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Kurzfassung

Blockchains sichern heutzutage einen erstaunlichen Wert von über einer Billion Euro ab.
Es ist entscheidend, sowohl derzeit eingesetzte als auch zukünftige Blockchain Implemen-
tierungen im Hinblick auf Attacken evaluieren zu können, um ein besseres Verständnis
von deren Richtigkeit, Sicherheit und Leistung zu bekommen. Das schnellebige Umfeld
von Blockchains macht genau das sehr schwierig, und mangels ausgereifter Werkzeuge im
Hinblick auf abweichendes Verhalten, ist es nicht möglich die Forschungslücke zwischen
Theorie und Praxis, was Angriffe betrifft, zu schließen.

Diese Arbeit präsentiert einen ereignisdiskreten Simulator für Ethereum - die am wei-
testen verbreitete Blockchain im Bezug auf Applikationen - der sowohl dazu imstande
ist, gewisse Angriffsszenarien zu evaluieren, als auch weitreichend konfigurierbar ist, um
die Auswirkungen dieser Attacken auf die Blockchain Stabilität zu untersuchen. Um die
Entwicklung dieser Simulationsumgebung zu ermöglichen wird zuerst eine Kategorisierung
von Angriffen vorgenommen und zusätzlich der State of the Art, bezüglich existieren-
den Simulatoren, ausgearbeitet. Ein tieferes Verständnis für das Ethereum Protokoll
wird ermöglicht, indem derzeit benutzte Ethereum Clients untersucht werden, während
außerdem eine tiefgehende Analyse des de facto Standard-Clients für Ethereum, Geth,
dargelegt wird. Hierdurch wird gezeigt, dass bestehende Simulatoren die Anforderungen
nicht erfüllen, und folglich, basierend auf der Analyse der Clients und der Simulatoren,
ein Konzept für den neuen Simulator entworfen, gefolgt von dessen Implementierung
und Validierung gegen reale Daten aus dem Ethereum Mainnet. Angelehnt an die vor-
angehende Kategorisierung von Angriffen wird eine Teilmenge von relevanten Attacken
ausgewählt und deren Auswirkungen hinsichtlich möglicher finanzieller Belohnungen und
Destabiliserung von Ethereum mittels der neu entwickelten Simulationsumgebung ausge-
wertet. Hier wurde die Selfish Mining und die Verifier’s Dilemma Attacke aufgrund der
vergleichbaren Eigenschaften und Auswirkungen auf das Ethereum Netzwerk ausgewählt.

Die Simulation der Attacken führt zu interessanten Einblicken in die Auswirkungen
dieser auf Ethereum. Diese betreffen sowohl mögliche Belohnungen für Angreiferinnen
und Angreifer, als auch die Protokollsicherheit, z.B. durch Ausnutzen einer Fehlan-
passung von Transaktionskosten an den tatsächlichen Rechenaufwand. Weiters wird
die Notwendigkeit der Neubewertung von Sicherheitsrisiken durch den Vergleich von
Simulationsauswirkungen vor und nach der Einführung von EIP1559 aufgezeigt.
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Abstract

Blockchains are used to secure staggering amounts of over 1 trillion euro worth of
digital assets. With this in mind, it is crucial to be able to evaluate both currently
deployed and future implementations concerning different attack scenarios, in order to
gain deeper insights into their correctness, security and performance. However, the
fast-paced environment of cryptocurrencies renders exactly these aspects challenging to
achieve in practice, and mediocre tool support concerning the simulation of adversarial
behaviour leads to a research gap between theory and practice when it comes to evaluating
attacks against real-world blockchain protocols.

This thesis addresses this research gap by presenting a discrete event simulation engine for
Ethereum - the most widely used blockchain related to smart contract applications - that
is capable of evaluating various attack scenarios, as well as being highly customizable in
order to aid investigations into the impact these attacks can have on the overall system’s
security. To facilitate the development of such a simulation engine, a categorization
of known attacks against blockchains, as well as an overview of the state of the art of
existing blockchain simulators, is provided. In addition, the currently utilized Ethereum
client implementations are examined while also providing a deep dive into the code and
processes of the de-facto state-of-the-art Ethereum client, namely Geth. Hereby it is
shown that current simulators do not offer the desired functionality. Hence a novel attack
simulator is first designed and subsequently implemented as well as validated against
real-world Ethereum mainnet data. Based on the previous attack categorization, a subset
of relevant attacks is selected and investigated regarding the possible monetary rewards
and Ethereum destabilization an adversary could achieve, using the newly developed
simulation environment. Specifically, the selfish mining and the verifier’s dilemma attacks
were chosen because of their comparable properties and effects on the Ethereum network.

The results of this thesis show that the simulation of attack scenarios can lead to
interesting insights into the sometimes significant impact attacks can have on Ethereum,
e.g., by exploiting a mismatch between actual transaction execution costs and transaction
pricing. Furthermore, this work highlights the need for continuous re-evaluation of the
security impact of protocol changes through a comparison of the simulated implications
of pre- and post-EIP1559 parametrizations.
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CHAPTER 1
Introduction

Every day, millions of digital coins and tokens resembling billions of euros and US dollars
circulate in the opaque markets of blockchain-based cryptocurrencies. At the time of
writing, the entire cryptocurrency universe has a market capitalization of 1 trillion dollars
and a daily trade volume of approximately 70 billion dollars [Coi22c]. The two biggest
cryptocurrencies, Bitcoin and Ethereum, have a combined market capitalization of about
616 billion dollars with a daily volume of roughly 49 billion dollars [Coi22a, Coi22b].

A variety of studies and scientific publications have been presented to disclose potential
vulnerabilities of blockchains. However, while research has focussed on structural attacks
against blockchains, the outlined attacks have remained largely theoretically feasible,
with few works that investigate if the attack strategies are also practical. Often, the
attacks are shown to be feasible using only formal reasoning or approaches, such as the
Markov Decision Process (MDP), that require a high level of abstraction and therefore do
not necessarily capture their real-world feasibility, which requires taking protocol-specific
implementations into account. This is further emphasized by the lacking or incomplete
tools necessary for testing and developing [CPNX19, SGD20].

The value of distributed ledger technologies and the digital assets and tokens they
secure is – among other factors – highly based on people’s trust and belief in their
correct and secure operation. It is crucial to build or keep up trust in this regard through
sufficiently advanced and well-researched, secure protocols and the corresponding software
implementations. The problem is that a multitude of works, e.g., the Ethereum yellow
paper [Woo14], suggest that security can be guaranteed if and only if the main premises
hold and that, under certain adverse circumstances, the protocol may not be secure at all.
In particular in the cryptocurrency space, there can often exist a discrepancy between
theoretically possible attacks and real-world scenarios where such adversarial strategies
are rarely observed in practice, even if they are believed to be feasible. More importantly,
there remains a research gap between formally describing attack strategies and empirically
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1. Introduction

analyzing real-world systems in order to identify if participants are currently engaging in
such adversarial behaviour.

Consider, for example, the case of mining pools. While there exists theoretical work
that shows miners could gain an unfair advantage by deviating from protocol rules (e.g.,
by executing a selfish mining attack [ES13, NF19]), and it was suspected that miners
actually engage in such behaviour, there was little to no empirical research done to
undermine this assumption until the recent work from Yaish et al., which discovered
some details in block timestamps that effectively show that pools act maliciously to some
extent [YSZ22].

In order to investigate if hypothetical attack scenarios against blockchain technologies
presented by academia can readily be translated into practice, various approaches exist.
First of all, an exclusively analytic approach can be followed that tries to formally model
the entire protocol stack and the complex execution environment. This is quite an
expensive approach, taking a lot of time and effort, even more, if there should be the
possibility to change certain variables and factors easily. A second approach would be a
simulation environment that mirrors real-world behaviour as closely as possible and makes
it easy to simulate various attack scenarios. This is the approach that this work will follow
to help to close the research gap between theory and practice, particularly by developing a
simulator suitable to evaluate attack scenarios, which is also available on github.com and
open source [Mai22]. In 2019, a potential security vulnerability due to inadequate contract
execution pricing in the Ethereum Virtual Machine (EVM) was intentionally concealed
until its fix by the Ethereum foundation because it could have been used to attack the
Ethereum protocol [Fou21b]. While this attack was obviously considered feasible by the
developers and therefore was concealed, the existence of such vulnerabilities highlights
the usefulness of a realistic simulation environment in providing methods for analyzing
and testing protocol behaviour for novel attack strategies. Additionally, such simulation
environment could be beneficial for examining implications that follow from protocol
changes, like the transaction fee market changes that come with Ethereum Improvement
Proposal (EIP)1559 or the change of the underlying consensus model via the merge1

[eth22, Fou22].

Blockchains are peer-to-peer systems where the goal is a high degree of decentralization.
That is the case for network capacity, mining decentralization and client software diversity.
However, when it comes to Ethereum, there is one piece of software that is used by
a worryingly large majority of peers (about 86.93 % of the synchronized nodes) who
participate in the network, namely GoEthereum (Geth) [eth20b]. This is the de facto
standard Ethereum client software that nodes use to connect to the network, find
peers, send and receive messages, mine2 blocks and validate blocks and transactions,
among others [eth20a]. Due to the lack of good documentation and because of frequent
code changes, it is difficult to obtain and maintain a complete picture of the concrete

1Ethereum’s transition from Proof of Work (PoW) to Proof of Stake (PoS)
2After the merge, mining is not possible anymore, but block validation and construction are still

performed
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functionality without being highly involved. This work also addresses this issue by
providing an overview of how Geth works to the interested reader, however, it is clearly
not a long-term solution to this open issue that emerges from the current code development
practices of Geth.
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1. Introduction

1.1 Objectives & Research Questions
Before approaching our main objective of providing an Ethereum attack simulation
environment, preceding groundwork is done to build a solid foundation. At first, this
work aims to give an overview and a categorization of attacks and adversarial behaviour
in the context of blockchain technologies, as well as to describe some relevant attacks for
this thesis in more detail, resulting in the first research question (RQ):

RQ1 = What is the current state of the art in regard to attacks against blockchain
systems and how can they be categorized?

This work further focuses on outlining different available blockchain simulators, showing
their advantages and disadvantages, and ensuring that the proof-of-concept simulator will
be based on the most appropriate technologies to overcome issues that current simulators
may have. This leads to the formulation of our second research question:

RQ2 = What is the current state of the art regarding blockchain simulators?

One significant point that also helps with developing the simulator later on is to provide
an overview of how exactly the most widely used Ethereum client (Geth) works. This
will not only help develop a simulator but also help researchers quickly understand the
behaviour of Geth for future research, resulting in the third research question:

RQ3 = How does the most widespread client implementation, Geth, behave under
various conditions?

The main aim of this thesis is to provide an easy-to-use but complex enough proof-of-
concept Ethereum simulation environment, where the level of abstraction is tailored to
be more suitable for the Ethereum blockchain than generalized state-of-the-art simulators
and, in particular, is capable of simulating attack scenarios to address the existing research
gap between theory and practice by enabling effective and parametrizable simulations of
attacks, which leads to our fourth and main research question:

RQ4 = How can realistic Ethereum network setups and attacks against them be
simulated effectively?

Finally, the simulator is used to examine and outline the influence of attacks on blockchain
network security and attacker revenue in order to determine if certain hypothetical attack
scenarios against blockchain technologies presented by academia translate into practice.
For this step, the following attack scenarios are considered, namely the verifier’s Dilemma
[LTKS15, PTS19] and the selfish mining attack [NF19, SSZ17, NKMS16]. This leads to
the formulation of our fifth and last research question:

RQ5 = What impacts do the selfish mining attack and the verifier’s dilemma have on
real-world Ethereum setups?

4



1.2. Outline

1.2 Outline
1.2.1 Methodology
The methodological approach of this thesis includes the following steps:

1. Literature Review
During this stage, the state of the art of blockchain attacks and simulators is
examined with a focus on the Ethereum network by systematically gathering state-
of-the-art literature from conferences and journals as well as grey literature (see
Chapter 2 Attacks and Chapter 3 Simulators). This stage focuses on research
questions RQ1 and RQ2. The data to define the hypotheses for attack simulation
later in this work is collected via literature review too.

2. Technology Review
For developing an Ethereum simulator, it is crucial to gain deeper insights into
the most widely used and de facto standard implementation of the Ethereum
client. This is done by reverse engineering and reviewing the source code as well as
summarizing important features, properties and behaviour (see Chapter 4 Ethereum
Clients). Another part of this step is to compare and analyze existing simulator
frameworks to see what features are needed to fit the goals of this thesis (see
Chapter 3 Simulators). This step concentrates on research questions RQ2 and RQ3.

3. Empirical Evaluation

a) Development of a Proof-of-Concept Ethereum Simulator Implementation
A proof-of-concept simulator that enables the user to quickly simulate realistic
Ethereum network setups, including attackers or malicious nodes, is imple-
mented based on the results from technology review (see Chapter 5 Ethereum
Attack Simulator). This part focuses on research question RQ4.

b) Comparison & Evaluation of Simulator Results
The previously designed simulator solution allows simulating different forms of
adversarial behaviour and attack scenarios under various conditions, allowing
the user to adjust relevant parameters. To ensure that the simulator deliv-
ers results comparable to the real-world Ethereum network behaviour, it is
validated against real-world empirical data to verify that it produces realistic
results. To achieve this, properties, such as the block propagation time, are
measured and compared to real-world data, again concentrating on research
question RQ4 (see Chapter 5 Ethereum Attack Simulator).

c) Analysis of Attack Scenarios
Hypotheses are defined based on the results of papers from literature review
that cover the theoretical outcomes of selected attacks, followed by an extension
of the simulator application to enable the simulation of attacker-specific
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1. Introduction

behaviour. After conducting different attack simulations, the thereby gathered
data and results form the basis of discussion, where the proposed hypotheses
are analyzed regarding the feasibility, the consequences and the likelihood
of their realization (see Chapter 6 Attack Simulation). The focus here is on
research question RQ5.

1.2.2 Structure of Work

1. Introduction
This section gives a short introduction to this work and its objectives.

2. Blockchain Attacks
A comprehensive overview of blockchain attacks will be given in this section. This
includes categorization and a detailed explanation of selected attacks that are
important for this work.

3. Blockchain Simulators
An introduction to simulation and emulation is given here, but the central part
will be a comparison of various blockchain simulator frameworks to see if they fit
the goals for this thesis of efficiently simulating realistic Ethereum networks with
the possibility of adding malicious nodes and attackers and without the need for
immense computational power.

4. Ethereum Client
This part starts by showing an overview of different available Ethereum client
software used today and their role in the Ethereum network. Afterwards, the de-
facto standard Ethereum client (Geth) is examined, and its most essential features,
properties and behaviours are described in detail.

5. Proof-of-Concept Simulator Implementation
The steps of creating a proof-of-concept Ethereum attack simulator implementation
will be presented, together with a detailed explanation of its architecture and
behaviour, as well as how to extend the simulator if needed. Furthermore, the
validation results for the implementation are presented in this section.

6. Attack Simulation
Hypotheses based on theoretical attack scenarios are defined for selected attacks
against the Ethereum system, followed by the implementation and description of
the attacker in the context of the simulator. Finally, the hypotheses are tested
against the simulator results, which are discussed afterwards.

7. Conclusion
The results are summarized based on the research questions, limitations are discussed
and incentives for future research are given in this section.

6



CHAPTER 2
Attacks

With new technology comes new threats, and if this new technology secures digital
assets with potentially high valuations, the incentives to attack the system in order to
profit from the attacks are very strong. The goal when designing and implementing a
blockchain system is to minimize the attack surface because the success of such system
stands and falls with the trust in the technology used. Research has identified many
potential vulnerabilities, however, most of them have yet to be observed in the real
world against major cryptocurrencies. The problem here is that a multitude of works,
e.g., the Ethereum yellow paper [Woo14], suggest that security is given if and only if
main premises hold and that under certain adverse circumstances, such as an attacker
finding mispriced transaction fees, it is not secure at all, which makes it – in theory – less
trustworthy. However, especially in the cryptocurrency space, there is a large discrepancy
between theoretically feasible attacks and real-world scenarios, where some of those
attacks have little to no effect at all [CPNX19, SGD20].

In this chapter, an overview of the state of the art in research that focuses on attacks
against blockchain systems is provided and the attacks are systematically analyzed and
categorized. Subsequently, a closer look at selfish mining and verifier’s dilemma attacks
is taken, which forms the basis for modelling these attacks in the simulation environment.
For an overview of past successful attacks, please refer to Section A.1 Successful Attacks
against Blockchain Systems.
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2. Attacks

2.1 Categories
Depending on the properties that are used to categorize attacks on blockchains and
depending on the level of detail used for classification, different attack categories are
used to describe attacks. For example, Chia et al. [CHH+19] introduce three main
categories, namely (i) Operations Security (OPSEC), where the targets are individuals or
organizations and the goal is to gain access to critical information, (ii) Smart Contracts,
containing attacks that target applications running on the blockchain rather than the
blockchain itself and (iii) Consensus Protocol, which contains attacks that try to mali-
ciously gain advantages over other miners by using the flaws of the distributed consensus
mechanism of the blockchain.

Wang et al. [YWL+19] and Mosakheil [Mos18] consider the architecture of the blockchain
for their classification of attacks leading to the following five categories (i) Application
Layer, consisting mainly of attacks against central nodes, i.e., exchanges and mining
pools, software used to interact with blockchain systems and also traditional flaws such
as tampering a wallet address used for, e.g., an Initial Coin Offering (ICO), (ii) Execution
Layer, where vulnerabilities of software running on the blockchain, e.g., smart contracts,
are exploited, (iii) Data Model Layer, attacking the data model of a blockchain system
such as signature and encryption, or using the unerasable nature of information written
to a blockchain to distribute dangerous data, (iv) Consensus Layer, which again contains
attacks that try to maliciously gain advantages over other miners by using the flaws of
the distributed consensus mechanism of the blockchain and (v) Network Layer, containing
attacks that use the properties of a distributed system for their advantages. Mosakheil
[Mos18] also proposes categories based on the affected blockchain processes and the
primary targets of attacks, but these categories will not be further discussed here.

Saad et al. [SSN+19] show how to categorize attacks based on the primary affected
targets as well, but they also suggest utilizing the following categories for classification
(i) Blockchain Structure, containing attacks related to potential flaws in the blockchain
structure such as forks, (ii) Peer-to-Peer (P2P) system, where attacks using the distributed
nature and related protocols of blockchains, like, e.g., selfish mining, are pooled together
and (iii) Blockchain Application, consisting of attacks on applications utilizing the
blockchain systems.

Based on the categories defined in various sources above, this thesis introduces a slightly
modified and supplemented set of categories previously defined by Saad et al. and Chia
et al. [SSN+19, CHH+19], explained in the following:

• Development & Operations Security (DevOpSec)

• Blockchain Structure

• P2P System

• Blockchain Applications

8



2.1. Categories

2.1.1 DevOpSec Attacks

All incidents that occur because some adversary gains access to confidential information by
compromising an organization or individual fall into this category [CHH+19]. Additionally,
security threats that emerge from software development not following the highest security
standards, social engineering tactics and misappropriation are also contained in this
category. This type of attack is neither newly emerged nor limited to blockchain systems.
The simplest example here is someone unintentionally exposing a private key of a
cryptocurrency wallet and therefore having an adversary obtain control of the assets
within. Due to the nature of DevOpSec attacks, exploring them is not easily done through
simulation.

