
DIPLOMARBEIT

Anomaly Detection in Power Grids by
Means of Graph Convolutional Neural

Networks

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Physikalische Energie- und Messtechnik

eingereicht von

Wolfgang Lubowski, BSc

Matrikelnummer 1226645

ausgeführt am Institut für Telekommunikation
der Fakultät für Elektrotechnik der Technischen Universität Wien
in Zusammenarbeit mit dem Institut für Angewandte Physik
der Fakultät für Physik der Technischen Universität Wien

Betreuung
Hauptbetreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Matz
Mitwirkung: Univ.Ass. Dipl.-Ing. Thomas Dittrich, BSc
Mitbetreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Martin Gröschl

Wien, 22. Dezember 2022

(Unterschrift Verfasser) (Unterschrift Betreuer)

2

Abstract

In recent years, great successes have been achieved through the application of
artificial neural networks in engineering and science. In particular, convolutional
neural networks (CNNs), i.e., those based on the convolution operation, proved to
be useful. However, to allow the application of CNNs, the data is required to have
strict neighborhood relationships. This means, the application of CNNs has so far
mostly been limited to data acquired in Euclidean domains, such as pixels in a
square grid or time series data with constant sampling frequency. For numerous
technical and scientific applications the underlying structure is of a more irregular
nature, which means that exactly this requirement cannot be met. An example
of a problem that is poorly handled by current machine learning technologies is
anomaly detection in power grids.

Graphs, that can be used to model arbitrary neighborhood relationships be-
tween data points, are often the most natural approach when processing such data.
In the field of graph signal processing there is a generalization of the convolution
operation for graph signals. Based on this, the new concept of graph convolu-
tional neural networks has been developed over the last years. The applicability
of graph convolution neural networks to concrete engineering problems has been
insufficiently studied.

This thesis presents an approach, how an anomaly detection model based on a
graph convolutional neural network can be implemented. An adaption of the pop-
ular GCN framework is proposed, which overcomes the problem of over-smoothing
in this network. The performance of the model is then examined for the detection
of anomalies in the voltage data from a power grid.

Kurzfassung

In den letzten Jahren wurden durch die Anwendung von künstlichen neuronalen
Netzen in Technik und Wissenschaft große Erfolge erzielt. Insbesondere Con-
volutional Neural Networks (CNNs), d.h. solche, die auf der Faltungsoperation
basieren, haben sich als nützlich erwiesen. Um die Anwendung von CNNs zu
ermöglichen, müssen die Daten jedoch strenge Nachbarschaftsbeziehungen auf-
weisen. Das bedeutet, dass die Anwendung von CNNs bisher meist auf Daten
beschränkt war, die in einer euklidischen Domäne erfasst wurden, wie z.B. Pixel in
einem quadratischen Gitter oder Zeitreihendaten mit konstanter Abtastfrequenz.
Bei zahlreichen technischen und wissenschaftlichen Anwendungen ist die zugrun-
deliegende Struktur unregelmäßigerer Natur, so dass genau diese Anforderung
nicht erfüllt werden kann. Ein Beispiel für ein Problem, das von den derzeiti-
gen Technologien des maschinellen Lernens nur unzureichend beherrscht wird, ist
die Erkennung von Anomalien in Stromnetzen.

Graphen, mit denen sich beliebige Nachbarschaftsbeziehungen zwischen Daten-
punkten modellieren lassen, sind oft der natürlichste Ansatz für die Verarbeitung
solcher Daten. Auf dem Gebiet der Graphsignalverarbeitung gibt es eine Verallge-
meinerung der Faltungsoperation für Graphsignale. Auf dieser Grundlage wurde
in den letzten Jahren das neue Konzept der Graph Convolutional Neural Net-
works entwickelt. Die Anwendbarkeit von neuronalen Netzen mit Graphenfaltung
auf konkrete ingenieurwissenschaftliche Problemstellungen ist bisher nur unzure-
ichend untersucht worden.

In dieser Arbeit wird ein Ansatz vorgestellt, wie ein Modell zur Erkennung
von Anomalien auf der Basis eines Graph Convolutional Neural Network imple-
mentiert werden kann. Es wird eine Adaption des populären GCN-Frameworks
vorgeschlagen, die das Problem des Oversmoothing in diesem Netzwerk behebt.
Die Performanz des Modells wird dann für die Erkennung von Anomalien in den
Daten der Spannung eines Stromnetzes untersucht.

Danksagung

Ich möchte mich in besonderer Art und Weise für die sehr hilfreiche und geduldige
Betreuung dieser Arbeit durch Thomas Dittrich und Prof. Gerald Matz bedanken.
In zahllosen ausführlichen Gesprächen haben sie mich dabei unterstützt ein solides
Verständnis für die Fragestellungen dieses Themenfeldes zu entwickeln und Lösun-
gen für aufgetretene Probleme zu finden. Bei Prof. Martin Gröschl möchte ich
mich besonders dafür bedanken, dass er das interdisziplinäre Zustande kommen
dieser Arbeit ermöglicht hat. Besonderer Danke gilt meiner Freundin Anna Kirch-
mair sowie meinen Eltern Eva und Gerhard Lubowski, dass sie mich in vielfältiger
Weise unterstützt haben, den langwierigen Entstehungprozess dieser Arbeit zu
einem Ende zu bringen.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Problem formulation and contribution 5

2 Anomaly detection in power grids 7
2.1 Power grids as graphs . 7
2.2 Phasor measurement units . 7
2.3 False data injection in power grids 10

3 Graph neural networks 11
3.1 Applications . 11
3.2 Graph signal processing . 13

3.2.1 Graphs and graph signals 13
3.2.2 Graph shift operators and the graph Laplacian 13
3.2.3 Graph Fourier transform . 14
3.2.4 Graph convolution . 15

3.3 Types of graph neural networks . 16
3.4 Graph convolutional neural networks 18

3.4.1 From Convolutional Neural Networks to Graph Convolu-
tional Neural Networks . 18

3.4.2 Spectral domain methods 21
3.4.3 Node domain methods . 21
3.4.4 Graph pooling and graph aggregation 21

3.5 GCN framework . 22

4 GCN for anomaly detection 26
4.1 Deficiencies of GCN . 26
4.2 Adapting GCN . 27

5 Experimental setup 28
5.1 Formulation as a machine learning problem 28

1

5.2 Model design . 29
5.3 Dataset . 31
5.4 Data preparation . 31

6 Results 37

7 Conclusion and outlook 43
7.1 Conclusion . 43
7.2 Outlook . 43

2

List of Symbols

Symbol Meaning

G a graph

V set of nodes in a graph G
E set of edges in a graph G
N number of nodes |V| in a graph

A weighted adjacency matrix

aij weight of the edge connecting the nodes i and j

x, x̂ univariate signal on a graph and its

graph Fourier transform

X multivariate signal on a graph

D degree matrix

L, L̄ unnormalized and normalized graph Laplacian

Ni the neighborhood of a node i

λk,uk kth eigenvalue and eigenvector of L

Λ,U matrix representation of eigendecomposition of L

G a (graph) shift operator

g(A) a polynomial filter; polynomial in A

σ(·) a non-linear activation function

θk trainable filter coefficient for the kth

order of the polynomial filter

Θk diagonal matrix of trainable filter coefficients for the kth

order of the polynomial filter

gθ a diagonal matrix of trainable filter coefficients for the kth

order of the polynomial filter (with a slight difference to Θk)

Tk kth Chebyshev polynomial

Hl,Hl+1 input of output of graph convolutional

3

neural network layer

Wl trainable weights in the lth layer of a graph

convolutional neural network

Z output of approximated graph convolution

Table 1: Overview of used symbols.

