋅ 𝝈s) ⋅ ns dΓ = 0. (12)

In these equations, v′, u′, and p′ are fluid velocity test function, mechanical displacement test function, and pressure
test function, respectively. The normal vector ni of the boundary Γi points out of the domain Ωi (i is f and s for the
fluid and solid, respectively). Note that, for the sake of simplicity the external forces for both domains have been set to
zero (ff = fs = 0). In the fluid domain, we use the inf-sup condition, also known as the Ladyzhenskaya–Babuska–Brezzi
(LBB) condition, to obtain well-posedness, ensuring that the elements do not lock and the pressure does converge.
To meet the inf-sup condition, we use a one-order higher polynomial basis function for velocity than that for the
pressure.32,33

For modeling fluid-structure interaction, we adapt the Nitsche method because it offers multiple advantages. First,
it does not introduce any other unknowns at the interface, such as those used in most of the Lagrange multiplier-based
methods. Thus, it prevents saddle point problems in the discretized system. Second, since this method applies the cou-
pling conditions in a weak sense, it can be used on non-conforming meshes, which are convenient for mesh generation.
To obtain the coupling formulation, we combine (11) and (12). Then we apply the traction continuity condition (8) to
ensure traction continuity at the interface (term traction consistency) and add the penalty term (term penalty ) to guaran-
tee the continuity of velocities. We keep the solid stress tensor for the simpler implementation since it contains only the
displacement as an unknown

∫
Ωf

𝜌fv′ ⋅
𝜕v
𝜕t

dΩ + ∫
Ωf

𝜵v′ ∶ 𝝈f dΩ + ∫
Ωs

𝜌su′ ⋅ 𝜕
2u
𝜕t2 dΩ + ∫

Ωs

𝜵u′ ∶ 𝝈s dΩ

− ∫
Γsf

(u′ − v′) ⋅ 𝝈s ⋅ n dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

traction consistency

+ 𝛽
p2

e

he∫
Γsf

(u′ − v′) ⋅
(
𝜕u
𝜕t
− v

)
dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

penalty

+ ∫
Γsf

𝝈s(u′)
(

v − 𝜕u
𝜕t

)
⋅ n dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

symmetrization term

= 0. (13)

 10970207, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7106 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [12/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HASSANPOUR GUILVAIEE et al. 6131

In Nitsche-base formulation, the symmetrization term (last term in (13)) is added. However, it has to be noted that
the describing equations (see Section 2) are non-symmetric; thus, the overall formulations stay non-symmetric. Here-
after, in this work, the formulations with and without the symmetrization term are called the Nitsche-based and the
symmetrization-free formulations, respectively, and results of these two formulations (with and without the symmetriza-
tion term) are compared.

The penalty term in (13) contains the element order pe = max(ps, pf) to account various polynomial orders, where,
ps and pf are the order of basic functions for solid and fluid domains, respectively. Furthermore, we add 1∕he to the
penalty term, where he = min(hf, hs) that is, the smallest element length of fluid or solid elements on the non-conforming
interface. This guarantees that the resulting system is positive definite.34 The normal direction of the interface n is
defined that is, as n = ns = −nf. The basis of our implementation in the open source finite element framework openCFS31

for modeling fluid-structure interaction contains the balance of the mass (10) and the conservation of momentum for
solid and fluid including the coupling term (13). The final equations can be summarized by inserting 𝝈f and 𝝈s as
the following

∫
Ωf

p′𝜌f𝜵 ⋅ v dΩ + ∫
Ωf

p′ 1
c2
𝜕p
𝜕t

dΩ = 0, (14a)

∫
Ωf

𝜌fv′ ⋅
𝜕v
𝜕t

dΩ − ∫
Ωf

𝜵v′ ∶ pI dΩ + ∫
Ωf

𝜇𝜵v′ ∶
(
𝜵v + (𝜵v)T

)
dΩ + ∫

Ωf

(𝜇b −
2
3
𝜇)𝜵v′ ∶ (𝜵 ⋅ v)I dΩ (14b)

+∫
Γsf

v′ ⋅ C ∶ 1
2
(
𝜵u + (𝜵u)T

)
⋅ n dΓ − 𝛽

p2
e

he∫
Γsf

v′ ⋅ 𝜕u
𝜕t

dΓ + 𝛽
p2

e

he∫
Γsf

v′ ⋅ v dΓ = 0,

∫
Ωs

𝜌su′ ⋅ 𝜕
2u
𝜕t2 dΩ + ∫

Ωs

𝜵u′ ∶ C ∶ 1
2
(
𝜵u + (𝜵u)T

)
dΩ

−∫
Γsf

u′ ⋅ C ∶ 1
2
(
𝜵u + (𝜵u)T

)
⋅ n dΓ + 𝛽

p2
e

he∫
Γsf

u′ ⋅ 𝜕u
𝜕t

dΓ − 𝛽
p2

e

he∫
Γsf

u′ ⋅ v dΓ

+ ∫
Γsf

1
2

C ∶ ∇u′v ⋅ n dΓ − ∫
Γsf

1
2

C ∶ ∇u′ 𝜕u
𝜕t
⋅ n dΓ + ∫

Γsf

1
2

C ∶ (∇u′)Tv ⋅ n dΓ − ∫
Γsf

1
2

C ∶ (∇u′)T 𝜕u
𝜕t
⋅ n dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

symmetrization term

= 0. (14c)

As mentioned in the introduction, in many applications, the steady state solution to harmonic forcing is of interest,
and the coupled PDEs are solved in the frequency domain. Harmonic forcing in any quantity f with angular frequency
𝜔 can be represented by f = ℜ{f̂ ei𝜔t}, with i =