2.1.2 Blockchain Structure Attacks

Every implementation of a blockchain uses more or less different structures and con-
structs by design, e.g., linked lists or trees, and those constructs might have their own
vulnerabilities. Forks and orphaned blocks, for example, are possible consequences
[SSN+19]. Blockchain security is strongly dependent on cryptography, such as hash
functions and signatures, which are generally considered secure for now, but with further
development and research, they might not be safe in the future. Nevertheless, there are
some known attacks that belong in this category, like brute-forcing, collision attacks
and pre-image attacks [YWL+19, Mos18, SSN+19]. One example of a collision attack is,
e.g., the self-designed cryptographic hash function Curl-P-27 used by IOTA, which was
later shown to be insecure by Heilman et al. [HNT+20]. Because it is possible to store
arbitrary information on blockchains and due to the persisting, unerasable nature of the
blockchain, potentially problematic data can be stored on blockchains and such attacks
belong to this category too [YWL+19]. Analysis of some blockchain structure attacks
can be done exceptionally well through the usage of simulation (e.g., by changing various
limits and upper/lower bounds), others may not readily be analyzed through simulation
at all, e.g., hash collisions or brute force approaches, which may be again more in fields
of cryptography, formal analysis or statistics.

2.1.3 P2P System Attacks

Attacks on the P2P system are either directed towards structures and protocols common
in distributed systems such as the Domain Name System (DNS) or distributed ledger
protocol specific (e.g., consensus mechanism). This category includes all attack vectors
that affect the participants’ behaviour in a blockchain environment, as well as the
communication between various parties, e.g., DNS hijacks, eclipse attacks or selfish
mining attacks [SSN+19, Mos18]. P2P system attacks appear particularly suitable to
being explored and analyzed through simulation because, according to Aristizabal et al.,
“Despite of the recent interest in P2P systems and applications, little work has been done
in the formal analysis of P2P protocols” [ALRV05] and the replication of a live system

9



2. Attacks

with lots of participating nodes generally appears difficult, making simulation seem like
the best-suiting approach.

2.1.4 Blockchain Application Attacks
As blockchain systems can be used by different applications working on top of it or are
strongly related to it, more potential vulnerabilities are introduced. Applications working
on top of blockchain systems include, e.g., smart contracts or cryptocurrencies and token
systems [SSN+19, Mos18, YWL+19]. On the other hand, an example of an application
that is strongly related to blockchain technology is a cryptocurrency exchange [YWL+19].
Simulation of attacks on blockchain applications is rather difficult and may not be worthy
because, e.g., exchanges run their own proprietary software and attacks on them are
primarily not using flaws of a blockchain protocol itself.

2.1.5 Attack Categorization
Table 2.1 was created by systematically reviewing available literature about known attacks
and assigning them to the related categories based on their flaws used for execution.
However, this may not be a complete list as some attacks may be missing. An attack can
fall into multiple categories concurrently. The table shows that most known attacks fall
into the P2P system and consensus category. This may not be a coincidence because this
category provides one of the most extensive attack surfaces. The second most known
attacks are from the application category and with increasing applications, this attack
surface also increases. The least known amount of formally described attacks belong to
the categories DevOpSec and blockchain structure, however, that does not indicate their
importance in real-world scenarios, as Section A.1 Successful Attacks against Blockchain
Systems shows. The reason for this may be that it is difficult to analyze and describe
these attacks formally.

2.2 Attack Types Considered Within This Thesis
Table 2.1 shows that most attacks can be assigned to the P2P category, which is also
the category that is conducive to being analyzed through simulation, highlighting its
importance for the practical evaluation of those attacks. As there are a lot of possible
attacks in the world of blockchain systems, the upcoming section focuses only on the
selfish mining and verifier’s dilemma attacks from the P2P category and elaborates on
their execution in detail, as well as describes their variants.
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2.2. Attack Types Considered Within This Thesis

Attacks DevOpSec Structure P2P Application
Selfish Mining [NF19, SSZ17, NKMS16] ✓
Social Engineering [SGD20] ✓
Wallet Theft [SGD20, BDWW14] ✓ ✓
Flawed Key Generation [Llo15] ✓
Exchange [SGD20] ✓ ✓
Collision [GCR16] ✓
Finney [SSN+19] ✓
Double Spending [KAC12, Lei15] ✓
Bribery [JSZ+19, Bon17] ✓
DNS Hijack [AZV17] ✓
EVM Bytecode [Mos18] ✓
Brute-Force [YWL+19] ✓
Vector76 [SZ16] ✓
EREBUS [TCM+20] ✓
Consensus Delay [EGSvR16] ✓
Goldfinger [Bon17, JSZ+19] ✓
Majority / 51% [Bas15, SGD20] ✓
Pool Hopping [Ros11] ✓
BGP Hijacks [AZV17, TCM+20] ✓
Eclipse [MHG18, HKZG15, TCM+20] ✓
Block Withholding [CB14, SSZ17] ✓ ✓
Fork After Withholding [KKS+17] ✓ ✓
DDoS [SGD20, Mos18] ✓
Cryptojacking [ELMC18] ✓ ✓
Sybil [LSM05, SGD20] ✓
Overflow [SMGC20, Gri17] ✓
Delay Routing [AZV17] ✓
Verifier’s Dilemma [LTKS15, PTS19] ✓
Refund [MSH17] ✓
Forks [Eya14] ✓
IMA [JSZ+19] ✓
Partition [SCN+19] ✓
Orphaned Blocks [DW13] ✓
Timejacking [Vya14, SGD20] ✓
Replay [CPNX19] ✓
Alternative History [Lei15] ✓
Transaction Malleability [SGD20, ADMM15] ✓
Reentrancy [SMGC20, Gri17] ✓
Balance [SSN+19] ✓
Vulnerable Signature [BHH+14] ✓
Partition Routing [AZV17] ✓
Quantum [ABL+18] ✓

Table 2.1: Categorization of blockchain attacks 11
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2.2.1 Selfish Mining
The selfish mining attack is used by PoW miners that want to maximize their rewards
through a special strategy by exploiting the cryptocurrency’s incentive scheme through
preventing other honest peers from receiving their fair share. For the most part, this
strategy consists of a simple trick that forces other honest miners to waste computation
power on stale branches or blocks that do not make it into the final blockchain [ES13,
CPNX19, SGD20]. The trick is that selfish miners - in contrast to the standard mining
protocol - do not unveil a newly found block immediately but keep it secret so that the
honest miners still mine to find a block that will possibly be dismissed, while the selfish
miners work on top of the secret block, giving them a strategic advantage. This behaviour
results from the honest miners following the heaviest chain, the chain with the most
cumulative proof of work done. The moment the honest miners find a block of the same
chain height, the selfish miners release the secret block, leading to a block race in which
the adversary’s success probability depends on the tie-breaking selection rule in case of
two blocks occurring with the same height, on the attacker’s network connection and
on its ability to control or even censor the P2P network [ES13, NF19, SSZ17, LLW+19].
There are various selfish mining strategies available in literature that mainly differ in the
exact timing of the attacks, e.g., when to release a block under specific circumstances
[ES13, NF19, SSN+19, LRDJ18, SSZ17]. Figure 2.1 illustrates the selfish mining strategy,
with Mh being the honest miner and Ms being the selfish miner. The selfish mining
attack starts when Ms finds block bn+1.

Figure 2.1: Selfish mining illustration [SSN+19]

The fraction of mining power is relevant for selfish miners because, with a fraction too
low, it is not likely for the miners to profit from the slight advantage they have through
selfish mining. The fraction of mining power needed for selfish miners to be profitable
in Bitcoin is about 33.3%, in Ethereum, the threshold is about 16.3%, primarily due
to its uncle rewards [ES13, NF19]. Additionally, the placement in the network and the
importance of peers in the P2P network, modelled by a parameter γ that denotes the
percentage of peers deciding to mine on top of the attacker’s block, is vital to the selfish
miner, as this helps winning block races [SSZ17]. Eyal and Sirer [ES13] show that a
selfish mining attack can be detected by monitoring the stale block rates because they
rise in case of an attack. A second indicator may be a minimal time gap between the
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releases of two consecutive blocks [ES13].

This attack is particularly interesting because it does not only impact a miner’s profitabil-
ity but could possibly have major impacts on the security assumptions of the protocol
[ES13]. Simulation of this attack could gain deeper insights into this issue.

Variants

The block withholding attack is a variation of the selfish mining attack but is targeted
against mining pools. Mining pools keep track of provided hash rate through partial
PoWs or sub-puzzles that have to satisfy a smaller difficulty than the block’s target
difficulty and are, therefore, easier to find. The nonce to create such a sub-puzzle is
called share, which has a certain probability of solving the main PoW. The share is also
submitted to the pool manager to verify the participation of the miner. If a block is found
by a pool member, the miners are paid a share according to the number of valid shares
submitted [LV17]. The simplest way of performing such an attack is to only publish
shares or partial PoWs to the pool manager but never publish a found block. This will
harm the revenue of the pools that pay per share [ES13, KKS+17, Ros11]. Another
version of the block withholding attack is started by the manager of a mining pool, who
registers as a member of the victim pool and forwards tasks he receives to some of his
own miners, called infiltrating miners. If an infiltrating miner finds a partial PoW, he
forwards it to the victim pool, full PoWs are discarded. This way, the attacking pool
loses some of its mining power but additionally receives rewards from the victim pool
and also harms the outcome of the victim pool [Eya14, Mos18]. In the last variation of
the block withholding attack, called lie in wait, the attacking miner holds back his found
full PoW to submit further partial PoWs and extend his revenue but eventually submits
the full PoW too [Ros11].

A fork-after-withholding attack is an extension of the block withholding attack
combined with elements from the selfish mining attack that guarantees a higher outcome
for the attacker in any case [SCN+19, KKS+17, Mos18]. The attacker uses a part of its
mining power to mine for a victim pool and the other part for mining himself. If the
attacker finds partial PoWs, he submits them to the pool and if the attacker finds a
full PoW for the pool, he withholds it initially. There are now three different scenarios
available, (i) the attacker finds a block itself, so he receives the full block reward and
discards the full PoW of the victim pool, (ii) another miner that is not part of the victim
pool, publishes a block, then the attacker immediately releases the full PoW to the pool
which creates a fork / block race and (iii) another miner of the victim pool finds a full
PoW, making the attacker collect the rewards for its prior shares. There is now only
one scenario where the attacker does not receive a reward for a block, namely if the
submitted full PoW does not win the block race [KKS+17, Mos18].

13



2. Attacks

2.2.2 Verifier’s Dilemma
Another attack that aims at wasting computational resources of victims is the so-called
verifier’s dilemma which was first presented by Luu et al. [LTKS15]. In blockchain
systems such as Ethereum and Bitcoin, miners must verify a new block before appending
it to the blockchain and starting to mine a new block on top of it. However, this
verification process lacks remuneration for the miners in the protocol. The only incentive
for miners to verify all of the transactions and state transitions is that they will not
waste computation in case any transaction in the block is incorrect, which would lead to
other peers not accepting their block, and to keep the integrity so that the blockchain
system does not loose reputation if, e.g., all miners stop verifying blocks [LTKS15, TR19].
Problems start to arise if not all miners verify each and every transaction in a block.
Some miners could try to take advantage by not verifying the whole block, which gives
them the benefit of saving time and starting to mine on a new block earlier than others
while taking the risk of mining on top of an incorrect block. The risk of mining on top
of an incorrect block could also be exploited by an attacker sending incorrect blocks to
victims on purpose [PTS19, LTKS15].

Another problem arises in blockchain systems like Ethereum, which allows for arbitrary
computation through, e.g., smart contracts, by design. Although Ethereum tries to limit
the maximum computational effort for all state transitions per block through the use
of gas, which was introduced to meter execution costs and includes it in transaction fee
calculation, an adversary could deploy a smart contract that is purposely designed to
take as long as possible to be executed. With this smart contract, the attacker can fill
up a new block he mined with a transaction that uses the block’s whole gas (there is an
upper bound all transactions of a block combined can use at most, adjusted by protocol
rules [Com21c]), which leads to exceptional high verification effort to be taken on the
side of the miners receiving the block, without the need of monetary expenditure on the
side of the attacker, although he loses the rewards related to the gas of transactions the
block would usually be filled up with. This, in turn, leads to the adversary having an
advantage in mining the next block because he is able to start mining on top of the block
right away. This advantage decreases with the average block time of a blockchain system
[PTS19, ACLAvM20, LTKS15]. Pontiveros et al. [PTS19] showed that a smart contract
designed for delaying verification based on the EXP opcode of the Ethereum EVM takes
up to 1.21s on the Geth client with a 2.9 GHz Intel i5 processor and with a maximum of
8 million gas. At the time of writing, the gas limit was as high as 12.5 million, extending
the time to about 1.9 seconds. The fraction of hash power for the verifier’s dilemma
attack to be viable with a block reward of 2 Ether and an average transaction fee of 0.08
Ether when running the Geth client is 35% [PTS19].

As a consequence, miners could start to skip verification to overcome their disadvantage
from high verification times and this could open the door to other attacks and decrease
overall security of the blockchain system [LTKS15, ACLAvM20]. To mitigate the risk
of divergence from the protocol, different solutions were suggested (i) the miners could
validate non-conflicting transactions in parallel, decreasing the overall verification time of
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a block [ACLAvM20], (ii) adjust incentives like the average transaction fee and the block
reward [PTS19], (iii) a solution called the verification game, that outsources arbitrary
computational effort to TureBit, an off-chain solution for trustless computation [TR19]
and (iv) intentionally wrong blocks can be created to recognize and penalize nodes not
verifying a block [ACLAvM20].

2.3 Summary
In this chapter, categories of attacks on blockchain systems were proposed and detailed
explanations of each category were given. In succession, a categorization of known attacks
from literature was performed based on the flaws used for their execution. Finally, a
closer look at the selfish mining and verifier’s dilemma attacks was given, explaining
their implications in detail. These two attacks were chosen because of their comparable
properties and effects on the Ethereum network and this choice will lead to these two
attacks being evaluated with the simulator in Chapter 6 Attack Simulation.
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CHAPTER 3
Simulators

To develop systems and to further evaluate and test different design parametrizations
and configurations, without the need to adapt or even implement the whole system
or resource-heavy deployments, modelling is crucial. A model represents the system
that is to be tested in a way that is similar to it to a certain extent but considerably
more abstract and enables detailed analytics to help engineers build or change a system
while keeping the risk as low as possible [BCNN10, KB12]. Maria defines a good model
in a very clear way: “On the one hand, a model should be a close approximation to
the real system and incorporate most of its salient features. On the other hand, it
should not be so complex that it is impossible to understand and experiment with it.”
[Mar97]. Additionally, a good model takes the properties of the underlying system into
consideration and is selected according to the tools used in and the goals of a simulation
study. Simulation itself is the execution of a model [KB12, McG02].

To summarize, the situations modelling and simulation, in general, should be used include
but are not limited to:

• simulation of implementation changes of a system under test,

• evaluate a system that is not yet implemented,

• simulate different inputs,

• estimation of complex systems,

• develop knowledge related to a system (e.g., flight simulators for pilots),

• evaluation of the interaction between numerous actors,

• or entirely for fun purposes (e.g., games) [Whi19, BCNN10, Mar97].
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According to Banks et al., modelling and simulation should not be used if one of these
rules apply:

• The problem is solvable using common sense,

• the issue can be solved using analytics,

• running the experiments directly on a real-world system is less expensive,

• the possible savings are below the simulation costs or the resources regarding time
and costs are simply unavailable [BCNN10].

The scope of this chapter is to give an introduction and to examine the different types of
simulation and emulation, as well as to explore various available blockchain simulation
frameworks to give an overview and select the perfect fit for the targeted needs.

3.1 Simulation vs. Emulation
To begin with, there are two major ways of evaluating a model, simulation and emulation.
Although the term simulation is widely used as a supercategory for simulation and
emulation, there are major differences as well as advantages and disadvantages coming
with each possibility, and this section will guide through them.

3.1.1 Simulation

The abovementioned simulation model is the base for a simulation study and has to
represent the system under test in the closest way possible, it has to imitate the system.
Therefore, to create the model, certain assumptions are made and some details are
abstracted, e.g., implementation details or inputs and outputs from sensors and actuators.
Another essential property of a simulation study is repeatability. That means recurring
experiments with the same parameters should lead to the same results of the simulation
run. However, this is rather difficult to achieve for simulation models containing random
variables [McG02, Whi19, BCNN10]. According to McGregor, simulators are often used
to “[...] test and develop different solutions in order to arrive at a best solution, based on
an accepted set of pre-defined metrics.” [McG02]. An example of simulation application
is a modern high-tech factory that should be built in the most optimal way possible. To
evaluate this, it is impossible to build the factory upfront and move parts of it afterwards
if needed. Hence, a simulation model is created, including, e.g., all the assembly lines
and their inputs and outputs, and through reordering them, changing their timing or
other input parameters in the simulation study, the best way to build the factory can be
developed.
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3.1.2 Emulation
Emulation, on the other hand, can be carried out either against a real system that
is virtualized on a different host system or against an emulation model that works
similarly to a simulation model but includes parts of the real system under evaluation
[McG02, JH11]. Fully virtualized emulation describes, e.g., running software meant to
be used on thousands of nodes controlled by different entities in a distributed system
on a single host with a modified interface to emulate the entire network. Related to
software, an emulation model could be described as a simulation model, but instead of
abstracting away the full implementation, core parts of the original implementation of
the system under test are preserved and executed as part of the simulation. According
to McGregor, emulation is useful to “[...] test the operation of the control system under
different system loading conditions, and as a risk-free means of training system operators
and maintenance staff” [McG02]. With these two examples in mind, the advantages of
emulation are clear, they are meant to be as accurate as possible by keeping the original
implementation intact or preserving at least some parts of the system under test, but this
accuracy leads to very low scalability compared with simulation. In the above example
of testing a distributed system, an emulator could only run a tenth or even a hundredth
of nodes compared to a simulator [CFS06, McG02, JH11]. A good example of emulation
is a computer system that is tested for random user inputs. The system itself remains
unchanged and is then emulated using, for example, a fuzz tester.

3.2 Types of Simulators
Simulators and models can further be categorized according to various properties. This
section presents and explains these properties.

3.2.1 Time & State Progression
The most basic types of simulators can be categorized in are discrete or continuous
models or systems. Discrete models, on the one hand, change their state only at specific,
discrete times. The state of a continuous model, on the other hand, changes steadily
in time. It should be noted that not always a continuous model is used to model a
continuous system. Likewise, that applies to discrete models [BCNN10].

3.2.2 Static vs. Dynamic
Models that are static express a single point in time. Dynamic models express a system’s
change over time [BCNN10].
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3.2.3 Stochastic vs. Deterministic
If a model does not work with random variables, it is called deterministic and the same
input will lead to the same output every time. The opposite is called a stochastic model,
which leads to results only being statistical estimates because of the use of random
variables [BCNN10].

3.2.4 Implementation Strategy
Simulators can also be categorized based on their implementation strategy. Here the most
important ones are listed and explained. It is to be noted that not every implementation
strategy can cope with all the abovementioned simulation types, so some implementation
strategies are instead bound to specific types.

Discrete Event Simulation

Discrete simulation changes its state only at specific points in time. With discrete event
simulation, this happens through the occurrence of predefined events. Such events can be,
e.g., a customer arriving at a shop or a factory worker picking up a workpiece. Discrete
event simulation is a dynamic, mostly stochastically used and, as its name implies,
discrete simulation method [BW10, BCNN10]. According to Banks et al. and White et
al., the basic structure for discrete event simulation systems are:

• Inputs & outputs. Inputs, such as parameters, specify how the system is interacted
with, and outputs are the results of a simulation derived from the state at the end
of any given point.

• State, a collection of resources, global variables, time, etc., that describes a system
at a given point in time.

• Entities and their attributes, which describe objects like, e.g., humans, a server
node, etc. and their attributes like, e.g., system memory, download speed, etc.

• Events, predefined occurrences that change the state. They are kept in an event
queue throughout the simulation run, ordered by the time of future occurrence.

• Activities that are generated by events and possibly lead to the occurrence of new
events. Such activities include, e.g., a computation task whose need arises after the
occurrence of an event.

• Resources, a collection of limited capacity that can be either globally available to
all entities or bound to specific entities.

