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Abstract

The aim of this thesis is to explore the effects of robot and electricity taxes on economic
growth. New technological advancements in industrial robotics, 3D printing and artificial
intelligence threaten to replace human labor in more and more tasks, while using substan-
tial amounts of electric power. Given the practical difficulties of introducing a robot tax,
such as coming up with workable definitions, we explore the possibility of introducing an
electricity tax instead. To this end, the model framework developed by Erling Steigum
in his paper ”Robotics and Growth” (2011) is expanded to include taxes and power con-
sumption. Analytically, we show that both types of taxes have the same qualitative effect
- lowering interest rates and growth, while raising wages - when robots are assumed to
be more power hungry than traditional capital. In a numerical illustration, however, it
is calculated that the robot tax has a much larger, long term impact on the economy,
calling into question whether an electricity tax could be used interchangeably.
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1 Introduction

Spurred by new technological innovations, the topic of automation has drawn increased
public attention over the last few years and its economic consequences have been hotly
debated by researchers. Both the public as well as the academic discourse has been
particularly interested in the question whether the introduction of robots and ever more
sophisticated computer programs will replace humans in the workplace and lead to un-
employment.

This discussion, however, is actually not entirely new. Already in 1930, John Maynard
Keynes wrote in his essay ”Economic Possibilities for Our Grandchildren”, laying out his
vision for future economic development: ”We are being afflicted with a new disease
of which some readers may not yet have heard the name, but of which they will hear
a great deal in the years to come—namely, technological unemployment. This means
unemployment due to our discovery of means of economising the use of labour outrunning
the pace at which we can find new uses for labour.” Keynes was optimistic that this
problem would only be temporary in nature and he predicted that living standards would
increase by four to eight times during the next 100 years, as long as there were no major
wars and crises.

Automation, in particular the introduction of personal computers to the workplace,
did indeed affect the labor market during the second half of the 20th century, albeit not
in the form of mass unemployment. Spitz-Oener (2006) documents that, rather than
necessarily rendering jobs obsolete, past computerization in West Germany led to a shift
within occupations from routine manual and cognitive tasks to non-routine analytical and
interactive activities. This change went hand in hand with an increase in skill require-
ments and highly educated workers, who could gain the most from the new technological
opportunities. Spitz-Oener (2006) also finds evidence of job polarization - the idea that
employment in medium skill, middle class occupations has decreased, while the extremes
of the distribution have grown. One explanation offered is that medium skill jobs such as
office clerks involve a lot of routine tasks that computers can take over to a large extent.
On the other hand, low skill occupations like waiters tend to be a part of the service
sector and feature more non-routine tasks that cannot easily be automated.

Over roughly the last decade, this picture has started to shift and economists are
once again concerned about the possibility of technological unemployment. They point
to the rapid development of innovations which allow machines and computers to conduct
non-routine tasks that were once considered safe from automation, putting even high skill
jobs at risk. Beaudry et al. (2016) even argue that demand for highly educated labor has
already been declining since 2000 and high-skilled workers have had to move down on the
occupational ladder.

More and more emerging technologies seem to have the potential to replace human
labor: Companies such as Google and Tesla have introduced self driving cars, which may
put the jobs of cab and truck drivers at risk. An increasing amount of supermarkets,
stores and fast food restaurants are utilizing self-checkout machines, reducing the need
for staff. 3D printing technology, utilized to manufacture products like hearing aids,
may cause disruptions to the international economy, as analyzed by Abeliansky et al.
(2020). They find that developed countries will adopt 3D printing first, causing a loss of
exports for poor countries. The International Federation of Robotics (2021) reports an
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ever increasing number of industrial robots - fully autonomous machines which do not
need human operators - in U.S. factories (310700 in 2020).

Perhaps the greatest potential for economic disruption lies within the advancements
made in artificial intelligence and machine learning, which enable the automation of non-
routine cognitive tasks, once thought to be impossible. For instance, the Associated
Press (in partnership with the A.I. language generation company Automated Insights)
announced already in 2014 that it was going to automate most of the reporting on U.S.
quarterly corporate earnings, in addition to minor sports stories. Given a patient’s med-
ical data, recent A.I. algorithms have been extremely successful in diagnosing a wide
range of diseases, including diabetes, Alzheimer’s and various forms of cancer (see Ku-
mar et al. (2022)). While Frey and Osborne (2017) still considered arts to be one of the
least susceptible fields, new image generation software like DALL-E 2, Midjourney and
Stable Diffusion have been able to turn text prompts into artwork that has even won
prices, causing uproar in the artistic community (see New York Times (2022)).

These developments have led many researchers to conclude that the current techno-
logical progress is fundamentally different to past advancements and may have severe
adverse effects on the labor market. On the high end, Frey and Osborne (2017) calculate
that 47% of U.S. jobs are at high risk, meaning that they could be automated over the
next decade or two. Using an arguably more precise task-based approach, Arntz et al.
(2016) estimate that 9% of jobs are automatable in the United States. Among OECD
member states, Austria is the most vulnerable with 12% of jobs at risk according to their
analysis. Acemoglu and Restrepo (2020) find that the introduction of industrial robots
locally decreases both employment and wages. Lankisch et al. (2019) show that automa-
tion can contribute to increased income inequality and explain the rising skill premium
that has been observed in the U.S. since the 1980s.

Given all of these potential negative effects, it makes sense to consider curbing the
spread of automation, for instance by taxing the usage of robots. However, automation
also brings economic benefits which have been explored in the literature.

Acemoglu and Restrepo (2021) explore the relationship between demographics & au-
tomation and find that aging societies are especially incentivized to adopt robotics, since
it allows them to fill job shortages created by demographic change. Prettner (2019) uses
a Solow model framework to show that robots can generate endogenous growth with-
out the need for exogenous technological developments. In a Ramsey-style environment,
Steigum (2011) comes to similar conclusions, noting that - depending on the choice of
parameters - endogenous growth can even be achieved when human labor and robots are
not perfect substitutes. In both models, the labor share of income shrinks continually,
while the capital share increases. Acemoglu and Restrepo (2018) allow for two types of
innovations - one which automates tasks and one which creates new tasks. This aims to
replicate the phenomenon that technological progress has created new types of jobs over
the years, such as programmers. They find that human labor and robots can coexist in
the long run, as long as capital is expensive enough. Otherwise, automation will progress
rapidly and labor will become redundant.

Currently there are no taxes specifically targeting robots anywhere in the world. Nev-
ertheless, due to automation’s potential adverse effects on the labor market and the rev-
enue loss that governments would incur if tax paying workers were laid off and replaced
by tax free robots, the topic is hotly debated and influential figures like Bill Gates and
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former New York City mayor Bill de Blasio have called for a tax to be introduced (see
The Wall Street Journal (2020)). During his presidential campaign, de Blasio proposed
that companies should have to pay a fee equal to five years of payroll taxes for every job
they automate.

One major obstacle for the introduction of any robot tax is that it is very difficult
to precisely define what a robot is in legal terms. While the International Federation of
Robotics has developed a definition for industrial robots, it is hard to categorize machines
in other lines of work: Should a computer be classified and taxed as a robot, since it can
run sophisticated A.I. algorithms? One aim of this thesis is to explore a way of getting
around this problem - by taxing electricity consumption as a proxy. The idea is, if
robots use more power than traditional machines, then an electricity tax will relatively
disadvantage automation and replicate the effects of a theoretical robot tax to some
extent.

In recent years, the issue of robot taxes has also caught the attention of economists. To
study the problem, Guerreiro et al. (2021) use an overlapping generations model (OLG)
where young people may choose their desired level of education. They find that a small
robot tax levied on firms is optimal during the transitory phase where lesser educated
workers are not yet retired. Gasteiger and Prettner (2022) plug the production technology
from Prettner (2019) into a canonical OLG model, in which young people earn wages
from working and old people live off their savings. In contrast to the growth observed in
the representative agent setting, they find that the economy stagnates, highlighting the
importance of model selection. Additionally, they discover that a robot tax can increase
wages, output per capita and overall welfare.

This thesis aims to explore the economic effects of robot and electricity taxes and to
discuss to what extent they are interchangeable. To this end, the model proposed by
Steigum (2011) is modified in such a way that the two types of capital - traditional (non-
autonomous machines, production halls, etc.) and automation capital (industrial robots,
3D printers, etc.) - use electricity and firms have to pay taxes for power consumption
and employing automation capital. The government may or may not return the tax
proceeds to households in the form of transfers - both cases are examined. Along the
balanced growth path, households invest in both capital stocks and endogenous growth
is achievable when standard parameter values are chosen.

We find that automation capital grows the fastest, followed by traditional capital and
consumption. When transfers are included, consumption is increased at every point in
time, but grows at the same rate as before. The growth of traditional and automation
capital is slowed by the introduction of transfers, as households are able to consume
more while saving less. We find that a robot tax always lowers consumption growth and
interest rates, while raising wages. If traditional capital is sufficiently power efficient
relative to robots, a tax on electricity will replicate these effects qualitatively. Otherwise,
the introduction of an electricity tax lowers wages, interest rates and growth.

Calibrated with U.S. data, the model predicts rapid growth for the robot stock over
the next 10 years. Comparing the two types of taxes, the calculations show that the
robot tax is more detrimental to growth and that electricity would have to be taxed very
highly in order to be able to create a similar long term impact on the economy. Part of
the reason for this is that the robot tax base (i.e. automation capital) grows faster than
the electricity tax base (i.e. electricity consumption). Therefore, the quantitative results
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suggest that the two taxes have quite disparate effects and can not necessarily be used
interchangeably.

The thesis is structured as follows: In section 2, the model is laid out and analyzed.
More specifically, 2.1 explains the basic assumptions, 2.2 and 2.3 describe the household
and firm problems, before the market equilibrium is derived in 2.4. 2.5 looks at the
balanced growth path and the derivation of growth rates, which are then compared with
the results of Steigum (2011) in 2.6. Transfers are introduced in 2.7, 2.8 deals with the
impact of taxation and 2.9 describes the model dynamics.