√
−1 and f̂ ∈ C. To obtain the harmonic FEM formulation, we perform

a Fourier transform of (14a)–(14c) and apply the standard continuous Galerkin FEM35 in which we approximate the
continuous pressure p, fluid velocity v, and the mechanical displacement u via

p ≈ ph =
np

eq∑

i=1
Np

i pi, (15)

v ≈ vh =
nv

eq∑

i=1

nd∑

j=1
Nv

i vijej =
nv

eq∑

i=1
Nv

i vi ; Nv
i =

⎛
⎜
⎜
⎜
⎝

Nv
i 0 0

0 Nv
i 0

0 0 Nv
i

⎞
⎟
⎟
⎟
⎠

, (16)

u ≈ uh =
nu

eq∑

i=1

nd∑

j=1
Nu

i uijej =
nu

eq∑

i=1
Nu

i ui ; Nu
i =

⎛
⎜
⎜
⎜
⎝

Nu
i 0 0

0 Nu
i 0

0 0 Nu
i

⎞
⎟
⎟
⎟
⎠

. (17)

In (15)–(17) np
eq, nv

eq, nu
eq denotes the number of equations for the pressure, velocity, displacement, respectively, and nd

is the number of space dimension. Furthermore, Np
i , Nv

i , Nu
i are the appropriate basis functions and ej is the space unit
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6132 HASSANPOUR GUILVAIEE et al.

vector for the j direction. Substituting (15)–(17) into the Fourier transformed weak formulation results in the following
system of equations

⎡
⎢
⎢
⎢
⎣

−𝜔2

⎛
⎜
⎜
⎜
⎝

0 0 0
0 0 0
0 0 Muu

⎞
⎟
⎟
⎟
⎠

+ i𝜔
⎛
⎜
⎜
⎜
⎝

Cpp 0 0
0 Cvv Cvu

0 0 Cuu

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

0 Kpv 0
Kvp Kvv Kvu

0 Kuv Kuu

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎜
⎝

{p}
{v}
{u}

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

Spp Spv 0
Svp Svv Svu

0 Suv Suu

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

{p}
{v}
{u}

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

{0}
{fv}
{fu}

⎞
⎟
⎟
⎟
⎠

. (18)

In (18) Mij, Cij, and Kij refer to the non-zero sub-blocks of mass, damping and stiffness matrices, respectively. Combined,
they form the complex valued system matrix of the harmonic problem. Here, Spp and Spv contain the bi-linear terms in
balance of mass (14a), Svp, Svu, and Svv contain the bi-linear terms in fluid balance of momentum (14b) and, Suu, Suv
contain the bi-linear terms in solid balance of momentum (14c) with their surface coupling terms. Moreover, {p}, {v},
{u} are the unknown vectors of the pressure, velocity, and displacement, respectively. On the right side of the equation
(18), {fv} and {fu} represent the inhomogeneous Neumann boundary conditions or non-zero volume forces.

The evaluation of the coupling integrals (traction consistency and penalty terms) is not straightforward since some of
the arising bi-linear forms are made up of the ansatz and test functions defined on different (non-conforming) grids. We
compute an intersection mesh between the two grids and use this intersection mesh for the integration. The contributions
to the system matrices are then obtained by evaluating the ansatz functions of both original grids at the locations of the
integration points of the intersection mesh.35,36

The intersection mesh at the interface contains vertexes of both master and slave meshes. The generation of the
intersection mesh for straight interfaces in 2D is not complicated. However, the intersection of curved interfaces in
2D and especially 3D is more complex since the interface elements have to be mapped to a common curve or surface
before the actual intersection operations. One possible approach37 relies on pair-wise projections of the elements to
the slave elements at the interface along the face normal vector. For slightly mismatching meshes, this method leads
to high aspect-ratio elements and consequently poor results due to inaccuracies in the numerical integration.35,38 To
avoid high aspect-ratio elements, one may discard them as is done in our implementation or apply spline-based finite
elements.39

Finally, the penalty factor 𝛽 is considered to make the formulation dimensionally consistent and to enforce the
velocity continuity. Determining a suitable penalty factor is crucial in solving the formulation: a small value of the
penalty factor does not meet velocity continuity at the interface. In contrast, a high value of the penalty factor results
in a high condition number of the arising system matrix. To obtain the suitable penalty factor, we study the system of
linear equations and set the penalty terms to have a value in the scale of the surrendering terms. To do so, we com-
pute how the values of each term in the system matrix are scaled and then calculate an estimation for the penalty
factor.

We consider that the volume and surface integrals are in the scale of h3 and h2, respectively, and the space derivative,
as well as the strain, are in the scale of 1

h
. The element size h is hs in solid and hf in fluid. Furthermore, the first and

second-time derivatives are scaling in the frequency domain by i𝜔 and −𝜔2, respectively. Writing the scaling value for
example, for (−𝜔2)∫

Ωs

𝜌s(Nu
i )

T(Nu
j ) dΩ, which contributes in Suu, gives us the scale of (𝜌s)(−𝜔2)(h3

s ). Applying this procedure

to the other terms in the formulation with non-symmetrization terms reveals that the entries in Suu and in Svu (except
the penalty terms) scale with Ehs. The entries in Svv scale with either 𝜌f(i𝜔)(h3

f ) or 𝜇hf. Nonetheless, applying the solid
and fluid element size rules indicate that all existing terms in Suu and Svv have the scale of Ehs and 𝜇hf, respectively. The
solid element size should be chosen based on the wavelength 𝜆s =

cs
f

, thus

hs ∼
cs

𝜔
∼ 1
𝜔

√
E
𝜌s
, (19)

where cs is the speed of sound in the solid. In viscous fluid, the fluid element size is in the order of the viscous boundary
layer

hf ∼
√

𝜇

𝜌f𝜔
. (20)

One can obtain Ehs and 𝜇hf by inserting (19) into 𝜌s𝜔
2h3

s and (20) into 𝜌f𝜔h3
f , respectively.
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HASSANPOUR GUILVAIEE et al. 6133

Since all the terms in Suu and Svu are proportional to Ehs, a scale for the penalty factor 𝛽 can be proposed. Thus we
write

Ehs ∼ 𝛽
p2

e

he
(𝜔)(h2

s ),

𝛽 ∼ E
hs𝜔

he

p2
e
. (21)