4

Chapter 1

Introduction

1.1 Motivation

Power grids are a backbone of our society, ensuring their stability is of utmost
importance. This thesis proposes a new method for detecting false data injection
attacks in power grids.

Further, central motivation of this thesis is to give a better understanding of the
applicability of convolutional neural networks for data acquired in non-Euclidean
domains. Graph convolutional neural networks have evolved dynamically in the
very recent past. Both major neural network implementation frameworks now
provide functionality for graph neural networks: PyTorch offers now PyTorch Ge-
ometric [1] [2] and TensorFlow offers now Tensorflow GNN [3] [4].

Despite the dynamic development of this new field, there are still relatively few
examples in the literature of concrete implementations in science or engineering.
In particular, very few examples of applications in anomaly detection can be found.

1.2 Problem formulation and contribution

The goal of this thesis is to correctly detect anomalies in voltage measure-
ments from a power grid using a Graph Neural Network generated by False Data
Injection.

This thesis makes three main contributions:

• It shows how data from a power grid can be analyzed with a graph neural
network. For this purpose, the power grid is represented by a graph and the
collected data form the graph signals.

• Furthermore, it is shown how an anomaly detection can be implemented with
a convolutional graph neural network. To stay close to existing examples in

5

the literature, a classification problem is implemented.

• Finally - and this is probably the most important contribution of this thesis
- an adaptation of the popular GCN framework is proposed, which solves the
problem of over-smoothing in this network. This is achieved by adding an
additional term to the propagation rule of the GCN layer, which generates
an output signal in case of strong variations of the input signal in the node
domain.

6

Chapter 2

Anomaly detection in power grids

Power grids are among the largest and most important examples of networks
in technology or nature. Their importance for our modern civilization can hardly
be overestimated. Measures to enable safe and stable operation are of utmost
importance. Large-scale power outages would have a dramatic impact within a
relatively short period of time.

2.1 Power grids as graphs

Power grids can be represented in a natural way as graphs: The transmission
lines are represented as edges of a graph, the buses as nodes.

Data acquired with Phasor Measurement Units (PMUs) (cf. Section 2.2) are
understood as graph signals. Measurements of the voltage at the buses correspond
to graph signals at the nodes. Measurements of the currents in the transmission
lines could be represented as signals of the edges of the graph. [5]

2.2 Phasor measurement units

The graph signals used for experiments in this thesis were recorded with PMUs.
Therefore, a brief introduction to these measurement units is given below.

PMUs are used for continuous monitoring of power grids. For current and
voltage, the complex amplitude, i.e. magnitude and phase, is measured. The units
are typically distributed throughout the power network, buses and transmission
lines should be equipped. To ensure time synchronization between units, a time
signal from GPS (or other GNSS) is used.

In some cases, the sampling rate of modern PMUs is high enough to track the
exact waveform of current and voltage, allowing for accurate analysis of potential

7

0 10 20 30 40

time in [s]

−20.50

−20.25

−20.00

−19.75

−19.50

−19.25

−19.00
an

gl
e
of

vo
lt
ag
e
in

[°]

Figure 2.1: Angle of voltage during a poorly oscillation event. Data is taken from
[8].

problems [6]. [7] explains that in other cases, a multiple of the grid frequency
is used as the sampling frequency, so that only the phase angle progression is
recorded, but not the exact waveform, e.g. [8].

Fig. 2.1 and Fig. 2.2 show examples of voltage angle and voltage magnitude
recorded with PMUs. The data is from an American grid with 60 Hz nominal
grid frequency, and 30 Hz was used as the sampling frequency. The choice of this
sampling frequency means that although the exact waveform of the signal cannot
be traced, the course of the phase can. The plotted section of 40 seconds shows
an oscillation event in the grid. Due to a fault case a badly damped oscillation
of grid frequency, voltages and currents has occurred. The example is taken from
the test case library of [8].

8

0 10 20 30 40

time in [s]

1.0300

1.0325

1.0350

1.0375

1.0400

1.0425

1.0450

1.0475

1.0500

m
ag
n
it
u
d
e
of

vo
lt
ag
e
in

u
n
it
of

n
om

in
al

vo
lt
ag
e
in

[1
]

Figure 2.2: Magnitude of voltage during an oscillation event. Data is taken from
[8].

9

2.3 False data injection in power grids

False data injection is a malicious attack on a power grid. Measured values -
especially those from PMUs - are manipulated. The aim is to cause interventions
in the power grid that endanger the stability of the power grid in order to cause
power grid failures [9].

FDI is chosen as a test scenario for this thesis because it is relatively easy to
create false values in an existing dataset and label them so that a machinelearning
problem can be formulated with them. In the present scenario, PMU data is
manipulated.

10

Chapter 3

Graph neural networks

Artificial neural networks, in particular convolutional neural networks - i.e.,
networks based on convolution operations - have made tremendous progress in
recent years in various application areas. CNNs require that the underlying data
has been sampled in a Euclidean space, for example pixels in an image.

This limitation can be overcome by graph neural networks. By using the edges
of a graph, any irregular space can be modeled - even without knowledge of the
geometry of the space. For this approach to model data, GSP offers a mature tool-
box, which contains a generalization of the convolution operation towards graphs.
With this motivation, in recent years GCNs were introduced to combine the ad-
vantages of CNNs and GSP.

3.1 Applications

The following section offers some examples of applications of graph neural
networks in engineering and science.

An application very often cited in literature is semi-supervised node clas-
sification. Based on mutually shared authors (encoded in the graph topology)
and used terms (encoded as graph signal), and the known subjects (encoded in the
labels that are partly removed), publications are to be assigned to a subject. In the
training phase random selection of labels is removed. To evaluate the model per-
formance, another random selection of labels is masked. A commonly used setup
for benchmarking in this context is a coauthered network derived from a dataset
with several hundred scientific publications, such as Citeseer, Cora, Pubmed [10].
The dataset assigns each publication to exactly one discipline (in one case there
are seven different disciplines) and the content and authors of the publications are
assumed to be known. For example in [11] a graph is generated in such a way that
each publication corresponds to a node in the graph and all publications that have

11

at least one mutually shared author are connected by an edge. Thus, there are
no edges between publications without mutually shared authors. [11] generates
graph signals from the content of the publications: First, all words of the general
language are removed from the publications. What remains is a set of several thou-
sand different words, each of which is typical for one or multiple subject areas. The
occurrence of the words in each publication is mapped using one-hot encoding. If
a word occurs at least once in a publication, the corresponding value in the graph
signal is set to 1, otherwise the value is 0. The corresponding discipline is used as
the label in this machine learning problem. A large part of the labels (for example
80%) is removed and the goal is to predict from the remaining labels these missing
labels.

Recommender systems work in a very similar way. These can be used,
for example, in social networks, online shopping or media streaming sites. In
these systems, each user is represented by a node in the graph and based on the
similarity of the users’ behavior or their common interests, a graph is generated.
Recommendations for each individual user, as to which products he could buy or
movies he could watch, are then made based on the behavior of other users [12]
[13] [14].

Graph neural networks also have very interesting applications in the context
of finding solutions to partial differential equations: When applying deep
learning methods to solving partial differential equations, a key challenge is to
model the underlying physics. For example, when dealing with molecules and
molecular potentials, these can be modeled in a natural way as graphs [15]. These
methods can also be used for drug design [16].

In [17] it is shown how complex 3D granular flow processes in hoppers, rotating
drums and mixers can be modeled by using graph neural networks. A significant
challenge is to represent the complex geometry of the boundary conditions. In
engineering, it is common to represent such surfaces by using triangulation. Graphs
offer a way to take over this representation as boundary conditions.