• Random number generator that generates pseudo-random numbers according to a
predefined distribution.
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• Clock, a simple timestamp variable representing the current time within a simulation
run.

• Statistics Collectors that record events, activities, their duration, system state at
given intervals or any statistically relevant number that arises from the simulation
run and is needed to create the desired results. [BCNN10, Whi19].

Agent-Based Simulation

The idea behind Agent-Based Simulation is not to model the whole system under test
but instead model the specific core entities of the system – so-called agents – together
with their interaction with one another, the agent-to-environment interaction as well as
their internal behaviour that leads to such interactions or follows interactions with other
agents or the environment. The environment is responsible for keeping global resources
and variables, advancing time and visualization [KB12, CQHM19]. This simulation
implementation can execute discrete, continuous, stochastic and deterministic dynamic
models. Agent-based simulation has a wide field of applications and according to Chitra
et al., it “is used by practitioners and researchers in algorithmic trading, artificial
intelligence, autonomous vehicles, cybersecurity, economics, energy allocation, and by
the US Commodities and Futures Trading Commission to detect fraudulent market
activity” [CQHM19]. Because this simulation variant does not model the whole system
but instead generates it from agent interactions, one of the main advantages is that local
interaction can be observed better and, although the agent’s behaviour can be complex,
it can be visualized easier. The downsides of agent-based simulation are a rather complex
implementation, as well as difficult validation and verification [KB12].

Trace-Driven Simulation

The goal of Trace-Driven Simulation is to use logs of a small part of a real-world
application, so-called traces, and develop a model based on this to simulate a system of
larger scope. The first step in this kind of simulation strategy is to collect traces from
the system under test. An example goal would be to simulate the network traffic of the
whole internet, but traces are only collected from some nodes. These traces are now
edited in step two to be able to use them as input to the simulation model. In step three,
the model is generated so that it takes the traces of a small part of the internet traffic
as input and is able to simulate the whole internet traffic based on this [FP94, OL04].
Due to its nature of requiring trace collection, this method is limited to the simulation of
computer systems. [HN05]
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Monte Carlo Simulation

Monte Carlo Simulation is another word for stochastic simulation. Any simulation
approach that uses stochastic methods is also a Monte Carlo Simulation [Bon01]. It
describes the usage of one or more Probability Density Functions (PDFs) in the simulation
process to simulate variability. These PDFs have to be defined a priori, which is rather
difficult in the case of not yet existing systems under test, but expert knowledge from
past simulations can be used to estimate the PDFs in this case. After defining the PDFs,
the model and its inputs, the simulation runs a certain number of times which gives a
probability for the respective outcomes after computing the statistics [HGL10, Bon01].
An example would be a simulator rolling two dice, executed, e.g., a hundred times, which
most probably assigns the highest probability to the number 7 as outcome for such a
dice roll.

System Dynamics Simulation

The approach of System Dynamics Simulation is to make reliable simulations of sparsely
structured problems possible. It combines the “traditional management theory, cybernet-
ics and computer simulation” to do that [Ła17]. Cybernetics is built on feedback theory,
which also takes delayed reactions to events into account and additionally differentiates
between important and irrelevant data related to the context. System dynamics simula-
tion is often combined with user interfaces to adapt inputs and visualize the different
effects immediately [Ła17]. An example of a system dynamics simulation is, e.g., the
adoption of a newly launched product with regard to the potential of the product, the
early adopters and the amount and pace of imitators on the market.

3.3 Simulation Study
According to Banks et al. and Maria, the steps for a simulation study are the following:

1. Identify and formulate the problem, make clear what shall be achieved and how
this will be done.

2. Collect real-world data to set correct parameters, e.g., for random variable distri-
butions, and if a production system exists, to validate the simulation model later
on.

3. Develop a model, this includes the conceptualization and translation of the real-world
system into a model.

4. Verify, validate and document the simulator to lay the foundations for correct
results. Verification means ensuring the simulator does what is specified, if it
is programmatically correct. Validation means to actually ensure the proper
specifications exist. The latter is done by comparing the first simulator results to
real-world data, if existing.
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5. Design the experiment according to the problem specification. Decide what param-
eters should be used and the length and amount of runs, etc.

6. Run the experiment.

7. Analyze the results of the experiments, go back to step 5 if more runs or other
simulation parameters are needed.

8. Interpret and report results [BCNN10, Mar97].

3.4 Existing Simulators
There are a number of blockchain simulators available to this date and most of them are
based on discrete event simulation. The three most recent implementations are Blocksim,
created by Faria and Correira, another simulator named Blocksim, created by Alharby
and van Morsel and SimBlock by Aoki et al. [FC19] [AvM20] [AOK+19]. They all use
a high level of abstraction, making it possible to create scalable simulations of PoW
blockchains with the possibility to adjust different input parameters. The option to
simulate a variety of PoW blockchains requires them to ignore or abstract away some of
the specific functionality and unique properties of the client applications, though, which
is likely to impact accuracy. This has to be done because it is not feasible to simulate the
computationally expensive part of solving hash puzzles. Emulation, on the other hand, is
not commonly used in scientific literature, as the required resources hamper scalability
and simulation speed, although Miller et al. appear to address this issue through their
Bitcoin simulator, which directly executes the Bitcoin reference client implementation
[MJ]. Another approach was taken by Rosa et al. in 2019 with their agent-based
LUNES-Blockchain simulator, which makes use of parallel and distributed simulation
for a considerable performance boost [RDF19]. Within this section, existing blockchain
simulators that appear relevant to this work are presented and their characteristics and
properties are compared to one another.

Simulators are examined for the following properties:

• Suitability for simulating Ethereum, which is crucial for this thesis,

• simulation of attacks, so that adversaries can be integrated into the simulation,

• network modelling, which is a vital feature to simulate the implications of certain
attacks,

• authenticity of the consensus model, to get the most detailed approximation of the
real Ethereum consensus model,

• extensibility, again essential to integrate attackers into an existing simulation
framework, but also crucial for simulator extension in general and

• resource intensiveness, so one can execute simulations on a single machine.
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3.4.1 Blocksim (Faria & Correira)
The BlockSim (Faria & Correira) (Blocksim (F)) simulator is a stochastic, dynamic
Discrete Event Simulation Engine (DESE) created to simulate various blockchain systems
and is powered by Python and the underlying framework PySim. As part of the blockchain
simulator analysis, the author examined the codebase of Blocksim (F) and found it to be
well-structured and clear to understand. The nodes are categorized as miners and non-
miners. All nodes are interconnected, so every node has all other nodes as peers. It further
includes a network model, allowing the configuration of different network characteristics,
such as latency and throughput, that are based on real-world measurement data. A
model of Ethereum’s block validation is implemented by adding randomized delays, but
the granularity of the simulator does not add execution overhead based on the transaction
level and hence does not simulate gas. The block creation is controlled centralized,
meaning that the simulation world decides which node will create the next block based
on a normal distribution. The transaction creation is also controlled centralized and
the simulation engine chooses a node that broadcasts them in batches. Blocksim (F)
claims to require approximately 27 minutes to simulate a network with 400 nodes and
2000 transactions. In local simulation experiments, the author of this thesis was able to
confirm these runtime estimates [FC19, Far].

However, Blocksim (F) does not include some of the details of block propagation, for
example, if a new block is mined by a node or received from another node on the network,
it only broadcasts the block hashes to its peers, whereas in Ethereum the execution client
Geth broadcasts the whole block to some of its peers and the hashes to the rest. This is
important when simulating attacks on the Ethereum network, where the reception order
of a new block is crucial. Furthermore, the missing peer selection does not reflect a live
Ethereum network since, in the simulated network, the communication graph is fully
connected, giving every node a distance of 1. Additionally, centralized block creation is
not suitable for the goal of this work because it is essential for attack simulation, such
as the selfish mining attack, that the block creation depends on the local node state. A
problem found during the code review conducted by the author of this thesis may be
the difficulty calculation of Blocksim (F). The difficulty is usually calculated in a way
that blocks created in a shorter amount of time have a higher difficulty, which is crucial
for block ordering. The way it is implemented here assigns a higher difficulty to a block
that is created in more time, which appears to break the expected properties of a PoW
blockchain (see blocksim/models/consensus.py#calc_difficulty [Far21]) [FC19].

3.4.2 Blocksim (Alharby & van Morsel)
BlockSim (Alharby & van Morsel) (Blocksim (A)) is a light-weighted, stochastic, dynamic
DESE and is, much like Blocksim (F), also powered by Python but does not use a
discrete event simulation framework. Instead, it implements the event scheduler and
queue from scratch and allows easy extension and simulation of different blockchains,
all while providing a well-structured codebase. Nodes are categorized into full and
light nodes, which has an effect on transaction handling. Within this simulator, the
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communication graph is also fully connected, giving every node a distance of 1. A highly
simplified network is modelled within Blocksim (A), only including a delay based on
an exponential distribution that is configurable as well as abstracting away the details
of block propagation in Ethereum. In regard to configurability, Blocksim (A) allows
configuring the most interesting properties like the block interval, size and propagation
delay, transactions per second, size and average fee, as well as the number of nodes in
the network and uncle block properties. The block creation is modelled on a node level
by using an exponential distribution. Transaction gas usage and block verification are
not modelled in any way, which unfortunately makes Blocksim (A) impractical to use
for this thesis [AvM20, AvM19]. All those findings were inferred from a code review the
author has conducted.

3.4.3 SimBlock
Another DESE for simulating various blockchains is SimBlock by Aoki et al., however, it
is only verified using Bitcoin data. This is, again, an event-driven, stochastic, dynamic
and discrete simulator. This is the first simulator considered in this thesis that actually
uses a peer selection algorithm. The network model, in general, is sophisticated within
SimBlock, also including throughput. Block creation is modelled on the node level,
whereas transaction creation and propagation, based on the code review, appear not
to be modelled at all and block verification seems to be missing too. Configuration
possibilities include block size and mining interval, number of nodes and peers, location
of the node and hash power, as well as network bandwidth and propagation delay. The
paper introducing SimBlock offers no details about the speed of execution [AOK+19].
Although SimBlock offers the unique feature of peer selection, the missing model of
block verification and its dependence on transaction gas usage, together with the missing
validation of Ethereum simulations, renders the simulator ineligible for the goals of this
work.

3.4.4 LUNES
Up to now, all simulators outlined in this section were for single-threaded use only.
The agent-based, discrete, Large Unstructured Network Simulator (LUNES) by Rosa et
al. is a Parallel and Distributed Simulation (PADS) simulator and the first of its kind
that manages to execute parallel simulation. This is achieved using the Advances RTI
System (ARTIS) middleware and a software layer on top of it named Generic Adaptive
Interaction Architecture (GAIA). Blockchain nodes are represented as agents and this
should ease the development of a simulation model and increase extensibility, according
to Rosa et al.. Although the LUNES paper claims a significant speedup in comparison
to single-threaded DESEs, it admits that the parallel execution on different execution
units (e.g., CPU cores) leads to “[...] a relevant amount of execution time is spent in
delivering the interactions between the model components.” [RDF19]. Together with a
focus of this work on a sophisticated message-passing model between nodes, this may
lead to a significantly higher execution time compared to single-threaded simulators.
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Additionally, the segmentation of a simulation model for the use in a PADS is much more
complex than with a DESE, which leads to more complex simulator verification. The
paper about LUNES focuses on Bitcoin only and unfortunately, it does not disclose much
more information about simulation details the implementation provides with regard to
the level of sophistication of the underlying models [RDF19].

3.4.5 Shadow-Bitcoin
The Shadow-Bitcoin simulator is a plugin developed by Miller and Jansen for an existing
simulator framework named Shadow, capable of parallel and discrete event simulation
and consisting of a simulator core and virtualized software executed by plugins. Miller
and Jansen developed the Shadow-Bitcoin plugin, which is capable of emulating the
Bitcoin core software by providing interfaces for inputs and outputs as well as application
hooks to the Shadow core. This makes it the first blockchain simulator providing real
emulation capabilities [MJ]. However, while this adds much precision to the simulation
results, it is not suitable for a wide variety of applications and tests because adapting the
core implementation of a blockchain client is often not feasible. Furthermore, emulation
remains resource-intensive and the adaption of this plugin to fit the Ethereum protocol
is challenging to implement, making it not ideally suited for the envisioned goals of this
thesis.

3.5 Summary

Sim. ETH 1 Consensus 2 Network 3 Attacks 4 Ext. 5 Resources 6

Blocksim (F) + -- ~ -- + ++
Blocksim (A) + -- - -- + ++

SimBlock - -- + -- + ++
LUNES - + + -- + --

Shadow-Bitcoin - ++ ++ -- - --
1 Suitability for simulating Ethereum
2 Authenticity of consensus model
3 Network modelling
4 Simulation of attack scenarios
5 Extensibility of the simulator
6 Resource intensiveness

Table 3.1: Comparison of existing simulator frameworks

In conclusion, simulators and emulators are used to reach different goals. Simulators are
best suited to, e.g., quickly test different internal parameters and their impact on the
overall system behaviour and characteristics. It is also the only possible choice if the
system under test does not yet exist. Emulation, on the other hand, is useful, e.g., if the
system itself shall stay intact and only external influences like load, network conditions
or human interaction should be modelled, or if there are enough resources available to
use the most precise method. Finally, if there is a need to test a system consisting of

26



3.5. Summary

a significant amount of instances of the system under test – e.g., a distributed system
with a lot of nodes and communication between nodes – without having many resources
available, simulators are the way to go.

Table 3.1 gives an overview of examined simulators and rates their properties on a rank
ranging from -- to ++. First thing that can be stated is that none of the simulator
frameworks is prepared to simulate adversarial behaviour, which is a base requirement for
the purposes of this thesis. However, this could be bypassed by offering good extensibility
by design. The collected data further shows that the simulators claiming to be able to
simulate Ethereum have rather restricted consensus and network models, rendering it
difficult to simulate anything but normal network behaviour. They offer extensibility
up to a certain amount through their well-structured codebase and are lightweight to
execute. The multi-threaded simulators LUNES and Shadow-Bitcoin, on the other hand,
offer sophisticated consensus and network models but have neither shown to enable
simulating the Ethereum network nor offer great extensibility. Additionally, they are
resource-intensive to run, especially when handling a significant amount of inter-node
messages.

Regarding the existing simulators, we concluded that there is not a single simulation
framework available that implements or models all details needed for sufficiently detailed
attack simulation against the Ethereum network. The reasons include the inability to
offer attack simulation out of the box, combined with either a consensus and network
model lacking necessary detail for single-threaded simulators or combined with resource-
intensiveness and insufficient or burdensome extensibility for multi-threaded simulators.
Extension of existing simulator frameworks is considered infeasible because no framework
offers preconditions that are near our requirements. Building a new simulator with
proper design decisions for Ethereum attack simulation made upfront is considered viable.
Details of our simulator will be discussed in Chapter 5 Ethereum Attack Simulator).
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CHAPTER 4
Ethereum Clients

According to ethernodes.org, Geth is the most used Ethereum client at the time of writing.
Out of 11232 full nodes connected to the mainnet, 9187 (81.79 %) use Geth, followed by
openethereum, together with its predecessor parity with only 1505 (13.40 %). If only the
8438 fully synced nodes are taken into account, geth holds a share of 86.93 % and second-
placed openethereum only 10.70 % (see Figure 4.1) [eth20b, eth20a, Com20]. Simulator
implementations proposed by research make assumptions on how the Ethereum client
software behaves, however, in practice, there can be discrepancies, e.g., the Blocksim
(F) application assumes that a client never receives a full block within one message, but
actually, when using the geth client, a full block is sent to at least some connected peers
upon block mining or block reception [Com20] [FC19]. The main problem here is that
although there is a whitepaper and a yellowpaper showing the technical specifications,
the implementation sometimes differs slightly from that or the specifications leave out
some details necessary in some models needed for Ethereum simulation [Woo14, But21].

This thesis takes a deep look at Ethereum clients and their behaviour by giving an
overview of the available clients, their tasks and also systematically reviewing the code
of the most popular and de-facto standard client, Geth, to help researchers and other
interested readers quickly understand its behaviour, as well as to do the groundwork for
modelling the simulator implementation later in this thesis.

4.1 Clients
Ethereum clients have a broad area of application when it comes to their tasks in the
Ethereum blockchain environment. They are not only used to connect to the Ethereum
network, they themselves make up the network. This implies that if a client is slightly
changed so that, at some point, a contradiction to the original client is created, then a
new network is created, called a hard fork. Available Ethereum clients at the time of
writing include but are not limited to:
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Figure 4.1: Ethereum clients distribution [eth20b]

• Geth [eth20a]

• Openethereum (former parity) [Com20]

• Nethermind [Net21]

• Coregeth [Com21a]

• Besu [Fou21c]

• Trinity [eth21b]

• Aleth (former cpp-ethereum) [Com21b] and

• Ethereumj [Com21c].

When comparing the amount of available Ethereum clients with the distribution of clients
(see Figure 4.1), it clearly shows that although many different clients are available, most
participants use the Geth client. This may be because Geth is one of the original Ethereum
implementations, but it may be a problem regarding the goal of decentralization, as the
need for decentralization also applies to client software to mitigate the possible errors in
a single client application.

The tasks a client has to manage within the Ethereum network are:

• connect to the P2P network

• select peers

• help peers to select peers
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• sync blockchain state with peers

• define the consensus mechanism

• propagate blocks

• propagate transactions

• verify blocks and transactions

• mine blocks

• keep the blockchain state

• create and manage accounts/wallets

• light client mode

• provide a Javascript Object Notation (JSON) Remote Procedure Call (RPC)
Application Programming Interface (API).

There is also another difference between clients’ usage because a client can be used to
start (i) a full node or full client that fulfills all of the abovementioned tasks and (ii) a
light node or light client that is designed to run the minimal functions to be able to
have a high certainty about the Ethereum blockchain state with minimal space and
computational power requirements to run it on, e.g., mobile phones by downloading only
block headers and verifying just enough to meet this demands. Furthermore, light clients
can be divided into light clients, which process all blocks, partially light clients, which
process all blocks but have limited storage and fully light clients, which mainly process
nothing and are bound to, e.g., transactions that affect a single account [Fou, Woo14].
However, this work will not go into more detail regarding light clients.

4.2 GoEthereum (Geth)
Geth is one of the three original Ethereum protocol implementations, together with cpp-
ethereum, which is now called Aleth [Com21b] and Pyethapp, which has been officially
deprecated since 19.07.2018 [eth21a]. Geth is written in Golang (Go), a compiled language
created in 2009 by employees of Google Inc. [PTG09]. With a share of >80% (see Figure
4.1), Geth is currently the most widely used Ethereum client available. The upcoming
sections focus on systematically reviewing the code of Geth and giving an overview of its
behaviour with a focus on the communication between nodes. The basis for the code
review in the upcoming sections of the thesis is version v1.9.21 of Geth with revision
number d81c9d9b from 09.09.2020 [eth20a].
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4.2.1 Difficulty Calculation

The difficulty calculation serves multiple purposes. First of all, it helps selecting the
longest chain (the chain with the highest total difficulty, which is the accumulated
difficulty of all blocks in the main chain), which is crucial for the Ethereum consensus
algorithm. Additionally, it is adjusted with every mined block to keep the time between
mined blocks consistent [Woo14]. This is done by increasing the difficulty of the block
when it was mined earlier than 9 seconds after the last block, decreasing it if it was mined
later or equally 18 seconds after the last block, and keeping it the same when mined after
9 to 18 seconds. If the block includes uncles, the range where the difficulty stays the same
is shifted to between 18 and 27 seconds[Woo14]. This prefers blocks containing uncles by
assigning them a higher difficulty having a similar timestamp. Uncle blocks are stale or
orphaned blocks not contained in the longest chain, e.g., because they lost a block race,
that are referenced by a block in the longest chain, also called nephew block, and thus are
also compensated by the Ethereum protocol [LHXL20]. The minimum difficulty a block
can have is 131072, which is also the genesis block’s difficulty. The so-called difficulty
bomb is another thing that adjusts difficulty towards a higher value. This is designed to
increase the difficulty at an exponential rate every 100000 blocks once a given block is
passed, with the idea of forcing the transition to a PoS consensus. The current difficulty
bomb starts at block 9000000, this block was already mined. That, and the uncle rate
of the Ethereum network, is the reason why higher block times than ten seconds can
be observed in practice [Woo14]. Algorithm 4.1 shows how the difficulty of a block is
calculated in detail. It should be noted that divisions in pseudo code presented in this
section are integer divisions.