In section 3, the model is dealt with numerically. In 3.1 the model is calibrated using
data from the U.S. manufacturing sector, 3.2 lays out which variables can be observed
by means of comparative statics and 3.3 describes the model predictions in the baseline
scenario. The consequences of an increase in electricity prices are discussed in 3.4, 3.5
explores how an electricity tax could replicate the effects of a robot tax and 3.6 repeats this
exercise with the alternate assumption that robots are less power hungry than traditional
capital. Finally, section 4 summarizes the findings and gives an outlook towards possible
future research avenues.
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2 Model Description and Analysis

2.1 Notation and Assumptions

Consider an economy with three production inputs, human labor L , traditional physical
capital K(t) (machines, assembly lines, production halls, etc), and automation capital
Z(t) (industrial robots, 3D printers, etc). Time t evolves continuously, while the popu-
lation is constant and equivalent to the workforce. There is a representative, infinitely
lived individual, who maximizes their utility gained from consumption subject to a budget
constraint. We assume that traditional capital and automation capital both depreciate
at the same rate δ. Human labor and traditional physical capital are imperfect sub-
stitutes, whereas automation capital and human labor are perfect substitutes (Steigum,
2011; Prettner, 2019). This assumption ensures tractability of the model and is meant to
present the benchmark case of full automation. The qualitative findings would not change
in case of a comparatively high but imperfect substitutability between automation capital
and labor (see Steigum, 2011; Gasteiger and Prettner, 2022). There is no technological
progress, meaning that growth can only ever be achieved through automation and capital
accumulation.

2.2 Households

Following Steigum (2011), who builds on Ramsey (1928), Cass (1965), and Koopmans
(1963), the representative individual maximizes lifetime utility, which derives from the
iso-elastic utility function

U0 =

∫ ∞

0

e−ρt c(t)
1−θ − 1

1− θ
dt, (1)

where ρ is the time preference rate, c(t) is instantaneous per capita consumption at time
t, and θ determines the elasticity of intertemporal substitution. Denoting per capita
assets (consisting of automation capital Z(t) and traditional physical capital K(t)) by
m(t), the flow budget constraint is given by

ṁ(t) = r(t)m(t) + w(t)− c(t). (2)

For now, the government does not transfer any of its tax revenues to households (transfers
will be discussed in section 2.7). Intertemporal optimization leads to the well-known
Keynes-Ramsey rule for consumption

ċ(t)

c(t)
=

r(t)− ρ

θ
,

stating that consumption expenditure growth is positive whenever the interest rate (r)
overcompensates individuals for their impatience (ρ) such that individuals postpone con-
sumption, i.e., they save.

Since C(t) = c(t)L, with L being the constant number of workers, the same Ramsey
rule holds for aggregate consumption C:

Ċ(t)

C(t)
=

r(t)− ρ

θ
. (3)
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2.3 Production

Following Steigum (2011), output Y (t) is produced according to the production function

Y (t) = AK(t)α[βZ(t) + L]1−α, (4)

where α is the elasticity of output with respect to traditional physical capital input. Total
factor productivity A is constant, since there is no technological progress as such. The
parameter β is necessary to scale Z(t), which is given in final goods terms, to the scale
of L, which is in terms of number of workers. For instance, if β = 2, this would mean
that 1 unit of automation capital could do the same work as 2 workers. Typically β will
be much lower, however. Conversely, 1

β
can be interpreted as the cost of purchasing or

building enough automation capital to be able to do the same work as 1 human.
A crucial aspect that is often disregarded when analyzing the substitution of robots

for workers is that the operation of robots and many other types of capital requires
electricity. Their employment is thus associated with additional energy costs. We take
this into account and assume that ξK is the electricity requirement of a unit of traditional
physical capital, while ξZ is the electricity requirement of a unit of automation capital.
In doing so, we measure all electricity requirements in kilowatt hours (kWh) per year.

Using the final good as the numéraire, the profit maximization problem of the repre-
sentative firm is given by

max
K(t),L,Z(t)

π(t) = AK(t)α[βZ(t) + L]1−α − w(t)L (5)

−RK(t)K(t)− (1 + τZ)RZ(t)Z(t)− (1 + τE)PE[ξKK(t) + ξZZ(t)],

where w(t) is the wage rate, RK(t) and RZ(t) are the rental rates for traditional physical
capital and automation capital, PE is the price for electricity, and τZ and τE are the
tax rates on robot income and electricity. Note that electricity alone cannot produce
any output but traditional physical capital and automation capital require electricity as
a necessary input for production. Electric power is imported from an outside source.
When transfers are introduced to the model in section 2.7, we will also consider the
possibility that the government acts as the electricity provider and may give the proceeds
from energy production to households.

In a perfectly competitive equilibrium, the wage rate, w(t), the rental rate of tradi-
tional physical capital, RK(t), and the rental rate of automation capital, RZ(t), are given
by the marginal products of the corresponding production factors:

w(t) = (1− α)A

[
K(t)

βZ(t) + L

]α
, (6)

RZ(t) =
1

1 + τZ

{
(1− α)βA

[
K(t)

βZ(t) + L

]α
− (1 + τE)PEξZ

}
, (7)

RK(t) = αAK(t)α−1[βZ(t) + L]1−α − (1 + τE)PEξK . (8)

Note that the net rates of return to the investor (the interest rates) are given by rZ(t) =
RZ(t) − δ and rK(t) = RK(t) − δ. Other than electricity production, the economy is
closed such that savings are equal to gross investment, I(t) = S(t). In contrast to the
Ramsey-Cass-Koopmans model, there are two investment vehicles: traditional capital and
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automation capital. The rational investors decide endogenously how much of their savings
they would like to invest in traditional physical capital and how much in automation
capital. As long as one of the two investment vehicles delivers a higher rate of return,
rational investors would not invest in the other. In the market equilibrium both capital
stocks are invested in and thus the following no-arbitrage condition holds:

RK(t)− δ = RZ(t)− δ = r(t), (9)

where r(t) = Z(t)rZ(t)+K(t)rK(t)
Z(t)+K(t)

is the interest rate on household assets. Inserting from (7)

and (8), defining βZ(t) + L as effective labor and

X (t) :=
βZ(t)

βZ(t) + L

as the automation share in effective labor, we can rewrite the no-arbitrage condition as

1

1 + τZ

{
(1− α)βA

[
K(t)

βZ(t) + L

]α
− (1 + τE)PEξZ

}
=αA

[
K(t)

βZ(t) + L

]α−1

− (1 + τE)PEξK

⇐⇒ (1− α)

1 + τZ
βA

[
K(t)

βZ(t) + L

]α
− αA

[
K(t)

βZ(t) + L

]α−1

=(1 + τE)PE

(
ξZ

1 + τZ
− ξK

)
.

Now, expressing the left side in terms of X(t) and Y (t), and multiplying both sides by
(1 + τZ) yields

(1− α)X(t)Y (t)

K(t)

{
βA

[
K(t)

βZ(t) + L

]α
K(t)(βZ(t) + L)

βZ(t)AK(t)α(βZ(t) + L)1−α
−

α

1− α
A

[
K(t)

βZ(t) + L

]α−1

(1 + τZ)
K(t)(βZ(t) + L)

βZ(t)AK(t)α(βZ(t) + L)1−α

{

=
(1− α)X(t)Y (t)

K(t)

{
K(t)

Z(t)
− α

1− α

1 + τZ
X(t)

}
= (1 + τE)PE(ξZ − (1 + τZ)ξK)).

Solving for the ratio of traditional physical capital to automation capital, K (t) /Z (t),
yields

K (t)

Z (t)
=

α

1− α

1 + τZ
X (t)

+
(1 + τE)PEξKK (t)

(1− α)X (t)Y (t)

[
ξZ
ξK

− (1 + τZ)

]
. (10)

Note that surging electricity costs, caused by rising prices PE or taxes τE, thus lead to an
increase in the ratio of traditional physical capital to automation capital if automation
capital is sufficiently more energy intensive, i.e., for

ξZ
ξK

> (1 + τZ) .

The intuition is that, if robots are rather energy intensive, an increase in the price of
electricity or in the electricity tax both imply a substitution of traditional physical capital
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for automation capital. The reverse holds true if automation capital is not substantially
more energy intensive compared with traditional physical capital.

Substituting

(1− α)X (t)Y (t) = βZ (t)
(1− α)X (t)Y (t)

βZ (t)
= Z (t) [(1 + τZ)RZ(t) + (1 + τE)PEξZ ]

in (10), we obtain

K (t)

Z (t)
=

α

1− α

1 + τZ
X (t)

+
K (t)

Z (t)

(1 + τE)PEξK
(1 + τZ)RZ(t) + (1 + τE)PEξZ

[
ξZ
ξK

− (1 + τZ)

]
,

which solves for

K (t)

Z (t)
=

α

1− α

Ω (t)

X (t)
(11)

with Ω (t) :=
(1 + τZ)RZ(t) + (1 + τE)PEξZ

RZ(t) + (1 + τE)PEξK
.

2.4 Solution

Before embarking on the analysis of the balanced growth path (BGP) of the economy, we
define k (t) := K (t) /[βZ (t)+L (t)] as the traditional capital intensity and proof that an
equilibrium solution k∗ > 0 exists and is unique.

Proposition 1. There is a unique positive equilibrium traditional capital intensity at
which the no-arbitrage relationship (9) is fulfilled.

Proof. Under the no-arbitrage condition, it follows from (11) that

βZ(t) + L =
βZ(t)

X(t)
=

(1− α)β

αΩ (t)
K (t) (12)

and, thus,

Y (t) = AK(t)α[βZ(t) + L]1−α = A

[
(1− α)β

αΩ (t)

]1−α

K(t). (13)

Using (12), we can now get the traditional capital intensity as

k (t) =
K (t)

βZ (t) + L
=

αK(t)

(1− α)βK(t)
Ω(t) =

α

(1− α)β
Ω (t) . (14)

Next, we can rewrite the rental rate of automation capital as

RZ(t) =
1

1 + τZ
[(1− α)Aβk (t)α − (1 + τE)PEξZ ] .

This, in turn, can be used to obtain

Ω (t) =
(1− α)βAk(t)α − (1 + τE)PEξZ + (1 + τE)PEξZ

1
1+τZ

[(1− α)βAk(t)α − (1 + τE)PEξZ + (1 + τE)PEξK(1 + τZ)]

=
(1− α)β(1 + τZ)Ak(t)

α

(1− α)βAk(t)α + (1 + τE)PE [ξK(1 + τZ)− ξZ ]
.
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Case 1: c ≥ 0 Case 2: c < 0

Figure 1: Proof of Auxiliary Lemma 1: Schematic representation of the form of f in both
cases.