Relatively little can be found in the literature on anomaly detection using
graph neural networks. An exception is [18]. This publication proposes the so-
called Graph Deviation Network. The network processes multivariate time series
data. On the one hand, this network learns the structure, i.e. the edges, of
the graph during training itself. On the other hand, it learns an attention-based
forecast of the time series. An anomaly score is calculated from the deviation
between prediction and input.

12

3.2 Graph signal processing

Graph signal processing offers a toolbox for operations on graphs and graph
signals. This toolbox is the basis for all kinds of graph neural networks. Therefore
a quick introduction into some relevant topics of graph signal processing is given
here. The contents of this section are all based on [12], [13] and [19].

3.2.1 Graphs and graph signals

[19] defines a weighted, undirected and connected graph as G = (V , E ,A). V
with |V| = N represents the set of nodes (also called vertices) of the graph, E the
set edges and A ∈ RN×N

+ is the adjacency matrix. If two nodes are connected by
an edge e = {i, j}, then Aij = Aji = a > 0, for unconnected nodes Aij = Aji = 0.

A graph where Aij ∈ {0, 1} is called unweighted graph. In case Aij ̸= Aji, then
the graph is directed [19].

In order to discuss graph signal processing, it is necessary to define signals over
graphs. [19] introduces vectorial signals associated with graph nodes by x : V →
RM with X ∈ RN×M . Xij is the jth value of a vectorial signal at the ith node.

3.2.2 Graph shift operators and the graph Laplacian

[12] offers the following example to explain, how graph signal processing can
be understood as a generalization of classical signal processing: In the special
case of a uniform graph, rules of classical signal processing must be attained.
Classical signal processing - more specifically, digital signal processing - considers
a periodic, time-discrete (non-graph) signal x[n] with period length N . This signal
is described by the vector x = [x0, x1, x2, . . . , xN−2, xN−1]

⊤. Many operations, such
as the convolution, require this signal to be shifted by a shift operator. To obtain
such a shifted signal x′, the original signal x is multiplied by an operator A

x′ = Ax (3.1)

and the required shift can be done by using

A =



0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


(3.2)

13

as shift operator. This creates a shift by one node, if a shift by multiple nodes is
required, A is applied multiple times - i.e., a power of A is applied [12].

This shift operation should now be understood as an operation over a graph.
A periodic, time-discrete signal can be conceived as a graph signal over a directed,
circular graph - i.e., a graph where each node has a directed connection to exactly
one other node. Now it turns out that the previously chosen shift operator A also
represents the adjacency matrix for exactly this graph. This example illustrates
that one possible choice for a shift operator in graph signal processing is the
adjacency matrix itself [12].

Another possible choice for the graph shift operator is the graph Laplacian.
[19] defines the unnormalized graph Laplacian as

L := D−A, (3.3)

where the degree matrix D is the diagonal matrix

Dii =

j

Aij. (3.4)

When L acts on some graph signal x ∈ RN

(Lx)i =

j∈Ni

Aij[xi − xj], (3.5)

its most important characteristic as a difference operator can be seen. Ni denotes
the neighborhood of a node i, i.e. all nodes j connected by an edge to the node i.
With respect to this characteristic, the graph Laplacian operator behaves exactly
in same way as the classical Laplacian [19].

Furthermore, [19] provides some important characteristics of the eigenvector
and eigenvalue spectrum of L: L is a real symmetric matrix, therefore it has a
complete set of orthonormal eigenvectors {ul}l=0,1,...,N−1 . The eigenvectors are
not necessarily unique, but for all further consideration they are assumed to be
fixed. The eigenvalues of L are real and non-negative {λl}l=0,1,...,N−1.

The multiplicity of zero as eigenvalue is equal to the number of connected
components of the graph [19].

3.2.3 Graph Fourier transform

The following explanation, how to generalize the classical Fourier transform,
such that it can be applied to graphs, closely follows [19]. The classical Fourier
transform is given by

x̂(ξ) := ⟨x, e2πiξt⟩ =
�
R

x(t)e−2πiξtdt . (3.6)

14

This can be interpreted as an expansion of a function x in complex exponential
functions e−2πiξt. These complex exponential functions are the eigenfunctions of
the one-dimensional classical Laplace operator:

−∆(e2πiξt) = − ∂2

∂t2
e2πiξt = (2πξ)2e2πiξt. (3.7)

This observation of the classical Fourier transform builds the central point for [19]
in the development of the graph Fourier transform. Therefore the graph Fourier
transform is given as an expansion of a graph signal x in terms of the eigenfunctions
ul of the graph Laplacian L

x̂(λl) := ⟨x,ul⟩ =
N

i=1

x(i)u∗
l (i), (3.8)

where x̂(λl) denotes the Fourier transformed graph signal associated with the eigen-
value λl. Hence, [19] gives the inverse graph Fourier transform by

x(i) =
N−1

l=0

x̂(λl)ul(i). (3.9)

In the classical Fourier transform, ξ (or 2πξ) represents a frequency. In analogy,
the eigenvalues λl and eigenvectors ul of the graph Laplacian L are also associated
with a generalized frequency: Eigenvectors belonging to eigenvalues close to 0
change only slowly over the whole graph. That is, within the neighborhood Ni

of a node i, the value of the graph signal represented by ulchanges little. The
eigenvector u0 to the eigenvalue λ = 0 is constant throughout the whole graph
and has a value of 1/

√
N . Eigenvectors belonging to eigenvalues far from 0 change

very much within the neighborhood of a node and have many oscillations over the
whole graph [19].

3.2.4 Graph convolution

Graph convolution is defined by [12] by the matrix vector multiplication

y = Gx = g(A)x =
K

k=0

θkA
kx, K < N, (3.10)

with the graph signal x, g(A) a polynomial filter (i.e. shift operator) of degree K
and filter coefficients θk. Graph convolution results in kth iteration propagating the
signal from all k-hop neighbors to a node - weighted by a filter coefficient θk. This

15

behavior is analogous to classical convolution - reduced by all that a graph lacks in
structure such as direction and distance. [12] states, that, for practical reasons, A
is often normalized by division by |λmax|, where λmax is the eigenvalue of A with
the greatest magnitude. Alternatively, normalization can also be performed by

Ā = D−(1/2)AD−(1/2), (3.11)

where D is the degree matrix. [12] reasons this with an increase of computational
stability of G because all (non-maximum) eigenvalues are inside the unit circle.

Now the convolution of Fourier-transformed signals are considered. Therefore
an eigendecomposition is applied to the shift operator

A = UΛU⊤, (3.12)

with the orthogonal eigenvector matrixU ∈ RNxN and the diagonal eigenvalue ma-
trix Λ ∈ RNxF ordered by λ1 ≤ λ2 ≤ . . . ≤ λN1 . The graph signal is transformed
to the frequency domain by

x̂ = U⊤x. (3.13)

As shown by [13], the Fourier transformed output of the graph convolution
yields

ŷ =U⊤y

=
K

k=0

θkU
⊤UΛkU⊤x

=
K

k=0

θkΛ
kx̂

=Gθ(Λ)x̂.

(3.14)

Gθ(Λ) is a diagonal matrix diag(θ(λi)), with

θ(λ) =
K

k=0

θkλ
k. (3.15)

3.3 Types of graph neural networks

Basically, it is possible for graph neural networks to give output at the level
of nodes, edges, or the whole graph. Another fundamental classification is that
graph neural networks either process signals over the graph or the structure of the
graph itself [14].

16

For further consideration, the focus is on those graph neural networks that
make outputs at the node level and process graph signals.

