
An Algorithmic Study of Fully Dynamic Independent Sets

for Map Labeling

SUJOY BHORE, Indian Institute of Science Education and Research, Bhopal, India

GUANGPING LI and MARTIN NÖLLENBURG, TU Wien, Austria

Map labeling is a classical problem in cartography and geographic information systems that asks to place

labels for area, line, and point features, with the goal to select and place the maximum number of independent

(i.e., overlap-free) labels. A practically interesting case is point labeling with axis-parallel rectangular labels

of common size. In a fully dynamic setting, at each timestep, either a new label appears or an existing label

disappears. Then, the challenge is to maintain a maximum cardinality subset of pairwise independent labels

with sublinear update time. Motivated by this, we study the maximal independent set (MIS) and maximum

independent set (Max-IS) problems on fully dynamic (insertion/deletion model) sets of axis-parallel rectangles

of two types: (i) uniform height and width and (ii) uniform height and arbitrary width; both settings can be

modeled as rectangle intersection graphs.

We present the first deterministic algorithm for maintaining an MIS (and thus a 4-approximate Max-IS)

of a dynamic set of uniform rectangles with polylogarithmic update time. This breaks the natural barrier

of Ω(Δ) update time (where Δ is the maximum degree in the graph) for vertex updates presented by As-

sadi et al. (STOC 2018). We continue by investigating Max-IS and provide a series of deterministic dynamic

approximation schemes. For uniform rectangles, we first give an algorithm that maintains a 4-approximate

Max-IS withO (1) update time. In a subsequent algorithm, we establish the trade-off between approximation

quality 2(1 + 1
k

) and update time O (k2 logn), for k ∈ N. We conclude with an algorithm that maintains a 2-

approximate Max-IS for dynamic sets of unit-height and arbitrary-width rectangles with O (log2 n +ω logn)
update time, where ω is the maximum size of an independent set of rectangles stabbed by any horizontal

line. We implement our algorithms and report the results of an experimental comparison exploring the trade-

off between solution quality and update time for synthetic and real-world map labeling instances. We made

several major observations in our empirical study. First, the original approximations are well above their re-

spective worst-case ratios. Second, in comparison with the static approaches, the dynamic approaches show

a significant speedup in practice. Third, the approximation algorithms show their predicted relative behavior.

The better the solution quality, the worse the update times. Fourth, a simple greedy augmentation to the

approximate solutions of the algorithms boost the solution sizes significantly in practice.

CCS Concepts: • Theory of computation→ Computational geometry; Data structures design and anal-

ysis; Dynamic graph algorithms;

Additional Key Words and Phrases: Independent sets, dynamic algorithms, rectangle intersection graphs,

approximation algorithms, experimental evaluation

A preliminary version of this article appeared in the Proceedings of the 28th Annual European Symposium on Algorithms

(ESA 2020) Track B. Source code and the benchmark data are available at https://dyna-mis.github.io/dynaMIS/.

Authors’ addresses: S. Bhore, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Mad-

hya Pradesh, Bhopal, India, 462066; email: sujoy.bhore@gmail.com; G. Li and M. Nöllenburg, Algorithms and Complexity

Group, TU Wien, Favoritenstraße 9-11, Vienna, Austria, 1040; emails: {guangping, noellenburg}@ac.tuwien.ac.at.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-6654/2022/07-ART1.8 $15.00

https://doi.org/10.1145/3514240

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://orcid.org/0000-0003-0104-1659
https://orcid.org/0000-0002-7966-076X
https://orcid.org/0000-0003-0454-3937
https://dyna-mis.github.io/dynaMIS/
mailto:permissions@acm.org
https://doi.org/10.1145/3514240


1.8:2 S. Bhore et al.

ACM Reference format:

Sujoy Bhore, Guangping Li, and Martin Nöllenburg. 2022. An Algorithmic Study of Fully Dynamic Indepen-

dent Sets for Map Labeling. J. Exp. Algor. 27, 1, Article 1.8 (July 2022), 36 pages.

https://doi.org/10.1145/3514240

1 INTRODUCTION

Map Labeling is a classical problem in cartography and geographic information systems (GIS),
that has received significant attention in the past few decades and is concerned with selecting and
positioning labels on a map for area, line, and point features. The focus in the computational geome-
try community has been on labeling point features [3, 23, 48, 49]. The labels are typically modeled
as the bounding boxes of short names, which correspond precisely to unit-height but arbitrary-
width rectangles; alternatively, labels can be standardized icons or symbols, which correspond
to rectangles of uniform size. In map labeling, a key task is in fact to select an independent (i.e.,
overlap-free) set of labels from a given set of candidate labels. Commonly, the optimization goal
is related to maximizing the number of labels. Given a set R of rectangular labels, Map Labeling
is essentially equivalent to the problem of finding a maximum independent set (Max-IS) in the
intersection graph induced by R.

The independent set problem is a fundamental graph problem with a wide range of applications.
Given a graphG = (V ,E), a set of verticesM ⊂ V is independent if no two vertices inM are adjacent
in G. A maximal independent set (MIS) is an independent set that is not a proper subset of any
other independent set. An Max-IS is a maximum cardinality independent set. While Max-IS is one
of Karp’s 21 classical NP-complete problems [35], computing an MIS can easily be done by a simple
greedy algorithm inO ( |E |) time. The MIS problem has been studied in the context of several other
prominent problems, such as graph coloring [37], maximum matching [34], and vertex cover [42].
However, Max-IS serves as a natural model for many real-life optimization problems that arise in
the fields of cartography, scheduling, computer graphics, and information retrieval, among others
(see [3, 43, 45, 47]).

Stronger results for independent set problems in geometric intersection graphs are known in
comparison to general graphs. For instance, it is known that Max-IS on general graphs cannot be
approximated better than |V |1−ϵ in polynomial time for any ϵ > 0 unless NP = P [51]. In contrast, a
randomized polynomial-time algorithm exists that computes for rectangle intersection graphs an
O (log logn)-approximate solution to Max-IS with high probability [12], as well as QPTASs [2, 17].
Very recently, the constant factor approximation schemes have been developed for the Max-IS on
rectangle intersection graphs (see [26, 41]). The Max-IS problem is already NP-hard on unit square
intersection graphs [24]; however, it admits a polynomial-time approximation scheme (PTAS) for
unit square intersection graphs [22] and more generally for pseudo disks [13]. Moreover, for rect-
angles with either uniform size or at least uniform height and bounded aspect ratio, the size of an
MIS is not arbitrarily worse than the size of a Max-IS. For instance, any MIS of a set of uniform
rectangles is a 4-approximate solution to the Max-IS problem, since each rectangle can have at
most four independent neighbors.

Past research has mostly considered static label sets in static maps [3, 23, 48, 49] and in dynamic
maps allowing zooming [6] or rotations [30], but not fully dynamic label sets with insertions and
deletions of labels. Recently, Klute et al. [36] proposed a framework for semi-automatic label place-
ment, where domain experts can interactively insert and delete labels. In their setting, an initially
computed large independent set of labels can be interactively modified by a cartographer, who can
easily take context information and soft criteria such as interactions with the background map or
surrounding labels into account. Standard map labeling algorithms typically do not handle such

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://doi.org/10.1145/3514240


An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:3

aspects well [23, 44]. Based on these modifications (e.g., deletion, forced selection, translation, or
resizing), the solution is updated by a dynamic algorithm while adhering to the new constraints.
Another scenario for dynamic labels is maps, in which features and labels (dis-)appear over time,
such as those based on a stream of geotagged, uniform-size photos posted on social media or, more
generally, maps with labels of dynamic spatio-temporal point sets [25]. For instance, a geo-located
event that happens at time t triggers the availability of a new label for a certain period of time, after
which it vanishes again. Examples beyond social media are reports of earthquakes, forest fires, or
disease incidences. Traditional geographic map labeling deals with small and relatively static label
sets, whereas labeling of social network data, especially the ones used in anomaly detection and
visual analytics, usually deals with vast and dynamic label sets (see [38, 46]). Furthermore, note
that these applications often run on devices with limited computational resources, such as mobile
devices. Therefore, it is desirable to design dynamic algorithms that can handle the changes in an
efficient and robust manner. Motivated by this, we study the independent set problem for dynamic
sets of axis-parallel rectangles of two types:

• Rectangles of uniform height and width
• Rectangles of uniform height and arbitrary width.

We consider fully dynamic algorithms for maintaining independent sets under insertions and dele-
tions of rectangles—that is, vertex insertions and deletions in the corresponding dynamic rectangle
intersection graph.

Dynamic graphs are subject to discrete changes over time (i.e., insertions or deletions of vertices
or edges) [21]. A dynamic graph algorithm solves a computational problem, such as the indepen-
dent set problem, on a dynamic graph by updating efficiently the previous solution as the graph
changes over time rather than recomputing it from scratch. A dynamic graph algorithm is called
fully dynamic if it allows both insertions and deletions, and partially dynamic if only insertions or
only deletions are allowed. Although general dynamic independent set algorithms can obviously
also be applied to rectangle intersection graphs, our goal is to exploit their geometric properties
to obtain more efficient algorithms.

Related work. There has been a lot of work on dynamic graph algorithms in the past decade,
and dynamic algorithms still receive considerable attention in theoretical computer science. We
point out some of these works, such as those on spanners [8], vertex cover [9], set cover [1], graph
coloring [10], and maximal matching [27]. In particular, the MIS problem on dynamic graphs with
edge updates has attracted significant attention in the past two years [4, 4, 7, 15, 18]. For vertex
insertion/deletion, an MIS can be maintained dynamically inO (Δ) update time by using the recent
algorithm of Assadi et al. [4], where Δ is the maximum degree of the intersection graph.

Recently, Henzinger et al. [32] studied the Max-IS problem for intervals, hypercubes, and hy-
perrectangles in d dimensions, with special assumptions. They assumed that the objects are axis-
parallel and contained in the space [0,N ]d ; the value of N is given in advance, and each edge of
an input object has length at least 1 and at most N . They have presented dynamic approximation
schemes with the update time polyloд(n,N ), where n is the instance size. We note that in gen-
eral, N might be exponential in n or even unbounded, thus those bounds are not sublinear in n
in the general case. Subsequently, Bhore et al. [11] designed a dynamic approximation scheme for
dynamic intervals that maintains a (1 + ϵ )-approximate Max-IS in Oϵ (logn) update time, where
ϵ > 0 is any positive constant and the notation Oϵ hides terms depending only on ϵ . Gavruskin
et al. [28] studied the Max-IS problem for dynamic proper intervals (intervals cannot contain one
another) and showed how to maintain a Max-IS with polylogarithmic update time.

There is a long history of the empirical study of map-labeling problems. This chain of research
started with the work of Christensen et al. [16]. They proposed two methods: one based on a

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:4 S. Bhore et al.

discrete form of gradient descent and the other on simulated annealing. An alternative approach
was presented by Wagner and Wolff [49] for the labeling problem, who used the sample data in the
experimental evaluation that consists of three different classes of random problems and a selection
of problems arising in the production of groundwater quality maps by the authorities of the City
of Munich. Nascimento and Eades [20] proposed a practically motivated framework, called user

hints, and proposed an interactive map-labeling system based on this along with its evaluation.
This type of user-interactive approach was empirically studied by Klute et al. [36]. Moreover, other
aspects of dynamic map labeling, such as rotation and zooming, have been studied over the years
(see [5, 6, 29]). De Berg and Gerrits [19] developed and experimentally evaluated a heuristic for
labeling moving points on static maps.

Results and organization. We study MIS and Max-IS problems for dynamic sets of O (n) axis-
parallel rectangles of two types: (i) congruent rectangles of uniform height and width and (ii)
rectangles of uniform height and arbitrary width.

In this work we design and implement algorithms for dynamic MIS and Max-IS that demonstrate
the trade-off between update time and approximation factor, both from a theoretical perspective
and in an experimental evaluation. In contrast to the recent dynamic MIS algorithms, which are
randomized [4, 4, 7, 15], our algorithms are deterministic.

In Section 3, we present an algorithm that maintains an MIS of a dynamic set of unit squares
in O (logn log logn) update time or, alternatively, with sublogarithmic amortized update time, im-
proving the best-known update time Ω(Δ) by Assadi et al. [4], where Δ is the maximum degree
of the intersection graph. A major but generally unavoidable bottleneck of that algorithm is that
the entire graph is stored explicitly, and thus insertions/deletions of vertices take Ω(Δ) time. We
use structural geometric properties of the unit squares along with a dynamic orthogonal range
searching data structure to bypass the explicit intersection graph and overcome this bottleneck.