Inserting the result into (14) yields

k (t) =
α (1 + τZ)Ak (t)

α

(1− α) βAk (t)α − (1 + τE)PEξK∆ξ

(15)

with

∆ξ :=
ξZ
ξK

− (1 + τZ)

as an implicit expression for the stationary equilibrium value of k (t) = k∗. To provide a
precise proof for the existence of a unique equilibrium value k∗, consider the function

Σ (k, PE, τE, τZ) :=
α (1 + τZ)Ak

α

(1− α) βAkα − (1 + τE)PEξK∆ξ

− k. (16)

We need to show that there exists a unique k∗ > 0 such that Σ (k∗, PE, τE, τZ) = 0. To
this end, we prove and then apply a more general statement:

Auxiliary Lemma 1. Let f : R+
0 → R be defined as

x ,→ f(x) :=
axα

bxα + c
− x

with a, b > 0, c ∈ R and 0 < α < 1.
Then there exists a unique x∗ > 0 such that f(x∗) = 0.

Proof. First, we calculate the derivative of f using the quotient rule:

f ′(x) =
aαxα−1(bxα + c)− axααbxα−1

(bxα + c)2
− 1

=
acαxα−1

(bxα + c)2
− 1. (17)
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If x∗ =
ax∗α

bx∗α + c
exists, it follows that

f ′(x∗) =
acαx∗α−1x∗ bx

∗α + c

ax∗α
(bx∗α + c)2

− 1

=
cα

bx∗α + c
− 1.

Case 1: c ≥ 0
c ≥ 0 implies both cα ≥ 0 and bx∗α + c > 0. Because 0 < α < 1 it holds that

bx∗α + c > c ≥ cα

=⇒ 0 ≤ cα

bx∗α + c
< 1

=⇒ f ′(x∗) < 0

and since f is a continuously differentiable function on R+ it follows that x∗, if it exists,
must be unique.

Now consider a value 0 < x̃ < min
{(

a
b+c

) 1
1−α , 1

}
. It follows that

a

b+ c
> x̃1−α

=⇒ ax̃α > x̃(b+ c) > bx̃α+1 + cx̃

and therefore f(x̃) =
ax̃α − bx̃α+1 − cx̃

bx̃α + c
> 0 holds for such small values of x. On the

other hand, for very large values of x we obtain via L’Hospital’s rule:

lim
x→+∞

f(x) = lim
x→+∞

axα

bxα + c
− lim

x→+∞
x

=
a

b
−∞ = −∞.

Since f is a continuous function on R+ with lim
x→+∞

f(x) = −∞ and f(x) > 0 for small x,

there has to be a point x∗ > 0 where f(x∗) = 0.

Case 2: c < 0
Looking at the derivative (17), it is clear that f ′(x) < 0 for all x ≥ 0, i.e. that f is

a strictly monotonically decreasing function on R+. From f(0) = 0, f decreases towards

−∞ as x approaches the pole of f at x̄ =
(−c

b

) 1
α > 0. This implies that f(x) < 0 for all

x ∈ (0, x̄).
For x ∈ (x̄,+∞), it holds that

lim
x→x̄+

f(x) = +∞ and lim
x→+∞

f(x) = −∞

and since f is continuous and strictly monotonically decreasing in this interval, x∗ ∈
(x̄,+∞) has to exist and is unique.
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Finally, applying the Auxiliary Lemma to the function k ,→ Σ (k, PE, τE, τZ) with
a = α (1 + τZ)A > 0, b = (1− α) βA > 0 and c = −(1 + τE)PEξK∆ξ yields the desired
result of a unique positive equilibrium k∗ such that the no arbitrage condition is fulfilled.
Also note that (in terms of the Auxiliary Lemma) f ′(x∗) < 0 holds in both cases, which
implies that Σk(k

∗) < 0.

We can now express income as a function of the aggregate traditional capital stock and
the traditional capital intensity as

Y (t) = A

(
βZ(t) + L

K(t)

)1−α

K(t) = A

(
1

k∗

)1−α

K(t). (18)

The factor prices, in turn, become

R∗
Z =

1

1 + τZ
[(1− α) βA (k∗)α − (1 + τE)PEξZ ] = r∗ + δ, (19)

R∗
K = αA

(
1

k∗

)1−α

− (1 + τE)PEξK = R∗
Z = r∗ + δ, (20)

w∗ = (1− α)A (k∗)α . (21)

Aggregate income and the factor prices are all functions of k∗ = k∗(PE, τE, τZ). While
the production function is of the AK-type and depends on time through the aggregate
capital stock, the factor prices are all constant in the market equilibrium. If growth is
achieved, this means that all gains of the growing economy are paid out as interest for
holding capital, while labor income stagnates.
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2.5 Balanced Growth Path (BGP)

We can now derive the economic growth rates in the market equilibrium, following the
steps of Steigum (2011) in his paper without electricity input. For ease of language,
we will call the path where the economy satisfies the no-arbitrage condition ”balanced
growth path”, although most variables do not grow exactly at a constant rate.

Proposition 2.

i) Along the BGP, the following growth rates are observed:

Ċ(t)

C(t)
= g :=

αA
(

1
k∗
)1−α − (1 + τE)PEξK − δ − ρ

θ

Ṁ(t)

M(t)
=

Ż(t) + K̇(t)

Z(t) +K(t)
= g · 1

1− w∗L exp(−gt)
r∗(Z0+K0)+w∗L

Ż(t)

Z(t)
= g · 1

1− (w∗+k∗r∗)L exp(−gt)
(Z0+K0)r∗+w∗L

K̇(t)

K(t)
=

Ẏ (t)

Y (t)
= g · 1

1− (w∗− r∗
β
)L exp(−gt)

(Z0+K0)r∗+w∗L

ii) In case of the knife-edge condition

ρ = αA

(
1

k∗

)1−α

− (1 + τE)PEξK − δ,

the economy stagnates and attains a stationary level of output and consumption
indefinitely.

iii) In case of

ρ > αA

(
1

k∗

)1−α

− (1 + τE)PEξK − δ,

the economy shrinks perpetually.

Proof. Plugging the constant r∗ = R∗
K − δ into the aggregate Ramsey rule (3), we can

distinguish among three cases

Ċ(t)

C(t)
=

r(t)− ρ

θ
:

{
> 0, if ρ < αA

(
1
k∗
)1−α − (1 + τE)PEξK − δ,

= 0, if ρ = αA
(

1
k∗
)1−α − (1 + τE)PEξK − δ,

< 0, if ρ > αA
(

1
k∗
)1−α − (1 + τE)PEξK − δ.

In the first case, consumption will perpetually grow at the rate

g =
αA

(
1
k∗
)1−α − (1 + τE)PEξK − δ − ρ

θ
.

15



In the second case that can only materialize by sheer coincidence for a knife-edge param-
eter setting, consumption stagnates indefinitely. In the third case, consumption shrinks
perpetually.

In any event, aggregate consumption develops according to

C(t) = C(0) exp(gt) (22)

where C(0) is the initial level of optimal aggregate consumption. Using the (aggregate)
intertemporal budget constraint, C(0) can be deduced. Assuming the no-Ponzi game
condition for total capital M(t) = K(t) + Z(t),

lim
t→∞

M(t) exp(−r∗t) = 0,

is fulfilled, the present value of all future consumption must be equal to initial total
capital (M0 = Z0 +K0) plus the present value of future wage income:∫ ∞

0

C(t) exp(−r∗t)dt = K0 + Z0 +
w∗
r∗ L.

Substituting in (22) yields∫ ∞

0

C(0) exp((g − r∗)t)dt =
C(0)

r∗ − g
= K0 + Z0 +

w∗
r∗ L

=⇒ C(0) = (r∗ − g)(K0 + Z0 +
w∗
r∗ L).

This means that households initially choose to consume a fraction (r∗−g) of their wealth,
including the present value of all future labor income. Combining this expression for
C(t) with the aggregate budget constraint results in an inhomogeneous linear differential
equation:

Ṁ(t) =r∗M(t)− C(t) + w∗L

Ṁ(t) =r∗M(t)− (r∗ − g)(Z0 +K0 +
w∗
r∗ L) exp(gt) + w∗L.

This type of differential equation has the general solution

M(t) = exp(r∗t)
[
B +

∫
exp(−r∗t)

(
w∗L− (r∗ − g)(Z0 +K0 +

w∗
r∗ L) exp(gt)

)
dt

]
=B exp(r∗t)− w∗

r∗ L+ (Z0 +K0 +
w∗
r∗ L) exp(gt).

Observing M(t) at t = 0 now eliminates the integration constant B:

Z0 +K0 = M(0) = B − w∗
r∗ L+ Z0 +K0 +

w∗
r∗ L

=⇒ B = 0, M(t) = (Z0 +K0 +
w∗
r∗ L) exp(gt)− w∗

r∗ L
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Finally, we can derive the growth rate of M(t) = Z(t) + K(t) by taking the natural
logarithm and the derivative:

ln(M(t)) = ln(exp(gt)) + ln
(
Z0 +K0 +

w∗
r∗ L− w∗

r∗ L exp(−gt)
)

Ṁ(t)

M(t)
= g +

1

Z0 +K0 +
w∗
r∗ L− w∗

r∗ L exp(−gt)
gw∗

r∗ L exp(−gt)

= g

(
1 +

1

Z0 +K0 +
w∗
r∗ L− w∗

r∗ L exp(−gt)
w∗
r∗ L exp(−gt)

)

= g

(
Z0 +K0 +

w∗
r∗ L− w∗

r∗ L exp(−gt) + w∗
r∗ L exp(−gt)

Z0 +K0 +
w∗
r∗ L− w∗

r∗ L exp(−gt)

)

= g

) 1

1−
w∗
r∗ L exp(−gt)

Z0+K0+
w∗
r∗ L

) = g

(
1

1− w∗L exp(−gt)
(Z0+K0)r∗+w∗L

)
= g

(
1

1− w∗L exp(−gt)
Yd(0)

)
,

where Yd(0) is the (aggregate) disposable income at t = 0. Note that w∗L exp(−gt)
(Z0+K0)r∗+w∗L is

positive under the model assumptions and therefore total capital grows faster than g,
the growth rate of consumption. However, as t → ∞, the growth rate of M(t) converges
towards g. If wage income w∗L makes up a large portion of disposable income at t = 0
(which implies relatively low automation capital), then the growth rate of total capital
M(t) will initially be significantly higher than g.