The vast majority of graph neural networks that are of practical importance
recursively aggregate feature vectors of neighboring nodes (message passing). After
k iterations, the transformed graph signal of a given node i is an aggregation of the
feature vectors of the k-hop neighborsNi - with respect to the structural properties
of the graph [20].

Explaining a complete taxonomy of all graph neural networks is a complicated
matter. At this point, only a rough overview is given. A comprehensive taxonomy
can be found in [21].

• Recurrent graph neural networks:

According to [21], recurrent graph neural networks are those graph neural
networks that were developed earliest. These types of networks learn node
representations through recurrent neural architectures. The idea behind this
is that information is exchanged until a stable equilibrium is reached between
the nodes. Today, recurrent graph neural networks are important mainly
because they have conceptually influenced many other developments in the
field. The idea of message-passing originates from these networks.

[21] provides as examples for recurrent graph neural networks [22], [23], [24]
and [25].

• Graph convolutional neural networks:

Graph convolutional neural networks use the generalization of the convolu-
tion operation over graphs. There are networks that perform convolution
in the node domain as well as those that perform convolution in spectral
space. [14] [13] The following Section 3.4 explains this type of network in
more detail.

Among many others, [26], [11], [27], [28], [29], [30] and [31] are examples of
this type of networks listed by [21].

• Graph autoencoders:

Graph autoencoders follow the example of classic autoencoders. It is an
unsupervised learning method. A representation of nodes or the whole graph
is learned in a latent vector space. The original graph or graph signals are
then reconstructed from this representation. These networks are used for
example in network embedding or graph generation.

Examples of graph autoencoders for network embedding provided by [21]
are [32], [33], [34], [35], [36] and [37]. According to [21], examples for graph
generation are [38], [39], [40], [41] and [42].

17

• Spatial-temporal graph neural networks:

Spatial-temporal graph neural networks process graph signals that are time-
dependent. The time domain and the spatial (i.e. vertex) domain are com-
bined. Such an architecture is suitable, for example, for modeling traffic
flows or water levels in connected water systems. Often recurrent neural
networks or convolutional neural networks are used to represent the time
dependencies.

[21] provides as examples of spatial-temporal graph neural networks [43],
[44], [45], [46], [47] and [48].

A comprehensive survey that includes benchmark tests for various graph neural
network can be found in [49].

3.4 Graph convolutional neural networks

The experimental part of this thesis deals with a specific implementation of a
graph convolutional neural network. For this reason, a more detailed introduction
to this type of networks is given here.

3.4.1 From Convolutional Neural Networks to Graph Con-
volutional Neural Networks

Graph convolutional neural networks take advantage of the fact that there is
a generalization of the convolution operation to graphs through the tools of graph
signal processing. This allows the established concepts of convolutional neural
networks, which have been so successful, to be used to process data sampled in a
non-Euclidean domain.

Just like classical convolutional neural networks, the idea that connects all the
different convolutional neural networks is that the network learns certain filters.

In the case of classical convolutional neural networks, the input signal is con-
volved with small, spatially bounded filters. This allows efficient searching of a
large amount of input data for specific patterns. The result of the convolution is
transformed by a non-linear function. Examples of this non-linear function are the
sigmoid function

sig(x) =
1

1 + e−x
, (3.16)

or the ReLU function
ReLU(x) = max(0, x). (3.17)

18

Figure 3.1: (a) Shows examples for regular data structures, namely a 2D image
and a 1D, periodic time series. (b) Shows an example of data represented as a
graph. Examples for such data can be social networks, sensor feeds, web traffic,
supply chains or biological systems. This figure is taken from [12].

The combination of convolution and non-linear transformation forms a CNN
unit. After using a CNN unit, the dimension of the input signal is often reduced by
pooling. In practice, deep CNNs are often used, where several CNN and pooling
layers are executed in succession. The output signal of the previous layer is used
as input signal for the next layer. Fig. 3.2 shows an example of a classical CNN
architecture [14].

However, a graph provides much less structure than does an Euclidean space.
For example, when processing images with a classical CNN, it is clear how neigh-
boring pixels are oriented to each other, one is on the left, one on the right, one
above, one below. Thus there are clearly defined directions. This is not true for
graphs. Fig. 3.1 gives examples for regular, Euclidean data structures and irregular
graph structures.

Likewise, distance measures exist only to a very limited extent. Within the
immediate neighborhood of a node Ni, the weight of an edge can be interpreted as
an inverse distance. Outside the immediate neighborhood of a node, distances are
even more difficult to determine. These two aspects are examples of the new prob-
lems that graph convolutional neural networks have to master. In the following,
these topics will be discussed.

19

Figure 3.2: As an example of a classical CNN architecture a classification setup
to distinguish photographs of cats, peppers and cars is shown. Steps of a classical
CNN can be seen from left to right. First the input signal is convolved with
multiple different filters and the result transformed by a non-linear activation
function. Then pooling is executed to reduce the dimensionality of the problem.
For practical reasons, after multiple convolution and pooling layers some fully
connected layers are used to transform the result into a usable format. The image
is taken from [12].

20

3.4.2 Spectral domain methods

There are basically two ways to implement a graph convolutional neural net-
work. Either the convolution can be performed in the node domain or in the
spectral domain.

In the spectral variant, the input signal x is first represented in the spectral
domain as x̂ by application of the graph Fourier transformation Eq. (3.8). In the
spectral domain, the convolution operation is performed as a multiplication with
a trainable filter. Afterwards the back-transformation into the node domain is
carried out with the inverse graph Fourier transform Eq. (3.9).

The costly eigendecomposition of the graph Laplacian is a big problem of this
variant. For practical applications, approximations must be used for this operation.
For example, [26] uses Chebyshev polynomials to approximate the graph Fourier
transform [12] [14].

In Section 3.5, the implementation of a graph convolutional neural network
that performs the approximation of a spectral convolution is discussed.

3.4.3 Node domain methods

Alternatively graph convolutional neural networks can perform the convolution
operation directly in the node domain. Therefore Eq. (3.10) is used. [12] states

x′ = σ(g(A)x) (3.18)

as the general form of all graph convolutional neural layers operating with x as
input signal, x′ as the output signal, σ(·) a non-linear activation function and g(A)
a trainable, polynomial filter.

3.4.4 Graph pooling and graph aggregation

Pooling is a form of down-sampling, it reduces the number of nodes in a graph.
There are two main reasons why it is useful to perform such an operation: Reducing
the dimensionality of the problem and hierarchical learning. [12] provides several
examples to conduct graph pooling like Sort Pooling [50], Differentiable Pooling
[51], Top-k Pooling [52] or Self-Attention Graph Pooling [53].

Classical CNNs often end up with a sequence of several dense layers, for ex-
ample when an image is to be classified as a whole. In graph convolutional neural
networks, such a step cannot be performed. The underlying graphs may be of dif-
ferent sizes and the nodes may be permuted. A resulting vector would be arbitrary
and could not be used as input to a dense layer. Therefore, there is the operation
of graph aggregation, often referred to as the final graph pooling layer. A mean or

21

sum operation is often used for this purpose. Fig. 3.3 shows the difference between
graph pooling and graph aggregation [12].

3.5 GCN framework

Since its publication in 2016, Thomas Kipf and Max Welling’s GCN (Graph
Convolution Network) [11] has become probably the most widely used implementa-
tion of a graph neural network. A modification of GCN is used in the experimental
part of this thesis. Therefore, the derivation of the used approximation of the con-
volution operation and the design of the graph convolutional layer is now explained
in detail.