Similarly, the terms in Svv propose that the penalty factor scales with

𝜇hf ∼ 𝛽
p2

e

he
h2

f ,

𝛽 ∼ 𝜇

hf

he

p2
e
. (22)

In this formulation, the term Suv only contains the penalty factor; therefore, no comparison can be made here. In the
Nitsche-based formulation the entries in Suu gives an additional scale of E𝜔hs. Therefore, one has

Ehs𝜔 ∼ 𝛽
p2

e

he
(𝜔)(h2

s ),

𝛽 ∼ E
hs

he

p2
e
. (23)

In addition, in this formulation the term Suv is also scaled with Ehs . From scaling we retained two relations (21) and (22)
for the penalty factor. These relations prove that the formulation is physically consistent by considering viscosity (𝜇) or
Young’s modulus over angular velocity

(
E
𝜔

)
in the penalty factor. We consider the summation of these relations as the

scaling penalty factor. For the symmetrization-free formulation the scaling factor is

𝛽scaling,s =
(

E
hs𝜔

+ 𝜇

hf

)
he

p2
e
, (24)

whereas for Nitsche-based formulation it is defined as

𝛽scaling,n =
(

E
hs𝜔

+ 𝜇

hf
+ E

hs

)
he

p2
e
. (25)

This formulation suggests that the scaling penalty factor depends on both physical quantities (e.g., viscosity and Young’s
modulus) and the meshing parameters (e.g., the fluid and solid element mesh size). Note that this scaling term ensures
that the bi-linear forms, including the penalty factor, are in the order of the other bi-linear terms. However, to enforce
these bi-linear terms or, explicitly, the continuity of velocity at the interface, we propose to scale them by including the
user-defined numerical penalty factor 𝛽numeric

𝛽 = 𝛽scaling,i𝛽numeric i ∈ {s,n}. (26)

In the following sections, we investigate the suitable range of 𝛽numeric in the symmetrization-free and Nitsche-based
formulations.

4 NUMERICAL EXPERIMENTS

To verify our proposed formulation, we first present three case studies. In each example, we investigate the effect of the
penalty factor on the field results as well as on the velocity continuity at the interface by evaluating a relative error norm
(E). This error is defined as

E = ||un − ua||2
||ua||2

, (27)

where ua and un are analytic and numerical results (at the considered degrees of freedom (DOF)), respectively, and
|| … ||2 denotes the Euclidean norm. Then, various material combinations were considered to examine the robustness
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6134 HASSANPOUR GUILVAIEE et al.

of our formulation. Finally, by employing this method, a miniature Helmholtz resonator with flexible end-plate
is designed.

All results were obtained using our open source FEM program openCFS.31 In all the numerical studies, basis functions
of second order were used for velocity and displacement, and basis functions of first order were used for pressure DOF. The
resulting linear system of equations was solved by the PARDISO solver40 included in Intel’s MKL41 which is sufficiently
robust to deal with badly conditioned system matrices.

4.1 One-dimensional wave propagation

Our first example illustrates one-dimensional (1D) wave propagation of a compressible viscous fluid coupled to an
elastic solid. A comparison is then made with an analytical solution (derivation of the analytical solution is described
in Appendix A). In this example, the solid material is characterized by the density 𝜌s = 1.5 kg∕m3, the Young modulus
E = 1.0 ⋅ 105 Pa and the Poisson ratio 𝜈 = 0.4 to obtain the compatible wavelength with the fluid (air). The air properties
are described in Table 1. The sketch depicted in Figure 2 provides detailed information about the boundary conditions
used in this example. The geometry dimensions are L1 = 0.15 m, L2 = 0.20 m and the height of the channel is 0.01 m. The
study is performed at a frequency of 10 kHz and the displacement, velocity, and pressure have 4000, 40,000 and 16,000
DOF, respectively.

To determine a suitable range of numerical penalty factors, we test 16 numerical penalty factors ranging from 5 ⋅ 10−2

to 5 ⋅ 1013, in symmetrization-free formulation, and compare the computed velocity values with the analytical solution.
Figure 3A shows velocity error versus the numerical penalty factor. The error decreases from ∼10−3 to a minimum of
∼10−7 by increasing the numerical penalty factor from 5 ⋅ 10−2 to 5 ⋅ 102 and remains constant for the numerical penalty
factor between 5 ⋅ 102 and 5 ⋅ 109. The numerical penalty factor results in an increase for the velocity error from ∼10−7

to ∼10−3 with increasing it to 5 ⋅ 1013. Thus the suitable numerical penalty factor is between 5 ⋅ 102 − 5 ⋅ 109. The black
dashed line marked in this figure (Figure 3A) indicates the error for the 𝛽numeric = 1 (𝛽 = 𝛽scaling,n). Without considering
this numerical penalty factor, the system does not create its lowest error showing the importance of including 𝛽numeric (24).

In the Nitsche-based formulation, the velocity error is studied for various numerical penalty factors using the scaling
approach (25). Figure 3B shows that the numerical penalty factors lower than 1010 create the minimum error of ∼ 10−7.
Surprisingly, the errors remain low for very low values of the penalty factor and rapidly increase to 10. In contrast to the
symmetrization-free formulation, considering 𝛽numeric = 1 creates the lowest error.

