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Kurzfassung

Die Verwendung von Neural Networks, Support Vector Machines und Gradient Boosting
Models ist den letzten 10 Jahren rasant gestiegen. Vor allem in kritischen Bereichen wie
der Medizin oder dem Kreditrisikomanagement ist die Nachvollziehbarkeit und Verständ-
lichkeit der Entscheidungen solcher sogenannten Black Box Modelle ein entscheidender
und wesentlicher Punkt.
Die meisten Modelle werden anhand historischer Daten trainiert. Da sich die Verteilung
der gesammelten Daten allerdings über die Zeit ändern kann, muss das Modell erneut
trainiert und damit aktualisiert werden. Der Vergleich der unterschiedlichen Versionen
solcher Modelle kann beim Erkennen von solchen Concept Drifts hilfreich sein.
DiRo2C (Difference Recognition of 2 Classifiers) zielt darauf ab, Entscheidungsunter-
schiede zweier Black Box Modelle lokal, also für einen bestimmten Datenpunkt, zu
erkennen und zu lernen. Mithilfe eines genetischen Algorithmus wird ein synthetischer
Datensatz generiert, der aus ähnlichen Datenpunkten und den entsprechenden Entschei-
dungen der Black Box Modelle besteht. Auf diesem synthetischen Datensatz wird im
nächsten Schritt ein Decision Tree trainiert, um die Entscheidungsunterschiede zu lernen
und in weiterer Folge zu erklären. Das Ziel dieser Diplomarbeit ist die global erklärbare
künstliche Intelligenz, geschaffen durch mehrere lokale Erklärungen in Bezug auf Entschei-
dungsunterschiede zwischen zwei Black Box Klassifizierungsmodellen. Wir präsentieren
Möglichkeiten, globale Erklärungen durch DiRo2Cs lokale Erklärungsansätze zu erzeugen.
Darüberhinaus werden Strategien vorgestellt, um die generierten Erklärungen zu präsen-
tieren und kommunizieren. Experimente haben gezeigt, dass ein ’Lokal zu Global’ Ansatz
mit Clustering Konzepten, um eine Beschreibung der Entscheidungsunterschiede zweier
Black Box Modelle zu generieren, eine ähnliche Leistung wie ein auf dem ursprünglichen
Datensatz trainierter Decision Tree erzielt und gleichzeitig die Komplexität des Erklärers
reduziert.
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Abstract

The use of neural networks, support vector machines and gradient boosting models,
among others, has increased significantly in the past 10 years. Especially in crucial
areas, the understanding and traceability of the decisions of such black box models is of
fundamental interest.
Most models are trained on the basis of historical data at a specific point in time. However,
the distribution of measured data may change over time and hence the model has to be
updated. Comparing different versions of models to detect decision differences supports
detecting such concept drifts.
DiRo2C (Difference Recognition of 2 Classifiers) aims at recognizing decision differences
locally, that is for a specific instance, between two black box classifiers using a modified
genetic algorithm to create a synthetic dataset, consisting of data points similar to the to
be explained instance and the corresponding decisions of the two black box classifiers. On
this synthetic dataset a decision tree is trained to learn and explain decision differences.
The main focus of this thesis is the problem of global explainable artificial intelligence
through local explainers in the setting of difference recognition of two black box classifiers.
We propose approaches to derive global explanations using concepts of local explanation
generation of DiRo2C in addition to accompanying strategies to communicate those
explanations. Experiments show that a ’Local to Global’ approach using clustering
concepts to derive a description of the characteristics of the decision differences of the
black box models, yields similar performance to a decision tree trained on the original
dataset while reducing the complexity of the explainer.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Machine Learning has made its way into our daily lives, providing automated decisions
having a great impact on the future. Especially black box models, such as Neural
Networks, Support Vector Machines and gradient boosting models, have shown great
performance in many complex tasks. However, decisions made by such black box models
lack of traceability and understanding [10, 5, 16]. Many model-agnostic methods, that is
independently of the model or its internals, have been proposed to explain the decisions
of single black box models either globally, to describe the average behavior of the model,
or locally for a single instance [27, 7, 28, 22].

The learning of models is based on historical data at a specific point in time and
outcomes provided by domain experts. However, the distribution of measured data may
change over time and hence the model has to be updated [37]. Comparing different
versions of models to detect decision differences support detecting such concept drifts. In
another scenario, one might be interested in comparing two black box models trained on
the same underlying data or comparing two different Machine Learning models.
DiRo2C (Difference Recognition of 2 Classifiers) [31] aims at recognizing decision dif-
ferences locally between two black box classifiers. This is achieved by adaption of the
LORE (LOcal Rule-based Explanations) approach by Guidotti et al. [7], a model-agnostic
method to provide local interpretable explanations. DiRo2C uses a modified genetic
algorithm to create a synthetic dataset, consisting of similar data points to the to be
explained instance and the corresponding decisions of the two black box classifiers. On
this synthetic dataset, a decision tree is trained to learn decision differences. This thesis
will focus on two main enhancements of DiRo2C which will be introduced and discussed
in the following.
The first part of the thesis deals with the problem of global explainable artificial intelli-
gence through local explainers in the setting of difference recognition of two black box
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1. Introduction

classifiers.
One approach to capture global patterns of decision differences is to make use of local
explanation generation strategies. By combining several synthetic datasets generated for
specific instances, for which decision differences are to be explained, a global synthetic
dataset can be obtained. On the basis of this global synthetic dataset, a (global) decision
tree can be trained [31]. However, it is not clear which and how many instances to select.
Too few instances might not result in sufficient global explanations in terms of difference
detection accuracy. On the contrary, too many instances increase the complexity since
the synthetic dataset has to be generated for each of them.
Research question 1: To what extent can the performance of global explanations in
terms of difference detection accuracy be improved by advanced data synthesis approaches?

In case of complex or highly non-linear decision boundaries or simply many disjoint areas
of decision differences, a single local explainer might become too complex to comprehend
areas of decision differences. Another approach to describe the overall logic of the models
is to use multiple local explanations in combination with clustering strategies.
A Self-organizing map is used to understand how different clusters of input data are
distributed through input space or how an outcome variable changes across this dataset.
This concept applied to data in the setting of difference detection recognition yields a
structured dataset consisting of clusters with similar instances. For each cluster, a local
explanation can be obtained. Furthermore, for each local explainer, the decision level
can be projected onto two dimensions and hence visualised with the help of SOMs.
Research question 2: To what extent can the explanation obtained from a structured
combination of local explanations compete with or outperform a single global explanation
in terms of difference detection accuracy and complexity?

The third research questions focuses on the communication of explanations. In the
following, we consider two k-class black box classifiers. We obtain k2 combinations of
class predictions of the two black box classifiers as response for the (global) difference
detection classifier and hence increased complexity of the explaining tree.
Research question 3: What is an effective way of communicating decision differences
of two multi-class black box classifiers?

1.2 Structure of the Work
Chapter 2 presents a brief introduction to explainability of single black box models,
introduces core principles of DiRo2C and works as a theoretical foundation for the thesis.
Additionally, an overview of concepts used in this thesis is provided.
The remainder of the thesis is divided into two main parts:

From Local to Global Section 3.1 presents concepts used in this section. In Section
3.2, approaches to obtain a global explanation from multiple local explanations are
introduced. The results are presented and discussed in Section 3.4.

2



1.2. Structure of the Work

Communication of decision differences in multi-class setting Chapter 4 covers
research question 3 by describing the process on how to analyze possible decision
differences including approaches to present high-dimensional classification results
and argumentative evaluation.
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CHAPTER 2
Explainability of Black Box

Models and DiRo2C

2.1 Terminology and Definitions
Biran and Cotton [2] define systems as interpretable ’if their operations can be understood
by a human, either through introspection or through a produced explanation’. Based
on this definition, Miller [20] defines interpretability of a model as ’the degree to which
an observer can understand the cause of a decision’. Similarly, Guidotti et al. [8] define
interpretability of a black box ’as the ability to explain or to provide the meaning
in understandable terms to a human’. Moreover, whether a model is interpretable is
dependent on the user seeking understanding of the model’s internals or decisions [27].

2.1.1 Dimensions and Taxonomy of Interpretability
The domain of interpretable machine learning can be subdivided based on a variety of
properties: a model may be interpretable by design (transparent box design problem),
such as simple decision trees, rules, or linear models, or explanations can be provided
after model training (post-hoc, black box explanation problem) [8, 1, 4].
Post-hoc methods can further be subdivided into three main categories of problems:
model explanation, outcome explanation, and model inspection. The aim of model
explanations is to provide an overall understanding of the logic of the black box model
[8] to prevent incorrect decisions by a black box caused by biases in the training data or
introduced by the model [24]. On the contrary, the outcome explanation problem focuses
on a specific data point and the corresponding black box decision. The model inspection
problem aims at understanding a specific property of the model, such as the effect of
changes to an attribute [8].
Post-hoc methods are often independent from the model [4] which is another way of
distinction of explanation systems: model-agnostic vs. model-specific. Model-agnostic
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2. Explainability of Black Box Models and DiRo2C

approaches can be applied to any black box whereas model-specific approaches are tied
to specific model classes [4, 8]. Another important distinction is based on the scope of
interpretability. A global explanation describes the average behavior of the model and
focuses on how the overall logic of the black box works [8]. On the contrary, a local
interpretability method provides explanations for a single instance [1, 8].

2.1.2 Definitions
A classifier is defined as a function M : X m → Y that maps m-tuples x, referred to as
instances, of the input space X m to decisions y in the target space Y [7]. A decision y
by the classifier M for an instance x ∈ X m is denoted as M(x) = y. Throughout this
work, M is considered to be a black box model, for example Neural Networks, SVMs
and ensemble classifiers [8].
An explanation is e is a decision rule r = P → y, describing the reasons for the decision
y using a set of premises in conjunctive form P = {p1, . . . , ps}. A set of explanations is
denoted as explanation theory E = {e1, . . . , eq} [29, 7].

2.1.3 Decision Differences
In the following, we consider two k-class black box classifiers, MA and MB, trained on
datasets A and B, respectively. Hence, there are k · k possible combinations of class
predictions as visualized in Figure 2.1 for k = 2 and in Figure 2.2 for k = 3.

2.1.4 Running Examples
All concepts throughout this thesis are visualized using two-dimensional synthetically
generated datasets1 as shown in Figure 2.1 and Figure 2.2.
For the first running example (Sine), the decision boundaries f1 and f2 of the two black
boxes MA and MB are emulated by two sine functions defined as follows:

f1(x) := 4 · sin(x)

f2(x) := sin(x)
x

∀x ∈ R\{0} and f2(0) := 1
(2.1)

Based on these functions the classifier for an instance x = (x1, x2) ∈ R2 are defined:

MA(x) =
�

1, x2 > f1(x1)
0, x2 ≤ f1(x1)

MB(x) =
�

1, x2 > f2(x1)
0, x2 ≤ f2(x1)

(2.2)

where x = (x1, x2) ∈ R2 denotes an instance to be classified. 1000 data points were
sampled from two bivariate normal distributions with centers µ1 = (−5, 0) and µ2 = (5, 0)

1Generating code and data available at https://github.com/jrckln/DiRo2CLocaltoGlobal
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2.2. DiRo2C

Figure 2.1: Decision differences: Sine running example

and covariance-matrices Σi =


4 0
0 4


, i = 1, 2.

