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Kurzfassung

Das Internet der Dinge (Internet of Things, IoT) wird immer beliebter und damit steigt
auch die Anzahl der beteiligten Geräte und der zu verarbeitenden Daten schnell an.
Die verteilte Datenstromverarbeitung ist ein Software-Engineering-Muster zum Bau
von Anwendungen als Topologien von Operatoren und wird häufig zur Verarbeitung
von IoT-Daten verwendet. Fog Computing ist ein neues Paradigma zur Bewältigung
dieser Datenmengen und soll niedrigere Latenzzeiten bieten, indem die Berechnungen auf
Fog-Ressourcen, die näher an den IoT-Geräten oder Nutzern sind, durchgeführt werden.
Das erfordert Verbesserungen bei der Verteilung von Operatoren auf Rechenressourcen.
Von Fog-Ressourcen wird erwartet, dass sie im Vergleich zum Cloud Computing über
vielfältigere Eigenschaften und Fähigkeiten verfügen und geographisch verteilt sein.

Diese Arbeit zielt darauf ab, die Platzierung von Operatoren in Fog- und Cloud-
Computing-Umgebungen zu verbessern. Ein eingeschränktes Optimierungsproblem wird
definiert und heuristisch mit drei Ansätzen gelöst: Dem Bergsteigeralgorithmus, einem
Ameisensystem und einer Hybridlösung. Die Platzierungen werden dabei auch regelmässig
zur Laufzeit erneut optimiert. Die Heuristiken sind in Apache Storm integriert und werden
in einem emulierten Netzwerk mit zufällig generierten Topologien getestet. Sie werden
mit zwei statischen Lösungen verglichen: Apache Storms Standard-Planer und R-Storm.

Die beste Heuristik übertraf den Standard-Planer wesentlich im Durchsatz und den
Latenzzeiten. Im Vergleich mit R-Storm konnte durch die zuverlässigere Platzierung der
durchschnittliche Durchsatz um 11% erhöht werden und die minimale Latenz um 36%
reduziert werden. Außerdem hat die Lösung den Vorteil, dass sie dynamisch Anpassun-
gen der Platzierung an unterschiedliche Lasten und Veränderungen in der Umgebung
durchführen kann.
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Abstract

The Internet of Things (IoT) is growing in popularity, and as such, the number of devices
involved and the amount of data to be processed are rising quickly. Distributed stream
processing is a software engineering pattern to build applications as topologies of operators
and is often used to process IoT data. Fog computing is a new paradigm intended to
handle the increasing data loads and offer lower latencies by moving computations onto
fog resources closer to IoT devices or users. This necessitates improvements to the
distribution of operators to computational resources. Fog resources are expected to have
more varied capabilities when compared to cloud computing and to be geographically
distributed.

This thesis aims to improve the placement of operators in fog and cloud computing
environments. A constrained optimisation problem is defined and heuristically solved with
three approaches: Hill-climbing, an ant system and a hybrid solution. The placements
are also periodically re-optimised at runtime. The heuristics are integrated into Apache
Storm and benchmarked in an emulated network with randomly generated topologies.
They are compared against two static solutions: Apache Storm’s default scheduler and
the Resource Aware Scheduler.

The best heuristic outperformed the default scheduler significantly in throughput and
latency. In comparison to the Resource Aware Scheduler, average throughput was
increased by 11% because of the more reliable placement performance and the minimum
latency was reduced by 36%. Additionally, the presented solution has the advantage of
dynamically adjusting placements to different loads and changes in the environment.

xiii





Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Optimisation of Stream Processing Applications . . . . . . . . . . . . . 22
2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 State of the Art 31
3.1 Stream Operator Placement Problem . . . . . . . . . . . . . . . . . . . . 31
3.2 Survey on Solving the Stream Operator Placement Problem . . . . . . 33
3.3 Related Optimisation Problems . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Differentiation of the Proposed Solution to the State of the Art . . . . 46
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Heuristic Design 51
4.1 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Specification of Fog Environment . . . . . . . . . . . . . . . . . . . . . 53
4.3 Stream Processing Framework Selection . . . . . . . . . . . . . . . . . 54
4.4 Overview of Apache Storm . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Network Link Latency Estimation . . . . . . . . . . . . . . . . . . . . 60
4.6 Modelling of the Constrained Optimisation Problem . . . . . . . . . . 63

xv



5 Heuristic Implementation 67
5.1 Solution Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Topological Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Operator Placement Heuristic . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 The State of the Apache Storm Scheduling API . . . . . . . . . . . . . 87

6 Evaluation 93
6.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusion and Future Work 123
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Configurations of the Evaluation Topologies 127

List of Figures 133

List of Tables 137

List of Algorithms 139

Acronyms 141

Bibliography 143



CHAPTER 1
Introduction

1.1 Motivation
In computing, there has always been a drive to perform calculations quicker or more
efficiently. As such, many applications across industries rely on near real-time compu-
tations. These can be split into two types: Applications, which accomplish their aims
better by shortening the delay incurred by computations, resulting in benefits such as
financial gains or better usability. In many scenarios, such as monitoring or trading on
the stock market, any data and the potential to act on it is worth the most when it is
first collected and loses in value as it ages [CRC16]. The second type of applications
requires near real-time results to function correctly. This could be factory automations or
autonomous driving with safety concerns or fraud detection systems for financial trans-
fers and payments [CSI+20, VGT14, ATB+19]. Fog computing and stream processing
are technologies that have been established with the aim of supporting near real-time
computations [IEE18, dAVB18].

Fog computing is a computing paradigm of an infrastructure of computational resources
available for rent, which, among other benefits, explicitly aims to support real-time
computations. It is the logical continuation of the widely successful cloud computing
with the aim of solving some shortcomings that have been found. Fog computing aims
to provide geographically distributed computational resources in comparison to the
centralised data centres of cloud computing. This geographic distribution allows it to
provide computational resources, which are located closer to data sources or users. The
reduced distances thereby also reduce the network latency involved when transferring
data, providing new potential for real-time computations [IEE18].

Stream processing is a software engineering pattern for performing highly scalable
computations with low latency. In stream processing, calculations are made by performing
transformations on input data. A stream processing application is built out of a network

1



1. Introduction

of such transforming operations, which can all be executed concurrently. Any data
to be processed is then simply streamed through this network of operations, with a
stream of computational results exiting it. As such, this pattern allows for software
that is highly scalable due to the inherent concurrency and provides near real-time
computations, because any input has only to be routed through and transformed by the
network. Furthermore, the operations can be distributed by executing them on separate
computational resources [dAVB18].

This process creates the obvious question of how the operators should best be distributed
on available computational resources: the stream operator placement problem [VS20].
To utilise the full potential fog computing and stream processing provide in supporting
near real-time computations, this point where both technologies intersect must similarly
be considered. As such, it is necessary to optimise the placement of stream operators
with the same goal in mind. With the geographical distribution of fog computing, the
distance and, therefore also, network latency between computational resources gets larger.
For this reason, the impact of network latency is more significant when an application is
distributed among resources, in comparison to centralised cloud data-centres. Therefore,
this thesis aims to develop a latency-aware stream operator placement optimisation for
fog computing environments, to better support the applications desired by the industry
with near real-time computational needs.

1.2 Aims of the Thesis
The consideration of the network and latency is not a new concept for the placement of
stream processing operators, but one which is gaining interest because of fog computing.
The primary aim is to create a new heuristic to solve the stream operator placement
problem in fog computing environments. The following problems and research questions
are answered or solved and represent the results of the thesis:

Requirements Analysis

To select a stream processing framework for the implementation of a new placement
heuristic as well as the design of it, is necessary to understand the requirements of
this task and the fog computing environment. This can be formulated as the following
research question: “What technical requirements are necessary to be fulfilled for the
placement of operators in a fog computing environment?”

Design

Before implementing a placement heuristic, the design has to be defined first. The design
has to consider both the previously specified requirements and how to achieve the best
results in a fog computing environment. The research questions to be answered with
this result are the following: “What design choices can be made or are suited for fog
computing environments? How should operators be placed on computational resources?”
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1.3. Methodology

Implementation

The primary aim and artefact created during the work on this thesis is the implementation
of the placement heuristic. The implementation follows the design and has to fulfil the
specified requirements. This step answers these research questions: “What stream
processing framework is best suited for the implementation? How can the designed
heuristic be implemented and what is its architecture?”

Evaluation and Comparison of Implementation

To ascertain the quality of the proposed placement heuristic, it has to be evaluated
in detail. For this, a quantitative evaluation is performed by deploying the placement
heuristic and benchmarking it with representative workloads. The research questions
to be answered by this approach are the following: “What is the quality of the found
operator placements? How scalable is the heuristic with an increase in the problem size?
How efficient is the heuristic in finding placements? How does this approach compare to
previous works?”

1.3 Methodology
The methodology to answer the research questions and achieve the aims of this thesis,
while ensuring the validity of results consists of the following steps:

Literature Survey

The literature survey aims first to establish a baseline understanding and collection of
definitions for various concepts which form the necessary background for this thesis. As
such, stream processing, the Internet of Things (IoT), as well as cloud and fog computing
are researched and explained. In particular, the relations and interactions of these
paradigms as well as differences in definitions or common understanding are of interest.

Following this, the optimisation of stream processing applications and the stream operator
placement problem are discussed. This includes the varying definitions used for the
stream operator placement problem. Similarly, differences in placement algorithms and
heuristics are summarised and broadly categorised into characteristics before concrete
implementations are introduced. For these implementations, there is both the aim to
showcase a wide spectrum of different ideas as well as focusing on the ones most relevant to
fog computing and network awareness. To finish the survey, related placement problems
in other areas of research are presented and compared to the stream operator placement
problem.

Design

For the design of the placement heuristic, a requirements analysis is performed. Sim-
ilarly, the intended use case and specific assumptions about the fog environment and
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1. Introduction

resulting limitations are clarified. The design includes the solution architecture, such
as a component to measure network metrics and the placement heuristic, as well as
their general interaction. Furthermore, the constraints and optimisation function used
by the placement heuristic are formalised and details of the strategy are defined. The
design, in particular, aims to improve on the state of the art of network-aware placement
techniques.

Implementation

Based on the design, a Java implementation of the placement heuristic is integrated into
the popular stream processing framework Apache Storm [TTS+14]. The selection of this
framework and a broad overview of alternatives and their strengths, weaknesses and
practical relevancy to this thesis are presented. The placement heuristic, in combination
with components to measure network and operator metrics, allows the optimisation of the
placement of stream processing operators without requiring changes to internal interfaces
to ensure the general compatibility of the approach.

Evaluation

The proposed implementation is benchmarked in an emulated fog computing network
with various workloads and compared against existing solutions. The resulting placements
of operators are analysed using metrics such as throughput, resource consumption and
latency. Individual experiments are repeated to allow for the aggregation of the results
and to understand the consistency with which they can be achieved.

1.4 Thesis Structure
This thesis is structured as follows. Chapter 2 introduces the concepts of cloud computing,
fog computing and stream processing with the Internet of Things (IoT) as a use case
driving these developments. Additionally, the background on optimising stream processing
applications is included in the chapter. The definition of the stream operator placement
problem and a survey of algorithms and heuristics to solve it are provided in Chapter 3.
Chapter 4 contains the requirements analysis, fog environment definition, framework
selection and design of the heuristic used to create the novel implementation of this
thesis. Chapter 5 presents the details of the implementation itself. In Chapter 6, the test
procedure and environment are specified and the measured performance in addition to
further analysis are imparted. Chapter 7 contributes a summary of the achieved results
and a discussion on alternative approaches or open and follow-up research questions.
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CHAPTER 2
Background

To discuss the stream operator placement problem, it is necessary to establish various
key concepts and terminology first. Additionally, this chapter provides insights into
the context stream processing applications operate in. As such, it also presents a first
look at the conditions that form the requirements and constraints which become more
relevant and formalised in later chapters. To accomplish this, Section 2.1 provides
an introduction to cloud computing as a scalable infrastructure for the execution of
applications. Section 2.2 presents an overview of stream processing as a paradigm for
structuring computations and applications out of independently executed operations,
thereby allowing for high levels of concurrency. The IoT is introduced in Section 2.3 as a
relevant use case and industrial development at which stream processing applications
excel at, and as a major motivation for the shift from cloud to fog computing. Section 2.4
explores fog computing as a new paradigm based on the principles of cloud computing
but aimed at solving the limitations the IoT has exposed. A summary of techniques to
optimise the logical and physical plan of a stream processing application is presented in
Section 2.5. Some of these optimisations are dependent on the placement of operators
and as such directly provide an introduction to the importance of the stream operator
placement problem, which is the focus of the following chapter.

2.1 Cloud Computing
2.1.1 Overview
Cloud computing is a popular networking paradigm that is often utilised as the infras-
tructure to execute stream processing applications [dAVB18]. A cloud provides access
to ubiquitous on-demand computing resources to users. These resources allow reducing
initial investments in infrastructure and offer seemingly limitless scalability for applica-
tions [MG11]. The success of cloud computing has affected engineering practices with its
focus on scalability and allowed other paradigms, such as big data, to prosper [HYA+15].
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2. Background

2.1.2 Definition
Cloud computing, at its core, is a powerful rentable infrastructure which relies on
centralised data centres [RZH+20]. Computational resources are virtualised by using
virtual machines or containers to deploy applications within them. They provide security
by isolating applications and allow the efficient usage of resources by supporting co-
location of applications [HMA19]. Resource utilisation is therefore improved, while
also providing customers with the ability to adapt their application’s resources to their
demand quickly [HYA+15].

Cloud computing resources are often billed with pay-as-you-go or longer-term subscription
pricing schemes. Storage and bandwidth are commonly charged with unit prices depending
on usage. This model of only paying as much as necessary without large setup costs is
one of the major business advantages cloud computing offers. In addition, there are also
dynamic pricing models based on the demand and capacity of the cloud. These allow
cloud computing to increase its efficiency by offering to sell unused capacity at reduced
prices [AUK+15]. As such, this model is most useful for applications or tasks which do
not have to run continuously and are therefore fitting for workloads of computationally
intensive processes on existing datasets. The following content provides more insight into
the types of service cloud computing can provide to users and bill them for.

2.1.3 Service and Deployment Models
Cloud computing provides three commonly recognised service models using its virtualised
computational resources. These are Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS), which differ in the level of abstraction and
therefore, also, control offered. As such, everything under one’s control must also be
maintained and affects the costs and necessary skill set to use the service [MG11]. Another
less commonly recognised service model is Containers as a Service (CaaS), which has
gained popularity in recent years [HMA19]. The following text provides an introduction to
these models and afterwards also discusses their deployment. In Figure 2.1, a comparison
of the service models is also visualised.

Software as a Service

A complete application is hosted in the cloud and offered to customers. It can be directly
accessed with a user interface or by programs using predefined Application Programming
Interfaces (APIs). Updates and other maintenance tasks of the application are not
performed by the customer. Similarly, the service provider handles the management of
data, the operating system, hardware or other underlying concerns [MG11].

6
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Figure 2.1: Comparison of common service models showcasing the different responsibility
and ownership between the service provider and customer over components [YFN+19].

Platform as a Service

In this model, a platform in the cloud to execute customers’ applications is offered. Cus-
tomers are concerned with the development of the application, its data and configuration.
Tools and services provided by the platform for the execution of the application, as well as,
other lower-level concerns or infrastructure are managed by the service provider [MG11].

Containers as a Service

Containers are a more lightweight virtualisation technique in which applications can be
packaged with configuration details and their software dependencies, previously referred
to as a platform. They provide an isolated virtual operating system. The operating
system kernel is not a part of a container and can therefore be shared between containers.
This allows containers to be more efficient than traditional virtual machines as only
a single operating system has to be launched instead of a new one in each virtual
machine [HMA19].

As such, this technique gives customers more control than PaaS by allowing them to
provide their own software stack for an application. The management of the operating
system, hardware and networking are the responsibility of the service provider.
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Infrastructure as a Service

In IaaS virtualised resources themselves are offered. These typically range from computing
and storage to networks. Examples are virtual machines or load balancers. Customers
can change configurations and manage their own operating systems or software stacks for
computing resources. Only the provision of these resources and the underlying hardware
such as the network are managed by the service provider [MG11].

Deployment Models

In addition to the many types of services a cloud may provide, there are also variations in
its management. A cloud can be deployed to be accessible by different user groups. These
groups are then the customers or consumers of a cloud by typically renting virtualised
computational resources. This categorisation is referred to as deployment models and
consists of private, community, public or hybrid clouds [MG11].

Private clouds only provide their services to a single organisation, while community clouds
are shared with and potentially operated by multiple organisations. Public clouds are
accessible by the general public and do not have further limitations such as membership in
an organisation to utilise the service. Hybrid clouds are a configuration of multiple of the
previously defined types. An example could be a private cloud that is generally used, but
in need of additional capacity. The cloud and its applications could burst into a public
cloud and rent additional computational resources, thereby creating a hybrid deployment.
The ubiquitous amount of computational resources provided by the cloud have made it
into a great infrastructure for big data analysis, such as for the data collected by devices
of the IoT which will be introduced in Section 2.3 [MG11]. While the cloud provides
ubiquitous computational resources for such purposes, these resources still have to be
utilised by applications, which can scale efficiently. The following section introduces
stream processing as a means to design such applications.

2.2 Stream Processing

The following section presents an overview of stream processing and introduces an example
of the application of this software engineering pattern for a taxi service. The definition
of the general properties and the behaviour of stream processing applications is provided
in Section 2.2.2 to form a deeper understanding before the design of stream processing
applications is discussed. It introduces the logical plan of stream processing applications,
which contains their general structure, such as their operations and connecting data
streams as it is displayed for the example in Figure 2.2. Section 2.2.3 then discusses
the realisation of the logical plan when executing an application and the necessary
components, such as a stream processing engine. Section 2.2.4 provides an overview
of general properties a stream processing engine or its applications can have, such as
determinism or fault tolerance.

8
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TaxiStatus

CustomerRequest

RegionalPricingAvgSpeed ArrivalEstimation

RegionAggregate

RegionalTracking

TaxiAssignment AssignmentNotification

ServiceMetrics

Figure 2.2: Example of a theoretical stream processing application to support a taxi
service. Arrows represent the flow of events and boxes are the operations of the application.
Inputs and outputs are represented by labelled arrows.

2.2.1 Overview
Stream processing is a highly scalable software engineering pattern to process large
amounts of data in close to real-time [dAVB18]. This is accomplished by splitting
the computation to be performed into independent operations, which can be executed
concurrently. Stream processing is used to quickly process events or messages, such as
sensor readings or user interactions. Data to be processed is routed through a directed
acyclic graph (DAG) consisting of operations and message queues connecting them. These
message queues or data streams at the core of this paradigm have coined its name. The
operations transform the data while it passes through them and the complete stream
processing application can thereby execute complex functionality [dAVB18].

To provide an overview of the concept, Figure 2.2 shows an introductory example of the
general structure of a stream processing application, which could be used by a taxi service.
The example is primarily inspired by DSPBench’s traffic monitoring application [BGM+20]
and Kaggle’s New York City Taxi Trip Duration challenge [Kag17], but also from the
availability of even more available taxi-related datasets, such as the T-Drive trajectory
data [YZXS11, YZZ+10]. The figure displays the flow of events through the application,
signified by the arrows, and its operations, which transform the events to calculate the
outputs. In this example, the application receives periodic updates from any taxi with
information, such as their current position. This information can be used to calculate a
taxi’s speed and expected arrival times. Additionally, the application also receives driving
requests from customers and assigns them to a taxi. These requests can be aggregated to
estimate the demand of regions and combined with the knowledge of available taxis and
the expected arrival times of assigned ones the supply of taxis can be calculated. The
application can therefore update the price in regions based on the demand and available
supply, which drivers can use to relocate into more demanded and thereby profitable
regions. The use of stream processing allows these calculations to be performed in close
to real-time while providing the scalability to handle the number of taxis or customers.

2.2.2 Definition
Many stream processing engines are based on the data flow paradigm, which inherently
provides scalability [dAVB18]. The data flow paradigm proposes building applications as
a set of smaller operations, which are all assumed to be executed concurrently. As such,
the application can receive input data from other applications and transfers them to an

9



2. Background

initial set of operations to perform the calculation. The operations receive the data and
transform it before sending it to other operations. These operations are connected in a
graph-based topology to describe the flow of data and therefore the processing of the
application. Complex outputs can be calculated by applying successive transformations
on input data with each of the operations. Inputs to the application are assumed
to continuously receive new data events to process and as such the application also
continuously calculates new outputs [DM74]. The outputs can then be displayed or
transferred to other applications [VdAL18].
Thus, stream processing applications are commonly represented by DAGs. An example
of such a graph representing a stream processing application can be seen in Figure 2.2.
Within this graph, events which can also be referred to as data, messages, tuples or
packets, are transferred along the directed edges between the nodes. The edges are
therefore called data streams. Data streams are considered to be unbounded sequences of
events, which are continuously received to be processed. In addition to the data streams
appearing as edges, there are three major types of components in stream processing
applications represented by the nodes in the graph [dAVB18].
Nodes in the graph with only outgoing edges are called data sources and form the
inputs for stream processing applications. They receive emitted events as inputs for
the application, for example, sensor readings or integrations of streams from other
applications. These events are then processed on the fly by streaming them through the
graph [VdAL18, MCA+17]. In Figure 2.2, both the TaxiStatus and the CustomerRequest
are data sources.
The majority of the nodes in the graph are typically operations, which both receive events
and output new events. They receive events via edges leading into the node, transform
them or perform other calculations with them and then output results via the outgoing
edges to the following nodes. It is important to note that an operation can have multiple
input and output streams. In this case, each of these streams can contain different data
types and information. For example, an operation might sort numbers into a stream of
even and odd numbers, but more complex functionalities such as detecting spam emails
or monitoring for different alerts can also be easily envisioned. Similarly, additional data
streams can be used to output warnings or statistic information about the streamed
data, which can then be processed in other parts of the applications. Stream processing
engines provide various predefined operations such as counting, filtering, projections or
aggregation of data, but modern ones also allow implementing user-defined operations.
Additionally, stream processing engines handle the execution and various other properties
of stream processing applications, which is discussed in the following sections [dAVB18].
Nodes, which have only incoming edges are called data sinks. These represent the outputs
of the complete stream processing applications. Examples could be data sinks which
store events in databases, transfer them to other applications for further processing or
using and displaying the outputs [VdAL18]. In the previous example of Figure 2.2, the
RegionalPricing information would be used by a customer-facing application, while the
ServiceMetrics would be used for internal monitoring, such as a dashboard, or simply
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stored for record keeping purposes. The AssignmentNotification would be routed to both
the customers and the drivers via the responsible services or applications.

2.2.3 Execution of Stream Processing Applications
The DAG merely represents the logical plan of a stream processing application and
describes their semantics. It defines what is being calculated and how these calculations
are performed. The physical plan defines where and how the logical plan is executed to
realise the application. To run the application, it is necessary to map the data sources,
data sinks and operations to computational resources, which execute them. The data
sources, data sinks and operations are then referred to as operators and can have a
state associated with them storing necessary information for their execution. Operations
can thus also be classified into stateful or stateless [dAVB18]. Details on how such a
mapping can be created or in other words how operators are placed and what effect
different possibilities have on the application are discussed in Chapter 3. The previous
example of an operation sorting numbers into even and odd number streams is trivial to
implement as a stateless operation. More complex functionalities, such as calculating
the mean of a number stream, require memory, in this case, the count of the numbers
received and their current sum, and is therefore a stateful operation. When the execution
on a computational resource fails, such as due to a software crash or failing hardware,
the operator can be migrated to other resources, to be executed there, by transferring
the associated state [dAVB18].

Additionally, multiple operators can be deployed for a single operation in the logical plan.
The replication of operators allows the application to scale to the current processing load.
This requires splitting the associated state into independent sets to allow for concurrent
computations. Accomplishing this can be difficult and largely depends on the data and use
case of the application, because it must be ensured that the semantics or constraints of the
operation or larger application are not violated. This concern is known as data parallelism
and is a regular problem in the domain of parallel computing. Furthermore, because
stream processing applications can scale with their load by spawning new operators or
stopping existing ones, splitting, merging or synchronising the state of operators must
also be possible [HVSD16].

While operators are concerned with the execution of an operation and can be considered
as a unit of abstraction containing their state, the architecture of a stream processing
application also contains the stream processing engine. This is because operators are
not directly placed on computational resources, but are instead managed by the stream
processing engine itself [MCA+17]. In this thesis, the processes or threads of the
stream processing engine executing operators are referred to as workers. This term is
similarly used for established patterns in parallel computing or distributed systems and
the terminology is also common in existing stream processing engines such as Apache
Flink [dAVB18]. Workers can execute multiple operators and represent the processing
engine itself. Workers manage the transfer of data, the data streams, to other workers
or potentially between local operators. Additionally, they handle functionalities such as
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fault tolerance or the state transfer in the case of relocating operators or spawning new
ones [MCA+17].

2.2.4 Properties of Stream Processing Applications and Engines

This subsection introduces further properties which stream processing applications or
engines can exhibit. They can therefore vary between engines or can sometimes even
be configured by the application. As such, this section aims to illustrate more of the
complexities, research aims and differences between stream processing engines to provide
a more complete overview of the technology.

While a stream processing application can be executed on a single computational re-
source, this thesis only considers stream processing that can be distributed. Distributed
stream processing refers to the ability to distribute the work over multiple computational
resources connected by a network. These can be deployed in proximity or distributed
geographically over significant distances. Elasticity is another beneficial property dis-
tributed stream processing frameworks can exhibit and defines that the amount of used
computational resources can increase or decrease. Elasticity, therefore, allows applications
to adapt to changing computational demands of an application or a change in available
resources [HVSD16].

In a distributed system defining the consistency in calculating outputs is important,
especially considering the need for fault recovery and tolerance strategies to achieve
high availability. These strategies are difficult problems, because the recovery includes
received events, the states of operators and sent output events. Consistency is commonly
defined by assurances on the delivery and therefore the processing of events in a data
stream. Options in modern frameworks include at-least-once, at-most-once and the more
expensive exactly-once [TKMN19].

Determinism or the lack of it is another property to differentiate stream processing
systems in this domain. Determinism defines the ability to reproduce the same output if
the same input is provided again. This property aids recovery strategies and is desirable
for developers, because it assures the predictable behaviour of a system, but is also
difficult to achieve. Operators process data independently and concurrently, and as such
timing differences can cause different orderings of events in different runs causing different
computational outputs [TKMN19].

To achieve properties such as fault tolerance, consistency and determinism, stream
processing systems are typically built using the following three approaches. Events
are collected into micro-batches to reuse strategies from traditional batch processing,
distributed transaction protocols are used or snapshots of the state are created with
each operation. In batch processing, large sets of data, called batches, are processed
at once efficiently when they are available. With batch processing, fault tolerance,
consistency and determinism are easier to achieve than in stream processing where inputs
and outputs are continuously received and sent. Micro-batches, therefore, aim to combine
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the advantages of both techniques by offering a solution in between both extremes of
performing computations on individual events or only large sets of data [TKMN19].

Outputs in stream processing are calculated in one-pass and are available with a short
response time [dAVB18]. The processing of an event only once immediately, instead of
storing it and reusing it in future calculations such as datasets in batch processing, is
also known as temporal awareness of stream processing applications. As such, stream
processing applications can only consider recent events limiting potential use cases, but
proving to be very effective in this speciality [PB19].

While stream processing is a highly scalable software development paradigm, the workload
can still exceed the capabilities of a system. In such a case, the utilisation of computational
resources can still be optimised to ensure the stability and throughput of an application.
Back-pressure is a mechanism that can be implemented to reduce the rate of events to
process, when the system or its individual components can not keep up with the current
rate of received events. Back-pressure can be implemented in multiple ways, such as disk
buffers to store events and later once the overload has diminished to replay the events.
Another method is to reduce the number of events transmitted to the bottlenecked
system or component. This can be done until the buffers of the previous component
are full and the rate of events it receives has to similarly be constrained. As such,
back-pressure can propagate within the application from the bottleneck back towards
the data sources [MCA+17].

To increase the concurrency in stream processing applications further than the number of
operations, it is necessary to parallelise their implementation or allow for the partitioning
of streams into states that can independently be calculated. For example, in a company
some computations might be calculated independently per department and thereby allow
the creation of an independent operator for each department [MCA+17]. Windowing is
another common technique in partitioning streams, but based on time. A window is a
bounded set of events in a data stream containing the most recent or still relevant tuples.
Depending on the type of window, an event can also be included in multiple windows.
Windowing is used for aggregate computations such as calculating the average value of
recent events [LMT+05].

The high level of concurrency inherent in stream processing applications, especially when
combined with techniques such as windowing, allows for their excellent scalability. One
area benefiting from the high scalability and capability to adapt to the current resource
demand is the IoT. The large amount of data it produces and the need to quickly process
it are strengths of stream processing [PB19].

2.3 Internet of Things
2.3.1 Overview
The IoT aims to empower devices by integrating the ability to communicate and collabo-
rate. In fact, traditional non-communicating devices are often referred to using terms
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such as dull devices in opposition to smart or IoT devices [JRNR20]. Systems formed by
IoT devices allow for new functionalities and are leading to innovation in various domains,
such as smart manufacturing, smart cities or healthcare [IEE20]. This section provides a
general introduction into the IoT and its characteristics as well as some domains it can
beneficently be used in.

The IoT consists of devices which can sense or interact with the world. These devices
can then be connected to form IoT systems which allow for new functionalities or
raising efficiencies. These systems use their collective powers to achieve common goals.
Furthermore, the IoT systems can interact with each other or an IoT device can be a part
of multiple systems [IEE20]. One of the large research aims is improving interoperability.
It should be possible to integrate new devices to create added value in IoT systems rather
than deploying new interconnected systems. IoT systems are considered to require some
form of intelligence, meaning analysis or processing of the data, instead of just connecting
them [HPS+15]. The cloud is commonly used to provide these services, because of its
cost efficiency and scalability [WKB+19]. In many deployment models, this access is
even necessary [IEE18].

2.3.2 Definition
The modern understanding of the IoT was created out of the convergence of three different
visions: the things, the Internet and the semantic vision [SZ20]. These visions highlight
different perspectives and therefore research directions of the IoT:

• The things vision consists of researching smart, identifiable objects and enabling
integration between them with physical communication technologies [SZ20].

• The Internet vision focuses on the use and development of Internet protocols to
integrate devices [SZ20].

• The semantic vision aims to improve the understanding of the meaning, representa-
tion and integration of data from different sources [SZ20].

As a result, IoT devices have the following three key properties [JRNR20]:

1. Ability to connect with other IoT devices

2. Identifiability

3. Capability to sense or interact with the environment

Additionally, IoT applications are often assumed to be context-aware to selectively provide
fitting information or services [SZ20]. This context can depend on meta-information or
physical properties such as the time or geographical location and may even be required
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Figure 2.3: Example of different types of IoT devices cooperating to form an intelligent
traffic management system to improve collective traffic flows.

to successfully integrate multiple information sources [IEE20]. IoT devices exist in large
amounts and many utilise wireless communications [IGF+18].

IoT systems consist of sensors or IoT devices, which collect information, and IoT devices or
actuators to interact with the environment [SZ20]. The collected information is processed
or analysed on computational resources, such as the cloud, to intelligently control the
environment [HPS+15]. Figure 2.3 shows a hypothetical traffic management system
formed by various IoT devices. Devices such as cars or smartphones can transmit their
current positions or surveillance cameras can recognise them. These can then be analysed
in the cloud to identify aggregate movement patterns or problem areas such as traffic
jams. Based on this information, the signalling of traffic lights or the route finding of cars
and smartphones can be adapted. As a result, the collective information can be used to
improve traffic flows to reduce waiting and travelling times for the population. This use
case also highlights the scale of the data, as it is easy to imagine such a system spanning
across a city and the need to quickly analyse the data from streets and intersections to
reduce traffic in congested areas as early as possible [DSX+19].

2.3.3 Use Case Examples
The IoT has a versatile set of potential use cases. The following paragraphs provide an
overview of applications and research domains. These are applications intended to benefit
from this thesis or related works. Therefore, they can be used as a basis to consider the
design decisions in this thesis, such as the establishment of requirements or constraints.

In Industry 4.0, also known as smart manufacturing and various other terms, the
major aims are the automatic planning and optimisation of production and logistic
processes [IEE20]. The context awareness of IoT systems allows for better monitoring
and planning as well as to improve the flexibility of the system, such as allowing for
customised products. Other aims are reducing defects and proactive maintenance [PZ17].
Smart farming has similar goals with tasks such as monitoring plants and animals or
their environments, such as the soil, climate or greenhouses. Smart farming provides
utilities such as detecting crop infections or diseases, assisting in raising productivity and
improving efficiency, such as by reducing water consumption [FRA+19].
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Smart cities are the idea of applying IoT to urban areas to improve large scale infrastruc-
ture. The monitoring can consist of dedicated sensors, cameras and vehicles or personal
smartphones and other wearables providing information. This allows for the widespread
collection of data points on interests such as pollution levels or traffic conditions. The
data enables techniques such as smart healthcare or the previously introduced traffic
management [DSX+19, AA20]. Smart cars and infrastructure for them or vehicle-to-
vehicle connections to exchange data are also related [JRNR20]. Smart grids consist
of an information, communication and energy infrastructure. They include ideas such
as forming micro-grids, in which other local resources, such as generators, storage and
users, can cooperate to form an electric grid even if the overall network fails. As such,
they promote more distributed power generation, can reduce necessary peak or backup
generation needs by smartly utilising batteries, and can generally optimise the network
for efficiency and reliability among other advantages [FMXY12].