4.2.2 Peer Selection

When an Ethereum node connects to the network for the first time, it uses hardcoded
bootnodes to find an entrypoint. The sole purpose of bootnodes is to enable nodes
to bootstrap their P2P network, i.e., to discover their first peers. When the first
actual peer node is found, other peers are discovered using a Kademilia-like P2P protocol
[MHG18, ethc, ethd, ethb]. For a node operator, it is also possible to add static or trusted
nodes, while a connection to the former is always kept, the latter can be replaced by other
nodes in the discovery process, but they are always allowed to connect [MHG18, ethc, etha].
As the network and discovery processes are comprehensive parts of the Ethereum system
that would need strong knowledge, examining this would go far beyond the scope of
this thesis. Interested readers may use one or more of the following references to have
a look at this [MHG18, ethc, ethd, ethb] or lookup the processes within Geth code
themselves (see p2p/server.go#Start, p2p/discover.go#loop, p2p/server.go#listenLoop,
p2p/server.go#SetupConn, p2p/server.go#startDial [eth20a]).
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Algorithm 4.1: Ethereum difficulty calculation (see consensus/ethash/consen-
sus.go#CalcDifficulty [eth20a])

Input: The timestamp of the block λ, the parent block header ρ, the bomb
delay χ

Output: Block difficulty x
1 parentT ime ← Time(ρ);
2 x ← λ − parentT ime;
3 x ← x/9;
4 if HasUncles(ρ) then
5 x ← 2 − x;
6 else
7 x ← 1 − x;
8 end
9 x ←Max(−99, x);

10 y ← Difficulty(ρ)/2048;
11 x ← x ∗ y;
12 x ← Difficulty(ρ)+x;
13 x ←Max(131072, x);
14 fakeBlockNumber ← 0;
15 if BlockNumber(ρ) ≥ χ then
16 fakeBlockNumber ← BlockNumber(ρ)−χ;
17 end
18 periodCount ← fakeBlockNumber/100000;
19 if periodCount > 1 then
20 y ← periodCount − 2;
21 y ← 2y;
22 x ← x + y;
23 end
24 return x;

4.2.3 Communication with Peers
Ethereum uses a protocol called Ethereum Wire Protocol for communication between
nodes, which is based on Ethereum’s version of the Recursive Lenght Prefix (RLP)
protocol, called RLPx [etha]. This section elaborates on the Geth implementation of this
protocol.

33



4. Ethereum Clients

Block Hashes Received

If a node receives a New Block Hashes Message containing one or more block hashes,
it filters out all known block hashes and schedules all blocks that remain unknown for
fetching using a Get Block Headers Message, which is transmitted to the peer sending
the unknown hashes (see Section 4.2.3 Get Block Headers). All blocks are marked as
known by the sending peer (see eth/handler.go#687-705 [eth20a]). Figure 4.2 shows the
related state diagram.

Figure 4.2: Block hashes reception state diagram

Transaction Hashes Received

Once a node receives a Transaction Hashes Message, which may consist of one or more
transaction hashes, the protocol marks the transaction as known by the peer it has
received it from, checks if the transaction is already known and marks all unknown
transactions for fetching, using the Get Transactions Message (see Section 4.2.3 Get
Transactions). If the transaction is received from other origins while fetching, the fetching
process is stopped (see eth/handler.go#743-757 [eth20a]).

Get Transactions

Ethereum nodes receive Get Transactions Messages with an attached array of hashes
that the peer node wants to obtain the related transactions for. The receiving node
decodes the hashes, and for each hash it knows the corresponding transaction for, the
transaction is added to the response object. Unknown transactions are skipped. After all
hashes have been processed, the node answers with a Pooled Transaction Message (see
eth/handler.go#759-793 [eth20a]).

Transactions Received

There are two types of messages available for receiving new transactions, (i) a Transaction
Messages, which is sent to a subset of one node’s peers after a new transaction is received
and verified and (ii) a Pooled Transaction Messages, which is only sent when a node
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specifically requested transactions (see Section 4.2.3 Get Transactions), but both of the
messages are handled similarly. On reception, all transactions are marked as known by the
sending peer and each transaction undergoes basic validation, where the hash, the size, the
intrinsic and maximum gas, sender nonce and balance, the gas price and the transaction
value are checked. After successful validation, the transaction is marked ready to be
mined and broadcasted to connected peers that do not know about it, sending the whole
transaction object to a subset of the peers and announcing it to the others as explained
in Section 4.2.3 Broadcasting Blocks & Transactions (see eth/tx_fetcher.go#Enqueue,
eth/tx_pool.go#addTxs, eth/tx_pool.go#runReorg [eth20a]).

Get Block Headers

A Get Block Headers Message contains either the hash or the number of the origin block
(the block the query starts with) and additionally contains the amount of headers to
query, a flag named reverse, indicating if the query is iterating towards the genesis block
(if true) or towards the latest block (if false). The last property of this message is an
integer variable named skip that denotes how many blocks should be skipped between
consecutive headers during the retrieval process. If the origin block is unknown, the
process is stopped, the same is true if an end of the chain is reached while querying. (see
eth/handler.go#398-483 [eth20a]). The answer to such a message is a Block Headers
Message (see Section 4.2.3 Block Headers Received).

Block Headers Received

After the reception of a Block Headers Message, the node verifies that it only received one
header, otherwise, the node is currently out of sync or in sync mode and the headers are
delivered to the downloader (see Subsection Synchronize with Peer). If that is true, the
headers are divided into empty blocks, incomplete blocks and unknown blocks. Empty
blocks do not contain any transactions or uncles and are scheduled for chain import
immediately (see Section 4.2.3 New Block Received). Incomplete blocks are scheduled for
body retrieval (see Section 4.2.3 Get Block Bodies). Unknown blocks are the ones that
the node did not explicitly query before. Such headers are delivered to the downloader
to check for possible asynchronicity on the next run, but that should only occur in
a sync process. The process is pictured in Figure 4.2 (see eth/handler.go#485-536,
eth/fetcher/block_fetcher.go#501-591 [eth20a]).

Get Block Bodies

Get Block Bodies Messages contain one or more hashes a querying node wants to retrieve
the bodies to. (see eth/handler.go#538-563 [eth20a]). The answer to such a message is a
Block Bodies Message (see Section 4.2.3 Block Bodies Received).
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Block Bodies Received

Once a Block Bodies Message is received, the receiving node tries to match the tuples of
transactions and uncles to previously dispatched block body retrievals by computing and
comparing the transaction and uncles hash to the ones from the header. If a match is
found, the new block is assembled and scheduled for chain import Section 4.2.3 New Block
Received). If there are remaining tuples of transactions and uncles that have not been
requested, they are delivered to the downloader to check for a possible asynchronicity
during the next cycle (see eth/handler.go#565-589, eth/fetcher/block_fetcher.go#593-
659 [eth20a]).

New Block Received

If a new block is received, which either happens on the reception of a whole new block or
after a block body has successfully been matched to a block header, the validation begins.
If any validation steps fail with an error, the transmitting peer is dropped. In case we
came here after matching a header to a body, the first step of checking the transaction and
uncle hash and marking the block known by the peer is skipped. If now the block number
is in the future (i.e., if the block number is more than one ahead of the current chain’s
head), the block is scheduled for later import, which is done by adding it to the end of the
import queue. Afterwards, a check is done if the block has either an unknown parent or is
too old to possibly become an uncle, and if that check fails, the block is dismissed. Now
the header is verified, and if everything is fine to this point, the whole block is broadcasted
to a subset of peers (see Section 4.2.3 Broadcasting Blocks & Transactions and Algorithm
4.1 with propagate set to true). Afterwards, the node tries to insert the block into the
chain (see Section 4.2.4 Insert Block), and only if that terminates without an error, the
block hash is propagated to the rest of the peers not knowing the block(see Section 4.2.3
Broadcasting Blocks & Transactions and Algorithm 4.1 with propagate set to false). Figure
4.3 shows a comprehensive state diagram modelling this process (see eth/handler.go#707-
741, eth/fetcher/block_fetcher.go#348-373, eth/fetcher/block_fetcher.go#importBlocks
[eth20a]).

Broadcasting Blocks & Transactions

To keep block and transaction propagation delays throughout the network low while
concurrently minimizing traffic, Ethereum broadcasts a whole block or transaction to a
subset of a node’s peers and only announces them to the rest, briefly known as push-pull.
This is done via a simple algorithm that broadcasts the whole block or transaction to
the square root of the total number of the node’s peers or announces the hash of it to all
its peers depending on a boolean flag (see Algorithm 4.2). If the respective function is
then consecutively called twice, once with the flag set to true and once set to false, the
block or transaction is propagated to all of the peers.
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Figure 4.3: Block reception state diagram

Algorithm 4.2: Ethereum block & transaction broadcast (see
eth/handler.go#822-891 [eth20a])

Input: A block or transaction β, a set of connected peers ρ, a boolean propagate
1 hash ← Hash(β);
2 peers ← PeersWithoutBlockOrTx(ρ);
3 if propagate then
4 peers ← peers[0 : int(

√
Size(peers))];

5 forall peer of peers do
6 Send(β, peer);
7 MarkKnown(β, peer);
8 end
9 return;

10 end
11 forall peer of peers do
12 Announce(hash, peer);
13 MarkKnown(β, peer);
14 end

Get Node Data

Nodes use a Get Node Data Message during the sync process to request arbitrary data
from the state trie by passing hashes that represent them. If the request is successful, a
requesting node receives a Node Data Message in response (see 14). A receiving node
checks if the given trie node is present locally and returns all requested trie nodes (see
eth/downloader/statesync.go#loop, eth/handler.go#591-627 [eth20a]).
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Node Data Received

A Node Data Message contains an array of byte arrays that are related to the trie node.
Once it is received, the data is passed to the downloader, which is responsible for the
sync process (see eth/downloader/statesync.go#loop, eth/handler.go#629-638 [eth20a]).

Get Transaction Receipts

Get Receipts Messages are again only used in the sync process. On successful requests,
a Receipts Message is received in response (see 14). On reception, a node searches for
the given receipt hash, returning all receipts found locally to the requesting node (see
eth/handler.go#640-674 [eth20a]).

Transaction Receipts Received

Receipts Messages contain all necessary data that describes the interaction of a transaction
with the blockchain state, including the gas used, the transaction and block hash, events
that occurred during execution and more. The received receipts are delivered to the
downloader handling the sync process (see eth/handler.go#676-685 [eth20a]).

Synchronize with Peer

The downloader is responsible for keeping the node in sync with the network. This is
done by recurrently (every time a new block is received or every 10 seconds) comparing
the total difficulty of the best peer – the peer with the highest total difficulty – to
the local total difficulty. If the remote total difficulty is higher than the local one,
a sync process that uses the messages described earlier is started. Once the sync is
finished, a chain reorganization may be necessary. A sync with a peer primarily occurs
at the startup of a node or if the node lost network connection for some time (see
eth/downloader/downloader.go, eth/sync.go [eth20a]).

4.2.4 Insert Block
A block insert can consist of multiple successive blocks, depending on if a single block
was received or multiple blocks were received during, e.g., a sync process. First of all, all
block headers are checked in parallel, and if any header contains an error, the whole insert
is stopped. Then the first block’s body is verified, and depending on the error given,
there are multiple outcomes. If the first block is a future block, all blocks are pushed to
the future block queue. If it has a pruned ancestor, meaning the ancestor is sufficiently
old not to have a related state saved locally, the process goes on with inserting into a
sidechain (see Section 4.2.4 Insert to Sidechain). If the first block is a known block, the
blocks to insert are left-trimmed until the next block is unknown, and if no error occurs,
the state of the first block is computed and verified before it is written to the chain.
When an error is thrown on state validation, the whole process is stopped. Afterwards,
if no error occurred and there are remaining blocks to insert, the process starts over
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with verifying the next block’s body. If one of the consecutive blocks is considered a
future block, again, all remaining blocks are added to the future block queue, if one is
considered a known block, a special function to insert a known block is called described in
Section 4.2.4 Insert Known Block (see core/blockchain.go#insertChain [eth20a]). Figure
4.4 shows the state diagram of the complete process of inserting.

Figure 4.4: Block insertion state diagram

Insert Known Block

Inserting a known block is a shortcut that circumvents the state computation and
validation because that was already done before. Here it is checked if the known block
is the successor of the current head, if yes, it is written to chain as the new head, if
not, a chain reorganization described in Section 4.2.4 Reorganize Chain occurs (see
core/blockchain.go#writeKnownBlock [eth20a]).

Insert to Sidechain

A sidechain insert can only happen if the first block has a pruned ancestor when inserting
a block or a sequence of blocks. A pruned ancestor is a sufficiently old block that is
not in the currently longest chain and therefore has no related state. The process of
inserting into the sidechain at first loops through all blocks to insert computing the total
difficulty and writing the block to the database without its state. After all blocks are
processed, the local total difficulty is compared to the external total difficulty (the one
that was computed in the first step), and the process is finished. However, if the external
total difficulty is equal or higher, a list of all predecessor blocks that lead to the blocks
to import is built, beginning with the first one that has a parent, which has a locally
saved state. This list is then passed to the insert block process described earlier (see
core/blockchain.go#insertSideChain [eth20a]).
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Write Block to Chain with State

On writing a block to the chain with its state, at first, the block with its related state is
written to the database. Afterwards, the total difficulty of the block to insert is calculated,
and if the total difficulty is lower than the local total difficulty, the process ends here. If
the difficulty is higher, the block is added to the current chain, either simply as a head
– if the predecessor is the current head – or a chain reorg has to be done (see Section
4.2.4 Reorganize Chain). In situations where the difficulties are equal, other criteria are
used to decide which chain should be the new main chain. First of all, if the two chains
differ in length, the shorter chain is selected and a chain reorg is initiated. If they do not
differ, the chain with a head considered a local block is selected to be the main chain
or the current main chain is preserved if both are local. A block is considered a local
block if either the author equals the given etherbase (the address given in config to use
for receiving mining rewards) or the author is an address specified in the transaction
pool’s local addresses. If neither of them is local, a random variable decides fifty-fifty if
the block to insert should be the head of the new main chain or if the old head should be
preserved (see core/blockchain.go#writeBlockWithState [eth20a]).

Reorganize Chain

A chain reorganization happens every time a new head is added to the current main chain,
but the head can not simply be appended to the current head. The process needs two
arguments, the current head and the new head, searches for the first common ancestor
and rebuilds the chain to the point where the new head is the current main chain’s head
(see core/blockchain.go#reorg [eth20a]).

4.2.5 Mining

The mining process consists of four steps (i) selecting a parent that will be mined on top
of, (ii) selecting uncles that should be included, (iii) selecting transactions that should
be included and (iv) solving a hash puzzle, which is the actual process called mining.
These steps will be elaborated further in the upcoming sections. Figure 4.5 shows a
state diagram explaining the transitions between the different states. Once the miner is
started, all four steps are executed. If a new head event occurs, meaning we added a
new head to the chain, the process starts again with selecting the new head as a parent.
Additionally, by default, every three seconds, a recommit timer fires, which is responsible
for adding newly received, possibly higher-priced transactions to the current mining
process. The recommit timer checks if new transactions have arrived since the last time
and if yes, the process starts over with selecting uncles and transactions to be included
in the new block. The last and possibly most important transition appears if a block is
found, which immediately induces a broadcast to all of the peers as explained in Section
4.2.3 Broadcasting Blocks & Transactions, adds the block to the chain and starts a new
mining process (see miner/worker.go#newWorkLoop [eth20a]).
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Uncle Selection

When a block is added to the sidechain, this block is also considered to be a possible
uncle. Possible uncles are tracked in two separate lists, one for local uncles and one for
remote uncles. An uncle is considered a local uncle if either the author of the block equals
the given etherbase (the address given in config to use for receiving mining rewards)
or the author is an address specified in the transaction pool’s local addresses. Local
pool addresses are used to privilege selected addresses when mining blocks. Remote
uncles are all other uncles not meeting this criterion. The uncle selection is a plain
process that first tries to fill the block with local uncles and then, if there is space left (a
maximum of two uncles are allowed per block), fills the block with remote uncles (see
miner/worker.go#912-933, miner/worker.go#435-448 [eth20a]).

Transaction Selection

The transaction selection mechanism at first retrieves all pending transactions from
the transaction pool and divides them into local and remote transactions according to
the same criteria described in Section 4.2.5 Uncle Selection. Afterwards, the local and
remote transactions are sorted ascending by nonce and descending by price. The gas
limit for a block is calculated in a way that it stays above the provided floor and is
increased if the previous block is full. If the provided ceil gas limit is exceeded, the limit
will be decreased (default for floor and ceil gas limit is 8000000). Then the block is
filled with local transactions at first and the rest is filled with remote transactions (see
core/block_validator.go#CalcGasLimit, miner/worker.go#941-973 [eth20a]).

Solving the Ethash Proof of Work

The actual PoW process tries to find a PoW solution that is smaller than the target
difficulty threshold. To be able to compute multiple PoW solutions – otherwise, a
block would have exactly one solution – a nonce is used, which is incremented for every
try. In conclusion, the PoW process tries to find a nonce that creates a PoW solution
that satisfies the target difficulty (see 4.2.1, consensus/ethash/sealer.go#Seal, consen-
sus/ethash/sealer.go#mine, miner/worker.go#taskLoop, miner/worker.go#resultLoop
[eth20a]).

Figure 4.5: Mining state diagram
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CHAPTER 5
Ethereum Attack Simulator

This chapter is about the process of developing a suitable simulator that fits our needs
according to our research questions and the analysis of simulator frameworks in Chapter
3 Simulators, that did not provide a suitable candidate. This chapter will follow the steps
1-4 of a simulation study according to Banks et al. and Maria as described in Section
3.3 Simulation Study. It starts with step 1, the identification and formulation of the
problem in Section 5.1 Idea, where the idea behind our simulator is labelled. Step 2 of a
simulation study, the collection of real-world data, is done in Section 5.4.1 Collecting and
Processing Data, where the exact processes are stated. A simulation study’s step 3 of
developing a model is elaborated further in Section 5.2 Architecture. The last part of this
chapter, Section 5.6 Validation, corresponds to step 4 of a simulation study, focussing
on the validation of the simulator’s correctness by comparing it to previously collected
real-world data.

5.1 Idea
The idea behind Ethereum Attack Simulator (EthAttackSim) is to make it possible
to simulate the selfish mining and the verifier’s dilemma attack against the Ethereum
network and their implications on its stability while also enabling the simulation of other
attack scenarios. This will be done by creating a new simulation engine using the insights
and outcome of Chapter 3 Simulators as well as modelling the most important parts of
an Ethereum client implementation of Geth revealed by Section 4.2 GoEthereum (Geth).

The key objectives of our simulator are defined as follows:

1. Model key parts of the Geth client that are necessary for attack simulation.

2. Extensibility regarding various attacker implementations should be given.
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3. Configurability for key properties is given through configuration files.

4. Randomness needed for stochastic random number generators should be based on
real-world data and deliver the same results on similar runs based on a seed.