[11] defines a layer-wise propagation rule for the multilayer network by

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W(l)). (3.19)

Ã = A + IN is the adjacency matrix of an undirected graph with added self
connections, D̃ii =

�
j Ãij in analogy to Eq. (3.4) and W(l) is a layer-specific

trainable weight matrix. σ(·) is the non-linear activation function like Eq. (3.16)
or Eq. (3.17). H(l) ∈ RN×D is the matrix of activations (i.e. inputs) in the lth

layer, with N the number of nodes and D the number of input channels. H(0) = X
is the input signal into the first layer.

As a next step, [11] designs a convolution layer. First, convolution in the
spectral domain Eq. (3.14) is rewritten as

gθ ∗ x = Udiag(θ̂)U⊤x = UGθ(Λ)UTx, (3.20)

where gθ = diag(θ) is a filter parametrized by θ ∈ RN in the spectral domain. U
is the matrix of eigenvectors of the unnormalized graph Laplacian and Gθ(Λ) is a
matrix of trainable parameters as given in Eq. (3.15). The unnormalized Laplacian
L Eq. (3.3) is replaced by the normalized graph Laplacian defined by [11] as

L̄ = IN − Ā = IN −D−1/2AD−1/2. (3.21)

In order to avoid a too complicated notation, the eigensystem of L̄ is still
denoted by λ and u without bars.

The repeated calculation - as it is required during the training of the graph
neural network - of the convolution as defined in Eq. (3.20) is computationally
very expensive. The complexity of the matrix multiplication with U is O(N2) and
the eigendecomposition is even more complex. In order to find a computationally
more efficient solution, [11] approximates gθ(Λ) - based on [54] - by a truncated
expansion in terms of the Chebyshev polynomials Tk(x) up to order K

g′
θ(Λ) =

K

k=0

θ′kTk(Λ̃). (3.22)

22

Figure 3.3: Graph pooling and graph aggregation. (a) Graph pooling accepts a
graph signal and produces a new, representative graph signal indexed by a smaller
graph support. (b) Global aggregation can accept graphs of potentially varying
sizes and produce fixed-length, representative vectors. This figure is taken from
[12].

23

[11] rescales Λ to

Λ̃ =
2

λmax

Λ− IN . (3.23)

This step is reasoned with an improved numerical stability. θ′k is now a vector of
Chebyshev polynomials. The Chebyshev polynomials are recursively defined as

Tk(x) = 2xTk−1(x)− Tk−2(x),

T0(x) = 1,

T1(x) = x.

(3.24)

As shown by [11], an approximation of Eq. (3.20) is now given by

gθ ∗ x = g′
θ(Λ) =

K

k=0

θ′kTk(L̃)x, (3.25)

with L̃ = 2
λmax

L̄− IN . Here (UΛU⊤)k = UΛkU⊤ is used. The approximation of a

convolution in Eq. (3.25) is now K-localized because it is a Kth order polynomial
in the normalized Laplacian L̃, i.e. only information from a K-hop neighborhood
propagates to a node i. This approximation reduced the complexity of the problem
to O(N). The approximation up to this point took [11] from [26].

In order to reduce the number of trainable parameters and to make the behavior
of this graph convolution layer more localized, [11] chose K = 1. Because of
T1(x) = x the operation becomes linear in L̃. To further reduce the complexity of
the calculation λmax ≈ 2 is used. [11] justifies this step by the argument that the
parameters θ can adapt to this choice. This leads to the new expression

gθ ∗ x ≈ θ′0x+ θ′1(L̃− IN)x,

≈ θ′0x+ θ′1D
−1/2AD−1/2x.

(3.26)

The trainable parameters are θ′0 and θ′1. As for a classical CNN, the trainable
parameters are shared across the whole graph. By the successive application of l
layers of this kind, information propagates from a l-hop neighborhood to a node i.

[11] reduces the number of parameters one step further Eq. (3.26) to

gθ ∗ x ≈ θ(IN +D−1/2AD−1/2)x, (3.27)

with only one trainable parameter θ = θ′0 = −θ′1. All eigenvalues of (IN +
D−1/2AD−1/2) are within the [0, 2]. [11] explains, that repeated application of
Eq. (3.27) in a deep neural network can lead to numerical instabilities like ex-
ploding or vanishing gradients. To handle this problem the renormalization (IN +
D−1/2AD−1/2) → D̃−1/2ÃD̃−1/2 with Ã = A+ IN and D̃ =

�
j Ãij is applied by

[11].

24

Now the input signal is generalized from x ∈ RN toX ∈ RN×C with the number
of input channels C. Moreover F different filters or feature maps per layer can be
used with

Z = D̃−1/2ÃD̃−1/2XΘ, (3.28)

with the filter parameter matrix Θ ∈ RC×F and the convolved signal Z ∈ RN×F .
Note that Θ combines signals from different input channels and different nodes.
The computational complexity of this operation is now O(NFC), as ÃX can be
implemented efficiently as a product of a sparse matrix with a dense matrix.

The full propagation rule for a GCN from layer l to layer (l + 1) is given by
[11] as

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)Θ+B), (3.29)

where B ∈ RN×F

B =


b
b
...
b

 , (3.30)

with b⊤ ∈ RF is the vector of biases. H(l+1) = σ(. . .) is a shorthand notation for

H(l+1) =


σ(. . .) σ(. . .) . . . σ(. . .)
σ(. . .) σ(. . .) . . . σ(. . .)

...
...

. . .
...

σ(. . .) σ(. . .) . . . σ(. . .)

 . (3.31)

25

Chapter 4

GCN for anomaly detection

The aim of this thesis is to detect anomalies in data sampled in power grids.
The chosen formulation as a machine learning problem (cf. Chapter 5) requires
GCN to be able to detect rapid changes in the signal in the node domain. This
chapter will address the resulting problem.

4.1 Deficiencies of GCN

As explained in Chapter 5, the anomalies in the phasor measurement unit data
that are to be detected are point anomalies. These anomalies are to be detected
by means of a classification architecture. Therefore, it is necessary that GCN can
handle rapid changes of the signal in the node domain.

Now the fact is that GCN was developed for semi-supervised node classifica-
tion. In such a setup, it is rather desirable to compensate differences between data
at neighboring nodes. Accurate detection of differences is not required. Semi-
supervised node classification requires a network that has some low-pass char-
acteristic in the node domain, but for (point) anomaly detection this low-pass
characteristic is detrimental. If the signal at a single node is an outlier, the outlier
signal would be smeared over the neighboring nodes and the outlier could not be
detected.

The simplification that is done from Eq. (3.26) to Eq. (3.27) leads to the be-
havior, that is problematic for detecting point outliers in data. In Eq. (3.27)
(IN + D−1/2AD−1/2)x creates a weighted average of the signal at a center node
(IN) and all its neighboring nodes (A). The artificial neural network has no chance
to learn filters in such a way, that would provide an output signal, when differences
between a center node and the neighboring nodes occur.

To my knowledge, there are no publications describing how GCN or any other
graph convolutional neural network can be used to detect point-wise outliers in

26

data. GCN thus has a strong tendency to over-smoothing, which has received little
attention in the literature. These deficiencies are the reason for the contributions
of this thesis, that are described in the following section.

4.2 Adapting GCN

The goal is to develop a graph convolution layer that is able to detect rapid
changes of signals in the node domain. The basis for an adapted GCN layer is
Eq. (3.26). The sign of the second term is switched so that

gθ ∗ x ≈ θ′0x− θ′1D
−1/2AD−1/2x, (4.1)

and the vectorization in analogy to Eq. (3.28) signals leads to

Z = XΘ0 −D−1/2AD−1/2XΘ1. (4.2)

If corresponding filter parameters Θ0;ij and Θ1;ij have different sign, then an
output similar to the original GCN results is produced. That is, the output is a
weighted mean of the signal at a central node and at the signal of the neighboring
nodes. However, the desired behavior is as follows: If corresponding entries have
equal sign, a meaningful output is produced only when there is a difference between
the signal at a central node and the average neighboring signals. We observe that
the proposed expression is very similar to a graph Laplacian.