In Section 4, we study the Max-IS problem. For dynamic unit squares, we give an algorithm that
maintains a 4-approximate Max-IS with O (1) update time. We generalize this algorithm and im-
prove the approximation factor to 2(1+ 1

k
), which increases the update time toO (k2 logn). We con-

clude with an algorithm that maintains a 2-approximate Max-IS for a dynamic set of unit-height
and arbitrary-width rectangles (in fact, for a dynamic interval graph, which is of independent in-
terest) with O (log2 n + ω logn) update time, where ω is the maximum size of an independent set
of rectangles stabbed by any horizontal line.

Finally, Section 5 provides an experimental evaluation of the proposed Max-IS approximation
algorithms on synthetic and real-world map labeling datasets. The experiments explore the trade-
off between solution size and update time, as well as the speedup of the dynamic algorithms over
their static counterparts. See the supplemental material1 for source code and benchmark data.

2 MODEL AND NOTATION

For every N ∈ N, [N ] denotes the set {1, 2, . . . ,N }. Let R be a dynamic set of axis-parallel, unit-
height rectangles in the plane, which is dynamically updated by a sequence of N ∈ N insertions
and deletions. Let Ri denote the set of rectangles at step i ∈ [N ], and let n = max{|Ri | | i ∈ [N ]} be
the maximum number of rectangles over all steps. The rectangle intersection graph defined by Ri

at timestep i is denoted as Gi = (Ri ,Ei ), where two rectangles r , r ′ ∈ Ri are connected by an edge
{r , r ′} ∈ Ei if and only if r∩r ′ � ∅. We useMi to denote an MIS inGi , andOPTi to denote a Max-IS
in Gi . For a graph G = (V ,E) and a vertex v ∈ V , let N (v ) denote the set of neighbors of v in G.
This notation also extends to any subset U ⊆ V by defining N (U ) =

⋃
v ∈U N (v ). We use deg(v )

1Source code and the benchmark data are available at https://dyna-mis.github.io/dynaMIS/.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://dyna-mis.github.io/dynaMIS/


An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:5

to denote the degree of a vertex v ∈ V . For any vertex v ∈ V , let N r (v ) be the r -neighborhood of
v—that is, the set of vertices that are within distance at most r from v (excluding v).

We study the independent set problem for dynamic sets of axis-parallel rectangles of two types:
(i) unit rectangles and (ii) rectangles of unit height and arbitrary width. In this work, we may
assume that the unit rectangles are unit squares. If the rectangles of R are of uniform height and
width, we can use an affine transformation to map R to a set of unit squares S and map Ri to unit
square set Si for i ∈ [N ]. We further define the setCi be the corresponding centers of squares of Si .

3 ALGORITHMS FOR DYNAMIC MIS

In this section, we study the MIS problem for dynamic uniform rectangles. As stated before, we can
assume w.l.o.g. that the rectangles are unit squares. We design an algorithm that maintains an MIS
for a dynamic set of O (n) unit squares in polylogarithmic update time. Assadi et al. [4] presented
an algorithm for maintaining an MIS on general dynamic graphs withO (Δ) update time, where Δ
is the maximum degree in the graph. In the worst case, however, that algorithm takesO (n) update
time. In fact, it seems unavoidable for an algorithm that explicitly maintains the (intersection)
graph to perform an MIS update in less than Ω(deg(v )) time for an insertion/deletion of a vertex
v . In contrast, our proposed algorithm in this section does not explicitly maintain the intersection
graph Gi = (Si ,Ei ) (for any i ∈ [N ]), but rather only the set of squares Si in a suitable dynamic
geometric data structure. For the ease of explanation, however, we do use graph terms at times.

Let i ∈ [N ] be any time point in the sequence of updates. For each square sv ∈ Si , let sa
v be

a square of side length a concentric with sv . Further, let Mi denote the MIS that we compute for
Gi = (Si ,Ei ), and let C (Mi ) ⊆ Ci be their corresponding square centers. We maintain two fully
dynamic orthogonal range searching data structures, which maintain a set of points dynamically
and support efficient deletions and insertions of points, throughout: (i) a dynamic range treeT (Ci )
for the entire point set Ci and (ii) a dynamic range tree T (C (Mi )) for the point set C (Mi ) corre-
sponding to the centers of Mi . They can be implemented with dynamic fractional cascading [39],
which yields O (logn log logn) update time and O (k + logn log logn) query time for reporting k
points.

We compute the initial MIS M1 forG1 = (S1,E1) by using a simple linear-time greedy algorithm.
First, we initialize the range treeT (C1). Then, we iterate through the setS1 as long as it is not empty,
select a square sv for M1 and insert its center into T (C (M1)), find its neighbors N (sv ) by a range
query in T (C1) with the concentric square s2

v , and delete N (sv ) from S1. It is clear that once this
process terminates, M1 is an MIS.

When we move in the next step from Gi = (Si ,Ei ) to Gi+1 = (Si+1,Ei+1), either a square is
inserted into Si or deleted from Si . Let sx be the square that is inserted or deleted.

Lemma 1. Given an arbitrary set of pairwise overlap-free unit squares S and an arbitrary square r
of side length 2, r contains at most four centers of unit squares of S .

Proof. We split r equally into four parts where each quarter corresponds to a unit square. Con-
sider two squares s1, s2 ∈ S . If their centers lie in the same quarter, then they must overlap. Hence,
by a simple packing argument the claim holds. �

Insertion: When we insert a square sx into Si to obtain Si+1, we do the following operations.
First, we obtain T (Ci+1) by inserting the center of sx into T (Ci ). Next, we have to detect whether
sx can be included inMi+1. If there exists a square su fromMi intersecting sx , we should not include
sx ; otherwise, we will add it to the MIS. To check this, we search with the range s2

x in T (C (Mi )).
By Lemma 1, we know that no more than four points (the centers of four independent squares)
of C (Mi ) can be in the range s2

x . If the query returns such a point, then sx would intersect with

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:6 S. Bhore et al.

Fig. 1. Example for the deletion of a square sx . (a) Square sx , its neighborhood with centers in s2
x , its 2-

neighborhood with centers in s4
x , and the polygon Px . (b) Vertical slab partition of Px .

another square in Mi and we set Mi+1 = Mi . Otherwise, we add sx to the current solution Mi and
to the tree T (C (Mi )) to obtain Mi+1 and T (C (Mi+1)).

Deletion: When we delete a square sx from Si , it is possible that sx ∈ Mi . In this case, we may
have to add squares from N (sx ) into Mi+1 to keep it maximal. Since any square can have at most
four independent neighbors, we can add in this step up to four squares to Mi+1.

First, we check if sx ∈ Mi . If not, then we simply delete sx from T (Ci ) to get T (Ci+1) and set
Mi+1 = Mi . Otherwise, we delete again sx from T (Ci ) and also from T (C (Mi )). To detect which
neighbors of sx can be added to Mi , we use suitable queries in the data structures T (C (Mi )) and
T (Ci ). Figure 1(a) illustrates the next observations. The centers of all neighbors in N (sx ) must
be contained in the square s2

x . But some of these neighbors may intersect other squares in Mi .
In fact, these squares would by definition belong to the 2-neighborhood (i.e., be in the set Qx =

N 2 (sx ) ∩Mi ). We can obtain Qx by queryingT (C (Mi )) with the range s4
x . Since sx ∈ Mi , we know

that no center point of squares in Mi lie in s2
x . Hence, the center points of the squares in Qx lie

in the annulus s4
x − s2

x . A simple packing argument (similar to the proof of Lemma 1) implies that
|Qx | ≤ 12, and therefore querying T (C (Mi )) will return at most 12 points.

Next, we define the rectilinear polygon Px = s
2
x −
⋃

sy ∈Qx
s2
y , which contains all possible center

points of squares that are neighbors of sx but do not intersect any square sy ∈ Mi \ {sx }.

Observation 2. The polygon Px has at most 28 corners.

Proof. We know that Qx contains at most 12 squares sy , for each of which we subtract s2
y

from s2
x . Since all squares have the same side length, at most two new corners can be created in

Px when subtracting a square s2
y . Initially, Px had four corners, which yields the claimed bound

of at most 28 corners. �

Next, we want to queryT (Ci ) with the range Px , which we do by vertically partitioning Px into
rectangular slabs R1, . . . ,Rc for some c ≤ 28 (see Figure 1(b)). For each slab R j , where 1 ≤ j ≤ c , we
perform a range query in T (Ci ). If a center p is returned, we can add the corresponding square sp

into Mi+1, and p intoT (C (Mi )) to obtainT (C (Mi+1)). Moreover, we have to update Px ← Px − sp ,
refine the slab partition, and continue querying T (Ci ) with the slabs of Px . Observe that after
cutting the square sp from the rectilinear polygon Px , the number of sides of the remaining region

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:7

of Px can be increased by at most 4. We know that the deleted square sx can have at most four
independent neighbors. So after adding at most four new squares to Mi+1, we know that there is
no center point in Ci in the range Px and can stop searching.

Lemma 3. The set Mi is an MIS set of Gi = (Si ,Ei ) for each step i ∈ [N ].

Proof. The correctness proof is inductive. By construction, the initial set M1 is an MIS for G1.
Let us consider some step i > 1 and assume by induction that Mi−1 is an MIS for Gi−1. If a new
square sx is inserted in step i , we add it to Mi if it does not intersect any other square in Mi−1;
otherwise, we keep Mi−1. In either case, Mi is an MIS of Gi . If a square sx is deleted in step i and
sx � Mi−1, then Mi = Mi−1 is an MIS ofGi . Finally, let sx ∈ Mi−1. Assume for contradiction that Mi

is not an MIS (i.e., some square sq could be added to Mi ). Since Mi−1 was an MIS, sq ∈ N (sx ) and
thus its center must lie in the region Px . But then we would have found sq in our range queries
with the slabs of Px . Hence, Mi is indeed an MIS of Gi . �

Theorem 4. We can maintain an MIS of a dynamic set of unit squares, deterministically, in

O (logn log logn) update time and O (n) space.

Proof. The correctness follows from Lemma 3. It remains to show the running time for the
fully dynamic updates. At each step i, we perform either an Insertion or a Deletion operation.
Let us first discuss the update time for the insertion of a square. As described earlier, an insertion
performs one or two insertions of the center of the square into the range trees and one range query
inT (C (Mi−1)), which will return at most four points. Since we use the data structure of Mehlhorn
and Näher [39], the update time for inserting a square is (logn log logn), which corresponds to the
time required for inserting a new point into their range searching data structure and one range
query. The deletion of a square triggers either just a single deletion from the range treeT (Ci−1) or,
if it was contained in the MIS Mi−1, two deletions, up to four insertions, and a sequence of range
queries: one query in T (C (Mi−1)), which can return at most 12 points and a constant number
of queries in T (Ci−1) with the constant-complexity slab partition of Px . Note that although the
number of points in Px can be large, for our purpose it is sufficient to return a single point in each
query range if it is not empty. Therefore, the update time for a deletion is again O (logn log logn)
with dynamic fractional cascading [39].

In this approach, we maintain two dynamic range trees for the center points of rectangles. We
use the dynamic range tree structure by Mehlhorn and Näher [39], whose space requirement is
linear in the number of elements stored. Thus, the space requirement of this approach isO (n). �

For unit square intersection graphs, recall that any square in an MIS can have at most four mu-
tually independent neighbors. Therefore, maintaining a dynamic MIS immediately implies main-
taining a dynamic 4-approximate Max-IS.

Note that the update time of the dynamic data structure for orthogonal range queries dominates
the update time of this algorithm. Its update time can be improved by using a state-of-the-art
dynamic range query structure. The best-known dynamic data structure for orthogonal range re-

porting requiresO (log2/3+ϵ n) amortized update time, where ϵ denotes an arbitrarily small positive

constant, and O (k +
log n

log log n
) amortized query time, where k is the number of reported points [14].

From this, we conclude the following corollary.

Corollary 5. We can maintain a 4-approximate Max-IS of a dynamic set of unit squares, in

amortized O (
log n

log log n
) update time.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:8 S. Bhore et al.

4 APPROXIMATION ALGORITHMS FOR DYNAMIC MAX-IS

In this section, we study the Max-IS problem for dynamic unit squares as well as for unit-height
and arbitrary-width rectangles. In a series of dynamic schemes proposed in this section, we estab-
lish the trade-off between the update time and the solution size (i.e., the approximation factors).
First, we design a 4-approximation algorithm with O (1) update time for Max-IS of dynamic unit
squares (Section 4.1). We generalize this to an algorithm that maintains a 2(1 + 1

k
)-approximate

Max-IS withO (k2 logn) update time, for any integer k > 1 (Section 4.2). Finally, we conclude with
an algorithm that deterministically maintains a 2-approximate Max-IS with O (log2 n + ω logn)
update time, where ω is the maximum size of an independent set of the unit-height rectangles
stabbed by any horizontal line (Section 4.3).