Next, we derive the growth rates of Z(t) and K(t). Exploiting the fact that the

traditional physical capital intensity k∗ = K(t)
βZ(t)+L

is fixed on the BGP allows us to

calculate automation capital Z(t) from total capital M(t):

K(t) = βZ(t)k∗ + k∗L

=⇒ Z(t) +K(t) = Z(t) + βZ(t)k∗ + k∗L = Z(t)(1 + k∗β) + k∗L

=⇒ Z(t) =
Z(t) +K(t)− k∗L

1 + k∗β
=

(Z0 +K0 +
w∗
r∗ L) exp(gt)− w∗

r∗ L− k∗L
1 + k∗β

.

Again, the growth rate can be calculated by taking logarithm and derivative:

ln(Z(t)) = ln
(
(Z0 +K0 +

w∗
r∗ L) exp(gt)− (w

∗
r∗ + k∗)L exp(−gt) exp(gt))

)− ln(1 + k∗β)

Ż(t)

Z(t)
= g +

1

(Z0 +K0 +
w∗
r∗ L)− (w

∗
r∗ + k∗)L exp(−gt)

g(w
∗

r∗ L+ k∗)L exp(−gt)

= g

(
1 +

(w
∗

r∗ L+ k∗)L exp(−gt)

(Z0 +K0 +
w∗
r∗ L)− (w

∗
r∗ + k∗)L exp(−gt)

)

= g

(
Z0 +K0 +

w∗
r∗ L

(Z0 +K0 +
w∗
r∗ L)− (w

∗
r∗ + k∗)L exp(−gt)

)

= g

) 1

1− (
w∗
r∗ +k∗)L exp(−gt)

Z0+K0+
w∗
r∗ L

) = g

(
1

1− (w∗+k∗r∗)L exp(−gt)
(Z0+K0)r∗+w∗L

)
.

17



We can observe that automation capital also grows faster than consumption, with the
growth rate again converging towards g.

Since
(w∗ + k∗r∗)L exp(−gt)

(Z0 +K0)r∗ + w∗L
>

w∗L exp(−gt)

(Z0 +K0)r∗ + w∗L
, automation capital grows faster

than total capital as well, i.e. it grows faster than traditional capital.
Finally, we calculate the growth rate of traditional capital K(t), which grows at the

same rate as output Y (t) due to the linear relationship Y (t) = A
(

1
k∗
)1−α

K(t) which
holds on the BGP. K(t) can again be derived from M(t), or alternatively from Z(t),
using the fact that k∗ is fixed.

K(t) = k∗βZ(t) + k∗L

=⇒ K(t) =
k∗β

[
(Z0 +K0 +

w∗
r∗ L) exp(gt)− w∗

r∗ L− k∗L
]
+ (1 + k∗β)k∗L

1 + k∗β

=
k∗β(Z0 +K0 +

w∗
r∗ L) exp(gt)− k∗β w∗

r∗ L+ k∗L
1 + k∗β

=
k∗β

1 + k∗β

[
(Z0 +K0 +

w∗
r∗ L) exp(gt)− (w

∗
r∗ − 1

β
)L

]
With the familiar procedure, we obtain the growth rate:

ln(K(t)) = ln

(
k∗β

1 + k∗β

)
+ ln(exp(gt)) + ln(Z0 +K0 +

w∗
r∗ L− (w

∗
r∗ − 1

β
)L exp(−gt))

K̇(t)

K(t)
= g

(
1 +

(w
∗

r∗ − 1
β
)L exp(−gt)

Z0 +K0 +
w∗
r∗ L− (w

∗
r∗ − 1

β
)L exp(−gt)

)

= g

(
Z0 +K0 +

w∗
r∗ L

Z0 +K0 +
w∗
r∗ L− (w

∗
r∗ − 1

β
)L exp(−gt)

)

= g

) 1

1− (
w∗
r∗ − 1

β
)L exp(−gt)

Z0+K0+
w∗
r∗ L

) = g

) 1

1− (w∗− r∗
β
)L exp(−gt)

(Z0+K0)r∗+w∗L

)

Note that
(w∗ − r∗

β
)L exp(−gt)

(Z0 +K0)r∗ + w∗L
<

w∗L exp(−gt)

(Z0 +K0)r∗ + w∗L
and therefore traditional capi-

tal (and output) grows slower than total capital and in particular, automation capital.
Whether K(t) and Y (t) grow faster or slower than g depends on the term (w∗ − r∗

β
).

w∗ > r∗
β

means that the wage of one worker is higher than the return on investment
for automation capital that is equivalent to one worker in terms of productivity. This
is generally the case in this model setup, as automation capital faces both taxation and
deprecation, whereas labor does not:

w∗ = (1− α)A (k∗)α >
1

1 + τZ

[
(1− α)A (k∗)α − (1 + τE)PEξZ

β

]
− δ

β
=

r∗

β
,
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meaning that K(t) and Y (t) indeed grow faster than g. We can also observe that both
terms in the inequality above actually become equal if there were no taxes, depreciation
and electricity consumption. In this case, K(t) and Y (t) would grow at the constant rate
g.

Next, we take a look at how other variables can be expressed on the BGP. We can compute
the stock of automation capital as

βZ(t) =
K(t)

k∗ − L =
1

k∗X (t)K(t). (23)

The second expression gives a convenient scaling-relationship with the automation share
X (t) = βZ(t)/[βZ(t) + L] as an intuitive multiplier.

Note that the automation share X (t) is an important state in its own right and we
can rewrite it as a function of K(t) and L

X (t) =
βZ(t)

βZ(t) + L
= 1− k∗ L

K(t)
.

Finally, we compute electricity use as

E (t) = ξKK(t) + ξZZ(t) =

[
ξK + ξZ

1

k∗β

]
K(t)− ξZ

β
L =

[
ξK + ξZ

X (t)

k∗β

]
K(t).

Then the revenues collected through the robot tax are

τZR
∗
ZZ(t) = τZR

∗
Z

[
K(t)

k∗ − L

]
1

β
= τZR

∗
Z

X (t)

k∗β
K(t)

and the ones collected through the tax on electricity become

τEPE[ξKK(t)+ξZZ(t)] = τEPE

{[
ξK + ξZ

1

k∗β

]
K(t)− ξZ

β
L

}
= τEPE

[
ξK + ξZ

X (t)

k∗β

]
K(t).

Total tax revenue then becomes

T (t) = τZR
∗
ZZ(t) + τEPE[ξKK(t) + ξZZ(t)]

=

{
τZR

∗
Z

1

k∗β
+ τEPE

[
ξK + ξZ

1

k∗β

]}
K(t)− τZR

∗
Z + τEPEξZ

β
L

=

{
τZR

∗
Z

X (t)

k∗β
+ τEPE

[
ξK + ξZ

X (t)

k∗β

]}
K(t).

Using the automation share X(t), we can obtain a different way to describe the growth
dynamics of automation capital:

gZ(t) :=
Ż(t)

Z(t)
=

K̇(t)

Z(t)k∗β
=

K(t)

Z(t)k∗β
K̇(t)

K(t)
=

1

X (t)

K̇(t)

K(t)
=

1

X (t)
gK(t).
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Noting that 1/X (t) ≥ 1 for all Z(t) ≤ ∞, we can again confirm that the robot stock
grows in excess of traditional capital and output, but at a rate that declines with the
robot share in effective labor. In the limit, where traditional labor becomes quantitatively
irrelevant such that X (t) → 1, the two rates converge.

For the automation share, we obtain a growth rate of

Ẋ(t) =
d

dt

(
1− k∗ L

K(t)

)
=

k∗L
K(t)2

K̇(t)

=⇒ gX(t) : =
Ẋ(t)

X(t)
=

k∗L
X(t)K(t)

K̇(t)

K(t)
=

1−X(t)

X(t)

K̇(t)

K(t)
=

1−X(t)

X(t)
gK(t),

where we note that the automation share grows at a rate higher than the BGP growth
rate of traditional capital and output as long as the automation share is lower than 50%:

Ẋ(t)

X(t)
≥ gK(t) ⇐⇒ X(t) ≤ 0.5.

However, the growth rate of the automation share approaches zero in the limit, when
human labor becomes quantitatively irrelevant. Furthermore, we obtain the growth rate
of electricity consumption as

gE(t) :=
Ė(t)

E(t)
=

ξKK(t)

E(t)

K̇(t)

K(t)
+

ξZZ(t)

E(t)

Ż(t)

Z(t)

=

[
ξKK(t)

E(t)
+

ξZZ(t)

E(t)

1

X(t)

]
K̇(t)

K(t)

=

[
ξKK(t)

E(t)
+

ξZZ(t)

E(t)

1

X(t)

]
gK(t).

Upper and lower bounds for this term can be obtained, considering that 1
X(t)

> 1:[
ξKK(t)

E(t)
+

ξZZ(t)

E(t)

1

X(t)

]
gK(t) <

[
ξKK(t)

E(t)

1

X(t)
+

ξZZ(t)

E(t)

1

X(t)

]
gK(t) =

1

X(t)
gK(t)[

ξKK(t)

E(t)
+

ξZZ(t)

E(t)

1

X(t)

]
gK(t) >

[
ξKK(t)

E(t)
+

ξZZ(t)

E(t)

]
gK(t) = gK(t)

Therefore electricity consumption grows faster than the BGP growth rate g and tradi-
tional capital, but slower than automation capital:

Ė(t)

E(t)
∈
(
gK(t),

1

X (t)
gK(t), ,, ,

=gZ(t)

)
.

The energy shares determine the positioning within the interval. The reason why growth
of electricity input is faster than BGP growth is that electricity input depends linearly
on Z(t) and K(t), both of which grow faster than g. The growth of electricity consump-
tion E(t) = ξKK(t) + ξZZ(t) must fall somewhere between gK(t) and gZ(t), because
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automation capital Z(t) grows faster than traditional capital K(t) and the assumption
ξZ > 0, ξK > 0 holds.

Finally, we can calculate the growth rate of total tax revenue as

gT (t) :=
Ṫ (t)

T (t)
=

τZR
∗
ZZ(t)

T (t)

Ż(t)

Z(t)
+

τEPEE(t)

T (t)

Ė(t)

E(t)

=
τZR

∗
ZZ(t)

T (t)
gZ(t) +

τEPEE(t)

T (t)
gE(t)

This expression can again be bounded, using gK(t) < gE(t) < gZ(t):

τZR
∗
ZZ(t)

T (t)
gZ(t) +

τEPEE(t)

T (t)
gE(t) >

τZR
∗
ZZ(t)

T (t)
gK(t) +

τEPEE(t)

T (t)
gK(t) = gK(t)

τZR
∗
ZZ(t)

T (t)
gZ(t) +

τEPEE(t)

T (t)
gE(t) <

τZR
∗
ZZ(t)

T (t)
gZ(t) +

τEPEE(t)

T (t)
gZ(t) = gZ(t)

And therefore tax revenue, like electricity input, grows faster than K(t), but slower than
Z(t).