The second running example (Spiral) consisting of 1000 instances was generated with
3 classes. Support Vector Machine models with radial basis function kernel and linear
kernel are used as black box models MA and MB, respectively.

2.2 DiRo2C
DiRo2C [31] aims at recognizing decision differences locally between two black box
classifiers. This is achieved by adaption of the LORE approach [7]. LORE is a model-
agnostic method to provide local interpretable explanations for a single black box. Given a
black box M and an instance x for which decisions are to be explained, a local explanation
is obtained from a decision tree trained on a generated dataset of similar instances. The
strength of LORE lies in the generation of similar instances by making use of the concepts
of genetic algorithms to focus on the decision boundaries in the vicinity of the to be

7



2. Explainability of Black Box Models and DiRo2C

Figure 2.2: Decision differences: Spiral running example

explained instance x [7]. The decision surface of the explainer of each black box model
for both running examples are shown in Figure 2.3 and Figure 2.4. In the proximity of
the marked instance to be explained, the decision boundaries of the black boxes are well
approximated by the explainer which can be seen especially for the sine running example.

DiRo2C extends this concept to decision differences between two black box classifiers. In
order to explain differences in decisions of the k-class black boxes, DiRo2C maps these
to a two-class (decision differences vs. no decision differences) or a k · k-class problem.
The concepts of LORE are then used to explain the reasons for the assignment into
these classes: a decision tree is trained to solve the two-class or a k · k-class problem as
interpretable surrogate model. DiRo2C uses a modified genetic algorithm to create a
synthetic dataset, consisting of similar data points to the instance for which decision
differences are to be explained and the corresponding decisions of the two black box
classifiers as basis for the decision tree.
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2.2. DiRo2C

(a) Model A (b) Model B

Figure 2.3: Sine running example: decision surface and generated training data for the
explainer by LORE

(a) Model A (b) Model B

Figure 2.4: Spiral running example: decision surface and generated training data for the
explainer by LORE
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2. Explainability of Black Box Models and DiRo2C

2.2.1 Neighborhood Generation
The goal of the neighborhood generation process is to create a set of instances with
similar properties as the instance for which decision differences are to be explained in
order to approximate local decision differences [7]. In the following, the core components
of genetic algorithms adapted to DiRo2C are presented and discussed.

Fitness function The modified genetic neighborhood of DiRo2C consists of a set of
instances Z= with concordant decisions of MA and MB as well as a set of instances Z ̸=
with different decisions of MA and MB to generate a class-balanced difference detection
dataset. This is achieved by a separate modified fitness function for each set of instances
that score these instances. The fitness functions of a data point z ∈ X m in the process of
explaining decision differences for an instance x ∈ X m are defined as given in Equations
(2.3, 2.4) [31] where d(v, w) denotes the distance between two data points v, w ∈ X m

using a distance function d : X m × X m → [0, 1] and I denotes the Indicator function.

fitnessx
=(z) = IMA(z)=MB(z) + 1 − d(x,z) − Ix=z (2.3)

fitnessx
̸=(z) = IMA(z) ̸=MB(z) + 1 − d(x,z) − Ix=z (2.4)

Equation (2.3) favors instances z similar, but not equal to x, for which both black box
models MA and MB predict the same class. On the contrary, equation (2.4) presents
a fitness function which scores instances z similar, but not equal to x, high for which
decisions of the black box models are different [7, 31]. For continuous features, normalized
Euclidean distance and for categorical features, Simple Match distance is used. The
distance between two data points is then defined as the weighted sum of both distances.

Selection The selection operator selects a subset of the current population. Individual
instances are chosen probabilistically by assigning a probability proportional to their
fitness, measured by the respective fitness function. Therefore, instances with higher
fitness have a higher probability to be selected [3, p. 65]. LORE as well as DiRo2C use
tournament selection2 where l times the best instance is selected from a set of k randomly
chosen instances from the parent population [3, p. 181].

Mutation and Crossover Subsequent to the selection phase, the genetic operators
mutation and crossover are applied to the selected instances in order to produce offsprings
[3, p. 65]. LORE and DiRo2C use a two-point crossover operator that randomly chooses
two features and swaps the feature values of the parents. Crossover is applied to a
fraction of the new population, controlled by a probability pc. A proportion pm of the
current population is then mutated by randomly replacing feature values according to
the empirical distribution of the feature determined using the training data [7, 31].

The steps to obtain the synthetic dataset are presented in Algorithm 1.
2https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.

selTournament
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2.2. DiRo2C

Algorithm 1 Modified Genetic Neighborhood Generation of DiRo2C
Input

x Instance for which decision differences are to be explained
f Fitness function
MA Black-box model A
MB Black-box model B
n Population size
ngen Number of generations
pc Fraction of the population for which crossover is applied
pm Fraction of the population for which mutation is applied

Output
Z ∈ X m Neighborhood

P0[k] ← x, k = 1 . . . n
evaluate(P0, f, MA, MB)
for i = 1 to n do

Pi+1 ← select(Pi)
P

′
i+1 ← crossover(Pi+1, pc)

P
′′
i+1 ← mutate(P ′

i+1, pm)
evaluate(P ′′

i+1, f, MA, MB)
Pi+1 ← P

′′
i+1

end for
Z ← Pi+1
return Z

2.2.2 Learning decision differences

For an instance x, two black box models MA and MB and a pre-specified population size
n, DiRo2C builds the modified genetic neighborhood as presented in Algorithm 1 using
the equality fitness function given in Equation (2.3), favoring instances with matching
predictions of MA and MB . This process is repeated for the second fitness function given
in Equation (2.4) focusing on instances with differences in predictions of MA and MB.
The generated neighborhoods are visualized separately for Z= and Z ̸= in Figure 2.5a
for Sine running example and Figure 2.5b for Spiral running example. For Sine running
example, the closest non-linear decision boundary to the left of the marked instance is
correctly emulated by synthetic instances of Z ̸=. This can also be observed for the spiral
running example for the closest non-linear decision boundary of model B as well as the
linear decision boundary of model A below the marked instance.
The genetic neighborhoods Z= and Z ̸= are combined in a next step and duplicates are
dropped which no longer guarantees a class-balanced dataset.
To generate the difference detection dataset, the classifier decision of the instances from
the combined modified genetic neighborhoods are obtained both from MA and MB and
compared. To generate the labels of the outcome two concepts are considered. First, the

11



2. Explainability of Black Box Models and DiRo2C

(a) Sine running example (b) Spiral running example

Figure 2.5: DiRo2C’s generated neighborhood separately for each fitness function

two classes difference and no difference in predictions of MA and MB are used as labels.
As a second approach, all k · k combinations of class predictions of the two classifiers are
considered as labels for the response. Based on the generated difference detection dataset,
a decision tree is trained to learn and explain decision differences [31]. Figure 2.6a and
Figure 2.6b show the decision surfaces of the local explainers in addition to the synthetic
neighborhood used for the explainer generated by DiRo2C. The explaining models are
shown in Figure 2.7a and Figure 2.7b. The decision trees shown were pre-pruned to
reduce complexity and enhance readability.
For the Sine running example, the local explainer is a good linear approximation of
the boundaries of the decision difference regions in the proximity of the instance to be
explained. According to the explainer for negative x2, model A predicting class 1 and
model B predicting class 0 are the only possible decision differences (first split, see Figure
2.7a). More precisely, this is the case for x2 > −2.226 and x1 > −2.846 as follows from
the path node #0 - node #1 - node #3 - node #5. The explainer of the Spiral running
example predicts decision differences using three rules:

• x2 ≤ 0.007 ∧ x2 ≤ −2.226 ∧ x1 > −2.846 (path: node #0 - node #1 - node #3 -
node #5)

• x2 > 0.007 ∧ x1 ≤ −3.557 ∧ x1 > −5.903 (path: node #0 - node #6 - node #7 -
node #9)

• x2 > 0.007 ∧ x1 > −3.557 ∧ x1 > 6.797 (path: node #0 - node #6 - node #10 -
node #12)

Figure 2.8a and Figure 2.8b visualizing the correctness of the explainers’ prediction across
the input-space, clearly show that DiRo2C is a local explanation generation framework
since many areas of actual decision differences are missed or incorrectly predicted. In
case one seeks a global explanation, the rules produced by DiRo2C are too inaccurate at
further distance from the instance being explained.
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2.2. DiRo2C

(a) Sine running example (b) Spiral running example

Figure 2.6: Decision surface and training data of the local explainer for decision differences
of the marked instance

(a) Sine running example (b) Spiral running example

Figure 2.7: Explainer for local decision differences in the proximity of the marked instance

13



2. Explainability of Black Box Models and DiRo2C

Algorithm 2 Procedure of DiRo2C using a modified genetic neighborhood
Input

x Instance for which decision differences are to be explained
MA Black box model A
MB Black box model B
n Population size

Output
dc Difference Classifier
Zd ∈ X mCombined neighborhood of black box A and B and decision difference as

target
ngen ← 10
pc ← 0.5
pm ← 0.2
Z= ← Genetic Neighborhood using (x, fitnessx

=, MA, MB, n
2 , ngen, pc, pm)

Z ̸= ← Genetic Neighborhood using (x, fitnessx
̸=, MA, MB, n

2 , ngen, pc, pm)
Z ← Z= ∪ Z ̸=
Zd ← Build difference detection dataset using (MA, MB, Z)
dc ← Train decision tree using Zd

return dc, Zd

(a) Sine running example (b) Spiral running example

Figure 2.8: Correctness of the explainers’ prediction
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CHAPTER 3
From Local to Global

The following part deals with the problem of global explainable artificial intelligence
through local explanation approaches in the setting of difference recognition of two black
box classifiers.
In Section 3.1, a review of existing literature on deriving global explanations from local
approaches are presented, followed by the introduction of main concepts used in this
thesis. Thereafter, bottom-up approaches to obtain global explanations in the setting of
decision difference detection between two black box classifiers are proposed and evaluated
by means of the running examples in Section 3.2. The proposed approaches are evaluated
by means of benchmark datasets frequently used in literature. Experiments are described
in Section 3.3 and results are presented in Section 3.4.

3.1 Background and Related work
In this section, results from a literature review of local-to-global techniques in the domain
of classification explainability are presented and core concepts used in the first part From
Local to Global of this thesis are formally introduced.