The most important key objective here is the modelling of the key parts of Geth, such as
the network model, peer selection and P2P communication, difficulty calculation and
mechanisms like inserting a block to the chain or reordering the chain on a new longest
chain, which are crucial for simulating attacks like the verifier’s dilemma and selfish
mining and obtaining meaningful results. Configurability ensures that the operator of
the simulation environment can easily modify the experimental setup without searching
or actually having to edit the code. The extensibility should be given as much as possible
with regard to attacker implementation, which should be designed using interfacing. An
essential part is the pseudo-random number generator, which has to be configured based
on parameters resulting from real-world data analysis. This ensures that the results of the
simulation give a good statistical overview of possible outcomes. Ensuring repeatability
of the results on similar runs based on a seed for the pseudo-random number generator
– although important for reproducibility – may be challenging to achieve due to, e.g.,
possible inconsistent event ordering, but is, of course, a targeted objective too.

5.1.1 Simulation Framework
We decided, exactly like Blocksim (A) (see Section 3.4.2 Blocksim (Alharby & van
Morsel)), to not use a simulation engine for our needs. It will be sufficient to implement
and use an event queue in the shape of an ordered list which will be looped through
instead of using a framework like PySim or GoDES.

5.2 Architecture
EthAttackSim is designed as a modular DESE consisting of two major parts. First,
there is the simulation world and related modules that focus on providing the simulation
environment and setup, the event queue, configuration abilities, metrics calculation and
logs collection, randomness, as well as timekeeping. The second major part is the node
module and its associated modules that represents a single participating node in the
Ethereum network and provides networking abilities, a consensus engine and the ledger
storage, which all are tied to one node. By design, every node has access to all simulation
world data available, which is necessary to simulate attackers and their different abilities
later on. Figure 5.1 gives an overview of the architecture of EthAttackSim and this
section focuses on giving an understanding of the modules used.
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Figure 5.1: EthAttackSim architecture overview

5.2.1 Simulation World

The simulation world is the key part of the simulation itself. It is responsible for running
the simulation event by event, timekeeping and providing configuration for all other
modules used in the simulation. Further, it is a gathering point for all nodes the simulation
contains, but besides that, there is no additional functionality. The responsibility of
the main package, together with the simulation factory, which is somehow part of the
simulation world, is to initialize configuration objects, randomness utilities and nodes
together with their peers, as well as hosting metrics and statistics calculation utilities.
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5.2.2 Events
As the simulator is event-based, the flow is controlled by the occurrence of various
blockchain events. The upcoming events are stored in the so-called main event queue,
which is a simple list of events sorted by timestamp ascending. Then there is another list
for newly added events that is kept unsorted, additionally, the earliest timestamp of this
list is kept. On calling the NextEvent function, there are two possibilities to occur. First,
the case that the earliest timestamp of the new event list is after the first event in the
sorted main queue, which leads to simply returning the first event of the sorted main
queue. The second case is the one where the earliest timestamp of the new event list is
before the first event in the main queue, which leads to the new event list being sorted
via the merge sort algorithm, followed by the merge of the main event queue with the
then already sorted new event list, which leaves the new event list empty, and afterwards
again simply returning the first event of the main queue.

Event types occurring during the simulation are listed and described in the following.

• Genesis Event, the first event every node in the simulation network receives that
also starts the simulation and mining process,

• New Block Event, represents the mining of a new block that is discovered by a
node,

• New Transaction Event, expresses the reception of a signed transaction received by
a user (not by a node),

• Received Block Bodies Event, the reception of a previously requested set of block
bodies,

• Received Block Event the reception of a whole block from a peer in the network,

• Received Block Hashes Event, expresses the reception of a block announcement
from a peer,

• Received Block Headers Event, the reception of a previously requested set of headers
from a peer,

• Received Transaction Hashes Event, expresses the reception of a transaction an-
nouncement from a peer,

• Received Transactions Event, represents the reception of a bunch of whole transac-
tions,

• Retrieve Block Bodies Event, an event that depicts a message from a peer requesting
bodies certain blocks,

• Retrieve Block Headers Event, an event that depicts a message from a peer requesting
headers of certain blocks,
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• Retrieve Transactions Event, an event that depicts a message from a peer requesting
certain transactions,

• Transaction Creation Event, a helper event representing non-node users submitting
a signed transaction.

5.2.3 Node

A node is a simple assembly point for all the modules it uses, i.e., consensus, network and
ledger. Additionally, a node keeps its own time and stores the configuration such as hash
power, CPU power, node type and location, as well as a list of the peers connected to it.

5.2.4 Ledger

Each node, in analogy to the real Ethereum network, keeps its own ledger, which stores
a node’s view of the blockchain, i.e., the current longest chain, the current head, uncles
and generally all blocks that it has ever seen. Furthermore, the ledger module also stores
a map of possible uncle blocks it can include in the following block to mine as well as a
queue of transactions, the so-called transaction pool. Besides storing data, the ledger
functionality includes methods to append a new block to the current longest chain, write
blocks to the ledger that are not appended or inserted in the longest chain, reorganize
the longest chain, which is the same as setting a new head that is not simply appended,
as well as retrieving a list of sorted transactions to include in the next mined block.

5.2.5 Network

Networking is a vital part of a node’s activity. For example, the network module connects
peers to a node when initializing the simulation. But the primary task of the network
module is sending or broadcasting messages to other nodes, which in the case of this
simulator is the same as adding newly created events to the event queue. This functionality
is outsourced to the network module to change a node’s behaviour quickly, e.g., send a
new block to some selected peers only.

5.2.6 Consensus

The consensus module can be considered the heart of a node, where most of its consensus
behaviour is located at during the process. This module defines the behaviour of a node
for all possible messages or events it receives, from receiving a new block, over verifying
this received block and including it into the ledger, to mining a new block itself. It also
keeps track of the blocks and transactions it has already seen, as well as of requests
waiting to be responded to and future blocks where the parent has not yet occurred in
their sight.
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5.2.7 Monitoring & Reporting
This is not a standalone module but rather part of utilities. All events occurring during
the simulation, together with the originator, the receiver and additional data if needed,
are recorded into an audit log CSV file. After the simulation is finished, the whole
simulation world will be written to a JSON file containing a complete view of the world,
including the view of the ledger for every single node. To provide a quick overview of
the simulation output without digging through the whole simulation world by hand, the
simulation prints an overview JSON file at the end that contains the key results of a
simulation, e.g., how many blocks every node has mined, how much rewards each node
gathered, the peers each node had, and additional statistics like transaction throughput,
overall rewards, uncle rate, etc. Furthermore, a simulation also outputs a comprehensive
list of metrics to be evaluated that show statistics, e.g., the time a specific event needed
to be transmitted, how long it took to insert blocks into the ledger, and even how many
blockchain reorganizations happened per node.

5.3 Configuration
According to our key objective number 4, every possible important property should be
configurable via a configuration file to be easily adjusted during runs. The following
configurations can be made via config.yml and delays.yml files for a simulation run of
EthAttackSim:

• hash power overall and for mining pools/nodes,

• CPU power for mining pools/nodes, which expresses an abstract value of computa-
tional speed related to, e.g., transaction verification,

• block time∗, the time between blocks expressed as statistical distribution,

• transaction gas∗, a distribution for the amount of gas a transaction uses,

• latency∗ for different locations to other locations, again expressed as distribution,

• throughputs∗ for different locations to other locations represented as distribution,

• time it takes to compute the transaction state update, in gas/MHz/second a node
can compute,

• amount of mining pools and amount of nodes overall,

• sizes of different parts of a block and messages between peers,

• gas price∗, a distribution for the gas price a transaction uses,

• time it takes to verify transactions, headers and bodies,
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• maximum uncle distance,

• block reward,

• nephew reward,

• initial gas limit, the blocks initial gas limit set at simulation start,

• minimum transaction gas,

• deterministic seed for generating pseudo-random numbers to ensure repeatability,

• ability to output metrics to get insight into more data,

• simulation time, the amount of time a simulation shall run,

• ability to transaction creation and propagation should be enabled/simulated, or if
a new block should be filled with random transactions,

• various configuration possibilities according to logs and

• the ability to define additional properties belonging to different attackers.

For variables that will be drawn using the random number generator during runtime, de-
noted by an asterisk∗, please refer to Section 5.4 Properties, Distributions and Randomness
to get insights into how the values of different configuration properties were selected for
this work.

5.4 Properties, Distributions and Randomness
In this section, the data collection for different properties is comprehensibly summarized,
and the sources of distributions and their creation are shown. It is subdivided into data
collection and evaluation of collected data for the use in EthAttackSim.

5.4.1 Collecting and Processing Data
Data collection happens via various sources, starting with research papers, web-based tools
like etherscan.io and miningpoolstats.stream, collecting own data directly on-chain or
events extracted from Geth source code. Data like the hash power of the most important
mining pools is collected via miningpoolstats.stream, which shows the hash rate of the
top Ethereum mining pools. On-chain data collected by the author of this thesis can
be found in the published repository related to this work (see [Mai22]). Block reward,
maximum uncle distance, nephew reward, initial gas limit and minimum transaction
gas are extracted from Geth source code and match the Ethereum protocol. These
properties are relatively easy to extract, the parameters that need a detailed explanation
are described in the following.
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Block Time

The block timestamp may not match the actual time. For retrieving the actual time,
it is necessary to monitor the network actively. However, due to consensus rules, it is
difficult for block timestamps to deviate arbitrarily from the actual time, and therefore
the block timestamp is the most accurate value available. The base data can be gathered
from real-world block data relatively easy by running a script that retrieves the last n
blocks and computing the differences of their timestamps from block n to block n + 1
(see [Mai22]). We did this for the blocks of about 60 days (roughly 6500 blocks per day,
etherscan.io shows an average block time of about 13.40 seconds in November 2021),
so we received data of 390000 blocks, including uncles. The computed mean without
uncles during the last 60 days was 13.63533 seconds. Including all uncle blocks, the
collected data spans 411906 blocks, the computed mean therefore is 12.91017 seconds per
block. Figure 5.2 and Table 5.1 show the distribution of block times. 50% of block times
occurring on the network are between 4 and 19 seconds, 75% of blocks occur between 1
and 19 seconds after the last one, the last 25% stretch from 19 seconds to a maximum of
170 seconds.

However, as we want to simulate the mining process on a per-node basis and with regard
to the fraction of the hash power a node owns, the computed Pareto distribution does
not fit the needs of the simulator because it does not map the long time it can take a
node to find a block and cannot be weighted by hash power. The best fit in our case is
the use of an exponential distribution with a rate parameter

λ = fractionOfHashPower ∗ (1/meanBlockT ime)

which weighs in the hash power owned by a specific node. The expected value is 1/λ. As
the simulator also models the creation of uncle blocks, the mean block time selected is
the one including uncle blocks.

Message Sizes

According to Faria and Correira, the important message or message parts have the
following sizes:

• Hash: 42 byte

• TX: 200 byte

• Get Headers Message: 54 byte

• Header: 90 byte [FC19]

Using these four sizes, the size of every message utilized in the simulator can be composed.
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Figure 5.2: Ethereum block times distribution (s)

Min. 1st Quantile Median Mean 3rd Quantile Max.
1 4 10 13.64 19 170

Table 5.1: Distribution summary of Ethereum block times (s)

Node Count

Counting all active nodes and miner nodes on the Ethereum network is unfortunately
not easily possible. The online service miningpoolstats.stream [Min22] lists 84 different
mining pools on 9.12.2021. The on-chain data shows that in the last approximately two
months (390000 blocks), there were only 89 different miners, including the found uncle
blocks there were 91 miners. So for the simulation runs, a node count of about 100 to
200 nodes should be sufficient to imitate the real-world distribution of nodes. Figure 5.3
shows an overview of all contributing Ethereum nodes that found a block or an uncle
during the observed 390000 blocks period, where exactly 21906 uncles were found.

Latency & Throughput

These attributes, namely latency or ping as well as send and receive throughput, used for
computing the time a message needs to arrive at another node, have to be measured on
different locations in the world to be able to include the nature of distributed systems into
our considerations regarding the simulator. Fortunately, Faria and Correira did precisely
that [FC19, Far]. All that has to be further done is to take the measurements and fit
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Figure 5.3: Consensus-contributing Ethereum nodes

them to the pseudo-random number generator used in this work. This is again done with
our distribution fitting script, which is explained further in Section 5.4.2 Distribution
Script.

Transaction Gas

The minimum transaction gas amount, according to the Ethereum protocol, is 21000
gas, meaning there will never be a transaction that uses less gas. To collect data for
the distribution fitting, we selected to use on-chain data too, so the gas utilized by
transactions in the last 1000 blocks is used, which sums up to about 200000 transactions.
Figure 5.4 and Table 5.2 show the distribution of transaction gas used per transaction
throughout the observed period. The data shows a minimum of 21000 gas used, as this
is the limit set by the protocol. 75% of data points are observed with between 21000 and
74974 used gas, the rest stretches from 74974 up to a maximum observed used gas of 28
million with a mean of 78042 gas used.

For the distribution fitting, 21000 was deducted from the collected data because that is
the minimum and will be added to the value drawn from the pseudo-random number
generator. The normal distribution is the best-fitting one, with an error rate of
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F = 0.1912

and parameters

µ = 40574965011
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Figure 5.4: Ethereum gas used per transaction distribution

Min. 1st Quantile Median Mean 3rd Quantile Max.
21000 21000 43694 78042 74974 28610220

Table 5.2: Distribution summary of Ethereum gas used per transaction

Gas Price

Gas price varies a lot, depending on the utilization of the Ethereum blockchain, leading to
a very high range of possible values if inspected over an extensive timeframe. We selected
to also use on-chain data for the purpose of defining gas price values for simulation,
so the gas price of the transactions in the last 1000 blocks, totalling to about 200000
transactions, is collected and used for distribution fitting. Figure 5.5 and Table 5.3 show
that during the observed timeframe, the observed mean gas price was at 74.48 GWEI,
with the lower 75% of the data points spanning from a minimum of 40.58 GWEI up to 83
GWEI and the remaining 25% stretching from 83 GWEI up to a maximum of 12434.60
GWEI.

53



5. Ethereum Attack Simulator

The best suiting distribution for the data is a uniform distribution with an error rate

F = 0.1476

and parameters

min = 40574965011

max = 91293671277

which is roughly 40 to 91 GWEI.
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Figure 5.5: Ethereum gas price per transaction distribution (GWEI)

Min. 1st Quantile Median Mean 3rd Quantile Max.
40.58 60 69.03 74.48 83 12434.60

Table 5.3: Distribution summary of Ethereum gas price per transaction (GWEI)

Base Verification Time

We specified a base verification time for a block header and body, as well as for transactions.
This verification time is dependent on the CPU and hash power that is assigned to the
mining nodes and includes the base verification of aforementioned entities, containing
a check of the block hash, the block time and various limits of a block for the base
header verification, and checking the number of uncles contained in a block for the
base body verification. This excludes the time for the actual state computation, which
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takes significantly more time because of necessary plausibility checks (e.g., regarding
the balance of an account before and after the transaction) and the computation of
smart contract calls. As the verification – depending on the entity – does not need only
computational power but also memory lookups, it is known that the actual verification
time is not only dependent on the CPU and hash power of a node, but for reasons of
simplification, the CPU and hash power are the only variables of a node regarding their
hardware that are used within our simulations. In future work, it may be interesting to
add more dimensions to the simulation of required resources. The verification time is
computed by using some estimated value concerning the actual amount of headers, bodies
and transactions a node can verify per MHz per second and additionally using the hash
power of a node to compute the time it needs to compute the number of hashes necessary
to do such base verification. Altogether, the base verification time has a shallow impact
on the simulation as there are only minor differences between strong and weak hardware
(CPU & hash power).

Transaction State Computation

This is an essential property of the simulator, as it represents the main delay a node
is subject to when verifying a transaction, e.g., the time a node needs to execute a
smart contract call. The higher the value, the less time the state computation takes.
Additionally, reasonable values for this delay are needed for proper simulation and
modelling of the verifier’s dilemma attack. To model the transaction state computation
delay with regard to a node’s CPU power, we use the unit gas/MHz/s, which describes a
node’s ability to compute the state for transactions worth a specific amount of gas per
MHz CPU power per second.

To obtain the most reasonable value for such delay, we take recourse to three resources,
the first is a paper by Alharby et al. [ACLAvM20]. They collected the time it takes on
average to compute the state for different amounts of gas with a 3.4GHz Intel i7 CPU
with 8GB RAM. The second one is a blog article of the Ethereum foundation, they did
not state which processor or RAM they used, but for simplicity, we assume the same
8GB amount of RAM as Alharby et al. and used a slightly slower CPU with 3GHz as our
calculation base [Fou21b]. The third one is a paper by Pontiveros et al., who used a 2.9
GHz Intel i5 processor with 8GB RAM to collect their data [PTS19]. For all calculations,
we used the mean execution time of the Geth client. Table 5.4 shows an overview of
the results from Alharby et al., the Ethereum Foundation and Pontiveros et al. and
includes the outcome of the calculation required for our Gas/MHz/s parameter used in
the simulator.

It is clear that the data points are widely apart because it is a mixed table of regular
execution times and contracts designed to exhaust the state computation engine to the
maximum. For the base simulation and its verification, the 10230 gas/MHz/s will be
taken, as it is the best assumption of a less extreme value and provides the best fit for
simulator validation (see Section 5.6 Validation).
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Gas Mean Execution Time (s) Gas/MHz/s Source
10M 70 47,61 [Fou21b]
8M 1.21 2280 EXP [PTS19]
8M 0.23 10230 [ACLAvM20]
8M 0,15 18390 SHA3 [PTS19]
8M 0,03 91954 SLOAD [PTS19]
8M 0,02 137931 SSTORE [PTS19]

Table 5.4: Overview of transaction state computation time

5.4.2 Distribution Script
We wrote a small Go script that extracts the best-fitting statistical distribution from
a sample data set based on the Go packages optimize, stat and distuv. This script
uses the sample data set and randomly creates the same amount of entries for different,
well-known distributions like, e.g., Normal, Gamma, ChiSquare, Uniform etc. For every
distribution, a minimization problem is created and every time such a random data set
is created with slight variations of parameters, it is tested against the original data set
by a Kolmogorov-Smirnov-Test (KS-Test), which gives the lowest values for data that
is thought to come from a common distribution. After many optimization runs, the
optimization comes to an end and returns the distribution with its best parameters and
the lowest failure rate F. Once all the optimization problems are complete, we have the
best parameters for every distribution under test and their failure rate, of which we select
the distribution with the lowest failure rate to be the best-suiting one we use in our
simulator (see [Mai22]).

5.5 Modelling Attacks
A significant part of the simulator implementation is the need for extensibility in order
to be able to simulate attacking nodes with different capabilities. This is solved by
overriding different parts of the implementation specifically for one attack or a set of
attacks. For example, if an attacker should, for whatever reason, not verify transactions
of a received block, a new consensus module class for this specific attacker skill is created
that overrides the implementation for the respective methods to simply return the signal
for valid. This new module class also has to be implemented in the factory to be selected
on initialization of the simulation world.

It is possible that for some attack scenarios, methods have to be extended and not just
overridden. This could be the case when, e.g., a method has to take a new or changed
parameter. For the verifier’s dilemma, for example, the attacker needs to have the ability
to create computationally extensive transactions, and as the simulator does not model the
computational effort in terms of time for different types of transactions, the transaction
class itself had to be extended to host an adapted parameter (see also Section 5.4.1
Transaction State Computation) that makes it possible to make specific transactions
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harder. Additionally, the delays utility had to be extended to take the new parameter
into account when computing delays for transactions. This should always be done in a
way that does not affect the base simulator implementation, a default value should be
provided that disables this feature when not explicitly set.

Examples of attacker implementation will be covered in Chapter 6 Attack Simulation.

5.6 Validation

For obtaining valid results in attack simulation later on, EthAttackSim has to be validated
against previously collected Ethereum network data (see Section 5.4.1 Collecting and
Processing Data) when run without attack simulation. The validation happens by selecting
various significant parameters and statistically comparing them to the real-world data
and subsequently analyzing and interpreting it.