T A B L E 1 The properties of solids and fluids

Symbol Air Water

Density in kg∕m3
𝜌f 1.225 1000

Compression modulus in Pa K 1.4261 ⋅ 105 2.2201 ⋅ 109

Bulk viscosity in Pa s 𝜇b 1.22 ⋅ 10−5 3.006 ⋅ 10−3

Shear viscosity in Pa s 𝜇 1.829 ⋅ 10−5 1.002 ⋅ 10−3

Symbol Steel Nylon Rubber Foam

Density in kg∕m3
𝜌s 7923.8 1100 920 1130

Poisson ratio 𝜈 0.3 0.4 0.49 0.49

Young modulus in GPa E 206.8 2.1 1.0 ⋅ 10−4 70.0 ⋅ 10−3

F I G U R E 2 Boundary conditions for 1D wave propagation example. Yellow and blue colors show the solid and fluid regions, respectively.
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HASSANPOUR GUILVAIEE et al. 6135

(A) (B)

F I G U R E 3 L2 relative error norm (E) in the velocity versus numerical penalty factor for 1D wave propagation using
symmetrization-free and Nitsche-based formulations. Dashed line (- - -) shows 𝛽 = 𝛽scaling (𝛽numeric = 1). (A) Symmetrization-free formulation:
Pink region depicts the suitable range of numerical penalty factors with the lowest error in the velocity; (B) Nitsche-based formulation

To illustrate how the changes in the numerical penalty factor are reflected in velocity field results, we further exam-
ine the differences created by numerical penalty factors at low (5 ⋅ 10−2), suitable (5 ⋅ 105), and high (5 ⋅ 1013) levels.
Figure 4 shows the fluid and solid real velocity field for these values of the numerical penalty factor. Using a low (5 ⋅ 10−2)
value does not satisfy the velocity continuity at the interface leading to a velocity amplitude of 9.30 m∕s in the solid
domain versus −108.6 m∕s in the fluid domain. Furthermore, the fluid velocity amplitudes are ∼5 times greater than
those obtained by the analytical solution. In contrast, the velocity field results using a suitable numerical penalty fac-
tor agree with those obtained from the analytical solution with the precision of ∼10−7, and the continuity of velocity
at the interface is met (Figure 4). This figure also shows that our formulation successfully simulates the standing wave
behavior expected in the solid region and the wave attenuation caused by the viscosity effects in the fluid region with a
suitable numerical penalty factor. For the high value of the numerical penalty factor (5 ⋅ 1013), however, the amplitudes of
velocity at the interface are 130.3 times greater than the analytical velocity amplitudes, but the continuity of velocity is
still fulfilled (Figure 4). Figure 5A shows velocity jump |||v −

𝜕u
𝜕t
||| of 10−13 m∕s at the interface for the high value of numeri-

cal penalty factor is lower than that for the suitable numerical penalty factor 10−5. In fact, there is an inverse relationship
between the numerical penalty factor and the magnitude of velocity jump at the interface (Figure 5A). Higher numer-
ical penalty factor causes lower velocity jump since the numerical penalty factor is directly applied to the penalty term
(13) that includes the velocity jump. By setting numerical the penalty factor to 5 ⋅ 1013, the velocity jump at the interface
decreases from ∼102 to ∼10−13 m∕s. Despite the low velocity jump at the interface, numerical penalty factors larger than
5 ⋅ 109 create large errors in the velocity field (Figure 3A) due to high condition number of the system matrix. Figure 5B
shows that increasing the numerical penalty factor leads to a higher condition number of the system matrix. In the cur-
rent example, for the numerical penalty factors being lower than 103, the condition number is 2 ⋅ 1016. For a numerical
penalty factor of 1014, this value increases to 1.5 ⋅ 1027. Focusing on the relative error norm, a suitable value for the numer-
ical penalty factor in this example is between 5 ⋅ 102 and 5 ⋅ 109. The corresponding condition number on the upper bound
(penalty factor of 5 ⋅ 109) is 1 ⋅ 1023. The choice of the unit system impacts the conditioning of the system matrix, since the
DOF (velocity, pressure, and displacement) do not share the same physical dimension. We have chosen SI units for con-
sistency, which may be the cause of the high value of the condition number. In the following section, we provide various
examples of the optimization of the numerical penalty factor using combinations of various materials.

4.2 Rotating disc and cylindrical wave propagation

Given the different roles that bulk and shear viscosity play in fluid and FSI,25,42 we investigate our proposed
symmetrization-free formulation in two test cases that highlight the impact of each viscosity. For the sake of simplicity,
we use a 2D model. The geometry is schematically depicted in Figure 6A. Boundary conditions were chosen such that
either shear waves (rotating disc) or compression waves (cylindrical wave) are generated. For each case, we consider five
material combinations using a non-conforming mesh at the curved fluid–solid interface.

Our first case is a rotating disc example where the shear viscosity effects were expected to be pronounced due to the
shear wave propagation. To rotate the disc, we applied the harmonic tangential velocity of vx = −y m/s and vy = x m/s at
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6136 HASSANPOUR GUILVAIEE et al.

F I G U R E 4 Analytical and numerical velocity field for low (5 ⋅ 10−2), suitable (5 ⋅ 105), and high (5 ⋅ 1013) numerical penalty factor.

(A) (B)

F I G U R E 5 Velocity jump and condition number for 1D wave propagation using symmetrization-free formulation. The orange marks
show the velocity jump at low (5 ⋅ 10−2), suitable (5 ⋅ 105), and high (5 ⋅ 1013) numerical penalty factors. The corresponding field solutions are
shown in Figure 4. (A) Velocity jump |||v −

𝜕u
𝜕t
||| at interface versus numerical penalty factor; (B) condition number of the system matrix versus

numerical penalty factor

excitation boundary Γe. We impose the boundary conditions vx = 0 m/s on Γx and vy = 0 m/s on Γy. A plot of the resulting
velocity vector field is displayed in Figure 6B.

Our second test case aims to study compression waves traveling over the interface. Using the same geometry topology
as the previous example (Figure 6A), with different dimensions, we create cylindrical compression waves by harmonic
pressure excitation p = 1 Pa along boundary Γe. The symmetry boundary conditions (vn = 0) are applied at the symmetry
lines Γy and Γx. Figure 6B shows the velocity vector field of the resulted compression waves. Additionally, to perform
the finite element simulation, we consider 364,000, 121,850, and 121,000 DOF for velocity, pressure, and displacement,
respectively.