3.1.1 Local-to-Global Framework
Pedreschi et al. [24] proposed the local-to-global framework for black box explanations
based on the following three assumptions:

Logic explanations Explanations should be based on logic

Local explanations The decision boundary of the black box model in the proximity
of the instance to be explained can be approximated by a simple and explainable
model

15



3. From Local to Global

Explanation composition Similar instances have similar explanations which can be
generalized

According to this framework, at first a local step is conducted that provides an explanation
(and ideally also a counterfactual) of why the black box assigned a specific class for
any instance of the training dataset. The subsequent local-to-global step consists of
an iterative composition and generalization of all available local explanations for each
instance of the training dataset, optimizing simplicity and fidelity [24].
GLocalX, based on the local-to-global framework, uses a set of logical rules representing
multiple local explanations to infer global explanations. Local explanations are aggregated
by hierarchically merging them into a global explanation, accounting for fidelity and
accuracy [29].

3.1.2 Self-Organizing Maps
For RQ 2, we aim for multiple local explanations that apply for different parts of the
feature space. Apart from the data structuring task, also for various visualizations of
high-dimensional data Self-organizing maps are used due to their topology-preserving
projections. While Principle Component Analysis provides a simple approach to this
task, SOMs allow for a more sophisticated and non-linear projection.
Self-organizing maps, introduced by Kohonen [13], are Neural Networks used mainly
for clustering and dimensionality reduction. The basis of a SOM is a pre-defined low-
dimensional lattice of nodes arranged as a rectangle or hexagon. The input space is
projected onto the lattice in a topology preserving fashion that can be utilized to visualize
the high-dimensional input data [35, 9].
SOMs consist of an input and an output layer but no hidden layers. The output layer is
organized as a low- dimensional (usually one- or two-dimensional) lattice in rectangular
or hexagonal formation. SOMs are completely connected, that is every node in the input
layer is connected to every node in the output layer. Each connection is associated with
a weight [14].
The formation of SOMs is based on three processes [9, 11]:

1. Competition: For each input sample, the neurons in the output layer compete with
each other for the best representation measured by a discriminant function. The
winner of the competition is the neuron with the largest value of the discriminant
function.

2. Cooperation: The winning neuron forms the center of the topological neighbor-
hood of cooperating neurons.

3. Adaptation: The neurons in the neighborhood learn by adapting their weights to
achieve a higher value of the discriminant function.

Competition Let x ∈ X (m) denote a random instance of the input data and wj ∈ Rm

the weight of the output node lj . The weights wj , j = 1, ... . . . , k with k denoting the
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number of nodes in the output layer, are initialized either randomly or systematically.
The number of nodes strongly influences generalization capabilities and performance of
SOMs [35]. Kohonen [13] suggests to use 5 · √

n nodes. The node or neuron lι(x) that
best matches the input instance x is defined as the node that minimizes the euclidean
distance between x and wj :

ι(x) = arg min
j

||x − wj ||, j = 1, . . . , k (3.1)

The neuron that satisfies Equation (3.1) is called best-matching unit or winning neuron.
It forms the center of the topological neighborhood of cooperating neurons [9, 12].

Cooperation Around the winning neuron lι, a topological neighborhood comprising
cooperating neurons lj at time t is defined [11]. The topological neighborhood function
hj,i has to meet the following requirements [9]:

1. The topological neighborhood function should be symmetric around the winning
neuron and the maximum should be attained by the winning neuron lι.

2. As the distance between two nodes lj and li increases, the topological neighborhood
function hj,i should decrease.

An example for a topological neighborhood function fulfilling these requirements is the
Gaussian function [9, 11]:

hj,ι(t) = exp


− d2
j,ι

2σ(t)2


, j = 1, . . . , k (3.2)

In Equation (3.2), dj,ι denotes the lateral distance of the winning neuron lι and the
excited neuron lj defined by dj,ι = ||lj − lι||. The parameter σ is the effective width [9] or
the radius of the topological neighborhood at time t [11]. An essential feature of SOMs
is the dependence of the size of the neighborhood on time by utilization of exponential
decay:

σ(t) = σ0 exp


− t

τ1


, t = 0, 1, . . . (3.3)

where σ0 is the value at initialization and τ1 a time constant [9].

Adaptation The weights wj of the neuron are updated according to the update rule
given in Equation (3.4).

wj(t + 1) = wj(t) + α(t)hj,ι (x(t) − wj(t)) (3.4)

The learning rate α(t) ∈ [0, 1] controls the magnitude of change in weights and also
decreases as a function of time t [11, 12].
The fitting process of SOMs with randomly initialized weights is visualized in Figure 3.1
for the Sine running example.
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Figure 3.1: Training of SOM per iteration for the Sine running example

Quality Measures

Quantization Error The Quantization Error EQ is defined as the average distance of
the instances and the corresponding nearest nodes of the SOM [13] and measures how
well the map fits the data [26]:

EQ =
n�

i=1
∥xi − wc∥2 where c = arg min

j
∥x − wj∥, j = 1, . . . , k (3.5)

Topographic Error The Topographic Error measures how well the map preserves the
topology of the data [26]. It is defined as the proportion of instances where the BMU
lι(x) and the second best matching unit lι2(x) are adjacent nodes:

ET = 1
n

n�
i=1

I lι(x) and lι2(x) are neighbors (3.6)
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Visualisation and Clustering

Numerous methods have been proposed to visualize SOMs mainly to reveal cluster
boundaries. The most common method is called unified distance matrix (U-Matrix, [33])
and uses the distance of the neighboring weight vectors depicted in a grayscale image
to evaluate the similarity of the neighbors [18]. This technique has been extended to a
combination of distance and density information by U∗-Matrix technique [32]. Other
visualizations rely on the distribution of the underlying data. Hit-histograms show the
number of instances for each node with the node as BMU [18]. An overview of possible
visualization techniques is given by Vesanto [34]. In the following visualizations each
SOM node is colored according to the most frequent occurring label in the set of instances
with the respective node as BMU.

3.2 Bottom-up Approaches for Global Explanations
To capture global patterns of decision differences, multiple approaches are considered. In
contrast to existing literature, the local-to-global step used in this thesis does not merge
the rules of multiple local explanations but rather makes use of the data that was gener-
ated to extract rule-based explanations. All approaches described in the following (apart
from the Baseline) use multiple independently with DiRo2C generated neighborhoods
of pre-specified instances. The neighborhoods are either combined to a global dataset
serving as training data for a global explanation model (Approach 1-3), or the data is
structured into clusters and a local explanation is provided for each cluster (Approach 4).
In this section, the following four bottom-up approaches for global explanations are
introduced and compared to the Baseline approach by means of the running examples.

Approach 1: Random sampling
Approach 2: Class-stratified sampling
Approach 3: Cluster-stratified sampling
Approach 4: Structured sampling

This part of the thesis focuses solely on the performance of the approaches to detect
decision differences. The decision differences of the constructed running examples are
overrepresented in the dataset as compared to real world examples on the one hand
and, on the other hand, the corresponding decision boundaries are highly non-linear and
therefore complex to approximate by a decision tree. For this reason, to explain the
decision differences present in the running examples, longer rules are needed to accurately
describe the location of decision differences which might not be easily comprehensible
anymore. Therefore, obtained explanations are not presented and discussed in this
chapter. The resulting explainer and derived rules are the focus of Chapter 4.

Approach 0: Baseline To capture the whole available input-space, all available data
is used to train an explaining model. Figure 3.2 shows the decision surfaces of the
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explainers of a pure global approach (Baseline) for the Sine and Spiral running example
and the training data used for the decision tree.
Although the main areas of decision differences are overall correctly recognized by the
global explainer, the decision tree fails to predict the correct decision difference class in
areas with a low number of instances. Examples for such areas are marked in Figure
3.2. For the Spiral running example, this is especially the case at the outer area of the
input-space.

(a) Sine running example (b) Spiral running example

Figure 3.2: Baseline (Approach 0): Decision surfaces of explainers and corresponding
training data of a pure global approach

Approach 1: Random sampling DiRo2C’s strength lies in the neighborhood gen-
eration process that focuses on the boundaries between decisions. To make use of this
property, a neighborhood might be generated for all available instances of the input
data. However, since this process is time-consuming and would additionally result in
redundant information, a straightforward way to reduce the number of instances is to
randomly sample N instances from the underlying dataset. For each of these instances,
a genetic neighborhood is generated using DiRo2C’s neighborhood generation process.
The neighborhoods are concatenated in a next step to a global synthetic dataset and
decision differences are determined. This dataset is then used as a basis for a decision
tree acting as a global explainer.
Figure 3.3 shows the generated synthetic neighborhoods of randomly sampled instances
and the explainers’ decision surface for both running examples. Compared to the Baseline
explainers, random sampling of instances and DiRo2C’s neighborhood generation already
improves the detection of differences especially in the areas with a low number of training
instances for the Baseline as can be seen for example for the Sine running example. For
x1 ≤ −10 and x2 > 0, the Baseline explainer missed this area of decision differences
almost completely, whereas due to the neighborhood generation process, this part is
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(a.a) Generated neighborhoods (a.b) Decision surface of explainer

(a) Sine running example

(b.a) Generated neighborhoods (b.b) Decision surface of explainer

(b) Spiral running example

Figure 3.3: Approach 1: Random sampling
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covered by synthetic data points.
For the Sine running example, three instances were sampled in the near proximity of each
other resulting in unnecessarily overlapping neighborhoods and hence no information
gain. In Figure 3.3b.a of the Spiral running example, it can be seen that the area for
x1 > 0.6 is not covered by any instance resulting in poor decision boundaries of the
explaining decision tree as shown in Figure 3.3b.b. This is also the case for the Sine
running example for negative x1 and negative x2.

Approach 2: Class-stratified sampling Randomly sampled instances may be
unevenly distributed across the input-space. To ensure that every decision difference
label is tackled, each instance of the underlying dataset is classified using the black box
models MA and MB and decision differences are determined. For each of the resulting
k · k classes of possible decision differences max(1, ⌊ N

k·k ⌋) instances are randomly sampled
and a neighborhood is generated via DiRo2C for each instance. The neighborhoods are
again concatenated and a decision tree is trained to learn decision differences.
Stratified sampling of instances clearly improves in the issue of unevenly distribution
of the random sampling approach. In Figure 3.4a.a showing the Sine running example,
sampled instances are more evenly distributed across the input space, however disjoint
subregions of areas of decision differences are still missed, for example the area marked
in the Figure.
For the Spiral running example boundaries of MA|MB : 1|0 and 2|0 are already sufficiently
recognized by the explainer due to the sampled instances within this regions and the
generated neighborhoods (Figure 3.4b.b). In contrast to random sampling, class stratified
sampling ensures at least one sampled instance per decision difference class, hence also
a sampled instance within the region of MA|MB : 0|1 and therefore more accurate and
fine-granular approximations of the boundaries as compared to the random sampling
approach where no instance was sampled within this region.