Even today there are already various possibilities with IoT systems in existing infrastruc-
ture. Airports can have several thousands of cameras which continuously create large
amounts of data that need to be stored, but also could be further analysed. Several
use cases are theorised or already exist to improve security, such as verifying licence
plates of cars, utilising facial recognition, tracking baggage or as general alert systems by
attempting to detect anomalies using machine learning systems. In addition, resources
could be used to compress video streams allowing for cheaper cameras by reducing their
required capabilities. Less capable devices also ensure that verifying their security is
simpler. Compression is not only relevant to reduce storage costs, but also to reduce
the transport cost in current cloud computing-based models. The cost of transferring
all this data does not allow to support cameras with high resolutions, such as 1080p or
4k. Cloud-based installations are therefore considered to not scale sufficiently to support
more modern standards [IEE18].

With all these devices collecting data, managing the scale becomes difficult. Even the
widely used model of storing the data in a relational database to process later is sometimes
considered obsolete in IoT systems [AA12]. Therefore, the following discussion considers
some techniques for managing data at this scale.

2.3.4 Data Management

Sensors used for these applications continuously produce data and have to be processed.
Video streams are a common example with their problematic high bandwidth require-
ments [IEE18]. These sensors typically do not stop collecting data. Hence, timely
processing is necessary as otherwise an overwhelmed system can not keep up and the de-
lay increases, until results from a data point are attained [PB19]. The cloud is commonly
used to provide the necessary computational resources cost-efficient at scale [WKB+19].
Managing all this data is a research problem related to the IoT in itself. Various strategies
are being researched to limit the scale to be able to handle the data. This ranges from
efficient sampling techniques to early filtering or aggregation of values [AA12, HPS+15].
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The persistent storage of all data is often considered not useful or even impossible.
Thus, one strategy is to store data only for a limited time window while it is recent
and relevant [PB19]. These constraints highlight the relevancy of this thesis and stream
processing with its fitting features for the IoT by immediately processing data in a scalable
way, so that even during peak loads the storage of events can be avoided. For traditional
batch processing, dependent on storing and querying data, an ageing mechanism can be
used to remove less useful data points. Such ageing mechanisms attempt to intelligently
select the least valuable or least used data and delete it [AA12].

While all these strategies allow reducing transmitted or stored data, its scale is still
difficult to manage. The widespread usage of the cloud for analysing IoT data is becoming
a bottleneck and constrains potential use cases. In response, the idea of a new cloud-like
infrastructure designed to solve related drawbacks, known as fog computing, is taking
shape [IGF+18].

2.4 Fog Computing
2.4.1 Overview
Fog computing is a new paradigm adapting cloud computing to extend to the edge of
the network, bringing computations closer to data sources and end devices [AVA19].
This section introduces fog computing based on the conceptual model defined by the
National Institute of Standards and Technology (NIST) [IGF+18]. It is important to
note that the discussion of the fog architecture has not yet reached a conclusion on a
standardised definition [AVA19]. While multiple standards have been created, such as the
NIST model and the recent IEEE adoption of the reference architecture of the OpenFog
Consortium, they are not yet commonly agreed upon [IGF+18, IEE18]. This section
provides an overview of the differences in fog computing definitions and their usage in
research. The main definition is based on the NIST model, which has been selected
because of its broader definition capturing the core principles of fog computing. The
model also presents a more recent view on fog computing closely matching the original
definitions [IGF+18, BMZA12].

Fog computing allows to process data closer to its sources, the smart or IoT device it
originates from. As such, it is a more decentralised approach than the usage of centralised
cloud-based data centres [IGF+18]. This is intended to be achieved by using comparably
lower performance devices, such as Raspberry Pis, or smaller clusters of servers as a
basis for the fog [YFN+19, VS20]. Performing computations at the edge instead of the
cloud reduces the limitations of network bandwidth and latency for applications on end
devices [Sim19].

2.4.2 Definition
Fog computing is seen as a three-layered model displayed in Figure 2.4 and consists
of the cloud, the fog and IoT layers. The fog is therefore located as a layer between
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Figure 2.4: Common fog computing model consisting of layers for the cloud, the fog and
IoT devices [DTD19].

the cloud and the IoT end devices. Applications can be executed in this three-layered
model with components or services spread across the cloud and fog. It is important to
note that applications can exist solely in the fog and independent of the cloud, which
means without dependencies on the cloud or applications hosted there [IGF+18]. The
amount of devices expected per layer differs between estimations. The NIST model
predicts thousands of clusters in the fog layer with millions of end devices [IGF+18]. The
newer IEEE standard assumes a much larger scale of tens of millions of fog resources
with billions of end devices [IEE18]. In contrast to the different expectations of the
device counts, the ratios between layers and therefore devices per fog resources are of
similar scale in both estimations. This three-layered model is not universally accepted as
there are multiple alternative definitions, which allow modelling additional concepts such
as data consumption, management or specialisation of components [AVA19]. Similarly,
there are models which further split the fog layer vertically to form hierarchies or other
groupings [Sim19]. While the model and architecture of the fog are still in discussion,
there is a unified vision of the advantages it provides and its properties.

2.4.3 Benefits and Characteristics
The distributed service fog computing provides has various benefits and characteristics.
They are summarised in the following discussion. Furthermore, the differences to cen-
tralised cloud computing and the impact this has on applications is a major focus. The
comparison to cloud computing is also summarised in Table 2.1.
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Table 2.1: Summary of the presented characteristics of fog and cloud computing.

Characteristic Cloud Computing Fog Computing
Geographic distribution Centralised [IGF+18] Decentralised [IGF+18]

Computational resources Clusters in data
centres [RZH+20]

Lower performance
(Clusters, Raspberry Pis,
...) [YFN+19, VS20]

Resource homogeneity Homogeneous [BMZA12] Heterogeneous [IGF+18]
Location in network Core [DTD19] Edge [Sim19]

Main advantage High performance [IGF+18] End device
proximity [IGF+18]

The fog is distributed geographically. Computational resources can identify their location
within this distribution and provide the information to applications. This location aware-
ness can be utilised to ensure data is processed or stored where it is likely needed [IGF+18].
Possible examples are applications in the domain of augmented reality storing infor-
mation about nearby points of interest. At the same time, this distribution allows for
reduced latency and fewer limitations on the network bandwidth by being located at the
edge of the network [Sim19]. In general, fog resources are assumed to have a reliable
high bandwidth Internet connection, although this also depends on the computational
resources used for the fog, which is still an open discussion and is presented in the
following section [VS20]. As such, applications requiring close to real-time interactions
are intended use cases for the fog. In comparison, batch-like processes generally do not
benefit from the distribution of the fog and as such fit better to the more powerful cloud
computing resources [IGF+18].

Applications, especially in the case of real-time interactions, may need to be aware of
the mobility of their users. This allows for better placement of computational tasks or
storage. In comparison to the cloud, scaling resources to the demand may also require
identifying the location of the source. Otherwise, the utilisation of distant resources can
not ensure the latency requirements an application may have. This mobility is possible
because both users and IoT devices often depend on wireless connections [IGF+18].

Fog computing embraces heterogeneity, both in the applications and their data as well
as the capabilities of its computational resources. As such, the interoperability of
applications within a fog environment or installations of different fog service providers is
important [IGF+18]. In contrast, the resources provided by cloud computing are more
homogeneous [BMZA12].

Scalability plays a central role in supporting large amounts of devices expected to partake
in a fog environment. As such, the efficient management of fog resources is necessary
and largely automated. Individual fog resources or federations may therefore operate
autonomously or form hierarchical structures. The automated management requires the
programmability of the fog resources by the service provider and user across multiple
domains [IGF+18].
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The distributed nature of fog computing, the constrained resources of fog devices and
the interactions with IoT devices have introduced new security challenges [LYCW18].
By overcoming these, the usage of fog computing also provides opportunities to improve
the privacy aspects in comparison to the already established cloud computing. The
geological distribution of fog computing resources allows control of where to process and
store data. This can limit the handling of critical information to selected providers or
even on-premise fog installations. Furthermore, the processing of data closer to its source
can be used to minimise privacy concerning data in transit. That is because data can be
filtered or aggregated early [PRB20].

Stream processing applications produce results in multiple steps, but these could each be
executed by different fog providers. The exposure of information to a single provider can
therefore be limited. For example, two different providers may execute tasks to aggregate
data from different data sources while a third one joins their results and provides further
analysis. None of these providers would have access to the complete data set or the
capability to fully trace it. In contrast to clouds, this decentralised processing and
potential storage can therefore be used to protect against service providers and limit
exposure of data if a leak occurs [PRB20].

2.4.4 Service and Deployment Models
With fog computing intended as an adaption or extension of cloud computing and
therefore sharing large similarities, it also supports the same service models. These are
SaaS, PaaS, CaaS and IaaS [KDKZ17, IGF+18].

This similarity continues with the deployment models also matching the cloud computing
ones. As such, private, community and public as well as hybrid deployment types, which
are combinations of the previously listed ones, are again possible [IGF+18]. The rest of
this section explores which hardware and further structuring of fog computing resources
is often assumed or intended.

Fog computing uses multiple resources, these can be physical machines or virtual ones.
They can function autonomously or form federations such as clusters or logical hierarchies.
Such hierarchies can have merely organisational use or can for example be based on the
proximity or latency between resources [IGF+18].

Following the three-layered model of fog computing introduced previously, the first layer
consists of cloud resources. These could be complete data centres or specific physical or
virtual computational resources of the cloud [IGF+18].

The second layer is the fog and its resources are referred to as fog nodes. Cloudlets
are clusters of fog nodes and are a commonly used concept in fog computing. They
functionally represent and are intended as mini data centres. They provide powerful
computational nodes with high bandwidth and low latency connections [SBCD09].

The hardware or capabilities of fog nodes still have multiple interpretations. All resources
from low-performance devices like single-board computers, such as the often-mentioned
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Raspberry Pi, to small data centres or clusters are generally assumed [YFN+19, VS20].
There are also many places where a fog resource can be deployed. Locations such as cell
towers, roadside units or even mobile targets like cars or trains are being envisioned and
researched in related technologies [Sim19, VS20].

Another group of potential fog computing hardware is the network infrastructure itself.
Low-performance devices such as routers, switches or access points could be used instead of
having to create new installations [IGF+18, YFN+19]. They benefit from their ubiquitous
access and existence everywhere between edge devices and the cloud. In the case of
stream processing applications, data could potentially be processed directly in transit on
these networking devices, instead of being routed to different computational resources
close to the path taken. It will be interesting to observe if networking devices will be
meaningfully utilised for fog computing in the long term. This is because the usage of
networking devices is only possible as long as they are underutilised and have resources
to spare.

Software-Defined Networking (SDN) is a paradigm gaining popularity in research and
industry, aiming to maximise efficiency and minimise networking infrastructure costs.
This is in part accomplished by managing the devices efficiently to increase maximum
resource utilisation and to improve efficiency when underutilised [SAG+19]. These unused
capabilities of devices are seen as a cost or inefficiency and are also the resources fog
computing could consume.

SDN adds APIs to network devices to manage them via software. This splits the net-
work into the data and control planes. The data plane contains devices, which handle
the forwarding of the bulk data. The control plane merely oversees the network and
reconfigures the data plane to adapt to changing demands and to raise the efficiency of
the infrastructure. Dedicated control software allows for scalable and efficient manage-
ment of the network by centralising its administration, while reducing complexity and
costs [SAG+19].

The separation of the data handling and network management in SDN has an analogue
in stream processing. For stream processing applications, many resources are available,
where an application’s operators can be executed. To handle the large number of
possibilities, the placement of stream operators onto resources is automated and can
target different optimisation goals [VS20]. This process solves the so-called stream
operator placement problem [LLS08]. It controls the execution of stream processing
applications and is the focus of the following chapter.

The third layer is the IoT layer at the edge of the network [IGF+18]. There is no consensus
yet where exactly the actual separation between the fog and IoT layer is. In some
definitions, the fog resources only exist within wired networks while others also include
powerful IoT devices as possible resources. As such, not only end or IoT devices, which
contribute to or use data processed by the fog, can be mobile, but also fog nodes themselves
depending on the fog definition used by researchers [IGF+18, DTD19, MMA+17]. In
these cases, topics such as energy efficiency or the availability of fog nodes gain in
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importance [VS20]. Examples of such fog nodes could therefore be anything from IoT
devices such as phones or laptops to installations in cars or trains [DTD19, VS20].

It was noted above, that under some fog definitions devices at the edge of the network are
utilised as fog computing resources, but edge computing is another paradigm specialised
for this environment. Edge computing shares many of the aims and methodology of
fog computing, but only operates at the edge. Cloudlets are often associated with
edge computing as well as Mobile Edge Computing (MEC), a concept in which similar
computational resources are provided within the radio network. Mobile Cloud Computing
(MCC) aims to directly utilise IoT devices as a computational or storage resource to
provide cloud-like services. As such, the primary research challenges include the utilisation
of such low-performance devices, which commonly are only temporarily available, are
also mobile and limited by their battery capabilities [DTD19].

These closely related computing paradigms also highlight the question of if the separation
of them still provides utility and if fog computing is developing to become the new umbrella
term covering all these principles. In fact, the difficulty in defining and differentiating
between edge and fog computing is often a major focus point of researchers. While their
arguments are sensible, they usually share little similarity. Reasons such as a lack of
hierarchies in edge computing, differing levels of heterogeneity in resources and different
requirements or devices are examples of this debate [YFN+19, DTD19, IGF+18, AVA19].
Even the viewpoints that fog computing is an implementation or successor of edge
computing exist [DTD19]. The lack of consensus and clarity also results in many
researchers not differentiating between the terms [YFN+19, HV19]. For this reason,
Chapter 4 provides the fog definition used for this thesis, discussing the applicability of
different assumptions and interpretations in the context of stream processing.

While the discussion has been so far on the performance demands for stream processing
applications and how their environment can be improved by utilising fog computing, the
following section looks at the optimisation of stream processing applications themselves.

2.5 Optimisation of Stream Processing Applications

Stream processing applications are often seen as queries, which are continuously evaluated
on newly received data [dAVB18]. As such, many optimisations in stream processing are
also query optimisation strategies. The following discussion, therefore, starts by briefly
introducing traditional query optimisation techniques. Their historic development has
been naturally evolving them from more static techniques into one’s closer matching
the adaptability of modern stream processing systems. In fact, the first generation of
stream processing engines was based on extending database models with the capability
to process dynamic data [dAVB18]. A survey on current stream processing optimisations
then follows this overview.
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2.5.1 Cost-based Query Optimisation
The actual execution of a query consists of four phases in the case of traditional database
querying and modern stream processing: parsing, optimisation, code generation and
finally the actual execution. While parsing, a query tree is generated, which describes
the flow of data and operation of data, closely similar to the DAG of stream processing
applications for their topology. While a query defines the initial dataset to use and the
final result, it still allows for variation in the intermediary steps. For these, the cost can
be optimised by minimising the size of intermediary results and determining the best
implementation to use for an operation. One method to minimise intermediary results is
to change the order of operations. For database queries, this results in optimising the
order joins are executed in, filtering data as early as possible and accessing the data
efficiently. This methodology thereby selects efficient query plans by estimating their
costs. In the last two phases, the code is then generated based on existing templates and
executed [SAC+79].

Optimising the access of data relies on the usage of indexes, if available. Indexes are
ordered lookup references for keys or other values of entries that can optionally be created
and point to the segment containing the data point. Typically, to access the data all
segments have to be read, but an index allows to skip any segment not containing useful
data points for the query. The order of an index may not match the order of entries in
the data segments and therefore individual segments might be accessed multiple times.
This happens when entries are distant from each other in the order of the index, but
are stored within the same segment. Additionally, accessing the index itself also has an
associated cost. As such, using an index is not always an optimal choice and multiple
indexes can exist for one set of data. Selecting the best access path therefore relies on
estimations of their cost. This consist of CPU cycles and reading accesses. To perform
these calculations, statistics are maintained, such as the count of distinct entries in
indexes, the amount of values in data sets and their storage sizes [SAC+79].

These statistics are also used to estimate the cost to execute the query. The optimiser
can adapt the evaluation order of operations and primarily select the best order of joining
all relevant data sets. While the input and output sizes are fixed, it aims to minimise the
intermediary result sizes as handling less data is always more efficient. The optimiser
accomplishes this by estimating the result sizes of operations, which uses an estimation of
the selectivity of operations. The selectivity of an operation is defined as the percentage
of data points which will be included in the results [SAC+79].

2.5.2 Cardinality & Selectivity Estimation
The estimation of cardinalities and therefore selectivity is seen as the most important
component of query optimisation [LGM+15]. To allow for these computations, many
simplifying assumptions are made. These are the independence of attribute values and
resulting join predicates as well as a uniform distribution of values within the domains of
attributes [TDJ11].
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These assumptions are known sources for estimation errors and as such techniques are
developed to remove or improve upon them. By creating histograms of attribute values,
the assumption of a uniform distribution can be removed. Similarly, there is a range of
techniques aiming to handle the independence assumptions of attributes and associated
join predicates [TDJ11].

In addition to the estimation accuracy, another problem is the propagation of errors in
their estimates. Estimates are used as inputs for the estimation of the following operators
and as such errors are propagated and can accumulate [YHM15]. Exponential error
growth has to be assumed with an increase in the number of joins and can therefore
overwhelm estimates in large queries [IC91]. Robustness against errors during the
planning and execution of queries as well as the runtime management of workloads are
therefore desired properties [YHM15].

As such, there is a variety of techniques aiming to improve robustness. Cardinality
injection is a methodology using alternative information apart from just the statistics,
such as data from previously executed queries, and can improve estimations and avoid
errors. Similarly, plans can be selected with a performance that is less sensitive to
estimation errors. The execution of multiple plans for a single query allows for more
specific optimisations and reduces the chance of worst-case performance. One method to
accomplish this is to partition the data and create an execution plan for each partition.
This allows exploiting their specific correlations or value distributions. An alternative is
to allow for more adaptability in the query plan or its execution as the following section
describes [YHM15].

2.5.3 Adaptive Query Processing

Adaptive query processing allows for a query plan to be changed or its planning to
be completed during the actual execution of the query. This provides benefits such as
additional metrics or even index structures being available, less reliance on estimates and
the possibility to adapt to runtime changes, such as performance fluctuations. Aims can
be to improve the performance of individual queries or maximising the throughput of
the complete workload. Additionally, in interactive environments returning partial early
results can be beneficial to its users and therefore be of interest [GPFS02].

Estimation errors can be avoided by deferring some choices in the query plan until
its execution, when more information is available. This is easiest to implement at
materialisation points, blocking operations, which require all data to start their execution.
These points allow a restructuring or reordering of any following operators, without having
to worry about routing changes and state issues of currently executing operators [IDR07].
Another possibility is to only adapt the query plan if the collected statistics diverge too
much from the estimated performance. Similarly, operators allow for various levels of
adaptivity, such as their memory consumption or utilisation of new indexes if they are
added to the database [GPFS02].
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Figure 2.5: Eddies act as the central routing element deciding the order of the execution
of operations. Data is only forwarded from the eddy once it has been processed by all
operators which are a part of the eddy [HSS+13].

Query scrambling aims to reduce the impact of delays during the loading of data or
slower than expected processing. In distributed systems, such delays and slower rates of
received data can lead to an underutilisation of available resources. Query scrambling
can adjust the query plan to execute some useful work in the meanwhile. This is done by
inserting operations or changing their order of execution. As such, the efficiency of the
query plan may be reduced to ensure there is always useful work to complete. This can
accelerate the total query completion time by improving resource utilisation, but happens
at the cost of the potentially worse overall efficiency of a new query plan [GPFS02].

Eddies route data between operators and as such can execute individual query plans for
sets of data or even single data points. As such, eddies can be considered as a single n-ary
operator consisting of multiple operators executing a more complex function [AH00].
Figure 2.5 shows an example of how the usage of eddies modifies the routing between
operators. The routing of eddies is used to adapt the execution order of operators to
changing performance of the execution environment or data characteristics and therefore
operator efficiencies. Eddies can only be utilised when the order of operators can be
changed without having to affect the state of the operators [GPFS02].

Overall, the historic development of query processing shows tendencies to increasingly
become adaptive. Similarly, the large similarity of general stream processing and query
processing highlights the value and interest into the technology. Many of these optimi-
sations are also applicable to general stream processing. As such, the following section
provides an overview of stream processing optimisations before then discussing the role
of the stream operator placement problem.

2.5.4 Stream Processing Optimisations
This section provides a list of generalised techniques used for optimising stream processing
applications. The section starts by reintroducing optimisation concepts from the previous
discussion on query processing and their differences if applicable.

In the optimisation of stream processing applications, selectivity is also considered like in
query processing. Selectivity in stream processing uses an alternative definition, which
is the ratio of operator output events to input events. This allows selectivity to reach
values larger than one to also model operators which send multiple events or events to
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multiple outputs [HSS+13]. Another difference is the ready availability of selectivities.
Databases can create statistics about the data they contain, but in stream processing, as
previously mentioned in Section 2.2, the general assumption is only-once processing of
events [PB19]. As such, the data can change over time and affect selectivities of operators,
whose selectivity is not constant [HSS+13].

A B
q0 q1 q2

B A
q0 q1 q2

Figure 2.6: Reordering of operators to reduce the amount of intermediary re-
sults [HSS+13].

Aα Aβ

Figure 2.7: Selection of an alternative algorithm, which is better optimised in the given
context [HSS+13].

Figure 2.6 shows the usage of selectivities to reorder operators to ensure ones with smaller
selectivity and therefore smaller intermediary results are executed earlier. Techniques
such as eddies, previously shown in Figure 2.5, can also be used in stream processing. The
code generation executed during the translation from the logical to the physical plan can
also select the best algorithm to use for the implementation. Deciding this depends on the
semantics and constraints of all operations in the stream processing application. These
may be readily available or have to be inferred depending on whether the programming
provides well-defined high-level concepts or is based on low-level instructions. Figure 2.7
symbolises such an optimising change in the operator implementation selection [HSS+13].
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Figure 2.8: Application of operator fission to improve concurrency by creating independent
parallel streams [HSS+13].
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Figure 2.9: Changing the assignment of events to process can be used to balance the load
for each operator [HSS+13].
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Operator fission replicates operators to partition a stream into multiple parallel compu-
tations. Figure 2.8 shows the creation of such parallel regions. It requires partitioning
the state of the operator or the operation being a stateless computation. Within fission
areas and general computations, the load of operators should be balanced for optimal
performance. Figure 2.9 shows that the distribution of data to operators can be improved
to ensure more similar workloads. An imbalance in the workload could be created
by reasons such as a slower than expected runtime environment or variations in the
processing time of events [HSS+13].

A AShedder

Figure 2.10: Example of discarding events when the processing capacity is exceeded to
ensure maximum throughput and stability for the application [HSS+13].

If a system is not capable of handling the data, then some load can be strategically shed to
improve the throughput while aiming to minimise the negative impact. Figure 2.10 shows
an example of such a technique, which discards events thereby reducing the accuracy
of the computational results. Alternatively, cheaper operator implementations could be
used, which may only approximate a result instead of an accurate computation [HSS+13].

A
q0 q2

A1 A2q0 q1 q2

Figure 2.11: Separation of the A operator into two separate operators to increase
concurrency or to potentially enable other optimisations [HSS+13].

A B A B

Figure 2.12: Elimination of redundant state between operators A and B by creating a
shared state [HSS+13].

Separating operators into their smallest steps, as shown in Figure 2.11, allows for more
reordering potential or extending a parallel region from operator fission. If many operators
exist within an application requiring similar components, then sharing these between
operators can save memory or storage resources. Examples of such components are large
similar states, event queues or windows. Figure 2.12 shows the elimination of a copy
of data, at the expense of having to safely manage the memory between the operators.
Generally, this technique is limited to operators residing on the same computational
resource [HSS+13].

Operators can also be fused into a single one, thereby avoiding the cost to transfer data,
but reducing potential concurrency, because they can not run independently any more.
As such, for this optimisation the cost of communication has to outweigh the loss in
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A B A B
q0 q1 q2 q0 q2

Figure 2.13: Operator fusion allows to remove the intermediary data stream q1 [HSS+13].
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Figure 2.14: Communication and processing of data can be adapted to use larger batches
of events instead of handling them independently [HSS+13].

concurrency. Figure 2.13 shows its application to eliminate the intermediary data stream
q1. Another method of optimising communication among other factors is to transfer and
process data in larger batches as displayed in Figure 2.14. Batching can improve the
throughput at the cost of latency [HSS+13].
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Figure 2.15: Elimination of one redundant instance of operator A in parallel streams by
changing the graph to create a shared instance [HSS+13].

While all previously discussed optimisations aim to reduce the overhead, process data
more intelligently or increase their concurrency, eliminating redundant elements can
reduce the work itself. Operators or even sub-graphs of an application may be redundant,
if they perform the same operations on similar data. In this case, additional instances
of the sub-graphs or operators could be removed by sharing them with the associated
streams. Figure 2.15 shows an example of this by eliminating the redundant A operator.
This optimisation can even be applied across multiple applications, as long as the affected
operators are stateless or their states can be combined [HSS+13].
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Figure 2.16: Operator placement assigns operators to be executed by specific compu-
tational resources. The assignments are symbolised by a box drawn around co-located
operators [HSS+13].

The final optimisation is the placement where operators are executed. Figure 2.16 shows
operators being assigned to different computational resources. This provides the basis
to enable operator fusion and optimises for the usage of available resources and metrics
affecting a stream processing application, such as available memory or latency [HSS+13].
The following section summarises the main takeaways of this chapter, before the following
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chapter then provides a detailed introduction to the stream operator placement problem,
it’s variations and approaches to solve it.

2.6 Chapter Summary
To summarise, this chapter has introduced stream processing as a means to architect
highly scalable applications. A complex task is split into operations, each performing a
partial step in transforming inputs to the intended outputs. The operations are executed
by workers to form operators and are continuously applied to any new input the stream
processing application receives. Operators can be placed on separate computational
resources and can often also be replicated to further scale potential throughput. This
depends on if an operator is stateless or can partition its state and associated streams
without violating the correctness of the application.

The significance of the location in the stream operator placement problem is mirrored by
the introduction of cloud and fog computing. Both provide virtualised computational
resources to execute stream processing and also other kinds of applications on. The
centralisation of cloud computing results in data having to be sent long distances
before it reaches a data centre and can be processed. This introduces latency and
requires more networking infrastructure. Fog computing alleviates this by adopting
a decentralised distribution of computing resources. As such, individual resources
provide fewer performance capabilities than a data centre for cloud computing, but
provide the advantage of proximity instead. This development has further implications
such as the potential of context awareness and better protection of privacy or other
regulatory concerns, by processing data closer to its source and reducing potential
exposure. Fog computing suffers from multiple in details conflicting definitions and
difficulty to differentiate from related paradigms. As a result, this thesis further clarifies
the definition of fog computing to be used in Chapter 4.

The IoT is a trend that has benefited from cloud computing, but is able to overcome
newfound limitations with fog computing. IoT devices are connected to the Internet and
sense or interact with the world. By allowing such devices to interact or share data, they
can be used to provide additional use cases and value. This results in large amounts
of data being collected and requiring processing. Stream processing applications are
designed to handle such a continuous stream of new data and quickly calculate results.
This is known as online processing.

Additionally, to allow the IoT to benefit from fog computing with even lower response
times for results and thereby allowing for new latency-limited use cases, stream processing
applications have to support fog computing and optimise for the response time. This
requires a solution aware of the latency between computational nodes as they are more
significant in the distributed fog computing setting than in cloud computing. It was also
mentioned that the deployment of stream processing applications uses automation to
optimise the applications’ performance. This is known as the stream processing operator

29



2. Background

placement problem and therefore must be designed with support for fog computing and
this problem domain in mind.

The chapter has introduced all these paradigms and provided examples of use cases to
understand the context of stream processing applications in the fog. The context is
necessary to consider during the design of a solution as it provides the foundation for the
requirements and constraints.

The optimisation of database queries has been used as an introduction to stream pro-
cessing, because stream processing has been developed on the basis of databases and
their optimisations. Therefore, many of the techniques and terminology that have been
developed in this field form the foundation for the theoretical and practical optimisation
of stream processing applications. At the same time, database queries provide a context
which is easier to understand and analyse, with a known dataset limited in size, rather
than the continuously processed infinite data streams of unseen data.

In particular, the general framework of estimating the cost of potential plans and selecting
the best one, as well as the estimation of intermediary result sizes including the use
of selectivity and considering the adaptivity of a query are highly relevant to stream
processing. Selectivity considers in a traditional query the percentage of the inputs which
are selected as the output for an operator, while in stream processing this has been
extended to allow for operators, which create more outputs than they receive inputs.
As the later sections have shown, the practical use of selectivity in stream processing
is somewhat limited, given that the data to be processed is unknown and therefore the
operators may behave differently. At the same time, the operators themselves may be
user-defined functions. For these, the specific behaviour may have not been modelled
and cost can therefore not be estimated, except for using historical data. Historical data
is not always available and may not represent new data limiting the general applicability.
The static sizes of intermediary results in queries can be similarly considered in stream
processing by considering rates of events on the relevant data streams.

Following this, a large amount of optimisations for stream and query processing has been
discussed. In addition to the operator placement problem itself, operator fusion is of
significance for this thesis as the potential to apply it largely depends on the operator
placement. Operator fusion aims to eliminate the overhead of an intermediary queue or
data stream between operators by either merging them into a single operator by chaining
the relevant functions or by already performing this step during the compilation of the
stream processing application to benefit from additional optimisations a compiler may
identify.

With the established context already in mind, the following chapter introduces the formal
stream operator placement problem definition itself, the state of the art of relevant stream
operator placement mechanisms and other closely related problems to prepare for the
discussion of the design of a new solution.
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CHAPTER 3
State of the Art

This chapter provides the necessary knowledge surrounding the stream operator placement
problem, its definition and its solving techniques. The stream processing operator
placement is defined at the beginning in Section 3.1. A survey of heuristics and solvers
for the problem is presented in Section 3.2. This includes an overview of the key concepts
and different techniques used and a set of selected previous approaches targeting the
stream operator placement problem. Subsequently, an overview of related placement
techniques or scheduling strategies is presented in Section 3.3 to fully summarise the
state of the art closely related to the main topic of this thesis. Section 3.4 discusses how
the proposed solutions differentiates itself and improves on the state of the art.

3.1 Stream Operator Placement Problem

3.1.1 Definition

The stream operator placement problem consists of operators of a stream processing
application being placed on computational resources to be executed there. It is a
combinatorial problem of M operators and N computational resources with O(NM )
potential solutions. Every resource has a set of capabilities or available capacities,
which are used to identify valid placements. Depending on the problem definition, these
resources may have identical capacities and capabilities. They are then considered
homogeneous or heterogeneous if they differ. The definition of the placement problem
and implementation decide, what capacities and capabilities are used. For example, a
capability of a resource could be the availability of a GPU and therefore potential to
perform GPU-accelerated computations [VS20]. Samples of common capacity limitations
used are available processing performance, RAM or bandwidth. Operators to be placed
can similarly require a set of capacities and capabilities [LLS08].
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Based on these, constraints that must be satisfied for a valid placement can be defined,
such as guaranteeing a minimum amount of resource capacities an operator requires to
perform its function. Similarly, it is possible to define an optimisation function, which
assigns a score for each solution. A solver would then aim to optimise the score by, for
example, maximising the stream processing applications throughput or minimising its
resource usage [dAVB18].

Solving such placement problems optimally is relatively trivial for small instances and
can be completed quickly [TLL14]. For large instances, it can become a significant issue,
such as with many resources or operators, because it is currently unknown if they can
be solved in polynomial time. With the optimal operator placement problem being an
instance of a more general NP-complete problem, its computation, therefore, quickly
becomes intractable with the size of the problem [LLS08]. Variants have therefore been
established around different trade-offs in guarantees on the quality of the solution and
its computational cost [VS20].

3.1.2 Variants of the Stream Operator Placement Problem
The following list presents three variants of the stream operator placement problem,
based on the definition of the problem or the strategy to solve it.

Operator Placement Satisfiability Problem This group of solvers aims to find one
solution that satisfies all constraints or the answer that no solution can be found. As
such, optimisation functions are not utilised. Therefore, this problem is a constraint
satisfaction problem (CSP) [TLL14].

Optimal Stream Operator Placement Problem Compared to the previous defini-
tion, this category uses the optimisation function to find the best possible solution
satisfying all constraints. As such, these belong to the group of constrained optimi-
sation problems (COPs) [VS20].

Heuristic Stream Operator Placement Problem By using heuristics or meta-heu-
ristics instead of an exact solution strategy, a trade-off in solution quality and the
time to compute it is created. Therefore, heuristics only aim to find a solution
that is good enough for practical purposes and may stop early. For example, limits
on the maximum allowed calculation time could be employed or only a subset of
all computational resources could be considered [VS20]. While heuristics can be
complete, a property guaranteeing that within the bounded time they are able to
find the optimal solution, the computational cost can be prohibitive. Meta-heuristics
are higher-level constructs which modify the search strategy, such as a heuristic, in
an attempt to optimise it. For this thesis, the most important distinction between
meta-heuristics and heuristics is that a meta-heuristic is not problem-specific. As
such, well-known meta-heuristics are utilised for many optimisation problems. In
comparison, a heuristic can be designed for a given problem and therefore employ
a more unique strategy [BR03].
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As a result, solution approaches for the satisfiability or optimal placement problem
typically differentiate the most in their definition of the constraints or optimisation
function. In comparison, the work on heuristics allows for more variety as the aim is to
identify shortcuts or simplifications of the problem, which work well enough in practice
and aim to approximate optimal solutions. The following section continues the overview
of solving techniques by presenting common properties of solving strategies before selected
solutions are presented.