Let B be a bounding square of the dynamic set of 1 × 1-unit squares
⋃

i ∈[N ] Si of side length
σ ×σ . Let H = {h1, . . . ,hσ } and L = {l1, . . . , lσ } be a set of top-to-bottom and left-to-right ordered
equidistant horizontal and vertical lines partitioning B into a square grid of side-length-1 cells
(Figure 2). Let EH = {hi ∈ H | i = 0 (mod 2)} and OH = {hi ∈ H | i = 1 (mod 2)} be the set of
even and odd horizontal lines, respectively.

4.1 4-Approximation Algorithm with Constant Update Time

We design a 4-approximation algorithm for the Max-IS problem on dynamic unit square intersec-
tion graphs with constant update time. Our algorithm is based on a grid partitioning approach.
Consider the square grid on B induced by the sets H and L of horizontal and vertical lines. We
denote the grid points as дp,q for p,q ∈ [σ ], where дp,q is the intersection point of lines hp and lq .
We assign each unit square in any set Si to a grid point (denoted by its associated grid point) in
the following deterministic way. Due to the unit grid construction, each unit square intersects at
least one grid point. If an unit square s ∈ Si contains exactly one grid point дp,q , we associate s
with дp,q . Otherwise, if s contains multiple grid points, we assign s to the top-leftmost grid point
among others. For the ease of description, we may assume that the dynamic squares are in general
positions—that is, each square contains exactly one grid point. Moreover, the preceding assign-
ment does not affect the algorithm description or the analysis. For each дp,q , we store a Boolean
activity value 1 or 0 based on its intersection with Si (for any step i ∈ [N ]). If дp,q intersects at
least one square of Si , we say that it is active and set the value to 1; otherwise, we set the value to
0. Observe that for each grid point дp,q and each timestep i, at most one square of Si intersecting
дp,q can be chosen in any Max-IS. This holds because all squares that intersect the same grid point
form a clique in Gi , and at most one square from a clique can be chosen in any independent set.

For each grid pointдp,q , for somep,q ∈ [σ ], we store the squares in S that intersectдp,q into a list
Lpq . Moreover, a counter for the size of Lpq is maintained dynamically for each grid pointдp,q such
that we could detect if there exists at least one square intersecting дp,q efficiently. Note that the set
Lpq should allow constant time insertion and deletion (e.g., be stored in sequence containers like
lists). We first initialize an independent set M1 for G1 = (S1,E1) with |M1 | ≥ |OPT1 |/4. For each
horizontal line hj ∈ H , we compute two independent sets M1

hj
and M2

hj
, where M1

hj
(respectively,

M2
hj

) contains an arbitrary square intersecting each odd (respectively, even) grid point on hj . Since

every other grid point is omitted in these sets, any two selected squares are independent. Let
M (hj ) = arg max{|M1

hj
|, |M2

hj
|} be the larger of the two independent sets. We define p (hj ) = |M1

hj
|

and q(hj ) = |M2
hj
|, as well as c (hj ) = |M (hj ) | = max{p (hj ),q(hj )}.

We construct the independent sets M (EH ) =
⋃ �σ /2


j=1 (M (h2j )) for EH and M (OH ) =
⋃ �σ /2


j=1

(M (h2j−1) for OH . We return M1 = arg max{|M (EH ) |, |M (OH ) |} as the independent set for G1.
Figure 2 presents an illustration. The initialization of all O (σ 2) variables and the computation of

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:9

Fig. 2. Example instance with bounding square B partitioned into a 5 × 5 grid. Red squares represent the
computed 4-approximate solution, which here is M (O (H )).

the first set M1 take O (σ 2) time. (Alternatively, a hash table would be more space efficient but
could not provide the O (1)-update time guarantee.)

Lemma 6. The set M1 is an independent set of G1 = (S1,E1) with |M1 | ≥ |OPT1 |/4 and can be

computed in O (σ 2) time.

Proof. Partition the squares S1 into 2 sets SE , SO , where SE (respectively, SO ) consists of all
squares intersecting an even (respectively, odd) horizontal line. Let ME and MO be the Max-IS of
the SE and OE , respectively. Clearly, the larger one of these two sets contains at least half of as
many elements as a Max-IS of S1. We may assume, w.l.o.g., that the ME ≥ |OPT1 |/2. For each even
horizontal line hj , M

1
hj

(respectively, M2
hj

) is a Max-IS of all rectangles stabbed on hj and an odd

(respectively, even) vertical line. The larger one of these two sets contains at least half as many
elements as a Max-IS of the squares stabbed by hj . Overall, this implies that |M1 | ≥ |OPT1 |/4. �

In the following step, when we move fromGi toGi+1, for any i ∈ [N ], a square sx is inserted into
Si or deleted from Si . Let дpq be the grid point contained in sx . We update the list Lpq by either
inserting the square sx into Lpq or deleting sx from Lpq . Moreover, we update the counter recording
the size of Lpq and the activity value of the grid point accordingly. Intuitively, we check the activity
value of the grid point that sx intersects. If the update has no effect on its activity value, we keep
Mi+1 = Mi . Otherwise, we update the activity value, the corresponding cardinality counters, and
report the solution accordingly. All of these operations can be performed in O (1) time.

A more detailed description of the Insertion and Deletion operations is given in the following.
When we move in the next step from Gi to Gi+1 (for some 1 ≤ i < N ), we either insert a new
square into Si or delete one square from Si . Let sx be the square that is inserted or deleted, and let
дu,v (for some u,v ∈ [σ ]) be the grid point that intersects sx . We next describe how to maintain
a 4-approximate Max-IS with constant update time. We distinguish between the two operations
Insertion and Deletion.

Insertion: If дu,v is active for Si , there is at least one square intersecting дu,v that was considered
while computing Mi . Hence, even if we would include sx in a modified independent set Mi+1, it

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:10 S. Bhore et al.

would not make any impact on its cardinality. Hence, we simply set Mi+1 ← Mi . Otherwise, we
perform a series of update operations. First, change the activity value of дu,v from 0 to 1. Second,
include sx inM1

hu
(respectively,M2

hu
) ifv is odd (respectively, even), and increase the value ofp (hu )

(respectively, q(hu )) by 1. This lets us reevaluate the cardinality c (hu ) of M (hu ) in constant time.
Third, reevaluate M (EH ) and M (OH ) and their cardinalities based on the updated value of c (hu ).
Note that none of these operations takes more than O (1) time.

Deletion: If there is a square sl other than sx intersecting дu,v , then дu,v stays active. We replace
sx by sl in the maintained independent sets M1

hu
, M2

hu
, M (EH ) and M (EH ). Note that this makes no

impact on the cardinality of the setsM (EH ) andM (EH ). If there is no other square intersectingдu,v ,
we reset the activity value of дu,v to false. Moreover, we delete sx from maintained independent
sets of line hu and reevaluate ME and MO .

The update procedure described previously ensures that the respective cardinality maximization
for the affected stabbing line hj and finally Mi is reevaluated and updated. In this approach, we
maintain an O (σ 2) grid. Each of n rectangles is stored in one of the grid points, thus the storage
of rectangles is O (n). Thereby, we conclude the following Lemma 7.

Lemma 7. The set Mi is an independent set of Gi = (Si ,Ei ) for each i ∈ [N ] and |Mi | ≥ |OPTi |/4
and O (σ 2 + n) space.

Running time. We perform either an insertion or a deletion operation at every step i ∈ [N ].
Both of theses operations perform only local operations: (i) compute the grid point intersecting
the updates square and check its activity value; (ii) reevaluate the values p (hj ) and q(hj ) of the
horizontal line hj intersecting the square—this may or may not flip the independent set M (hj )
and its cardinality from p (hj ) to q(hj ), or vice versa; and (iii) finally, if the cardinality of M (hj )
changes, we reevaluate the sets M (EH ) and M (OH ). All of these operations possibly change one
activity value, increase or decrease at most three variables by 1 and perform at most two compar-
ison operation. Therefore, the overall update process takes O (1) time in each step. Recall that the
process to initialize the data structures for the set S1 and to compute M1 for G1 takes O (σ 2) time.

Lemmas 6 and 7 and the preceding discussion of the O (1) update time yield the following
theorem.

Theorem 8. We can maintain a 4-approximate Max-IS in a dynamic unit square intersection

graph, deterministically, in O (1) update time.

4.2 2(1 + 1
k

)-Approximation Algorithm with O (k2 logn) Update Time

Next, we improve the approximation factor from 4 to 2(1+ 1
k

), for any integer k > 1, by combining
the shifting technique [33] with the insights gained from Section 4.1. This comes at the cost of an
increase of the update time to O (k2 logn), which illustrates the trade-off between solution quality
and update time. We reuse the grid partition and some notations from Section 4.1. We first describe
how to obtain a solution M1 for the initial graphG1 that is of size at least |OPT1 |/2(1+ 1

k
) and then

discuss how to maintain this under dynamic updates.
Let hj ∈ H be a horizontal stabbing line, and let S (hj ) ⊆ S be the set of squares stabbed by hj .

Since they are all stabbed by hj , the intersection graph of S (hj ) is equivalent to the unit interval
intersection graph obtained by projecting each unit square sx ∈ S (hj ) to a unit interval ix on the
line hj ; we denote this set of unit intervals as I (hj ). First, we sort the intervals in I (hj ) from left
to right. Next, we define k + 1 groups with respect to hj that are formed by deleting those squares
and their corresponding intervals from S (hj ) and I (hj ), respectively, that intersect every k + 1-th
grid point on hj , starting from some дj,α with α ∈ [k + 1]. Now consider the k consecutive grid
points on hj between two deleted grid points in one such group, say, {дj, �, . . . ,дj, �+k−1} for some

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:11

Fig. 3. Illustration of a group on line hj for k = 3 with the two subgroups I3
1 (hj ) and I3

5 (hj ).

� ∈ [σ ]. Let Ik
�

(hj ) ⊆ I (hj ) be the set of unit intervals intersecting the k grid points дj, � to дj, �+k−1.
We refer to them as subgroups. Figure 3 presents an illustration. Observe that the maximum size
of an independent set of each subgroup is at most k , since the width of each subgroup is strictly
less than k + 1 and each interval has unit length.

We compute M1 for G1 as follows. For each stabbing line hj ∈ H , we form the k + 1 different
groups of I (hj ). For each group, a Max-IS is computed optimally and separately inside each sub-
group. Since any two subgroups are horizontally separated and thus independent, we can then
take the union of the independent sets of the subgroups to get an independent set for the en-
tire group. This is done with the linear-time greedy algorithm to compute maximum independent
set(s) for interval graphs [31]. Let {M1

hj
, . . . ,Mk+1

hj
} be k + 1 maximum independent set(s) for the

k + 1 different groups, and let M (hj ) = arg max{|M1
hj
|, |M2

hj
|, . . . , |Mk+1

hj
|} be one with maximum

size. We store its cardinality as c (hj ) = max{|M i
hj
| | i ∈ [k + 1]}. Next, we compute an inde-

pendent set for EH , denoted by M (EH ), by composing it from the best solutions M (hj ) from the

even stabbing lines—that is, M (EH ) =
⋃ �σ /2


j=1 M (h2j ) and its cardinality |M (EH ) | = ∑ �σ /2

j=1 c (h2j ).

Similarly, we compute an independent set forOH as M (OH ) =
⋃ �σ /2


j=1 M (h2j−1) and its cardinality

|M (OH ) | = ∑ �σ /2

j=1 c (h2j−1). Finally, we return M1 = arg max{|M (EH ) |, |M (OH ) |} as the solution

for G1.

Lemma 9. The independent set M1 of G1 = (S1,E1) can be computed in O (n logn + kn) time and

|M1 | ≥ |OPT1 |/2(1 + 1
k

).

Proof. Let us begin with the analysis for one horizontal line, say, hj . The objective is to show

that forhj , the size of our solution is least the optimum solution size forhj divided by (1+ 1
k

). Recall
that a group of S (hj ) and I (hj ) is formed by deleting the squares and their corresponding intervals
from S (hj ) and I (hj ), respectively, which intersect every k + 1-th grid point on hj , starting at some
index α ∈ [k+1]. Now consider a hypothetical Max-ISOPT (hj ) onhj . By the pigeonhole principle,
for at least one of the k + 1 groups of S (hj ) we deleted at most |OPT (hj ) |/(k + 1) squares from

OPT (hj ). Assume that this group corresponds to the independent set M�
hj

for some � ∈ [k + 1],

which is maximum within each subgroup. Then we know that |M (hj ) | ≥ |M�
hj
| ≥ |OPT (hj ) | −

|OPT (hj ) |/(k + 1) = |OPT (hj ) |/(1 + 1
k

). Since this is true for each individual stabbing line hj and

since any two lines in EH (orOH ) are independent, this implies that |M (EH ) | ≥ |OPT (EH ) |/(1+ 1
k

)

and |M (OH ) | ≥ |OPT (OH ) |/(1 + 1
k

). Again by pigeonhole principle, if we choose M1 as the larger
of the two independent sets M (EH ) and M (OH ), then we lose by at most another factor of 2 (i.e.,
|M1 | ≥ |OPT1 |/2(1 + 1

k
)).