In Eq. (3.19), GCN replaces A by Ã = A+ IN , with the goal of changing the
structure of the eigenvalue spectrum to allow a more stable execution in a deep
neural network. This change cannot be made in the adapted version because the
introduction of self-loops would cancel for the differences between a central node
and the neighboring nodes.

The full propagation rule for the adapted GCN yields in analogy to Eq. (3.29)

H(l+1) = σ(H(l)Θ0 −D−1/2AD−1/2H(l)Θ1 +B). (4.3)

Chapter 6 compares the two GCN variants in terms of their anomaly detection
performance.

27

Chapter 5

Experimental setup

The goal of this thesis is to detect point-wise anomalies in phasor measurement
unit data collected in a power grid. This chapter shows how this problem is
formulated as a machine learning problem to obtain a trainable system, how the
parameters of the deep-learning model are selected, how the dataset is transformed
into a usable data-structure, and some further preparation of the data.

5.1 Formulation as a machine learning problem

The most common neural network architecture for anomaly detection is an
auto-encoder. This architecture uses the same data as input and output. In be-
tween, a deep neural network is used. Starting from the input, the dimensionality
of the problem is reduced more and more by using layers with less and less train-
able parameters. This results in all input information being encoded in a latent
state with much lower dimensionality. Subsequent to the latent state, essentially
the same sequence of layers as on the input side is used in a mirror image fashion.
Only normal data is used for training. The neural network thus learns to encode
normal input information into a state of lower dimensionality and to reproduce
it from there. To detect anomalies, the input is compared with the output. For
normal data, there is not much deviation between input and output if the training
has worked well. For anomalous data, however, there are large deviations, because
the neural network is not able to correctly endcode and decode anomalous data.

However, most of the literature describes applications of GCN for semi-supervi-
sed node classification - i.e., a classification problem. For this reason, a formulation
as a classification problem is also chosen in this thesis. It is a binary classification
problem, i.e. a certain datum is either normal or anomalous. Formulating an
anomaly detection problem as a classification problem introduces a significant
problem, namely that the data is typically very unbalanced - there is much, much

28

more normal data than anomalous data. However, by using appropriate class
weights, this problem can be handled well. The formulation as a classification
problem yields the multilayer graph convolutional neural network

f : RN×F → RN×2, (5.1)

with the number of input features F and a two-dimensional output space, one
dimension for normal the other for anomalous.

5.2 Model design

For the experiments performed, a model consisting of two consecutive GCN
layers is used. The first GCN layer uses 4 input features (c.f. Section 5.4) and
produces 16 latent features as output. The second GCN layer uses as input the 16
latent features and has a two-dimensional output - normal and anomalous. Thus,
the sequence of dimensions in the layers two layer is

RN×4 GCN1−−−→ RN×16 GCN2−−−→ RN×2, (5.2)

with N the number of nodes in the graph, and GCN1 and GCN2 the two GCN
layers. A pooling or aggregation layer is not used because an output is required
for each individual node.

The first GCN layer uses as a non-linear activation function the ReLU function
Eq. (3.17). The second GCN layer uses a logarithmic softmax function

LogSoftmax(xi) = log

�
exp(xi)�
j exp(xj)

�
, (5.3)

with i, j ∈ {1, 2} for binary classification, as non-linear activation function in order
to retrieve an output that is suitable for a classification problem.

Between the first and second GCN layer a drop-out layer is used. During
training data samples are zeroed out with a probability of p = 0.5. This is an
effective technique of regularization and helps to prevent co-adaption of neurons
[55].

The used loss function is a negative log likelihood function with mean reduction

ℓ(x, y) =
N

n=1

−wynxn,yn�N
n=1 wyn

, (5.4)

with x ∈ RN×2 the output of the log Softmax function, y ∈ RN×2 and yij ∈ [0, 1]
the one-hot encoded targets and w ∈ R2 the class weights. Class weights are

29

Figure 5.1: The adjacency matrix is repeated several times in a block-diagonal
matrix to enable batch-wise calculation for weights and biases. This figure is
taken from [11].

defined as the share of samples of one class in the total samples

wi =
N

(i)
s

Ns

, (5.5)

with wi the weight of class i, N
(i)
s the number of samples in class i and Ns the

total number of samples.
The initialization of weights is done with a Glorot initializer (see [56]), biases are

initialized to zero and the optimization is carried out by using an Adam optimizer
(see [57]).

In order to update weights and biases based on gradients calculated not only
for one data sample, i. e. one value for every node and channel and one label for
every node, but to have multiple samples, data samples are stacked into batches.
Therefore [11] proposes to repeat the adjacency matrix in a block diagonal matrix
as well as graph signals and labels in vectors multiple times. Due to the efficient
usage of sparse matrices, a batch size of n = 32 can be used. Fig. 5.1 explains
details of this step.

The experiments are performed using PyTorch Geometric (see [2]). This is an
open source framework for geometric machine learning written in Python. Thanks
to the fact that Pytorch Geometric is very well documented and programmed in
an understandable way, it is feasible to implement various experimental changes
to the GCN layer.

30

5.3 Dataset

The base dataset to perform experiments on is taken from [8] - a test cases
library for methods locating the sources of sustained oscillations in a power grid.
This library contains several example dataset, all built over a power grid depicted
in Fig. 5.2. This grid with 179 busses is a simplified representation of a power grid
in north-eastern United States. The data was generated via simulations in [8] and
provides 40 seconds of a poorly damped failure event, where severe oscillations in
voltage and current occur.

However, in terms of false data injection, the data describing an oscillation
event are considered to be normal, data. A physically possible state of the system
is represented. As will be described in the following section, additional false data
injection anomalies are generated in this data.

Thus, a dataset that already represents a faulty operating condition of a power
system is searched for additional inserted faults. One could now argue that the
reason for this procedure is that it would be too easy to search for false data
anomalies in a completely normal state, that the neural network should be tested
under tough conditions, or that the correct detection of a false data injection
attack within an existing error case would be especially critical. However, these
considerations are not the real reason why this dataset was manipulated with
further false-data injection anomalies. Rather, the real reason is that it was not
possible to find data of a power grid in a normal operating state. Therefore, it was
necessary to use on exactly this data set.

The underlying nominal grid frequency in the data set is 60 Hz because it is an
American grid. The data is sampled with 30 Hz and one dataset contains 1200 time
steps, i.e. 40 seconds. The datasets provides amplitude and angle of voltage for
every of the 179 busses and the rotor speed is only provided for some busses and not
used as an input feature. Therefore, the rotor speed data is removed, because the
neural network requires that input channels are available for all nodes. Moreover,
magnitude and angle of current are provided for all transmission lines. However,
this current data is not used for experiments because this data would represent
graph signals associated with edges, not nodes. The chosen graph architecture
uses graph signals only for nodes, i.e. voltage signals from busses. As an example,
Fig. 2.1 and Fig. 2.2 show all 40 seconds of voltage signals for one bus.

5.4 Data preparation

The grid structure, as it is shown in Fig. 5.2, is encoded into a graph adjacency
matrix A. Every bus represents a node, every transmission line represents an edge.
For all edges a weight of aij = 1 is chosen, so an unweighted graph is implemented.

31

Figure 5.2: The WECC-179 bus system is a simplified representation of the power
grid in north-eastern United States. All experiments in this thesis are performed
with simulated data from this grid. This figure is taken from [8].