3.2 Survey on Solving the Stream Operator Placement
Problem

This section presents a survey of techniques to solve the operator placement problem.
While the previous section has already introduced three types of solvers: exact solving
techniques, heuristics and meta-heuristics, this survey first introduces general character-
istics across all of these types. In practice, most placement techniques only support a
limited subset of these matching closely to their intended use case or environment. In
the following section, selected approaches are then introduced.

3.2.1 Survey on Characteristics
Structure of Scheduling Unit

The previous definition of the stream operator problem is a problem of assigning operators
to resources, but the level of abstraction at which a heuristic or scheduler operates is not
specified. As such, the unit which is used for the scheduling and its structure can vary.
This is known as the structure of the scheduling unit and could consist of individual
operators or one or even multiple DAGs at once. The unit of scheduling is also used
for the definition of constraints and the scoring function. Scheduling a large structure
at once, such as a DAG or even multiple ones, provides additional information over
individual tasks but also increases the difficulty as more possibilities exist and more
information has to be considered [VS20].

Mode of Submission

Additionally, the number of scheduling units submitted by a user can vary. Some solutions
may only allow for a single scheduling unit, while others can accept a batch of multiple
units. Solutions with multiple scheduling units may also place further constraints on
them, such as if they respect the order of submission or if they only accept similarly
structured scheduling units [VS20].

Granularity

The granularity of a scheduler describes the number of scheduling units processed at
once. While every single placement request can be processed individually, allowing for
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collections of requests to be placed at once provides additional information at the cost of
increasing the difficulty [VS20].

Adaptivity

In Section 2.5.3, the importance of adapting the execution of a query to changes in the
environment has been discussed. Similarly, the placement of operators could potentially
be optimised with ongoing changes. Static placement techniques only consider an initially
optimal placement, while online techniques aim to continue optimising placements if
the environment changes [dAVB18]. To reduce the number of operator migrations and
expensive optimisation computations, online techniques are typically only applied after
significant changes have been detected. These are violations of constraints, drops of the
performance below thresholds or simply waiting until a long enough period of time has
passed [LLS08].

Quality of Service Constraints

In addition to optimising some metrics with the scoring function, Quality of Service (QoS)
constraints can be defined to guarantee a minimum standard in all solutions. These are
commonly focused on limiting the cost or ensuring most of the available computational
resources are utilised instead of idling. In edge computing scenarios and certain fog
resources, the energy consumption may also be considered, as the available energy may
be limited, such as for battery-powered devices. In workloads on existing datasets, such
as during batch processing, a deadline can be defined, when all work needs to be finished.
This time from the start of an application to the completion of all work is also known as
the makespan of an application [VS20].

Heterogeneity

Heterogeneity considers the support of computing resources with varying properties
or capabilities, such as their computing performance or available storage [LLS08]. In
Section 2.4, it has already been discussed that cloud computing consists of comparably
more homogeneous environments than fog computing. As such, supporting heterogeneity
is more important for fog computing and is less often considered for cloud computing
scheduling approaches [VS20]. Network awareness, such as the consideration of bandwidth
or network latency, causes a similar differentiation between computing resources but is
typically separately highlighted as it is less common. Additionally, while the networking
capabilities of a resource could be treated like any other heterogeneous properties, the
fact that changes outside of the control of the current resource can affect the performance
has to be considered [PLS+06].

Algorithm Coordination

The placement of scheduling units can be executed by a centralised algorithm, which has
information on and controls all computing resources. Alternatively, the algorithm can
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support decentralisation, thereby offering many schedulers, which perform placements. It
is often accomplished by allocating a set of typically local computing resources to each
scheduler instance, which independently manages them. This benefits the scalability of
the approach as each unit only considers its assigned resources and placements can be
executed concurrently by the various scheduler instances [LLS08].

Search Space Traversal

To allow a computationally expensive placement technique to scale with more available
resources, many approaches artificially limit the search space to reduce the possibili-
ties which need to be evaluated. A wide range of different strategies can be utilised
to accomplish this goal. Examples include ending the search for improved solutions
early [NCGP19, VS20], decomposing the placement of resources into multiple simpler
problems [DLL+16], utilising artificially created hierarchies within the search space
[NCGP19] or attempting to select initial resources by first solving a simplified prob-
lem [NCGP19] and using resources nearby [SNSD17] or on connections between data
sources and sinks [CZM20]. In the following discussion, these approaches are introduced
in more detail.

3.2.2 Solution Approaches
This section introduces selected approaches to solve the stream operator placement prob-
lem. While the previous sections have been grouped based on characteristics or problem
classifications, this section presents a survey based on similar use cases, characteristics or
problems a technique aims to solve. It aims to highlight unique approaches as well as
work related to the field of fog computing.

Search Space Traversal

Many heuristics and meta-heuristics are based on strategies of attempting to improve
already found solutions iteratively. For these exit conditions, such as time and iteration
limits or changes in the rate of the solution improvement are often used. Some also use
greedy strategies, which make locally optimal decisions and do not allow revisiting or
changing them later in the search. Thereby greedily selecting options, which seem good at
the moment, may turn out to be less optimal as the search progresses [NCGP19, VS20].

Another approach is to decompose the problem into multiple sub-problems, which can
then be solved more efficiently. Their solutions are then merged into a final solution or are
used as inputs for the following sub-problems. An example of such a problem is an initial
assignment of work to cloud or fog resources to optimise the trade-off in computational
efficiency of the cloud to the low latency of the fog. Following sub-problems can then
handle each resource pool, the cloud and the fog, independently. The problem has
therefore been simplified by discarding potential placements by first deciding between
utilising the cloud or the fog, before specific resources are considered. The decomposed
problem then approximates an optimal solution [DLL+16].
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More commonly, potential resources are selected in an initial step before the placement
of operators is considered. Geographically close resources such as cloudlets and colonies
can be used to subdivide the search space into separate zones. Operators can then be
independently placed within these zones or sent to other nearby zones if a local placement
is not possible, because the zone is overused [SNSD17]. Governor similarly selects nearby
resources initially, but bases this on the necessary communication path. If the data
sources and sinks have known locations, then placing operators on paths connecting
them can minimise latency and network costs. The selection of paths can depend on the
metrics to optimise and may consider options such as low latency, high throughput or
common paths between sources and sinks to reduce necessary resources [CZM20].

In contrast to a geographical separation and selection of resources, the use of a logical
hierarchy is also possible. In such a case, computational resources are added into a
logical tree structure as leaves, with inner nodes acting as aggregates of the resources
of the nodes they contain. The placement of operators then starts at the root of the
tree and attempts to place the operators optimally across the aggregated nodes for all
sub-trees. Following this placement is attempted one level lower in all sub-trees that have
been used for the previous placement. This navigation is then iteratively applied to the
sub-trees until the minimal set of resources capable of handling the operators is found.
Each iterative step, therefore, eliminates parts of the search tree, while performing this
decision efficiently by using aggregated resources instead of considering each resource
individually. The operators are then placed on selected resources represented by the
leaves of the tree. Alternatively, this process can also be executed in a bottom-up search.
To accomplish a bottom-up search, a small set of nodes in the hierarchy is selected for
placement and if an assignment is not possible, the search space is expanded by searching
on the larger parent level in the tree structure instead. The process iteratively expands
the number of resources considered until either a placement is found or a placement using
all resources has failed. Both strategies utilise a two-step process, with the first being the
creation of the logical hierarchy, which is a clustering of resources based on their network
capabilities, such as latency for example [NCGP19].

A similar idea in expanding the search space is to solve a placement problem with relaxed
constraints first and use this solution to select the search space for the actual placement
optimisation. The relaxed placement is faster to compute, because selected constraints
are removed, thereby simplifying the problem. To ensure a placement with all constraints
is possible using the resources previously found with the relaxed problem, additional
neighbouring resources are added [NCGP19].

Geospatial and Mobility Awareness

Some approaches also aim to fully utilise the main principle of fog computing, moving
computations closer to the end devices and network edge. They consider geographical
distances in addition to cost or performance metrics. While there are only a few approaches
aiming to minimise distances, these are quickly growing in complexity and are starting
to utilise strategies such as predicting movement.
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Under the assumption that a stream processing application is only deployed for a single
edge device, it is possible to simply relocate the application if the device’s distance to the
computing resource becomes too large. To accomplish this, it is necessary to have access
to and monitor the GPS coordinates of the device. Additionally, geographical regions are
defined around computational resources. Whenever the device crosses a regional border,
also often known as geofencing, the application is moved to the computational resource
located in the newly entered region. In addition to merely considering the geographical
context, this approach can also be expanded to define regions for other regions, such as
privacy or regulatory contexts [WZR19].

Mobile fog is a general application model which allows for the implementation of stream
processing applications. It is based on the idea that all computational resources exist
in a hierarchy of geographical regions. As such, work can be completed directly in the
region it originates from, or if the target is outside the current region is simply sent
up the hierarchy until a resource is found which is responsible for both the source and
target. In this model, the same processes are deployed on each computational resource
and messages can only be transferred along with the parent or child relations within
the hierarchy. Additionally, an API exists to manage the movement of devices between
regions to allow their entry and exit of regions. This movement tracking is only supported,
but not implemented by mobile fog, such as via the use of geofencing. The approach
is also unique as it does not solve the stream operator placement problem in the usual
sense, but instead provides an API for an application to route each individual message to
a computational resource, which then processes it. Conceptually, it is, therefore, closely
related to eddies, which were discussed in Section 2.5.3 [HLR+13].

MigCEP is an approach that not only places an operator once optimising for latency, but
also aims to create a migration plan for each operator in advance. The migration plan
consists of transfers of an operator to new computational resources, which satisfy latency
constraints to the end device, while minimising the total cost of migrations. The individual
transfers have defined initiation times and deadlines and are based on predicting the
movement of data sources and sinks. The migration plans are also coordinated between
operators and computational resources [OKRR13].

Network Awareness

Network-aware placement is closely related to heterogeneous scheduling. In this case, the
optimisation also considers the network itself as a resource. This section discusses how
some approaches utilise information on bandwidth or latency to improve their placements.
The big difference to regular heterogeneous scheduling is that these network performance
metrics are not of a single computation resource, but instead the connection between
them. Therefore, the network as a shared resource creates new difficulties, such as
external factors affecting the performance or a general lack of control over the resource.
Because of this, basic information, such as the current utilisation, is easy to acquire for
other resources, but has to be explicitly measured for the network. Furthermore, the
performance can change because of external influences, and remeasurements become
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necessary [PLS+06]. At the same time, this can quickly become a scalability issue,
because the networking performance can differ between any two resources. To avoid the
need to measure every possible link resulting in O(n2) performance, this area of placement
optimisations typically uses incomplete information, as the following paragraphs will
explain [SPPvS08]. Therefore, these approaches generally focus on performing a few
measurements to predict the performance of all other links [ZLN+17]. As such, while
heterogeneous scheduling typically has known capacities and usages with the control to
dedicate a resource, network-aware approaches often use incomplete information and
estimations, as this section showcases.

Before discussing placements considering latency, it is necessary to establish for this
thesis the terminology or different viewpoints one can have of latency. For this, the
definitions of Rosenberg et al. are used, but with necessary adaptions for the context of
stream processing applications [RPD06]. At the lowest level, network latency occurs on
any connection between two computational resources, which can include intermediary
network devices on the communication path taken. The network latency furthermore
includes the time until data can be transferred if a bottleneck exists and a waiting queue
has to be created, the queueing delay. Similar to the network, the processing of data can
also cause latency. To differentiate it from the network latency, the term of execution
time is therefore used. It also includes potential queueing time if a bottleneck exists for
the processing of data. Both the execution time and network latency can be considered
on an individual operator or link level, or as accumulated time from the data source
to the data sink of a stream processing application. When considering the DAG, this
matches with the longest path in the graph when edges are labelled with the length
of the respective type of latency. For an application, the execution time is the longest
path if the network latency and execution times are used as distances. Furthermore,
this matches with the total time needed for an event to be processed by the application.
Latency can also be considered from an edge or cloud device, which sends to or receives
data from the stream processing application. It is referred to as the response time or
latency and is simply the application’s execution time with the additional network link
latencies to the edge or cloud devices and back. This is a metric that requires access to
additional information or control over a client device, as it can differ between clients. The
previous section on geospatial awareness, for example, indirectly optimises this metric by
reducing the involved distances [RPD06].

To estimate latencies, position-based methods or techniques for completing matrices are
commonly used [ZLN+17]. Approaches based on positions aim to estimate the current
coordinates of any computational resource in a defined space and are, therefore, also known
as embeddings [TR18]. Euclidean spaces are common examples, but alternatives such
as hyperbolic spaces have also been used. Based on the positions of two computational
resources, the distance in the defined space can be calculated, which is then the estimated
latency. As such, the aim is to estimate positions, which minimise the error in known
latencies and, therefore, deviations in the distances between resources. To accomplish
this, spring-based forces are often used to push or pull resources apart or together based
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on known latency measurements. These computations are repeated iteratively to update
the latency estimate to current measurements and integrate new measurements [FW09].
Resources with stable and accurate positions can be used as landmarks, so that any
new resource can compute its position only based on measurements to these landmarks.
Google has used such a system to estimate the latencies to blocks of IP addresses to
improve its content delivery networks’ (CDNs) performance [SPPvS08].
Alternatively, matrix completion aims to estimate all missing values within a matrix M of
latency measurements. This is accomplished with matrix factorisation, which aims to find
two lower-rank matrices, U and V , such that M = UV T . Matrix completion approaches
provide two theoretical benefits over position-based approaches. In a position-based
approach, their distance and, therefore, latency estimation is symmetric, while real-world
comparisons show that the latency can be asymmetric. Furthermore, when comparing
three resources, triangle inequality violations can exist in the real world but not in the
models. As such, the sum of the measured latency for two sides may be smaller than the
third side [ZLN+17].
Stream-based Overlay Network (SBON) uses an approach with spring-based forces to
estimate latencies in a three-dimensional euclidean space called cost space. To reduce
the variance in latency measurements, an additional filter is applied. Afterwards, an
initial set of computational resources is selected for the placement for each task. This
process also uses spring relaxation, but does not use the latency alone as the basis for
the optimisation, but instead uses network usage. Network usage for any network link
has been defined as datarate(l) ∗ latency(l)2. The datarate matches with the observed
or estimated bandwidth usage between two operators and not the capacity of the actual
network link. Each edge in the DAG of the stream processing application is modelled
by a spring, which aims to minimise the data usage for this link with the increased
importance for latency. As such, an approximate position for each operator is estimated,
which minimises the total network usage of the DAG, similar to finding the coordinates
to estimate latency. A small set of nearby resources is then selected for each operator as
potential placements. The operator is placed on the resource closest to the estimated
position, which fulfils all resource requirements. This process is periodically repeated to
potentially migrate operators into more beneficial positions [PLS+06].
Multi-operator Placement Algorithm (MOPA), a closely related approach, uses datarate(l)∗
latency(l) as a metric for the optimisation instead. This aims to minimise network utili-
sation rather than the skewed optimisation in favour of latency [RDR10]. Minimising
the network utilisation has also previously been attempted, although based on the
peer-to-peer path routing of distributed hash tables [Ac04].
The QoS-Aware Scheduler is also based on SBON and has been implemented as a
distributed scheduler into Apache Storm. It uses datarate(l) ∗ latency(l) as a metric
for the spring-based force minimisation as well. Instead of the three-dimensional cost
space with three latency dimensions for computational resources, it has only two latency
dimensions with one utilisation and availability dimension each for a total of four
dimensions. After the virtual placement in the cost space has been found, utilisation
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and the availability of a resource are used as a part of the distance computation to
find the nearest and most similar resources to the virtual placement. This way, the
scheduler attempts to find resources with low utilisation, the percentage of idle time,
and high availability. As such, it can improve the utilisation of resources based on their
observed behaviour but is not aware of the heterogeneous demands of the operators.
Still, only the latency dimensions and the datarate are considered during the spring-
based force minimisation, meaning that the optimisation of these network metrics is the
focus [CGPN15b, CGPN15a].

Planner decides the sub-graphs of the DAG that should be executed on the cloud or
the edge. Based on existing constraints, the maximal sub-graph that can be placed
on the edge is computed. The sub-graphs for the cloud and edge are then defined by
selecting links within the maximal sub-graph to be cut, which are the locations where
the data has to be transferred between the edge and cloud. For this decision, the metric
inputrate(o) ∗ selectivity(o) ∗ outputsize(o) is used, which equals the datarate(l) from
the previous approaches. The selectivity is not necessarily known, because any operator
could be a user-defined function. Therefore, for known operator types or user-defined
functions, default values are used. At runtime, these could then be updated with their
real metrics. Because of the default values, the optimiser primarily moves filter operations
towards data sources at the edge. Furthermore, the main assumption is that data is
created at the edge and results should be sent to the cloud, thereby defining where data
sources and sinks are generally placed. Processing data from the edge for the edge is,
therefore, outside the scope of the solution. The approach does not aim to reduce global
network utilisation, but instead merely the transfer from the edge to the cloud while
maximising the usage of edge resources [PCSA18].

Another heuristic uses a similar idea of splitting operators across the edge and cloud, but
by identifying regions in the DAG first. The process of creating these regions and their
placement is visualised in Figure 3.1. For each individual edge in the DAG, a region is
created, except when a series of edges exists, where the intermediary operators only have
one input and output. To find the regions, joins and forks, which are defined as operators
with more than one incoming or outgoing edge in the DAG, are searched, because they
are the start- or end-points of such regions. The series of edges between these points is
then merged into a larger region, such as in the case of L, I and A in Figure 3.1. These
regions form a hierarchy, which closely resembles the DAG, by adding input and output
relations between regions for any operator in multiple regions. Each data source and
sink is annotated with the information if it is placed in the cloud or edge. Using these
annotations and the region hierarchy, operators can be placed using two strategies. The
first strategy aims to optimise the response time of all paths by greedily placing operators
of the hierarchy iteratively in a breadth-first search order on the computational resource
with the lowest latency which satisfies the operator’s constraints. The second strategy
applies simple rules to decide for each operator if it should be executed in the edge or
cloud. An operator which outputs only to a data sink or other operators placed in the
cloud, is placed in the cloud, while any operator on a path to an edge-located data sink
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Figure 3.1: In these steps, operators intended to be placed at the edge are coloured red
and ones in the cloud are blue. Identified joins and forks are coloured green. The first
step is the definition of the DAG consisting of operators identified by their numbers,
which is then converted to a hierarchy of regions. The third step shows the resulting
operator classification, after applying simple rules. In the last step, the coloured regions
signify their actual deployment location. The circle’s colour is the initial candidate
location [VdAL18].

is also placed on the edge. Operators intended for the edge are then similarly placed
considering their latency and any operator which can not successfully be placed without
violating constraints is reassigned to the cloud. In the figure, this case is displayed for
the operator F. The second strategy, therefore, does not consider latency in the cloud
placement [VdAL18].

Hiessl et al. also minimise the latency by considering the highest response time of all paths
in the topology, based on network latency and processing delay. Additionally, it optimises
the availability, bandwidth usage to enact a topology and the cost to continue operating
it, which are all weighted elements of its scoring function. It supports heterogeneous CPU,
memory and disk-space requirements. Interestingly, the solution limits the number of
operators to one per computational resource at most and, as such, removes the potential
of co-location requiring optimisations. The placement problem is modelled as a COP
using Integer Linear Programming (ILP) and solved optimally with the pre-existing solver
CPLEX or alternatives. The placement is then periodically recomputed and adjusted
to provide online scheduling functionality. As such, the computational complexity of
calculating an optimal solution is higher and potentially limits scalability [HKH+19].

Maximum sustainable throughput considers the idea that the input rate of events to
process is not constant. As such, rather than focusing the optimisation on current
bandwidth usage or latency, the scalability of the system should be considered. The
approach assumes that networking is the limitation and therefore does not consider
other resources which could become a bottleneck, such as the processing performance
or memory capacities. It is necessary to know the selectivity of any operator and the
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bandwidth capacity of any network link. With this information, the expected data rate
can be calculated for any link between operators in the DAG if given an input rate
for the application. This closely matches the intermediary result size estimation for
database queries discussed in Section 2.5.1, but using data rates instead of constant
sizes. The sum of data rates over a link can then be put in relation to the bandwidth
capacity to calculate a metric similar to the utilisation: a maximum scalability factor for
data rates on this link. The link with the smallest scalability factor is the first link to
become a bottleneck and, therefore, what limits the input rate or maximum sustainable
throughput. The optimisation, therefore, aims to maximise the smallest scalability factor
by formulating a CSP. The problems of acquiring accurate operator selectivities and
measuring or estimating the capacity of all network links are not a part of this solution.
Additionally, the general insight into achieving maximum sustainable throughput is
to spread the usage across more network links or computational resources to increase
capacities [LGI20]. This is, of course, a goal contrary to minimising costs or latency and
enabling stream processing optimisations such as operator fusion. Under the assumption
that the problems of measuring operator selectivities and bandwidth capacities can be
resolved, then taking this metric into consideration and balancing it with the typical
objectives of minimising resource usages or costs might lead to more promising results.

Maximum Cumulative Excess (MaCE) is a metric to estimate the worst-case latency
provably within small bounds for a stream processing application. It requires a lot of
historical information to predict future performance, such as the rate of input events
over a series of time intervals, the selectivity of operators, the cost of processing an event
and the processing capacity of computational resources. MaCE uses queueing theory to
model bottlenecks in the processing of events and thereby predict latency. The main idea
is to calculate the excess of events an operator receives in a time interval, but is not able
to process, because of a resource bottleneck. For the following time interval, a new batch
of events would have to be processed and the excess of the previous interval as well. As
such, the excess can accumulate, providing the name for this metric. The largest excess
across the application then matches the expected latency, if operators always process
the oldest events first. The timestamp of an event depends on when the input data has
entered the system or for the output of an operator matches to the oldest time of any
input used in the calculation. The modelling can be extended to include bandwidth
limitations of network links, by modelling them identically to processing bottlenecks, and
network latencies. Overall, MaCE is a metric which depends on specific event processing
orders, but can be generalised for batches of events to reduce the cost of maintaining the
order. Additionally, because the model requires to know the input rates, it is built for
workloads with repeating patterns. This is not necessarily a problem, because the input
load of workloads is often similar for longer periods of time or can have regular patterns,
such as changes in activity over a day [CGB+11].
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Apache Spark Streaming

Apache Spark is a batch processing framework, that also supports the stream processing
of data. It accomplishes this by collecting events into mini-batches, which are then
independently processed. The collection of such mini-batches, therefore, introduces a
configurable level of latency, but provides a stream-like computational model with low
enough latencies for many applications. Each mini-batch then consists of multiple tasks,
which need to be placed similarly to operators [CDE+16]. The placement of tasks and the
differences to stream processing are further discussed as a related problem in Section 3.3.2.
In general, it is possible to adapt or customise the frameworks of one processing paradigm
into another [PB19]. Apache Spark is a popular framework often known for its streaming
capabilities and is therefore discussed in the following section, even though the placement
logic is based on the batch processing paradigm.

To better support the heterogeneous requirements a task can have or a computational
resource provides, some interesting placement heuristics exist. Symbiosis separates tasks
to place into CPU-bound and network-bound tasks, depending on if the input of the task
is already cached or co-located on the same machine. Afterwards, it aims to symbiotically
execute tasks by co-locating tasks of the different categories, thereby preventing resource
conflicts. Furthermore, this avoids the difficulty of defining or predicting resource usage or
limitations and monitoring the current utilisation. This is especially difficult for tracking
bandwidth usage, as the new information requires interface modifications, which can limit
compatibility with existing software. Rather than finding the optimal placement, this
heuristic can be largely considered as avoiding easier to detect bad placements [JMLL16].
RUPAM uses a similar concept with queues for each category of tasks, but has extended it
with GPU, disk I/O and memory categories. These categorisations have been predefined
for some tasks, but primarily depend on usage records of previous executions. Some
tasks are also placed in all queues [XBLK18].

Sparrow aims to decentralise task scheduling by randomly probing potential placements
and enqueuing a reservation for the task on probed machines. With random probes,
the need for global knowledge is avoided. Once the first machine with a reservation
is ready for the execution, the task is retrieved and other reservations are cancelled.
This delayed placement or allocation is known as late binding. A task is, therefore,
simply sent to any of the available placement heuristics, which can perform the placement
without any need for coordination with others. This allows for scalable concurrent
placements with low latency for a demand of thousands or even millions of tasks per
second [OWZS13]. Due to its simplicity and success, it has inspired various schedulers
and placement heuristics. The technique has also been improved by sharing reservations
with other tasks of the same scheduler. It helps in counteracting the randomness inherent
to the probing and queue-based placement strategy, which improves the order of task
executions [LLZM17]. Hopper uses a similar concept, but speculatively spawns additional
task copies to counteract slow executions of individual tasks, which may cause large delays
for the complete workload. Once a task finishes, slower copies are terminated [RAWY15].
The following section discussing related optimisation problems, such as batch processing.
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3.3 Related Optimisation Problems

The discussion of Apache Spark has shown that there are optimisation problems from
other paradigms closely related to the optimisation of stream operator placements. In
fact, they share such a similarity that implementations of one paradigm can be adapted
to represent another paradigm, as in the case of the streaming support of Apache Spark.
Similarly, the processing of database queries has been used as an introduction to establish
some techniques and terminology for stream processing. At their core, all of these
problems consist of assigning some operators or tasks to resources in an efficient or cost-
effective manner. For this reason, this section not only introduces related optimisation
problems, but also has a focus on the discussion of their differences, especially when
compared to stream processing.

3.3.1 Database Query Processing

In Section 2.5.1 ff., traditional query processing for databases has been discussed as an
introduction to stream processing. The focus has largely been on their similarities, so this
section aims to highlight the differences to stream processing. As such, the placement
of operators for databases and stream processing is closely related, but also has some
distinctions.

With stream processing, the determinism and consistency of the application can have
various implementations, as discussed in Section 2.2.4. Meanwhile, for databases, the
query result must match the currently stored content. As a result, while in stream pro-
cessing individual events are processed and streamed between operators, in databases this
optimisation, also known as pipelining, can not be applied to blocking operators [HSS+13]
To sort as a part of a database query, the input to sort has to be completely known
first. Therefore, the operator has to block the execution until the input has been col-
lected and can only then start producing outputs [WvG93]. In Section 2.5.3, adaptive
query processing and the possibility to adapt or finish a database query plan during
its execution has been discussed. This can be, for example, accomplished at blocking
operators, as any following operator similarly has to wait for the blocking operator to
collect its input first [IDR07]. In comparison, based on the data flow paradigm for stream
processing applications, all operators can be executed concurrently, while database query
execution can delay the execution and placement of operators dependent on blocking
operators [dAVB18, DM74].

The difference in consistency definitions also leads to variations in the available information.
For databases, statistics, such as histograms, can be collected, while stream processing is
based on an unbounded sequence of events, which is continually received and, therefore,
previously unknown. As discussed in Section 2.5.1, these statistics allow us to predict the
behaviour and cost of the workload better. Furthermore, database management engines
provide a limited set of functions with cost models, while stream processing engines often
allow the implementation of user-defined functions. Streaming processing optimisations,
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therefore, focus on elasticity to react to load differences rather than predicting the
behaviour of user-defined functions [SAC+79, dAVB18].

3.3.2 Task Scheduling for Batch Processing
Closely related to query processing is batch processing. In batch processing, a workload,
called a job, consists of tasks, which for their execution may depend on the results of
other tasks, similar to operators in query processing. In contrast to scheduling or placing
operators, tasks must be finished before any following task can start. This means the
previously discussed pipelining optimisation can only be applied by placing the complete
pipeline in a single task. Tasks share, therefore, some similarities with blocking operations
in their behaviour. For this reason, tasks are often structured into stages, which can
start once all tasks in the previous stage have been completed. Tasks within a stage
do not have to start or end at the same time, but could be executed one by one. As a
result, practical task scheduling approaches can limit themselves to the placement of
individual tasks, rather than having to consider possibilities such as pipelining. At the
same time, because the tasks do not necessarily have to be long-lived, use cases exist
where thousands or even millions of tasks need to be scheduled every second [OWZS13].

3.3.3 Virtual Machines and Containers
In Section 2.1, cloud computing has been introduced as a rentable computing infrastruc-
ture. It provides services for the execution of containers or virtual machines. For these, a
mapping of the virtual resources to the physical resources, which execute them, has to be
created and can similarly be optimised to improve the QoS or minimise costs. The main
difference to the placement of stream processing operators is that the application to be
executed, installed on the virtual machine or container, and its behaviour is generally
unknown. As such, the placement typically relies on defined resource or communication
requirements in addition to factors such as the current resource utilisation or total
resource capacity [FMIF18].

3.3.4 Virtualised Network Functions (VNFs)
VNFs aim to replace the deployment of traditional networking appliances, such as load
balancers, CDNs or firewalls, with software executed in virtual environments. As such,
they are a fundamental change to how networks are designed and maintained [AAB19].
VNFs provide benefits such as easier management, fast deployments, scalability and high
availability for these functions [LT19]. At the same time, the sharing of resources can
also reduce capital and operational expenses [AAB19].

The virtualisation also allows for the potential of optimising the placement of VNFs for
their deployment or migration. Similar to the previously mentioned placement problems,
there are varying objectives, such as cost and resource usage optimisation or improving
QoS-metrics. Their optimisation can be considered independently or have chain or
graph-based dependencies similar to the operators in stream processing [LT19].

45



3. State of the Art

The following section discusses how the proposed placement heuristic of this thesis
innovates on the state of the art and separates itself from existing solutions.

3.4 Differentiation of the Proposed Solution to the State
of the Art

As the title of this thesis implies, latency is an important part of this solution and, as
such, the network-aware solutions that have been presented in the previous chapter share
the most similarity and are now compared to highlight the uniqueness of this solution.
Table 3.1 presents a brief comparative overview of their capabilities, which are discussed
in more detail in the following.

First off, the table clearly shows that many solutions are already aware of latency or
optimise it, but also that many of them limit themselves to only optimising network-
related metrics and are not aware of resource limitations. SBON [PLS+06] only uses
latency and bandwidth during the actual optimisation. Afterwards, the virtual placements
are attempted to be realised by finding the nearest neighbours that fulfil a variety of
constraints. This means that heterogeneous properties are only satisfied and are only
indirectly optimised, which is also the case for the solution of Veith et al. [VdAL18].
The QoS-Aware scheduler [CGPN15b] recognises this potential and adapts SBON by
considering the utilisation of computational resources and attempting to thereby maximise
the available resources to operators, but this is still unaware of heterogeneous capabilities.
In contrast, the proposed solution tries to maximise resource utilisation and make full
use of heterogeneous capabilities by trying to consolidate placements on computational
resources, which also maximises the possibility of co-location requiring optimisations.
The researchers also report cases of instability in the placement that can negatively
impact the availability, because of the decentralised process these approaches use.

Another rare feature of the solution of this thesis is being an online scheduler and, as such,
the capability to adapt and optimise according to changing conditions. Additionally, this
reduces the risk of misconfiguration because the schedulers can use information gathered
during the execution and can reduce the overall configuration necessary. Of the presented
solutions in the table, only MigCEP [OKRR13], Hiessl et al. [HKH+19], SBON [PLS+06]
and its derivatives, MOPA [RDR10] and the QoS-Aware scheduler [CGPN15b], support
this.

This solution also avoids the consideration of bandwidth capacity, which has not been
clarified by many papers how the metric is actually acquired and if it was actually
implemented or only theorised. Being a property of the network, it can differ between
any two computational resources, change over time and is affected by the actions of other
users, making it difficult to have accurate values by relying on simple configurations
and expensive to repeatedly measure. In the case of Lambert et al. [LGI20] and Gover-
nor [CZM20], this is not a problem because they were evaluated using simulators where
such values can be simply provided. For SBON [PLS+06] it is not clear if constraints
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Table 3.1: Summary of main properties of previously discussed network-aware placement
heuristics.
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al.
[VdAL18]
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et al.
[LGI20]

✗ ✗ ✗ ✗ ✗ ✓ ✓ bandwidth
greedy/
graph partitioning/
COP solver
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[CZM20] ✗ ✗ ✗ ✗ ✓ ✗ ✓ varying

pathfinding,
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disk-
space ✓ ✓ ✓

latency,
bandwidth

decentralised
spring-force
minimisation

MOPA
[RDR10] ✓ ✗ ✗ ✗ ✓ ✓ ✗

latency,
bandwidth

decentralised
gradient descent,
nearest neighbour

QoS-
aware S.
[CGPN15b]

✓ ✓ ✓
disk-
space ✓ ✓ ✓

throughput,
latency,
bandwidth,
availability

decentralised
spring-force
minimisation

Hiessl
et al.
[HKH+19]

✓ ✓ ✓
disk-
space ✓ ✗ ✓

latency,
enactment &
operation cost,
availability

COP solver

This work ✓ ✓ ✓ ✗ ✓ ✓ ✗

latency,
bandwidth,
resource
consolidation

heuristic
COP solver
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on the bandwidth capacity were used for the evaluation or only a theoretical possibility.
With the QoS-Aware Scheduler [CGPN15b] this is even less clear because it only states
that it follows the approach of SBON and never mentions the usage of possible constraints
or other information considered. Only with Hiessl et al. [HKH+19] is this clarified, as
it only considers the bandwidth when an operator is downloaded to the worker during
the enactment of a placement. As such, this is only a metric of the central store to each
worker, allowing the achieved rate during the last download to be reused.