The algorithm requires O (n logn) time to sort all intervals and then computes Max-IS for the
different subgroups with the linear-time greedy algorithm. Since each square belongs to at most k
different subgroups, this takes O (kn) time in total. �

Next, we describe a pre-processing step, which is required for the dynamic updates.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:12 S. Bhore et al.

Pre-Processing: For each horizontal line hj ∈ H , consider a group. For each subgroup Ik
�

(hj ) (for

some � ∈ [k + 1]), we construct a balanced binary tree T (Ik
�

(hj )) storing the intervals of Ik
�

(hj )
in left-to-right order (indexed by their left endpoints) in the leaves. This process is done for each
group of every horizontal line hj ∈ H . This pre-processing step takes O (kn logn) time.

When we perform the update step from Gi = (Si ,Ei ) to Gi+1 = (Si+1,Ei+1), either a square is
inserted into Si or deleted from Si . Let sx and ix be this square and its corresponding interval. Let
дu,v (for some u,v ∈ [σ ]) be the grid point that intersects sx .

Insertion/Deletion: The insertion or deletion of ix affects all but one of the groups on line hu .
We describe the procedure for one such group on hu ; it is then repeated for the other groups. In
each group, ix appears in exactly one subgroup and the other subgroups remain unaffected. This
subgroup, say Ik

�
(hu ), is determined by the index v of the grid point дu,v intersecting ix . For each

affected subgroups, we do the following update. First, we update the search treeT (Ik
�

(hh )) of Ik
�

(hu )
by inserting or deleting ix , which can be done in O (logn) time. Then, we recompute a Max-IS of
the subgroup with the greedy algorithm. Since the intervals of Ik

�
(hu ) are sorted, we could locate

the left-most interval that is to the right of all chosen intervals in O (logn) time. Since a Max-IS
in each subgroup contains at most k intervals, the recomputation takes O (k logn) time in each
affected subgroup.

For all groups affected by the insertion or the deletion of ix , we first update the corresponding

independent sets M
p

hu
for p ∈ [k + 1], whenever some updates of selected intervals are necessary.

Then, we select the largest independent set of all k + 1 groups as M (hj ) and update its new cardi-
nality in c (hj ). Finally, we update the independent sets M (EH ) and M (OH ) and their cardinalities
and return Mi+1 = arg max{|M (EH ) |, |M (OH ) |} as the solution for Gi+1.

Since the intervals computed by the left-to-right greedy algorithm are precisely those intervals
that our update procedure selects, we get the following Lemma 10.

Lemma 10. The set Mi is an independent set of Gi = (Si ,Ei ) for each i ∈ [N ] and |Mi | ≥
|OPTi |/2(1 + 1

k
).

Proof. The fact that Mi is an independent set follows directly from the construction. Let sx be
the square added or deleted, and let hu be the grid horizontal line stabbed by sx . In fact, our update
algorithm constructs the same set of independent intervals as the one obtained by running from
scratch the greedy Max-IS algorithm on the set Ik

�
(hu ). The remaining arguments for the claimed

approximation ratio of Mi+1 are exactly the same as in the proof of Lemma 9. �

Running time. At every step, we perform either an insertion or a deletion operation. Recall
from the description of these two operations that an update affects a single stabbing line, say hu ,
for which we have defined k + 1 groups. Of those groups, k are affected by the update, but only
inside a single subgroup. Updating a subgroup can trigger up to k selection updates, each taking
O (logn) time. In total, this yields an update time of O (k2 logn).

This approach requiresO (σ 2) space to maintain the grid. Note that each rectangle can be in the
stored solutions of at most k subgroups, thus at most O (kn) storage is used. With Lemma 10 and
the preceding update time discussion, we obtain the following theorem.

Theorem 11. We can maintain a 2(1 + 1
k

)-approximate Max-IS in a dynamic unit square inter-

section graph, deterministically, in O (k2 logn) update time and O (σ 2 + kn) storage.

4.3 2-Approximation Algorithm with O (log2 n + ω logn) Update Time

We finally design a 2-approximation algorithm for the Max-IS problem on dynamic axis-aligned
unit-height but arbitrary-width rectangles. Note that the coordinates of the input rectangles might

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:13

not be integers. Let B be the bounding box of the dynamic set of rectangles ˜R = ⋃i ∈[N ] Ri . We
begin by dividing B into horizontal strips of height 1 defined by the set H = {h1, . . . ,hσ } of

σ = O (n) horizontal lines. We assume, w.l.o.g., that every rectangle in ˜R is stabbed by exactly one
line in H . For a set of rectangles R, we denote the subset stabbed by a line hj as R (hj ) ⊆ R.

We first describe how to obtain an independent set M1 for the initial graph G1 = (R1,E1) such
that |M1 | ≥ |OPT1 |/2 by using the following algorithm of Agarwal et al. [3]. For each horizontal
line hj ∈ H , we compute a Max-IS for R1 (hj ). The set Ri (hj ) (for any i ∈ [N ] and j ∈ [σ ]) can
again be seen as an interval graph. For a set of n intervals, a Max-IS can be computed by a left-to-
right greedy algorithm visiting the intervals in the order of their right endpoints inO (n logn) time.
So for each horizontal line hj ∈ H , let M (hj ) be a Max-IS of R1 (hj ), and let c (hj ) = |M (hj ) |. Then,

we construct the independent set M (EH ) =
⋃ �σ /2


j=1 (M (h2j )) for EH . Similarly, we construct the

independent set M (OH ) =
⋃ �σ /2


j=1 (M (h2j−1) for OH . We return M1 = arg max{|M (EH ) |, |M (OH ) |}
as the independent set for G1 = (R1,E1). Figure 4 presents an illustration.

Lemma 12 (Theorem 2 [3]). The set M1 is an independent set of G1 = (R1,E1) with |M1 | ≥
|OPT1 |/2 and can be computed in O (n logn) time.

We describe the following pre-processing step to initialize inO (n logn) time the data structures
that are required for the subsequent dynamic updates.

Pre-Processing: Consider a stabbing line hj and the set of rectangles Ri (hj ) stabbed on hj for
some i ∈ [N ]. We denote the corresponding set of intervals as I (hj ).

We build a balanced binary search tree Tl (I (hj )), storing the intervals in I (hj ) in left-to-right
order based on their left endpoints.

This is called the left tree of I (hj ). For each internal node in the left tree, we associate it with
an augmented balanced binary search tree storing the intervals in its subtree based on their right
endpoints. Thus, we could get the interval with leftmost right endpoint in each subtree in constant
time.

Such range tree–like data structure can be constructed in O (n logn) and can be dynamically
maintained in O (log2 n) time [50]. Additionally, we compute a Max-IS of I (hj ) and store it in left-
to-right order in a balanced binary search tree Ts (I (hj )), denoted by the solution tree of hj . Let ωj

be the cardinality of a Max-IS of I (hj ) for j ∈ [σ ], and letω = maxj ωj for j ∈ [σ ] be the maximum
of these cardinalities over all stabbing lines.

When we move from Gi to Gi+1 (for some 1 ≤ i < N ), either we insert a new rectangle into
Ri or delete one rectangle from Ri . Let rx be the rectangle that is inserted or deleted, let ix be its
corresponding interval, and let hj (for some j ∈ [σ ]) be the horizontal line that intersects rx . By
maintaining the Max-IS for I (hj ), and then reevaluating the solution set, a 2-approximate Max-IS

can be maintained. Note that this recomputation costs O (ω logn + log2 n), including updating the
left tree of hj and recomputing the Max-IS for hj by the greedy approach described in the pre-
processing phase. In what follows, we describe how to maintain the Max-IS for hj dynamically in

O (ω logn + log2 n) time.
Note that our update operation is faster in practice while having the same asymptotic worst-case

update time O (n logn) as recomputing the Max-IS of hj .

Given an interval i , we denote the left endpoint and right endpoint of i as l (i ) and r (i ),
respectively.

Insertion/Deletion: Because the greedy algorithm for constructing the Max-IS visits the
intervals in left-to-right order based on the right endpoints, it would make the same decisions
for all intervals with their right endpoint before the right endpoint of ix . Let iy be the rightmost

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:14 S. Bhore et al.

Fig. 4. Example instance with four horizontal lines. Red rectangles represent the computed 2-approximate
solution, which here is M (E (H )).

interval in the current solution such that the right endpoint of iy is before the right endpoint
of ix (i.e., r (iy ) < r (ix )). We may assume that such interval iy always exist by adding a dummy
interval (0, ϵ ) in each solution tree Ts (I (hj )) for an arbitrary small value ϵ . We could find iy for
ix by querying the solution tree Ts (I (hj )) in O (logωj ) time. Now we need to identify the next
selected interval right of iy that would have been found by the greedy algorithm. We use the left
treeTl (I (hj )) to search inO (logn) time for the interval i ′z with leftmost right endpoint, whose left
endpoint is right of the right endpoint r (iy ) of iy . More precisely, we search for r (iy ) in Tl (I (hj )),
and whenever the search path branches into the left subtree, we compare whether the leftmost
right endpoint stored in the root of the right subtree is left of the right endpoint of the current
candidate interval. If so, we use this interval as the new candidate interval. Once a leaf is reached,
the leftmost found candidate interval is the desired interval i ′z . This interval i ′z is precisely the first
interval considered by the greedy algorithm after Iy and thus must be the next selected interval.
We repeat the update process for i ′z as if it would have been the newly inserted interval until
either i ′z is also selected in the previous solution or we reach the end of I (hj ). We now reevaluate
the new Max-IS M (hj ) and its cardinality, which possibly affects M (EH ) or M (OH ). We obtain
the new independent set Mi+1 = arg max{|M (EH ) |, |M (OH ) |} for Gi+1 = (Ri+1,Ei+1).

Running time. An update in the left tree (interval insertion/deletion) costs O (log2 n) time.
To update the solution of hj , we perform at most ωj searches in Tl (I (hj )), each of which takes

O (logn) time. Finally, we need to delete O (ωj ) old selected intervals from and insert O (ωj ) new
selected intervals into the solution tree Ts (I (hj )), each of which takes O (logωj ) time. We now re-
evaluate the new Max-IS M (hj ) and its cardinality c (hj ), which possibly affects M (EH ) or M (OH ).
We obtain the new independent set Mi+1 = arg max{|M (EH ) |, |M (OH ) |} for Gi+1 = (Ri+1,Ei+1).
Overall, the total update time is O (ωj logn + log2 n).

Lemma 13. The set Mi is an independent set ofGi = (Ri ,Ei ) for each i ∈ [N ] and |Mi | ≥ |OPTi |/2.

Proof. We prove the lemma by induction. From Lemma 12, we know that M1 satisfies the claim,
and in particular, each set M (h) for h ∈ H is a Max-IS of the interval set I (h). So let us consider
the set Mi for i ≥ 2 and assume that Mi−1 satisfies the claim by the induction hypothesis. Let rx

and ix be the updated rectangle and its interval, and assume that it belongs to the stabbing line hj .
Then we know that for each hk ∈ H with k � j, the set M (hk ) is not affected by the update to rx

and thus is a Max-IS by the induction hypothesis. It remains to show that the update operations
described earlier restore a Max-IS M (hj ) for the set I (hj ). But in fact the updates are designed in
such a way that the resulting set of selected intervals is identical to the set of intervals that would
be found by the greedy Max-IS algorithm for I (hj ). Therefore, M (hj ) is a Max-IS for I (hj ), and by
the pigeonhole principle, |Mi | ≥ |OPTi |/2. �

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:15

Fig. 5. Example instance of a unit-height rectangle with width-height aspect ratio 5.

Running time. Each update of a rectangle rx (and its interval ix ) triggers either an Insertion
or a Deletion operation on the unique stabbing line of rx . As we have argued in the description
of these two update operations, the insertion or deletion of ix requires one O (log2 n)-time update
in the left tree data structure. If ix is a selected independent interval, the update further triggers a
sequence of at most ωj selection updates, each of which requiresO (logn) time. Hence, the update

time is bounded by O (log2 n + ωj logn) = O (log2 n + ω logn). Recall that ωj and ω are output-
sensitive parameters describing the maximum size of an independent set of I (h) for a specific
stabbing line h = hj or any stabbing line h.