Approach 3: Cluster-stratified sampling In contrast to the Spiral running exam-
ple, for the Sine running example the set of instances of certain combinations of black
box predictions is not fully connected but partitioned into multiple regions. The main
intuition of this approach is to select at least one instance for each region within the
same decision difference label. In case of the Sine running example, the set of instances
of the class MA|MB : 1|0 can be further subdivided into 4 disjoint regions which can be
seen in Figure 3.5 showing a SOM-projection of the Sine running example. The higher
the distance between two instances within the same decision difference class, the higher
the probability that these instances belong to different regions.
For each possible combination of decisions of the black boxes, the corresponding instances
are clustered using hierarchical-clustering with single-linkage criterion, and a dendrogram
is constructed based on which the number of clusters is determined manually. From
each resulting branch, one instance for which a synthetic neighborhood is generated, is
randomly sampled. The neighborhoods are again concatenated and a decision tree is
trained to learn decision differences.
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(a.a) Generated neighborhoods (a.b) Decision surface of explainer

(a) Sine running example

(b.a) Generated neighborhoods (b.b) Decision surface of explainer

(b) Spiral running example

Figure 3.4: Approach 2: Class-stratified sampling
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(a) Label color coding (b) U-Matrix

Figure 3.5: SOM-Projection of the Sine running example

A visualization of disjoint partitions of a certain decision-differences class and a den-
drogram of hierarchical clustering is shown in Figure 3.6. In Figure 3.5 and in the
dendrogram of Figure 3.6, 4 partitions of region MA|MB : 1|0 are identifiable.
The dendrograms of hierarchical clustering of each decision difference class are shown
in Figure 3.7 for both running examples and the manually chosen distance threshold
is added. From each of the resulting clusters, an instance is randomly sampled and
DiRo2C’s neighborhood for this instance is generated. The neighborhoods are again
concatenated and used as training data for a decision tree.
Figure 3.8 shows the sampled instances, generated neighborhoods and the decision surface
of the trained explainer for both running examples. This approach to select instances
does not have much influence on the Spiral running example, since only the combination
MA|MB : 2|0 is split into two partitions. For the Sine running example, however, at least
one instance was sampled from each partition. This sampling strategy results in an even
better approximation of the boundaries of decision differences.

Approach 4: Structured sampling In case of complex or highly non-linear decision
difference boundaries as emulated by the running examples or simply disjoint areas of
decision differences, a single local explainer has to be very complicated to sufficiently
locate areas of decision differences. This approach uses multiple ordered local explaining
models to draw a global picture. First, the decision differences are structured using a
one-dimensional SOM. Subsequently, the weights of the SOM are clustered, and for each
of the clusters a separate local explanation is obtained. The explainers are trained on
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Figure 3.6: Visualization of cluster-stratified sampling (Approach 3) for single-linkage
hierarchical-clustering of region MA|MB : 1|0 of the Sine running example

(a) Sine running example (b) Spiral running example

Figure 3.7: Dendrograms of single-linkage hierarchical clustering for each decision differ-
ence class

DiRo2C’s synthetic neighborhoods generated for sampled instances from the starting,
middle and ending SOM node of each cluster. This approach provides a more fine-granular
sampling strategy since instances are not randomly sampled from the entire cluster but
instead a more guided sampling is devised. The resulting explanations are structured
and ordered linearly by the SOM. Using dimensionality-reduction techniques, the original
input space can be projected onto two dimensions, and the regions for which a local
explainer is responsible can be colored accordingly.
Figure 3.9 shows the trained 1-dim SOM for the Sine and Spiral running example. The
dendrograms of single-linkage hierarchical clustering of the SOM nodes are shown in
Figure 3.10. Using a distance threshold of 0.25 (Sine) and 0.225 (Spiral) for clustering
with connectivity constraints according to the linear SOM relationship, the nodes are
clustered into 6 cluster for Sine running example and 8 clusters for Spiral running example
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(a.a) Generated neighborhoods (a.b) Decision surface of explainer

(a) Sine running example

(b.a) Generated neighborhoods (b.b) Decision surface of explainer

(b) Spiral running example

Figure 3.8: Approach 3: Cluster-stratified sampling
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(a) Sine running example (b) Spiral running example

Figure 3.9: Structured sampling (Approach 4): DiRo2C’s synthetic neighborhoods for a
randomly sampled instance of each cluster

(a) Sine running example (b) Spiral running example

Figure 3.10: Structured sampling (Approach 4): Dendrograms of single-linkage hierarchi-
cal clustering of the nodes of the 1-dim structuring SOM
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(a) Sine running example (b) Spiral running example

Figure 3.11: Structured sampling (Approach 4): Subdivided data-space according to
clustering of nodes of 1-dim SOM. Each Cluster has its own explaining model based on
the generated neighborhood around the marked sampled instance.

as visualized in 3.9. For whole clusters without training data, the nodes are assigned
to their respective nearest cluster. For each cluster the starting, ending and middle
SOM-nodes are selected. From each of these nodes an instance of the training set is
sampled randomly and a genetic neighborhood via DiRo2C is generated as can be seen
in Figure 3.12a.a and Figure 3.12b.a. These neighborhoods are then used to train a
local explaining model for each cluster. Figure 3.11 shows the selected instances and
the areas of the input-space for which the explainers are responsible, that is the set of
data points for which the BMU of the 1-dim SOM is assigned to this specific cluster. In
case no training data is assigned to one of the starting, middle or ending node, the next
subsequent node is considered. For small clusters consisting of 3-4 nodes, only starting
and ending nodes are considered and for clusters of 1-2 nodes a cluster is chosen randomly
from which an instance is sampled.
In Figure 3.12 the sampled instances, generated neighborhoods and the decision surface
of the structured combination of local explainers is visualized. The decision difference
boundaries of the Sine running example are almost correctly recognized. The non-linear
cluster boundaries entail non-linear boundaries of decision differences as can be seen
for the marked area in Figure 3.12a.b. This incorrect predicted area is a result of the
boundary of the second cluster colored in lime in Figure 3.11a.

Performance The datasets introduced in Section 2.1.4 are used as a training set
Xtrain. A test set Xtest for evaluation is generated using the same generation mechanisms
as described with n = 500 data points for both running examples. Table 3.1 shows
the performance of the proposed approaches for both running examples. Overall, with
increasing complexity and granularity of the proposed approaches, performance also
tends to increase. However, this comes at the cost of comprehensibility as the depth of
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(a.a) Generated neighborhoods (a.b) Decision surface of explainer

(a) Sine running example

(b.a) Generated neighborhoods (b.b) Decision surface of explainer

(b) Spiral running example

Figure 3.12: Approach 4: Structured cluster-stratified sampling
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Accuracy Precision Recall Depth of
explainers

Running Example Approach
Sine Approach 0: Baseline 0.904 0.904 0.900 10.000

Approach 1: Random sampling 0.950 0.946 0.953 13.000
Approach 2: Class-stratified sampling 0.972 0.972 0.970 13.000
Approach 3: Cluster-stratified sampling 0.960 0.961 0.959 14.000
Approach 4: Structured sampling 0.964 0.962 0.965 7.500

Spiral Approach 0: Baseline 0.951 0.937 0.887 10.000
Approach 1: Random sampling 0.969 0.946 0.956 12.000
Approach 2: Class-stratified sampling 0.958 0.926 0.931 15.000
Approach 3: Cluster-stratified sampling 0.968 0.943 0.946 15.000
Approach 4: Structured sampling 0.957 0.922 0.932 5.375

Table 3.1: Performances of the proposed approaches: Running examples
* Averaged depth over explainers

the explainer also increases for the neighborhood combination approaches (Approaches
1-3). Nevertheless, all proposed approaches clearly outperform the Baseline. For the Sine
running example, structured sampling (Approach 4) of instances yields the second-highest
performance and the lowest depth of the explaining trees. Also for the Spiral running
example the data structuring approach obtains high performance and the lowest depth
of the decision tree.

3.3 Experimental Setup
The Approaches 1-4 introduced in Section 3.2 are compared to the baseline global ex-
plaining model (Approach 0). Since the explanation rules are based on the decision tree
used as surrogate model, we used the performance of the decision tree as a measurement
of correctness of the rules. The approaches are evaluated using accuracy, macro-averaged
precision and recall on two benchmark datasets frequently used in literature, namely
Bank-Marketing and Compas. Since we are interested in detecting usually underrepre-
sented decision differences, macro-averaging of precision and recall was chosen in order not
to obtain overly optimistic performance values. Both datasets are modified as described
in 3.3.1 and 3.3.1 to obtain a basis for training of the second black box. Each dataset,
original and modified, is split into three parts with the ratio (4:4:2): XM A/B to train the
black boxes, Xtrain A/B is used to select a set of instances to be explained or serves as
training data for structuring and clustering, and Xtest A/B for evaluation. The training
sets Xtrain A and Xtrain B as well as the test sets Xtest A and Xtest B are combined for
each data set to Xtrain and Xtest, respectively. An overview is given in Table 3.2.
SVM and Naive-bayes models are used as black box models and trained with parameter
grid search with 3-fold Cross Validation. The parameter grids used are shown in Table
3.6. The black boxes are evaluated on Xtrain (i.e. the data that will be used to sample
instances for which DiRo2C’s neighborhood is generated in a next step) using accuracy,
macro-averaged precision and recall. Performances are reported in Table 3.7.
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Dataset Observations Features |XM | |Xtrain| Proportion of
decision differences |Xtest| Proportion of

decision differences
Bank-Marketing 41,188 20 16,475 32,950 4.5% 16,476 4.4%
Compas 7,214 8 2,885 5,772 15.7% 2,886 15.9%

Table 3.2: Datasets statistics summary

Parameter List of values Compas Bank-Marketing
Initial effective width σ0 [0.5, 0.6, 0.7, 0.8, 0.9] 0.9 0.9
Initial learning rate α(t = 0) [0.2, 0.4, 0.6, 0.8, 1] 1.0 1.0

Table 3.3: Parameter grid used for hyper-parameter training of SOM and best parameter

A decision tree trained on Xtrain to learn decision differences with default parameters
and evaluated on Xtest acts as baseline global explainer. The decision tree with default
parameter uses Gini impurity to measure the quality of a split, and the tree is expanded
until for all leaves either the leave contains less than 2 instances or all instances of the
leaves have the same label 1.
For RQ 1, instances are selected from Xtrain as described in Approaches 1-3 in Section
3.2. For each of these instances, a genetic neighborhood consisting of 1,000 data points
is generated using DiRo2Cs neighborhood generation process. The neighborhoods are
concatenated in a next step to a global synthetic dataset. Each instance of this dataset
is classified using MA and MB and decision differences are determined. This dataset
is then used as a basis for an explaining decision tree fitted with default parameter.
To account for randomness, sampling of instances and the subsequent neighborhood
generation is repeated 5 times and averaged performance and standard errors are reported.