Finally, there are, of course, differences in how the placement problem is defined and
solved. For example, while SBON [PLS+06] optimises latency on the local network
link level, the approach of Veith et al. [VdAL18] and Hiessl et al. [HKH+19] consider
the accumulated network and compute latency at the data sinks, while this solution
only considers the accumulated network latency. Hiessl et al. optimise properties,
such as the availability, bandwidth usage to enact a topology and the cost to continue
operating it. It uses constraints to support heterogeneity but also disallows more than
one operator on a single resource, thereby preventing co-location. In contrast, this thesis
is purely focused on performance metrics, such as maximising the benefit of co-location
optimisations or reducing bandwidth usage during execution. The formulation as a COP
in this thesis allows to easily include other similar metrics if they are available and of
concern. Additionally, like most of the presented solutions, this thesis uses heuristic
solving strategies to reduce the risk of scalability concerns. The specific heuristics used are
hill-climbing and an ant system, differing from all of the discussed solutions. Furthermore,
the solution was also implemented in and evaluated with Apache Storm This ensures
that the design can be realised and help identify systematic errors.

The following section provides a brief summary of the most important concepts that are
presented in this chapter.

3.5 Chapter Summary
This chapter has primarily discussed the stream operator placement problem and the
state of the art in solving it. Operator placement, in general, is the problem of assigning a
set of operators to a set of computational resources while minimising costs or maximising
some benefits and considering constraints, such as resource usage and capacities. As
the survey has shown, different definitions of specific operator placement problems exist
in three different categories. As a satisfiability problem, the aim is to find any valid
assignment, without considering costs or further benefits. The optimal placement problem
considers finding the best solution with respect to the constraints, costs and benefits. For
the heuristic problem, the focus is on the trade-off of the computational cost of finding a
placement and the resulting quality of the solution.

This chapter has presented many of the characteristics which can be used to differentiate
operator placement techniques. In practice, some of them primarily describe the interface
or interaction with the placement logic and are less relevant to their behaviour. The
survey has shown that the strategies used to traverse the search space or limit it can
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be particularly unique. Additionally, both the properties which are considered and
the constraints or optimisation function defined on top vary for different use cases
leading to a lot of differentiation between placement techniques. Other characteristics
include the optimisation of individual operators or complete applications at the same
time, potential decentralisation of placement techniques or continuous optimisation by
adapting placements rather than computing them once.
Many network-aware placement heuristics rely on latency estimations to improve their
scalability. Two techniques can be used for this, matrix completion and spring forces-
based estimations. While matrix completion provides better theoretical benefits, because
they allow for triangle inequalities, existing placement techniques only utilise spring
forces-based estimations. This is likely for their much simpler model, where every resource
has a position in a cost space. The positions are updated by simply iteratively attracting
towards or repelling from other resources so the distance in the cost space matches the
measured real-world latency more closely. Additionally, the model naturally matches
closer to a distributed computation, given that each node can individually estimate its
position iteratively. At the same time, adaptions such as only using a few peers rather
than all, known as landmarking, allow for linear scaling costs with a reduction in accuracy.
Current approaches minimise the bandwidth usage or the product of the bandwidth usage
and latency, known as network utilisation. Some solutions also consider the available
bandwidth capacity, but this usually has to be manually specified and therefore does
not consider changes in the environment, such as the usage of other users on the shared
network. Overall, bandwidth usage can only be reduced by the placement of operators if
operators can be co-located and therefore allow for the operator fusion optimisation.
The spring force-based estimations are also used by many approaches to identify initial
neighbourhoods for the placement of an operator. Alternatively, the computational
resources on network paths from data sinks to sources have also been considered. Hierar-
chical placement heuristics or geospatial-aware solutions also form neighbourhoods on
logical or physical proximities. These approaches often define regions or are based on the
idea of small computational clusters, such as cloudlets, as potential infrastructure for the
fog environment.
Metrics such as MaCE and the maximum sustainable throughput explicitly model the
latency or throughput of an application. These more detailed models depend on the
availability of selectivities, which are available from estimation or historical data from
previous executions of the application. This also assumes that general patterns and
distributions in the future data to be processed match the already observed data.
Operator placement has also been compared to related problems, particularly the pro-
cessing of database queries, which has also been used as an introduction in the previous
chapter, and the scheduling in batch processing, which in cases like Apache Spark has
also been used for stream processing with mini-batches. Similarly, virtual machines,
containers and VNFs have been considered. Overall, the differences in these problems
largely are not the resources or constraints considered during placements, but rather the
semantics of the workloads or available information. For example, database queries know
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the data to be processed in advance and stream processing receives previously unknown
data. For VNFs, virtual machines or containers their behaviour might not be modelled
and can only be treated as a black box. At the same time, there are differences with
the expected runtime of a task and the necessary placement speed. In the case of batch
processing and mini-batching, solutions such as Sparrow show that there can be a need
to place thousands of short-lived tasks, which is an entirely different demand than that of
stream processing. Another difference is the execution of tasks or operators. In database
queries, operators can be blocking or pipelined. For stream processing, everything is
pipelined and the execution in batch processing is based on stages. Virtual machines,
containers and VNFs can be placed in isolation or based on communication requirements
or dependencies. This creates differences in when the placement of operators is considered
and the set of operators that can be considered at once.

With the insights gained from the state of the art in stream processing and related
optimisation problems, the following chapter discusses the design of a heuristic for the
operator placement problem.
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CHAPTER 4
Heuristic Design

This chapter presents the major design considerations and decisions made for the heuristic
operator placement. First, the requirements for an operator placement heuristic are
analysed in Section 4.1. Section 4.2 further clarifies which assumptions are being made
about fog computing, because there have been varying competing definitions in the
Background chapter. Section 4.3 presents the reasoning behind using Apache Storm
for the implementation and Section 4.4 then provides a more detailed introduction to
its architecture and general knowledge related to the placement of operators in Apache
Storm. Following the introduction of the necessary context of the operator placement
heuristic, the actual components are considered. The design of the latency estimation
is then specified in Section 4.5. Section 4.6 contains a simplification of the operator
placement problem in Apache Storms API, as well as the formulation of the constrained
optimisation problem consisting of the definition of the optimisation function and the
necessary constraints.

4.1 Requirements Analysis
This section aims to specify the requirements and first major design decisions for the
operator placement heuristic. Based on the previous survey of the state of the art, the
design of a network-aware operator placement heuristic consists of solving three major
problems.

1. A strategy to efficiently traverse or limit the size of the potential search space,
while limiting the potential negative impact on the solution quality.

2. A system to efficiently and accurately estimate the latency between N computa-
tional fog resources to avoid repeatedly performing O(N2) expensive measurements.
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As this is a distributed system, the need for coordination or synchronised pro-
cesses between resources should be minimised to ensure scalability and to improve
reliability.

3. The design of the actual placement heuristic by modelling an optimisation problem,
which makes the best use of the available information and selecting or designing a
solver.

Stream processing applications are ideally continuously but, in practice, only long-running
tasks. As such, the actual runtime of the placement of operators is less critical than in
some related problems which have been previously discussed, such as batch processing.
Still, the computation of the placement should occur within a second or potentially
multiple seconds for particularly complex topologies or environments. This is based on
the idea that there are still some use cases for which faster placements are more relevant.
For example, in interactive environments such as when developers are developing, testing
and potentially submitting said topology multiple times, long wait times are unwanted. A
delay of at most one second in such cases should therefore limit the potentially negative
impact in these interactive environments.

The placement heuristic must support heterogeneous computational resources and be
network-aware. The network is a shared resource and measuring the available capacity of
network links is not only expensive but would have to be repeated periodically to account
for the changing behaviour of other users. Therefore, the network usage is optimised
indirectly by reducing the total amount of bandwidth required by co-locating operators,
but this, of course, does not guarantee the absence of a bottleneck on individual links.
As such, a valid placement has to fulfil multiple constraints and optimise the usage across
various resources. To ensure long term performance, the placement heuristic furthermore
needs to be adaptive and handle new placements for failed operators and computational
resources.

The aim of the placement heuristic is to support a near real-time system. This is
because stream processing is typically not considered as a real-time system as this
requires immediate processing of the data [fTISA19]. With the involved latency to
transfer data to the stream processing system and common mechanisms such as back-
pressure or mini-batching, which further aggregate data and delay the processing of
data, it is difficult to refer to this as immediate computations. Therefore, the definition
of a near real-time system is used, which aims to provide computational results with
low latency, but not immediately [fTISA19]. Furthermore, this thesis does not aim to
guarantee computations within specified deadlines but instead provides a reasonable effort
in providing computations close to real-time. This primarily comes down to selecting
operator placements to reduce the overall network latency, as having some latency is
inherent in a distributed system, and avoiding latency caused by the queueing of data
when a computational resource is overloaded, such as in the case of back-pressure. As a
result, this thesis intends to support stream processing applications that benefit from
lower latency, but do not have strict latency requirements for their correctness.
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Additionally, the latency to be directly optimised is only the network latency, as the
execution times of operators are indirectly optimised by avoiding overloading a resource.
The aim is, therefore, to minimise the total time needed to process an event within the
application and not the response time, which would further include the network latencies
of devices interacting with the stream processing application [RPD06].

The following section specifies the assumptions which are made about the fog and,
therefore, provides the context and the requirements the operator placement has to be
considered in.

4.2 Specification of Fog Environment
In Section 2.4, current definitions for the fog have been provided and various differences
have been highlighted. These definitions primarily differ in their details to provide a full
specification. The following discussion aims to clarify which definitions or assumptions
about the fog are utilised or if they are even relevant for the context of this work. As
such, rather than providing a full specification, the aim is to define a minimal set of
necessary assumptions and argue why further considerations are not necessary.

One of the points with diverging opinions was what computational resources would be
utilised and what layers they could belong to. During the discussion of existing placement
techniques, approaches have been presented to separate a stream processing application
into groups of operators executed in the cloud or at the edge. This minimises bandwidth
usage or latency across the connections between these layers [PCSA18, VdAL18]. To
optimise the overall application latency, all connections should be considered. But this, in
turn, means that a strict theoretical understanding and separation of resources into the
three-layered fog model is not necessary for the context of operator placements. Similarly,
for the placement of an operator, only the capabilities of a computational resource matter.
If the resource in question is actually a network device, a single-board computer or server
matters little to the placement procedure itself, as long as their capabilities are known or
measured.

One exception to this is IoT devices and other edge computing resources. Special
considerations have to be made for them, given their varying reliability, mobility, battery
limitations, often wireless communication and potential short-term availability. For this
reason, approaches in this field typically differ largely from the regular cloud or fog
placement methods discussed in the previous chapter as new solutions aim to improve
their handling of these difficulties in edge or fog computing [VS20]. As a result of this
greatly increased complexity, this thesis, as well as most research presented in the previous
chapter, simply does not consider or utilise such resources. This supports the conceptual
separation of fog computing and edge computing, although, with continued progress,
researchers may also want to focus more on this challenge in the context of fog computing.
Edge computing in the context of this thesis is, therefore, considered as the research
into more localised networks, such as, for example, ad hoc networks and collaborative
processing. Similarly, cloud computing is considered as a paradigm with an infrastructure
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that solely relies on the cloud layer, while fog computing uses at least the fog layer and
potentially the cloud.

Another reason for the exclusion of edge devices is based on economic considerations. A
device that moves or has a battery does have additional costs over stationary ones, while
these features also lead to complications for stream processing. These are the conflicts
of having long-running operators with limited battery life or the interest in consistent
low latency while a device is moving and potentially even losing connection. At the
same time, to be able to contribute to the fog, these devices would have to have an
excess of resources while in use that is still large enough to be worth the extra effort.
Even if the investment into new devices or repurposing of available existing devices is
deemed economically to integrate into the fog, then this still does not mean that stream
processing applications are their best or easiest method of utilisation. In this sense,
stream processing is a paradigm competing for the edge resources with other paradigms.
In comparison, batch processing typically does not require continuous connectivity to
transfer data, low latency or even long-running tasks on a single resource. This means
that batch processing or an adaption such as micro-batching are examples of paradigms
that are more closely aligned with the capabilities of such edge devices. As a result, using
edge devices for these paradigms should be easier or more effective, ultimately resulting
in the acceptance of higher costs than in the case of stream processing.

To summarise, devices that could be utilised in this theoretical fog environment and will
be considered for placements are ones with higher expected reliabilities and not additional
complexities, such as movements or battery limitations. How powerful, what device they
are exactly or where they could exist in the three-layered model is less of a concern as
these are considerations that likely will change over time or simply be established by the
first large-scale and successful fog environment installations. Concrete examples of what
these devices could be, therefore, computationally weaker devices, such as routers or
Raspberry Pis, individual servers to clusters, entire data centres and clouds from cloud
computing itself.

With the environment of fog computing and the requirements for the stream processing
operator placement clarified, the next section discusses the selection of the stream
processing framework for the implementation.

4.3 Stream Processing Framework Selection

The selection of the stream processing framework is discussed at this point because while
these frameworks share many commonalities, they also have various uniquenesses in
details that have to be considered during the heuristic design. This section aims to clarify
why Apache Storm has been selected for the implementation. As such, the aim is not
to provide detailed introductions to each framework, but mainly a comparison of their
largest advantages and disadvantages for the context of this thesis.
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4.3.1 Apache Storm
Apache Storm is a stream processing framework that has been very popular for many
years. Its staying power has allowed it to form a large community, bringing a wealth of
information and additional tooling to the project. Additionally, the framework is used in
production in companies such as Twitter [TTS+14].

For this thesis, a framework is necessary which provides low latency, so that the effect of
different placements on latency is clearly noticeable. Apache Storm is generally known
as a framework that provides good latency metrics, but it is usually outperformed by
Apache Flink [CDE+16, KRK+18]. Apache Storm has continued improving its latency
and made it one of the large re-engineering topics for the release of version 2.0. With
this release, it was claimed that Apache Storm is the first stream processing engine to
achieve latencies below one microsecond, but the scientific community has not yet done
any larger benchmarks to study the real-world performance [Apa19].

Additionally, Apache Storm not only provides interfaces to define new placement heuristics
but also ones to extend the already existing strategies. This has made Apache Storm
a popular choice for testing operator placements [ABQ13, XCTS14, PHH+15, MAI21,
QR21]. In turn, the placement of operators has been improved over time, in part by
including work suggested by researchers [Apa22g]. All of these beneficial properties
have led to using Apache Storm for the implementation of this thesis, as many other
researchers have similarly decided before.

4.3.2 Popular Frameworks
This section provides an overview of popular alternatives to Apache Storm, which have
also been considered for this thesis.

Apache Spark

Apache Spark is designed as a batch processing framework that also offers stream
processing. As such, what is known as stream processing in the framework are micro-
batches, which are collected and then processed as independent batch processing tasks,
before reassembling them into a stream [ZDL+12]. This difference has already been
discussed in Sections 3.2.2 and 3.3.2. It is a closely related paradigm with similar
capabilities, but ultimately different to stream processing. Apache Spark, therefore, has a
different placement problem because short-lived independent tasks rather than continuous
streaming operators are placed. It also provides worse performance for latency, especially
in the case of the minimal observed latency, as this includes the time to aggregate the next
micro-batch [KRK+18]. For this reason, Apache Storm has been selected over Apache
Spark. Apache Spark offers interfaces for placement mechanisms, thereby supporting the
ability to perform such research, but they are not as conveniently available as the ones
of Apache Storm. In 2018, a new execution engine was added to allow sub-millisecond
latency, referred to as continuous processing rather than micro-batching, but it is still
considered an experimental feature with various limitations [Apa18, Apa21].
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Apache Flink

As discussed previously, Apache Flink is a framework that has always performed very
well in benchmarks for latency [CKE+15]. Unfortunately, modifying the placement logic
is a lot less accessible than in other frameworks, which makes it less desirable given that
the placement logic is the focus of this thesis.

Of course, there is also a variety of other popular frameworks or even cloud-specific
services, such as for example Google Cloud Dataflow [Goo22], Amazon Kinesis Data
Streams [Ama22], Apache Samza [Apa22b] and Apache Pulsar [Apa22a], but these do not
provide any advantage for this thesis over the already mentioned frameworks. Similarly,
these frameworks are usually not used in previous research on operator placements which,
in turn, would further limit the comparability of any result this thesis achieves.

4.3.3 Research Frameworks
Another group of frameworks that have been considered as an alternative to Apache
Storm are research frameworks. These are either developed with specific aims or to
provide a more adjustable platform for experimentation. As a result of their smaller
communities, they often have less well-established tooling and documentation, if the
framework itself is available for access. ProgCEP, which has been explicitly designed to
support the research of operator placement algorithms, is not publicly available [LK19].
As such, while research frameworks can provide certain advantages for the work on this
thesis, they also present a trade-off as they typically have a more specialised focus and are
more experimental in their setup. While frameworks such as VISP have been considered,
they have been evaluated to not provide sufficient benefits for this task over ones already
regularly used by the industry [HVWD16]. The availability of extensive documentation
and the work of the supporting communities, such as tooling or available benchmarks,
among other benefits with alternative frameworks, is simply more beneficial as the
popular frameworks in use already fulfil the requirements for this thesis. Additionally,
while research frameworks are often easier to extend and adjust with their smaller scope,
documenting any difficulties when performing the same task in more established solutions
can provide additional insights.

Following the selection of Apache Storm as the framework for the implementation, the
next section introduces Apache Storm in detail with a focus on concepts related to the
placement of operators. As such, this is also the final necessary element to fully specify
the context for the design of the operator placement heuristic.

4.4 Overview of Apache Storm
This section provides an overview of its specific terminology and the architecture of
Apache Storm’s services. As such, this section defines the context of the placement
problem and presents some related details, in particular, how concurrency is handled in
Apache Storm and its significance to the placement problem.
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Nimbus

ZooKeeper

ZooKeeper

ZooKeeper

Supervisor Worker Processes

Supervisor Worker Processes

Supervisor Worker Processes

Supervisor Worker Processes

Supervisor Worker Processes

Figure 4.1: Storm Architecture consisting of Nimbus, ZooKeeper nodes and supervisors
with worker processes [TTS+14].

4.4.1 Apache Storm Architecture
Apache Storm uses a naming scheme that diverges from the traditional operators, data
sources and sinks naming for components in stream processing topologies. Data sources are
called spouts, operators are bolts and data sinks are also referred to as bolts. Meanwhile,
custom logic for a data sink is defined by implementing a new sink. When spouts and
bolts are executed, they are referred to as tasks rather than operators [TTS+14]. To
avoid confusion, this thesis will continue to primarily use the more widely accepted and
previously defined terminology of operations, operators, data sources and data sinks.

The architecture of a deployed Apache Storm cluster is showcased in Figure 4.1. Nimbus
is the master of the cluster. It handles many of the management tasks and provides an
API to control the cluster. Especially relevant for this thesis, the placement of operators
is also a responsibility of Nimbus. There can only be a single active Nimbus instance, but
in the case of a failure, the rest of the cluster can continue operating normally. Tasks,
such as the deployment of new stream processing applications, can then only be executed
once Nimbus has been launched again [TTS+14].

Multiple ZooKeeper nodes in the cluster store state and configuration information reliably
and thereby facilitate coordination between Nimbus and the supervisors. As such, Nimbus
and the supervisors write modifications of the state or the configuration of the application
to Zookeeper. From there, it can be read by any of the services during the initial startup,
recovery from failure or simply to retrieve updated information. Any required information
for the execution of stream processing applications, which is not already stored in the
configuration or on local storage, is therefore stored in and read from Zookeeper to allow
for failure tolerance. Both Nimbus and the supervisors are designed to fail fast and stop
in case of an error. Because their state is stored in Zookeeper or the local storage, they
are considered stateless and can be recovered by restarting them [TTS+14].

Each supervisor consists of a supervisor process and the worker processes. The supervisor
then manages the communication and the state of its worker processes running on the
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same computational resource. The worker processes handle the execution of operators of
the stream processing applications. Each worker process uses a pool of threads, called
executors, where within the operators are placed. Each executor is used as a potential slot
for the placement of operators and one or multiple operators can be placed within a single
one. Internally in Apache Storm, the worker processes are referred to as WorkerSlots and
can be easily confused with the ExecutorDetails, which actually refer to the operators or
tasks to execute. During a placement, one or multiple ExecutorDetails from the same
topology can be assigned to a single WorkerSlot. The worker then uses threads for the
execution of the ExecutorDetails as necessary [TTS+14].

A minimal deployment of an Apache Storm cluster, therefore, consists of one Nimbus,
ZooKeeper and supervisor instance each. In practice, additional ZooKeeper and supervisor
instances would be deployed to improve the reliability of the overall cluster, even if the
performance from additional computational resources would not be necessary. This also
applies to extra instances of Nimbus, which can be used as a backup service to fail-over to
as there can only be a single leader. Storm UI is a Web service typically deployed along
the cluster to provide a user interface to manage the cluster via the Nimbus management
API [Apa22i].

This section has introduced supervisors and their model that allows for concurrency.
Workers are individual processes that each manage a pool of threads, with each thread
known as an executor. The following section discusses more closely how Apache Storm
decides the level of concurrency during the execution of an application and related
limitations.

4.4.2 Concurrency in Apache Storm

Apache Storm does not support dynamically adjusting the number of operators, or tasks,
within a topology. Instead, this is a static number defined during the initial submission of
the topology to the cluster. As a result, there is an inherent upper limit to the concurrency
and scalability of a launched topology, which can only be increased by stopping and
relaunching the topology. Furthermore, all operators or tasks within the topology must
be executed to ensure all data is being processed [Apa22m].

In practice, this means that the actual level of concurrency is defined purely by the
placement of operators. A placement mechanism can place all operators on a single
worker process, thereby only utilising the concurrency available to that worker, or spread
the operators across all workers to maximise the concurrency within the limitations of all
available computational resources. Apache Storm allows users to define parallelism hints
for the placement logic, which define how many executors should be utilised to execute
all instances of an operator [Apa22m].

These hints can also be updated during the execution of a topology. This is known
as rebalancing and can change the concurrency of the active topology by engaging the
placement logic again. These hints are only a guideline. A placement mechanism may
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create a different level of concurrency because the hints may be unachievable due to other
constraints or because they are simply ignored by the implementation [Apa22m].

An alternative to manually triggering rebalancing is adaptive operator placements. The
following section presents the state of support for adaptive placements in Apache Storm.

4.4.3 Adaptive Operator Placements in Apache Storm

Apache Storm does support adaptive placements. The engine periodically triggers the
placement logic completely independent of any operators or topologies actually requiring
placements. This allows developers to adapt the placement with each of these cycles or,
for example, to implement QoS constraints that trigger a placement computation if they
are close to being violated. Still, there are also two major limitations to the adaptivity of
Apache Storm:

• As the previous section has discussed, Apache Storm does not natively support
adjusting the number of tasks or operators in a topology. As such, performing
scale-outs and -ins are not possible. Cardellini et al. have previously extended
Apache Storm to add support for this and thereby extend the potential elasticity,
but the modifications have not been integrated into the official Apache Storm
version yet [CNL16].

• Zhang et al. found that Apache Storm manages its executors on the process rather
than the thread level. When tasks are migrated, Apache Storm stops and restarts
the worker process and the related threads. This is not only inefficient and slow,
with interruptions caused in the range of seconds, but also means that operators
can be affected by a migration process even though their placement does not change.
Zhang et al., therefore, modified Apache Storm to manage operators on the thread
level and avoid the need to stop and restart the worker process or operators in
other threads that are not migrated [ZJW+19].

While these limitations do reduce the potential design space and lead to large short-term
inefficiencies in the migration of operators, they ultimately do not hinder the development
of an adaptive operator placement mechanism. Similarly, future updates of Apache Storm
may rectify these issues, especially when considering that solutions have already been
proposed. In the past, Apache Storm, for example, did not have support for the migration
of operator states for which changes have been proposed that are now implemented in
Apache Storm [CNL16, Apa22k]. The aim of creating an adaptive operator placement
can, therefore, not only be realised but may even see further improvements in the future.

The following section discusses the first problem of the design of the placement heuristic
to solve: estimating the network link latencies.
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4.5 Network Link Latency Estimation
Apache Storm does not provide extensive information on the latency from transfers of data.
Therefore, these measurements between supervisors need to be collected additionally.
The latency estimation does not have to be directly integrated into Apache Storm and is
therefore designed to be an independent component to be executed along with it.

For the estimation of latencies, an approach using spring-based forces is used. It
is primarily inspired by Google’s landmarking-based implementation [SPPvS08] and
SBON [PLS+06], which are also discussed in Section 3.2.2. The use of a spring-based
estimation rather than a matrix completion is preferred because a spring-based estimation
naturally leads to a highly decentralised design without the need for coordination, which
is a defined requirement. Each supervisor independently estimates its coordinates in
a three-dimensional cost space, the latency space. In this space, the distance between
two coordinates directly correlates to the estimated latency between the points. The
coordinates are initially randomised and are then periodically adjusted based on latency
measurements with other peers [PLS+06].

The pseudocode to execute one of these periodic estimations is presented in Algorithm 4.1.
To decentralise the estimation, a supervisor adjust its position by assuming the positions
of other peers as fixed (Lines 1-3). Spring-based forces are then applied between the
supervisor and its peers to pull the supervisor into a position closer to the measured
latencies (Lines 8-12). This is iteratively repeated until the total movement across
all peers becomes insignificantly small or a maximum amount of iterations is reached
(Line 6) [PLS+06]. The iteration limit is mostly relevant when a supervisor estimates
its position for the first time or when large changes in the network occur. Otherwise,
the previous position is likely already close enough to the new estimate, resulting in
smaller adjustments and early cancellation of the estimation process. In the field of
graph drawing, an iteration limit of 100 was deemed sufficient and has, therefore, also
been used in this work [Ead84, Kob12]. At this point, a supervisor has locally estimated
a position that minimises the error of the estimated latencies and of the real-world
measurements [PLS+06]. The new position is then returned from the function (Line 16).

Outside of the presented pseudocode, the supervisor then shares its new position in a
Key-value database and waits until it starts the latency estimation process again to further
refine its coordinates with new measurements or updated positions from its peers. These
wait times are slightly randomised to prevent peers from potentially being synchronised in
their waiting and, therefore, both regularly updating in parallel based on each others’ old
data. 60 seconds were used as the intended wait time between estimations, except for the
first five rounds, in which it was reduced to four seconds. Alternatively, this coordinate
store could have been implemented with a more scaleable peer-to-peer-based approach,
but it was not because of the increase in complexity. Additionally, the workload is already
small for an entire cluster, so the increased centralisation is not a problem.

To calculate the spring-based force in Algorithm 4.2, a unit vector of the distance be-
tween the supervisors is calculated (Lines 1, 3). The force is defined as c1 ∗ log(d/c2),
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Algorithm 4.1: Pseudocode for one estimation update of a supervisors position
in the latency cost space.

Input: estimatedPosition=current coordinate, minEpsilon=minimum required
movement to continue iterating

Output: updated estimated position
1 peers=peerSelection()
2 getUpdatedPeerPositions(peers)
3 measurePeerLatencies(peers)
4 maxMovement=MAXFLOAT
5 iteration=0
6 while maxMovement>minEpsilon and iteration<100 do
7 movement=Vector(0,0,0)
8 foreach peer in peers do
9 d=calculateForce(peer,estimatedPosition)

10 movement=movement+d
11 end
12 estimatedPosition+=movement
13 maxMovement=movement.length
14 iteration++
15 end
16 return estimatedPosition;

with c1 as a constant, c2 as the ideal distance, the measured ping, and d as the dis-
tance in the latency space (Line 2). This force is then applied in the correct direction
by multiplying it with the unit vector (Line 4). The logarithmic scale prevents the
forces between very distant positions from becoming too large in comparison to the
smaller forces [Ead84, Kob12]. Additionally, a variant using the linear force calculation
force=multiplierConstant*(d.length-peer.latency) based on SBON and
its use of the Vivaldi algorithm is also being evaluated [PLS+06, DCKM04].

Algorithm 4.2: Pseudocode to calculate the movement based on spring-based
forces [Ead84, Kob12].

Input: peer, estimated Position
Output: d=movement update vector

1 d=peer.position-estimatedPosition
2 force=multiplierConstant*log(d.length/peer.latency)
3 d=d/d.length
4 d=d*force
5 return d;
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Similar to Google’s landmarking implementation, not all supervisors but only a small
subset of them are used as peers [SPPvS08]. In contrast, rather than selecting specific
peers, n random peers are used. After an estimation, only i peers with the lowest latency
are kept and j new random peers are selected, such that the full selection of n peers
exists again. This specific selection with a bias for more local resources is made because
the accuracy of latency estimation for the closest resources matters the most for the
operator placement. This is because these resources are far more likely to interact with
each other once a placement occurs. After all, they offer low latencies. A network-aware
operator placement heuristic that aims to reduce latencies, then, of course, aims to make
use of these resources. In contrast, the accuracy of the global latency estimation is less
important because having more distant resources interact hinders the aim of achieving
lower latencies. Still, j random peers are used to ensure that the global estimation is
still somewhat accurate, even if ideally less relevant.

The actual latency measurement is performed using the natively installed ping utilities
on Windows or Linux because a Java-based implementation would require extended
privileges during the execution to perform ICMP pings rather than relying on a TCP
fallback [Ora22]. Pings are a measurement of the round-trip time and, as such, can
not measure potential differences in the directions of a link. This is an additional
reason for the selection of a spring-based estimation rather than matrix completions. As
discussed in Section 3.2.2, a spring-based estimation can only model symmetric and not
one-directional latencies, but a matrix completion can. If one-directional latencies are
never measured, to begin with, then modelling them also does not provide a benefit. To
approximate one-directional latencies, the round-trip time is halved so that if the latency
of an Apache Storm topology is estimated, it resembles the actually observed latency
more closely. Pings are handled by the operating system, CPU efficient and are therefore
even relatively accurate under heavy loads [SPPvS08]. This could be the case when a
node, for example, might be overloaded by a stream processing application. Of course,
pings can still have high variance depending on the actual network conditions. Therefore,
the measurement is repeated multiple times and the median of them is computed to
return a more stable measurement. Using such aggregate filters is a common practice.
Google’s landmarking implementation also utilises the median and SBON uses a moving
percentile filter. Google uses a history of measurements for the calculation and Pietzuch
et al. found that the aggregation of ten measurements allows for stable latency estimation
[SPPvS08, PLS+06]. For this reason, the computation of the median uses ten total
measurements: the five current measurements and the last five previous measurements.
Including the last measurements provides some additional short-term stability similar to
Google’s measurement history.

With the understanding of how the latency is measured and the previously discussed
architecture and limitations of Apache Storm, the modelling of the optimisation problem
is discussed next.
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4.6 Modelling of the Constrained Optimisation Problem
The modelling of the constrained optimisation problem consists of three main components:
a simplification, the optimisation function and the constraints. The following sections
each describe one of these components.

4.6.1 Simplification

The first step in efficiently solving the placement problem is a simplification. The
separation of workers on a supervisor in Apache Storms architecture is mostly a logical
one. Each worker has access to all resources of a supervisor. Similarly, multiple workers
are not necessary to achieve concurrency because workers are already pools of threads, as
discussed previously. The documentation of Apache Storm even recommends only using
one worker per topology on a supervisor, as multiple workers would introduce additional
overhead for the communication between processes [Apa22c]. With this performance
consideration in mind and without any requirement to distinguish between workers, there
is no need to model each individual worker in the placement.

Instead, operators can be assigned to a supervisor if one of its workers is already occupied
by the same topology or at least one worker is still free. This means the worker instances
can instead be modelled as a number of available topologies that can be run on the
supervisor. In a later step, the actual assignment from the supervisor level to the worker
level is trivial to execute.

This greatly simplifies finding assignments and co-locating operators, which also raises the
question of why Apache Storm models and exposes individual workers to the placement
logic. At the moment, the DefaultScheduler and ResourceAwareScheduler in Apache
Storm seems to attempt to achieve this result in some way, although each one has a unique
implementation for it [Apa22n]. Additionally, while Apache Storm does allow scheduling
multiple topologies at the same time, they are considered individually by this placement
heuristic to simplify the problem. This is also the case with all existing schedulers in
Apache Storm, specifically the DefaultScheduler, IsolationScheduler, MultitenantScheduler
and ResourceAwareScheduler [Apa22n, Apa22h].

Following this simplification, the actual optimisation problem can be defined starting
with the scoring function.

4.6.2 Scoring Function

With the previous design decisions in mind, latency is a core component to be considered.
The placement problem definition has been set up as a score minimisation problem
because latency can grow arbitrarily large and is considered a key metric to optimise. The
following therefore presents the optimisation function that scores a potential operator
placement of a single topology and shall be minimised to achieve better performing
placements.
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The optimisation function shown in Equation 4.1 consists of four components with
additional weights w1 to w4 to modify the amount of influence each specific component
has. Each of the scoring components has a range of [0, 1], except for the latency function
slat(x) with a range of [0, ∞]. For this reason, w1 was set to 1

1000000 such that it becomes
a relatively insignificant part of the placement that mostly acts as a deciding factor
between similarly scored solutions. All other scoring functions were equally weighted by
setting the constants w2..4 to 1.

s(x) = w1 ∗ slat(x) + w2 ∗ ssup(x) + w3 ∗ sco(x) + w4 ∗ sevent(x) (4.1)

slat(x) is representative of the highest estimated network latency that would be accu-
mulated during the processing of an event in the topology T . As such, for any operator
s ∈ Tsource we can define that slat(s) = 0. For other operators in the topology, this can
be extended to ∀o ∈ T : slat(o) = max(slat(p) + lp,o : p ∈ opredeccesors)) with la,b being
the estimated network link latency from the operator a to b. The latency score of the
topology is then simply the maximum among all sinks: slat(T ) = max(slat(s) : s ∈ Tsinks)

ssup(x) is used to condense the placement of operators. It is defined as ssup(x) =
|supervisors∈x|

|supervisors| . The idea behind this score is to reduce the total amount of supervisors
used. Unused supervisors could then be temporarily shut down to optimise the cluster
by reducing unused resources.

sco(x) is a measure of the co-location of operators. If p(o) is the placement of an operator
o then sco(x) = |eo1,o2 ∈T :p(o1)=p(o2)|

|eo1,o2 ∈T |

sevent(x) was originally intended as a score to minimise the bandwidth usage directly by
forming the fraction of the placement’s bandwidth usage and the theoretical usage if
no operators are co-located. During the implementation, there were various difficulties
in accessing accurate bandwidth information that are described in the implementation
section of this thesis. Therefore, rather than measuring the bandwidth used, it was
adapted to events emitted over not co-located edges. This metric is, therefore, highly
similar to the co-location and with t(e) being the events emitted on an edge e it can be

defined as sevent(x) = eo1,o2 ∈T :p(o1)=p(o2) t(eo1,o2 )

eo1,o2 ∈T
t(eo1,o2 ) . In practice, t(e) can not be measured

exactly because Apache Storm only outputs a metric about the emitted events for each
operator. t(e) can, therefore, only be approximated by dividing the operator-based
statistic by the count of outgoing edges. This metric can, as a result, not account for
any skew in the distribution of data to succeeding operators. This is furthermore not
ideal because Apache Storm allows defining custom groupings that affect how data is
distributed to the operators. Given the practical limitations, a more accurate score can
not be calculated because the data is not available at this level of detail.