Ṫ (t)

T (t)
∈ (gK(t), gZ(t))

This is simply due to the fact that both tax bases - Z(t) and E(t) - grow faster than
traditional capital K(t), while E(t) grows slower than automation capital Z(t).
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2.6 Comparison with Steigum (2011)

In this section, we compare the derived BGP growth rates with Steigum (2011), whose
model includes population growth, but no taxes or electricity input. In the case where
automation capital and labor are perfect substitutes, Steigum assumes the production
function

Y (t) = ÃK(t)α (νεZ(t) + (1− ν)L(t))1−α ,

where ν = β̃
1−α

, 0 < β̃ < 1− α and ε > 0. L(t) grows with rate n. Note that the weight
factor (1− ν) can be factored out to obtain the parametrization used in this thesis:

Y (t) = Ã(1− ν)1−α, ,, ,
=A

K(t)α
(

νε

1− ν, ,, ,
=β

Z(t) + L(t)

)1−α

.

Steigum defines permanent income per worker as

cp(t) = (r∗ − n)

(
m(t) +

w∗

r∗ − n

)
,

and, following the same steps that were used to derive Ṁ(t)
M(t)

in section 2.5, he obtains the
explicit functional form and growth rate for total capital per capita:

m(t) =

(
m0 +

w∗

r∗ − n

)
exp(gt)− w∗

r∗ − n
(24)

ṁ(t)

m(t)
=

g

1− (w∗ exp(−gt)/cp(0))
= g · 1

1− w∗ exp(−gt)

(r∗−n)(m0+
w∗

r∗−n)

.

Note that population growth n speeds up the growth of m(t). Setting n = 0 yields:

Ṁ(t)

M(t)
=

ṁ(t)

m(t)
=

g

1− (w∗ exp(−gt)/cp(0))
= g · 1

1− w∗ exp(−gt)
r∗m0+w∗

= g · 1

1− w∗L exp(−gt)
r∗M0+w∗L

,

which is the same growth rate that we derived for M(t).
While we used the relationship K(t) = βZ(t)k∗ + k∗L to obtain the growth rates for

Z(t), K(t) and Y (t), Steigum uses a different way to derive the growth rate of output
per capita y(t). We follow his steps in some detail to correct a typo in the formula he
gives for the growth rate.

Since there are neither taxes nor electricity consumption, output per capita is divided
between interest payments, depreciation and wages:

y(t) = (r∗ + δ)m(t) + w∗.

Plugging in (24), we obtain y(t) in explicit functional form:

y(t) = (r∗ + δ)

(
m0 +

w∗

r∗ − n

)
exp(gt)− (r∗ + δ)

w∗

r∗ − n
+ w∗

= (r∗ + δ)

(
m0 +

w∗

r∗ − n

)
exp(gt)− w∗ n+ δ

r∗ − n
.
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Applying the logarithm and differentiating according to time now yields:

ln(y(t)) = gt+ ln

(
(r∗ + δ)

(
m0 +

w∗

r∗ − n

)
− w∗ n+ δ

r∗ − n
exp(−gt)

)
ẏ(t)

y(t)
= g

(
1 +

w∗ n+δ
r∗−n

exp(−gt)

(r∗ + δ)
(
m0 +

w∗
r∗−n

)− w∗ n+δ
r∗−n

exp(−gt)

)

= g

(
(r∗ + δ)

(
m0 +

w∗
r∗−n

)
(r∗ + δ)

(
m0 +

w∗
r∗−n

)− w∗ n+δ
r∗−n

exp(−gt)

)

= g

) 1

1− w∗ n+δ
r∗−n

exp(−gt)

(r∗+δ)(m0+
w∗

r∗−n)

) = g

) 1

1− w∗(n+δ) exp(−gt)

(r∗+δ)(r∗−n)(m0+
w∗

r∗−n)

)
= g

(
1

1− w∗(n+δ) exp(−gt)
(r∗+δ)cp(0)

)
̸= g

(
1

1− w∗(n+δ) exp(−gt)
(r∗+δ)(r∗−n)cp(0)

)
,

where the last term is the erroneous formula given in Steigum (2011). Proceeding with
the correct expression and setting n = 0, we obtain further:

Ẏ (t)

Y (t)
=

ẏ(t)

y(t)
= g

) 1

1− w∗ δ
r∗+δ

exp(−gt)

r∗m0+w∗

) = g

) 1

1− w∗L δ
r∗+δ

exp(−gt)

r∗M0+w∗L

) .

In order for this to be consistent with the growth rate from Proposition 2, g

) 1

1−
(w∗− r∗

β
)L exp(−gt)

r∗M0+w∗L

),

we need to show that

w∗ δ

r∗ + δ
= w∗ − r∗

β

holds when there are no taxes (τE = τZ = 0) and no electricity costs (PE = 0). Plugging
(19) and (21) into the left and then right side yields:

δ
w∗

r∗ + δ
= δ

(1− α)A (k∗)α

(1− α)Aβ (k∗)α
=

δ

β

w∗ − r∗

β
= (1− α)A (k∗)α − (1− α)A

β

β
(k∗)α +

δ

β
=

δ

β
.

Therefore the growth rates we derived for M(t) and Y (t) are both consistent with those
obtained by Steigum (2011). Note that Steigum does not derive growth rates for K(t) or
Z(t).
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2.7 Growth Rates with Transfers

We now introduce government transfers Tr(t) into the model. At each point in time, the
government transfers all of its tax and electricity revenues back to households. Alterna-
tively, we could also assume that the government does not act as the electricity supplier
and transfers back only the tax revenue - in this case, replace (1 + τE) with τE in the
following calculations.

Given the transfers, the (aggregate) household budget constraint now looks like this
along the BGP (M(t) = K(t) + Z(t)):

Ṁ(t) =r∗M(t)− C(t) + w∗L+ Tr(t)

Ṁ(t) =r∗M(t)− C(t) + w∗L+ (1 + τE)PE(ξKK(t) + ξZZ(t)) + τZR
∗
ZZ(t).

Note that this does not fundamentally affect the household optimization problem, mean-
ing that consumption growth is still governed by the Ramsey rule

Ċ(t)

C(t)
=

r∗ − ρ

θ
= g,

and that aggregate consumption develops according to

C(t) = C(0) exp(gt) (25)

where C(0) is the initial level of optimal aggregate consumption. The no-Ponzi game
condition must hold for total capitalM(t) = K(t)+Z(t) and, sinceK(t) = βk∗Z(t)+k∗L,
also for the individual capital stocks Z(t) and K(t)

lim
t→∞

M(t) exp(−r∗t) = 0 (26)

lim
t→∞

K(t) exp(−r∗t) = 0 (27)

lim
t→∞

Z(t) exp(−r∗t) = 0. (28)

According to the intertemporal budget constraint, the present value of consumption must
be equal to initial total capital (M0 = Z0 + K0) plus the present value of wage income
and the present value of all future transfers (µ):∫ ∞

0

C(t) exp(−r∗t)dt = K0 + Z0 +
w∗
r∗ L+

∫ ∞

0

Tr(t) exp(−r∗t)dt, ,, ,
µ:=

.

Substituting in (25) and K0 = βk∗Z0 + k∗L yields∫ ∞

0

C(0) exp((g − r∗)t)dt =
C(0)

r∗ − g
= βk∗Z0 + Z0 + k∗L+ w∗

r∗ L+ µ

=⇒ C(0) = (r∗ − g)
[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
. (29)
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Using the fact that Ż(t) = 1
1+k∗βṀ(t) and substituting in K(t) = βk∗Z(t)+k∗L wherever

possible, we obtain the following inhomogeneous linear differential equation for Z(t):

Ż(t) =
1

1 + k∗β

{
r∗K(t) + r∗Z(t)− C(t) + w∗L+ (1 + τE)PE(ξKK(t) + ξZZ(t)) + τZR

∗
ZZ(t)

}
Ż(t) =

1

1 + k∗β

{
r∗βk∗Z(t) + r∗k∗L+ r∗Z(t)− (r∗ − g)

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
exp(gt)

+ w∗L+ (1 + τE)PEξKβk
∗Z(t) + (1 + τE)PEξKk

∗L+ (1 + τE)PEξZZ(t) + τZR
∗
ZZ(t)

}
=

1

1 + k∗β

{
(1 + k∗β)r∗ + (1 + τE)PEξKβk

∗ + (1 + τE)PEξZ + τZR
∗
Z, ,, ,

τ :=

}
Z(t)

+
1

1 + k∗β

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

− 1

1 + k∗β
(r∗ − g)

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
exp(gt)

This type of differential equation has the general solution

Z(t) =B exp

([
r∗ +

τ

1 + k∗β

]
t

)
− 1

(r∗ + τ
1+k∗β )

1

(1 + k∗β)

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

+
(r∗ − g)(

r∗ − g + τ
1+k∗β

) 1

(1 + k∗β)

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
exp(gt)

=B exp

([
r∗ +

τ

1 + k∗β

]
t

)
− 1

r∗(1 + k∗β) + τ

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

+
(r∗ − g)

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
exp(gt).

At this point, one would usually consider Z(0) to determine the integration constant
B. However, since we have a second unknown constant µ, this approach will not work.
Instead, we argue that if B ̸= 0 the resulting Z(t) would grow at a faster rate than r∗,
violating the no-Ponzi game condition (28). Therefore B = 0 must hold. We will later
check the correctness of this assumption by calculating Z(0).
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Next, we determine the value of µ by inserting Z(t) into the definition of µ:

µ =

∫ ∞

0

Tr(t) exp(−r∗t)dt

=

∫ ∞

0

[(1 + τE)PE(ξKK(t) + ξZZ(t)) + τZR
∗
ZZ(t)] exp(−r∗t)dt

=

∫ ∞

0

(1 + τE)PEξKk
∗L exp(−r∗t)dt

+

∫ ∞

0

[(1 + τE)PEξKβk
∗ + (1 + τE)PEξZ + τZR

∗
Z ], ,, ,

τ=

Z(t) exp(−r∗t)dt

=
(1 + τE)PEξKk

∗L
r∗

−
∫ ∞

0

τ

r∗(1 + k∗β) + τ

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L exp(−r∗t)dt

+

∫ ∞

0

τ(r∗ − g)

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
exp((g − r∗)t)dt

=
(1 + τE)PEξKk

∗L
r∗

− τ

r∗(1 + k∗β) + τ

{
k∗ + w∗

r∗ +
(1 + τE)PEξKk

∗

r∗

}
L

+
τ

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]

=
(1 + k∗β)(1 + τE)PEξKk

∗L
r∗(1 + k∗β) + τ

− τ

r∗(1 + k∗β) + τ

{
k∗ + w∗

r∗

}
L

+
τ

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
.