For RQ 2, categorical features are One-Hot encoded and each continuous feature of Xtrain
is normalized. For training of a one-dimensional SOM with ⌊5 ·√n⌋ nodes, only the subset
Xdifference train ⊂ Xtrain with decision differences is considered. n denotes the number of
instances of Xdifference train. The initial effective width σ0 and the initial learning rate
α(0) are determined using parameter grid search with 3-fold CV using quantization
error as performance measure, as shown in Table 3.3. The resulting ⌊5 · √

n⌋ weights are
subsequently clustered using hierarchical clustering with single linkage criterion. The
linear SOM neighborhood relation is used as a connectivity constraint of the weights
in the process. An instance of the training/test set is assigned to a specific cluster by
determining the BMU and thereafter the cluster of the respective BMU. BMUs without
underlying data assigned to them are merged to the cluster with the nearest node. The
number of sampled instances per cluster is made dependent on the cluster’s size: in
case a cluster contains more than 4 nodes the starting and ending node as well as the
node in the middle are selected. For clusters containing 3-4 nodes, only the starting and

1https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html
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ending node are considered and otherwise a random node is selected. For each of the
nodes, an instance with the respective BMU of Xdifference train is randomly sampled and
DiRo2C’s genetic neighborhood with 1,000 data points is generated. Within each cluster,
the resulting synthetic datasets are concatenated and each instance is classified by MA

and MB and decision differences are determined. For each cluster, the corresponding
synthetic dataset is cut off at the cluster boundaries by mapping each instance to its
respective cluster as described before and then used as a basis for an explaining decision
tree fitted with default parameter.
Using a SOM-projection onto two dimensions, the difference detection dataset is visualized
and the regions of each responsible local explainer are colored. According to the number
of training instances, the Bank-Marketing dataset is visualized using a 2-dimensional
SOM with 30x30 nodes and Compas using 20x20 nodes.

For the generation of all genetic neighborhoods, 100 iterations (generations) are used.
Mutation and crossover probabilities were set to 0.3 and 0.2, respectively. Tournament
selection with 3 tournaments is used.

All analyses are conducted using scikit-learn [23] version 1.0.2, MiniSom [36] version 2.3.0
and DiRo2C2 version 1.2. The experiments were performed on Microsoft Windows 10 En-
terprise LTSC Version 10.0.17763, 64 GB RAM, 3.80GHz Intel Core(TM) i7-10700K. The
source code is available at https://github.com/jrckln/DiRo2CLocaltoGlobal.

3.3.1 Data
In this section, the datasets used and their modifications are described.

Bank-Marketing

The Bank-Marketing dataset stems from a Portuguese retail bank from May 2008 to
June 2013. It consists of information on clients contacted via phone in the course of
a direct marketing campaign. The features include telemarketing attributes, product
details and client information and was enriched by external data from the Central Bank
of the Portuguese Republic. The aim is to predict whether a term deposit was sold to
a client resulting in a binary response variable y of successful or unsuccessful contact
[21]. The dataset contains 41,188 instances of 21 attributes and includes missing values
encoded as ’unknown’ which are treated as a separate category.
For the analysis all available features were used:

• age: Age of bank client in years

• job: Type of job of bank client

• marital: Marital status of bank client
2https://gitlab.com/andsta/diro2c
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• education: Highest education of bank client

• default: Has bank client credit in default?

• housing: Has bank client a housing loan?

• loan: Has bank client a personal loan?

• contact: Contact communication type

• month: Month of last contact

• day_of_week: Day of the week of last contact

• duration: Duration of last contact in seconds

• campaign: Number of contacts performed during this campaign

• pdays: Number of days passed by after the bank client was last contacted from a
previous campaign

• previous: Number of contacts performed before this campaign and for this bank
client

• poutcome: Outcome of the previous marketing campaign

• emp.var.rate: Employment variation rate

• cons.price.idx: Consumer price index

• cons.conf.idx: Consumer confidence index

• euribor3m: Euribor 3 month rate

• nr.employed: Number of employees

Table 3.4 shows basic statistical properties of the Bank-Marketing dataset. The binary
response variable y is not evenly distributed among classes (88.73% unsuccessful (’No’)
and 11.27% successful (’Yes’) contact).

Modification To have a ground-truth of expected black box model differences between
MA and MB, the original Bank-Marketing dataset is modified as follows: The value 5 is
added to each value of the variable pdays [31]. Additionally, education is decreased
by one level for clients in management positions and entrepreneurs, if applicable, and
age is decreased by 10 for bank clients with a personal loan and increased by 10 for bank
clients with a housing loan.
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Feature Classes (n) Top category Missing values
job 12 admin. 330
martial 4 married 80
education 8 university.degree 1731
default 3 no 8597
housing 3 yes 990
loan 3 no 990
contact 2 cellular 0
month 10 may 0
day_of_week 5 thu 0
p_outcome 3 nonexistent 0
y 2 no 0

Feature Range Mean (SD) Missing values
age 17 - 98 40.02 (10.42) 0
duration 0 - 4918 258.29 (259.28) 0
campaign 1 - 56 2.57 (2.77) 0
pdays 0 - 999 962.48 (186.91) 0
previous 0 - 7 0.17 (0.49) 0
emp.var.rate (-3.4) - 1.4 0.08 (1.57) 0
cons.price.idx 92.2 - 94.77 93.58 (0.58) 0
cons.conf.idx (-50.8) - (-26.9) -40.5 (4.63) 0
euribor3m 0.63 - 5.04 3.62 (1.73) 0
nr.employed 4963.6 - 5228.1 5167.04 (72.25) 0

Table 3.4: Basic properties of the Bank-Marketing dataset

Compas

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) is a
software by Northpointe, Inc. to score the likelihood of a criminal to become a recidivist.
ProRepublic’s analysis of predicted scores and actual recidivist rates of more than 10,000
criminal defendants in Florida over a two-year period revealed an ethnic bias [15]. Scoring
of defendants is based on a questionnaire. The answers are used by the COMPAS software
to generate multiple scores from 1-10 including at least ’Risk of Recidivism’, ’Risk of
Violence’ and ’Risk of Failure to Appear’ for each defendant [15]. The Compas dataset3

was obtained from the Broward County Sheriff’s Office Florida for 11,757 subjects and
contains information on sex, age and race as well as length of stay in jail, degree of
charge etc. ’Risk of Recidivism’ was considered as response and was labeled according to
COMPAS as ’Low’ for scores of 1-4, ’Medium’ for scores of 5-7 and ’High’ for scores 8 to
10 [15]. For the analysis, the following features were used:

3https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
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Feature Classes (n) Top category Missing values
sex 2 Male 0
race 6 African-American 0
c_charge_degree 2 F 0
score_text 3 Low 0

Feature Range Mean (SD) Missing values
age 18 - 96 34.82 (11.89) 0
juv_fel_count 0-20 0.07 (0.47) 0
juv_misd_count 0-13 0.09 (0.49) 0
juv_other_count 0-17 0.11 (0.5) 0
priors_count 0-38 3.47 (4.88) 0

Table 3.5: Basic properties of the Compas dataset

• sex: Gender (Male or Female)

• age: Age in years

• race: Race (African-American, Asian, Caucasian, Hispanic, Native American or
Other)

• juv_fel_count: Number of juvenile felonies

• juv_misd_count: Number of juvenile misdemeanors

• juv_other_count: Number of prior juvenile convictions that are not felonies or
misdemeanors

• priors_count: Number of prior convictions

• c_charge_degree: Charge degree

• score_text: Risk of Recidivism by COMPAS (Low, Medium or High)

Table 3.5 shows basic statistical properties of the chosen features of the Compas dataset.
The response variable score_text is not evenly distributed among classes: 54.03%
were classified as ’Low’ risk, 26.53% as ’Medium’ and 19.45% were classified as ’High’
risk of recidivism.

Modification To train model MB, the dataset was modified so that the number of
prior convictions of individuals older than 60 years is increased by 5 and reduced by 5 for
individuals younger than 30 years. Additionally, the charge degree of African-Americans
with less than 2 juvenile felonies was decreased by one level from felony to misdemeanor.
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Model Parameter List of values Bank-Marketing Compas
Black box A: SVM C [0.1, 1, 10, 100] 0.1 100
Black box A: SVM kernel [’rbf’, ’sigmoid’, ’linear’] linear rbf
Black box A: SVM gamma [’scale’, ’auto’] scale scale
Black box B: Naive Bayes var_smoothing [1.e+00 1.e-01 1.e-02 1.e-03 1.e-04 1.e-05 1.e-06 1.e-07 1.e-08 1.e-09] 0.01 0.0001

Table 3.6: Parameter grid used for hyper-parameter training of the black box models
and resulting best parameter

Bank-Marketing Compas
Metric Data A Data B Data A Data B
Accuracy 0.907 0.906 0.638 0.599
Precision (macro) 0.813 0.782 0.581 0.552
Recall (macro) 0.648 0.689 0.515 0.444

Table 3.7: Performances of black box model training

3.4 Results
In the following, the results of the conducted experiments are presented. In Section
3.4.1, a brief summary of the black box training results is provided, and preliminaries for
the proposed approaches are presented followed by the evaluation of the approaches in
Section 3.4.2 by means of the benchmark datasets.

3.4.1 Black Boxes and Preliminary Analysis
Black box training Table 3.6 shows the parameter grids used for grid search with
3-fold CV of the two black box classifiers and the corresponding chosen parameters for
training. Performances of the black box models evaluated on the black box test set Xtrain
are reported in Table 3.7.

Cluster-stratified sampling (Approach 3): Number of Clusters Figure 3.13 and
Figure 3.15 show SOM-projections of Bank-Marketing and Compas datasetd. Figure 3.14
and Figure 3.16 show the dendrograms of hierarchical clustering using Ward’s-linkage
criterion of the training set of Bank-Marketing and Compas. Based on the projections
and the accompanying dendrograms, the number of distinct regions for cluster-stratified
sampling of instances (Approach 3) were appointed as stated in Table 3.8, resulting in
26 instances for Compas and 21 instances for Bank-Marketing, for which a synthetic
neighborhood is generated.