With that said, even if the size of tuples is unknown, there can still be a significant
difference in the number of tuples an operator outputs, because of their potentially different
selectivities, as previously discussed in Section 2.5. These differences in the selectivity also
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accumulate across the different paths in a topology and therefore necessitate this metric
in addition to sco(x). At the same time, it does not fully replace sco(x). This is because
the co-location of operators and the resulting removal of overhead and synchronisations
was generally one of the most important factors for the actual performance. As such,
sco(x) optimises the general performance and sevent(x) ensures that the most impactful
operators are co-located.

The following section discusses the modelling of the constraints, of which the CPU
utilisation is also important for the topologies’ performance.

4.6.3 Constraints
Most constraints for the placement problem are relatively basic and do not need to be
explicitly checked, because the placement heuristic can indirectly guarantee them. These
are the constraints of having each operator assigned to exactly one supervisor and not
assigning operators of more topologies to a supervisor than workers are available, because
each worker can only execute operators of a single topology. For this reason, they are
not explicitly modelled.

The only constraints that need to be checked are memory and CPU usage violations
and that no more topologies are assigned to a supervisor than it has workers. If the
memory of all operators that are placed on a supervisor exceeds its capacity, then that
can result in crashes and the supervisor, therefore, causes a constraint violation of the
excess assignment relative to its capacity.

The CPU usage constraint is more involved because it slightly differs for a currently
running topology and when searching for potential new placements. Initially, it was
attempted as a part of the scoring function to prioritise placements with high average
utilisations while leaving some available processing capacity to handle spikes or changes
in demand. This was difficult to tune and the utilisation is a highly sensitive metric to
changes in the input rate or simply moment to moment, thereby resulting in fluctuating
scoring that led to observations of unstable placements in some experiments. In these
cases, the placement heuristic would repeatedly update the placement to adjust to the
minor utilisation changes. It was therefore modelled as a constraint, which made it easier
to tune, and differently defined for current and new placements to improve stability.

When a topology is already placed, then observing a high utilisation is good in the sense
that resources are being effectively utilised. For this reason, the utilisation of a supervisor
is allowed to reach up to 95% before it is considered a constraint violation. This ensures
some headroom for minor usage spikes because utilisation is being considered over a
time frame while avoiding overutilisation that leads to events needing to be queued and
therefore delayed at the operator. When searching for new placements, it was instead
found to be beneficial if a larger buffer is available in the CPU utilisation. This is first off
because the real utilisation might be growing currently due to increasing input topology
rates and would, therefore, otherwise necessitate a new placement in the near future.
Secondly, requiring a lesser utilisation in new placements effectively creates a range
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of acceptable utilisations and can therefore improve stability by avoiding downscaling.
Requiring utilisation of at most 50% on any supervisor in new placements was found to
provide more stable placements while ensuring high utilisation. This is again because
there might be usage spikes. Similar to the memory constraint, utilisation by which the
95% or 50% utilisation is exceeded relative to the intended amount is the amount of the
violation.

The scoring can therefore be considered purely as a force to find smaller, more co-located
placements, while the constraints oppose this by ensuring a lower bound. This usually
leads to supervisors being utilised slightly below 50% on new placements, as otherwise, a
more co-located placement with higher utilisation would likely be possible.

With the optimisation problem being fully defined, the following section discusses the
implementation to solve the placement problem.
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CHAPTER 5
Heuristic Implementation

This chapter presents how the design has been realised into a functional implementation.
Section 5.1 discusses how Apache Storm’s architecture was extended to support the
additional data collection and the implementation of these external components. Topo-
logical sorting and Apache Storm’s capability to execute cyclic topologies are presented
in Section 5.2. Section 5.3 summarises the actual implementation related to solving the
previously defined constrained optimisation problem. Finally, Section 5.4 presents a more
detailed insight into the state of Apache Storm’s scheduling API based on the experiences
and insights gained while working with it.

5.1 Solution Architecture
This section aims to provide an overview of the implementation by introducing the
architecture of the solution. It is discussed how the placement heuristic can be integrated
into Apache Storm and how Storm’s architecture has been extended with the deployment
of the solution.

5.1.1 Heuristic Placement Architecture
The heuristic placement implementation was developed for the recently released version
2.4.0 of Apache Storm [Bip22]. It was also partially developed during the versions 2.2.0
and 2.3.0, thereby providing some additional insights into the placement-related changes
of Apache Storm over time.

Apache Storm provides two Java interfaces to implement a placement logic. The IScheduler
interface allows the implementation of a completely custom scheduler. In contrast, the
IStrategy interface allows creating only a new placement logic for the Resource Aware
Scheduler, thereby reusing some of its logic [Apa22g]. At their core, both interfaces
are very similar by providing slightly different definitions for a schedule function and,
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otherwise, some configuration or clean-up functions. The Resource Aware Scheduler
itself has originated from researchers, previously under the name of R-Storm, and the
scheduling implementation in Apache Storm has also been improved by researchers over
time [Apa22g, PHH+15].

The IScheduler interface has been chosen for the implementation of this thesis, because the
IStrategy interface scheduling functionality is only executed during the initial submission
of a topology or when other external changes occur. While the IScheduler interface
does not provide complete control over when a placement is computed, it is at least
called periodically and therefore allows implementing an online scheduler, which can
reliably adapt the placements regularly. Furthermore, the IStrategy interface does not
provide any extensive utility for the development of a prototype which the IScheduler
does not also provide. For example, both interfaces support the definition of CPU and
memory constraints and accessing the current resource usage during the scheduling. One
advantage the IStrategy interface of the Resource Aware Scheduler does provide, is the
ability to use a different strategy for each topology, but while this may be interesting for
a production environment, it is of little use for the development of the prototype.

The steps to deploy a custom IScheduler or IStrategy implementation are relatively
similar. These are further complicated by information on the process being spread across
many parts of the documentation without references to each other. Additionally, any
error reporting for these steps is minimal, if existent at all, in the logs. Therefore,
the following steps provide a summarisation of the most important information for a
successful deployment:

1. First, the implementation has to be compiled and combined with non-Storm
dependencies to create a packed jar file, which is the same process as packaging a
topology before submission to a cluster for its execution.

2. The jar file has then to be deployed on all Nimbus instances. To do this, the file
has to be copied to the extlib-daemon folder in the Apache Storm installation folder
on Nimbus instances, unless another path for it has been configured.

3. Either as a command-line argument for Nimbus instances or in the conf/storm.yaml
configuration file, the scheduler to be used has to be specified with the fully qualified
class name. In the case of an IStrategy implementation, this has to be set to the
Resource Aware Scheduler with the class name as
org.apache.storm.scheduler.resource.ResourceAwareScheduler.

4. For a custom IStrategy implementation, the usage of this strategy has then to be
specified in the startup code of every topology using setTopologyStrategy(className).

Additionally, to access metrics from the operators, these have to be collected and made
available to the scheduler on Nimbus. To accomplish this, a very basic implementation of
the IMetricsConsumer interface sends all metrics to ZooKeeper, where they are accessible
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by the scheduler. The deployment of this component is very similar to a scheduler and
consists of the following steps:

1. First, the implementation has to be compiled and combined with non-Storm
dependencies to create a packed jar file.

2. The jar file has then to be deployed on all supervisor instances. To do this, the
file has to be copied to the extlib folder in the Apache Storm installation folder on
supervisor instances, unless another path for it has been configured.

3. The metrics consumer can either be configured for an individual topology in the
startup code of the topology or by registering it in the conf/storm.yaml configuration
file. The modified configuration file has to be deployed on all supervisor instances.

The last component is the latency estimation between hosts of supervisors. It is simply
installed and executed along with any supervisor, but operates independently of them. To
transfer this data to Nimbus as well as exchange data to compute the estimations, Redis,
an in-memory key-value store, is used [Red21]. For reliability purposes or improved
scalability, a Redis cluster could be deployed. For this research, a single instance has
been chosen because a failure of an instance is unlikely within an experiment and it can
simply be repeated in comparison to a live production environment. Additionally, the
actual workload Redis has to handle is comparably very small, and as such, even a single
instance should not become a performance bottleneck, even for very large clusters. Redis
has been chosen over the reuse of ZooKeeper, because there is no need to persistently
store the latency data. Furthermore, ZooKeeper is then solely used and configured by
Apache Storm components. The architecture thereby resembles the previously introduced
minimal Storm architecture more closely.

Nimbus ZooKeeper
ZooKeeper

ZooKeeper

Host

Supervisor

Redis

Worker ProcessWorker ProcessWorker Process

Storm Metrics 
Consumer

Latency EstimationPlacement
Heuristic

Figure 5.1: The heuristic placement architecture and communication model, including
the regular Apache Storm architecture: The extended architecture primarily adds a Redis
instance and the latency estimation component on the hosts of supervisors. It also shows
that a metrics consumer has been configured for storm supervisors to gain access to
various statistics during the execution of a topology.
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The complete architecture and communication model is therefore summarised in Figure 5.1.
In addition to Storms’ regular communication between Nimbus, Zookeeper and the
supervisors, there are three additional flows of data related to the operator placement
heuristic that is being executed on Nimbus. When the Storm Metrics Consumer receives
metric data from operators, it is written to Zookeeper. Additionally, periodically the
latency estimators retrieve the list of potential peers and their positions from Redis,
use this data to adjust their own position estimation and store it on Redis. Finally,
the placement heuristic on Nimbus only retrieves the data from ZooKeeper and Redis
when a placement occurs, resulting in one-directional data flows. These three data flows,
therefore, do not require synchronisation and the components do not directly interact
with each other because Redis and ZooKeeper store the data until it is being used.

Otherwise, it is also noteworthy that, in theory, multiple supervisors can be deployed
on a single host, although there are few actual reasons to do so. This is because the
number of worker processes of a supervisor, and therefore its scalability, can be changed
by updating its configuration. Similarly, using additional supervisors would add the
overhead of multiple supervisors and reduce the leftover resources for the workers and
any actual stream processing. The metrics consumers in Apache Storm are executed in
workers, but are not directly components of them. Where exactly metrics consumers are
executed is not consistent, because they are internally treated as operators of a topology
with other operators configured as inputs to them. The metrics consumers are therefore
placed similarly to all other operators and can also be replicated. As such, a worker
may host no metrics consumer or even multiple metrics consumers from one topology
launched in the cluster [Apa22j].

One advantage of this architecture is, that it allows for the implementation of the heuristic
without requiring any modification of Apache Storm itself. All the necessary functionality
already exists in Apache Storm, can be extended with well-defined interfaces, can be
configured or simply added externally as another component. While this is, in principle,
simple, there are some differences across the interfaces of Apache Storm. For example,
metrics are not directly accessible within Nimbus, but require creating an extra component
to forward this data from the supervisors. Then the id of a task from the metrics API
matches to any id between the startTask and endTask variables of the ExecutorDetails
object. This handles a single executor executing multiple operators, which is not the
default behaviour, but can be changed via the configuration.

The following section continues with the architecture by briefly discussing how the
operator metrics from Apache Storm are accessed, related difficulties and how the
MetricsConsumer has been implemented.

5.1.2 Metrics Consumer
Apache Storm does not directly provide access to the metrics of a topology, which is why
the MetricsConsumer is used to forward that data. Alternatively, Storm UI also exposes
the metrics with a Representational State Transfer (REST) API, but it would have to be
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repeatedly queried for potential metric updates rather than them being pushed [Apa22l].
In the end, the MetricsConsumer-based implementation also relies on Nimbus polling the
data, because the actual metrics are stored in ZooKeeper as described in the architecture.
As a result, both implementation variants of accessing the metrics are highly similar, as
they require the use of optional Storm components in their deployment, be it Storm UI
or the MetricsConsumer.

The reason for using the old API is that the __recv-iconnection metric or rather its mes-
sageBytes field has not yet been transitioned to the v2 API. Similarly, these seem to not
be reported in Storm UI. The messageBytes were intended to be used by the heuristic that
has been implemented to estimate the bandwidth usage of a topology. Unfortunately, they
are only reported if operators are not co-located and, therefore, unavailable in general. An
alternative in which the initial placement avoids co-location to collect this metric was also
attempted but ultimately was reconsidered due to the inconsistent collection of this metric.
The main idea was to identify the overall bandwidth usage to estimate the average size of
individual events for each operator. This could then be used to estimate the bandwidth,
even if operators are co-located, by using the statistic of emitted events. The slow collec-
tion occurs particularly because the __recv-iconnection metric is only reported every 60
seconds, which is the standard in Apache Storm. For the purpose of online scheduling, the
metrics collections interval has been reconfigured to ten seconds to match Storm’s schedul-
ing interval. The configurations storm.cluster.metrics.consumer.publish.interval.secs,
topology.builtin.metrics.bucket.size.secs, topology.v2.metrics.tick.interval.seconds and ex-
ecutor.metrics.frequency.secs were adapted accordingly. Once the bandwidth usage of an
operator has been measured, it could be used to calculate an average event size, such that
the bandwidth usage can then be estimated even if the operator is co-located. Because of
the difficulty of reliably acquiring up-to-date bandwidth information and the need for an
initially bad placement, the decision was made to approximate bandwidth usage purely
by considering the number of emitted events, as presented in the design.

One limitation of Apache Storm is that, by default, the CPU usage is not monitored.
Instead, it provides the capacity metric, which is the percentage of time an operator is
not idle. Considering that best practices avoid the implementation of operators with
blocking functions, this directly means that capacity can directly signify some resource
bottleneck. The cause of this bottleneck could be another resource, such as the storage or
network, but in the most general case describes the CPU usage or its idle time. For this
reason, the scoring function and constraints from the optimisation problem definition
are implemented using the capacity metric rather than the actual CPU usage. Capacity
is, of course, a metric that is only relevant to the current computational resource. It is
therefore transformed into a general CPU cost to ensure the support of heterogeneous
resources. The capacity of the operator is multiplied by the supervisor’s CPU capacity to
compute the CPU cost of the operator. This achieves point costs that can be considered
in conjunction with point-based capacities of supervisors that are manually defined
using the existing functionality of Storms Resource Aware Scheduler [Apa22g, PHH+15].
The manual supervisor CPU capacity configuration could be avoided by executing a
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benchmark on the start-up of the service to measure it directly instead. Prior to version
2.3.0 of Apache Storm, the capacity metric also had to be calculated manually even if
Storm already used it in its interface [Eth21]. The custom calculation for it in version
2.2.0 was also implemented in the MetricsConsumer.

This collection of metrics is continued in the following section with the measurement and
estimation of network latencies to create a network-aware placement heuristic.

5.1.3 Network Latency Estimation
The network latency estimation implementation directly follows the design and architec-
ture considerations already made. Redis acts as a store for each supervisor’s estimated
positions and as a lookup table to find peers. As discussed during the design, the
component is implemented using Java and uses the natively installed ping utility, if
available, for increased accuracy in the collection of latencies. To ensure the latencies
of the estimation can be mapped to the supervisors, the same method to generate
the id of a supervisor in Apache Storm is essentially reused. This is simply InetAd-
dress.getLocalHost().getCanonicalHostName() of the Java Standard Library, which returns
the local hostname. With both the latency estimation and Apache Storm identifying
supervisors by their hostname matching the data becomes trivial.

The following section discusses topological sorting, which is a key mechanism for predicting
the latency of a topology using the estimated network link latencies for the purpose of
scoring an assignment.

5.2 Topological Sorting
A simple method to estimate the latency of a stream processing application would be
to sum or average all the individual latencies. While this can help in identifying better
placements, it completely ignores how the latency is distributed across the application.
As such, there could be some paths with very short or excessively long latency. For this
reason, the latency of an application has been previously defined in Section 3.2.2 as the
highest latency of any path through the DAG. An efficient method to calculate this is to
simply set the latency to reach an operator to the maximum of all its predecessors in
addition to the network link latency to the current operator. By applying this iteratively
to all operators once their predecessors have been calculated, the latency experienced at
the sinks can be calculated and therefore be used to estimate a complete application’s
latency. The order in which the latency of the operators can be iteratively calculated
stays identical unless the DAG is changed. As such, this order can be calculated once
rather than recomputing it for every latency estimation. Furthermore, this order is known
as a topological order for which well-known solutions to compute them exist [Kah62].

In a topological order of vertices contained in a graph, a vertex is sorted to be in a
position succeeding all other vertices with a path to the current vertex [Kah62]. This
provides an ordering of vertices, such that for any vertex all in the graph preceding
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vertices are ordered before it. The operators of a DAG can be mapped directly to the
vertices in this problem. This is a helpful order for calculating metrics such as the latency
of a stream processing application because this order ensures that once the latency for
any operator in a DAG is updated, the preceding operators’ latencies are already known
and can simply be referenced. Calculating such an order is relatively cheap with an
O(|E| + |V |) runtime for any graph with the set of edges E and set of vertices V . To
accomplish this using Kahn’s algorithm, sources in the graph are iteratively removed,
including all of their outgoing edges. Following vertices may thereby also turn into new
sources, until all vertices in the graph have been removed. The order of the removal of
vertices is then also their topological order [Kah62].

Unfortunately, this only works for directed acyclic graphs, which have been discussed
so far as the theoretical foundation for stream processing. In practice, Apache Storm
does allow for the definition of cycles in a topology and functions mostly correctly with
them. For example, the Resource Aware Scheduler’s support for cyclic topologies is
specifically mentioned in the original paper [PHH+15]. However, it is not clear if this
feature is actively being supported in Apache Storm. In the original Storm paper, it was
briefly mentioned, but given that none of the other official sources or documentation state
support for cyclic graphs and only showcase DAGs as examples, it leads to the question
of whether support of this feature is still intended [TTS+14]. Since the release of Apache
Storm 2.3.0, cycles are detected during the submission of a topology and presented as
the message of an exception, but the submission is not aborted and the user is not being
warned about this potentially causing issues or limitations [Eth21]. As such, this may
simply be a warning to help developers notice a misconfigured topology quicker. This
ambiguity can lead to the somewhat incorrect and common assumption that a topology
in Apache Storm is based on DAGs. The one feature of Apache Storm that strictly only
supports DAGs is the guaranteed message processing [Apa22d]. With cycles, an event,
or other ones created by operators processing it, potentially never fully completes its
processing or becomes completely acknowledged because some descendant event may not
exit the cycle. This situation or problems following from it can be manually circumvented,
but the end result is that topologies with cycles are only partially supported by Apache
Storm. Furthermore, given that the feature is not advertised or warned about, it seems
to be a rare case for stream processing in Apache Storm in general.

As such, while cyclic graphs are potentially not officially supported by the Apache
Foundation, they are currently still valid topologies that any placement mechanism
should be able to place correctly and, therefore, an aim of this thesis. Of course, this
creates a problem with estimating the latency of a topology as a cycle may be traversed
once or even an infinite amount. Depending on which extreme the behaviour of the
actual stream processing application is, the optimisation of the latency in the cycle may
outgrow any other metric to optimise. Given that this is less than ideal and cycles are
not fully supported, a seemingly rarely used feature and infinitely cycling events are even
less likely, the decision was made to support cyclic graphs by treating them as acyclic
graphs for the consideration of latency. Additionally, there is also the consideration
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Figure 5.2: Example of a cyclic topology being processed by the Eades, Lyn and Smith
heuristic. It shows a graph with sources and sinks already removed, signified by the
dashed lines, and is the state at which a cycle would be detected. All nodes left in this
graph have the same out- and indegree for edges. As such, which vertex is selected and
which edge is therefore removed relies purely on the iteration order over the vertices. In
the optimal case the edge from D to B should be removed to cause a minimal impact on
the pathing or structure of the graph.

that if latency is a design target of a stream processing application, then having cycles
increases the complexity of reasoning about latency, especially when considering the risk
of errors during the application design or implementation. As such, designing cyclic
applications would likely be avoided and restructured or unrolled, creating once again
fully supported DAGs. With that said, the following discussion aims to remove cycles in
a graph by selecting edges to ignore and thereby treating the graph as a DAG for the
consideration of latency.

5.2.1 Eades Lyn Smith Feedback Arc Set Problem Heuristic
Removing the minimal number of edges from a cyclic directed graph to transform it
into a DAG is known as the minimum feedback arc set problem. The heuristic by
Eades, Lyn and Smith was implemented to accomplish this aim, because of its speed,
simplicity and capability to directly output a resulting topological ordering [ELS93].
Algorithm 5.1 contains the pseudocode of the heuristic. In principle, this heuristic works
very similarly to Kahn’s algorithm that has been previously introduced. Rather than
just removing sources (Lines 3-6), the heuristic also iteratively removes sinks (Lines 7-10)
and inserts the two types of vertices into two respective stacks: the left stack and the
right stack, rather than directly into a single queue (Lines 5, 9). If afterwards the graph
still contains vertices, then a cycle must exist (Line 11). Therefore, the vertex v with
the max(outdegree(v) − indegree(v)) is removed and pushed onto the left stack (Lines
12-14), thereby treating it like a source even though it has edges pointing to it. Once the
graph is empty, the right stack is pushed onto the left stack to create the topological
ordering (Line 17) [ELS93]. Figure 5.2 shows a simple example of breaking a cycle by
removing, or actually ignoring, an incoming edge.

Alternatively, this could be implemented with a fixed-sized array, with the length of the
array matching to the vertex count and the stacks could be replaced by pointers. The
left and the right stack would then be replaced by two pointers, one for each end of the
array, which would mark the next position to insert a vertex into the array. After an
insertion, the pointer would then be moved closer to the other end of the array.
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Algorithm 5.1: Pseudocode for the Eades, Lyn and Smith heuristic to solve
the minimal feedback arc set problem [ELS93].

Input: G=directed, potentially cyclic, graph
Output: vertices in topological order after the minimal number of cyclic edges

was removed
1 left=new Stack(); right=new Stack();
2 while G is not empty do
3 while G has a source s do
4 remove s and its edges from G;
5 push s onto left;
6 end
7 while G has a sink s do
8 remove s and its edges from G;
9 push s onto right;

10 end
// graph has a cycle preventing removal of more vertices

11 if Graph is not empty then
12 find vertice v with max(outdegree(v)-indegree(v));
13 remove v and its edges from G;
14 push v onto left;
15 end
16 end
17 pop entries from right and push onto left;
18 return left;

It is important to note, that not every operator has to be a vertex in this graph. This
is because all instances or replications of an operator behave identically and can be
considered as a single vertex. In Apache Storm, a component refers to the operation
itself rather than all the operator instances. Therefore, the operation or component is
used as a basis for the topological sorting. Once the components are sorted, they are
simply replaced with their operator instances and thereby create a topological order of all
operators. This process provides the benefit of calculating the order on a smaller graph
and not having to, for example, resolve multiple replications of the same cycle again. In
practice, it also means that calculating the topological order is mostly independent of
the replication and, therefore, the deployed scale of the application, except for the linear
cost at the end to replace each component with its operator instances.

The minimal feedback arc set problem only considers removing the minimum number
of edges and not how this affects the pathing or structure of the graph. This does not
match to the goal of calculating metrics such as latency, for which the impact on these
calculations should be minimised. Therefore, the selection of the node and, in turn,
edges must be adapted when cycles are being resolved. The initial example in Figure 5.2
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Figure 5.3: This example highlights another issue, mainly that just removing an edge in
any cycle can lead to a suboptimal result. If vertex G would be selected, both the edges
(D,G) and (I,G) would be ignored. A better solution would be to solve the (B,C,D) cycle
first so the (D,G) edge could be naturally removed by the iterative source removal.

highlights such an example, where the best edge can be easily identified, but the heuristic
may instead remove any of the edges in the cycle. This can be avoided by requiring
that a vertex to be selected must have previously had an incoming edge from an already
removed source. We can assume that for any cycle, at least one such node must exist
because the sources and sinks of the topology are, by definition, not part of a cycle, as is
any path that has been previously iteratively removed until the cycle was detected.

The graph in Figure 5.3 shows another problem once multiple cycles exist in the topology.
Primarily, the heuristic should only remove necessary edges to eliminate cycles and the
removal of some cycles may allow some additional vertices to be iteratively processed,
rather than requiring their out-of-order removal too. This means an optimal order of
which cycle to remove first needs to be found. So far, only cycles have been considered
for their simplicity, but any more complex structure consisting of multiple cyclic elements
must also be simplified. The important concept for such cyclic structures is that any
vertex has a path to any other vertex in the structure, which is generally known as a
strongly connected component [Tar72]. This is also the problem for calculating latency,
because none of the vertices in such a structure can be considered as the first or last
element. As such, the following section presents their detection and resolution.

5.2.2 Strongly Connected Components
Strongly connected components are well studied and, as such, algorithms to find them
efficiently exist. Tarjan’s algorithm is based on depth-first search and has a runtime of
O(|V | + |E|), to not only identify all strongly connected components in a directed graph,
but also return them in inverse topological order [Tar72]. The pseudocode of Tarjan’s
algorithm can be seen in Algorithms 5.2 and 5.3.

The general idea of the section of Tarjan’s algorithm displayed in Algorithm 5.2 is to
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Algorithm 5.2: Strongconnect function for Tarjan’s algorithm to identify
strongly connected components [Tar72].

Input: v=Vertex to start search from
Data: Stack S, int index initially initialized to 0
Output: outputs sets of vertices which form strongly connected components in

inverse topological order
1 v.index = index;
2 v.lowlink = index;
3 index = index + 1;
4 push v onto S;
5 v.onStack = true;
6 foreach (v, w) in v.successors do
7 if w.index is undefined then
8 strongconnect(w);
9 v.lowlink = min(v.lowlink, w.lowlink);

10 else if w.onStack then
11 v.lowlink = min(v.lowlink, w.index);
12 end
13 end
14 if v.lowlink == v.index then
15 start a new strongly connected component
16 do
17 w = S.pop();
18 w.onStack = false;
19 add w to current strongly connected component;
20 while w != v;
21 output the current strongly connected component;
22 end

perform a depth-first search (Lines 6-8) with the strongconnect function, while keeping
track of the search tree by giving each vertex a unique index (Lines 1, 3). Additionally,
the lowlink is stored for each vertex, which is the lowest index which can be reached from
the vertex in the current search subtree (Lines 2, 9, 11). As such, the search tree can be
fully expanded from any vertex, while updating the indexes and pushing the discovered
vertices onto a stack (Lines 4, 5). On the tail-end of the recursive depth-first search (Line
14), the vertex where a cycle starts is identified by comparing the vertex’s index to the
lowlink. Only if these still match, a new component is formed which contains all following
vertices on the stack, which are the vertices in the child search tree of this vertex (Lines
15-20). If the current vertex is a part of a cycle and not the first node in the search tree
of this cycle, then the lowlink has been updated to the assigned index of the vertex in
the search tree, where the cycle actually starts and as such a component is not created.
If the vertex is not part of a cycle, then the lowlink is never updated and the vertex,
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therefore, forms a component alone. Because the formation of components occurs on the
tail-end of the recursion and, therefore, essentially in the opposite direction of the edges,
the components are formed in the inverse topological order [Tar72].

Algorithm 5.3: Pseudocode for Tarjan’s algorithm to identify strongly con-
nected components [Tar72].

Input: G=directed graph
Output: sets of vertices which form strongly connected components in inverse

topological order
1 index = 0;
2 S = new Stack();
3 foreach v in V do
4 if v.index is undefined then
5 strongconnect(v);
6 end
7 end

Algorithm 5.3 shows that this depth-first search is started from every vertex which has
not been discovered previously to ensure that all vertices are discovered. The depth-first
search can only discover following vertices and ones connected to the graph [Tar72]. If
all the sources of the graph are already known, then it would be enough to start the
searches by iterating over all sources rather than all vertices in Algorithm 5.3.

The reason why strongly connected components can be returned in a topological order
even in a cyclic graph is, that the strongly connected components can be used to transform
the graph into a DAG. Figure 5.4 visualises this process. If the graph is mapped to a
graph only consisting of the strongly connected components represented as vertices and
edges between vertices of different components are mapped to an identical edge between
the components, then the resulting graph is always a DAG. This is a property trivial to
prove by contradiction, because if we assume the resulting graph contains a cycle and,
therefore, can not be DAG, then all the components in this cycle have paths to each
other and would form a new and larger strongly connected component. This contradicts
the assumption that the strongly connected components have already been found and,
therefore, a cycle can not exist. The resulting graph of such a transformation, therefore,
has to be a DAG.

Following the previous iterations of the heuristic’s execution on a graph to create a
topological ordering of vertices, all sources or sinks have already been removed. As such,
any vertex that neighbours one of the previously removed sources or sinks is within a
cyclic structure or, in other words, a strongly connected component, because otherwise, it
would be a source or sink that has already been removed. Therefore, at least the first and
last component in the order returned by Tarjan’s algorithm must contain a cycle, because
it returns strongly connected components in inverse topological order. The heuristic can
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Figure 5.4: Example of the graph from Figure 5.3 being transformed to a DAG of com-
ponents. Components are displayed using rectangles with the boxed arrows representing
the edges between them. The original vertices, which form a component, and their edges
are also included to visualise how the transformed graph has been created. In the context
of the heuristic, there is no need to create a component for an already removed vertice,
but it is still displayed here to provide a more extensive example of the transformation
process.

thereby trivially be extended with the selection of a first cycle to remove an edge from to
avoid the previously discussed problem presented in Figures 5.3 and 5.4.

Using the heuristic, a topological ordering can therefore be calculated for potentially
cyclical graphs, which in turn allows calculating the latency of the stream processing
application, although with only limited correctness. Furthermore, the heuristic can be
adapted so that sources and sinks are not removed one by one, but rather in sets. This
way, an ordering of sets of vertices would be returned rather than individual vertices.
These sets contain additional information, because the order of vertices in each set
is completely interchangeable and can be used to easily create alternative topological
orderings. Creating multiple topological orderings can, for example, be useful when
creating a greedy placement heuristic, as changing the order of operators to place can
be easily adjusted, while still keeping a valid topological order. Additionally, in Apache
Storm, the operators are constant and can not be added or removed after their initial
creation on topology submission. Consequently, the topological order can simply be
cached for any future placement calculation, until the topology is terminated.

The complete pseudocode of the modified heuristic can be seen in Algorithm 5.4. It
consists of the Eades, Lyn and Smith heuristic (Lines 1-32, 35-41), as discussed in
Section 5.2.1, but modified to remove all viable sources or sinks as a set rather than
individually (Lines 8-19, 20-31). Additionally, the logic of how to select a vertex to
resolve a cycle was modified as described in the current section. Tarjan’s algorithm (Line
33) is applied to identify the first cycle in the DAG, which is the last component in the
output of the algorithm. Finally, a vertex in this cycle is selected for removal based
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Figure 5.5: Different visualisations of the same graph to highlight potentially different
interpretations of the intuitive importance of an edge.

on Eades, Lyn and Smith’s heuristic with the addition of requiring it to neighbour a
previously removed vertex categorised as a source (Line 34).

Finally, Figure 5.5 shows that not for every cycle an ideal edge or vertex can be selected
purely based on graph theory. In both visualisations, an identical graph is displayed,
but the difference in presentation may make us identify different edges as candidates
to remove the cycle. In (a), the edge from G to B seems like the backwards-leading
edge of the cycle, while in (b), it is the edge from B to D. Of course, arbitrary more
complex problems can be created, but this simple example shows that to make a correct
decision, a detailed understanding of the data to be processed, application and intended
behaviour is necessary. As such, without further information from the stream processing
application’s developer, this problem can only be solved heuristically. Requiring such
additional information for a placement is contrary to the requirement of supporting
existing Apache Storm topologies and avoiding modifications to the API or internals of
Apache Storm. Therefore, such an extension is out of the scope of this thesis.

In practice, if cycles are a critical feature for a stream processing framework and the
intent is to fully support them and latency optimisations or requirements, then a solution
would likely be similar to the use of selectivities of operators. Before an application is
executed, information on the usage or importance of optimising cycles could be provided
externally by a developer. Alternatively, a heuristic could be used as the last pages have
described.

Similar to selectivity, once the application is running, the specific behaviour can be
observed and tracked for future placements and thereby does not require any optimisation
hints manually defined by developers. Apache Storm already does something similar
for any events currently being processed. As a part of the efforts to guarantee message
processing to ensure reliability, tuple trees are created. They are DAGs which track an
event and its modifications from the data source through the operators which process it.
As such, these tuple trees effectively track the pathing of events, but this information is
only stored as long as necessary, only collected if guaranteed processing is utilised and only
accessible within ackers, the components which track the processing acknowledgements
of operators [Apa22d]. If this information could be accessed, it could be stored more
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Algorithm 5.4: Modification of the Eades, Lyn and Smith heuristic to create
topological orderings of cyclic graphs by ignoring edges with less impact on the
pathing than the minimal feedback arc set problem [ELS93].