In this approach, we have to maintain O (σ ) stabbing lines. For each stabbing line hl , let nl be
the number of rectangles stabbed by hl . For each stabbing hl , we maintain a dynamic left tree
for the nl corresponding intervals, which requires O (nl lognl ) space [50]. Overall, the total space
required is O (n log n + σ ).

Theorem 14. We can maintain a 2-approximate Max-IS in a dynamic unit-height arbitrary-width

rectangle intersection graph, deterministically, inO (log2 n+ω logn) time and inO (n log n+σ ) space,

where ω is the maximum size of an independent set of the unit-height rectangles stabbed by any

horizontal line.

Remark. We note that Gavruskin et al. [28] gave a dynamic algorithm for maintaining a Max-IS
on proper interval graphs. Their algorithm runs in amortized timeO (log2 n) for insertion and dele-
tion, andO (logn) for element-wise decision queries. The complexity to report a Max-IS J is Θ( |J |).
Whether the same result holds for general interval graphs was posed as an open problem [28].
Our algorithm in fact solves the Max-IS problem on arbitrary dynamic interval graphs, which is
of independent interest. Moreover, it explicitly maintains an exact Max-IS at every step. Recently,
Bhore et al. [11] showed that for intervals, a (1 + ϵ )-approximate Max-IS can be maintained with
logarithmic worst-case update time, where ϵ > 0 is any positive constant.

5 EXPERIMENTS

We implemented all of our Max-IS approximation algorithms presented in Sections 3 and 4 to
empirically evaluate their trade-offs in terms of solution quality (i.e., the cardinality of the com-
puted independent sets) and update time measured on a set of suitable synthetic and real-world
map-labeling benchmark instances of two types of dynamic rectangle sets: (i) unit squares and
(ii) rectangles of uniform height and bounded width-height integer aspect ratio (Figure 5). We be-
lieve that these two models are representative models in map labeling applications. The goal is to
identify those algorithms that best balance the two performance criteria.

Moreover, for smaller benchmark instances with up to 2,000 squares, we compute exact Max-
IS solutions using a MAXSAT model by Klute et al. [36] that we solve with MaxHS 3.0 (see
http://www.maxhs.org). These exact solutions allow us to evaluate the optimality gaps of the dif-
ferent algorithms in light of their worst-case approximation guarantees. Finally, we investigate the
speedups gained by using our dynamic update algorithms compared to the baseline of recomputing
new solutions from scratch with their respective static algorithm after each update.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

http://www.maxhs.org


1.8:16 S. Bhore et al.

5.1 Experimental Setup

Implemented Algorithms. We implemented the following six algorithms (and their greedy
augmentation variants) in C++. We implemented two MIS algorithms for unit squares, MIS-graph

and MIS-ORS, where an MIS is maintained dynamically. In both of these approaches, we use a dy-
namic orthogonal range searching data structure to check the intersections of squares. The main
difference is that in MIS-graph, we maintain the geometric intersection graph explicitly and thus
the update time is affected by the degree of the corresponding vertex. Note that in our implementa-
tion, the MIS algorithms MIS-graph and MIS-ORS compute the same MIS at each round and provide
a 4-approximation. Moreover, we extended the approach MIS-graph for unit-height rectangles.

MIS-graph for unit squares. This is a naive graph-based dynamic MIS algorithm for unit
squares, explicitly maintaining the square intersection graph and an MIS [4, Section 3]. To
evaluate and compare the performance of our algorithm MIS-ORS (Section 3) for the MIS
problem, we implemented this alternative dynamic algorithm as the baseline approach. This
algorithm maintains the current instance in a dynamic geometric data structure and main-
tains the square intersection graph explicitly. We use standard adjacency lists to represent
the intersection graph, implemented as unordered sets in C++.

In the initialization step, we store the center points of all unit squares in the dynamic
point range query structure2 implemented in CGAL (version 5.2.1). By performing neighbor
searches in this range search structure, we build the initial geometric intersection graph.
Precisely, for each square sx , we query the orthogonal range tree with the range s2

x , where
s2

x is the square of side length 2 concentric with sx . This range contains the center points
of all squares that intersect sx . Now, to obtain an MIS at the first step, we add the first
(unmarked) vertexv to the solution and mark N (v ) in the corresponding intersection graph.
This process is repeated iteratively until there is no unmarked vertex left in the intersection
graph. Clearly, by following this greedy method, we obtain an MIS.

Moreover, for each vertex v , we maintain an augmenting counter that stores the number
of vertices from its neighborhood N (v ) that are contained in the current MIS. Note that in
our implementation, the approach greedily checks the vertices in their ordering as given in
the input file.

This approach handles the updates in a straightforward manner. To add a new square,
we first insert its center point into the dynamic orthogonal range query data structure and
add a new vertex in the intersection graph. When a new vertex is inserted, its corresponding
square may introduce new intersections. Therefore, when adding a vertex, we also determine
the edges that are required to be added to the intersection graph. Notice that unlike the
canonical vertex update operation defined in the literature, where the adjacencies of the new
vertex are part of the dynamic update, here we actually need to figure out the neighborhood
of a vertex. Let sx be the square to add, and letvx be its corresponding vertex, which is added
to the intersection graph. To find all squares that overlap sx , we query the orthogonal range
tree with s2

x . This output-sensitive operation takes O (log n + deg(v )) time, where deg(v )
is the size of neighborhood of this newly added vertex v . If the newly inserted square has
no intersection with any square from the current solution, then we simply add its vertex to
the solution; otherwise, we ignore it. Finally, we update the counters. If a vertex is deleted,
we update the orthogonal range query structure and the intersection graph by deleting its
corresponding center point and vertex, respectively. If the deleted vertex was in the solution,
then we decrease the counters of its neighbors by 1. Once the counter of a vertex is updated to

22D Range and Neighbor Search in CGAL: https://doc.cgal.org/latest/Point_set_2/index.html.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://doc.cgal.org/latest/Point_set_2/index.html


An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:17

0, we add this vertex into the solution. Both the insertion (after computingN (v )) and deletion
operation for a vertex v take O (deg(v )) time each to update the intersection graph and the
MIS solution. By maintaining the conflict graph in an adjacency list, the space requirement
of this implemented approach is O (n2).

MIS-graph for unit-height rectangles. We extend the approach MIS-graph for axis-parallel
rectangles of unit height and with bounded integer width-height aspect ratio. Let r be an
axis-parallel rectangle with unit height and aspect ratio w for an integer w . The rectangle
r can be partitioned into w unit squares. Each corner of these partitioning unit squares is
denoted as a witness point of r in the following. In this extended MIS-graph approach, instead
of maintaining the center points of squares in the orthogonal range query data structure as
in MIS-graph, all of the witness points of all rectangles are stored in the range query data
structure. Furthermore, we use a hash table, which assigns each witness point to its corre-
sponding rectangle. We assume a general position property of the dynamic set of rectangles
in the input: each pair of rectangles intersects at most twice at their boundaries. This prop-
erty is denoted as corner intersection property in the following.3 Thus, given a rectangle
r , we could find all rectangles that overlap with r by making a range query of r in the dy-
namic orthogonal range tree. Note that in our input instances, the width-height aspect ratio
is from {1, . . .b} for a positive constant integer b. Thus, the initialization takes (bn log bn)
time. Let rx be the rectangle to add or delete, and let vx be its corresponding vertex in the
conflict graph. Both the insertion and deletion (after updating the range tree and conflict
graph) take O (deg(vx )), where deg(vx ) is the size of the neighborhood of the vertex vx in
the conflict graph.

MIS-ORS. The dynamic MIS algorithm is based on orthogonal range searching (Section 3); this
algorithm provides a 4-approximation. In the implementation, we used the dynamic orthog-
onal range searching data structure implemented in CGAL (version 5.2.1), which is based
on a dynamic Delaunay triangulation [40, Chapter 10.6]. More precisely, given a rectilinear
area R, a range query with R is implemented in CGAL by making a circular range query
with its circumscribed circle and then check if the reported points are in R. That means that
finding and reporting one point of a rectilinear area take in the worst-caseO (n). Hence, this
implementation does not provide the polylogarithmic worst-case update time of Theorem 4.
However, we did not observe such behavior in most of our experiments. Note that the initial
solution is computed greedily in the ordering of the instance file, and in each update round
the MIS is maintained dynamically. Overall, the solution computed in each round by this
approach is identical as the solution computed by MIS-graph.

We implement MIS algorithms grid (Section 4.1), grid-k (Section 4.2), and line (Section 4.3)
and their greedy augmentation variants in C++. Since all of these algorithms are based on
partitioning the set of squares and considering only sufficiently segregated subsets, they
produce a lot of white space in practice.

For instance, they ignore the squares stabbed by either all of the even or all of the odd stab-
bing lines completely to create isolated subinstances. In practice, it is therefore interesting
to augment the computed approximate Max-IS by greedily adding independent but initially
discarded squares. We also implemented the greedy variants of these algorithms, which are
denoted as g-grid, g-grid-k , and g-line.

grid. Recall that in the grid-based 4-approximation algorithm for unit squares (Section 4.1),
we either omit all squares intersecting even horizontal lines or all squares intersecting odd
horizontal lines. Then, for each horizontal line li , we maintain a Boolean value based on

3In computational geometry, a set of geometric objects with such property is denoted as a family of pseudo-disks.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:18 S. Bhore et al.

Fig. 6. Example instance within a 4 × 4 grid. The solution obtained by the g-grid approach is the union of
the solution M1 (h1) ∪M2 (h3) (red) by the grid approach, the line augmentation set of M1 (h1) (violet), the
line augmentation set of M3 (h3) (= ∅), and the combination augmentation set of M1 (h1) ∪M2 (h3) (green).

whether we omit all rectangles intersecting the odd vertical lines or all rectangles intersect-
ing the even vertical lines.

In our implementation, to obtain the initial solution, we iterate over all grid points that
are not omitted and collect the first square stored in their square lists. Let this be our initial
solution.

g-grid. This is the grid-based approach with greedy augmentation. We describe the greedy
augmenting procedure. Recall that for each horizontal line hj , we maintain two candidate
independent sets M1

hj
and M2

hj
of rectangles of odd grid points and rectangles of even grid

points of hj , respectively. Given a horizontal grid line hj , we check all rectangles intersect-
ing even (respectively, odd) grid points on hj and compute an augmentation for M1

hj
(respec-

tively, M2
hj

), which is denoted as a line augmentation set. For three consecutive horizontal

grid lines hj , hj+1 and hj+2 in the grid partitioning, we consider the four possible combina-
tions of one candidate set of hj and one candidate set of hj+2 with their corresponding line
augmentation sets. For each combination, we compute a greedy augmentation of rectangles
stabbed by line hj+1, denoted as a combination augmentation set. To achieve a constant-time
update, each of these computed augmentation sets is stored in a vector of size σ such that
the rectangle intersecting the k-th vertical grid line is stored as the k-th element of the vec-
tor. Overall, for each horizontal grid line hj , we maintain six greedy augmentation sets: four
combination augmentation sets for the four possible combinations ofhj−1 andhj+1 as well as
two line augmentation set for M1

hj
and M2

hj
, respectively. Thus, the initial solution obtained

by this approach contains three parts: the initial solution obtained by the grid approach, the
line augmentation sets for the chosen candidate sets of the odd/even (based on the choice
by grid approach) horizontal lines, and the combination augmentation sets from the omitted
horizontal lines based on the choices of its two neighboring lines (Figure 6).