Structured sampling (Approach 4) Figure 3.17 shows dendrograms of the hierar-
chical clustering of SOM nodes with single-linkage criterion and connectivity constraints
according to linear SOM neighborhood relation. Based on the dendrogram, distance
thresholds of 4.5 for Bank-Marketing and 3.0 for Compas were chosen with which the
SOM-nodes are clustered into 10 and 8 clusters, respectively. Using a 2-dim SOM, Figure
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(a) U-Matrix (b) Label color coding

Figure 3.13: SOM-Projection of training data of Bank-Marketing

Figure 3.14: Dendrograms of hierarchical clustering of decision difference regions of
Bank-Marketing

Region MA|MB Compas
Low|Medium 4
Low|High 5
Medium|Low 2
Medium|High 8
High|Low 3
High|Medium 4

Region MA|MB Bank-Marketing
No|Yes 8
Yes|No 13

Table 3.8: Cluster-stratified sampling (Approach 3): Number of chosen regions of decision
differences
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(a) U-Matrix (b) Label color coding

Figure 3.15: SOM-Projection of training data of Compas

Figure 3.16: Dendrograms of hierarchical clustering of decision difference regions of
Compas
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(a) Bank-Marketing (b) Compas

Figure 3.17: Structured sampling (Approach 4): Dendrograms of hierarchical clustering
of SOM nodes with single-linkage and connectivity constraints according to linear SOM
neighborhood relation

Accuracy (SD) Precision (SD) Recall (SD) Depth of
explainer (SD)

Dataset Approach Number of
instances

Bank-Marketing Approach 0: Baseline - 0.988 0.895 0.897 12
Approach 1: Random sampling 21 0.95 (0.007) 0.585 (0.067) 0.572 (0.057) 22.2 (1.924)
Approach 2: Class-stratified sampling 21 0.945 (0.007) 0.643 (0.025) 0.754 (0.022) 30.6 (2.702)
Approach 3: Cluster-stratified sampling 21 0.948 (0.007) 0.666 (0.039) 0.798 (0.041) 25.2 (3.493)
Approach 4: Structured sampling 10* 0.918 (0.026) 0.587 (0.033) 0.739 (0.033) 14.22 (0.638)

Compas Approach 0: Baseline - 0.943 0.747 0.759 15
Approach 1: Random sampling 26 0.899 (0.009) 0.654 (0.029) 0.631 (0.038) 26.8 (2.588)
Approach 2: Class-stratified sampling 26 0.916 (0.009) 0.713 (0.024) 0.746 (0.025) 25.2 (3.347)
Approach 3: Cluster-stratified sampling 26 0.914 (0.011) 0.734 (0.028) 0.784 (0.025) 25.4 (2.302)
Approach 4: Structured sampling 8* 0.807 (0.02) 0.57 (0.045) 0.652 (0.048) 13.325 (0.59)

Table 3.9: Performances of the proposed approaches: Benchmark datasets, averaged over
5 runs

* Number of clusters

3.18 visualizes for each node the most frequent cluster of instances with the respective
node as BMU.

3.4.2 Local-to-Global
Table 3.9 shows the average performance of the proposed approaches for global expla-
nations over 5 runs. Performance overall could not be improved for both benchmark
datasets as compared to the Baseline. Random sampling of instances (Approach 1)
yields the highest accuracy for Bank-Marketing of the proposed approaches. However,
accuracy of class- and cluster-stratified sampling (Approach 2 and Approach 3) is almost
as high. Macro-averaged precision and recall could indeed be improved by advanced and
strategic selection of instances, resembling the focus on instances with decision differences.
For Compas, cluster-stratified sampling of instances yields a macro-averaged precision
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(a) Bank-Marketing (b) Compas

Figure 3.18: Structured sampling (Approach 4): SOM-nodes colored according to most
frequent cluster

similar to the Baseline and even outperforms the Baseline for macro-averaged recall. In
case of the Bank-Marketing dataset, cluster-stratified sampling of instances could not
attain the performance of the Baseline. For both benchmark datasets, accuracy and
macro-averaged precision of the data structuring approach (Approach 4) are slightly
lower and macro-averaged recall is slightly higher as compared to the performance of
random sampling of instances. Nevertheless, the depth of the explaining trees is lower
for structured sampling of instances and even lower than the Baseline for Compas.

Effect of complexity of the explainer The complexity of a decision tree is measured
by either the number of nodes, the number of leaves, depth of the tree or the number
of used attributes [17]. The comprehensibility is often measured by the complexity of a
classifier [25]. Grounded by cognitive load theory, the maximum depth of decision trees
to be comprehensible was determined to be at seven [6, 19]. Since decision trees with a
depth of over 20 cannot be considered explainable anymore, we additionally evaluated
performance of explainers pre-pruned to a maximum of seven levels.
Figure 3.19 shows the averaged performance with standard errors over 5 runs for the
different approaches with varying maximum depth of the explainer for 21 and 26 sam-
pled instances for random, class-stratified and cluster-stratified sampling of instances
(Approaches 1-3) and 10 and 8 clusters for structured sampling (Approach 4) of Bank-
Marketing and Compas, respectively. For Bank-Marketing, the depth of the explainer
does not have much influence on accuracy for all approaches whereas for Compas with
increasing depth of the explaining tree, a strong increase in accuracy can be observed for
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Figure 3.19: Effect of complexity of the explainer

random, class-stratified and cluster-stratified sampling. The increase in performance for
increasing depth of the tree is even stronger for macro-averaged precision and recall in case
of the Compas dataset. While there is an increase in performance as the depth increases
for Bank-marketing, the magnitude of this increase is lower as compared to the Compas
dataset. Even for a low maximum depth of the explainer, structured sampling (Approach
4) outperforms the Baseline in terms of macro-averaged recall for Bank-Marketing and
additionally in terms of macro-averaged precision for Compas and, thus the structured
sampling approach provides easily comprehensible but still the accurate explanations.

Effect of number of sampled instances Figure 3.20 shows the averaged performance
with standard errors over 5 runs of accuracy, macro-averaged precision and recall and
depth of the resulting explainer for random, class-stratified and cluster-stratified sampling
for a varying number of instances of Bank-Marketing and Compas. Overall, there is
an increase in performance for increasing complexity of sampling strategies. However,
as performance increases, also complexity of the explaining decision tree increases. For
each doubling of the number of sampled instances for which a neighborhood is created,
mean accuracy increases by 1.8% on average for random sampling (Approach 1) and
class-stratified sampling (Approach 2). Doubling the number of instances has a higher
effect on precision and recall, increasing mean macro-averaged precision by 11.0% and
8.0% and mean macro-averaged recall by 9.9% and 6.9% for random sampling (Approach
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Figure 3.20: Approaches 1.1-1.3: Impact of number of sampled instances on performance

1) and class-stratified sampling (Approach 2), respectively.
The performance of the baseline explainer could not be attained for 64 randomly (Ap-
proach 1), class-stratified (Approach 2) nor cluster-stratified (Approach 3) sampled
instances of the Bank-Marketing dataset. For Compas, a better performance than base-
line was attained using 64 class-stratified sampled instances (Approach 2). Strategic
selection of instances (Approach 3: Cluster-stratified sampling) already gives similar
performance to the baseline for 49 instances.
Especially for a low number of randomly sampled instances, macro-averaged precision
and recall are very low at 50%-55%, indicating that decision differences are mainly
missed, and only matching predictions of the two black boxes are predicted by the
explainer. Sampling stratified random according to the decision differences tackles this
issue and increases performance throughout all scenarios. Consistent with expectations,
cluster-based sampling of instances does increase precision and recall even further as
compared to stratified random sampling of instances.

Effect of the number of clusters Table 3.10 shows the performance of the structured
sampling approach (Approach 4) depending on the number of clusters the data is
partitioned into. Although for the lowest number of clusters, this approach yields a fair
accuracy of 0.918 (SD: 0.026) for Bank-Marketing and 0.807 (SD: 0.02) for Compas,
performance in terms of macro-averaged precision (Bank-Marketing: 0.587 (SD: 0.033),
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Clusters Accuracy (SD) Precision (SD) Recall (SD) Average depth of
explainers (SD)

Dataset Distance
threshold

Bank-Marketing 4.5 10 0.918 (0.026) 0.587 (0.033) 0.739 (0.033) 14.22 (0.638)
4.0 20 0.85 (0.11) 0.572 (0.021) 0.687 (0.048) 11.79 (0.178)
3.5 39 0.893 (0.059) 0.604 (0.031) 0.766 (0.022) 10.867 (0.526)
3.0 64 0.89 (0.021) 0.573 (0.023) 0.722 (0.029) 9.168 (0.33)

Compas 3.0 8 0.807 (0.02) 0.57 (0.045) 0.652 (0.048) 13.325 (0.59)
2.0 20 0.779 (0.052) 0.583 (0.033) 0.665 (0.033) 11.35 (0.514)
1.5 36 0.757 (0.046) 0.58 (0.017) 0.676 (0.017) 10.05 (0.169)
1.25 50 0.822 (0.052) 0.603 (0.015) 0.714 (0.017) 10.02 (0.491)

Table 3.10: Structured sampling (Approach 4): Performance depending on the number
of clusters

Compas: 0.57 (SD: 0.045)) and recall (Bank-Marketing: 0.739 (SD: 0.033), Compas:
0.652 (SD: 0.048)) is poor.
Increasing the number of clusters and hence decreasing the area for which an explainer is
responsible, does not generally increase the performance as it was the case for random,
class-stratified and cluster-stratified sampling (Approaches 1-3). For Bank-Marketing,
mean accuracy tends to decrease while for mean macro-averaged precision and recall no
trend can be observed. On the contrary, in case of Compas, mean accuracy first decreases
and then increases whereas mean macro-averaged precision and recall increase.

3.5 Summary
The goal of this part was the derivation of a global explainer by utilization of local expla-
nation generation techniques. We have proposed four bottom-up approaches to obtain
a global explanation. First, we used multiple with DiRo2C generated neighborhoods
of pre-specified instances and combined them to a global dataset serving as training
data for a global explanation model. For this neighborhood combination approach, three
strategies to select instances were presented and analyzed. Second, the data structuring
approach establishes an ordering of decision differences and provides multiple simple
local explainers.
For the continuous running examples, a higher performance was observed for all ap-
proaches as compared to the baseline explaining model. Especially cluster-stratified
sampling and the subsequent neighborhood combination (Approach 3) clearly outper-
forms the baseline for all strategies to select instances. A similar high performance was
observed for the data structuring approach (Approach 4) which additionally yields a
lower mean depth of the explaining decision trees. In case of the benchmark datasets,
the proposed approaches overall attain slightly lower performance. However, for Compas,
the performance of the baseline could be surpassed by class-stratified sampling of 64
instances. With cluster-stratified sampling, a performance similar to the baseline could
already be attained by sampling 49 instances. Overall, strategic and advanced selection

43



3. From Local to Global

of instances mainly has a positive impact on macro-averaged precision and recall as
compared to random sampling of instances.
The structured combination of local explanations did not outperform a single global ex-
planation (Baseline) by means of difference detection accuracy, macro-averaged precision
and recall for the benchmark datasets for explainers unrestricted in depth. However,
since structured sampling (Approach 4) uses multiple local explainers, the mean depth
of the decision trees is lower and even outperforms the Baseline for Compas. For a
maximum of three levels of the explaining tree(s), the structured sampling approach
even outperforms the Baseline by means of macro-averaged recall for Bank-Marketing
and additionally macro-averaged precision for Compas. Thus, this approach provides
a sequence of simple and therefore easily comprehensible local explaining models while
maintaining good performance.
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CHAPTER 4
Communication of Decision
Differences in a Multi-Class

Setting

While the first part of this thesis focused on the generation of explanations for differences
in decisions between two black box classifiers, the second part aims at presenting and
communicating these generated explanations in a comprehensible and compact way. The
third research question is answered by the description and discussion of the process of
analyzing possible decision differences in a multi-class setting. The clustering of data by
the structured sampling approach (Approach 4) provides the foundation for this chapter.
In the following, the process is described and visualized using the Spiral running example
and Compas dataset due to the multi-class setting and hence increased complexity as
compared to a binary setting of black box classifier for the Sine running example and
Bank-Marketing dataset. The evaluation of RQ 3 is done argumentatively since a user
study goes beyond the scope of this thesis.