The five material combinations, with a wide range of density ratios varying from 0.15 ⋅ 10−3 to 0.89, are considered to
examine the robustness of the penalty factor. These combinations include air-steel, air-rubber, water-steel, water-nylon,
and water-foam. The properties of the fluid and solid materials are described in Table 1.
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HASSANPOUR GUILVAIEE et al. 6137

(A) (B) (C)

F I G U R E 6 (A) Disc sketch and velocity field results. (A) Schematics of the disc considered for simulations. Blue color depicts the fluid
region (Ωf) and yellow color depicts the solid region (Ωs); (B) Simulated velocity field for the rotating disc example for air-steel material
combination (m/s); (C) Simulated velocity field for the cylindrical wave example for air-steel material combination (m/s)

T A B L E 2 Test cases dimensions

Cylindrical wave Rotating disc

r1 (m) r2 (m) f (MHz) r1 (m) r2 (m) f (kHz)

Air-steel 8.0 ⋅ 10−5 20.0 ⋅ 10−5 60 3.0 ⋅ 10−5 20.0 ⋅ 10−5 10

Air-rubber 3.0 ⋅ 10−5 300.0 ⋅ 10−5 10 3.0 ⋅ 10−5 20.0 ⋅ 10−5 10

Water-steel 5.0 ⋅ 10−5 350.0 ⋅ 10−5 260 3.0 ⋅ 10−5 20.0 ⋅ 10−5 1

Water-nylon 3.0 ⋅ 10−5 351.0 ⋅ 10−5 230 3.0 ⋅ 10−5 20.0 ⋅ 10−5 1

Water-foam 3.0 ⋅ 10−5 351.0 ⋅ 10−5 230 3.0 ⋅ 10−5 20.0 ⋅ 10−5 1

For a realistic comparison among the simulations with different materials, we design the test cases such that only a
traveling wave field is encountered in the fluid region. This is accomplished by adapting the fluid region and the excitation
frequency such that the wave amplitudes have decayed sufficiently until the outer boundary is reached, thereby avoid-
ing reflections. To do so, we consider different material combinations for different dimensions and frequencies. Table 2
describes the dimensions and the frequencies for each of these examples.

Figure 6B,C also show the velocity field results of the simulation for air-steel material combination for rotating and
cylindrical discs, respectively. These figures depict a continuous velocity field at the fluid–solid interface, indicating that
our formulation was successfully applied on curved interfaces. We note that the velocity fields were radially symmetric
in both examples as a result of the rotationally symmetric excitation applied to the disc at Γe (Figure 6A).

4.2.1 Choice of penalty factor and formulation

To obtain the suitable ranges of the numerical penalty factor in symmetrization-free formulation, we examine the
velocity error (with a fine mesh as a reference) in response to varied numerical penalty factors for various sets of
material combinations in both cylindrical wave and rotating disc examples. As expected, the velocity error for all
cases decreases with the rising numerical penalty factor until a plateau is reached when the numerical penalty fac-
tor is sufficiently high. The expected increase in velocity error for too large numerical penalty factors is often not
visible in the plots since the solver cannot solve the system matrix due to its ill-conditioning. The suitable numer-
ical penalty factor is the range where the test cases have low errors for all the material combinations. Figure 7A,B
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6138 HASSANPOUR GUILVAIEE et al.

(A) (B)

F I G U R E 7 Velocity error obtained for a range of numerical penalty factors with various material combinations for both test cases in
the symmetrization-free formulation. Pink regions show the suitable range of numerical penalty factors where the error is minimum for all
the scenarios. Dashed lines (- - -) mark 𝛽 = 𝛽scaling (i.e., 𝛽numeric = 1). (A) Rotating disc: symmetrization-free formulation; (B) cylindrical wave:
symmetrization-free formulation

(A) (B)

F I G U R E 8 Velocity error as in Figure 7 but for the Nitsche-based formulation. (A) Rotating disc: Nitsche-based formulation with
symmetrization term; (B) Cylindrical wave: Nitsche-based formulation with symmetrization term

show that the suitable ranges of numerical penalty factor for the rotating disc (102 − 2 ⋅ 108) and cylindrical disc
(5 ⋅ 102 − 2 ⋅ 107) examples are reasonably large. The black dashed lines marked in these figures indicate the errors
for the 𝛽numeric = 1. This value of the numerical penalty factor does not generate the optimal results. In gen-
eral, considering the 1D wave propagation, the numeric penalty factor between 5 ⋅ 102 − 2 ⋅ 107 is suggested. This
numerical penalty factor scales the penalty bi-linear terms 3–7 orders of magnitude higher than the other bi-linear
terms.

The Nitsche-based formulation retains the symmetrization term in Equation (13). Here we compare the numeri-
cal results with and without this symmetrization term in the rotating disc and cylindrical wave examples. Figure 8
shows that low errors are obtained with a wide range of numerical penalty factors using the Nitsche-based for-
mulation. In comparison to the symmetrization-free formulation (Figure 7) the values of the numerical penalty
factor are lower; however, both formulations use different expressions for 𝛽scaling (compare Equations (24) and
(25)). Similar to 1D wave propagation, the errors remain low for very low values of the penalty factor. This indi-
cates that the symmetrization term alone without including the jump term is sufficient to satisfy the coupling
condition. Unlike the 1D wave propagation, 𝛽numeric = 1 does not suggest the lowest error in the cylindrical wave
propagation.

The Nitsche-based formulation uses more numerical effort than the symmetrization-free formulation, since the
additional symmetrization term needs to be assembled. Given the correct penalty factors, the numerical errors
of both formulations are comparable and deliver equivalent results (Figures 7 and 8). For instance, identical
results of the simulated velocity fields by two approaches are shown in Figure 9, using the air-steel material
combination in rotating disc example. The velocity continuity is fulfilled at the solid–fluid interfaces, and the
velocity decays in the fluid field due to the shear viscosity effect. For these two simulations suitable numer-
ical penalty factors of 10−4 and 104 were used for the Nitsche-based and symmetrization-free formulations,
respectively.
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HASSANPOUR GUILVAIEE et al. 6139

F I G U R E 9 Velocity field results in diameter line in rotating disc example

(A) (B)

F I G U R E 10 Mesh study in rotating disc example. (A) L2 relative error in velocity versus element size h when the mesh is refined in the
viscous fluid domain (blue), solid domain (green), and generally in both domains (red). The dashed black lines indicate the convergence rates
(E = chn); (B) L2 relative error norm (E) in velocity versus numerical penalty factor at two different mesh discretizations. Original mesh
(used in previous error study) and the finer mesh have ∼1.2 ⋅ 104 and ∼105 DOF, respectively.