Whenever a square s is inserted on the horizontal grid line hr , the two candidate sets M1
hr

and M2
hr

of hr might be updated by adding s . Then we update all greedy augmentation sets

involving hr by removing the rectangles intersecting s . Note that we only need to check
the rectangles on a neighboring grid point of the grid point of s . Thus, to update one greedy

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:19

augmentation set takes constant time. When removing a square s from hr , we remove s from
all greedy augmentation sets of hr . Note that this greedy augmentation procedure does not
affect the approximation bound (i.e., 4-approximation) since the solution of the grid approach
is unaffected. Moreover, this procedure takes constant update time and O (σ 2) space, which
is the same as for the grid approach.

grid-k . This is the shifting-based 2(1+ 1
k

)-approximation algorithm (Section 4.2). In the exper-
iments, we use k = 2 (i.e., a 3-approximation) and k = 4 (i.e., a 2.5-approximation).

g-grid-k . We describe the greedy augmented version of the grid-k approach and generalize the
idea of the g-grid approach. Recall that for each horizontal grid linehj , there is one candidate
independent set for each of k + 1 group. In the initialization phase, for each candidate set
of hj , we compute its augmented set consisting of rectangles of hj , which is denoted as
the line augmentation set of the candidate set. For every three consecutive horizontal grid
lines hj ,hj+1,hj+2, we consider k2 unions of one candidate set of hj and one candidate set
of hj+1 with their corresponding line augmentation sets and compute for each union an
augmented set of rectangles on hj+1 greedily. For each computed augmented set, we store it
in a vector of size σ such that the index of each stored rectangle is identical to the index of its
vertical grid point. Thus, the initial solution obtained by this approach contains three parts:
the initial solution obtained by the grid-k approach, greedy augmented rectangles for the
chosen candidate sets of the odd/even (based on the choice by grid-k approach) horizontal
lines, and the greedy augmented rectangles from the omitted horizontal lines based on the
choices of its two neighboring lines. Whenever a square is inserted or deleted in an update
phase, the involvedO (k2) greedy augmentation sets need to be updated accordingly. Overall,
this greedy augmented version of the approach grid-k retains the same approximation ratio
2(1 + 1

k
), the same update time O (k2 logn), and the same space requirement O (σ 2 + kn) as

the grid-k approach.
line. This is the stabbing line–based 2-approximation algorithm (Section 4.3).
g-line. We describe the greedy augmentation procedure of the line approach. Recall that line

maintains a candidate set, which is a Max-IS, for each stabbing line, and we omit either all
rectangles stabbed by even lines or by odd lines. In the initialization phase of this greedy-
augmented approach, we first compute the candidate set for each horizontal line as in the
line approach. For every three consecutive horizontal grid lineshj ,hj+1,hj+2, we consider the
union of the candidate set of hj and the candidate set of hj+1 and compute for this union an
augmentation set of rectangles onhj+1 greedily. Each greedy augmentation set is sorted from
left to right and stored in an ordered set. The solution obtained by this approach consists
of the solution obtained by line and the greedy augmented sets of the omitted lines. When
a square is inserted into or removed from a stabbing line hj , we first update the candidate
set of hj and then update the greedy augmentation sets of the stabbing line above and the
stabbing line below hj , if needed. More precisely, when the candidate set of hj is updated,
we mark the leftmost and the rightmost rectangles rs , rt ,which are the newly added squares
in this candidate set. Then, when we update a greedy augmentation set, we first find the
leftmost rectangle in this greedy augmentation set that is to the left of the left endpoint
of rs and recompute the greedy augmentation set from this rectangle. This recomputing
procedure terminates when the chosen rectangle is in the greedy augmentation set from
previous round and is right to the right endpoint of rt . This means that to update the greedy
augmentation set of one stabbing line hj , it takes in the worst-case O (nj ) time, where nj is
the number of rectangles stabbed by hj . Thus, this greedy augmentation takes worst-case
O (n) time for an update. However, we note that such worst-case behavior was not observed
in the experiments.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:20 S. Bhore et al.

Fig. 7. Example distributions of small real-world instances.

Table 1. Specification of the Six OSM Unit Square Instances

Post-CH Viewpoint-AT Hotels-CH Hotels-AT Peaks-CH Hamlets-CH

Features (n) 646 652 1,788 2,209 4,320 4,326
Overlaps (m) 5,376 5,418 28,124 68,985 107,372 159,270
Density (m/n) 8.32 8.31 15.73 31.23 24.85 36.92

System Specifications. The experiments were run on a server equipped with two Intel Xeon
E5-2640 v4 processors (2.4-GHz 10-core) and 160 GB of RAM. The machine ran the 64-bit version
of Ubuntu Bionic (18.04.2 LTS). The code was compiled using g++ 7.5.0 with optimization level O3.

Benchmark Data of Unit Squares. We created three types of benchmark instances. The two
synthetic datasets consist of n 30 × 30-pixel squares placed inside a bounding rectangle B of
size 1,080 × 720 pixels, which also creates different densities. The real-world instances use the
same square size but geographic feature distributions. For the updates, we consider three models:
insertion-only, deletion-only, and mixed, where the latter selects insertion or deletion uniformly at
random. The new squares to insert are generated uniformly.

Gaussian. In the Gaussian model, we generate n squares randomly in B according to an over-
lay of three Gaussian distributions, where 70% of the squares are from the first distribution,
20% from the second one, and 10% from the third one. First, the three means of the distribu-
tions are sampled uniformly at random in B; for each Gaussian, the standard deviation is set
to 100 in both dimensions. Next, in each distribution, we sample a point and check whether
the unit square centered at this point is inside the bounding box B. If so, we add this point
to the input; otherwise, we discard it. This process is repeated until the required number of
rectangles of each distribution is collected.

Uniform. In the uniform model, we generate n squares in B uniformly at random.
Real world. We created six real-world datasets by extracting point features from Open-

StreetMap (OSM) (Table 1 presents their detailed properties). Note that in our experiment,
the input set is from a real-world instance and the new squares to insert are generated by
an uniform sampling. In Figure 7, we illustrate the distribution of point features in our small
real-world instances.

Benchmark Data of Unit-Height Rectangles. Similarly to the unit squares data, we created
three types of benchmark instances with unit-height rectangles. Since the approach MIS-graph

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:21

Table 2. Specification of the Six OSM Unit-Height Rectangle Instances

Post-CH Viewpoint-AT Hotels-CH Hotels-AT Peaks-CH Hamlets-CH

Features (n) 612 918 1,476 1,755 2,899 2,930
Overlaps (m) 4,688 6,710 19,886 46,621 54,912 64,098
Density (m/n) 7.66 7.3 13.47 18.56 18.94 21.87
Label lengths (range/aver.) 3–50/18 3–63/16 2–46/15 2–57/17 3–63/12 3–29/10

requires the corner intersection property of the input set, we created instances such that the
boundary of every pair of rectangles intersects at most twice. The synthetic datasets consist of
unit-height rectangles with height of 10 pixels placed inside a bounding rectangle B of size 1,080
× 720 pixels, which also creates different densities. The real-world instances use the geographic
feature distributions and the original label texts extracted from the OSM files. Each label of length
l is represented as a 10l × 10-pixel rectangle placed inside the bounding rectangle B. For synthetic
datasets, we sample a label length for each rectangle between 2 and 21 based on the distribution
of word lengths in English.4

Gaussian. In the Gaussian model, we generate center points of n unit-height rectangles ran-
domly in B according to an overlay of three Gaussian distributions, where 70% of the center
points are from the first distribution, 20% from the second one, and 10% from the third one.
The means that they are sampled uniformly at random inB and the standard deviation is 100
in both dimensions. Once each center point is sampled, we sample a label length for it based
on the distribution of word lengths in English. Whenever a new rectangle candidate is gen-
erated, we check if it is inside the bounding box B. Furthermore, we verify if the rectangles
set keeps the corner intersection property after adding this newly generated rectangle. This
process is repeated for each distribution until the number of collected rectangles reaches the
corresponding required number for this distribution.

Uniform. In the uniform model, we generate n unit-height rectangles in B uniformly at
random. To guarantee the corner intersection property, we check each newly generated
rectangle.

Real world. We created six real-world datasets by extracting point features from OSM (see
Table 1 for their detailed properties). To guarantee the corner intersection property of the
instances, we filter the the instances in a post-processing step (see Table 2 for their detailed
properties).

The source code of benchmark instance generator is available at https://dyna-mis.github.io/
dynaMIS/.

5.2 Experimental Results for Unit Squares

Time-quality trade-offs. For our first set of experiments we compare the five implemented
algorithms, including their greedy variants, in terms of update time and size of the computed in-
dependent sets. Figure 8 shows scatter plots of runtime vs. solution size on uniform and Gaussian
benchmarks, where algorithms with dots in the top-left corner perform well in both measures.

We first consider the results for the uniform instances with n = 10,000 squares in the top row of
Figure 8. Each algorithm performed N = 400 updates, either insertions (Figure 8(a)) or deletions
(Figure 8(b)), and each update is shown as one point in the respective color. Both plots show that the
two MIS algorithms compute the best solutions with almost the same size and well ahead of the rest.
The MIS algorithm MIS-ORS is clearly faster than MIS-graph on both insertions and deletions. The
approximation algorithms grid, grid-2, grid-4, and line (without the greedy optimizations) show

4Taken from http://www.ravi.io/language-word-lengths.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://dyna-mis.github.io/dynaMIS/
http://www.ravi.io/language-word-lengths


1.8:22 S. Bhore et al.

Fig. 8. Time-quality scatter plots for synthetic benchmark instances. The x-axis (log-scale) shows runtime,
and the y-axis shows the solution size. We use semi-transparent markers in the scatter plots.

their predicted relative behavior: the better the solution quality, the worse the update times. Algo-
rithms line and g-line show a wide range of update times, spanning almost two orders of magnitude.
Adding the greedy optimization drastically improves the solution quality in all cases but typically
at the cost of higher runtimes. For g-grid-k, the algorithms get slower by an order of magnitude
and increase the solution size by 30% to 50%. For g-grid, the additional runtime is not as significant
(but deletions are slower than insertions), and the solution size almost doubles. Finally, for g-line,
the additional runtime is not as significant and reaches the best quality among the approximation
algorithms with about 90% of the MIS solutions, but faster by one order of magnitude.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:23

Fig. 9. Time-quality scatter plots for the small OSM instances. The x-axis (log-scale) shows runtime. The
y-axis shows the quality ratio compared to an optimal Max-IS solution.

For the results of the Gaussian instances with n = 10,000 squares and N = 400 updates plotted
in Figure 8(c) (insertions) and 8(d) (deletions), we observe the same ranking between the different
algorithms. However, due to the non-uniform distribution of squares, the solution sizes are more
varying, especially for the insertions. For the deletions, it is interesting to see that grid and MIS-

graph have more strongly varying runtimes, which is in contrast to the deletions in the uniform
instance, possibly due to the dependence on the vertex degree. The best solutions are computed by
MIS-ORS and MIS-graph. Regarding the runtime, MIS-ORS has more homogeneous update times
ranging between the extrema of MIS-graph, whereas they are comparably fast for insertions on
average.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:24 S. Bhore et al.

Fig. 10. Time-quality scatter plots for the large OSM instances. The x-axis (log-scale) shows runtime. The
y-axis shows the quality ratio compared to the optimal Max-IS solution size.

Algorithm g-line again reaches nearly 90% of the quality of the MIS algorithms, with a speedup
almost one order of magnitude.

Optimality gaps. Next, let us look at the results of the real-world instances in Figure 9 and in
Figure 10. The first four instances in Figure 9 were small enough so that we could compute each
Max-IS exactly with MaxHS and compare the solutions of the approximation algorithms with the
optimum on the y-axis. The largest two instances in Figure 10 plot the solution size on the y-axis.
First, let us consider Figure 9(c) as a representative, which is based on a data set of 1,788 hotels and
hostels in Switzerland with mixed updates of 10% of the squares (N = 179). Generally speaking,
the results of the different algorithms are much more overlapping in terms of quality than for the
synthetic instances. The plot shows that the MIS algorithms reach consistently between 80% and
85% of the optimum but are sometimes outperformed by the greedy-augmented approaches. Inter-
estingly, g-line, the best of the approximation algorithms with greedy augmentation, contributes
consistently the best solutions. Regarding the runtime, MIS-ORS has generally faster update time
than the MIS-graph approach. The original approximations are well above their respective worst-
case ratios but stay between 45% and 65% of the optimum. The greedy extensions push this toward
larger solutions, at the cost of higher runtimes. However, g-line seems to provide a very good bal-
ance between quality and speed.

Let us next consider the largest OSM instance in Figure 10(b). It again reflects the same findings
as obtained from the smaller instances. The instance consists of n = 4,326 hamlets in Switzerland
with 10% mixed updates (N = 433) and is denser by a factor of about 2.3 than hotels-CH (see
Table 1). There is quite some overlap of the different algorithms in terms of the solution size,
yet the algorithms form the same general ranking pattern as observed before. The approach
g-line contributes the best solutions in most of the rounds. Moreover, regarding the running time,
g-line is again about nearly an order of magnitude faster than the MIS algorithms, except for a
few slower outliers. Comparing the two MIS approaches, MIS-ORS is significantly faster than
MIS-graph.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:25

Fig. 11. Time-quality scatter plots for uniform and Gaussian instances with n = 1,000 squares. The x-axis
(log-scale) shows runtime. The y-axis shows the quality ratio compared to an optimal Max-IS solution.

Finally, Figure 11 shows the optimality ratios of the algorithms for small uniform and Gaussian
instances with n = 1,000 squares. They confirm our earlier observations but also show that for these
small instances, MIS-graph and MIS-ORS are comparable in terms of running time. This is because
the graph size and vertex degrees do not yet influence the running time of MIS-graph strongly. Yet,
as the next experiment shows, this changes drastically, as the instance size grows.