32

The resulting adjacency matrix is visualized in Fig. 5.3.
As explained in the previous section only voltage magnitude and angle are

used. Current values are discarded because they are associated with edges instead
of nodes. Rotor speed values are not used because they exist only for a subset
of nodes. The resulting shape of the graph signal matrix is X ∈ R2×179. The
resulting graph signals for a fixed point in time are shown in Fig. 5.4 and Fig. 5.5.
Each of the 1200 time steps is used as an independent sample Xi. This means that
only the relationship between the nodes for one time step is considered, but not
the time course of the signals. All 1200 independent samples Xi form the input
dataset {X1,X2, ...,X1200}.

Data is disturbed by point-wise anomalies. With a probability of p = 0.05 the
angle of one node is increased by 20°

x̃0j = x0j, with p = 0.95, (5.6)

x̃0j = x0j + 20°, with p = 0.05, (5.7)

with the voltage angle x0j of a node j. independently, the voltage magnitude of a
node is increased by 0.1 (in units of the nominal voltage magnitude)

x̃0j = x1j, with p = 0.95, (5.8)

x̃0j = x1j + 0.1, with p = 0.05, (5.9)

with the voltage magnitude x1j of a node j.
Before training the data is normalized separately for each of the two input chan-

nels such that the mean of the normalized signal mean(x′
i) = 0 and the standard

deviation std(x′
i) = 1.

No train test split is done before training, so the same data is used for training
and testing the model.

33

0 20 40 60 80 100 120 140 160

index of node

0

20

40

60

80

100

120

140

160

in
d
ex

of
n
o
d
e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Encoding of the WECC-179 grid (cf. Fig. 5.2) as graph adjacency
matrix.

34

−40

−20

0

20

40

60

Figure 5.4: Voltage angle as graph signals for one fixed point in time. The angles
are given in [°].

35

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

Figure 5.5: Voltage magnitude as graph signals for one fixed point in time. The
magnitude is given in units of the nominal magnitude.

36

Chapter 6

Results

In order to compare the difference in performance for anomaly detection two
models are created and trained. The first model uses the original GCN layer
as given by Eq. (3.28) and Eq. (3.29). The second model uses the adapted GCN
layer from Eq. (4.2) and Eq. (4.3). Fig. 6.1 shows the evolution of the loss function
Eq. (5.4) during training. It shows, that the original GCN layer quickly reaches a
limit, where no improvement of performance is possible whereas the adapted layer
shows continuously improved performance over a longer training period.

In [11] it is argued, that in Eq. (3.28) D̃−1/2ÃD̃−1/2 with Ã = A+IN should be
used instead of D−1/2AD−1/2 because otherwise training might become unstable
due to exploding or vanishing gradients. In the adapted GCN Eq. (4.2) it is
necessary to use D−1/2AD−1/2. During training, no instabilities are observed.
Fig. 6.5 shows the evolution of weights and biases for both GCN layers during
training. It can be seen, that during the first epochs of training the weights and
biases are change by rather large updates. During the course of the training, the
speed of change in weights and biases decrease. This is a good visual hint, that the
deep neural network converges towards a stable local optimum during training.

The model performance always deviates a little based on the test data. To gain
some insights into this deviation, the test data of 1200 samples is separated into
37 batches of each 32 samples. The performance is calculated for each of the 37
batches and box plots are for both models. Fig. 6.2 shows the significantly better
performance of the adapted model.

Fig. 6.3 and Fig. 6.4 show confusion matrices for the two models. The perfor-
mance of the model using the original layer is hardly above randomly predicting
anomalies. The model using the adapted GCN layer has sound performance in
detecting false data anomalies.

37

0 50 100 150
train epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

without adaption

with adaption

Figure 6.1: Comparison of loss function Eq. (5.4) during training for the original
GCN layer Eq. (3.28) (in blue) and the adapted GCN layer Eq. (4.2) in orange.
The model using the original layer soon reaches a level, where no improvement
is possible because it can not adapt to the data. Adapted GCN shows continuos
improvement of performance.

38

without adaption with adaption

0.65

0.70

0.75

0.80

0.85

0.90

b
al
an

ce
d
ac
cu
ra
cy

Figure 6.2: Model performance for different batches of test data. The performance
of the model using adapted GCN layer is significantly better than the model using
the original layer.

39

False True
Predicted Values

F
al
se

T
ru
e

T
ru
e
V
al
u
es

0.76 0.24

0.46 0.54

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Confusion matrix for the model using the original GCN layer. True
means anomaly, False means no anomaly.

40

False True
Predicted Values

F
al
se

T
ru
e

T
ru
e
V
al
u
es

0.91 0.091

0.15 0.85

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4: Confusion matrix for the model using the adapted GCN layer. True
means anomaly, False means no anomaly.

41

(a) (b)

(c) (d)

Figure 6.5: These images show the evolution of weights and biases during training,
(a) for the weights of GCN layer 1, (b) for the biases of GCN layer 1, (c) for the
weights of GCN layer 2 and (d) for the biases of GCN layer 2. Every 32 train
epochs, a histogram is created, that shows the distribution of the according weights
or biases. Each line in one the images represents one of these snapshots. The
histograms more in the background (i.e. upper lines) represent the early training
phase, lines in the foreground (i.e. lower lines) represent the later training phase.
These figures were created by TensorBoard (see [58]).

42

Chapter 7

Conclusion and outlook

7.1 Conclusion

The goal of this thesis is to detect false data injection anomalies in voltage data
acquired by PMUs in a power grid. The literature review shows that, in order to
achieve this, three major contributions need to be made. First, a graph neural
network needs to process data from a power grid. Second, the anomaly detection
needs to be formulated as a machine learning problem, that can be applied to a
graph neural network. And third, required by the chosen resolution for the second
problem, it is necessary to use a graph convolutional neural network, that can
detect meaningful patterns in graph signals, that rapidly change within a node’s
neighborhood.

This thesis shows that graph convolutional neural networks can be used to
analyze data from power grids. In particular, it shows that it is possible to detect
a false data injection attack.

Moreover this thesis delivers a proof-of-concept implementation of an anomaly
detection based on convolutional graph neural networks, a topic that received only
little attention in literature so far.

If detecting these anomalies is implemented as a classification problem, the
tendency of GCN to over-smooth is a major problem. This thesis proposes an
adapted GCN layer to overcome the problem over-smoothing. Experiments show
that this layer has superior performance to detected anomalies and is stable in
training.

7.2 Outlook

Numerous topics are only treated in a marginal way in this thesis and should
be examined in more detail.

43

One such topic is that the performance of anomaly detection using convolu-
tional graph neural networks should be systematically compared between a clas-
sification architecture and an autoencoder. This thesis only shows how an imple-
mentation using classification can be implemented.

In addition, should be experimented with different types of anomalies. This
thesis uses only point anomalies, which represent only a relatively small part of
scenarios of a false data injection attack. Many other scenarios are conceivable for
how data in the power grid could be manipulated. Different types of anomalies
can have strong implications for the applicability of machine learning models.

In this thesis graph signals are used which have two dimensions per node,
namely magnitude and angle of voltage. In examples in the literature, much
higher-dimensional graph signals are used, sometimes thousands of dimensions
per node. In such a scenario, GCN can arguably play to its strengths even better.
It should be investigated how it is possible to encode values captured in a power
grid in such a way that high-dimensional graph signals are generated.

The experimental setup of this thesis uses a relatively small graph with a
relatively small data set. This leads to the fact that a relatively short training is
sufficient. This could potentially mask certain instabilities that would occur in a
longer training. A comprehensive and systematic investigation of the stability of
the layers used in the training should be performed.

44

Bibliography

[1] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with PyTorch
Geometric,” https://github.com/pyg-team/pytorch geometric, 5 2019.