4.1 Step 1: Existence of Decision Differences

The starting point of the whole process of analyzing possible decision differences is a
dataset and two k-class classifiers. The first question arising in this context is about the
existence of decision differences. The main goal in this step is to determine if there are
any decision differences. Not all k × k possible combinations of predictions of the black
boxes are of interest, but rather the reduction to binary problem: differences and no
differences.
The distribution of decision differences across training data of the Spiral running example
is visualized in Figure 4.1, showing a simple Scatter plot colored according to presence
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Figure 4.1: Spiral running example col-
ored according to presence of decision
differences

Figure 4.2: SOM-Projection of Compas
dataset: Label color coding

of decision differences. It shows the existence of decision differences in form of multiple
disjoint areas.
In case of more than two features, dimensionality reduction methods have to be employed.
Here we will focus on 2-dimensional SOMs due to the method’s topology preserving
properties. A SOM projection of the multidimensional Compas training dataset is shown
in Figure 4.2. It reveals many individual areas where decision differences are in a majority
which are not connected to one another.

4.2 Step 2: Global Image
The next step is to determine where decision differences occur. The data structuring of
Approach 4 introduced in Section 3.2 provides a sequence of explainer for the dataset.
As a starting point, Figure 4.3 for the Spiral running example and Figure 4.4 for Compas
show for which partition of the data-space which explainer applies. For Compas, this is
done via a SOM projection and a pie-chart visualization that shows the proportion of
instances of the training data per cluster falling in the specific neuron. Additionally, the
values of each feature can be shown over the whole map, using component planes to pro-
vide an idea of the distribution of values as shown in Figure 4.5 for the features of Compas.

Based on the clustered projections and the corresponding position in the component
planes, the three nodes of decision differences marked green in Figure 4.2 are assigned to
cluster No. 7, and individuals are mostly caucasian men aged about 20 years. They do
not have any juvenile convictions, however, they have 5-10 prior convictions and were
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4.2. Step 2: Global Image

Figure 4.3: Clustered Spiral running ex-
ample

Figure 4.4: Clustered Compas dataset

Figure 4.5: Component planes for each feature of Compas
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(a) Areas for which rules applies (b) Explainer

Figure 4.6: Spiral running example: Cluster No. 0

charged with felony before. Overall, we see that decision differences are present for a
medium number of prior convictions and male Caucasian or African-Americans mostly
between 25-35 years.

4.3 Step 3: Single Explanations
For each area of decision differences of Step 1, the corresponding main cluster as introduced
in Section 3.2 can be determined, and further the explaining tree of this cluster can be
shown to obtain rules applying for this specific subset of data. The explaining decision
trees presented in the following were pre-pruned to a maximal depth of 3. Besides the
explanation for this cluster, a simple statistical summary of the cluster is added to
provide information on the data in this cluster for which the explaining rules apply. The
neighborhood generation process of DiRo2C allows for a more thoroughly and precise
description of each cluster compared to reliance on training data.
For the Spiral running example, the majority of the instances marked in Figure 4.1 is
covered by cluster No. 0 as can be seen in Figure 4.3. The explainer of cluster No.
0 is visualized in Figure 4.6b. The first split of the decision tree rules out the class
combination MA|MB : 1|1 for instances with x1 ≤ −0.428. The remaining splits mimic
the linear decision boundary between the class combinations MA|MB : 1|2 and 2|2 as a
step function (see Figure 2.2).
Figure 4.6a shows cluster No. 0 in detail: for each resulting rule from the decision tree
(i.e. the path from the root to every leaf), the area for which the rule applies is shown.
The explainer predicts decision differences in this cluster according to the following rules.
The step function approximation of the linear boundary between the class combinations
MA|MB : 1|2 and 2|2 can be identified in the rules by alternating features and a similar
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step size per feature.
Rule 1 : i f (x1 ≤ −0.428) and (x2 ≤ 0.613) and (x1 ≤ −0.679) then c l a s s : 2 | 2
Rule 2 : i f (x1 ≤ −0.428) and (x2 ≤ 0.613) and (x1 > −0.679) then c l a s s : 1 | 2
Rule 3 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 ≤ 0.687) then c l a s s : 2 | 2
Rule 4 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 > 0.687) and (x1 ≤ −1.144)

then c l a s s : 2 | 2
Rule 5 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 > 0.687) and (x1 > −1.144)

and (x2 ≤ 0.745) and (x1 ≤ −0.816) then c l a s s : 2 | 2
Rule 6 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 > 0.687) and (x1 > −1.144)

and (x2 ≤ 0.745) and (x1 > −0.816) then c l a s s : 1 | 2
Rule 7 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 > 0.687) and (x1 > −1.144)

and (x2 > 0.745) and (x2 ≤ 0.8) and (x1 ≤ −0.915) then c l a s s : 2 | 2
Rule 8 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 > 0.687) and (x1 > −1.144)

and (x2 > 0.745) and (x2 ≤ 0.8) and (x1 > −0.915) then c l a s s : 1 | 2
Rule 9 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 ≤ −0.763) and (x2 > 0.687) and (x1 > −1.144)

and (x2 > 0.745) and (x2 > 0.8) then c l a s s : 1 | 2
Rule 1 0 : i f (x1 ≤ −0.428) and (x2 > 0.613) and (x1 > −0.763) then c l a s s : 1 | 2
Rule 1 1 : i f (x1 > −0.428) and (x1 ≤ −0.372) and (x2 ≤ 1.014) then c l a s s : 1 | 1
Rule 1 2 : i f (x1 > −0.428) and (x1 ≤ −0.372) and (x2 > 1.014) then c l a s s : 1 | 2
Rule 1 3 : i f (x1 > −0.428) and (x1 > −0.372) then c l a s s : 1 | 1

For Compas, instances of the area marked yellow in Figure 4.2 are assigned in 93.0% to
cluster No. 1 (see Figure 4.4). Cluster No. 1 of Compas is a larger cluster consisting of
26 nodes of the linear SOM and comprises instances of mainly male (59.7%) synthetic
individuals with a median age of 25.0. The generated instances are 48.2% Caucasian
and 29.9% African-American. 68.8% were charged with misdemeanor before scored
by COMPAS. The number of priors ranges from -9.0 to 25 with 4.3 prior convictions
on average. The mean number of juvenile misdemeanors and felonies is 0.29 and 0.05,
respectively. On average, the individuals in this cluster have 1.48 juvenile convictions
that are not misdemeanors or felonies.
Figure 4.8 shows the explainer for this cluster. Based on the basic statistical properties of
cluster No. 1, the modifications of the number of prior convictions depending on age and
the reduction from the charge degree from felony to misdemeanor for African-Americans
with less than two juvenile felonies apply here. For cluster No. 1, we face decision
differences for the instances that fulfill:
Rule 3 : i f (juv_other_count ≤ 1.045) and (juv_other_count > 0.948) and (priors_count ≤ 4.982) then

c l a s s : Low | Medium
Rule 4 : i f (juv_other_count ≤ 1.045) and (juv_other_count > 0.948) and (priors_count > 4.982) then

c l a s s : High | Medium
Rule 5 : i f (juv_other_count > 1.045) and (priors_count ≤ 1.014) and (sex ≤ 0.5) then c l a s s :

Medium | High
Rule 6 : i f (juv_other_count > 1.045) and (priors_count ≤ 1.014) and (sex > 0.5) then c l a s s : Low |

High

For instances in this cluster with one juvenile conviction that is not a misdemeanor or a
felony (Rule 3 and Rule 4: juv_other_count ≤ 1.045 and juv_other_count > 0.948)
the explainer predicts decision differences of either MA|MB : Low|Medium for up to 4
prior convictions (Rule 3; priors_count ≤ 4.982) or High|Medium for more than four
prior convictions (Rule 4; priors_count > 4.982). Additionally, decision differences
were detected for individuals with more than one juvenile conviction that are not
misdemeanors or felonies (juv_other_count > 1.045) and at most one prior conviction
(priors_count ≤ 1.014). In this case, the explainer predicts for male individuals the class
combination Medium|High whereas for female individuals Low|High is predicted.
Neither of the detected decision differences in this cluster is directly associated with age
smaller than 30 or larger than 60, however, the median age of synthetic individuals in
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(a) Label color coding (b) U-Matrix

Figure 4.7: SOM-Projection of synthetic dataset of cluster No.1 of Compas

Figure 4.8: Explainer of Compas cluster No.1

this cluster is 25 with an IQR of 24-28, and thus the second black box is affected by the
age-dependent modifications of the number of prior convictions made. Additionally, all
synthetic individuals have at most one juvenile felony, hence for 29.9% African-Americans
the modifications of the training data have an impact on the second black box.
Figure 4.7 shows the SOM-Projection of the generated synthetic dataset of neighborhoods
of cluster No. 2 which is in the SOM ordering adjacent to cluster No. 1. Cluster No.
2 is a small cluster of 8 nodes of the one-dimensional SOM. It also covers mainly male
(83.9%) synthetic individuals with a similar median age of 24.0 years. 54.6% of them are
Caucasian and 22.5% African-Americans. With an average of 2.2 the number of priors is
slightly lower and ranges from -9.5 to 28. In this cluster, the mean number of juvenile
misdemeanors and felonies is 0.05 and 0.06, respectively. On average, the individuals in
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this cluster have 2.94 juvenile convictions that are not misdemeanors or felonies.
According to the component planes, the main differences between cluster No. 1 and
cluster No. 2 are the race distribution and the higher number of juvenile convictions
that are not misdemeanors or felonies for cluster No. 2 which can be confirmed based
on the statistical properties of this cluster, using the generated synthetic neighborhood.
Since the decision differences are ordered by the SOM, the changes from one cluster to
the next adjacent cluster are rather smooth.
The explainer for cluster No. 2 is visualized in Figure 4.10. In this cluster, the explainer
predicts three classes, all of them having black box B predicting class ’High’. The rules
extracted from the explainer from this cluster for decision differences are the following.
Rule 1 : i f (age ≤ 23.401) and (priors_count ≤ 0.065) and (priors_count ≤ −1.162) then c l a s s : Low |

High
Rule 2 : i f (age ≤ 23.401) and (priors_count ≤ 0.065) and (priors_count > −1.162) then c l a s s :