The simulator configuration parameters used for validation are elaborated in Section A.2
Simulator Configuration Parameters.

The parameters that were selected for validating the EthAttackSim are:

• block time (block interval)

• uncle rate (uncles per day) and

• percentage of blocks found per node.

The block time and uncle rate are the most critical parameters of the simulation because of
their nature of illustrating the completeness of the simulated Ethereum network and the
P2P communication between the nodes. The configuration parameter for time between
blocks, together with a valid implementation of the P2P network, will lead to real-world
data simulator output. The percentage of blocks found per node shows if the consensus
mechanism and randomness are correctly implemented, i.e., if the output reflects the
hash rate configuration.

5.6.1 Collecting Data

For the validation of EthAttackSim the simulation has been executed 30 times for two
days of simulation time, each with an amount of 200 mining nodes with a hash rate
percentage according to the distribution of miningpoolstats.stream [Min22]. The top 59
pool hash rates were taken and the rest of the Ethereum network hash rate was equally
distributed to the 141 other nodes used in the simulation. The abstract configuration of
CPU power for each mining node was selected in the range of 3600 to 4500 MHz.
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5.6.2 Simulator Results & Evaluation
This section reveals the results of the simulator runs as well as analyzes and discusses
their implication on the correctness of the simulator implementation.

When dealing with Goodness of Fit (GoF) tests, two-sampled and one-tailed KS-Tests
are used to compare the on-chain data to simulator results for similarity of distribution.
A significance level α = 5% is used for hypothesis testing. The null hypothesis H0 always
denotes that the samples are drawn from a common distribution, while the alternative
hypothesis H1 stands for the two samples originating from a different distribution.

Block Time

The first thing that is done is to compare the distribution summaries and the boxplots
of on-chain data against simulator data. The summaries can be seen in Table 5.1 and
Table 5.5, as well as the boxplot in Figure 5.6. One can see the nearly perfect overlap,
there are only two minor differences, with mean block time that is +0.02 seconds coming
from the simulator and with maximum block time that differs by about -7 seconds from
on-chain data. Both of them seem negligible, and the 7 seconds higher maximum block
time on-chain may be coming from network outages or similar that are not considered in
the simulator.

Min. 1st Quantile Median Mean 3rd Quantile Max.
1 4 10 13.66 19 163

Table 5.5: Distribution summary of EthAttackSim block times

The next graphic (Figure 5.7) to look at is a side-by-side comparison between the
histograms of on-chain and simulator data, segmented into 1-second buckets, starting
with the bucket of blocks created with a timestamp of parent timestamp + 1. The figure
shows that EthAttackSim outputs blocks with a timestamp of +2 most often, steadily
decreasing from then on. On-chain data depicts a block time of 2 seconds occurs most
frequently too, but although it decreases from then on most of the time, there are spikes
at every ninth-second bucket, starting from the 8-second bucket. Also, 1-second blocks
occur more often on-chain than in the simulator data.

There are multiple differences appearing in the data sets, but before examining them, it
has to be mentioned that the block time derived from the block header does not accurately
reflect the real block time because the block timestamp is set prior to mining a block and
updated only once in a while so that it is possible that a block mined after 3 seconds
still has a timestamp of parent timestamp + 1. This, in combination with the difficulty
calculation algorithm (see Section 4.2.1 Difficulty Calculation), is also the explanation
for the spikes occurring on-chain. Algorithm 4.1 line number 3 shows that an important
difficulty factor x is computed by the time difference to the parent block divided by 9.
So the difficulty of a mined block decreases significantly every 9 seconds, which could
potentially incentivize miners to keep the lower timestamp before the threshold (9, 18, 27,
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Figure 5.6: Comparison of ETH & EthAttackSim block time distribution

... seconds) in the block header a little longer to gain an advantage when it is to be decided
if the own block becomes the new head or an uncle. In concurrent work, Yaish et al.
outline the possibility of such adversarial timestamp manipulation, which they refer to as
the “Uncle Maker attack” and empirically show that some miners are currently engaging
in such behavior [YSZ22]. Hence, the observed discrepancy between our simulator results
and the empirical data can not only be adequately explained but also highlights how
simulation could contribute towards uncovering abnormal or adversarial behavior. A
one-second block naturally occurs less than a two-second block in both datasets because
a new block has to be broadcasted to peers and verified by them before mining on top of
it. Looking at the on-chain data, 1-second blocks seem a little overrepresented compared
with the simulator dataset. This might again be caused by the same reason of flexible
block timestamps, but it could also be caused by mining pools sending new mining jobs
only about every two seconds, which leads to the earliest data points being shifted slightly
towards the one-second bucket.

The last comparison between on-chain and simulator data for block times is done by a
KS-Test. The null hypothesis H0 indicates that the samples are drawn from a common
distribution, H1 denotes the opposite. For the computation of this test, 15 single KS-Tests
are executed for every two-day simulator dataset by selecting a random range of precisely
the same amount of blocks from the on-chain data. These 15 single tests are then averaged
to create a single p-value for every two-day dataset. Suppose the test shows statistical
significance (p < α = 0.05), H0 has to be dismissed, if not, H0 can not be dismissed
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Figure 5.7: ETH block time comparison

and therefore, it is assumed that both datasets are drawn from a common distribution.
After executing the tests for our sample datasets, H0 has been dismissed for 8 of 30 tests
because of statistically significant differences in the two sample distributions, which seems
like a worrying result at first glance. However, when digging into the issue, we found out
that the main reason for the dismissal of H0 was again the over-representation of blocks
in the first (1s) bucket. Cleaning those blocks gives a perfect match of all samples to a
common distribution.

It was already shown in the past that miners set the block timestamp to their advantage
[Fou16]. Although fundamentally different, research investigating Bitcoin block arrivals
also states that it is a non-trivial problem to obtain real data regarding blocks and their
timestamps related to the consensus mechanism [BKKT18]. The results of our simulation
may inform future research about the discrepancy in the distribution of block times in the
1-second bucket to better understand whether this represents an artifact of the technical
implementation of mining and mining pools or whether miners intentionally deviate from
prescribed protocol rules in order to increase their potential profit.
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Uncle Rate

The uncle rate describes the amount of uncle blocks occurring on the Ethereum blockchain
during a day and shows if the simulator’s consensus mechanism for block selection, the
block time, as well as the communication delays, are implemented correctly and suitable
configuration parameters have been selected. It is worth mentioning that the on-chain
data collected (see [Mai22]) is more granular than the EthAttackSim’s data points.
On-chain uncle rate was collected for every 1000 blocks (roughly 1

6 of a day) while the
simulator calculates the uncle rate per run, in this case for two days. This will lead to
a spread in the on-chain data distribution. And this is exactly what we see. Table 5.6
shows the numerical distribution summary while Figure 5.8 demonstrates the same data
via a boxplot. The minimum and maximum uncle rate of Ethereum data differs by a lot,
while the 1. and 3. quantiles, as well as the median and mean are located close together.

Min. 1st Quantile Median Mean 3rd Quantile Max.
ETH 227.5 331.5 364 365.1 396.5 520

EthAttackSim 311 354.8 372 374.8 399.5 454

Table 5.6: Distribution summary of uncles per day
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Figure 5.8: Comparison of ETH & EthAttackSim uncles per day distribution

Performing a KS-Test on the two collected sample sets results in a p-value of 0.1417,
so we fail to reject H0 (samples are drawn from a common distribution) because no
statistically significant differences are found in the two distributions (for α = 0.05).
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Blocks Found per Node

The blocks found per node during a run, which are directly proportional to the amount
of Ether mined, have to strongly correlate with the hash rate of a node to be valid for
our simulation purposes. Figure 5.9 shows an overview of the top 50 mining nodes from
the simulation runs sorted by hash rate descending, represented by black dots, together
with an overlay of their percentage of mined blocks, represented by red crosses. It can
be seen in the chart that for nearly all nodes, the mark is hit perfectly, only for node
1 it slightly differs. To understand why that is, it is worth to mention that the lower
the hash rate of a node is, the longer it takes for the expected mined blocks and the
actually mined blocks to even out, which conversely leads to the nodes with the highest
hash rates to be overrepresented until it all evens out in the long run.
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Figure 5.9: EthAttackSim found blocks comparison
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5.7 Summary

Sim. ETH 1 Consensus 2 Network 3 Attacks 4 Ext. 5 Resources 6

Blocksim (F) + -- ~ -- + ++
Blocksim (A) + -- - -- + ++

SimBlock - -- + -- + ++
LUNES - + + -- + --

Shadow-Bitcoin - ++ ++ -- - --
EthAttackSim + ++ ++ ++ + ~
1 Suitability for simulating Ethereum
2 Authenticity of consensus model
3 Network modelling
4 Simulation of attack scenarios
5 Extensibility of the simulator
6 Resource intensiveness

Table 5.7: Comparison of existing simulator frameworks, including EthAttackSim

In extension to Table 3.1, Table 5.7 now shows the properties of EthAttackSim compared
to the simulator frameworks discussed in Section 3.4 Existing Simulators. It can be
seen that EthAttackSim offers all the previously required parts for simulating attacks
against the Ethereum protocol not offered by other simulation frameworks, namely a
sufficiently advanced consensus and network model, together with high extensibility for
attack simulation. The sophisticated network and consensus models, however, lead to a
higher resource intensiveness in terms of memory and CPU consumption, as well as to
higher disk space requirements related to intensive logging. Ensuring repeatability of
the results on similar runs based on the introduced seed for the pseudo-random number
generator – although important for reproducibility – was hard to achieve due to some
Go-specific peculiarities, e.g., randomization when iterating over maps, sometimes leading
to different results even though the same seed and parameters were used.

In summary, it can be stated that the highly configurable and extensible simulator
EthAttackSim models all the critical parts of the Ethereum protocol necessary for
immersive attack simulation, in particular for simulating selfish mining and verifier’s
dilemma attacks. It has been shown that EthAttackSim is able to simulate realistic
Ethereum network conditions by passing validation tests, so all requirements for further
attack simulation are met, although future research may engage in further evaluation of
the statistical divergence in block time, for example, the overrepresentation of one-second
blocks.

To reproduce the results highlighted in this chapter and for possible further evaluation
of the simulator in future research, the code of EthAttackSim, together with data used
for its configuration and validation, is made available on github.com and open source
[Mai22].
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CHAPTER 6
Attack Simulation

This chapter focuses on the simulation and analysis of attack scenarios based on EthAt-
tackSim and demonstrates how the simulator is of value to spot possibly feasible attacks
quickly as well as eliminate unfeasible ones. To be more specific, the verifier’s dilemma
[LTKS15, PTS19] and the selfish mining attack [NF19, SSZ17, NKMS16] will be the
attack scenarios that are considered within this thesis.

This chapter will follow the steps 5-8, as well as parts of the steps 1 and 3 of a simulation
study according to Banks et al. and Maria as described in Section 3.3 Simulation Study
[BCNN10, Mar97]. The steps are executed for every attack that is evaluated. The first
steps 1-4 have already been conducted in Chapter 5 Ethereum Attack Simulator. Because
the simulation of different attack scenarios leads to a new problem specification and an
extension of the simulator’s model, steps 1 and 3 have to be executed again. This is done
in sections 6.1.1 and 6.2.1 for the problem specification, as well as in sections 6.1.3 and
6.2.3 for the model extension. Step 5 of a simulation study, the experiment design, is
done in sections 6.1.2 and 6.2.2, where the hypotheses deducted from literature review
are stated. A simulation study’s steps 6 and 7 are executed in sections 6.1.4 and 6.2.4,
where the execution of the experiments is described and the measurements are pointed
out. The interpretation and discussion of results, corresponding to step 8 of a simulation
study, are elaborated in sections 6.1.5 and 6.2.5, respectively.

The results of an attack simulation and the effectiveness of an attack itself will be
measured by the monetary advantage an attacker gains by executing such an attack
compared to the monetary value of simply sticking to the Ethereum consensus protocol.
An additional measure of an attack’s success that is evaluated in this chapter is the impact
on consensus security through an attacker’s advantage of including more blocks into the
main chain when executing the specific attack. If significant, the monetary advantage
will be examined for pre- and post-EIP1559 implementation [BCD22], determining the
impact the difference in transaction fee pricing and burning has on attack feasibility.
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6.1 Selfish Mining
As already described in Section 2.2.1 Selfish Mining, the selfish mining attack is a
form of withholding newly discovered blocks by a selfish miner so that honest miners
waste computational power by mining on a potentially stale system state. This section
investigates the possible significance of this attack on the Ethereum network.

6.1.1 Execution
Figure 2.1 shows an illustration of the selfish mining strategy, with Mh being the honest
miner and Ms being the selfish miner. The selfish mining attack starts when Ms finds block
bn+1. Without releasing it, Ms starts mining on block bn+2, so Mh still tries to find bn+1.
This approach is common within all different strategies [ES13, NF19, SSN+19, LRDJ18].
This thesis will now go on with the strategy of Eyal and Sirer [ES13], who first described
the selfish mining attack, and mention other strategies that deviate from specific points.
Ms mines on the private branch for as long as he is at least one block ahead of the public
chain. If Mh now finds bn+1 before Ms finds bn+2, Ms immediately releases bn+1 for a
block race that could go either way. In case Ms has already found bn+2 and only then
Mh finds bn+1, Ms releases all of his private blocks and wins the rewards of both blocks.
If Ms is more than two blocks ahead, and Mh finds a new block, Ms only publishes the
first unpublished block in the private branch. If the private and public chain is equal
in length, Ms still mines on the private branch because finding the next block could
guarantee Ms the rewards of prior blocks that would otherwise be stale blocks.

6.1.2 Hypotheses
Eyal and Sirer showed in their initial publication on the selfish mining attack on Bitcoin
that for an attacker A with a network capacity γ = 0.5, the threshold for the fraction
of the hash power for becoming profitable is α = 0.25 [ES13]. The parameter γ denotes
the amount of miners mining on top of the block of an attacker when it comes to block
races, with γ = 0.5, meaning that 50% of miners choose the attacker’s block. Because
EthAttackSim implements the Geth client’s behaviour as much as possible, the network
capacity is assumed to be 50% through random selection of the block to mine on by
default.

This leads to the formulation of our first null hypothesis

H0_1 = An attacker with a hash power of α ≥ 0.25 has a financial advantage over
honest miners all the time

with an alternative hypothesis H1_1 indicating that there is an attacker with α ≥ 0.25
that has no financial advantage over honest miners.

The second null hypothesis is derived from Niu and Feng’s paper on the selfish mining
attack on Ethereum [NF19]. They show that with Ethereum’s specific protocol charac-
teristics, with uncle block rewards leading the way, an attacker A is profitable with a
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hash power threshold α = 0.163, a network capacity γ = 0.5 and Ku = 4/8, where Ku

denotes the average reward received for an uncle block, which is 4/8 of the block reward
in this case. In the Ethereum consensus protocol, Ku has a range of 2/8 to 7/8 of the
block rewards, decreasing with increasing difference in block height from uncle to nephew
block.

This leads to the formulation of our second null hypothesis, this time in a negative
formulation
H0_2 = An attacker with a hash power of α < 0.163 has no monetary advantage over
honest miners

with an alternative hypothesis H1_2 indicating that there is an attacker with α < 0.163
that has a monetary advantage over honest miners.

6.1.3 Setup
Figure 5.1 shows the overview of the EthAttackSim architecture. All that has to be
done is to change the consensus layer to match the strategy of a selfish mining attacker
described in Section 6.1.1 Execution and add the new implementation to our factory to
instantiate the attacker at the beginning of the simulation.

To implement the selfish mining consensus algorithm, it is necessary to hook into events
indicating the reception of a new block or parts of it from other miners, as well as to
change the behaviour of the event that an attacker mines a block. If an attacker’s private
chain is ahead of the public chain – that means a selfish mining attack is ongoing – it
listens to received events from other nodes that indicate a new block to decide how to
proceed with the private blocks according to the strategy defined previously. Additionally,
the attacker’s block announcement was designed to broadcast a block entirely to all peers
and not only to a part of the peers as designed by the Ethereum consensus protocol,
which, although it does not increase the network capacity γ, makes the blocks arrive
faster at some peers. Besides that, the configuration parameters used are the same as
described in Section 5.6 Validation.

It is worth noting that in theoretical research related to the selfish mining attack,
transaction fees have not been considered, while this work considers transaction fees
for simulations pre-EIP1559. To have comparable results, the post-EIP1559 simulation
results should be favoured because of the transaction fee burning that was introduced
with EIP1559. The post-EIP1559 simulation results do not include transaction fees as
well.

6.1.4 Simulation Measurements
Similar to the data collection for the simulator validation described in Section 5.6.1
Collecting Data, the simulations are executed 30 times for two days of simulation time,
each with an amount of 200 mining nodes. The measurement points have been chosen by
selecting the top 4 mining pools at the time of writing according to miningpoolstats.stream
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[Min22], one time using the top two mining pools grouped together as one attacker to
simulate an exorbitant amount of hash power near the 50% threshold. Table 6.1 shows
the most important measurements according to the previously defined hypotheses.

Hash Rate % 1 Mined Blocks % 2 Rewards % Reward Increase %
46.94 3 63.21 55.73 43.24
29.55 35.62 31.94 25.16
17.38 17.62 17.28 9.16
10.53 9.76 10.12 1.96
8.01 7.10 7.53 -1.55

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Biggest two mining pools combined

Table 6.1: Measurement summary of the selfish mining attack using
real-world hash rate of the 4 largest mining pools

It is assumed that the Ethereum fee market change that happened with EIP1559 changes
the dynamics of attacks on the Ethereum network, so the simulation measurements
have been collected for this new system of transaction pricing as well [eth22]. As
EthAttackSim does not monitor the account balances, the two transaction pricing
systems are distinguished in the postprocessing of the simulation, allowing to change
certain parts of it without conducting the whole simulation again. Table 6.2 shows the
measurements after EIP1559 was applied.

Hash Rate % 1 Mined Blocks % 2 Rewards % Reward Increase %
46.94 3 63.21 53.46 46.52
29.55 35.62 30.77 26.96
17.38 17.62 17.17 12.18
10.53 9.76 10.24 5.56
8.01 7.10 7.69 2.27

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Biggest two mining pools combined

Table 6.2: Measurement summary of the selfish mining attack after
EIP1559 using real-world hash rate of the 4 largest mining pools
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6.1.5 Results

This section discusses the simulation measurements with regard to the hypotheses defined
in Section 6.1.2 Hypotheses. It is worth mentioning that although the hypotheses based
on literature review only consider possible monetary advantages of attackers, this section
additionally considers an advantage of included blocks in the main chain, possibly leading
to consensus security problems.

Hypothesis 1

H0_1 = An attacker with a hash power of α ≥ 0.25 has a financial advantage over
honest miners all the time.

As Table 6.1 and Table 6.2 show, the monetary rewards for an attacker increase when
α ≥ 0.1053 or even with α ≥ 0.0801 for post-EIP1559, therefore, H0_1 cannot be
dismissed when taking into account the monetary advantage. When considering the
impact a selfish miner has on the Ethereum network stability, the data shows that an
attacker can propose over 63% of the network’s blocks with a hash rate below 47%. With
about 30% hash rate, the attacker can still propose over 35% of blocks in the main chain.
Considering an attacker that aims at harming the network rather than gaining monetary
advantage, H0_1 cannot be dismissed either.

Hypothesis 2

H0_2 = An attacker with a hash power of α < 0.163 has no monetary advantage over
honest miners.

Table 6.1 shows that the threshold for the hash rate α is between 0.0801 and 0.1053, with
an attacker with α = 0.1053 still gaining a monetary advantage over honest miners. This
is even more the case when looking at Table 6.2 because post-EIP1559, even an attacker
with α = 0.0801 gains monetary advantage. The data shows a monetary advantage for
an attacker with α < 0.163, so H0_2 is dismissed for H1_2. However, this is not true for
the amount blocks included in the main chain, here H0_2 cannot be dismissed because
no attacker could be found that increased its amount of included blocks with α < 0.163.