We can now solve for µ:

µ ·
(
1− τ

(r∗ − g)(1 + k∗β) + τ

)
= µ · (r∗ − g)(1 + k∗β)

(r∗ − g)(1 + k∗β) + τ

=
(1 + k∗β)(1 + τE)PEξKk

∗L
r∗(1 + k∗β) + τ

− τ

r∗(1 + k∗β) + τ
(k∗ + w∗

r∗ )L

+
τ

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L
]

=⇒ µ =
(r∗ − g)(1 + k∗β) + τ

(r∗ − g)(1 + k∗β)
·
{
(1 + k∗β)(1 + τE)PEξKk

∗L
r∗(1 + k∗β) + τ

− τ

r∗(1 + k∗β) + τ
(k∗ + w∗

r∗ )L

}
+

τ

(r∗ − g)(1 + k∗β)

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L
]
.
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Finally, we obtain Z(t):

Z(t) =− 1

r∗(1 + k∗β) + τ

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

+
(r∗ − g)

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L+ µ
]
exp(gt)

=− 1

r∗(1 + k∗β) + τ

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

+
(r∗ − g)

(r∗ − g)(1 + k∗β) + τ

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L
](

1 +
τ

(r∗ − g)(1 + k∗β)

)
exp(gt)

+
1

1 + k∗β

{
(1 + k∗β)(1 + τE)PEξKk

∗L
r∗(1 + k∗β) + τ

− τ

r∗(1 + k∗β) + τ
(k∗ + w∗

r∗ )L

}
exp(gt)

=− 1

r∗(1 + k∗β) + τ

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

+
1

1 + k∗β

[
(1 + k∗β)Z0 + (k∗ + w∗

r∗ )L
]
exp(gt)

+
1

1 + k∗β

{
(1 + k∗β)(1 + τE)PEξKk

∗L
r∗(1 + k∗β) + τ

− τ

r∗(1 + k∗β) + τ
(k∗ + w∗

r∗ )L

}
exp(gt)

=− 1

r∗(1 + k∗β) + τ

{
r∗k∗ + w∗ + (1 + τE)PEξKk

∗
}
L

+

{
Z0 + (k∗ + w∗

r∗ )L · r∗

r∗(1 + k∗β) + τ
+

(1 + τE)PEξKk
∗L

r∗(1 + k∗β) + τ

}
exp(gt)

=(Z0 + a) exp(gt)− a,

where a :=
(r∗k∗ + w∗ + (1 + τE)PEξKk

∗)L
r∗(1 + k∗β) + τ

. Lastly, we check if we were justified in

setting the integration variable B = 0 by examining Z(0):

Z(0) = Z0 + a− a = Z0.

With the validity of Z(t) confirmed, we may proceed to determine the growth rate of
Z(t) by applying the logarithm and differentiating according to time:

ln(Z(t)) = ln(exp(gt)) + ln(Z0 + a− a exp(−gt))

Ż(t)

Z(t)
=g +

1

Z0 + a− a exp(−gt)
ga exp(−gt)

=g · Z0 + a

Z0 + a− a exp(−gt)

=g · 1

1− a exp(−gt)
Z0+a

Again, we can immediately see that Z(t) grows faster than g, since a > 0, and that the
growth rate goes towards g as t → ∞. To obtain a more explicit form of the growth rate,
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we have to consider the term a
Z0+a

:

a

Z0 + a
=

(r∗k∗+w∗+(1+τE)PEξKk∗)L
r∗(1+k∗β)+τ

r∗(1+k∗β)Z0+r∗k∗L+τZ0+(1+τE)PEξKk∗L+w∗L
r∗(1+k∗β)+τ

=
(r∗k∗ + w∗ + (1 + τE)PEξKk

∗)L
r∗(Z0 + k∗βZ0 + k∗L, ,, ,

=K0

) + w∗L+ τZ0 + (1 + τE)PEξKk
∗L, ,, ,

=Tr(0)

=
(r∗k∗ + w∗ + (1 + τE)PEξKk

∗)L
Yd(0)

,

where Yd(0) is the (aggregate) disposable income at t = 0. Therefore, the growth rate of
Z(t) becomes:

Ż(t)

Z(t)
= g · 1

1− (r∗k∗+w∗+(1+τE)PEξKk∗)L exp(−gt)
r∗(Z0+K0)+w∗L+Tr(0)

= g · 1

1− (r∗k∗+w∗+(1+τE)PEξKk∗)L exp(−gt)
Yd(0)

This is different than the growth rate derived in the case without transfers, which was
g · 1

1− (w∗+k∗r∗)L exp(−gt)
(Z0+K0)r

∗+w∗L
. Keep in mind that the growth rate of consumption g is the same

in either case, since it was unaffected by the introduction of transfers. To find out which
rate is higher, we have to consider automation capital in its simplified functional form,
Z(t) = (Z0 + a) exp(gt) − a. It should be noted that all of the capital stocks can be
described in this form and we can observe that the growth rate

Ż(t)

Z(t)
= g · 1

1− a exp(−gt)
Z0+a

depends positively on the term 0 < a
Z0+a

< 1 for a > 0, Z0 > 0. Forming the derivative of
this term with respect to a, we can see that higher values of the constant a are associated
with higher growth rates:

d

da

[
a

Z0 + a

]
=

Z0

(Z0 + a)2
> 0.

This means we can simply look at functional form of automation capital in the case
without transfers,

Z̃(t) =
(Z0 + k∗βZ0 + k∗L+ w∗

r∗ L) exp(gt)− w∗
r∗ L− k∗L

1 + k∗β

=

(
Z0 +

(k∗ + w∗
r∗ )L

1 + k∗β, ,, ,
ã:=

)
exp(gt)− ã,

and compare a with ã to see which growth rate is larger.

ã =
(k∗ + w∗

r∗ )L

1 + k∗β
>

(r∗k∗ + w∗ + (1 + τE)PEξKk
∗)L

r∗(1 + k∗β) + τ
= a

⇐⇒ r∗(1 + k∗β)(k∗ + w∗
r∗ ) + τ(k∗ + w∗

r∗ ) > (1 + k∗β)(r∗k∗ + w∗ + (1 + τE)PEξKk
∗)

⇐⇒ τ(k∗ + w∗
r∗ ) > (1 + k∗β)(1 + τE)PEξKk

∗
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Keeping in mind that w∗ > r∗
β
, as already shown in section 2.5, we can now substitute in

τ = (1 + τE)PEξKβk
∗ + (1 + τE)PEξZ + τZR

∗
Z , which yields:

(1 + τE)PEξKk
∗βk∗ + (1 + τE)PEξKk

∗ w
∗β
r∗,,,,
>1

+((1 + τE)PEξZ + τZR
∗
Z) (k

∗ + w∗
r∗ ), ,, ,

≥0

>(1 + k∗β)(1 + τE)PEξKk
∗.

This statement is obviously correct, proving ã > a, which means that introducing trans-
fers slows down the growth of automation capital.

Economically, this can be explained the following way: With the additional transfers,
initial household disposable income Yd(0) increases, which can be used to save or consume.
While the growth rate of consumption g remains unchanged, households choose a higher
initial level C(0) [see (29)], and therefore consumption C(t) is increased at every point
in time. Households therefore enjoy a higher level of utility and they choose to actually
save less than in the case without transfers.

Next, we consider the growth rates of traditional capital K(t) and output Y (t). Using
Z0 =

K0−k∗L
k∗β , we obtain

K(t) = k∗βZ(t) + k∗L

= k∗β ((Z0 + a) exp(gt)− a) + k∗L

= (K0 −k∗L+ ak∗β, ,, ,
b:=

) exp(gt) + k∗L− ak∗β

= (K0 + b) exp(gt)− b.

Using the same procedure as before yields the following growth rate:

K̇(t)

K(t)
=

Ẏ (t)

Y (t)
= g · 1

1− b exp(−gt)
K0+b

.

Again, we need to take a closer look at the term b
K0+b

, using K0

k∗β = Z0 +
L
β
:

b =
[k∗β(r∗k∗ + w∗ + (1 + τE)PEξKk

∗)− r∗k∗(1 + k∗β)− τk∗]L
r∗(1 + k∗β) + τ

=
[k∗β(w∗ + (1 + τE)PEξKk

∗)− r∗k∗ − τk∗]L
r∗(1 + k∗β) + τ

=

[
w∗ + (1 + τE)PEξKk

∗ − r∗
β
− τ

β

]
k∗βL

r∗(1 + k∗β) + τ

29



K0 + b =

[
r∗(1 + k∗β) K0

k∗β + τ K0

k∗β + (w∗ + (1 + τE)PEξKk
∗)L− r∗

β
L− τ

β
L
]
k∗β

r∗(1 + k∗β) + τ

=

[
r∗(1 + k∗β)Z0 + τZ0 +

L
β
r∗(1 + k∗β − 1) + τ

β
L− τ

β
L+ (w∗ + (1 + τE)PEξKk

∗)L
]
k∗β

r∗(1 + k∗β) + τ

=

[||r∗(1 + k∗β)Z0 + r∗k∗L, ,, ,
=r∗(Z0+K0)

+τZ0 + (w∗ + (1 + τE)PEξKk
∗)L

]|| k∗β

r∗(1 + k∗β) + τ

b

K0 + b
=

[
w∗ + (1 + τE)PEξKk

∗ − r∗
β
− τ

β

]
L

r∗(Z0 +K0) + τZ0 + (w∗ + (1 + τE)PEξKk∗)L

=

[
w∗ + (1 + τE)PEξKk

∗ − r∗
β
− τ

β

]
L

r∗(Z0 +K0) + w∗L+ Tr(0)
=

[
w∗ + (1 + τE)PEξKk

∗ − r∗
β
− τ

β

]
L

Yd(0)

We can now obtain the growth rate of K(t) and Y (t) as:

K̇(t)

K(t)
=

Ẏ (t)

Y (t)
= g· 1

1− (w∗+(1+τE)PEξKk∗− r∗
β
− τ

β )L exp(−gt)

r∗(Z0+K0)+w∗L+Tr(0)

= g· 1

1− (w∗+(1+τE)PEξKk∗− r∗
β
− τ

β )L exp(−gt)

Yd(0)

.