[2] ——, “Fast graph representation learning with pytorch geometric,” arXiv
preprint arXiv:1903.02428, 2019.

[3] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and keras
with spektral,” arXiv preprint arXiv:2006.12138, 2020.

[4] O. Ferludin, A. Eigenwillig, M. Blais, D. Zelle, J. Pfeifer, A. Sanchez-
Gonzalez, S. Li, S. Abu-El-Haija, P. Battaglia, N. Bulut et al., “Tf-gnn: graph
neural networks in tensorflow,” arXiv preprint arXiv:2207.03522, 2022.

[5] R. Ramakrishna and A. Scaglione, “Grid-graph signal processing (grid-gsp):
A graph signal processing framework for the power grid,” IEEE Transactions
on Signal Processing, vol. 69, pp. 2725–2739, 2021.

[6] A. Phadke and J. Thorp, “History and applications of phasor measurements,”
in 2006 IEEE PES Power Systems Conference and Exposition. IEEE, 2006,
pp. 331–335.

[7] Q. F. Zhang, X. Luo, E. Litvinov, N. Dahal, M. Parashar, K. Hay, and D. Wil-
son, “Advanced grid event analysis at iso new england using phasorpoint,” in
2014 IEEE PES General Meeting— Conference & Exposition. IEEE, 2014,
pp. 1–5.

[8] S. Maslennikov, B. Wang, Q. Zhang, E. Litvinov et al., “A test cases library
for methods locating the sources of sustained oscillations,” in 2016 IEEE
Power and Energy Society General Meeting (PESGM). IEEE, 2016, pp. 1–5.

[9] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state
estimation in electric power grids,” ACM Transactions on Information and
System Security (TISSEC), vol. 14, no. 1, pp. 1–33, 2011.

45

https://github.com/pyg-team/pytorch_geometric

[10] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI magazine, vol. 29, no. 3, pp.
93–93, 2008.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[12] M. Cheung, J. Shi, O. Wright, L. Y. Jiang, X. Liu, and J. M. Moura, “Graph
signal processing and deep learning: Convolution, pooling, and topology,”
IEEE Signal Processing Mag., vol. 37, no. 6, pp. 139–149, 2020.

[13] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and neu-
ral networks: From graph filters to graph neural networks,” IEEE Signal
Processing Mag., vol. 37, no. 6, pp. 128–138, 2020.

[14] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Ge-
ometric deep learning: going beyond euclidean data,” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[15] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya,
and A. Anandkumar, “Multipole graph neural operator for parametric partial
differential equations,” Advances in Neural Information Processing Systems,
vol. 33, pp. 6755–6766, 2020.

[16] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng, “Graph neural networks
for automated de novo drug design,” Drug Discovery Today, vol. 26, no. 6,
pp. 1382–1393, 2021.

[17] A. Mayr, S. Lehner, A. Mayrhofer, C. Kloss, S. Hochreiter, and J. Brand-
stetter, “Boundary graph neural networks for 3d simulations,” arXiv preprint
arXiv:2106.11299, 2021.

[18] A. Deng and B. Hooi, “Graph neural network-based anomaly detection in
multivariate time series,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, 2021, pp. 4027–4035.

[19] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains,” IEEE Signal Pro-
cessing Mag., vol. 30, no. 3, pp. 83–98, 2013.

[20] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” arXiv preprint arXiv:1810.00826, 2018.

46

[21] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Networks and
Learning Systems, vol. 32, no. 1, pp. 4–24, 2020.

[22] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20,
no. 1, pp. 61–80, 2008.

[23] C. Gallicchio and A. Micheli, “Graph echo state networks,” in The 2010 in-
ternational joint conference on neural networks (IJCNN). IEEE, 2010, pp.
1–8.

[24] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence
neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[25] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-states
of iterative algorithms over graphs,” in International conference on machine
learning. PMLR, 2018, pp. 1106–1114.

[26] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” arXiv preprint
arXiv:1606.09375, 2016.

[27] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[28] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-
structured data,” arXiv preprint arXiv:1506.05163, 2015.

[29] A. Micheli, “Neural network for graphs: A contextual constructive approach,”
IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009.

[30] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[31] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural net-
works for graphs,” in International conference on machine learning. PMLR,
2016, pp. 2014–2023.

[32] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph repre-
sentations,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 30, no. 1, 2016.

47

[33] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, 2016, pp. 1225–1234.

[34] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

[35] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversari-
ally regularized graph autoencoder for graph embedding,” arXiv preprint
arXiv:1802.04407, 2018.

[36] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network em-
bedding with regular equivalence,” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018, pp.
2357–2366.

[37] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong, H. Chen, and
W. Wang, “Learning deep network representations with adversarially regular-
ized autoencoders,” in Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, 2018, pp. 2663–2671.

[38] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[39] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small
graphs using variational autoencoders,” in International conference on artifi-
cial neural networks. Springer, 2018, pp. 412–422.

[40] T. Ma, J. Chen, and C. Xiao, “Constrained generation of semantically valid
graphs via regularizing variational autoencoders,” Advances in Neural Infor-
mation Processing Systems, vol. 31, 2018.

[41] N. De Cao and T. Kipf, “Molgan: An implicit generative model for small
molecular graphs,” arXiv preprint arXiv:1805.11973, 2018.

[42] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan: Gen-
erating graphs via random walks,” in International conference on machine
learning. PMLR, 2018, pp. 610–619.

[43] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured se-
quence modeling with graph convolutional recurrent networks,” in Interna-
tional conference on neural information processing. Springer, 2018, pp. 362–
373.

48

[44] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” arXiv preprint arXiv:1707.01926,
2017.

[45] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep
learning on spatio-temporal graphs,” in Proceedings of the ieee conference on
computer vision and pattern recognition, 2016, pp. 5308–5317.

[46] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” arXiv preprint
arXiv:1709.04875, 2017.

[47] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks
for skeleton-based action recognition,” in Thirty-second AAAI conference on
artificial intelligence, 2018.

[48] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” arXiv preprint arXiv:1906.00121, 2019.

[49] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Bench-
marking graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.

[50] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning
architecture for graph classification,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 32, no. 1, 2018.

[51] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierar-
chical graph representation learning with differentiable pooling,” Advances in
neural information processing systems, vol. 31, 2018.

[52] H. Gao and S. Ji, “Graph u-nets,” in international conference on machine
learning. PMLR, 2019, pp. 2083–2092.

[53] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in International
conference on machine learning. PMLR, 2019, pp. 3734–3743.

[54] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory,” Applied and Computational Harmonic Analysis,
vol. 30, no. 2, pp. 129–150, 2011.

[55] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” arXiv preprint arXiv:1207.0580, 2012.

49

[56] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics. JMLR Workshop and Con-
ference Proceedings, 2010, pp. 249–256.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[58] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

50

	Introduction
	Motivation
	Problem formulation and contribution

	Anomaly detection in power grids
	Power grids as graphs
	Phasor measurement units
	False data injection in power grids

	Graph neural networks
	Applications
	Graph signal processing
	Graphs and graph signals
	Graph shift operators and the graph Laplacian
	Graph Fourier transform
	Graph convolution

	Types of graph neural networks
	Graph convolutional neural networks
	From Convolutional Neural Networks to Graph Convolutional Neural Networks
	Spectral domain methods
	Node domain methods
	Graph pooling and graph aggregation

	GCN framework

	GCN for anomaly detection
	Deficiencies of GCN
	Adapting GCN

	Experimental setup
	Formulation as a machine learning problem
	Model design
	Dataset
	Data preparation

	Results
	Conclusion and outlook
	Conclusion
	Outlook