Input: G=directed, potentially cyclic, graph
Output: sets of vertices in topological order after minimal number of edges has

been removed to break cycles
1 left=new Stack();
2 right=new Stack();
3 sourcesToProcess, sinksToProcess=new Queues();
4 tempQueue=new Queue();
5 add sources in G to sourcesToProcess, sinksToProcess;
6 while G is not empty do
7 set=new Set();
8 while sourcesToProcess is not empty do
9 add sourcesToProcess[0] to set;

10 remove sourcesToProcess[0] and its edges from G and sourcesToProcess;
11 add new sources to tempQueue;
12 if sourcesToProcess is empty then
13 swap tempQueue and sourcesToProcess;
14 if set is not empty then
15 push set onto left;
16 set=new Set();
17 end
18 end
19 end
20 while sinksToProcess is not empty do
21 add sinksToProcess[0] to set;
22 remove sinksToProcess[0] and its edges from G and sinksToProcess;
23 add new sinks to tempQueue;
24 if sinksToProcess is empty then
25 swap tempQueue and sinksToProcess;
26 if set is not empty then
27 push set onto right;
28 set=new Set();
29 end
30 end
31 end

// graph has all sources and sinks removed, but has a
cycle preventing removal of more vertices

32 if Graph is not empty then
33 components=Tarjan’s algorithm(G);
34 find vertice v in the last component with max(outdegree(v)-indegree(v)),

which is a neighbour of a previously removed source;
35 remove v and its edges from G;
36 add v to a new set;
37 push new set onto left;
38 end
39 end
40 pop entries from right and push onto left;
41 return left;
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permanently in the form of statistics about the usage of specific edges and cycles or even
as test data, of which a replay could be simulated to evaluate latency metrics. This likely
provides a good solution for online placement mechanisms, but creates the question again
of how or if these cycles should be optimised during the first run, when such metrics have
not been collected yet.

Depending on the application, a developer might also be able to unroll the loops to create
a cycle-free variant of the application. Especially for safety-critical applications, where
latency is not simply a metric to optimise but an actual constraint, this might be the
most viable solution.

This section has discussed topological sorting and the removal of cycles to, for example,
estimate the latency of a topology. With all the information, therefore, being available for
the constrained optimisation problem, the following section discusses the implementation
of solving them.

5.3 Operator Placement Heuristic
To solve the constrained optimisation problem, three different iterative solvers have been
implemented. These are a hill-climbing, an ant system and a hybrid approach of both to
combine their different advantages.

Iterative solvers are highly desirable for online schedulers because the computation of
placements is relatively cheap and can, therefore, easily be performed every ten seconds
when Apache Storm triggers the placement logic. The disadvantage is that they are
heuristics and, as such, do not guarantee optimal results. This is because they do not
exhaustively explore the search space, but instead, attempt to iteratively improve an
existing placement. These placements are then only executed if they pass a threshold of
at least an 0.3 score improvement of the placement. This is because slight score variations
exist purely due to changes in the measured metrics, thereby resulting in new theoretically
optimal placements. In practice, the slight score improvements do not significantly affect
real-world performance, especially when considering the downtime due to the enactment
of the new placement, which is another reason why a heuristic is good enough rather
than requiring an exact solver.

The iterative solvers used in this thesis all share similar mechanisms to limit how many
iterations of placement they may perform each time Apache Storm triggers them. These
are time limits, iteration limits and limits on the number of iterations since the last
improvement was found. Additionally, while potentially better placements could be
computed every time Apache Storm triggers the logic, there are two more conditions.
These are primarily because Apache Storm takes a significant amount of time to execute
placements and, as such, it is likely for the placement logic to be engaged again before
the topology is being completely executed again. Even if the topology is already fully
capable of processing data, new metric data likely has not been received yet or does not
fully represent the current placement due to the short runtime. Therefore, a topology
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may only be placed again 30 seconds after the last placement has occurred and when
new metric data has already been received.

The first method that is being discussed to actually solve the constrained optimisation
problem is hill-climbing.

5.3.1 Hill-Climbing
Local search is based on the idea of performing small modifications on an existing solution
iteratively to find better placements [TR14]. The initial solution for the search is either
the current placement or a potentially highly inefficient placement from a greedy heuristic
that mainly aims to satisfy the memory and slot availability constraints. In this local
search implementation, for a modification to be accepted as a better solution, the amount
of constraint violations has to be reduced or at least kept equal while improving on the
score. This is also often referred to as hill-climbing [TR14]. This means that a suboptimal
modification will never be executed, thereby also resulting in a high risk of getting stuck
in a local optimum. As discussed previously, reaching the optimal score is not considered
necessary and as such local optimums are also not that problematic.

The hill-climbing implementation uses the following three potential operations to modify
a placement:

1. Moving one operator to a different supervisor.

2. Swapping the placement of two operators which are not co-located.

3. Moving all operators of a supervisor to a different supervisor.

Swapping and moving all operators are, in theory, not necessary because they can be
expressed through multiple individual move operations. Due to co-location being highly
relevant in multiple metrics of the scoring mechanisms, it is also often the cause of local
optimums. Swapping the placements is highly effective at reducing the application’s
latency, while moving all operators allows for the contraction of a placement when a
topology is experiencing low load. In both cases, the loss of co-location would result in
significantly worse scores if these modifications were to be executed in multiple steps
instead, thereby resulting in significant and undesirable local optimums, which this form
of local search would not overcome.

Because the topologies are relatively small, it was observed that generating and testing all
potential modifications is still performant enough. For larger environments or topologies,
this approach could not be used and only a random subset of the modifications should be
generated. Generating the entire neighbouring solution space also provides the advantage
that the search for a better solution can be aborted once a single iteration fails to
improve the score. A random neighbourhood can not provide this certainty and requires
multiple iterations to achieve a high certainty that a continued search would either be

83



5. Heuristic Implementation

too inefficient or can not improve on the score anymore. As such, the resulting score
quality can vary more with random solutions constructions, which is also the case for the
following approach, the ant system.

5.3.2 Ant System
The ant system is based on the real-world collaborative pathfinding of ants. The movement
decisions of the ants are modelled probabilistically on a graph. Once an ant has built
a complete path this way, it will deposit pheromone on it. Based on the real world, a
shorter path will allow an ant to walk over it more frequently, thereby depositing more
pheromones than on a longer path. The pheromone then attracts other ants to follow
the path and further reinforces the pheromone trail. At the same time, the pheromone
will slowly evaporate, thereby deprioritising less used or unused paths. This way, the
ants can collaboratively find short paths [DMC96].

The placement problem can be mapped to the pathfinding problem by representing the
operators and supervisors of a node. An assignment can then be represented by a path
that starts on an operator, ends on a supervisor and alternates between supervisors
and operators until all operators are included in the path exactly once. Edges from the
operators to the supervisors then represent individual operator assignments. The only
movement that is not allowed for an ant is an operator placement which would overload
the memory of a supervisor. The edges from the supervisors to the operators do not have
any meaning except for deciding the order in which the individual operator assignments
are explored.

Placing pheromones on these edges leads to a bias where some order for the assignment
of operators is preferred, even though it does not affect the solution quality. At the same
time, a specific operator order can make finding certain solutions more difficult. An
example of this is the memory constraint that can block operators which are considered
later from being placed there. This can lead to the creation of local optimums. Therefore,
the paths of the ants only consist of the edges from the operators to the supervisors. The
reverse edges are not modelled. Instead, the operator placement order for each ant is
randomised to avoid this bias, which can lead to local optimums.

Algorithm 5.5 shows the pseudocode of the ant system for the placement of operators. To
start with, the pheromone of each edge (i, j) is initialised with the configurable parameter
pi. Additionally, an already existing placement also affects the initial pheromone amount
by executing the pheromone placement pc times for a path that is equivalent to the
current placement (Lines 1-2). During early testing, placing five times the amount of
pheromone resulted in a good balance of exploring new alternatives and remembering
the current solution. In lines four to six, the ant population of m ants is generated with
a random path each, the best ant that has been found is updated and the pheromone
on the graph edges is modified accordingly. Similar to hill-climbing, it uses the absolute
iteration count, iterations since the last score improvement and total runtime as its exit
conditions (Lines 3,7). Once the algorithm finishes, it returns the best placement that
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Algorithm 5.5: Ant system pseudocode [DMC96]
Input: currentPlacement
Output: new optimised placement

1 bestAnt=currentPlacement
2 pheromone=initialisePheromone(bestAnt)
3 while no exit condition fulfilled do
4 ants=generatePopulationOfAntsWithPaths()
5 bestAnt=selectBestAnt(ants,bestAnt)
6 pheromone=placeAndDecayPheromone(pheromone,ants)
7 updateExitConditions()
8 end
9 return bestAnt;

has been found (Line 9). The following discussion presents the underlying math of the
ant system with the equations used for the path generation (Line 4), scoring (Line 5),
and pheromone update (Line 6).

In an ant system, the probability of an ant k at the time t to move from a node i in
the graph to j is shown in Equation 5.1. It consists of an a priori heuristic, for which a
custom one is defined in Equation 5.2, and an a posteriori heuristic, the pheromone. α
and β are used as parameters to weigh the importance of both elements [DMC96].

pk
ij =


|Tij(t)α|·|ηij(t)β |

k∈allowed movements |Tik(t)α|·|ηik(t)β | j ∈ allowed movements

0 otherwise
(5.1)

The custom heuristic in Equation 5.2 is primarily used to find solutions that utilise
fewer supervisors and achieve more co-locations faster. It acts as a factor for the
existing pheromone to encourage or deter from certain decisions and thereby guide the
exploration. Therefore, it usually returns the value one, but is optionally multiplied by
two in two favourable conditions or divided by two each if the placement would overload
the supervisor’s CPU or memory. The favourable conditions are if another operator of
the topology has already been placed on the supervisor or if a predecessor or successor
operator has been placed on the supervisor, which would therefore achieve co-location.
Because of the random order in which the ants’ paths are created and operators are placed,
the impact of individual decisions on the application’s latency is generally unknown and,
therefore, only optimised indirectly by the heuristic using co-location.

ηij = 1 · 2pred or suc placed on j · 2j already used · 1
2overloads j’s CPU · 1

2overloads j’s memory (5.2)

Equation 5.3 shows the decay of the pheromone based on the parameter ρ and the
newly placed pheromone of all ants for an edge (i, j) [DMC96]. In this ant system
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variant, a minimum pheromone amount pm on each edge is enforced to ensure that the
random exploration of alternate paths never stops, which was inspired by max-min ant
systems [SH00].

Tij(t) = max(ρ · Tij(t − 1) +
m

k=1
ΔT k

ij , pm) (5.3)

The pheromone placed on an edge (i, j) by the ant k is defined in Equation 5.4. It uses a
constant Q to scale the placed pheromone and Sk, the score of the ant k’s solution. It
ensures that a lower score results in more pheromones placed, thereby attracting more
ants to better solutions [DMC96].

ΔT k
ij =

Q
Sk

kth ant uses edge (i,j) in path
0 otherwise

(5.4)

To ensure that constraint violations are actively being reduced, they are considered in
the placement of the heuristic by using a combined score defined in Equation 5.5.

Sk = score(k) + 10000 ∗ constraintV iolations(k) (5.5)

Hill-climbing and the ant system share a lot of similarities in their interface but are very
different in how they perform the optimisation. This can lead to the solvers excelling in
solving different types of problems. The following section, therefore, describes a combined
approach.

5.3.3 Hybrid
The hybrid approach attempts to combine the benefits of hill-climbing and the ant system.
The random solution construction of the ant system is more effective at exploring the
solution space by avoiding getting stuck in local minimums but also does not identify
and exploit the smaller optimisations as greedily as hill-climbing. This means that after
the ant system finds a good solution, there may still be some small adaptions that can be
made to greedily improve the score. For this reason, the hybrid search consists of running
the ant system for its effective exploration, which is then followed by hill-climbing to find
and make those small adjustments. The configuration of both solvers was kept identical
to their independent versions, except for the time limit, which was halved to ensure that
the execution of both solvers in succession would still fulfil the same design constraints.
The idea of combining local search and ant systems is not new in any way but is usually
directly applied within the ant system by optimising each ant’s path again before the
pheromone is placed [TR14].
Table 5.1 showcases the different parameters that have been used to configure the solvers.
As previously mentioned, the hybrid approach uses matching parameters except for the
runtime limitation of the individual solvers.
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Table 5.1: Parameters used for the solver implementations.

Parameter Hill-Climbing Ant System Hybrid
max runtime 1000ms 1000ms 500|500ms
max iterations 1000 1000 1000|1000
max iterations without improvement 1 15 1|15
α 1 1
β 1 1
initial pheromone(pi) 5 5
min pheromone(pm) 0.6 0.6
pheromone decay(ρ) 0.95 0.95
pheromone placement constant(Q) 5 5
pheromone current solution placement(pc) 5 5
ant count(m) 30 30

The following section discusses Apache Storm’s scheduling API in more detail and
captures some of the experiences that were made during the implementation of the
scheduling heuristic and the three solvers.

5.4 The State of the Apache Storm Scheduling API
One of the major reasons for the framework selection of Apache Storm for the imple-
mentation in Section 4.3 is its general documentation and the existence as well as the
accessibility of the scheduling API. This chapter has discussed how the API was used to
create an online scheduler, unlike the ones provided by Apache Storm itself. In addition
to changing how placements are computed, the heuristic itself differs significantly by
adaptively changing placements and using runtime statistics. As such, the heuristic
highlights that the API allows conceiving schedulers that significantly differ from the
schedulers the API was built for. This is a clear indicator of the high quality of the
API and validates the decision to use Apache Storm. At the same time, there are other
properties that can affect an evaluation of the quality of the API. Therefore, this section
aims to provide a more detailed look at the API and presents limitations, problems and
difficulties that were discovered during this work.

In general, it is relatively easy to get an overview of the API. This is because it only uses
a few classes that all directly relate to elements one would consider when solving the
placement problem. Some examples are the classes Cluster, SupervisorDetails, WorkerSlot,
TopologyDetails, ExecutorDetails and so on [Apa22e]. The Cluster acts as an entry point
to the API from which it is then possible to navigate to and through the other elements.
In general, it is possible to navigate from any object to any other related object, for
example, from WorkerSlots to SupervisorDetails, but these relations are often only stored
by exposing the related id rather than the objects. As such, it is often necessary to look
up the relevant object by id in one of the lookup tables stored on the Cluster object.
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The Cluster holds the functions to retrieve and modify assignments, among others, while
the rest of the classes act as read-only structures to organise and hold data. With that
said, not all the information is stored in this object-oriented approach. The Cluster also
has a variety of lookup functions or maps storing additional information about the objects
of the other classes, likely because of implementation details. As a result, for most objects,
the available information is split between the Cluster and whatever object it belongs to.
But even this has exceptions, the TopologyDetail stores the information on the resource
request of an ExecutorDetail. This makes identifying all available information more
difficult and accessing it more tedious. At the same time, the Cluster has an extensive
list of functions making it more difficult to get an overview or to find something specific.
Overall, this mostly raises the learning curve with the API and somewhat the readability
of the resulting implementation. Unfortunately, the maps often use the id of an object as
the key, rather than the object itself, which can lead to errors such as querying with ids
from the wrong type of object, for example [Apa22e].

The actual naming of elements can also lead to some confusion. WorkerSlots are also
sometimes referred to as workers or slots across functions or the documentation. The
most inconsistent location seems to be the JavaDoc and related function names of the
Cluster [Apa22e]. This can lead to uncertainty, such as if workers and WorkerSlots are
the same concepts. A similar problem exists with SupervisorDetails, which are referenced
as a nodeId in WorkerSlots. In addition to the different naming schemes, the related
fields or functions lack a description in the documentation [Apa22e].

The same is true with functions, for which getAssignableSlots() and getAvailableSlots()
are a particularly frustrating example. They are difficult to differentiate because neither
their name nor their documentation clarifies the difference and may even be misdirecting
depending on the interpretation [Apa22e]. The answer is that both functions retrieve the
assignable slots from getAssignablePorts(), but getAvailableSlots() additionally filters out
all occupied slots. As a result, the return of the assignable slots function also contains
slots that have to be emptied first to allow for a new assignment. This means that, in a
confusing manner, the slots from getAvailableSlots() are more assignable than the ones
returned from getAssignableSlots(), because Storm only allows assignments to empty
slots.

Fortunately, the naming of elements is still improving with updates. With the release
of version 2.3.0, the function getTopologyComponents() was renamed to getUserTopolo-
gyComponents(), which now clarifies why some components are not returned from this
function but referenced by the ExecutorDetails for which such a differentiation does not
exist [Eth21]. Unfortunately, a similar function for presumably system components, such
as ackers or IMetricsConsumer implementations, does not exist. Components are the
equivalent of a node in the DAG, the operation, and therefore store the information on
what the inputs and outputs are connected to. This is, for example, relevant to model
bandwidth usage and to identify good operators to co-locate. At the moment, for system
components, these relations have to be ignored or manually defined based on the name
of the component, but this is, of course, error-prone. Furthermore, this only clarifies the
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interconnection at the component level and does not provide easy-to-use information on
how a specific type of grouping affects the routing at the operator level. Such a logic
would have to be manually implemented based on the documentation of groupings.

A large limitation for adaptive placement heuristics is that the metrics API is not natively
available in Nimbus and therefore requires the less maintainable workaround with the
IMetricsConsumer implementation. With the release of version 2.3.0, the metrics API has
also been nearly completely transitioned to v2, except for the __recv-iconnection metric,
which this thesis uses to retrieve information on the bandwidth usage [Eth21]. As such,
the old API does not receive most data anymore unless the topology.enable.v2.metrics.tick
setting is configured to essentially enable something close to backwards compatibility.
This critical information about the old API, as it otherwise can not be used, is not even
mentioned on its documentation page but at the bottom of the metrics v2 documentation
as a note on backwards compatibility [Apa22f]. An additional effect of this update
is also that some metrics slightly changed their names or structures in the old API
meaning that implementations need to also be updated. The documentation does also
not yet reflect these changes [Apa22j]. Additionally, some bugs were introduced. Both
the execute-latency and the process-latency are now always reported as zero in the old
API. Most of these issues can be worked around and the update also has a benefit. The
capacity metric can now be accessed in the old API via the backwards compatibility flag
and does not need to be computed manually anymore [Eth21].

Another problem for adaptive placement heuristics is the recently buggy nature of Storm’s
worker restart mechanism. Normally, this functionality may only be triggered during
rebalancing or when failures occur and, as such, is rarely used. This has, unfortunately,
also caused this function to exhibit bugs in released versions. Version 2.3.0 has fixed
the bug #3658, in which a worker could fail to shut down, thereby preventing restarts
necessary to change the assignments. The bugs #3655 and #3677 have also been resolved
in the same update to remove issues related to changed assignments [Eth21]. During the
work on this thesis, a new bug has been found in version 2.3.0, where workers would
sometimes begin the start-up before the previous instance has completely shut down.
This resulted in the new instance running out of memory because the old one still used it
or the instance failing to acquire its assigned port, resulting in a running instance that
other workers could not connect to. Briefly after identifying the problem, Apache Storm
version 2.4.0 was released, in which the problem could not be reproduced anymore and,
as such, was resolved, likely by one of the dependency upgrades [Bip22]. Using version
2.4.0, no further issue was identified as this functionality now works reliably, but this
brief history shows that the adoption of an online scheduler in a production environment
has additional risks and would have struggled to be functional for at least the last year.
Of course, this also showcases the rapid improvement and quick resolution of any issues
once they are identified and reported.

Another large benefit of Apache Storm’s community is that its JavaDoc is very extensive
and documents nearly every function [Apa22e]. Generally, the function names are also
intuitive enough, such that reading up additional information in the documentation is
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only rarely necessary. Similarly, the rest of the Apache Storm documentation presents
information in a very approachable manner. Unfortunately, there are two conflicting views
in the documentation: one intended for the user and one for the developers. These views
are mostly what information is described or where it exists. For example, in the previous
case of the metrics API, the information on how to enable backward compatibility is
placed with the new API, because that is where it is implemented and, in principle,
enabled [Apa22f]. But for a user that attempts to use the old API, it is nearly impossible
to find that information, because in the documentation of the old API there is no mention
of this lack of compatibility [Apa22j]. A similar problem exists with the description of
scheduling. The documentation entirely focuses on existing schedulers, their behaviour
and how to configure them. On the other side, the documentation only mentions the
possibility of adding a scheduler, one of the two possible interfaces and how to configure it.
Critical information such as the build or deployment steps and constraints the scheduler
and its placement have to fulfil are not mentioned. This information has to be in part
learned by trial and error and is spread across the JavaDoc, the general documentation,
the scheduling configuration and documentation of other schedulers and the original
Storm paper [Apa22e, Apa22m, Apa22h, TTS+14].

With a better understanding of the API, the following section discusses the difficulty of
implementing potential improvements from researchers.

The Growing Split between Industry Practices and Research on Apache
Storm Operator Placements

To this day, the default scheduler in Apache Storm is essentially an application of
round-robin scheduling of a single topology across a limited number of all computational
resources [Apa22h]. This is, of course, a very basic strategy that does not make use
of co-location optimisations, can cause higher latency and can easily waste resources
because it does not consider the heterogeneous requirements of tasks or capabilities of
computational resources. This raises the question of why this provably less optimal
scheduler, from the perspective of a researcher, is still being used when an alternative
like the Resource Aware Scheduler is already integrated and can be enabled with a
small change in the configuration [Apa22g]. Similarly, many researchers have developed
new schedulers over recent years that have not been integrated into Apache Storm
[ABQ13, XCTS14, MAI21, QR21]. The following discussion aims to clarify the crucial
benefits of Storm’s default scheduler, why new schedulers proposed by researchers struggle
to compete in these areas and what the impact of that is on scheduling in Apache Storm.

A large benefit of round-robin scheduling is the simplicity of its usage and configuration as
well as the implementation and maintenance itself. It barely requires any configuration and
performance problems are easy to identify and solve, but not necessarily in an efficient
way. Essentially, a user can only add or increase the capacity of the computational
resources, rebalance the topology to allow it to use more resources or resubmit it with
more instances of operators. These three options all solve clearly defined problems, such
as the cluster lacking resources as a whole or a specific operation being a bottleneck.
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It makes the scheduler easy to use, the code simple to maintain and the behaviour
predictable and reliable, even if the actual placements lose out in efficiency. As such,
supporting this scheduler with a large base of users is not too difficult, because most
questions can be resolved with minimal documentation.

In contrast to that is the Resource Aware Scheduler. It requires the user to specify the
resource constraints of operators and the availabilities of supervisors [Apa22g]. This is
an additional configuration effort where mistakes can be made, especially because the
resource usage of an operator always correlates with the rate of data to be processed
and, as such, can diverge significantly from the estimated configuration. Identifying such
a problem increases the difficulty of using it correctly and similarly can the necessary
fine-tuning be too bothersome for its users. As such, the Resource Aware Scheduler is
integrated, but locked behind a simple configuration change [Apa22g]. This way, the
potential for better scheduling is available for everyone that needs the extra efficiency
and is willing to make this effort.

Online schedulers could resolve the additional configuration problem because they can
collect this data themselves by tracking the current execution, but in exchange, their
complexity grows significantly. This is not only the complexity of implementing it, but
also maintaining it, supporting it and achieving effective placements in the variety of
real-world deployments and their workloads. The previous section has already discussed
that in some cases the scheduling API is designed for static scheduling and, while not
being particularly limiting, still has a variety of complications that make implementing an
online scheduler more difficult than it could be. And this is likely the reason why online
schedulers have been developed by researchers for Apache Storm but have never been
integrated because deploying, maintaining and supporting them would be too difficult.
As such, while researchers keep creating new solutions, these changes do not seem to make
it into Apache Storm or other stream processing frameworks. Apache Storm has been
selected for this thesis, because of its excellent scheduling API, especially in comparison
to other frameworks, but the API is still likely one of the major hurdles that limit the
industry at large to round-robin and other simple forms of scheduling.

As such, the following chapter continues the research effort by discussing the evaluation
of the heuristic placement implementation in Apache Storm.
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CHAPTER 6
Evaluation

This chapter exhibits the results of the prototype scheduler’s evaluation. Section 6.1
presents the overview of the used testing methodology and architecture. This is followed
by details on the experimental setup in Section 6.2. Section 6.2.1 contains information
on the emulation of the testing network. In Section 6.2.2, the workload applications for
the benchmark are showcased. The test driver and the collection of metrics are discussed
in Section 6.2.3 in more detail. Finally, the results for both the latency estimation and
the placement heuristic are shown and analysed in Section 6.3.

6.1 Evaluation Methodology
The methodology of this thesis to evaluate the operator placement heuristic is primarily
based on the benchmarking methodology of Karimov et al. [KRK+18]. It ensures a
separation between the system under test, Apache Storm in this case, and the benchmark
tool, the test driver, itself. As such, the entire system is being benchmarked, which
includes the ingestion capabilities and mechanisms to handle an overloaded system, such
as back-pressure. The metrics being collected are the assigned resources, the throughput
and the topology’s execution time to process an event, simply referred to as latency.
While the general approach was replicated for the evaluation, some smaller changes were
made to account for the fog computing environment and the stream operator placement
itself.

While fog computing has a large impact on research, there are no readily available
deployments of it yet that could be used for this research. As such, research in
fog computing generally relies on simulations or emulations of fog computing net-
works [HGG+19, HGB21, MGG+17]. Given that this thesis aims to develop a placement
heuristic for a real-world application, Apache Storm, to gain new insights, rather than
relying on simulations, only emulation presents a feasible path for this thesis. At the
same time, the use of emulated environments, rather than rented physical infrastructures,
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helps with the consistency in the collection of results, as, for example, the network is
not shared with other users, which could cause interference. Similarly, an emulated
environment is easier to control for variables and reproduce in comparison to a real-world
setup. Therefore, a fog network is being emulated as described in Section 6.2.1.

To test the general applicability of the operator placement, multiple topologies are used
for the benchmark. Some edge cases have been manually defined, but most are randomly
generated, which is a common approach to test operator placement heuristics:

• Yanif and Uğur primarily used binary trees with simulated selectivity [Ac04].

• Lambert et al. generated linear applications of varying sizes where the selectivity
of an operator could either triple the date or reduce it to a third [LGI20].

• Nardelli et al. evaluated three types of structures: linear applications, a diamond
pattern and replicated, where two intermediary layers of operators exist, with the
first one being twice the size of the following one [NCGP19].

• Rizou et al. generated graphs with six or twelve operators. Each operator has two or
three successors and is configured with a selectivity between zero and one [RDR10].

• Thoma et al. used random topologies with 40, 100 or a varying amount of operators
with five potential workload levels [TLL14].

• Veith et al. evaluated four manually defined edge cases with eleven or fewer operators
and two random topologies with ten or 25 operators. The CPU cost, memory usage,
selectivity and data compression of operators were simulated [VdAL18].

The random generation and all tested topologies are presented in Section 6.2.2. The
generation of the topologies uses an iteratively growing approach, where edges are
replaced with certain patterns until the desired size has been reached. The operators in
the topology emulate a workload by simulating characteristics such as their CPU cost,
memory usage, selectivity and bandwidth consumption.

Section 6.2.3 explains how the experimental runs are executed in detail. For the static
operator placement heuristics already in Apache Storm, the number of supervisors to be
utilised can be simply configured when the topology is submitted to the cluster. With the
adaptive heuristics presented in this thesis, this is more complex. A constant input rate
of events is created to allow the heuristics to adjust to that load and thereby indirectly
configure the number of workers to utilise. The adaptive heuristics are then disabled
when any measurement takes place. First, this is done to prevent the heuristic from
adjusting to the changed load during throughput testing, thereby allowing the current
placement to be evaluated. Secondly, as discussed in Section 4.4.3, while Apache Storm
does allow for adaptive placements, they cause large interruptions of the service in the
range of seconds. Therefore, it is ensured that any topology is fully deployed and capable
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of processing events before any measurements are taken. Each experimental run is also
repeated ten times.

Following this overview of the evaluation methodology, the following section documents
the experimental setup in detail.

6.2 Experimental Setup
This section aims to introduce the emulated network, workload topologies and the test
driver in detail.

6.2.1 Network Emulation

Mininet is a network emulator to create virtual networks executing actual router, switching
and application logic purely based on software. Mininet allows defining topologies of
hosts interconnected by network links, switches and routers. These network links are
highly configurable to be able to recreate realistic networks. For example, network links
can be defined with restrictions such as their latency, bandwidth or packet loss. Similarly,
the switches and routers can also be modified, which has led to the large-scale usage of
Mininet for the research of SDN [HHJ+12].

For this thesis, Mininet was not used, but instead, Containernet. Containernet is an
extension of Mininet, which allows using Docker containers as hosts in the topology. While
this does not provide particularly new functionality, as Mininet already allows for the
execution of applications, it does provide some advantages for this thesis. First off, Docker
containers allow to preconfigure and -build a host by defining the well-known Dockerfiles,
rather than the more manual setup for Mininet [PKvR16]. Furthermore, Docker containers
are readily available for most software, thereby simplifying or even eliminating the setup
and configuration of all applications involved. Simplifying the setup of the evaluation
environment was, therefore, the main driver for selecting Containernet over Mininet. In
particular, its simple setup and extensive documentation, including smaller examples,
are noteworthy. Although, in some cases, there are currently discrepancies between the
documentation and the actual application. Unfortunately, Containernet is a much less
mature software than Mininet, which makes it a lot easier to run into various solvable
issues.

Networks in Mininet and Containernet can be designed in three different ways and
represent real-world applications. Hosts can all be directly connected to each other,
which is uncommonly seen in real-world situations because of the difficulty of managing
the wiring, even with only a few hosts. The hosts are, therefore, usually connected to
interconnected switches, which can then route data to the correct destination. Because of
administrative purposes, routers are often used, which allow for the creation of multiple
networks, subnetworks, while still allowing for data exchanges between hosts of different
subnetworks. Additionally, they allow for network topologies containing cycles.
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Mininet and Containernet already provide network links and switches for the creation
of virtual networks. Routers can, in the simplest case, be set up as a Linux host with
IP-Forwarding enabled in the network stack [HHJ+12]. This works well for immediate
and therefore known neighbours in the network topology, but for more distanced packet
receivers, either default routes have to be defined, or the distanced host has to be added
to the routing table. Manually defining a static routing table for every router is a tedious
and error-prone task, even in smaller networks. To simplify the setup and avoid errors, a
router which implements dynamic routing protocols can therefore be used.

Quagga is a software suite supporting various dynamic routing protocols and can be used
as a router by deploying it in a Docker container [Pau18]. Dynamic routing protocols
are used to exchange information in the routing table with other routers. As such, it is
enough to define the immediate neighbours of a router and this information will be shared
with other routers, while also receiving information about more distant routes [JL14].
The main benefit of using routers instead of switches in the context of such an experiment
would, therefore, only be the ability to create network topologies with cycles and not the
administrative features or benefits. As such, simpler-to-set-up routing protocols like RIP
or OSPF are preferable over more complicated ones like BGP if routers are used [Pau18].

With the different ways of designing the network topologies, it raises the question of
what fog networks they might represent. Switch-based networks are used for smaller to
medium-sized networks, such as a single factory or office building which could have a
private deployment of a cloud or fog. Routers are used for larger networks and, thereby,
would best represent community-based, public or hybrid deployments, such as city-wide
installations to monitor traffic.

Switch-based network topologies have been selected for this thesis, with the consideration
that the existence of cycles in network topologies does not significantly affect the involved
latencies and evaluation. While more direct paths between certain hosts would reduce
their latencies, this does not change the fact that some hosts will still have smaller
or larger latencies to each other and should therefore be considered during operator
placement. Similarly, because the network and resources are emulated and not simulated,
resource constraints already prevent experimentation on large-scale networks where
routers would be used. At the same time, switch-based networks are a lot simpler to
set up and barely require any configuration. In contrast, applications may need to be
reconfigured if routers and multiple networks were to be used, because, for example,
many applications reject connections from hosts outside of the current subnetwork by
default. While in principle the existence of cycles in the network topology does not create
large differences, it does allow for multiple paths and, therefore, avoidance of bottlenecks
in the network. The placement heuristic does not specifically consider the pathing in
the network and, therefore, potential bottlenecks, which should be a more significant
problem in switch-based networks, because no alternative paths exist. In the end, both
switch- and router-based networks are potential deployments of the fog with various use
cases, but only a switch-based network is being evaluated. This likely correlates with
private, community or hybrid deployments of fog computing, as discussed in Section 2.4.
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Figure 6.1: Emulated network topology for the evaluation.

These differences, in turn, mean that any collected results may not be fully representative
of large router-based networks. While there are, of course, still differences, the insights
gained should largely transfer between the types of networks.

In Figure 6.1, the emulated network topology is shown. It consists of w1, ..., w11, which
are the Apache Storm supervisors. Additionally, the symbol other services refers to all
other necessary services as discussed for the architecture in Section 5.1, such as Nimbus,
Zookeeper or Redis. The resource limitations of the worker’s containers are shown in
Table 6.1 and the other services have not been limited, because their actual consumption
is negligible and easily covered by leftover resources. Furthermore, because the other
services are not directly involved in the processing of data, they do not affect metrics such
as throughput or latency. The CPU capacity of many of the supervisors is intentionally
small to model IoT devices with lower computational performance because they are being
considered to be used in fog computing environments, which is discussed in Section 2.4.
At the same time, the network provides the challenge of heterogeneous resources in which
the largest one is five times more capable than the smallest ones. The specific values
have been decided based on the hardware limitation of 8 available logical cores. As
such, if all supervisors are fully utilised, there are still 1.3 logical cores of capacity for
other services and the operating system. This is primarily to avoid an overutilisation
of the real-world resources and has, in practice, never been observed. The lower bound
of memory limitations has been based on the default memory configuration of Apache
Storm for workers. While smaller limitations were still functional, the limit could not be
set too low because otherwise, the default scheduler would often create placements that
would fail to execute. Because of this, the memory limitations are far less significant in
this evaluation than the CPU capacities. This should not distort the results, because the
default scheduler of Apache Storm does not consider memory limitations, which indicates
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Table 6.1: The configuration of the resource constraints for the Docker containers of the
respective supervisors.