Like in the case without transfers, traditional capital grows slower than automation cap-
ital. Also, K(t) and Y (t) again grow faster than g, since substituting in τ and r∗ yields:

w∗ + (1 + τE)PEξKk
∗ − r∗

β
− τ

β

=w∗ + (1 + τE)PEξKk
∗ − 1

1 + τZ

[|(1− α)A(k∗)α, ,, ,
=w∗

−(1 + τE)PEξZ
1

β

]|+
δ

β

− (1 + τE)PEξKk
∗ − (1 + τE)PEξZ

1

β
− τZR

∗
Z

1

β

=w∗ − 1

1 + τZ

[
w∗ − (1 + τE)PEξZ

1

β

]
+

δ

β
− (1 + τE)PEξZ

1

β

− τZ
1 + τZ

[
w∗ − (1 + τE)PEξZ

1

β

]
=

δ

β
> 0.

Therefore, traditional capital and output outpace consumption and we can derive an
alternate formula for the growth rate:

K̇(t)

K(t)
=

Ẏ (t)

Y (t)
= g · 1

1−
δ
β
L exp(−gt)

r∗(Z0+K0)+w∗L+Tr(0)

,

which is similar to the rate derived by Steigum (2011), see section 2.6. It’s easy to see
that, if there was no deprecation, K(t) and Y (t) would grow at the constant rate g.
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Comparing with the transfer-less growth rate of traditional capital and output,

g · 1

1− (w∗− r∗
β
)L exp(−gt)

(Z0+K0)r∗+w∗L

we can see that it is higher than the one including transfers, if and only if

(w∗ − r∗
β
)L

(Z0 +K0)r∗ + w∗L
>

(
w∗ + (1 + τE)PEξKk

∗ − r∗
β
− τ

β

)
L

r∗(Z0 +K0) + w∗L+ Tr(0)
.

Obviously, the denominator on the right side is larger. Therefore, if we can show that the
right-hand side numerator is smaller than the one on the left, the statement is proven.
Simply substituting in τ yields:

w∗ − r∗

β
> w∗ + (1 + τE)PEξKk

∗ − r∗

β
− τ

β

⇐⇒ (1 + τE)PEξKk
∗ + (1 + τE)PEξZ

1

β
+ τZR

∗
Z

1

β
> (1 + τE)PEξKk

∗

⇐⇒ (1 + τE)PEξZ
1

β
+ τZR

∗
Z

1

β
> 0.

This statement is true, proving that the inclusion of transfers also slows down the growth
of output and traditional capital.

Finally, we derive the growth rate of total capital M(t):

M(t) = Z(t) +K(t) = Z(t)(1 + k∗β) + k∗L

= (1 + k∗β)(Z0 + a) exp(gt)− (1 + k∗β)a+ k∗L

= (Z0 + k∗βZ0 + k∗L, ,, ,
=Z0+K0=M0

−k∗L+ (1 + k∗β)a, ,, ,
c:=

) exp(gt)− (1 + k∗β)a+ k∗L

= (M0 + c) exp(gt)− c

Like before, we can calculate the growth rate:

Ṁ(t)

M(t)
= g · 1

1− c exp(−gt)
K0+Z0+c

.
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More explicitly, using τK0 = τk∗βZ0 + τk∗L, we obtain:

c =
(r∗k∗ + w∗ + (1 + τE)PEξKk

∗)(1 + k∗β)L
r∗(1 + k∗β) + τ

− k∗L

=
(r∗k∗ − r∗k∗ + w∗ + (1 + τE)PEξKk

∗)(1 + k∗β)L− τk∗L
r∗(1 + k∗β) + τ

=
(w∗ + (1 + τE)PEξKk

∗)(1 + k∗β)L− τk∗L
r∗(1 + k∗β) + τ

K0 + Z0 + c =
(w∗ + (1 + τE)PEξKk

∗)(1 + k∗β)L− τk∗L+ (1 + k∗β)r∗(K0 + Z0) + τK0 + τZ0

r∗(1 + k∗β) + τ

=
(w∗ + (1 + τE)PEξKk

∗)(1 + k∗β)L+ (1 + k∗β)r∗(K0 + Z0) + (1 + k∗β)τZ0

r∗(1 + k∗β) + τ

c

K0 + Z0 + c
=

(
w∗ + (1 + τE)PEξKk

∗ − τ k∗
1+k∗β

)
L

(w∗ + (1 + τE)PEξKk∗)L+ r∗(K0 + Z0) + τZ0

=

(
w∗ + (1 + τE)PEξKk

∗ − τ k∗
1+k∗β

)
L

r∗(K0 + Z0) + w∗L+ Tr(0)
=

(
w∗ + (1 + τE)PEξKk

∗ − τ k∗
1+k∗β

)
L

Yd(0)
,

which yields a total capital growth rate of:

Ṁ(t)

M(t)
= g· 1

1− (w∗+(1+τE)PEξKk∗−τ k∗
1+k∗β )L exp(−gt)

r∗(K0+Z0)+w∗L+Tr(0)

= g· 1

1− (w∗+(1+τE)PEξKk∗−τ k∗
1+k∗β )L exp(−gt)

Yd(0)

.

It can easily be seen that this rate is higher than the growth rate of K(t) (and therefore
also higher than the one of C(t)), since

τ(1 + k∗β) > τk∗β

=⇒ τ

β
> τ

k∗

1 + k∗β

=⇒
(
w∗ + (1 + τE)PEξKk

∗ − τ k∗
1+k∗β

)
L

Yd(0)
>

(
w∗ + (1 + τE)PEξKk

∗ − r∗
β
− τ

β

)
L

Yd(0)
,

and it is lower than the growth rate of automation capital Z(t), since(
w∗ + (1 + τE)PEξKk

∗ − τ k∗
1+k∗β

)
L

Yd(0)
<

(r∗k∗ + w∗ + (1 + τE)PEξKk
∗)L

Yd(0)
.

The introduction of transfers slows down the growth of K(t) and Z(t), and therefore the
same must be true for total capital M(t) = K(t) + Z(t).
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2.8 Impact of Taxation

In this section, we consider the effects of both types of taxes on the economy along the
balanced growth path. We prove these subsequent statements:

Proposition 3. As long as the BGP rental rate for capital R∗
Z = R∗

K is positive, the
following holds:

i) The introduction of a robot tax raises the BGP wage w∗. If automation capital is
relatively power efficient, i.e. ∆ξ =

ξZ
ξK

− (1 + τZ) < 0, then an electricity tax lowers
w∗. Otherwise, the opposite holds.

ii) Both types of taxes decrease the BGP interest rate r∗.

iii) Both types of taxes decrease the consumption growth rate g.

Proof. We first look at the impact of taxes on the BGP traditional capital intensity k∗.
Keeping in mind that k∗ is defined by Σ(k∗(PE, τE, τZ), PE, τE, τZ) = 0 [see (16)] and that
Σk(k

∗) < 0, we can form the derivative of the implicit function:

dk∗

dτZ
= −ΣτZ (k

∗)
Σk(k∗)

= − 1

Σk(k∗), ,, ,
>0

αA (k∗)α [(1− α) βA (k∗)α − (1 + τE)PEξZ ]

[(1− α) βA (k∗)α − (1 + τE)PEξK∆ξ]
2 ,

dk∗

dτE
= −ΣτE(k

∗)
Σk(k∗)

= − 1

Σk(k∗), ,, ,
>0

αA (k∗)α (1 + τZ)PEξK∆ξ

[(1− α) βA (k∗)α − (1 + τE)PEξK∆ξ]
2

where

dk∗

dτZ
> 0 ⇐= (1− α) βA (k∗)α − (1 + τE)PEξZ = R∗

Z (1 + τZ) > 0,

dk∗

dτE
< 0 ⇐⇒ ∆ξ =

ξZ
ξK

− (1 + τZ) < 0.

The robot tax tends to increase the traditional capital intensity as long as the rental
rate for capital is positive [see (7)]. Intuitively, this makes perfect sense, since the tax
makes automation capital less attractive to investors, who shift their investments towards
traditional capital instead. The energy tax, in turn, may lower the traditional capital
intensity only if automation capital is equal or less energy intensive than conventional
capital or otherwise if the robot tax is sufficiently high. And since the wage rate depends
positively on the traditional capital intensity

w∗ = (1− α)A(k∗)α,

the taxes have the same effect on w∗, proving the first statement. The fact that it raises
wages could be used as an argument in favor of a robot tax, considering that wages
otherwise stagnate while all benefits from growth are reaped by capital. In our model,
both streams of income are of course paid out to the representative household, but in the
real world, where capital is unevenly distributed, this might lead to rising inequality.
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Next, we consider the tax impacts on the interest rate r∗,

r∗ =
1

1 + τZ
[(1− α) βA (k∗)α − (1 + τE)PEξZ ]− δ

= αA (k∗)α−1 − (1 + τE)PEξK − δ.

Taking the derivative with respect to τZ yields

dr∗

dτZ
= −α(1− α)A(k∗)α−2 dk∗

dτZ,,,,
>0

< 0,

meaning that a robot tax decreases the interest rate. This is hardly surprising since
(ceteris paribus) the tax makes it more expensive and less attractive for firms to rent
automation capital. The companies partially compensate for the tax burden by reducing
the amount they pay to the capital owners.

To derive the effect of the electricity tax on r∗, we need to distinguish two cases.

Case 1: dk∗
dτE

≥ 0

Taking the derivative of r∗ with respect to τZ yields

dr∗

dτE
= −α(1− α)A(k∗)α−2 dk∗

dτZ,,,,
≥0

−PEξK < 0.

Case 2: dk∗
dτE

< 0

This time, we use the alternate formula for r∗ to calculate the derivative:

dr∗

dτE
=

1

1 + τZ

[
α (1− α) βA (k∗)α−1 dk∗

dτZ,,,,
<0

−PEξZ

]
< 0.

Again, this result is not surprising because the electricity tax makes it more expensive
for firms to rent capital.