Runtimes. In our last experiment, we explore in more detail the scalability of the algorithms
for larger instances, both relative to each other and in comparison to the recomputation times
of their corresponding static algorithms. We generated 10 random instances with n = 1,000k

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:26 S. Bhore et al.

Fig. 12. Log-log runtime plots (notice the different y-offsets) for dynamic updates and recomputation on
Gaussian instances of size n = 1,000 to 32,000, averaged over n/10 updates. Error bars indicate the standard
deviation.

squares for each k ∈ {1, 2, 4, 8, 16, 32} and measured the average update times over n/10 insertions
or deletions. The results for the Gaussian and uniform model are plotted in Figure 12 and in
Figure 13. Considering the update times, we confirm the observations from the scatter plots
in terms of the performance ranking. The running time of most algorithms grows only very
slowly as the input size grows larger with the notable exception of MIS-graph, but that was to be
expected.

In the comparison with their non-dynamic versions (i.e., recomputing solutions after each up-
date), the dynamic algorithms indeed show a significant speedup in practice, already for small
instance sizes of n = 1,000, and even more so as n grows (notice the different y-offsets). For some
algorithms, including MIS-ORS and g-grid-4, this can be as high as three to four orders of magni-
tude for n = 32,000. This clearly confirms that the investigation of algorithms for dynamic MIS and
Max-IS problems for rectangles is well justified also from a practical point of view.

Discussion. Our experimental evaluation provides several interesting insights into the practical
performance of the different algorithms. For the synthetic instances, both MIS-based algorithms
MIS-graph and MIS-ORS generally showed the best solution quality in the field, reaching 90% of the

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:27

Fig. 13. Log-log runtime plots (notice the different y-offsets) for dynamic updates and recomputation on
uniform instances of size n = 1,000 to 32,000, averaged over n/10 updates. Error bars indicate the standard
deviation.

exact Max-IS size, where we could compare against optimal solutions. This is in strong contrast
to their factor-4 worst-case approximation guarantee of only 25%.

Our algorithm MIS-ORS avoids storing the intersection graph explicitly. Instead, we only store
the relevant geometric information in a dynamic data structure and derive edges on demand. There-
fore, it overcomes the natural barrier of Ω(Δ) vertex update in a dynamic graph, where Δ is the
maximum degree in the graph. Instead, it has to find the intersections using the complex range
query, which takes O (logn log logn) time. We observe that MIS-ORS provides faster update times
than MIS-graph in general and is more scalable. Recall that in our implementation, we used the
dynamic range searching data structure from CGAL, which does not provide the theoretical worst-
case update time of O (logn log logn) from Theorem 4. Exploring how MIS-ORS can benefit from
such a state-of-the-art dynamic data structure in practice remains to be investigated in future work.
Notwithstanding, it remains to state that even with the suboptimal data structure, MIS-ORS was
able to compute its solutions for up to 32,000 squares in less than 1 ms.

An expected observation is that although consistently exceeding their theoretical guarantees,
the approximation algorithms do not perform too well in practice due to their pigeonhole choice

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:28 S. Bhore et al.

Fig. 14. Time-quality scatter plots for synthetic benchmark instances of uniform-height rectangles. The x-
axis (log-scale) shows runtime, and the y-axis shows the solution size.

of too strictly separated subinstances. However, a simple greedy augmentation of the approximate
solutions can boost the solution size significantly, and for some algorithms even to almost that
of the MIS algorithms. Of course, at the same time, this increases the runtime of the algorithms.
We want to point out g-line, the greedy-augmented version of the 2-approximation algorithm line,
as it computes very good solutions, even comparable or better than MIS-ORS and MIS-graph for
the real-world instances, and at 90% of the MIS solutions for the synthetic instances. At the same
time, g-line is still significantly faster than MIS-ORS and MIS-graph and thus turns out to be a

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:29

Fig. 15. Time-quality scatter plots for the small OSM uniform-height rectangle instances. The x-axis (log-
scale) shows runtime. The y-axis shows the quality ratio compared to an optimal Max-IS solution.

well-balanced compromise between time and quality. It is our recommended method if MIS-ORS

or MIS-graph are too slow for an application.

5.3 Experimental Results for Unit-Height Rectangles

In this section, we compare our approaches line and MIS-graph for unit-height rectangles with
the same sets of experiments as in the previous section. Recall that the line approach performs a
greedy Max-IS approach for interval graphs on each stabbing line where the intervals are sorted
with increasing right endpoints. For fairness, we also provide the “greedy” version of MIS-graph

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:30 S. Bhore et al.

Fig. 16. Time-quality scatter plots for the large OSM uniform-height rectangle instances. The x-axis (log-
scale) shows runtime. The y-axis shows the quality ratio compared to the optimal Max-IS solution size.

approach, g-MIS-graph. In the initialization phase, g-MIS-graph sorts the vertices of the conflict
graph by vertex degrees incrementally and builds the MIS greedily by iterating the vertices in this
new order. We expect that this greedy variant would provide larger solutions than MIS-graph and
the same update time as MIS-graph.

Time-quality trade-offs. For our first set of experiments, we compare the line approach with
MIS-graph, including their greedy variants, in terms of update time and size of the computed solu-
tion. Figure 14 shows scatter plots of runtime vs. solution size on uniform and Gaussian rectangle
benchmarks. For each instance with n = 10,000, each algorithm performed 400 updates, either
insertions (Figures 14(a) and 14(c)) or deletions (Figures 14(b) and 14(d)). All plots show that g-
MIS-graph, the greedy variant of MIS-graph, computes the best solutions and well ahead of the
rest. Both greedy variants increase the solution size significantly without significant additional
runtime. Note that g-line is nearly two orders of magnitude faster than graph-based approaches
with about 90% of the MIS solution obtained by g-MIS-graph. It is interesting to see that g-line gets
larger solutions than MIS-graph, which is in contrast to our experimental results for unit squares.

Optimality gaps. Next, we explore our approaches on real-world instances and show the re-
sults in Figures 15 and 16. For small instances, we compute Max-IS exactly with MaxHS at each
round and compare the solution of our presented dynamic approaches with the optimum. These
plots show that g-MIS-graph reaches consistently about 90% of the optimum. In contrast with the
graph-based approaches, algorithms line and g-line show a wider range of optimization ratios. The
original approximations are well above their respective worst-case ratios, namely around 65% and
80%, respectively. The greedy variants of these two approaches push this toward larger solutions
with nearly no additional running time. Note that g-line reaches between 80% and 85% of the op-
timum but faster is by one to two orders of magnitude compared to the graph-based approaches.

Consider the large OSM instances in Figure 16. Here, we also observe a similar pattern as the
one from the smaller instance, except that they show larger variances of solution sizes for each

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:31

Fig. 17. Time-quality scatter plots for uniform and Gaussian instances with n = 1,000 unit-height rectangles.
The x-axis (log-scale) shows runtime. The y-axis shows the quality ratio compared to an optimal Max-IS
solution.

algorithm and MIS-graph and g-MIS-graph get closer to each other in terms of solution size. One
possible reason could be that with the change of input, the ordering of vertices with incremental
vertex degrees is not maintained anymore.

Finally, we also compare the solutions of the approximation approaches with the optimum on
the small uniform and Gaussian instances with n = 1,000 unit-height rectangles (Figure 17). This
confirms our observations from the small OSM instances that g-line provides a very good balance
between quality and computation time.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:32 S. Bhore et al.

Fig. 18. Log-log runtime plots (notice the different y-offsets) for dynamic updates and recomputation on
Gaussian uniform-height rectangle instances of size n = 1,000 to 32,000, averaged over n/10 updates. Error
bars indicate the standard deviation.

Runtimes. In the last experiment, we explore the scalability of our presented approaches, both
relative to each other and in comparison to the recomputing times. For each k ∈ {1, 2, 4, 8, 16, 32},
we generated 10 random instances with 1,000k squares and measured the average update time
over 100k insertion or deletions. The results are plotted in Figures 18 (for Gaussian instances) and
19 (for uniform instances). Note here that since the update procedure of д-MIS-graph is exactly the
same as the MIS-graph approach, we do not include д-MIS-graph explicitly in this set of runtime
experiments.

Considering the update time, the plots confirm the observations we had before. The g-line ap-
proach is nearly as fast as line. The runtime of MIS-graph shows steeper increase as the instance
size increases than the runtime of line and g-line.

In the comparison with non-dynamic versions (i.e., recomputing the solution after each update),
the dynamic approaches show a speedup by at least one order of magnitude.

Discussion. Our experimental results for unit-height and arbitrary-width rectangles confirm
several of our findings obtained in the experiment for unit squares. Moreover, all approaches
are well above their respective approximation ratios. A simple greedy variant of the MIS-graph

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:33

Fig. 19. Log-log runtime plots (notice the different y-offsets) for dynamic updates and recomputation on
uniform-height rectangle instances of size n = 1,000 to 32,000, averaged overn/10 updates. Error bars indicate
the standard deviation.

approach can significantly boost the solution size and provide the best solution quality. Therefore,
if the solution size is then priority, then the д-MIS-graph approach can be chosen. Our greedy
augmented version of line reaches a good balance of solution quality and update time since it is
significantly faster than graph-based approaches and computes very good solutions in practice.

6 CONCLUSION

We investigated the MIS and Max-IS problems on dynamic sets of uniform rectangles and uniform-
height rectangles from an algorithm engineering perspective, providing both theoretical results
for maintaining an MIS or an approximate Max-IS and reporting insights from an experimental
study. Open problems for future work include (i) finding Max-IS sublinear-update-time approx-
imation algorithms for dynamic unit squares with approximation ratio better than 2, (ii) studying
similar questions for dynamic disk graphs, and (iii) implementing improvements such as a faster
dynamic range searching data structure to speed up our algorithm MIS-ORS. Moreover, it would
be interesting to design dynamic approximation schemes for Max-IS that maintain stability in a
solution.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.



1.8:34 S. Bhore et al.

REFERENCES

[1] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna Saha. 2019. Dynamic set

cover: Improved algorithms and lower bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2019, Phoenix, AZ, USA, June 23–26, 2019, Moses Charikar and Edith Cohen (Eds.). ACM, New

York, NY, 114–125. https://doi.org/10.1145/3313276.3316376

[2] Anna Adamaszek and Andreas Wiese. 2013. Approximation schemes for maximum weight independent set of rectan-

gles. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October,

2013, Berkeley, CA, USA. IEEE, Los Alamitos, CA, 400–409. https://doi.org/10.1109/FOCS.2013.50

[3] Pankaj K. Agarwal, Marc Van Kreveld, and Subhash Suri. 1998. Label placement by maximum independent set in

rectangles. Comput. Geom. Theory Appl. 11, 3–4 (1998), 209–218. https://doi.org/10.1016/S0925-7721(98)00028-5

[4] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2019. Fully dynamic maximal independent set

with sublinear in n update time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2019, San Diego, CA, USA, January 6–9, 2019, Timothy M. Chan (Ed.). SIAM, 1919–1936. https://doi.org/10.1137/

1.9781611975482.116

[5] Ken Been, Eli Daiches, and Chee-Keng Yap. 2006. Dynamic map labeling. IEEE Trans. Vis. Comput. Graph. 12, 5 (2006),

773–780. https://doi.org/10.1109/TVCG.2006.136

[6] Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff. 2010. Optimizing active ranges for consistent

dynamic map labeling. Comput. Geom. Theory Appl. 43, 3 (2010), 312–328. https://doi.org/10.1016/j.comgeo.2009.03.006

[7] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu Sudan. 2019. Fully dy-

namic maximal independent set with polylogarithmic update time. In Proceedings of the 60th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2019, Baltimore, MD, USA, November 9–12, 2019, David Zuckerman (Ed.).

IEEE, Los Alamitos, CA, 382–405. https://doi.org/10.1109/FOCS.2019.00032

[8] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A deamortization approach for dynamic spanner

and dynamic maximal matching. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2019, San Diego, CA, USA, January 6–9, 2019, Timothy M. Chan (Ed.). SIAM, 1899–1918. https://doi.org/10.1137/

1.9781611975482.115

[9] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2017. Deterministic fully dynamic approximate

vertex cover and fractional matching in O(1) amortized update time. In Integer Programming and Combinatorial Op-

timization. Lecture Notes in Computer Science, Vol. 10328. Springer, 86–98. https://doi.org/10.1007/978-3-319-59250-

3_8

[10] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai. 2018. Dynamic algo-

rithms for graph coloring. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,

New Orleans, LA, USA, January 7–10, 2018, Artur Czumaj (Ed.). SIAM, 1–20. https://doi.org/10.1137/1.9781611975031.1

[11] Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. 2020. Dynamic geometric independent set. CoRR

abs/2007.08643 (2020). https://arxiv.org/abs/2007.08643.