Supervisors CPU Memory
w1 1.5 logical cores 2048MB
w2, w6, w7 1 logical core 1024MB
w3, w4, w5, w8, w9, w10, w11 0.3 logical cores 768MB

that they are not considered a common problem in real-world environments. The smaller
resource provisions have also been chosen to be able to emulate a larger network with
only 16GB of memory, as otherwise, the placement problem would be trivial with only a
few hosts.

The latency between network links is based on other available work, because concrete
data on fog network performance capabilities does not seem to be available. Emulators for
fog computing generally use latencies in the single-digit ms range for individual network
links as examples for their evaluations [HGG+19, HGB21, MGG+17]. A study of existing
cloud and edge services has found that edge servers exist within ten milliseconds for 55%
of users. Additionally, for nearly half of all users accessing a cloud service takes less
than ten milliseconds more than an edge server [CAG20]. Based on these considerations,
link latencies in the low single-digit millisecond range were selected, and w1, which
represents a more powerful instance, like potentially a cloud or a better server, has a
seven millisecond link latency to the central switch.

To ensure that these latencies are not included in the measured latency by the test
driver, a second emulated test network exists. In this second network, no latencies are
simulated and it is only used to facilitate the services of the test driver and the test
driver’s connection to the supervisors. As such, the test driver measures latencies that
are respective to it running on the same machine as the data source or sink and does not
include additional network latency between them.

For the evaluation of the latency estimation component, the network has been extended
by adding two switches to each of the outer switches and attaching four hosts to each
switch. This results in a tree-shaped network with ten switches and 40 hosts.

The network emulation and benchmark were executed on an Intel i7-4770k with 3.5Ghz,
four cores and eight threads. The memory consisted of 16GB DDR3 with 1600MHz.
Ubuntu 20.04.4 LTS was used as the operating system and version 2.4.0 of Apache Storm
was evaluated. Docker version 20.10.16 and Mininet version 2.3.0 emulated the network
and hosts. A Containernet installation using the version from the 21st of March 2022
was used and because the emulated network does not rely on routers there was no need
to install Quagga.

The following section starts with the discussion on how the workload is being emulated.
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6.2.2 Test Data and Application
Twelve different topologies are used for the evaluation and are listed in Table 6.2 for
an overview. The complete configuration for each operator of the topologies can be
found in the appendix. The topologies consist of three manually defined topologies to
test edge cases, seven randomly generated topologies to evaluate the general cases and
two additional random topologies that contain a cycle to also cover this special case.
Each of the topologies has only a single source and sink operation to allow for an easier
comparison during the benchmarking, as otherwise, potentially multiple input and output
rates would have to be considered for each topology.

Table 6.2: Overview of the main properties of the topologies being tested. The operations
and operators include the data source and sink in their count.

Topology Randomly Generated Contains a Cycle Operations Operators
T-M1 ✗ ✗ 6 6
T-M2 ✗ ✗ 3 12
T-M3 ✗ ✗ 3 3
T-R1 ✓ ✗ 16 30
T-R2 ✓ ✗ 7 12
T-R3 ✓ ✗ 12 22
T-R4 ✓ ✗ 15 28
T-R5 ✓ ✗ 11 20
T-R6 ✓ ✗ 11 20
T-R7 ✓ ✗ 22 42
T-R8 ✓ ✓ 8 14
T-R9 ✓ ✓ 10 18

Three basic edge cases have been considered for the manually defined topologies, which
are shown in Figure 6.2. The topology M1 is merely a sequence of operations. M2 is a
single operation for which ten instances exist and thereby tests a fan out of data and the
load balancing of the individual instances. M3 represents the minimal possible topology
with a single operation as a workload with only one instance.

For the random topologies Java’s pseudorandom generator Random has been initialised
with a seed of 3141592653589793238, which are the first 19 digits of π and the maximum
that fits into a long. Before using the random number generator initialised like this, an
additional (n − 1) ∗ 1000 random numbers are being generated for the nth topology to
ensure a different random state for each one.

The first step is to select a random operation count between three and 24 with a discrete
uniform distribution. The DAG generation starts with a single source and sink operation
connected by an edge. Afterwards, one of the edges is randomly selected and either one
operation or two, in the case of the diamond pattern, are inserted and replace the original
edge, as shown in Figure 6.3. The single operation insertion is generated with a 60%

99



6. Evaluation

1 2Source Sink3 4

(a) T-M1’s operations

Source Sink
10

1⋮
(b) T-M2’s operators

1Source Sink

(c) T-M3’s operations

Figure 6.2: Visualisations of manually defined topologies’ operations or its instances in
the special case of T-M2.
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Figure 6.3: Iterative random edge replacement step to generate the test load topologies.

probability and the diamond pattern with a 40% probability. This is mostly because
equal probabilities tended to create too wide graphs. Additionally, Apache Storm sends
emitted events to all following operations and, as such, a split is always a duplication
of the output rate. The decision was also made with the selectivity of the individual
operations in mind. This was balanced to ensure that applications are being generated
where some output overall more and others fewer events than they receive as input, to
represent both kinds in the evaluation. It also has to be considered with the selectivity
of the individual operations to ensure that applications which output more and fewer
events than they receive as input are being generated. The topology is then iteratively
grown until it reaches the exact operation count. The resulting DAGs of the topologies’
operations can then be seen in Figures 6.4 and 6.5.

To generate the cyclic topologies, the same random generation is used, but an additional
edge is added afterwards to create the cycle. Additionally, only between five and 19
operations are being generated to account for the increased workload in a cyclic topology.
First, a random node which is neither the sink, the spout nor has the spout as a
predecessor is selected as the start of the edge. For this node, the set of all predecessors,
excluding the spout, is iteratively collected. A random node in this set is then selected
as the end for the new cyclic edge. This edge is then inserted into the DAG, thereby
creating a cycle. The two resulting cyclic topologies are shown in Figure 6.6.

Afterwards, individual attributes, such as their CPU and memory load, are assigned to
each operation and two instances are created for each one that is neither the source nor
the sink. For the manually defined topologies, these have also been manually defined.
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Figure 6.4: Visualisations of the randomly generated topologies’ operations.

As a workload, the generation of the nth random number using the Random number
generator is used. This number is then also the output of the operators. n is generated
using a normal distribution with a mean of 90 and a standard deviation of 75 and a
minimum of one, finally, it is also scaled by 25. The intention was to create some very
cheap operations, like, for example, some basic filtering conditions, and more expensive
ones. The generation parameters were tuned to create both feasible and varied operations
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Figure 6.6: Visualisations of the randomly generated cyclic topologies’ operations.

on the hardware in use.

Selectivity uses a normal distribution with a mean of 0.9 and a standard deviation of 0.3
with a minimum of 0.3. The main idea is to create a selectivity around one, but biased
to smaller numbers to equalise the output duplication of Apache Storm when a diamond
pattern is being created. The memory requirement of an operator is twice the amount
necessary to keep a random set of additional characters in memory, plus an additional
ten megabytes are requested for the actual execution of any logic or buffering of events.
The amount of characters is defined by the absolute value of a normal distribution with
a mean of ten and a standard deviation of 12.5 and scaled by 1024 ∗ 1024 to create a
value in the range of megabytes. The memory requirements mostly exist to make the
placement more challenging, but it also can not be too difficult to fulfil because Storm’s
default scheduler is not aware of heterogeneous resources and requirements and, as such,
would often place topologies in ways they could not actually execute. The final parameter
is additional bandwidth waste, which is the length of a sequence of characters that is
appended to any output of the operator. This is to emulate the data being transformed
by operators like in real-world topologies, where they can have different data formats
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and data sizes, which affects the bandwidth usage. It is 20 characters plus the absolute
value of a random sample of a normal distribution with a standard deviation of 100.

The same operators are used for the cyclic and non-cyclic topologies, although one small
adjustment was made. In a cyclic topology, each event also contains a cycle count.
Whenever it is sent along the cyclic edge, this count is increased by one. Once an event
has been sent three times across the cyclic edge, it will be removed the next time it is
sent across the cyclic edge. This is to avoid potentially infinitely cycling events which, as
discussed in Section 5.2, would never be fully acknowledged and get replayed after a
timeout because Storm would consider it to have failed its processing. In addition to the
operator’s output with the bandwidth waste and the cycle count in a cyclic topology,
a timestamp of the original input data creation of the test driver is included to allow
tracking of the application’s latency. The test driver is discussed in the following section.

6.2.3 Test Driver
The test driver acts as the data generator for the stream processing application. Each
input event that is being generated for the application only contains the current timestamp.
During the processing within the topology, this timestamp is always copied and, as such,
contained in the output without modification. When the test driver receives an output
tuple, it compares the timestamp to the current time to compute the latency. Additionally,
it computes and records metrics such as the throughput, the current computational
resource utilisation using Storm UI’s REST API and the information on the scheduling
process from Redis.

The test driver is structured into four threads, a data generator, a thread each to send
and receive events from the stream processing application via sockets and, finally, one to
aggregate and output the metrics. It has been benchmarked to ensure that it is capable
of handling a significantly larger throughput than is experienced in any of the actual
experiments. Additionally, it has been verified that it does not significantly impact the
measured latency. During development, it has been verified that for small topologies,
like T-M3, the minimum latency measured is at or less than one millisecond, but such a
performance is only achievable if the entire topology is co-located on the same host. The
methodology to measure the latency, which does include the transmission to and from
the stream processing application and the processing within the test driver, has therefore
been shown to be precise and introduces only a negligible amount of latency compared
to the actual application and placement.

The methodology by Karimov et al. utilised sustainable throughput as a metric. The
main idea is that the throughput is sustainable if the application can process the data at
the given rate and, as such, the latency does not grow indefinitely, because events have
to queue up to be processed. The maximum sustainable throughput is then simply the
highest input rate that is still sustainable. Karimov et al. used the idea of overloading
a topology with a too-high input rate and decreasing it until the latency stabilised to
find the maximum sustainable throughput [KRK+18]. Lambert et al. instead went the
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opposite way of increasing the input rate until the output does not scale linearly with it
anymore [LGI20]. The maximum sustainable throughput effectively describes the highest
possible throughput at which the service can offer consistently low latency and, as such,
is highly relevant when optimising for the latency.
In practice, there were difficulties in accurately and reproducibly measuring the maximum
sustainable throughput. Both methodologies rely on accepting some margin of error in
their acceptance of what can be identified as sustainable. This is particularly problematic
with the upscaling methodology of Lambert et al., as it was observed that output rates
could more than double in comparison to the previous second at identical input rates.
While the methodology of Karimov et al. can avoid this by relying on latency and thereby
being more consistent, the actual stream processing application is being overloaded with
events queued at every bottleneck. As such, the application being tested has overall
more potential to see bursts of throughput and is, therefore, less consistent with its
throughput, which can then affect the measured latency. Additionally, the accuracy with
which the metric can be measured is directly related to how slowly the input is being
adjusted. Overall this means that while the maximum sustainable throughput can be
measured, the actual metric has a high level of variance and can sometimes be inaccurate
because the process of measuring it has the potential for errors itself. This also resulted
in difficulties in reproducing measurements within the same experiment. The accuracy
can be improved by slowing the measurement process, but it also significantly increases
the time and, therefore, the cost needed to run a single experiment.
In conclusion, the simpler measurement of the maximum throughput based on the output
rate was chosen as the primary metric. Sustainable throughput is still being considered
in the evaluation, but with the caveat that its assessment is less accurate, because of a
relatively quick ramp-up in the input rate. To measure both metrics, the input rate is
increased until the application is overloaded, at which point the maximum throughput
is measured. For the sustainable throughput, the linear upscaling is considered to be
violated if the average latency exceeds the minimum observed average latency by 100ms or
more, resulting in the previous input rate being considered as the maximum sustainable
one. To account for the large variance in the output rate, the median of the maximum
output rates is measured over 20 seconds, while the application is overloaded, which is
referred to as the throughput of the application for this evaluation. An application is
considered as being overloaded if the minimum latency measured is above a threshold.
For this evaluation, 300ms was empirically selected as a suitable threshold.
Across the experiments, there was not a significant difference detected between the
relative performance of schedulers when comparing the maximum output rate and the
median maximum output rate. In other words, none of the schedulers was more effective
in one or the other metric but instead achieved similar relative performances. As such,
any observation made should apply to both metrics similarly. Still, the median output
rate provided more consistent measurements and is therefore used as the definition for
throughput considerations in this evaluation.
A single experimental run is executed in stages. This is done for two reasons. First, an
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overloaded topology results in infinitely growing latency, which is why the maximum
throughput and latency measurements are not performed in parallel. Secondly, the
adaptive online scheduling approaches implemented in this thesis need time to adapt
the placement to a certain level of work being performed. As such, any measurement
is preceded by a constant rate of input events to allow for potential adjustments of
placements. The input rates, therefore, indirectly decide how many computational
resources should be utilised in the placement. As such, they were set based on observations
in the specific experimental environment and the performance of each topology. For
the static approaches which already exist in Apache Storm, the maximum and intended
number of workers to utilise is directly configured at the submission of the topology.
An experiment, therefore, primarily consists of a constant throughput rate, followed by a
latency measurement and then a throughput measurement. To measure the latency, it is
enough to ensure that the application has processed all events and then supplying a low
constant rate of input events. With Storm’s existing static schedulers, this process is
performed once and different scales are investigated by increasing the worker number
at topology submission and the resource requests for the operators. To evaluate the
adaptive schedulers, this process is repeated three times, specifically once with a low
constant input rate, followed by a larger one to test the scale-out behaviour and, finally,
the initial input rate again to test the scale-in.
The dynamic schedulers are given two minutes to adjust the placement with each constant
input rate, except during the scale-out phase, as a longer ten-minute time period is
used there to also test the stability of the placements. The two-minute period was
chosen in part because the test driver slowly adjusts to the intended throughput level.
Additionally, metrics at the given throughput level have to be collected and propagated
to the scheduler and then the new placement has to be executed by Storm. Adjusting a
placement with Storm is not a fast process and was observed to need around at least 20
seconds where the service is being interrupted for a majority of the time. 30 seconds of
effective downtime and even much longer ones are very common and mostly independent
of the actual amount of changes made.
As such, it is critical to ensure that Storm has finished executing a placement modification
and the application is fully functional again before measuring its metrics. This is done
by adjusting the input rate and waiting for the output rate to match because Storm does
not directly provide information about ongoing topology changes. Repeating a pattern
of providing no input followed by some input twice ensures that the application is not
overloaded, has started or finished any current topology change and all operators are
operational again. Similarly, the test driver waits for the application to have processed
all events after it has measured the throughput or at the start up to ensure that all
queued-up events have been processed before the next constant input rate stage is started.
Additionally, the adaptive placement heuristics are disabled outside of the simulation of
a constant input rate.
Finally, for topologies T-R8 and T-R9, only their latency is measured and not the
throughput. This is because they are cyclic and a throughput measurement can trigger
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the back-pressure mechanism of Apache Storm. In a cyclic topology, the mechanism can
lead to a deadlock, because an entire cycle of operators can detect an overload and stop
processing data until their successor notifies them that it can accept data again. There
seems to be no option to effectively disable the mechanism to avoid this deadlock and,
as such, collecting throughput measurements is problematic. Of course, as discussed
previously, there is no indication that cyclic topologies are being supported and recent
Storm versions even warn about detecting a cycle at the time of submission. As such, the
cyclic topologies are mostly a curiosity and not an essential part of this evaluation. With
a full understanding of the experimental setup, the following section presents the results.

6.3 Experimental Results
The evaluation is split into two parts. First, the latency estimation is discussed and then
the placement heuristics.

6.3.1 Latency Estimation Evaluation
For the latency estimation, a slightly larger network with 40 hosts and ten switches was
used, as discussed in Section 6.2.1. The larger network could be used because all the
other stream-related services were not needed and thereby freed up some computational
resources. The estimations are compared to the mean of 100 ping measurements that
have each been collected from each host to all others in both directions.

For the comparison, the mean absolute error, mean squared error and mean relative error
are used. If xi represents the measurement and yi the prediction, then mean absolute error
is defined as EMAE = 1

n
n
i=1 |xi−yi|, the mean squared error as EMSE = 1

n
n
i=1(xi−yi)2

and the mean relative error as EMARE = 1
n

n
i=1

|xi−yi|
|xi| [Bot19].

The evaluation of the latency estimation primarily aims to record the observed perfor-
mance because it is used as an input for the placement heuristic, which is the focus of
the thesis. In Section 4.5, some possible variations have been discussed, primarily the
selections of peers and the linear or log-based error and force calculations. These are
compared to each other and an implementation of the simple Vivaldi algorithm using a
constant δ, because of the large similarities of the approaches [DCKM04]. The following
sections showcase direct comparisons of the selected design variations.

Error and Force Calculation

First off, Figure 6.7 showcases how the linear error calculation converges a lot faster
and with a lower error overall when compared to the log-based forces. In addition to
performing worse, the log-based forces also aim to minimise the relative error. This
results in an increased mean absolute error to the closest peers, as Figure 6.8 shows,
which is particularly undesirable for the application in this thesis. Interestingly, the
linear error calculations also outperform the log-based ones when considering the relative
error. As a result, it is very clear that the linear calculation is preferable, although the
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Figure 6.7: Comparison of the mean squared and mean absolute latency error across
time for the linear and log-based error and force calculations.

log-based calculations provide one advantage, which is being a lot more stable in the
estimations.

Peer Selection

The second major variant to compare is the selection of peers. This could happen
completely randomly or it could prefer nearby peers in an attempt to reduce the local
error, as these are the peers most likely to interact during stream processing when
optimising for latency. As one would expect, the strategy to always reuse the three closest
peers results in a general increase in the mean error, which is shown in Figure 6.9. The
actual difference is very minor and only observable towards the end of the experiment.
Over the last ten minutes of the experiment, preferring nearby peers results in a mean
error of 4.08ms, while a fully random peer selection has a mean error of 3.62ms.

Preferring nearby peers results in a slightly reduced standard deviation of 0.1993 compared
to 0.2 for the mean error values. This is because reusing the nearby peers results in more
stable position estimations, which is likely also the cause of the slightly slower reduction
of the error during start up. The comparison of the absolute and squared error metrics
also highlights that the estimation errors are relatively even spread and not dominated
by few estimates with particularly large errors.

Figure 6.10 shows the expected result that the latency estimation is improved for nearby
peers and, as such, has smaller local errors when they are regularly preferred as peers.
The actual difference in the metrics is mostly noticeable because the closest peers cause
above-average errors with a random peer selection. In contrast, with the nearby peer
selection, the estimation errors are similar to the random peer selection for the other
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Figure 6.8: Mean absolute and mean relative errors of the estimations to the nth closest
host ranked by their measured latency after 3000 seconds of runtime.
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Figure 6.9: Comparison of the mean squared and mean absolute latency error across
time for a completely random or nearby peer preferring selection.
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Figure 6.10: Mean absolute and mean relative errors of the estimations to the nth closest
host ranked by their measured latency after 3000 seconds of runtime.

peers, but large divergences for some estimations are more common.

While preferring nearby peers does accomplish the intended trade-off of local and global
estimation errors, the mechanism to accomplish this is both very simplistic and an extreme
case. Always reusing the three closest peers does lead to significant error reductions for
these peers, which, interestingly, are also the ranks with the highest mean error for a fully
random selection. An approach that does not use a specific number of peers constantly
but, for example, has a set of nearby peers from which three are being picked every
round is likely to generalise better and potentially increases global estimation errors
less. As such, while the value of selecting some nearby peers could be showcased, the
current algorithm or implementation is less refined and likely problematic in or not tuned
for more general cases. For this reason, a fully random peer selection has been used
for the operator placement heuristic evaluation rather than the, in this specific case,
better-performing nearby peer selection that was proposed.

Median Filter

The final design decision to validate is the usage of the median filter. Instead of filtering
the data through a median filter and then performing multiple force iterations based
on the median, the ping samples can be used directly for the force calculations. The
simple Vivaldi algorithm does this and, essentially, does a single force calculation for each
peer sample. Considering the previous sections, an implementation with linear forces
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Figure 6.11: Comparison of the mean squared and mean absolute latency errors across
time between using a media filter and Vivaldi applying the force calculation directly with
each ping sample.

is, therefore, identical to the simple Vivaldi algorithm, except for how the samples are
utilised. The Vivaldi algorithm only specifies how the ping samples are utilised and not
which peers to choose. As such, the same random peer selection strategy is chosen. The
evaluation of Vivaldi has shown that at least five per cent of peers should be distant to
ensure lower estimation errors. The special case of half of the peers being distant peers
is stated to lead to fast convergence, which is also the configuration of the proposed
solution, which was based on empirical observations during the development [DCKM04].

In Figure 6.11, their performance is compared. Considering that the approaches are nearly
identical, the large difference in the performance is slightly surprising but easy to explain.
The median filter protects against outliers in the ping measurement. With Vivaldi, a
single outlier sample will immediately result in a large error and, therefore, movement
force being applied. This mistaken movement can then require multiple samples to undo
and achieve a similarly accurate position again.

This is particularly problematic in emulated networks with Mininet. During development,
it has been observed that while Mininet does accomplish a high accuracy when emulating
latency, there are occasional outliers. The exact cause could not be identified and various
configurations have been attempted to eliminate the issue. Additionally, the occurrence
is not caused by some sort of resource overload, as it could reliably be observed in
minimal networks at near idle. Overall, the problem has never been observed during the
stream processing evaluation, but instead only with the latency estimation. As such, the
hypothesis for this problem is related to a network link being idle and, in rare cases, the
actual transfers then being delayed, potentially because of scheduling, unloaded caches
or some wakeup procedure. As such, the emulated network causes rare outlier ping
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Figure 6.12: Percentage of estimations within certain error ranges across time.

measurements, which the Vivaldi algorithm does not handle well.

This could be considered as Mininet not being suited for such an emulation task, but
this is likely an issue with most available network emulators for the fog. Emufog is
based on MaxiNet, which is an extension of Mininet, and, as such, likely has the same
issue [MGG+17]. Mockfog and Mockfog2 use the Linux Traffic Control utility tc to
emulate the network delay, which is also the case in Mininet and likely additional network
emulators [HGG+19, HGB21, HHJ+12]. Therefore, they probably share this issue, as it
has only been observed in Mininet when tc is utilised with a configured delay.

One might assume that these outliers also significantly affect the mean measurement of
the pings that are used as the ground truth in this evaluation. Because of their rarity
and the large sample size, the impact on the mean is very minimal. As a result, the
mean measurement is still primarily defined by the high consistency at which Mininet
can emulate the latency. For most network links, the difference between the minimum
and mean measured latency is less than 200µs. Even in individual measurements where
outliers have been observed, the mean is still only offset by less than one millisecond for
measured latencies around 30ms. The difference between the mean to the minimum is so
insignificant that the already presented graphs can not showcase this difference effectively
at their current scales. Therefore, using the mean is still a valid and highly accurate
metric as the ground truth for the evaluation because the skew caused by rare outliers is
negligible.

Figure 6.12 presents the absolute and relative error ranges across time. Just like with
the mean and mean squared error, these slightly improve over time, but the difference is
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Figure 6.13: Percentage of estimations within certain error ranges during start up.

barely noticeable and overshadowed by the variance in the estimations. In other networks,
Vivaldi has been reported to achieve median relative errors of around eleven per cent
depending on the network and configuration [DCKM04]. A similar performance to that
is shown in Figure 6.12 for the proposed solution. As such, the conclusion from this is
that both solutions can have near identical overall performance, but the proposed median
filter reduces the estimation errors in less consistently performing networks, which is, of
course, desirable.

To conclude the evaluation of this component, there are also some general observations
that have been made. The latency estimation tends to underestimate compared to the
mean measurements. This is because the mean measurements, of course, include the
occasional spike in latency, while the estimation, which uses a median filter, is closer
to the actual minimum network latency. Another reason is that the initially random
coordinates are selected in a smaller area than the estimators later position themselves
in. As such, the network slowly expands over time, leading to a reduction in estimation
errors.

The experiment showcases a worst-case scenario in which all estimators join the network
in less than four seconds. As such, most estimators have no or only a few peers as
landmarks to identify their initial position, which results in a mostly random placement.
Figure 6.13 shows how various error ranges across time change during the start up of all
estimators. Because the first estimation rounds occur every four seconds, the estimation
errors can be quickly reduced. After 50 seconds, the estimated positions have mostly
stabilised. This is in part because the estimators have switched to 60-second wait times
between estimation rounds at this point in time, but also because each estimation round
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does not cause significant movements anymore. This can be seen by the far less significant
changes after the 100-second mark. The convergence speed is deemed sufficient for
evaluating the stream processing placement heuristic, which restarts the cluster for each
experiment. In practice, the speed of convergence could likely be further improved by
using the local error estimation of both peers during the force calculation, as has been
shown with the adaptive δ step variant of Vivaldi [DCKM04].

Overall, the estimation has similarly low estimation errors even when only estimating
positions in two dimensions rather than with three dimensions, but this is likely only the
case because the network itself is trivial to lay out in a two-dimensional space. With that
said, the actual estimation accuracy is not as important for the placement heuristic as one
might initially believe. During the development and tuning of parameters, it was observed
that even wildly inaccurate estimations were useful for the placement heuristic. As long
as nearby and far hosts could be differentiated with a better than random accuracy, it is
an information gain and, as such, helped with placements.

The following section continues with the evaluation of the placement heuristic.

6.3.2 Placement Heuristic Evaluation
This section compares the performance of the proposed adaptive placement heuristics
to Apache Storm’s default scheduler and the integrated Resource Aware Scheduler,
previously also known as R-Storm [Apa22h, Apa22g, PHH+15]. Both schedulers perform
static operator placements. The default scheduler uses a round robin-scheduler across
a specified amount of worker slots. The Resource Aware Scheduler aims to maximise
resource utilisation by packing operators based on their requirements onto workers with
the most available resources. Additionally, it aims to reduce latency by reducing a
Euclidean distance metric based on a hierarchy of, for example, racks and sub-clusters.
As such, it is not aware of any actual latencies. Unfortunately, as the following evaluation
shows, the default scheduler, with its essentially random placements, does not perform
as well as other solutions. For this reason, the focus of the evaluation is primarily a
comparison between the proposed solutions to each other and their performance to the
Resource Aware Scheduler.

One difficulty in comparing the performance of the Resource Aware Scheduler to others
is that it can be difficult with it to create a variety of placements in the evaluation
environment. This is because it aims to utilise the most capable computational resources,
while the resource requests of an operator are treated as a requirement and the number
of operators to utilise is repurposed as an upper limit. In the heterogeneous evaluation
environment, the most capable resource offers five times more CPU than the least capable
ones. This leads to somewhat of a limitation of the approach. In the current scheduler
implementation, the CPU request of an operator is a requirement to be fulfilled. As such,
it has to be less than the resource it is to be placed on. At the same time, to optimise
the placement for an intended amount of workers, these requests should be maximised, as
otherwise, the scheduler will not spread the operators around but consolidate them on the
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Table 6.3: The table shows the average throughput factor increase over the default
scheduler at the same CPU reservation for each topology and their operator count. If
a direct equivalent does not exist with the Default Scheduler, then linear interpolation
between its closest data points is used. If the CPU usage is outside the Default Scheduler’s
utilisation range, then the next closest value of the Default Scheduler is used. Some
entries, primarily for the Resource Aware Scheduler, have only a single throughput factor
increase because all placements share the same CPU capacity and therefore have a
standard deviation of zero. Additionally, the cyclic topologies T-R8 and T-R9 are not
included, because the throughput has not been measured for them.

Topology Ops Hill-Climbing Ant System Hybrid
Resource
Aware
Scheduler

T-M1 6 3.35 (σ=1.37) 4.10 (σ=0.29) 4.15 (σ=0.18) 3.45 (σ=0.00)
T-M2 12 4.32 (σ=4.08) 2.68 (σ=3.28) 3.19 (σ=2.03) 1.94 (σ=0.00)
T-M3 3 7.24 (σ=2.55) 5.28 (σ=4.36) 8.46 (σ=0.00) 10.44 (σ=0.00)
T-R1 30 1.79 (σ=0.62) 1.70 (σ=0.67) 1.68 (σ=0.64) 1.81 (σ=0.55)
T-R2 12 2.19 (σ=1.03) 2.19 (σ=0.95) 2.08 (σ=0.97) 2.91 (σ=0.00)
T-R3 22 2.04 (σ=0.58) 1.90 (σ=0.50) 2.24 (σ=0.60) 2.37 (σ=0.60)
T-R4 28 2.60 (σ=1.01) 2.07 (σ=1.24) 2.06 (σ=0.59) 1.80 (σ=0.91)
T-R5 20 2.10 (σ=1.02) 1.51 (σ=0.97) 2.15 (σ=0.90) 2.13 (σ=1.30)
T-R6 20 1.80 (σ=0.46) 1.71 (σ=0.71) 1.95 (σ=0.70) 2.09 (σ=0.32)
T-R7 42 2.08 (σ=0.72) 1.75 (σ=0.57) 1.92 (σ=1.00) 1.63 (σ=0.79)

largest resource. This leads to somewhat of a dilemma where the resulting placement has
to be understood and anticipated to correctly set the resource request. Alternatively, a lot
of trial and error has to be used. For this reason, the resource requests of a single operator
were limited to the capabilities of the smallest computational resources to guarantee a
possible placement, rather than repeated attempts to find a placement that fails. This
mostly affects smaller topologies, but in practice, those get consolidated onto a few
computational resources anyway. In the original publication, CPU was only considered
as a soft constraint and allowed to be over-utilised, thereby avoiding this issue [PHH+15].
Additionally, it is the only scheduler that is deterministic. As such, when compared to
the other solutions, its results are based on few but often repeated placements. This
also results in usually lower standard deviations than the other approaches for many of
the reported metrics because the placements and, therefore, resulting measures are more
consistent.

Table 6.3 provides a brief overview of the general throughput that was observed. Because
the Resource Aware Scheduler only creates placements with few specific resource utilisa-
tions, there is often not a placement from other placement heuristics that can be directly
compared. For this reason, the default scheduler is used as a comparison baseline for all
solutions because its random placements result in the highest variety. The main idea
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of the table is to calculate the average throughput of all placements created by one of
the heuristics at a specific resource usage. This average can then be put into relation to
the default scheduler to calculate the factor the throughput has been improved by. If a
direct reference throughput does not exist, then linear interpolation is used or the closest
value if it is outside the range of results. By averaging all these throughput improvement
factors, a rough overview of the performance of a heuristic on a specific topology can
be provided. Of course, a lot of nuances are lost in this transformation, which is why
scatter plots will be used to directly highlight specifics further on in the evaluation.
First off, there is a stark difference between the manually defined topologies and the
randomly generated ones. In general, they are much smaller and, as such, the Resource
Aware Scheduler places them in all configurations on the largest computational resource,
resulting in effectively a single placement. In contrast, the adaptive placement heuristics
are more varied, as they also consider scaling down to a less capable resource. Additionally,
generally larger throughput increases relative to the default scheduler are measured
because all other schedulers optimise for co-location and are aware of the heterogenous
operator requirements and resource capabilities.
When the solutions are compared on the random topologies, then a trend can be seen where
the Resource Aware Scheduler (µ = 2.11) generally outperforms hill-climbing (µ = 2.09),
followed by the hybrid approach (µ = 2.01) and, finally, the ant system (µ = 1.83).
Secondly, of the proposed heuristics, the average standard deviations are overall very
similar, although, for the ant system, it is around 0.03 larger than the averages of the other
proposed solutions indicating slightly more varied placements and performance. Another
observable trend is that the proposed solutions perform better in this comparison on
topologies with more operators, specifically T-R4 and T-R7, and comparable performance
on T-R1 and T-R5. The inverse is true for smaller topologies, where the Resource Aware
Scheduler achieves more significant gains. Particularly on the smaller topologies, the
actual throughput tends to be higher as there are fewer operators competing for resources
with more potential for co-location.
A potential explanation for this is the optimisations of Apache Storm’s ackers, which are
a part of the optional guaranteed message processing mechanism. The proposed solutions
handle them like all the other operators, while the Resource Aware Scheduler and default
scheduler spread them evenly. This can lead to the case with the proposed solutions,
that not all operators are co-located with ackers. In higher throughput situations, this
could then create additional messaging overhead. As such, this oversight may explain
the lower performance in some experiments.
Table 6.4 shows instead a head-to-head comparison of placements where identical amounts
of resources are being allocated. This shows overall a similar pattern with the proposed
solutions performing better on larger topologies, but also highlights that there are some
placements in T-R7 where the Resource Aware Scheduler performed unexpectedly worse,
with even the default scheduler achieving higher throughput. This is discussed in more
detail further on in the chapter when the results of individual topologies are being
analysed. Additionally, it shows a more consistent performance for the ant system and
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Table 6.4: The table shows the average of the average throughput factor increase over
the Resource Aware Scheduler at the same CPU reservation for each topology and
their operator count. Some entries are empty, because no direct equivalent placement
to compare are available. In some cases, only individual CPU reservation throughput
averages are compared and therefore have a standard deviation of zero. Additionally, the
cyclic topologies T-R8 and T-R9 are not included, because the throughput has not been
measured for them.