Other Observations

One important observation is that the increase of monetary rewards for an attacker rises
after EIP1559 has gone live. This may be caused by the transaction fees carrying no
more weight in the equation, meaning a lost block race does not affect the monetary
rewards for an attacker as much as Pre-EIP1559. This also leads to a decreasing hash
rate threshold α for being profitable after EIP1559. Transaction pricing post-EIP1559
can still include tips, which were not considered in these simulations and it would be
an interesting topic for future research to investigate if tips have an impact on, e.g., the
monetary advantage of selfish mining.
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Additionally, it is very interesting that an attack not only increases the monetary reward
for the attacker but also for the honest miners. Pre-EIP1559, the increased rewards range
from about 0.85-1.5% on average (for α ≤ 0.163 and α ≥ 0.4694) up to 14.9% for α in
between. Post-EIP1559, the range is 4.2-12.5% on average, directly proportional to the
α value of the attacker. This increase could result from the increased amount of uncle
blocks associated with increased nephew rewards for including uncles, but this should
definitely be investigated further in future research.

Lastly, it can be said that the higher impact a selfish mining attack has compared to the
findings of Eyal and Sirer [ES13] seems to be caused mainly by Ethereum’s uncle and
nephew rewards, just like Niu and Feng described [NF19].

6.2 Verifier’s Dilemma
The verifier’s dilemma (see Section 2.2.2 Verifier’s Dilemma) is an attack that exploits
unrewarded parts of the Ethereum protocol to gain leverage. More precisely, miners must
first validate any potential state updates upon receiving a new block, and this necessity
for validation is not adequately reimbursed as part of the protocol rules. Furthermore,
techniques like parallel validation of state changes are difficult to implement because
of dependencies between transaction state updates. This enables the verifier’s dilemma
attack to gain an advantage by exploiting the sequential validation process and hence
increasing the overall validation time of a received block. The upcoming section focuses on
the implications a verifier’s dilemma attack has on the stability and reward distribution
in Ethereum.

6.2.1 Execution

There are two known forms of the verifier’s dilemma attack, the classical or plain verifier’s
dilemma and sluggish mining or the forced verifier’s dilemma attack. This subsection
describes them and their execution further.

Verifier’s Dilemma

The plain verifier’s dilemma attack exploits the fact that there is no remuneration
for verifying transactions in Ethereum. Admittedly, there is a penalty for including or
accepting invalid transactions in a block because such a block will not be accepted by other
nodes. This, however, may not affect miners at all if only valid blocks are broadcasted to
the network, hence no attacks and no random errors in block creation occur. The exploit,
in that case, is pretty simple: do not verify transactions or compute the state changes, at
least for transactions that are known to be computationally expensive. This way, the
attacker benefits from not spending the amount of time on block verification but instead
starts to mine on the received block instantaneously, giving the adversary a slight time
advantage.

70



6.2. Verifier’s Dilemma

Sluggish Mining (Forced Verifier’s Dilemma)

The forced verifier’s dilemma (also called sluggish mining [PTS19]) is an extension to
the plain variant, where the attacker uses the fact that honest miners verify the validity
of each block to achieve a time advantage when mining on a new block. This is done
by deliberately including transactions into a self-mined block which increases the time
consumption when verifying them, delaying their mining start time for the next block.

6.2.2 Hypotheses
Alharby et al. show in their paper about the verifier’s dilemma that every attacker who
skips verification of transactions (without including any transaction that increases block
validation time) when the block gas limit is 12.5M gas/block should have a monetary
advantage of about 2.5% over honest miners [ACLAvM20].

This leads to the formulation of our first null hypothesis

H0_1 = A verifier’s dilemma attacker with α ≥ 0.05 gains monetary leverage of about
2.5% with a block gas limit of BL ≥ 12.5Mgas/block

with an alternative hypothesis H1_1 indicating that there is an attacker with α ≥ 0.05
that has no monetary advantage over honest miners.

The second null hypothesis is derived from the works of Pontiveros et al. about sluggish
mining [PTS19]. They showed that it is possible to increase the advantage when using
the forced verifier’s dilemma attack. According to their studies, with a block reward of 2
ETH and transaction fees of about 0.08 ETH per block (equals to about 6.4 GWEI per
unit with a block limit of 12.5M gas/block), an attacker should start to be profitable with
α ≥ 0.35. Their experiment setup was based on a block verification time of 1.21 seconds
with a block gas limit of 8M gas/block and blocks filled with sluggish transactions at
100%. As shown in Table 5.4, this indicates a transaction state computation delay of
2280 gas/MHz/s (see also Section 5.4.1 Transaction State Computation).

This leads to the formulation of our second null hypothesis

H0_2 = With a block gas limit of BL ≥ 12.5Mgas/block, transaction fees of 0.08 ETH
per block and a transaction state computation delay of 2280 gas/MHz/s, a sluggish
miner starts being profitable with α ≥ 0.35

with an alternative hypothesis H1_2 indicating that there is an attacker with α ≥ 0.35
that has no advantage over honest miners.

6.2.3 Setup
As there are two variants of the verifier’s dilemma attack that need to be simulated, this
subsection explains in detail what had to be done for each. Besides that, the configuration
parameters used are the same as described in Section 5.6 Validation.
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Verifier’s Dilemma

For the plain verifier’s dilemma, a new consensus layer was implemented that does not
verify or compute the state of any transactions. It was assumed that there is no other
adversary currently running an attack on the network.

Sluggish Mining (Forced Verifier’s Dilemma)

The sluggish mining attack is trickier to implement. A new consensus layer was developed
that extends the one from the plain verifier’s dilemma and additionally fills a block to a
configurable extent with an adversarial transaction that increases transaction verification
time for honest miners. Table 5.4 shows again an overview of the different transaction
state computation times that have been identified as plausible values for the transaction
state computation delay. Additionally, a configurable parameter was introduced that
allows an attacker to increase the gas limit of a block up to the highest allowed value by
the Ethereum consensus protocol.

6.2.4 Simulation Measurements

The simulations are executed 30 times for two days of simulation time, each with an
amount of 200 mining nodes. The measurement points have been selected according to
the defined hypotheses. Again, because of the assumption of impacts through the fee
market change introduced with EIP1559, the simulation results have been computed
with EIP1559 in mind too. Table 6.3 and Table 6.4 show the measurements pre- and
post-EIP1559 related to hypothesis H0_1. Table 6.5 and Table 6.6 show the measurements
pre- and post-EIP1559 related to hypothesis H0_2. Since the verifier’s dilemma is a
highly dynamic attack customizable with different parameters in EthAttackSim, more
simulations that may lead to interesting results have been conducted and are summarized
below, as shown in Table 6.7 and Table 6.8.

Hash Rate % 1 Mined Blocks % 2 Rewards % Reward Increase %
46.94 3 48.45 47.66 1.05
35.00 4 35.85 35.37 0.78
29.55 30.11 29.73 0.43
10.53 10.53 10.51 -0.20

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Biggest two mining pools combined
4 Profitability threshold according to Pontiveros et al. [PTS19]

Table 6.3: Measurement summary of the verifier’s dilemma attack with
average gas price of 65.5 GWEI using real-world hash rate of selected
mining pools and the profitability threshold according to Pontiveros et
al. [PTS19]

72



6.2. Verifier’s Dilemma

Hash Rate % 1 Mined Blocks % 2 Rewards % Reward Increase %
46.94 3 48.45 47.14 0.01
35.00 4 35.85 35.17 -0.21
29.55 30.11 29.58 -0.23
10.53 10.53 10.49 -0.34

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Biggest two mining pools combined
4 Profitability threshold according to Pontiveros et al. [PTS19]

Table 6.4: Measurement summary of the verifier’s dilemma attack with
average gas Price of 65.5 GWEI after EIP1559 using real-world hash
rate of selected mining pools and the profitability threshold according to
Pontiveros et al. [PTS19]

Hash Rate % 1 Mined Blocks % 2 Rewards % Reward Increase %
46.94 3 48.76 46.45 -2.34
35.00 4 35.94 34.39 -2.13
29.55 30.14 28.93 -2.19

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Biggest two mining pools combined
4 Profitability threshold according to Pontiveros et al. [PTS19]

Table 6.5: Measurement summary of sluggish verifier’s dilemma attack
simulations with average gas price of 6.4 GWEI, 2280 gas/MHz/s and
blocks filled with sluggish transactions at 100% using real-world hash
rate of selected mining pools and the profitability threshold according to
Pontiveros et al. [PTS19]

Hash Rate % 1 Mined Blocks % 2 Rewards % Reward Increase %
46.94 3 48.76 46.36 -2.59
35.00 4 35.94 34.33 -2.33
29.55 30.14 28.87 -2.32

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Biggest two mining pools combined
4 Profitability threshold according to Pontiveros et al. [PTS19]

Table 6.6: Measurement summary of sluggish verifier’s dilemma attack
simulations with average gas price of 6.4 GWEI, 2280 gas/MHz/s and
blocks filled with sluggish transactions at 100% after EIP1559 using real-
world hash rate of selected mining pools and the profitability threshold
according to Pontiveros et al. [PTS19]
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Hash Rate % 1 Mined Blocks % 2 Rew. % Rew. Inc. % Gas/MHz/s Gas % 3

35.00 4 79.23 71.11 115.21 47.61 50
35.00 46.93 40.64 32.59 47.61 25
35.00 36.01 28.32 -26.70 2280.00 100
35.00 35.97 34.84 -1.70 2280.00 10

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Percentage of a sluggish block’s gas limit filled with sluggish transactions
4 Profitability threshold according to Pontiveros et al. [PTS19]

Table 6.7: Measurement summary of other sluggish verifier’s dilemma attack simulations
using the profitability threshold according to Pontiveros et al. [PTS19]

Hash Rate % 1 Mined Blocks % 2 Rew. % Rew. Inc. % Gas/MHz/s Gas % 3

35.00 4 79.23 65.68 97.11 47.61 50
35.00 46.93 38.69 19.35 47.61 25
35.00 36.01 24.81 -38.48 2280.00 100
35.00 35.97 34.37 -3.55 2280.00 10

1 Percentage of the attacker’s network hash rate
2 Percentage of mined blocks in the main chain
3 Percentage of a sluggish block’s gas limit filled with sluggish transactions
4 Profitability threshold according to Pontiveros et al. [PTS19]

Table 6.8: Measurement summary of other sluggish verifier’s dilemma attack simulations
after EIP1559 using the profitability threshold according to Pontiveros et al. [PTS19]

6.2.5 Results
This section discusses the simulation measurements with regard to the hypotheses defined
in Section 6.2.2 Hypotheses. It is worth mentioning that, although the hypotheses based
on literature review only consider possible monetary advantages of attackers, this section
additionally considers an advantage of included blocks in the main chain, possibly leading
to consensus security problems.

Hypothesis 1

H0_1 = A verifier’s dilemma attacker with α ≥ 0.05 gains monetary leverage of 2.5%
with a block gas limit of BL ≥ 12.5Mgas/block

Table 6.3 shows that the monetary reward increases only a little compared to honest
miners, or even decreases for an α = 0.1053, therefore, H0_1 is dismissed with only the
monetary advantage in mind in favor of H1_1, indicating that there is an attacker with
α ≥ 0.05 that has no financial advantage over honest miners. Regarding the mined blocks,
things look a little different. One can see that there is at least no decrease in percentage,
but an advantage of about 2.5% in block inclusions can not be reached with any α, so
H0_1 can still be dismissed. After EIP1559, the outcome gets worse, having no increase
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in monetary rewards effectively (see Table 6.4).

Hypothesis 2

H0_2 = With a block gas limit of BL ≥ 12.5Mgas/block, transaction fees of 0.08 ETH
per block and a transaction state computation delay of 2280 gas/MHz/s, a sluggish
miner starts being profitable with α ≥ 0.35

When looking at Table 6.5, no increase in monetary advantage over honest miners can
be observed, the same is true for post-EIP1559 measurements (see Table 6.6). That
leads to the hypothesis H0_2 being dismissed in favour of H1_2, indicating that there is
an attacker with α ≥ 0.35 that has no financial advantage over honest miners, because
all adversaries decrease their monetary rewards regardless of their α value. Regarding
the mined blocks, an adversary gains an advantage of up to 1.82% in blocks on the
main chain, which can be considered a slight advantage, so H0_2 cannot be dismissed
in this case, although an attacker would probably not risk its money for that little of
an advantage. The slight advantage in included blocks occurs for all simulation runs
regardless of the attacker’s α value.

Other Observations

To gain insights into which parameters of the verifier’s dilemma would lead to a significant
destabilization or increase of monetary advantage, some additional simulations have been
executed. These observations can be seen in Table 6.7 and Table 6.8. When adducing
the lowest ever recorded value for the transaction state computation in gas/MHz/s – as
seen in Ethereum Foundations blog post [Fou21b] – 47.61 gas/MHz/s, with only 50% of
the block filled with the sluggish transaction, an adversary with α = 0.35 can include
a large amount of 79.23% of blocks into the main chain while increasing its monetary
rewards by 115.21%. Post-EIP1559, the attacker can still increase its reward by 97.11%.
The advantage gained by an adversary in terms of hash rate would completely undermine
the security guarantees of the protocol and could have been used to attack the network.
However, this bug in transaction pricing was concealed until it was fixed to prevent
exploitation. Nevertheless, by using our simulator, it is now more straightforward to
quantify the actual risk this transaction pricing mismatch would have had on the security
of the protocol, so this is a good example of why adversarial simulation environments are
needed.

A second observation was concluded in addition to the measurements for hypothesis H0_2,
but with a more reasonable gas price for today of about 65.5 GWEI, contrary to the
price of 6.4 GWEI that was initially used. Here it can be seen that the rewards pre- and
post-EIP1559 decreased significantly. The decrease of monetary reward in post-EIP1559
simulation can be traced back to the change in the fee market price of Ethereum that
came with EIP1559, where currently, the base fee of a transaction is burned. This way,
the attacker loses all the fees paid for the sluggish transaction. The decrease in monetary
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reward in pre-EIP1559 simulation can be attributed to the increase in lost transaction
fees caused by the increased costs of the sluggish transaction.

6.3 Summary
The analysis of the hypotheses showed that according to the simulation outcomes, the
selfish mining attack could be of great advantage, even if an attacker does not own a
big part of Ethereum’s hash rate. It appears that the verifier’s dilemma is currently less
effective than expected based on prior research, however, this depends on the concrete
parametrization and that a mismatch in the real execution cost in relation to the price
paid in transaction fees can result in catastrophic failures of the underlying security
assumptions. In terms of EIP1559, the selfish mining attack gained an advantage after
EIP1559 was implemented, while the verifier’s dilemma lost some of its power.

In conclusion, it can be said that the results and findings of previous research need
to be continuously re-evaluated and updated because parametrizations and designs of
real-world blockchains, such as gas price changes, novel fee mechanisms, or protocol rules,
can change and seriously impact the overall security.
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CHAPTER 7
Conclusion

Cryptocurrencies and blockchain technologies are currently being developed in a fast-
paced environment where designs and concrete parametrizations, such as active users,
the value of coins and tokens, or even implementation details, can change frequently. It is
a challenge to keep up to date and even more to evaluate such changes on a regular basis.
Theoretical research showed that a lot of effort is needed to analyze, e.g., certain attack
vectors or even to understand the behaviour of processes implemented in client programs.

To answer research question RQ1: "What is the current state of the art in regard to
attacks against blockchain systems and how can they be categorized?", this thesis provides
an overview of the state of the art regarding blockchain attacks and their theoretical
and practical consequences. Based on literature review, a suitable categorization of
attacks is elaborated and the resulting categories are explained in detail. Subsequently,
various attacks available in literature are classified to give an overview of attack category
assignment in Table 2.1. The chapter finishes with detailed descriptions of two selected
attacks from the P2P system attack category – the most assigned category – that are
relevant in the following, namely the selfish mining attack and the verifier’s dilemma,
which are chosen because of their comparable properties and effects on the Ethereum
network.

Blockchain simulators are investigated in the ensuing chapter that focuses on research
question RQ2: "What is the current state of the art regarding blockchain simulators?".
Starting with a comparison of simulation and emulation, this chapter further elaborates on
the different simulator types and implementation strategies and shows how a simulation
study is constructed. Subsequently, various available simulator frameworks are compared
regarding their suitability to simulate the Ethereum protocol with a focus on attack
scenarios. Table 3.1 shows the results of this comparison. Unfortunately, no simulator
that fits the requirements regarding Ethereum attack simulation is found.
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To enable researchers and other interested readers to quickly get insights into how the
Ethereum blockchain works, as well as to create the foundation for developing a simulation
framework later on, this work provides a deep dive into the client implementation of
Ethereum while concentrating on research question RQ3: "How does the most widespread
client implementation, Geth, behave under various conditions?". The chapter starts with
an overview of Ethereum client distribution at the time of writing and then focuses on the
de-facto standard client implementation, Geth. Afterwards, Geth is examined via code
review and the most important consensus protocol behaviours, as well as the message
passing processes between clients, are stated in a sophisticated overview including state
diagrams of specific flows.

With the knowledge gained from the literature and technological review, a simulation
framework called EthAttackSim is created to enable evaluating the Ethereum blockchain
regarding the impact attacks and parametrization changes can have on protocol security.
The architecture and implementation of the simulator, as well as how the parameters for
the stochastic model are acquired, are described in detail. The simulator is subsequently
evaluated regarding block time, uncle rate and found blocks per node using real-world
data collected from the live Ethereum mainnet to build a solid foundation for the
simulation of realistic Ethereum network conditions. This evaluation also discovers that
on-chain data does not follow the assumed distribution regarding block time, showing
that miners may engage in block timestamp manipulation. Table 5.7 further illustrates
that EthAttackSim fulfills previously selected requirements for simulating attacks against
the Ethereum protocol while offering the user high configurability with the versatility of
quickly implementing new features and attack scenarios, which solves research question
RQ4: "How can realistic Ethereum network setups and attacks against them be simulated
effectively?".

Finally, this work answers research question RQ5: "What impacts do the selfish mining
attack and the verifier’s dilemma have on real-world Ethereum setups?" by simulating
and evaluating both attacks, as well as a variation of the verifier’s dilemma, the sluggish
mining attack (or forced verifier’s dilemma), under various conditions. This is done
by explaining the attack execution in detail, followed by stating hypotheses derived
from literature related to the specific attack and defining the setup and implementation
regarding EthAttackSim. Afterwards, simulation runs are conducted and the results
are evaluated with reference to the previously stated hypotheses and possible other
observations. That gives excellent insights into the impact of these attacks regarding
monetary rewards and possible security impacts on the Ethereum protocol before as
well as after EIP1559 was implemented. The main conclusions are that the verifier’s
dilemma attack is a vast security concern of Ethereum if there is a mismatch between
actual transaction execution costs and transaction pricing, as well as that the selfish
mining attack can have a significant impact on Ethereum protocol security and attacker
revenue. Additionally, it is vital to continuously re-evaluate the findings of previous
research because parametrization changes, such as the implementation of EIP1559, could
seriously impact overall security. Overall, it was shown that EthAttackSim can quickly
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provide much-needed insights into the practical impacts of attacks on Ethereum protocol
security.

To reproduce the results of this thesis and for possible further evaluation of the simulator,
the selfish mining attack and the verifier’s dilemma, as well as other attack scenarios in
future research, the code of EthAttackSim, together with data used for its configuration
and validation, is made available on github.com and open source [Mai22].