[12] Parinya Chalermsook and Julia Chuzhoy. 2009. Maximum independent set of rectangles. In Proceedings of the 20th

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4–6, 2009, Claire

Mathieu (Ed.). SIAM, 892–901. https://doi.org/10.1137/1.9781611973068.97

[13] Timothy M. Chan and Sariel Har-Peled. 2012. Approximation algorithms for maximum independent set of pseudo-

disks. Discrete Comput. Geom. 48, 2 (2012), 373–392. https://doi.org/10.1007/s00454-012-9417-5

[14] Timothy M. Chan and Konstantinos Tsakalidis. 2017. Dynamic orthogonal range searching on the RAM, revisited.

In Computational Geometry (SoCG’17) (LIPIcs), Boris Aronov and Matthew J. Katz (Eds.), Vol. 77. Schloss Dagstuhl–

Leibniz-Zentrum für Informatik, Article 28, 13 pages. https://doi.org/10.4230/LIPIcs.SoCG.2017.28

[15] Shiri Chechik and Tianyi Zhang. 2019. Fully dynamic maximal independent set in expected poly-log update time. In

Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, MD, USA,

November 9–12, 2019, David Zuckerman (Ed.). IEEE, Los Alamitos, CA, 370–381. https://doi.org/10.1109/FOCS.2019.

00031

[16] Jon Christensen, Joe Marks, and Stuart M. Shieber. 1995. An empirical study of algorithms for point-feature label

placement. ACM Trans. Graph. 14, 3 (1995), 203–232. https://doi.org/10.1145/212332.212334

[17] Julia Chuzhoy and Alina Ene. 2016. On approximating maximum independent set of rectangles. In Proceedings of the

IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016, Hyatt Regency, New

Brunswick, NJ, USA, Irit Dinur (Ed.). IEEE, Los Alamitos, CA, 820–829. https://doi.org/10.1109/FOCS.2016.92

[18] Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent sets in vertex-arrival streams. In Proceed-

ings of the International Colloquium on Automata, Languages, and Programming (ICALP’19) (LIPIcs), Christel Baier,

Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.), Vol. 132. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, Article 45, 14 pages. https://doi.org/10.4230/LIPIcs.ICALP.2019.45

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1109/FOCS.2013.50
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1109/TVCG.2006.136
https://doi.org/10.1016/j.comgeo.2009.03.006
https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1007/978-3-319-59250-3_8
https://doi.org/10.1137/1.9781611975031.1
https://arxiv.org/abs/2007.08643
https://doi.org/10.1137/1.9781611973068.97
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.4230/LIPIcs.SoCG.2017.28
https://doi.org/10.1109/FOCS.2019.00031
https://doi.org/10.1145/212332.212334
https://doi.org/10.1109/FOCS.2016.92
https://doi.org/10.4230/LIPIcs.ICALP.2019.45


An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling 1.8:35

[19] Mark de Berg and Dirk H. P. Gerrits. 2013. Labeling moving points with a trade-off between label speed and label

overlap. In Algorithms. Lecture Notes in Computer Science, Vol. 8125. Springer, 373–384. https://doi.org/10.1007/978-

3-642-40450-4_32

[20] Hugo A. D. do Nascimento and Peter Eades. 2008. User hints for map labeling. J. Vis. Lang. Comput. 19, 1 (2008), 39–74.

https://doi.org/10.1016/j.jvlc.2006.03.004

[21] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. 1999. Dynamic graph algorithms. In Algorithms and Theory of

Computation Handbook, Mikhail J. Atallah (Ed.). CRC Press, Boca Raton, FL, 1–28.

[22] Thomas Erlebach, Klaus Jansen, and Eike Seidel. 2005. Polynomial-time approximation schemes for geometric inter-

section graphs. SIAM J. Comput. 34, 6 (2005), 1302–1323. https://doi.org/10.1137/s0097539702402676

[23] Michael Formann and Frank Wagner. 1991. A packing problem with applications to lettering of maps. In Proceedings

of the 7th Annual Symposium on Computational Geometry, North Conway, NH, USA, June 10–12, 1991, Robert L. Scot

Drysdale (Ed.). ACM, New York, NY, 281–288. https://doi.org/10.1145/109648.109680

[24] Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. 1981. Optimal packing and covering in the plane are NP-

complete. Inf. Process. Lett. 12, 3 (1981), 133–137. https://doi.org/10.1016/0020-0190(81)90111-3

[25] Edith Gabriel. 2015. Spatio-temporal point pattern analysis and modeling. In Encyclopedia of GIS, Shashi Shekhar, Hui

Xiong, and Xun Zhou (Eds.). Springer, 1–8. https://doi.org/10.1007/978-3-319-23519-6_1646-1

[26] Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu, and Andreas Wiese. 2021. A

3-Approximation Algorithm for Maximum Independent Set of Rectangles. CoRR abs/2106.00623 (2021). https://dblp.

org/rec/conf/soda/GalvezKMMPW22.html?view=bibtex.

[27] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc. 2019. Online matching with

general arrivals. In Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,

Baltimore, MD, USA, November 9–12, 2019, David Zuckerman (Ed.). IEEE, Los Alamitos, CA, 26–37. https://doi.org/10.

1109/FOCS.2019.00011

[28] Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. 2015. Dynamic algorithms for mono-

tonic interval scheduling problem. Theor. Comput. Sci. 562 (2015), 227–242. https://doi.org/10.1016/j.tcs.2014.09.046

[29] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. 2016. Evaluation of labeling strategies for rotating maps. ACM

J. Exp. Algorithmics 21, 1 (2016), Article 1.4, 21 pages. https://doi.org/10.1145/2851493

[30] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. 2016. Consistent labeling of rotating maps. J. Comput. Geom. 7,

1 (2016), 308–331. https://doi.org/10.20382/jocg.v7i1a15

[31] U. I. Gupta, D. T. Lee, and Joseph Y.-T. Leung. 1982. Efficient algorithms for interval graphs and circular-arc graphs.

Networks 12, 4 (1982), 459–467. https://doi.org/10.1002/net.3230120410

[32] Monika Henzinger, Stefan Neumann, and Andreas Wiese. 2020. Dynamic approximate maximum independent set of

intervals, hypercubes and hyperrectangles. In Proceedings of the Symposium on Computational Geometry (SoCG’20)

(LIPIcs), Sergio Cabello and Danny Z. Chen (Eds.), Vol. 164. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Article

51, 14 pages. https://doi.org/10.4230/LIPIcs.SoCG.2020.51

[33] Dorit S. Hochbaum and Wolfgang Maass. 1985. Approximation schemes for covering and packing problems in image

processing and VLSI. J. ACM 32, 1 (1985), 130–136. https://doi.org/10.1145/2455.214106

[34] John E. Hopcroft and Richard M. Karp. 1973. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J.

Comput. 2, 4 (1973), 225–231. https://doi.org/10.1137/0202019

[35] Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations, R. E.

Miller, J. W. Thatcher, and J. D. Bohlinger (Eds.). Springer, 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

[36] Fabian Klute, Guangping Li, Raphael Löffler, Martin Nöllenburg, and Manuela Schmidt. 2019. Exploring semi-

automatic map labeling. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems, SIGSPATIAL 2019, Chicago, IL, USA, November 5–8, 2019, Farnoush Banaei Kashani,

Goce Trajcevski, Ralf Hartmut Güting, Lars Kulik, and Shawn D. Newsam (Eds.). ACM, New York, NY, 13–22.

https://doi.org/10.1145/3347146.3359359

[37] Nathan Linial. 1987. Distributive graph algorithms-global solutions from local data. In Proceedings of the 28th Annual

Symposium on Foundations of Computer Science (FOCS’87). IEEE, Los Alamitos, CA, 331–335. https://doi.org/10.1109/

SFCS.1987.20

[38] Alan M. MacEachren, Anuj R. Jaiswal, Anthony C. Robinson, Scott Pezanowski, Alexander Savelyev, Prasenjit Mitra,

Xiao Zhang, and Justine I. Blanford. 2011. SensePlace2: GeoTwitter analytics support for situational awareness. In

Proceedings of the Conference on Visual Analytics Science and Technology (VAST’11). IEEE, Los Alamitos, CA, 181–190.

[39] Kurt Mehlhorn and Stefan Näher. 1990. Dynamic fractional cascading. Algorithmica 5, 1–4 (1990), 215–241. https:

//doi.org/10.1007/BF01840386

[40] Kurt Mehlhorn and Stefan Näher. 1999. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge

University Press, Cambridge, MA. https://doi.org/10.1145/204865.204889

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://doi.org/10.1007/978-3-642-40450-4_32
https://doi.org/10.1016/j.jvlc.2006.03.004
https://doi.org/10.1137/s0097539702402676
https://doi.org/10.1145/109648.109680
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1007/978-3-319-23519-6_1646-1
https://dblp.org/rec/conf/soda/GalvezKMMPW22.html?view=bibtex
https://doi.org/10.1109/FOCS.2019.00011
https://doi.org/10.1016/j.tcs.2014.09.046
https://doi.org/10.1145/2851493
https://doi.org/10.20382/jocg.v7i1a15
https://doi.org/10.1002/net.3230120410
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.1145/2455.214106
https://doi.org/10.1137/0202019
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3347146.3359359
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1007/BF01840386
https://doi.org/10.1145/204865.204889


1.8:36 S. Bhore et al.

[41] Joseph S. B. Mitchell. 2021. Approximating maximum independent set for rectangles in the plane. CoRR abs/2101.00326

(2021). https://arxiv.org/abs/2101.00326.

[42] Huy N. Nguyen and Krzysztof Onak. 2008. Constant-time approximation algorithms via local improvements. In Pro-

ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS’08). IEEE, Los Alamitos, CA,

327–336. https://doi.org/10.1109/FOCS.2008.81

[43] Panos M. Pardalos and Jue Xue. 1994. The maximum clique problem. J. Glob. Optim. 4, 3 (1994), 301–328. https://doi.

org/10.1007/BF01098364

[44] Maxim A. Rylov and Andreas W. Reimer. 2014. A comprehensive multi-criteria model for high cartographic quality

point-feature label placement. Cartogr. Int. J. Geogr. Inf. Geovisualization 49, 1 (2014), 52–68. https://doi.org/10.3138/

carto.49.1.2137

[45] Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. 2008. Efficient traversal of mesh edges using

adjacency primitives. ACM Trans. Graph. 27, 5 (2008), 144. https://doi.org/10.1145/1409060.1409097

[46] Dennis Thom, Harald Bosch, Steffen Koch, Michael Wörner, and Thomas Ertl. 2012. Spatiotemporal anomaly detection

through visual analysis of geolocated Twitter messages. In Proceedings of the 2012 Pacific Visualization Symposium

(PacificVis’12). IEEE, Los Alamitos, CA, 41–48.

[47] René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. 2015. Interval scheduling and colorful inde-

pendent sets. J. Sched. 18, 5 (2015), 449–469. https://doi.org/10.1007/s10951-014-0398-5

[48] Marc J. van Kreveld, Tycho Strijk, and Alexander Wolff. 1998. Point set labeling with sliding labels. In Proceedings of

the 14th Annual Symposium on Computational Geometry, Minneapolis, MN, USA, June 7–10, 1998, Ravi Janardan (Ed.).

ACM, New York, NY, 337–346. https://doi.org/10.1145/276884.276922

[49] Frank Wagner and Alexander Wolff. 1997. A practical map labeling algorithm. Comput. Geom. 7 (1997), 387–404. https:

//doi.org/10.1016/S0925-7721(96)00007-7

[50] Dan E. Willard and George S. Lueker. 1985. Adding range restriction capability to dynamic data structures. J. ACM

32, 3 (1985), 597–617. https://doi.org/10.1145/3828.3839

[51] David Zuckerman. 2007. Linear degree extractors and the inapproximability of max clique and chromatic number.

Theory Comput. 3, 1 (2007), 103–128. https://doi.org/10.4086/toc.2007.v003a006

Received October 2020; revised August 2021; accepted January 2022

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.8. Publication date: July 2022.

https://arxiv.org/abs/2101.00326
https://doi.org/10.1109/FOCS.2008.81
https://doi.org/10.1007/BF01098364
https://doi.org/10.3138/carto.49.1.2137
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.1007/s10951-014-0398-5
https://doi.org/10.1145/276884.276922
https://doi.org/10.1016/S0925-7721(96)00007-7
https://doi.org/10.1145/3828.3839
https://doi.org/10.4086/toc.2007.v003a006