4.2.2 Numerical convergence

Having a non-conforming fluid–solid interface gives us the opportunity to independently refine the mesh in solid or/and
fluid domains. To study the spatial convergence, we choose the rotating disc example with air-steel material and uni-
formly refine the mesh in both domains simultaneously and in each domain separately. The study is performed using the
symmetrization-free formulation, instead of mathematical proof for convergence. Figure 10A shows the relative L2 error
versus the element size h, employing a numerical penalty factor of 106. These relative errors (of the fluid velocity field)
are evaluated with respect to the case of the finest mesh with solid and fluid element size of ∼4 ⋅ 10−5 and ∼4 ⋅ 10−4 mm,
respectively. The error is expected to behave like E = chn, where n denotes the order of convergence and c is an arbitrary
positive constant. Our results show a convergence order of (approximately) 2.4 for both uniform and fluid refinement
(n ∼2.4) and very low convergence for the refinement of the solid domain alone. The error reduction in the solid domain
is much lower than the viscous flow and is relatively constant.

We further discuss the effect of the numerical penalty factors on the velocity error concerning the mesh discretizations
in Figure 10B. This figure shows that for the case of the finer mesh with 105 DOF, not only the system creates one order
of magnitude lower errors, but also the plateau of the minimum error is larger than the original mesh (which was used in
Section 4.2.1). In the original case, the large condition number of the system matrix for the numerical penalty factor higher
than 5 ⋅ 108 prevents our solver from achieving further results. Therefore, the suitable range of the numerical penalty
factor is 10-5 ⋅ 108. However, for the finer mesh a larger range of the numerical penalty factor (10−4-5 ⋅ 1012) is possible.

4.3 Helmholtz resonator with flexible end-plate

Helmholtz resonators are used in multiple industrial applications, including monitoring pollution,43 suppressing engine
noise,44 and attenuating flow pulsation in the hydraulic and acoustic systems.45,46 Helmholtz resonator attenuates the
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6140 HASSANPOUR GUILVAIEE et al.

(A) (B)

F I G U R E 11 Helmholtz resonator sketch, boundary conditions, and mesh discretization. (A) Problem sketch and boundary conditions;
(B) Helmholtz resonator mesh discretization. Finer mesh are considered near walls and in neck where the viscous boundary layers exist

T A B L E 3 Helmholtz resonator geometry parameters and solid material

ltube(mm) rtube(mm) lneck(mm) dneck(mm) lcavity(mm) dcavity(mm) lsolid(mm) 𝝆(kg∕m3) 𝝂 E(Pa)

400 14.5 9 2 25 25 0.39 320 0.383 35.3 e6

acoustic energy over a certain frequency band that corresponds to its resonant frequencies. Two common approaches used
for tuning the resonant frequencies are incorporating multiple Helmholtz resonators in parallel and series,45,47 and using
a flexible plate at the end of Helmholtz cavity.48-51 The former, however, is not applicable in miniature designs because it
requires more space. Thus, in the current study, we use our method for modeling the fluid-structure interaction to design
a miniature Helmholtz resonator with a flexible end-plate, applicable in small volume spaces. This approach provides
flexible applications for obtaining one or multiple resonance frequencies, tuned with those of the plate depending on the
plate geometry and its material properties.

The geometry and dimensions of our Helmholtz resonator test case and arbitrary solid material properties are provided
in Figure 11A and Table 3, respectively. As shown in Figure 11A in a Helmholtz resonator, an impedance tube is attached
to a cavity through a neck. The absorbing boundary condition is considered at the end of the impedance tube to simulate
free-field conditions. For viscous acoustics, this condition is

𝝈f = z0(v ⋅ n)n, (28)

where z0 = 𝜌c is the specific impedance. We apply the normal harmonic velocity vx = 1 on the excitation boundary. In
addition, we consider wall on the other fluid boundaries and fix the flexible plate on its two sides (clamped plate). Thanks
to symmetric geometry, we model half of the Helmholtz resonator and apply symmetry conditions on the bottom bound-
ary (dashed line in Figure 11A). Due to the Helmholtz resonator’s small dimension and long narrow neck, viscose effects
are relevant.46 While in the cavity and impedance tube the mesh size is 2.36 mm, due to the relevance of the viscous effect
in the neck and in viscous boundary layers close to walls, a finer mesh size (17.4 μm) is applied. The mesh size in the
solid region is 0.21 mm, creating the non-conforming mesh discretization at the solid–fluid interface. Figure 11B shows
the mesh discretizations. Furthermore, air and arbitrary solid material properties used in the current study are provided
in Tables 1 and 3, respectively.