Topology Ops Hill-Climbing Ant System Hybrid Default
Scheduler

T-M1 6 1.45 (σ=0.00) 1.15 (σ=0.00) 0.29 (σ=0.00)
T-M2 12 0.89 (σ=0.00) 0.73 (σ=0.00)
T-M3 3 0.89 (σ=0.00) 0.10 (σ=0.00)
T-R1 30 0.98 (σ=0.24) 1.08 (σ=0.02) 1.14 (σ=0.00) 0.70 (σ=0.00)
T-R2 12 0.61 (σ=0.00) 0.97 (σ=0.00) 0.89 (σ=0.00) 0.34 (σ=0.00)
T-R3 22 0.94 (σ=0.04) 0.92 (σ=0.11) 0.96 (σ=0.08) 0.42 (σ=0.13)
T-R4 28 1.11 (σ=0.03) 0.84 (σ=0.28) 1.03 (σ=0.32) 0.83 (σ=0.70)
T-R5 20 0.68 (σ=0.14) 0.72 (σ=0.07) 0.95 (σ=0.19) 0.98 (σ=0.89)
T-R6 20 0.87 (σ=0.19) 0.75 (σ=0.23) 0.96 (σ=0.09) 0.42 (σ=0.00)
T-R7 42 2.61 (σ=2.67) 0.96 (σ=0.45) 1.27 (σ=0.46) 2.31 (σ=2.61)

hybrid approach relative to the Resource Aware scheduler’s placements. On average,
hill-climbing (µ = 1.11) and hybrid search (µ = 1.03) manage to outperform the Resource
Aware Scheduler in this comparison and the ant system achieves a lower average relative
performance of 0.89.

If similar comparisons are made with the maximum sustainable throughput, then hybrid
search (µ = 8.46) outperforms the Resource Aware Scheduler (µ = 7.76), followed
by hill-climbing (µ = 7.64) and the ant system (µ = 7.56). In this comparison, the
average standard deviations are particularly high, close to the actual averages for all
solutions, indicating very inconsistent maximum sustainable throughput for the default
scheduler that forms the basis of this comparison. In the head-to-head comparison to
the Resource Aware Scheduler, this throughput ordering repeats, but with much closer
results: hybrid search (µ = 1.01) outperforms the Resource Aware Scheduler followed by
hill-climbing (µ = 0.92) and the ant system (µ = 0.87). For the proposed solutions, the
average standard deviations are between 0.15 and 0.20.

To summarise the considerations on the throughput, hybrid search tends to outperform
the Resource Aware Scheduler on average across the random topologies by one to three
per cent on the median maximum throughput and maximum sustainable throughput.
Hill-climbing performs better on the median max throughput by eleven per cent and
worse on the maximum sustainable throughput by 8 per cent and the ant system has
eleven to 13 per cent less. More generally, the proposed solutions achieve slightly higher
throughput metrics on larger topologies, less on smaller ones and T-R7 is a topology on
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which the Resource Aware Scheduler did not perform well on.
The measured latency performance of the Resource Aware Scheduler to all proposed
solutions was generally very similar across most topologies. In direct comparisons, hill-
climbing achieves a two per cent lower average latency, while hybrid search has a four
per cent increased average latency. Ant system again performs worse with a 15 per cent
increased average latency. The maximum latency is increased by five, seven and 30 per
cent, respectively. In contrast, the minimum latency is reduced by 36, 23 and 22 per
cent. In all the comparisons, the ant system has a higher average standard deviation
between 0.25 and 0.34, while the other proposed solutions are more consistent with
average standard deviations between 0.11 and 0.18.
The difference in minimum and maximum latency behaviour points to similar average
latency behaviour, but with a different prioritisation of the multiple paths of a topology.
This is contradicted by the results of T-R3 and, for example, T-R6, which are highly linear
topologies and still show this pattern. The difference is likely not caused by the latency
component in the scoring function, because it only optimises the maximum network
latency and has a minimal weighting. Additionally, the network latency is overall only a
smaller part of the average or maximum latencies being reported, because of the very
short delays in the network topology and the few workers being utilised. Instead, the
reduction of network overhead by co-locating data-intensive operators is likely the cause.
Processing bottlenecks can also be excluded because of the adaptive placements and the
already low throughput while measuring latencies. As such, this points to communication
overhead or synchronisation costs being the cause. Depending on the fog network, it
might therefore be more impactful to reduce the number of network hops in a path
rather than the accumulated latency or, ideally, a combination of both. Alternatively, the
weighting of the latency scoring function could also be adjusted to increase its importance,
but this may not be desirable because maximising co-location and reducing the number
of workers involved has generally been observed to have a far larger positive impact on
throughput and latency.
The worse performance of the ant system is likely caused by the random order in which
the solution is constructed. This makes the consideration of latency and especially
co-location difficult for which the integrated heuristic could not account sufficiently. More
iterations might have helped because of the memory capabilities of the pheromones, but
this adds cost.
Table 6.5 compares the average runtime in milliseconds to compute a single placement.
The default scheduler, unfortunately, does not report such a statistic, but its runtime is
likely lower than the Resource Aware Scheduler. Overall, the Resource Aware Scheduler
provides by far the lowest runtimes, except on the smallest topologies. This is expected,
because the proposed heuristics perform iterative adjustments and additionally consider
latency and the exchange of data in the placement problem. On most topologies, the
hybrid solution requires the time of hill-climbing in addition to the ant system, which
is also expected because it consists of running both solutions after each other. The ant
system has a higher constant cost, because it has a high minimum iteration count to
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Table 6.5: The table shows the average runtimes of the proposed heuristics in milliseconds.

Topology Ops Hill-Climbing Ant System Hybrid
Resource
Aware
Scheduler

T-M1 6 9 (σ=2.25) 75 (σ=7.88) 78 (σ=4.67) 16 (σ=2.08)
T-M2 12 45 (σ=5.94) 99 (σ=18.35) 130 (σ=19.84) 21 (σ=3.39)
T-M3 3 4 (σ=0.55) 35 (σ=1.82) 38 (σ=2.83) 16 (σ=2.70)
T-R1 30 558 (σ=125.68) 450 (σ=38.86) 841 (σ=31.95) 25 (σ=4.34)
T-R2 12 65 (σ=14.52) 131 (σ=21.14) 197 (σ=26.40) 20 (σ=3.16)
T-R3 22 231 (σ=49.60) 285 (σ=36.29) 534 (σ=60.07) 23 (σ=3.32)
T-R4 28 179 (σ=59.91) 447 (σ=80.54) 717 (σ=80.49) 24 (σ=3.59)
T-R5 20 138 (σ=46.62) 306 (σ=56.16) 428 (σ=32.54) 22 (σ=3.03)
T-R6 20 198 (σ=75.98) 274 (σ=67.17) 472 (σ=40.59) 21 (σ=3.47)
T-R7 42 1029 (σ=28.00) 661 (σ=84.76) 1020 (σ=26.41) 26 (σ=9.38)
T-R8 14 185 (σ=61.83) 377 (σ=41.18) 355 (σ=63.65) 19 (σ=2.60)
T-R9 18 263 (σ=77.06) 408 (σ=125.23) 480 (σ=140.60) 21 (σ=3.00)

counteract the probabilistic solution construction. In contrast, it scales better than the
other proposed solutions, because of the constant amount of ants or solutions being
computed rather than the quadratically growing neighbourhood in hill-climbing. The
pheromone can also focus the search on a smaller search space over time. Only on T-R7
were hill-climbing and the hybrid search limited by the runtime limit defined as one
second, but, as discussed previously, it did not have a particularly noticeable effect on the
quality of the placements. Additionally, the Resource Aware Scheduler uses a similarly
configurable timeout that is defined as 60 seconds by default. As such, this may have
been an overly strict design requirement. But this shows that for increasingly larger
topologies generating the full move neighbourhood for hill-climbing will be a performance
issue and should, in these cases, be replaced by smaller or randomised neighbourhoods.

To get a better understanding, some of the individual results are discussed. Figure 6.14
shows the median maximum throughput for T-R3. It is used to describe the general
behaviour in more detail and representative of the average case. To start with, the
figure can be considered to consist of two major clusters in the scatter plot. The default
scheduler is consistently located near the bottom and forms a cluster of its own. All
other heuristics form a cluster near the centre. Additionally, clusters on the same vertical
line from individual heuristics are recognisable. These are essentially similar or identical
placements and show that even with identical placements, there is a large variance in the
measured performance. They are most notable for the Resource Aware Scheduler, which
only produces a few placement variations, and the default scheduler, which has a line in
the bottom right that is the utilisation of all eleven computational resources.

It can be seen that the round-robin placement of the default scheduler results in relatively
consistent, but worse, performance. A large part of this is that at practically any resource
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Figure 6.14: Scatter plot of the median maximum throughput of individual placements
for all placement heuristics with trend lines for T-R3.

utilisation, co-location of operators is unlikely. Most placements are, therefore, highly
inefficient, but more consistent. The Resource Aware Scheduler shows the contrast of
similarly dense groupings of placements, but ones which largely benefit from co-location
in addition to avoiding resource bottlenecks, because of its awareness of heterogeneity.
While the Resource Aware Scheduler usually does not produce the best performing
placements, they are consistently among the best performing, resulting in its generally
above-average performance. The most varied performance is showcased by the adaptive
heuristics, primarily the current resource utilisation introduces a lot of variance in the
placements.

The least resource-consuming placements outside of the default scheduler are generally
created by hill-climbing and, in turn, the hybrid approach. In contrast, the ant system
that does not perform such a greedy search is far more spread in both its performance
and resource utilisation.

In Figure 6.15, the minimum measured latency is shown for the same topology. It is,
again, straightforward to tell that the default scheduler performs significantly worse. This
is in part because most operators are not co-located and therefore use more network
links. Another reason is that the default scheduler can struggle on some topologies with
achieving a minimum throughput. The figure shows many similarities to the throughput.

Now that the general case is well understood, some special cases will be discussed. In
T-M3, only three operators are in the topology, as such when accounting for co-locality
their placements are essentially identical. Still, the Resource Aware Scheduler achieves
higher throughput. The reason for this is likely the additional metrics consumer that
has to be deployed with the proposed solutions to collect the topologies’ metrics and
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Figure 6.15: Scatter plot of the minimum latency of individual placements for the
placement heuristics with trend lines for T-R3.
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Figure 6.16: Scatter plot of the median maximum throughput of individual placements
for all placement heuristics with trend lines for T-R7.

indirectly forward them to the placement heuristic. While the actual workload should be
minor, it is still an extra operator compared to the static heuristics, where Storm has not
been configured to include the extra operator in the topologies. The actual performance
difference seems to be around an eleven per cent throughput loss. In the larger topologies,
this difference is less noticeable and is mostly lost in the high variance the metric usually
has.

TR-7 is interesting because as the heuristics scale out, the Resource Aware Schedulers
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throughput tends to drop, as can be seen in Figure 6.16. Unfortunately, no exceptional
cause could be identified with certainty as the source of this behaviour. Similar throughput
reductions, but far less significant, occur for the Resource Aware Scheduler on T-R4,
T-R5 and potentially T-R1 as well. They occur at the point when the smaller resources
are starting to be utilised, which could indicate a problem with communication overhead,
but at the same time, this is not observed on T-R6. In contrast, of the proposed solutions,
only the ant system has consistent reductions in the throughput as it scales out, but
those are less severe and affect fewer topologies. Another explanation is that these are
the largest topologies and they highlight the limitations of the greedy heuristic used. At
the same time, this could also be a case of misconfiguration, which the adaptive solutions
can avoid.
Finally, concerning the cyclic topologies T-R8 and T-R9, it is difficult to directly compare
them because the placement heuristics operated at different scales. As such, only the
functionality itself could be asserted for all placement heuristics, with the caveat that
Apache Storm can deadlock any processing if a cyclic topology is overloaded, turning
this into a relatively insignificant feature.
The scaling itself performed reasonably well on all topologies by making significant
adjustments within two minutes successfully. The 20-second or longer downtime of the
service would, of course, be a problem in practice, especially because data will queue up
during that time leading to an even more significant overload. In general, the scale-in
performs better than the scale-out. This is in part because all information to estimate the
performance is already available before the placement is changed. The adaptive heuristics
are purely reactive and do not predict how a scale-out will affect other operators. The
only reactive behaviour has the risk of a bottleneck being slowly pushed downstream with
each scale-out and, therefore, only being resolved very slowly. The thresholds regarding
the utilisation of a worker seem to have prevented this issue insofar that no problematic
cases have been noticed.
The stability of a placement mostly depends on the stability of the CPU utilisation of the
operators. While multiple placements have often been necessary to identify the correct
scale, once found, they were usually stable. One of the problems with Apache Storm’s
capacity metric is that it is relatively inaccurate. For example, it is not unusual for
the reported capacity usage to exceed the total capacity by significant margins. This is
because capacity is a partially estimated metric. While the level of accuracy has been
sufficient, this is an area that should be improved for actual usage. For example, the
latency estimations running on each supervisor could additionally report the actual CPU
usage, which could then be used to scale the reported capacity usage estimations of
operators to more accurate scales.
A slight oddity was noticed with the Resource Aware Scheduler. As discussed in Sec-
tion 4.6.1, there is no scheduling benefit to utilising multiple slots on a single worker. In
fact, this can even be detrimental to the performance because it can introduce overhead
in addition to needlessly blocking an extra slot. In the topologies T-R1, T-R3, T-R4,
T-R7 and T-R9, during some of the deployments, the Resource Aware Scheduler utilised
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one extra slot. The reason could not be identified and seems unintended. Interestingly,
this does not occur deterministically across similarly configured topologies, but seemingly
randomly, with an increased tendency with certain topologies. For example, an extra
slot was utilised in all configurations of T-R1, but with T-R9 only one run used the
correct slot count with three workers, while two runs did not with six workers. All other
configurations for T-R9 produced slots counts which matched the supervisor counts as
expected. As the evaluation shows, this is not a significant issue, but overall it still seems
to be unintended. The extra slot utilisation was also only observed with the Resource
Aware Scheduler and, as such, is specific to it and likely not an issue in Apache Storm
itself.

To summarise the evaluation, the benefits and feasibility of an adaptive placement heuristic
based on estimations of latency have been successfully shown. In all metrics, except for
the runtime, the hybrid approach or hill-climbing have been able to perform close to or
better than the Resource Aware Scheduler and this without the risk of misconfiguration.
While the Resource Aware Scheduler generally achieves better throughput, it is not able
to do so as consistently. If these cases are considered, then hill-climbing achieves eleven
per cent higher maximum throughput, while the hybrid approach has one to three per
cent better maximum sustainable and median maximum throughput. Similarly, average
latency improved by two per cent for hill-climbing and worsened by four per cent for
the hybrid search. The largest differences are the minimum latency, where all proposed
solutions achieved reductions of at least 22 per cent on average, at the cost of increases
to the maximum latency. Hill-climbing has a five per cent larger maximum latency, with
hybrid search at seven per cent.

The performance generalises reasonably well to all tested topologies and no problem-
atic cases could be identified. Both the hill-climbing and hybrid heuristic performed
particularly well, but the hill-climbing seems to be preferable because of a far simpler
implementation that has fewer parameters to tune and offers better runtime performance.
Additionally, while the ant system generally performed worse in most experiments, it does
offer better scalability. Still, many practical limitations and difficulties make creating,
maintaining and deploying such a scheduler for a productive system difficult or unviable,
such as, for example, the extensive downtime when changing a placement.
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CHAPTER 7
Conclusion and Future Work

This section summarises the work of this thesis in Section 7.1 and presents potential
future work and research questions based on this work in Section 7.2.

7.1 Conclusion
Stream processing is a software engineering paradigm that offers low latency and high
scalability and reliability by splitting an application into smaller operators that can
be distributed across computational resources. With the advent of the IoT, the need
to process data continues to grow. Fog computing is a new paradigm that aims to
move computations closer to the sources of data or the devices relying on it and thereby
offer lower latency and reduce the demand on the network caused by long-distance
transmissions. As such, stream processing is highly applicable to the processing of IoT
data and can be deployed in fog computing environments. Ensuring the best performance
with stream processing is therefore of interest, of which a significant part is how the
operators are distributed: the stream processing operator placement problem.

The first steps were a discussion of the necessary background of this thesis, which
also contains the collection of the different ideas, concepts and understandings of fog
computing. Additionally, an extensive survey of the state of the art in the placement of
stream processing operators and related domains was made. This information defined
requirements for a placement heuristic and the assumptions on fog computing this thesis
relies on. Particularly the heterogeneous capabilities of computational resources and
awareness of the capabilities of the network grow in importance with fog computing.
Additionally, the aim to realise an online scheduler to adapt to changing conditions was
defined. Apache Storm was then selected as a suitable modern framework for this thesis,
in part for its easy accessibility of the scheduling API and its usage by previous researchers.
A latency estimation component was designed, Apache Storm’s operator placement model
was simplified and a COP to solve was formulated. The COP is generally applicable
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to stream processing, except for the Apache Storm-specific constraint of only a limited
amount of topologies being allowed to execute on individual computational resources. In
addition to the constraints to avoid exceeding a resource’s capacities, it contains a scoring
function to rate potential placements. The scoring function considers the number of
co-located operators, as this allows for additional optimisations, the number of exchanged
events over the network, to minimise them, the overall usage of computational resources,
to consolidate the usage and allow unused resources to be shut down, the latency and
finally a penalty for excessive utilisation.

For the implementation, a hill-climbing heuristic and an ant system meta-heuristic were
implemented and integrated into Apache Storm, as well as a hybrid approach combining
both solutions. For the edge case of cyclic topologies, a new heuristic to select edges in
cyclic graphs to remove and thereby turn them into a DAG was designed and implemented.
In contrast to the previous heuristics it was based on, it additionally considers the paths
within the topology to minimise the impact of the removed edge on them. It thereby
preserves a more accurate cycle-free representation of the cyclic topology for the use case,
but at the cost of increased computational complexity. It is used to estimate the latency at
the data sinks of a stream processing topology in Apache Storm for cyclic topologies, even
though support for cyclic topologies is not necessarily intended or maintained in Apache
Storm. Both the architecture of the solution and the process of the implementation, as
well as the difficulties with the placement heuristics and the other components, have
been documented.

Additionally, it has been discussed why the gains made in research rarely progress into
production use, but instead, methods such as round-robin or random assignments are
still commonly used, leading to an ever-growing split between research and actual use.
Particularly, a lack of documentation, not easily accessible APIs and the actual difficulty
in implementing a solution have been identified as causes that significantly raise the
complexity more than one would expect for such a task. This forms both a large barrier
of entry and difficulty in verifying the correctness and maintaining implementations in
the long term.

Finally, the implementation was evaluated with benchmarks of manually defined and
randomly generated stream processing topologies on an emulated network. The imple-
mentation was compared against Apache Storm’s default scheduler and the Resource
Aware Scheduler. The Resource Aware Scheduler represents the state of the art with
Apache Storm and is already fully integrated. The default scheduler was significantly
outperformed in any metric, except for the increased computational cost of scheduling.
In comparison to the Resource Aware Scheduler, a much more comparable performance
was achieved with a trade-off that often reduces the minimum latency at the cost of the
maximum latency. Additionally, on larger topologies, a higher average throughput was
measured, but on smaller topologies, the Resource Aware Scheduler generally outperforms
the placements of the proposed solution at similar scales. In general, across the various
topologies and configurations, good performance was achieved more consistently with
the proposed solutions. The capability to adapt placements to the currently observed
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conditions was verified and can reduce resource consumption or increase processing
capabilities when needed. Unfortunately, the solution provides little use in production,
in part due to it being a prototype and because Apache Storm creates significant service
interruptions when a placement changes. This is a known problem that researchers have
previously been able to solve but has not yet been integrated.

Co-location of operators has also been shown to be highly beneficial to optimise in Apache
Storm, and likely other stream processing engines, but may have limited applicability to
topologies where a single computational resource may not be capable of hosting multiple
operators. Co-location is very significant to the optimisation of throughput and can be
used as a cheaper heuristic to minimise latency indirectly in smaller networks. Between
hill-climbing and the ant system, the placement problem, as defined and implemented, is
better suited for hill-climbing. It allowed for cheaper computations in the evaluation and
is more effective at optimising latency and co-location, resulting in improved throughput.
An ant system may be more effective if the order of the solution construction of ant
only considers operators with already placed neighbours, but this would also limit the
exploration of the search space and potentially result in a greater difficulty in escaping
local optima. As such, while the results have been shown to provide various improvements
and a variety of observations, there is still more work left to be done, which the following
section discusses.

7.2 Future Work
The placement problem could be expanded to account for other properties that may
become more relevant with fog computing, such as the mobility of devices, their battery
availability or the availability of the device and reliability of the stream processing
application. Additionally, the network usage could be better modelled as Apache Storm
does allow to provide custom definitions to which successor operators the data should
be sent, which is an edge case that was not considered. In general, new metrics or
constraints can be easily added, because of the definition of the problem as a COP. For
example, enactment costs or the operating costs of the computational resources can be
easily added by extending the scoring function if such metrics are actually available.

Another limitation is that the current placement is a centralised process, while fog
computing is largely decentralised. This mismatch could be resolved by adjusting the
heuristic, but it is less of a problem in smaller deployments, which could be private
ones. For example, the current centralised placement could be used to manage individual
regions, such as cloudlets or geographic areas, rather than the entire cluster. To fully
decentralise the placement, large modifications would be necessary and especially the
scoring function would be problematic as it requires essentially global knowledge of the
topology. Alternatively, a model could be attempted where with each topology, a scheduler
dedicated to it is created on any of the resources, thereby providing the centralised
knowledge, but avoiding a single resource being the bottleneck for all topologies.

A problem closely related to operator placement is deciding the replication or, in other
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words, the number of instances of an operator. In Apache Storm, this is static and, as
such, was not a relevant problem, but is available in other stream processing engines and,
therefore, is a capability that could be added to further improve elasticity.

The largest improvement in the field of operator placement would likely not come from
developing yet another scheduler but instead from improving the environment of this
domain. Most schedulers use relatively similar information, resource request, network
usage rates, selectivity, network link latencies and so on, while also working with DAGs
that form the basis for stream processing. This means that there is the potential to
attempt to create a more standardised API that could then be either integrated directly
into stream processing engines or as an adapter to existing APIs. While this would mean
losing some specificity by creating placements independent of specific stream processing
engines and likely miss some specific information, because of new limitations, it would
externalise the placement of operators from the actual stream processing engines. This
would mean that solutions would not have to be specific to an engine and, as such, could
be far easier to reproduce results or compare them among researchers. Additionally,
an external component is easier to release, especially when the API is standardised,
intended for this usage and documented. This would not only allow for a standardisation
of emulators or simulators to reduce the need for costly benchmarks, but also reduce the
barrier of entry and difficulty of developing and maintaining a scheduler. The largest
problem with the operator placement problem at this time seems not to be developing
better schedulers anymore, but having any sort of improvement moving into production
use, because there the state of the art is still often random scheduling or round-robin
assignments. As much as such a design and integration into various projects would be a
monumental effort, so would the gains likely be in the long term.
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APPENDIX A
Configurations of the Evaluation

Topologies

Table A.1: Parameters of T-M1’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 45.0/45.0/45.0/45.0/45.0/45.0 50.0 0 1
1 1.0 90 30.0/30.0/30.0/30.0/30.0/30.0 11.0 100 1
2 1.0 90 30.0/30.0/30.0/30.0/30.0/30.0 11.0 100 1
3 1.0 90 30.0/30.0/30.0/30.0/30.0/30.0 11.0 100 1
4 1.0 90 30.0/30.0/30.0/30.0/30.0/30.0 11.0 100 1

Table A.2: Parameters of T-M2’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
1 1.0 90 28.0/30.0/30.0/30.0/30.0/30.0 11.0 100 10
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A. Configurations of the Evaluation Topologies

Table A.3: Parameters of T-M3’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
1 1.0 90 30.0/30.0/30.0/30.0/30.0/30.0 11.0 100 1

Table A.4: Parameters of T-R1’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 1.25 119 5.9/8.0/8.5/9.1/9.6/11.7 108.0 189 2
1 0.66 75 3.7/5.0/5.4/5.7/6.0/7.4 61.0 72 2
2 1.32 1 2.0/2.7/2.9/3.0/3.2/3.9 39.0 72 2
3 1.4 1 2.0/2.7/2.9/3.0/3.2/3.9 46.0 73 2
4 1.28 58 7.6/10.3/11.0/11.7/12.4/15.1 79.0 56 2
5 0.54 104 24.3/30.0/30.0/30.0/30.0/30.0 25.0 53 2
6 1.12 231 29.3/30.0/30.0/30.0/30.0/30.0 86.0 49 2
7 1.54 1 2.0/2.7/2.9/3.0/3.2/3.9 37.0 210 2
8 0.71 1 2.0/2.7/2.9/3.0/3.2/3.9 213.0 25 2
9 0.41 168 30.0/30.0/30.0/30.0/30.0/30.0 26.0 145 2
10 0.97 113 8.3/11.2/11.9/12.7/13.4/16.4 36.0 106 2
11 0.77 118 8.4/11.4/12.2/12.9/13.7/16.7 20.0 114 2
12 1.18 130 7.2/9.7/10.4/11.0/11.7/14.2 18.0 23 2
13 0.62 113 7.3/10.0/10.6/11.3/11.9/14.6 19.0 80 2

Table A.5: Parameters of T-R2’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 0.99 108 25.0/30.0/30.0/30.0/30.0/30.0 119.0 72 2
1 0.46 80 18.5/25.1/26.8/28.4/30.0/30.0 67.0 35 2
2 0.97 148 30.0/30.0/30.0/30.0/30.0/30.0 52.0 74 2
3 1.22 237 30.0/30.0/30.0/30.0/30.0/30.0 89.0 42 2
4 1.12 23 9.3/12.6/13.4/14.2/15.0/18.4 20.0 29 2
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Table A.6: Parameters of T-R3’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 1.16 61 4.2/5.8/6.1/6.5/6.9/8.4 193.0 40 2
1 0.97 43 3.0/4.1/4.3/4.6/4.9/5.9 41.0 33 2
2 0.66 291 30.0/30.0/30.0/30.0/30.0/30.0 28.0 77 2
3 1.11 142 13.8/18.7/19.9/21.2/22.4/27.3 57.0 36 2
4 1.22 191 20.5/27.9/29.7/30.0/30.0/30.0 77.0 145 2
5 1.35 91 11.9/16.2/17.3/18.3/19.4/23.7 99.0 158 2
6 1.19 29 5.2/7.0/7.5/7.9/8.4/10.2 58.0 58 2
7 1.36 54 11.4/15.5/16.5/17.5/18.5/22.6 74.0 139 2
8 1.2 53 15.3/20.7/22.1/23.4/24.8/30.0 31.0 154 2
9 0.67 34 11.7/15.9/17.0/18.0/19.1/23.3 12.0 55 2

Table A.7: Parameters of T-R4’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 0.48 223 30.0/30.0/30.0/30.0/30.0/30.0 67.0 25 2
1 0.69 158 24.7/30.0/30.0/30.0/30.0/30.0 89.0 56 2
2 1.26 5 6.2/8.5/9.0/9.6/10.1/12.4 13.0 79 2
3 0.52 65 6.2/8.5/9.0/9.6/10.1/12.4 65.0 181 2
4 0.92 142 15.2/20.7/22.0/23.4/24.7/30.0 61.0 22 2
5 1.07 41 6.2/8.5/9.0/9.6/10.1/12.4 59.0 93 2
6 0.37 31 9.1/12.4/13.2/14.0/14.9/18.1 95.0 100 2
7 0.69 47 6.2/8.5/9.0/9.6/10.1/12.4 59.0 135 2
8 0.83 51 6.2/8.5/9.0/9.6/10.1/12.4 28.0 24 2
9 0.62 59 6.2/8.5/9.0/9.6/10.1/12.4 15.0 139 2
10 0.38 71 6.2/8.5/9.0/9.6/10.1/12.4 62.0 29 2
11 0.66 68 6.2/8.5/9.0/9.6/10.1/12.4 76.0 87 2
12 0.62 143 6.2/8.5/9.0/9.6/10.1/12.4 73.0 129 2
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A. Configurations of the Evaluation Topologies

Table A.8: Parameters of T-R5’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 1.19 128 30.0/30.0/30.0/30.0/30.0/30.0 21.0 192 2
1 0.92 29 10.8/14.7/15.6/16.6/17.5/21.4 18.0 45 2
2 1.02 42 13.5/18.3/19.5/20.7/21.9/26.8 21.0 127 2
3 0.69 1 10.8/14.7/15.6/16.6/17.5/21.4 14.0 78 2
4 0.3 159 27.2/30.0/30.0/30.0/30.0/30.0 72.0 54 2
5 0.42 87 10.8/14.7/15.6/16.6/17.5/21.4 30.0 116 2
6 0.3 86 10.8/14.7/15.6/16.6/17.5/21.4 11.0 156 2
7 1.13 273 10.8/14.7/15.6/16.6/17.5/21.4 29.0 107 2
8 0.99 263 10.8/14.7/15.6/16.6/17.5/21.4 12.0 63 2

Table A.9: Parameters of T-R6’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 0.93 1 7.0/9.5/10.2/10.8/11.4/13.9 11.0 83 2
1 0.63 81 14.2/19.3/20.6/21.8/23.1/28.2 60.0 35 2
2 0.3 70 11.4/15.5/16.6/17.6/18.6/22.7 131.0 135 2
3 1.06 190 30.0/30.0/30.0/30.0/30.0/30.0 15.0 88 2
4 1.38 17 7.0/9.5/10.2/10.8/11.4/13.9 64.0 36 2
5 1.08 123 20.9/28.4/30.0/30.0/30.0/30.0 134.0 76 2
6 0.6 109 19.9/27.1/28.8/30.0/30.0/30.0 40.0 173 2
7 0.74 64 22.0/29.9/30.0/30.0/30.0/30.0 104.0 186 2
8 0.77 9 7.0/9.5/10.2/10.8/11.4/13.9 137.0 46 2
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Table A.10: Parameters of T-R7’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 1.05 206 10.8/14.7/15.7/16.6/17.6/21.5 23.0 162 2
1 0.76 134 7.4/10.0/10.7/11.3/12.0/14.6 21.0 70 2
2 0.56 29 2.1/2.9/3.0/3.2/3.4/4.2 60.0 65 2
3 0.98 106 5.8/7.9/8.5/9.0/9.5/11.6 61.0 64 2
4 0.95 161 13.7/18.5/19.8/21.0/22.2/27.1 36.0 114 2
5 0.5 43 5.3/7.2/7.6/8.1/8.6/10.5 79.0 52 2
6 0.89 148 9.1/12.3/13.1/13.9/14.8/18.0 42.0 58 2
7 1.21 126 7.7/10.5/11.2/11.9/12.6/15.3 58.0 25 2
8 0.63 73 9.4/12.8/13.6/14.5/15.3/18.7 19.0 307 2
9 1.06 199 16.1/21.8/23.3/24.7/26.1/30.0 54.0 26 2
10 0.73 1 2.1/2.9/3.0/3.2/3.4/4.2 69.0 305 2
11 1.25 145 12.4/16.8/17.9/19.0/20.1/24.5 12.0 124 2
12 1.19 188 11.1/15.1/16.1/17.1/18.1/22.1 20.0 108 2
13 0.46 1 2.1/2.9/3.0/3.2/3.4/4.2 64.0 117 2
14 1.03 51 3.6/4.9/5.2/5.5/5.9/7.1 74.0 184 2
15 0.71 21 4.3/5.9/6.3/6.7/7.1/8.6 88.0 65 2
16 1.01 1 2.1/2.9/3.0/3.2/3.4/4.2 74.0 268 2
17 0.75 1 2.1/2.9/3.0/3.2/3.4/4.2 44.0 71 2
18 1.11 1 2.1/2.9/3.0/3.2/3.4/4.2 55.0 29 2
19 0.68 87 10.6/14.4/15.4/16.3/17.3/21.0 14.0 188 2

Table A.11: Parameters of T-R8’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 1.35 1 12.1/16.4/17.4/18.5/19.6/23.9 81.0 103 2
1 0.84 64 26.1/30.0/30.0/30.0/30.0/30.0 52.0 86 2
2 0.96 62 25.3/30.0/30.0/30.0/30.0/30.0 41.0 69 2
3 1.21 84 28.8/30.0/30.0/30.0/30.0/30.0 21.0 51 2
4 1.05 58 19.9/27.0/28.8/30.0/30.0/30.0 42.0 54 2
5 0.83 71 27.8/30.0/30.0/30.0/30.0/30.0 72.0 45 2
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A. Configurations of the Evaluation Topologies

Table A.12: Parameters of T-R9’s operators

Id Selec-
tivity CPU CPU Request for

3/4/5/6/7/11 workers Memory Band-
width Instances

spout 1.0 10 10.0/10.0/10.0/10.0/10.0/10.0 50.0 0 1
sink 0.0 10 20.0/20.0/20.0/20.0/20.0/20.0 50.0 0 1
0 0.3 120 28.6/30.0/30.0/30.0/30.0/30.0 23.0 53 2
1 0.97 166 30.0/30.0/30.0/30.0/30.0/30.0 73.0 204 2
2 0.94 95 9.5/13.0/13.8/14.7/15.5/18.9 103.0 26 2
3 0.8 21 9.5/13.0/13.8/14.7/15.5/18.9 23.0 32 2
4 0.66 136 9.5/13.0/13.8/14.7/15.5/18.9 90.0 36 2
5 0.85 42 9.5/13.0/13.8/14.7/15.5/18.9 113.0 84 2
6 0.76 54 9.5/13.0/13.8/14.7/15.5/18.9 54.0 208 2
7 1.74 153 24.0/30.0/30.0/30.0/30.0/30.0 96.0 134 2
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