Medium | High
Rule 3 : i f (age ≤ 23.401) and (priors_count > 0.065) and (juv_fel_count ≤ 0.014) then c l a s s :

Medium | High
Rule 5 : i f (age > 23.401) and (priors_count ≤ 1.366) and (age ≤ 27.646) then c l a s s : Low | High
Rule 6 : i f (age > 23.401) and (priors_count ≤ 1.366) and (age > 27.646) then c l a s s : Low | High
Rule 7 : i f (age > 23.401) and (priors_count > 1.366) and (age ≤ 35.426) then c l a s s : Medium | High
Rule 8 : i f (age > 23.401) and (priors_count > 1.366) and (age > 35.426) then c l a s s : Low | High

DiRo2C currently distinguishes only between continuous and categorical features. For
the former, normalized euclidean distance is used in the fitness function to quantify the
similarity with the specific instance to be explained, whereas for the latter, simple match
distance is used. Count variables are therefore treated as continuous features in DiRo2C
because of which also the synthetic neighborhood might contain negative continuous
values as in the first rule of the explainer for cluster No. 2. In this cluster, we observe
a similar age distribution as of cluster No. 1: about 60% of the synthetic individuals
are 30 years or younger and thus the second black box model is affected by the imposed
modification. For this cluster, we have decision differences for individuals younger than
24 years with no prior convictions (Rule 2: age ≤ 23.401 and priors_count ≤ 0.065) and
for individuals younger than 24 years with at least one prior conviction but no juvenile
felony (Rule 3: age ≤ 23.401 and priors_count > 0.065 and juv_fel_count ≤ 0.014).
However, for individuals younger than 24 years with at least one prior conviction and in
addition at least one juvenile felony both black boxes predict the class ’High’.
For individuals of 24 years or older with at most one prior conviction, the explainer
for this cluster predicts the class combination MA|MB : Low|High (Rule 5 and Rule 6)
whereas for individuals of 24-35 years with at least two prior convictions (Rule 7) the
class combination Medium|High is predicted. Individuals older than 35 years with at
least two prior convictions are predicted by the explainer to be scored Low|High by the
black boxes.
Cluster No.7 which is in the 1-dimensional SOM-order further away from cluster No.1
and No.2 consists of 33 nodes. The gender distribution in this cluster is almost equal
(53.1% male and 46.9% female). The median age is with 33.0 years higher compared to
cluster No.1 and No.2. The number of prior convictions is 3.7 on average, 48.0% are
Caucasian and 36.7% Asian. 89.5% were charged with felony before scored by COMPAS.
Figure 4.11 shows a SOM-Projection of the generated neighborhoods for cluster No.7
and Figure 4.12 the explainer for this cluster. In contrast to cluster No. 1 and No. 2,
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(a) Label color coding (b) U-Matrix

Figure 4.9: SOM-Projection of synthetic dataset of cluster No.2 of Compas

Figure 4.10: Explainer of Compas cluster No.2

the explainer mostly predicts ’Low’ and ’Medium’ for the second black box. The rules
extracted from the explainer from this cluster for decision differences are the following.
Rule 1 : i f (juv_misd_count ≤ 0.659) and (priors_count ≤ 6.805) and (juv_fel_count ≤ −0.422) then

c l a s s : Low | Medium
Rule 3 : i f (juv_misd_count ≤ 0.659) and (priors_count > 6.805) and (juv_fel_count ≤ 0.152) then

c l a s s : Medium | Low
Rule 5 : i f (juv_misd_count > 0.659) and (priors_count ≤ 1.51) and (age ≤ 19.977) then c l a s s :

High | Medium
Rule 6 : i f (juv_misd_count > 0.659) and (priors_count ≤ 1.51) and (age > 19.977) then c l a s s : Low

| Medium
Rule 7 : i f (juv_misd_count > 0.659) and (priors_count > 1.51) and (age ≤ 27.164) then c l a s s :

High | Medium
Rule 8 : i f (juv_misd_count > 0.659) and (priors_count > 1.51) and (age > 27.164) then c l a s s : Low

| Medium

For synthetic individuals with less more than five prior convictions but no juvenile felonies
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4.3. Step 3: Single Explanations

(a) Label color coding (b) U-Matrix

Figure 4.11: SOM-Projection of synthetic dataset of cluster No.7 of Compas

Figure 4.12: Explainer of Compas cluster No.7

(juv_fel_count ≤ 0.152) or juvenile misdemeanors (juv_misd_count ≤ 0.659), the
explainer predicts the decision difference class MA|MB : Medium|Low (Rule 3). For
individuals with at least one juvenile misdemeanor (juv_misd_count > 0.659), we only
observe decision differences and the specific class combination is dependent on age. For
at most one prior conviction (priors_count ≤ 1.51), the cutoff at age from between
MA|MB : High|Medium and Low|Medium is at 20, whereas for a higher number of prior
convictions, the breakpoint is at age 27. Since the median age in this cluster is slightly
higher than 30 and only 3% of the synthetic individuals are African-American, only part
of the found and learned decision differences can be traced to the modifications made to
train the second black box.
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4.4 Discussion
We have proposed a sequence of steps to analyze two black boxes for decision differences by
means of a real-world multi-class dataset. DiRo2C’s neighborhood allows for a thoroughly
and precise description of each cluster with only little dependency on the underlying
training data. In combination with component planes of each feature of the projected
dataset, an overview of the location of decision differences is provided. Subsequently,
the decision differences can be analyzed on a cluster-level to obtain a more accurate and
precise location. The steps proposed to communicate decision differences in a multi-class
setting therefore allow both for a detailed instance-focused view and an overview.
Issues arising in this context mainly originate from issues of a multi-class setting in
general. Since the number of possible decision difference classes increases as a quadratic
function of the number of classes k of the black boxes, the number of possible decision
difference classes are quickly far too many. This is accompanied by color coding problems
and increased complexity of decision trees as explainers resulting in incomprehensible
explanations without further actions. A straightforward way to cope with too many
combinations of black box class predictions is to hierarchically structure the classes. If
one is interested solely in decision differences, the number of classes for the explainer is
reduced by k − 1 by the combination of classes without decision differences. Additionally,
one can analyze decision differences in a one-against-all manner.
The structure and order of the explanations allow for a smooth and continuous analysis
of each cluster in the process since the decision differences of two adjacent clusters are
more similar to each other than the decision differences of two distant clusters.
The SOM as dimensionality reduction technique for visualization purposes was chosen
because of its topology preserving properties and its numerous visualization possibilities
[34]. Nevertheless, the SOM can be replaced with any other projection method such as
linear Principle Component Analysis or nonlinear Sammon’s projection. Siedlecki et al.
[30] present a review of such mapping techniques. Regardless of the chosen mapping
technique, the target audience should have basic knowledge about the technique used to
follow the visualizations.
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CHAPTER 5
Summary and Conclusion

We have proposed four bottom-up approaches to derive a global explanation by utilization
of local explanation generation techniques. RQ 1 and RQ 2, focusing only on possible
improvements of the performance to detect decision differences, were assessed in Chapter
3. The proposed approaches make use of DiRo2C’s synthetic neighborhood generation
process and were evaluated against a Baseline explainer. Random, class-stratified and
cluster-stratified sampling (Approaches 1-3) combine multiple synthetic neighborhoods to
a global dataset, serving as training data for a global explanation model and structured
sampling (Approach 4) structures data into clusters and a local explanation is provided
for each cluster. Experimental evaluations of the proposed approaches have demonstrated
a positive effect of advanced and strategic selection of instances on precision and recall,
resembling the focus on instances with decision differences between the black boxes as
can be seen in Table 3.9 for Benchmark datasets and Table 3.1 for the running examples.
The Baseline works without data synthesis strategies and could be outperformed for
Compas in macro-averaged recall by 2.5 percentage points with cluster-stratified sampling
of instances (see Table 3.9). Additionally, the performance was improved even further
by increasing the number of sampled instances such that for Compas class-stratified
sampling outperformed the Baseline for all performance metrics by 6 percentage points
on average, answering RQ 1.

The structured combination of pre-pruned explainer (Approach 4) outperforms the Base-
line in terms of macro-averaged recall for Bank-Marketing and additionally in terms
of macro-averaged precision for Compas, and thus the structured sampling approach
provides easily comprehensible, but still accurate explanations (see Figure 3.19). There-
fore, with respect to RQ 2, the structured combination of local explanations can indeed
outperform a single global explanation by up to 11 percentage points for macro-averaged
precision and by up to 3.4 percentage points for macro-averaged recall while maintaining
low complexity of the explainer. The strength of the proposed approaches lies in the
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partial decoupling from training data.

Due to the linear ordering, the data structuring approach (Approach 4) provides valuable
insights and can additionally be used to communicate the explanations of decision
differences in a comprehensible way. In Chapter 4 with reference to RQ 3, we have
proposed a sequence of steps to analyse two black boxes for decision differences. From
the first question about the existance of decision differences through a global overview of
the location of the decision differences to a detailed explanation on a cluster-level basis,
the proposed steps allow both for a detailed instance-focused view as well as an overview.

5.1 Future Work
This section gives an outlook on a number of extensions as future work. An advancement
of the proposed approaches to derive global explanations by utilization of local explana-
tion generation techniques is a combination of class-stratified sampling (Approach 2) and
structured sampling (Approach 4). A strategic selection of instances within SOM-clusters
for which a neighborhood is generated could increase performance since instances are not
randomly sampled from the cluster, but it is ensured that at least one instance for every
decision difference label is selected from each cluster, and therefore the problem of highly
unbalanced decision differences in the data at cluster-level is tackled.
Another extension is a user-case study to empirically evaluate the effectiveness of the pre-
sented process of communication of decision differences. Additionally, a solid description
of each cluster and the data points for which a certain explanation applies might also be
added to better understand the clustering. A first, starting point is the description of
clusters using min/max-values of features. Moreover, the feature with the lowest variance
within a SOM-cluster can be used as an description.
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Acronyms

BMU best-matching unit. 17–19, 28, 31, 32, 39

CV Cross Validation. 30, 31, 36

DiRo2C Difference Recognition of 2 Classifiers. ix, xi, xiii, 1, 2, 5–8, 10–12, 14, 19, 20,
22, 24, 25, 27, 28, 30–32, 43, 48, 51, 54, 55

GLocalX GLObal to loCAL eXplainer. 16

I Indicator function, Ix :=
�

1 if x is true ,

0 otherwise .
. 10, 18

IQR Interquartile Range. 50

LORE Local Rule-Based Explanations. 1, 7–10

PCA Principle Component Analysis. 54

SD Standard Deviation. 34, 35, 39, 42, 43

SOM Self-organizing map. 2, 16–19, 24, 25, 27, 28, 31, 32, 36–40, 46, 49–54, 56

SVM Support Vector Machine. 6, 30
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