To investigate the impact of solid interaction on system resonance frequencies, a comparison is made between the
Helmholtz resonator’s resonance frequencies with flexible end-plate (modified hereafter) and without flexible end-plate
(unmodified hereafter). Furthermore, to demonstrate the viscous effect, the results are compared to those from the stan-
dard wave equation. The other conditions, including material and dimension, remain the same. Since the resonance
frequencies are pronounced in the transmission loss (TL), we study it over a certain frequency range (1–1200 Hz). The
transmission loss is

TL = 20 log
( 1

T

)
, (29)
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HASSANPOUR GUILVAIEE et al. 6141

where T is the transmission coefficient. This coefficient is defined for an impedance tube by

T =
p3

pin
, (30)

where pin is the incident pressure. We calculate pin from fitting a 1D wave propagation pattern (p = p+e−kx + p−ekx) with
a complex wave number k (more details are provided in Appendix A) to the upstream flow. In doing so, pin computes by

pin = p+e
−kxx= 5

6 ltube . (31)

The transmission loss over frequency for modified and unmodified Helmholtz resonator for viscous and inviscid flow
is displayed in Figure 12. This figure shows, for viscous flow, the unmodified Helmholtz resonator has a resonance
frequency of 850 Hz compared to the two resonance frequencies of the modified Helmholtz resonator observed at
151 and 1061 Hz. Therefore, by employing the modified Helmholtz resonator, two frequencies in the primary sys-
tem can be attenuated in comparison to a single frequency of the unmodified Helmholtz resonator. It is evident
that the resonance of the modified Helmholtz resonator is lower than the plate’s first resonance (235 Hz) and the
unmodified Helmholtz resonator’s resonance frequency. The second resonance frequency of the modified Helmholtz
resonator is between the unmodified Helmholtz resonator (850 Hz) and the third resonant frequency of the plate
(1266 Hz). It is worthy of note that the second plate resonance frequency is not excited due to an asymmetric shape
mode.

Interestingly, consistent with the two resonance frequencies of the modified Helmholtz resonator, the plate in
the modified resonator also shows its first and third resonance frequency mode shape behaviors at 151 and 1061 Hz.
The solid displacement behaviors at these frequencies are shown in Figure 13. Solid displacement behavior at the
modified Helmholtz resonator resonance frequencies causes variations in the fluid velocity field. In the first reso-
nant frequency, the fluid moves toward both middle of the cavity and plate where the solid has the higher dis-
placement amplitude (Figure 13A). Whereas, in the second resonant frequency the direction of fluid is toward the
sides of the cavity and going further away from the middle of the cavity, corresponding to the plate deformation
(Figure 13B).

The inviscid flow shows higher resonance frequencies than the viscous flow (Figure 12). The differences in the reso-
nance frequencies are more pronounced in the modified Helmholtz resonator where the first resonance frequency of the
inviscid flow is 129 Hz higher than that in the viscous flow. This result demonstrates that the viscous dissipation signifi-
cantly impacts the resonance frequencies of the Helmholtz resonator and cannot be ignored. Moreover, the peak values
of the transmission loss in inviscid flow is larger than that in the viscous flow announcing the viscous damping effects.

Finally, we study the transmission, reflection and the absorption energy coefficients in modified and unmodified
Helmholtz resonators in the cases with viscous effect, and without the viscous effects. From the law of conservation of
energy the energy absorption coefficient (A) is defined as52

A = 1 − R2 − T2
, (32)

F I G U R E 12 Transmission loss of the unmodified and modified Helmholtz resonator for viscous and inviscid (gray results) flow. The
gray dashed lines (- - -) show first and third mechanical resonance frequencies.
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6142 HASSANPOUR GUILVAIEE et al.

F I G U R E 13 Plate shape mode at the resonance frequencies of the modified Helmholtz resonator ((A) 151 Hz and (B) 1061 Hz). Plate
exhibit its first and third mode shapes.

(A) (B)

F I G U R E 14 Reflection, transmission, and absorption energy coefficients (blue, green, red) in the viscous (solid lines) and in the
inviscid (dashed lines) flows in unmodified (without solid plate), and modified (with solid plate) Helmholtz resonator. (A) Unmodified
Helmhltz resonator; (B) modified Helmhltz resonator

where the reflection coefficient (R) computes by

R =
p−ekx

p+e−kx . (33)

Figure 14 displays the reflection, transmission and absorption energy coefficients versus frequency in the unmodified
(Figure 14A) and modified (Figure 14B) Helmholtz resonators. The energy coefficients of reflection and transmission are
the square of those coefficients (R2 and T2, respectively). In the modified Helmholtz resonator, unlike the unmodified one,
the absorption and the reflection energy coefficients, each, have two peaks that correspond to the two observed resonance
frequencies. In the viscous flow, the amplitude of the energy absorption coefficient in the second resonance is∼10%higher
than the one in the unmodified resonance; however, in the first resonance, which results from plate resonance, has a
lower absorption coefficient. The inviscid flow has zero transmission at the resonance frequencies (see Figure 14). Since
no absorption is possible without viscous effects (A = 0), this means that all the waves are reflected (R = 1). In contrast,
the viscous flow has significant absorption at the expense of higher transmission coefficients, resulting in lower reflection.
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5 CONCLUSIONS

In this contribution, we presented a non-conforming finite element approach for solving FSI problems, which allows an
optimal mesh size for each physical field. The full linearized Navier–Stokes equations and balance of momentum were
used to model a viscous compressible fluid and an elastic solid, respectively. Furthermore, we proposed an estimation
for the penalty factor using the scaling approach. The FEM formulation can be implemented in a Nitsche-based and a
symmetrization-free variant, which were validated and compared by four case studies.

In the first case study, we analyzed the effect of low, suitable, and high numerical penalty factors on the errors, field
results, and velocity jump in the symmetrization-free formulation. Compared to the analytical solution, the suitable range
of the numerical penalty factor had a precision of 10−7. In addition, we showed an inverse relationship between the
numerical penalty factor and velocity jump at the interface.

The second and third case studies analyzed the coupling approach, emphasizing the shear and bulk viscosity effects
in multiple fluid and solid material combinations in both formulations. Results indicated that numerical penalty factors
ranging from 5 ⋅ 102 to 2 ⋅ 107 (suitable numerical penalty factor) create negligible field errors in the mentioned test cases
with the symmetrization-free formulation. The Nitsche-based formulation does not have a limitation on the lower limit
of the numerical penalty factor and 𝛽numeric < 10−3 is considered as a suitable range of numerical penalty factor in this
formulation. On the other hand, the assembly effort is lower in the symmetrization-free formulation. Comparison of the
Nitsche-based and symmetrization-free formulation in these three cases showed equivalent results while using a suitable
penalty factor. In the rotating disc test case, the spatial convergence study showed reasonable convergence rates. Moreover,
results revealed that a larger range of numerical penalty factors is valid for finer mesh discretizations.