7.1 Limitations
This work has a few limitations regarding the simulator implementation. For example, a
simulator can only be as good as its model. As the whole Ethereum ecosystem is a very
complex one, the model can never cover all needed parameters. However, it is the best
approximation leaving aside some complex behaviours because they can not be easily
modelled. Other parameters, like the CPU power of mining nodes, can only be estimated
and may not accurately capture reality because the used hardware is not homogeneous.
Also, the CPU power may not be the only parameter determining the amount of gas a
node can handle per second. Furthermore, the timekeeping and event handling of the
simulator could be improved because, e.g., very high block verification times lead to
exceptionally long waiting times and high memory consumption.

It has to be stated that for an entirely accurate simulation of the attacks, the simulator
has to also model the difficulty adjustment algorithm of the Ethereum protocol. This
is the case because each of the attacks divides the network into two groups, a group of
honest miners and the attacking group, and at least some time during the consensus
process, the honest group is not mining on the longest chain, which leads to a decrease in
the observed overall network hash rate and hence to a longer block time if the difficulty
adjustment is not modelled. Unfortunately, with EthAttackSim, the difficulty adjustment
is currently not part of the model and is an important topic for future research. To work
around that issue, the rewards are calculated using extrapolation. By using the mean
block time of a network without attackers collected earlier in this thesis, and the mean
block time of the simulation runs with attackers, it is possible to extrapolate the rewards
of attackers and other miners. A similar approach was taken by Eyal and Sirer in their
original paper related to the selfish mining attack [ES13].

7.2 Future Work
This thesis introduces various possibilities for future research. One possibly interesting
topic would be the investigation of the verifier’s dilemma’s importance on Ethereum
after the merge (Ethereum’s transition to PoS), as it seems to continue to be worrying,
even though in a different form. Another issue is the discrepancy in the distribution
of block times and the overrepresentation of blocks in the one-second bucket observed
on the Ethereum mainnet, as it would be interesting to better understand whether this
represents an artifact of the technical implementation of mining and mining pools or
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whether miners intentionally deviate from prescribed protocol rules in order to increase
their potential profit. As transaction pricing post-EIP1559 can still include tips, which
are not considered in the simulations, it would be an attractive topic for future research
to investigate if tips have an impact on, e.g., the monetary advantage of selfish mining.

Regarding the simulator implementation, the fact that difficulty adjustment and network
bandwidth are currently not part of the model or that very high block verification times
lead to exceptionally long execution times and high memory consumption in the simulator
opens up different options to improve in future work, as it may be interesting to add
more dimensions to the simulation of required resources. The circumstance that the
simulator has no ability to simulate the Ethereum network after the merge could lead to
further important topics for future research.

The following list gives an overview of suggestions for future research, including but not
limited to:

• model and evaluate other theoretically known attacks on Ethereum,

• investigate the overrepresentation of blocks in the one-second bucket,

• analyze the verifier’s dilemma’s importance on Ethereum after the merge,

• integrate a comprehensive model of transaction fees into the simulator,

• analyze Ethereum’s behaviour by adjusting different parameters such as block
reward, uncle reward, etc.,

• implement difficulty adjustments for correctly simulating the hash rate distribution
if miners mine on different branches,

• investigate the impact of tips post-EIP1559,

• improve time-handling in the simulator,

• integrating the changes made to the consensus protocol by the merge,

• improve space and runtime requirements of the simulator,

• integrate network bandwidth into simulations,

• enable node discovery through a known algorithm used in, e.g., Geth.
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APPENDIX A
Appendix

A.1 Successful Attacks against Blockchain Systems

According to Alkhalifah et al. [ANC+19], the total estimated amount of monetary loss
due to blockchain incidents beginning in the year 2011 up until the first half of the year
2019 was a little over US$ 3 billion. Chia et al. claim that the value of losses from 2011
until the end of 2018 is as high as US$ 3.55 billion[CHH+19]. According to different
sources [CD20, Ale19, Cip21] – that all leave out the OneCoin scam worth an estimated
US$ 4 billion [Har19] – the monetary loss of 2019 is about US$ 4.5 billion. For 2020
CipherTrace released a report stating a loss of US$ 1.9 billion [Cip21]. Adding the most
recent incidents of 2019 and 2020 to the list, the amount of money lost up to the end of
2020 rises to about US$ 10 billion or even US$ 14 billion, including the estimation of the
OneCoin scam.

However, it is tough to keep track of all the incidents that appear in the wild and
many sources suggest diverging amounts for the same timespans. Although [CHH+19]
claim to have created an incident database, this is not published at the time of writing
this thesis. Some of the most complete databases for blockchain incidents and attacks
are (i) Blockchain Graveyard, containing an overview of well-known attacks [McG] and
(ii) howmuch.net, providing the same services as Blockchain Graveyard but additionally
including good visualizations [Inc21]. Despite the two collections being well structured,
there are attacks missing in there too, especially the most recent ones. Regarding scams,
there is a website that collects all known occurrences named CryptoScamDB [Cry21].

For now, this thesis only investigated attacks that are known in the context of blockchain
or, more precisely, attacks that have been described in theoretical research. In the
appendix, we also want to present attacks that have been observed in a real-world
scenario before.
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A.1.1 The First Known Attack
On the 15th of August in 2010, the first known attack against a public blockchain was
executed. The attacker exploited an integer overflow in the transaction check of Bitcoin,
which allowed the attacker to create (mint) about 184 billion Bitcoins, although the
maximum supply of Bitcoin is fixed at 21 million. The vulnerability was fixed within a
few hours, the mining community forked the chain, so the Bitcoins never existed and
nobody did come to grief [oSaT12, Com10]. This attack can be classified as a blockchain
structure attack.

A.1.2 The First Known Attack With Monetary Loss
The first reported case of an incident leading to a significant loss is the case of user
allinvain of bitcointalk.org, who stated that 25 thousand Bitcoins – worth around US$
500 000 back then – had been stolen from his wallet by compromising his Windows
computer [Com11]. This attack fits into the DevOpSec category.

A.1.3 Top Ten Blockchain Incidents
This section shows a list of blockchain system attacks, sorted descending by the amount
of monetary loss.

#1 OneCoin - US$ 4 Billion

Most probably the biggest fraud in the history of blockchain – an estimated US$ 4 billion
– was caused by OneCoin. It is only an assumption because it is not very clear to this
point how many of the funds collected by OneCoin are actually lost, and therefore the
scam is not yet represented in the overall statistics [Har19, Cip21, BBC19]. Launched in
2014 by Ruja Ignatova and Sebastion Greenwood, OneCoin attracted investors all over
the world with their “fixed and finite” blockchain solution, but actually, there was no
development of a blockchain involved at all [Byr17]. Although it was widely supposed
that there was no product, it finally came out when in October 2016, a recruiting firm
contacted a Norwegian developer named Bjorn Bjercke with a luring promise of a high
salary for developing a blockchain solution by using OneCoin’s SQL servers. This alarmed
Bjercke, and after he saw the OneCoin promoting itself as “better than blockchain” a few
months later, he went public with his insider knowledge, which increased the pressure on
OneCoin and led to fraud investigations [Byr17, BBC19]. Ignatova disappeared in late
2017 and with her a lot of money. The case is not yet fully investigated, so it remains
thrilling [BBC19]. This attack can be placed in the DevOpSec category.
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#2 PlusToken - US$ 3 Billion

Based in South Korea – some sources also say China – PlusToken was founded by Chen
Bo in 2018 as a cryptocurrency wallet and exchange implementation. Its assumed damage
is roughly US$ 3 billion, caused by a massive Ponzi scheme that promised its users high
interest rates for buying the associated token generated by “exchange profit, mining
income, and referral benefits” [Har19, Kaa20, Inc20]. In June/July 2020, the Chinese
government terminated the scam by arresting most of the PlusToken leaders [Kaa20].
Again, this attack belongs to the DevOpSec category.

#3 iFan & Pincoin - US$ 660 Million

Another scam and Ponzi scheme that leaked out in 2018 in Vietnam is called iFan and
Pincoin. The company sold its promise of high-interest payment of up to 48% with iFan,
giving fans of artists a new possibility to connect with their idols and pay for, e.g., their
songs. When in late 2017 and early 2018, the investors were unable to withdraw their
earnings, the scam was unveiled [VnE18, ANC+19]. The category DevOpSec is once
again the most suitable.

#4 Coincheck - US$ 530 Million

The first incident in this list that is considered a hack is from January 2018, when
Japanese-based exchange and wallet service Coincheck was deprived of the cryptocurrency
equivalent of about US$ 530 million. According to executives, the hack was caused by
an error the developers made when implementing the NEM multi-sig contract, allowing
the attackers to steal the private key of the hot wallet and all the NEW coins within
[ANC+19, McG]. As this hack is based on implementation and detection failure, this
attack is again related to the DevOpSec category.

#5 Mt. Gox - US$ 480 Million

Mt. Gox, a Japanese cryptocurrency exchange, had to file for insolvency after its third
and biggest hack occurred in February 2014. After the first two hacks happened in 2011,
which caused a damage of roughly US$ 17 million, the third and last one came together
with a monetary loss of US$ 480 million [ANC+19]. The attackers used a transaction
malleability attack that exploited the lack of security control and management in Mt.
Gox’s software development. To execute this attack, the attackers had to withdraw their
funds from the exchange and publish the same transaction with a different ID right after
using Bitcoin’s transaction malleability flaw, where a transaction’s ID could be altered
without invalidating the transaction. Because Mt. Gox just used the transaction ID to
check if a withdrawal was successful, and the attackers modified it, for Mt. Gox, the
withdrawal was never successful and the attackers could withdraw a large amount of
about 744 000 Bitcoins [ANC+19, McG]. Due to its dual threat, the attack belongs to
the categories DevOpSec and P2P system.
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#6 GainBitcoin - US$ 300 Million

GainBitcoin, a Bitcoin mining and trading platform founded in 2013 by Amit and Vivek
Bhardwaj was accused of being a scam and Ponzi scheme in 2018 [Par18, ANC+19]. The
estimated money that investors lost with GainBitcoin is US$ 300 million [ANC+19, Inc21].
GainBitcoin promised its investors to pay an interest rate of guaranteed 10 percent for
18 months. Also, the company was blamed for manipulating the price of their related
token MCAP [Par18]. This attack can be classified as a DevOpSec attack.

#7 Kucoin - US$ 281 Million

In late September 2020, the Asian cryptocurrency exchange Kucoin lost Bitcoin, Bitcoin-
SV, Litecoin, Ether, USD Tether and some other tokens with a countervalue of roughly
US$ 281 million [Har21, SB20]. The hot wallets of the exchange were compromised, but
there is no further information available. Kucoin claimed they could recover about US$
64 million and the rest would be covered by their insurance fund, so the clients stay
damage-free [SB20, Har21]. The hack belongs to the DevOpSec category.

#8 Bitgrail - US$ 187 Million

The attack against the Italian cryptocurrency exchange Bitgrail in February 2018 was
worth roughly US$ 187 million [ANC+19, Hat18]. Somehow the attackers were able to
gain full control of a wallet and steal 17 million NANO tokens. As Bitgrail could not
afford to pay its clients, bankruptcy was sentenced by a court [McG]. Although the exact
reason for the theft is unknown, the attack will fit perfectly into the DevOpSec category.

#9 Parity - US$ 152 Million

A bug in the Parity Ethereum client led to about US$ 152 million of frozen funds
[ANC+19, Azi19]. The problem was that the multi-sig wallets – that are actually
Ethereum smart contracts – all depended on another smart contract, which acted as a
library. The bug was located in the library that was not properly initialized, so a user
could make himself the owner of the library and afterwards kill the contract, which makes
it unusable. Since the wallets depended on that particular contract, all the funds were
frozen forever [wpx18]. Because of the handling error and the smart contract nature of
it, this incident fits into the attack categories DevOpSec and blockchain application.
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#10 Compound - US$ 90 Million

In November 2020, the Distributed Finance (DeFi) platform Compound lost an estimated
amount of US$ 90 million because of errors on the side of the price oracle provided by
Coinbase [Fou21a, Gog20]. The Coinbase price oracle provided incorrect data for the
Ethereum-based stablecoin DAI, which led to a large number of liquidations on the DeFi
platform because of under-collateralization [Gog20]. This incident is a bit harder to
categorize, but the fact that a decentralized platform uses a price oracle of a centralized
company makes it fall into the DevOpSec attack category.
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A.2 Simulator Configuration Parameters

Listing A.1: config.yml
seed : 1
outPath : " . . / out "
useMetr i c s : t r u e
usePprof : f a l s e
printLogToConsole : t r u e
printAuditLogToConsole : f a l s e
printMemStats : t r u e
endTime : 172800000000000 # nanos
nodeCount : 200 # o v e r a l l node count in the s i m u l a t i o n
s i m u l a t e T r a n s a c t i o n C r e a t i o n : f a l s e
checkPastTxWhenVerifyingState : f a l s e # d i s a b l e f o r speedup i f no i n v a l i d TX happen
auditLogTxMessages : t r u e
txPerMin : 1000
noneNodeUsers : 100 # t h e s e ( and a l l normal nodes ) are the o r i g i n a t o r s o f txs
maxUncleDist : 7
bombDelay : 9000000 # i n a c t i v e as d i f f i c u l t y adjustment i s not implemented
overal lHashPower : 863020000
miningPoolsHashPower : [255060000 , 149980000 , 90850000 , 69130000 , 52640000 , 34590000 ,

33110000 , 30600000 , 21240000 , 17230000 , 14270000 , 14090000 ,
11630000 , 10020000 , 6850000 , 6460000 , 6460000 , 5290000 ,
4790000 , 3850000 , 3370000 , 3050000 , 2650000 , 1930000 ,
1770000 , 1660000 , 1610000 , 1510000 , 1430000 , 1290000 , 966690 ,
947590 , 652980 , 419190 , 342780 , 227520 , 216540 , 132350 , 80410 ,
54750 , 48330 , 43450 , 42240 , 41090 , 40990 , 36390 , 33960 , 20790 ,
14870 , 14550 , 9800 , 9650 , 5700 , 1750 , 1280 , 1120 , 825 , 613 ,
4 4 3 ] # in MH/ s

miningPoolsCpuPower : [ 4 4 5 0 , 4300 , 4400 , 3900 , 4150 , 4050 , 4200 , 3800 , 4500 , 3600 , 3850 ,
4450 , 4300 , 4400 , 3900 , 4150 , 4050 , 4200 , 3800 , 4500 , 3600 , 3850 ,
4450 , 4300 , 4400 , 3900 , 4150 , 4050 , 4200 , 3800 , 4500 , 3600 , 3850 ,
4450 , 4300 , 4400 , 3900 , 4150 , 4050 , 4200 , 3800 , 4500 , 3600 , 3850 ,
4450 , 4300 , 4400 , 3900 , 4150 , 4050 , 4200 , 3800 , 4500 , 3600 , 3850 ,
4450 , 4300 , 4400 , 3900 ] # in MHz

blockNephewReward : 0 .0625 # eth
blockReward : 2 # eth
l i m i t s :

i n i t i a l G a s L i m i t : 12500000
minTxGas : 21000

s i z e s : # bytes
hash : 42
tx : 200
getHeaders : 54
header : 90

a t t a c k e r A c t i v e : f a l s e
a t t a c k e r :

type : " v er i f i e r sD i l e mm aF or c ed "
hashPower : [ 2 5 5 0 6 0 0 0 0 ]
maxPeers : [ 7 5 ]
cpuPower : [ 4 4 0 0 ]
l o c a t i o n : [ " I r e l a n d " ]
numbers :

percentOfGasToForceVeri f iersDilemma : 0 . 5 # 0 . 5 = 50%
percentOfMaxGasLimitIncrease : 0 . 0 # 0 . 5 = 0 . 5 ∗ parentGasLimit /1024
specia lTxStateComputation : 2280 .0 # 10230.0 # 47.61
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Listing A.2: delays.yml
l o c a t i o n s :

Tokio :
Tokio :

l a t e n c y : # ms
d i s t r i b u t i o n : lognorm
params :

− −0.6492601754237427
− 0.09577031701337546

sendThroughput : # mbps
d i s t r i b u t i o n : gamma
params :

− 49.94349786281565
− 0.11859680175780735

receiveThroughput : # mbps
d i s t r i b u t i o n : gamma
params :

− 49.893438353289
− 0.11949707026288697

I r e l a n d :
l a t e n c y :

d i s t r i b u t i o n : norm
params :

− 222
− 0.000000000000005301592619562191

sendThroughput :
d i s t r i b u t i o n : gamma
params :

− 74.59395106047405
− 2.395749575793742

receiveThroughput :
d i s t r i b u t i o n : gamma
params :

− 111.94889901518795
− 3.59116760253906

Ohio :
l a t e n c y :

d i s t r i b u t i o n : uniform
params :

− 155
− 157

sendThroughput :
d i s t r i b u t i o n : norm
params :

− 61.2494357971314
− 14.78131405107846

receiveThroughput :
d i s t r i b u t i o n : norm
params :

− 58.33332812489563
− 14.770520363010117

I r e l a n d :
I r e l a n d :

l a t e n c y :
d i s t r i b u t i o n : lognorm
params :

− 0.013111341501152469
− 0.05382936134631561

sendThroughput :
d i s t r i b u t i o n : lognorm
params :

− 6.077781223913004
− 0.250891532897607

receiveThroughput :
d i s t r i b u t i o n : gamma
params :

− 22.156734395988906
− 0.049076686678163256

Tokio :
l a t e n c y :

d i s t r i b u t i o n : norm
params :
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− 222
− 0.000000000000005301592619562191

sendThroughput :
d i s t r i b u t i o n : gamma
params :

− 74.59395106047405
− 2.395749575793742

receiveThroughput :
d i s t r i b u t i o n : gamma
params :

− 111.94889901518795
− 3.59116760253906

Ohio :
l a t e n c y :

d i s t r i b u t i o n : norm
params :

− 84.6732887358493
− 0.08653429632523468

sendThroughput :
d i s t r i b u t i o n : gamma
params :

− 9.787573446109892
− 0.1385155169665812

receiveThroughput :
d i s t r i b u t i o n : gamma
params :

− 6.565283355712892
− 0 . 0 9

Ohio :
Ohio :

l a t e n c y :
d i s t r i b u t i o n : lognorm
params :

− −0.6417829001164197
− 0.11782830914498797

sendThroughput :
d i s t r i b u t i o n : gamma
params :

− 74.77728455126282
− 0.14955179631710092

receiveThroughput :
d i s t r i b u t i o n : gamma
params :

− 74.88645660602555
− 0.14703122690352527

Tokio :
l a t e n c y :

d i s t r i b u t i o n : uniform
params :

− 155
− 157

sendThroughput :
d i s t r i b u t i o n : norm
params :

− 61.2494357971314
− 14.78131405107846

receiveThroughput :
d i s t r i b u t i o n : norm
params :

− 58.33332812489563
− 14.770520363010117

I r e l a n d :
l a t e n c y :

d i s t r i b u t i o n : norm
params :

− 84.6732887358493
− 0.08653429632523468

sendThroughput :
d i s t r i b u t i o n : gamma
params :

− 9.787573446109892
− 0.1385155169665812

receiveThroughput :
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d i s t r i b u t i o n : gamma
params :

− 6.565283355712892
− 0 . 0 9

timeBetweenBlocks : # seconds
d i s t r i b u t i o n : exp # f i x e d to exp , do not change
params :

− 12.91017 # t h i s i s the t a r g e t e d mean block time ( i n c l u d i n g u n c l e s ! )
txGas : # tx gas w i l l be a random var out o f t h i s + min tx gas ( min tx gas i s s e t in c o n f i g . yml )

d i s t r i b u t i o n : norm
params :

− 21841
− 32762

g a s P r i c e : # gwei
d i s t r i b u t i o n : uniform
params :

− 91
− 40

txStateComputation : 10230 # gas per Mhz per s
b a s e H e a d e r V e r i f i c a t i o n : 100 # headers per Mhz per s
b a s e B o d y V e r i f i c a t i o n : 100 # b o d i e s per Mhz per s
b a s e T x V e r i f i c a t i o n : 1000 # TXs per Mhz per s
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