The last case study investigated the effect of solid interaction on a viscous compressible flow in a miniature Helmholtz
resonator by employing our method. This flexible end-plate was added to the resonator to attenuate multiple frequencies.
Furthermore, we demonstrated the importance of modeling viscous effects in order to accurately predict the transmission
loss and the transmission, absorption, and reflection coefficients. In conclusion, we showed that our formulation has a
wide range of applications in modeling FSI in miniature systems.
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APPENDIX A. ANALYTICAL SOLUTION FOR 1D WAVE PROPAGATION

Here, we aim to obtain an analytical solution for 1D wave propagation in a viscous compressible fluid coupled to solid
mechanics. We start with the balance of momentum for the solid for a linear elastic material behavior without body forces

𝜌s
𝜕

2u
𝜕t2 − ∇ ⋅

(
C ∶ 1

2
(
𝜵u + (𝜵u)T

))
= 0, (A1)

where C is the stiffness tensor. In the simplified case of 1D wave propagation, the displacement u can be written as

u = (ux(t, x), 0, 0). (A2)

Inserting the displacement formulation (A2) into the momentum conservation (A1) results in

𝜌s
𝜕

2ux

𝜕t2 − C11
𝜕

2ux

𝜕x2 = 0, (A3)

where C11 = E(1−𝜈)
(1+𝜈)(1−2𝜈)

, E and 𝜈 are Young modulus and Poisson ratio, respectively. The displacement distribution in the
channel with symmetry boundary conditions on the top and at the bottom is

ux = ei𝜔t(u+e−k1x + u−ek1x), (A4)

with the wavenumber k1. This wavenumber can be derived by inserting the displacement distribution (A4) into the
balance of momentum (A3)

k1 = ±i

√
𝜌s𝜔2

C11
. (A5)
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In the case of 1D wave propagation in a compressible viscous fluid, along the x axis, the velocity vector will only have the
x component and the pressure is a function of x and time t

v = (vx(x, t), 0, 0) p = p(x, t).

In the adiabatic case, the balance of mass and momentum in 1D wave propagation are

1
c2
𝜕p
𝜕t
+ 𝜌𝜕vx

𝜕x
= 0, (A6)

𝜌
𝜕vx

𝜕t
+
𝜕p
𝜕x
−
(4

3
𝜇 + 𝜇b

)
𝜕

2vx

𝜕x2 − 𝜇
𝜕

2vx

𝜕y2 = 0. (A7)

By applying the space derivative on the balance of mass and the time derivative on the balance of momentum, we can
eliminate the pressure DOF

𝜕
2p

𝜕x𝜕t
= −𝜌c2 𝜕

2vx

𝜕x2 , (A8)

𝜕
2vx

𝜕t2 +
𝜕

2p
𝜕x𝜕t

−
(4

3
𝜇 + 𝜇b

)
𝜕

3vx

𝜕x2𝜕t
− 𝜇 𝜕

3vx

𝜕y2𝜕t
= 0. (A9)

By inserting (A8) into (A9) the linearized momentum equation is

𝜕
2vx

𝜕t2 − 𝜌c2 𝜕
2vx

𝜕x2 −
(4

3
𝜇 + 𝜇b

)
𝜕

3vx

𝜕x2𝜕t
− 𝜇 𝜕

3vx

𝜕y2𝜕t
= 0. (A10)

We also know in the simple channel with symmetry boundary conditions on the top and at the bottom, the velocity
distribution can be presented as

vx = ei𝜔t(v+e−k2x + v−ek2x), (A11)

where, in the case of the attenuation, k2 is the fluid complex wave number. Applying velocity distribution (A11) in 1D
velocity wave propagation (A10) results in

−𝜔2
𝜌vx − 𝜌c2k2

2vx −
(4

3
𝜇 + 𝜇b

)
i𝜔k2vx = 0. (A12)

Finally, k2 will be obtained

k2 = ±i
√√√√

𝜌𝜔2

𝜌c2 +
(

4
3
𝜇 + 𝜇b

)
i𝜔
. (A13)

To obtain the analytical solution, we need four equations to compute the velocity (A11) and displacement (A4) distribution
in fluid and solid domains. These four equations are two interface constraints equations and two boundary conditions.
The interface constraints were previously mentioned (see (8) and (9)). Starting from continuity of velocity, Equation (9)
at the interface, and inserting the displacement (A4) and velocity (A11) distribution yields

i𝜔(u+e−k1L1 + u−ek1L1) = v+e−k2L1 + v−ek2L1 , (A14)

where L1 is the x-position of the interface. The continuity of traction at the interface for the 1D wave propagation (8) is

C11
𝜕ux

𝜕x
||||x=L1

= −p +
(
𝜇b +

4
3
𝜇

)
𝜕vx

𝜕x
||||x=L1

. (A15)
(

c2
𝜌fk2 +

(
𝜇b +

4
3
𝜇

)
i𝜔k2

)
(v−ek2L1 − v+e−k2L1) = C11i𝜔k1(u−ek1L1 − u+e−k1L1), (A16)

with the speed of sound c. By adding the boundary conditions, we would be able to obtain all four unknowns.
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Figure 2 demonstrates the boundary conditions we considered for the analytical results. The harmonic displacement
u|x=0 = 1 m and the velocity in x direction, at the end of channel (x = L1 + L2) is considered zero (vx|x=L1+L2 = 0). We derive
the boundary condition’s equations by inserting the displacement excitation at x = 0 into displacement distribution (A4)
and velocity variation at x = L1 + L2 into the velocity distribution (A11)

u+ + u− = 1, (A17)
v+e−k2(L1+L2) + v−ek2(L1+L2) = 0. (A18)

The unknowns u+, u−, v+, and v− will be now derived by solving the set of linear equations (A14), (A16), (A17), and
(A18).
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