Finally, since

g =
r∗ − ρ

θ
,

both types of taxes lower the consumption growth rate g along with r∗. Intuitively, this
makes sense, due to the fact that the taxes disincentivize and hamper the accumulation
of both capital stocks, which is the engine of economic growth in this model framework.
Conversely, this means that subsidizing robots or electricity could increase growth, at
least when paid for with a lump-sum tax.
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2.9 Dynamics of the Model

It is worthwhile to take a closer look at the dynamics of the model, along and off the
balanced growth path. As derived from the household problem, aggregate consumption
C(t) develops according to the Ramsey rule (3)

Ċ(t)

C(t)
=

r(t)− ρ

θ
,

with the interest rate r(t) being the weighted average between the two interest rates for
owning automation capital rZ(t) and traditional capital rK(t)

rZ(t) = RZ(t)− δ =
1

1 + τZ

{
(1− α)βA

[
K(t)

βZ(t) + L

]α
− (1 + τE)PEξZ

}
− δ

rK(t) = RK(t)− δ = αAK(t)α−1[βZ(t) + L]1−α − (1 + τE)PEξK − δ

r(t) =
Z(t)rZ(t) +K(t)rK(t)

Z(t) +K(t)
.

Along the BGP, the no-arbitrage condition is fulfilled such that rZ(t) = rK(t) = r∗ and
C(t) therefore grows at a constant rate

Ċ(t)

C(t)
= g =

αA
(

1
k∗
)1−α − (1 + τE)PEξK − δ − ρ

θ
.

The development of total capital, i.e. net investment, M(t) = K(t) + Z(t) is governed
by the aggregate household budget constraint:

Ṁ(t) = r(t)M(t) + w(t)L− C(t) + Tr(t)

= Y (t)− (1 + τE)PEE(t)− τZRZ(t)Z(t)− δM(t)− C(t) + Tr(t),

where government transfers, depending on the chosen model setup, could be:

i) Tr(t) = 0 (no transfers),

ii) Tr(t) = τEPEE(t) + τZRZ(t)Z(t) (transfer of tax revenue),

iii) Tr(t) = (1 + τE)PEE(t) + τZRZ(t)Z(t) (transfer of tax revenue and proceeds from
electricity production).

While off the BGP, the interest rates for both types of capital are not equal. Households
will then decide to invest all of their savings into the type of capital which yields the
better return, while letting the other depreciate. This will continue until k(t) reaches
its equilibrium value k∗, at which point the no-arbitrage condition will be fulfilled and
both investments will be equally profitable. For instance, if there is relatively too little
automation capital, k(t) > k∗, then rZ(t) > rK(t) follows, meaning that the relatively
scarce Z(t) yields a higher return. Households will then invest according to

Ż(t) = Y (t)− (1 + τE)PEE(t)− τZRZ(t)Z(t)− C(t) + Tr(t)− δZ(t)

K̇(t) = −δK,
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which lowers k(t) until the equilibrium level k∗ is reached. On the BGP, Z(t) and K(t)

have to develop precisely in such a way that k(t) = K(t)
βZ(t)+L

does not change from k∗.

K(t) = k∗βZ(t) + k∗L

=⇒ K̇(t) = k∗βŻ(t)

=⇒ Ṁ(t) = K̇(t) + Ż(t) = (1 + k∗β)Ż(t)

=⇒ Ż(t) =
1

1 + k∗β
Ṁ(t)

=⇒ K̇(t) =
k∗β

1 + k∗β
Ṁ(t)

Note that 1
1+k∗β is the share of net investment going to automation capital, whereas k∗β

1+k∗β
is the share going to traditional capital. K(t) will receive more investment than Z(t) if

k∗β =
K(t)

Z(t) + L/β
> 1

⇐⇒ K(t) > Z(t) + L/β,

i.e. if the equilibrium requires more traditional capital than the sum of automation capital
and workers (in final goods terms). The reverse is true if k∗β < 1.

From these considerations it also becomes clear why Z(t) needs to always grow at a
higher rate than K(t) along the BGP: Consider the case k∗β = 1, where both capital
stocks receive exactly half of net investment, which keeps the ratio k∗ in equilibrium such
that interest rates are equalized. K(t)

Z(t)+L/β
= 1 implies that Z(t) < K(t). Since both

Z(t) and K(t) increase by the same amount of investment in absolute terms, automation
capital’s growth rate must therefore be higher. The growth rates will converge as K(t)
and Z(t) go towards infinity, because the term L/β in the denominator will become
irrelevant.
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3 Comparative Statics

3.1 Calibration

The model is calibrated with data from the U.S. manufacturing sector, since it is a part
of the economy with good data availability and also heavily affected by automation.

The Current Population Survey (2021) conducted by the Bureau of the Census for the
Bureau of Labor Statistics estimates that there were 14.718 million people employed in
the manufacturing industry in 2021. Taking the average of Bureau of Economic Analysis
(2022b) quarterly data, the manufacturing sector contributed 2563.3 billion U.S. dollars
value added to GDP during 2021. In this and subsequent sections, we assume that
electricity is purchased from an external energy sector and therefore its cost needs to be
subtracted from output to obtain value added, i.e. GDP (t) = Y (t)− E(t)PE.

The Federal Reserve Board (2022) estimates the capital stock to be 3012.7082 billion
in 2012 dollars, roughly 3555 billion in 2021 dollars. The International Federation of
Robotics (2021) reports in its World Robotics 2021 Industrial Robots report that there
were a total of 310700 operational industrial robots in the United States in 2020. We
can combine this number with the estimate by Acemoglu and Restrepo (2020) that an
industrial robot can on average perform roughly the work of 3 humans in simple tasks to
obtain R0 := βZ0 = 3 · 310700 = 932100.

We assume a conventional depreciation rate of 10% and a conventional discount rate of
5% (Bureau of Economic Analysis, 2013; Warner and Pleeter, 2001). We set the elasticity
of output with respect to traditional physical capital employment at the conventional
level of 1/3 and set θ such that the elasticity of intertemporal substitution is equal to 0.5
(Guvenen, 2006).

According to the U.S. Energy Information Administration (2022), the average price
of industrial electricity was 7.26 Cents / kWh in 2021 and the manufacturing sector
used 894476 million kWh of electricity in 2018 (U.S. EIA, 2018). The electricity usage
parameters are determined such that ξZ is scaled up or down in relation to ξK , i.e.
ξZ = sξZξK , and the model reproduces annual electricity consumption. For now, the
scaling factor is chosen as sξZ = 1.4, meaning that automation capital uses 40% more
electricity than traditional capital. Later on, we will also consider the opposite case. The
OECD (2019) reports that there were no taxes on industrial electricity use in the U.S. in
2019.
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Table 1: Parameter values

Parameter Value Parameter Value

ρ 0.05 L 14.718 million
δ 0.10 α 1/3
θ 2.00 PE 0.0726 USD/kWh
M0 3555 billion USD R0 932100
E0 894476 million kWh sξZ 1.4
τE 0 τZ 0
GDP0 2563.3 billion USD Y0 2628.2 billion USD

The following system of equations has to be solved in order to derive the final param-
eters A, β, K0, ξK and ξZ , assuring that the model replicates the observed output and
that the economy presently follows the BGP.

A =
Y0

Kα
0 (R0 + L)1−α

M0 = K0 +
R0

β

E0 = K0ξK +
R0

β
ξZ

ξZ = sξZξK

β =
α(1 + τZ)A

(
K0

R0+L

)α−1

− (1 + τE)PE(ξK(1 + τZ)− ξZ)

(1− α)A
(

K0

R0+L

)α

The first equation assures that total factor productivity is set such that the model re-
produces the real world output Y0. The second equation guarantees that total capital
is equal to traditional capital plus automation capital. The third equation assures that
electricity consumption equals the real world equivalent, while the forth simply applies
the scaling factor sξZ to ξK in order to obtain ξZ .

The final equation makes sure that β is determined such that the economy is on
the BGP at t = 0, i.e. that k∗ = k0 = K0

R0+L
. It is derived from (15), the equation

characterizing k∗. If k0 = k∗, then it must hold that:

k0 =
α (1 + τZ)A(k0)

α

(1− α) βA(k0)α + (1 + τE)PE(ξK(1 + τZ)− ξZ)

⇐⇒ (1− α)βA(k0)
α + (1 + τE)PE(ξK(1 + τZ)− ξZ) = α (1 + τZ)A(k0)

α−1

⇐⇒ (1− α)βA(k0)
α = α (1 + τZ)A(k0)

α−1 − (1 + τE)PE(ξK(1 + τZ)− ξZ)

⇐⇒ β =
α (1 + τZ)A(k0)

α−1 − (1 + τE)PE(ξK(1 + τZ)− ξZ)

(1− α)A(k0)α
.
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Solving the equations, we obtain the final parameters. β = 2.5195×10−6 indicates that
in order to purchase enough automation capital to do the work of 1 human, one would have
to spend 1

β
= 396908$. Considering the cost of industrial robots, this is on the high side,

but one should keep in mind that not all human tasks are easily automatized. We also get
a value for Z0 =

R0

β
= 370 billion USD, or 10.4% of total capital, while K0 = 3185 billion

USD represents the remaining 89.6%, suggesting that traditional capital still dominates
in terms of quantity. The electricity usage parameters, which state how much kWh one
unit of capital consumes annually, are determined to be ξK = 0.2416 and ξZ = 0.3382.

Table 2: Derived parameter values

Parameter Value Parameter Value

A 2855.1 β 2.5195× 10−6

K0 3185 billion USD Z0 370 billion USD
ξK 0.2416 ξZ 0.3382

3.2 Values Considered

For comparative statics, we are going to look at 3 categories of variables. Firstly, short
term variables, meaning the value of a variable at t = 0, after the shock (parameter
change) has occurred. These are the short term interest rates rZ(0) and rK(0), as well as
short term tax revenue T (0):

rZ(0) =
1

1 + τZ

{
(1− α)βA

[
K(0)

βZ(0) + L

]α
− (1 + τE)PEξZ

}
− δ

rK(0) = αAK(0)α−1[βZ(0) + L]1−α − (1 + τE)PEξK − δ

T (0) = τZRZ(0)Z(0) + τEPE[ξKK(0) + ξZZ(0)].

Secondly, we have variables which are constant on the balanced growth path. This is
true of the consumption growth rate g, the wage w∗, the traditional capital intensity k∗,
output per unit of traditional capital

(
Y
K

)∗
, and the BGP interest rates r∗Z and r∗K :

k∗ =
α (1 + τZ)A(k

∗)α

(1− α) βA(k∗)α − (1 + τE)PEξK∆ξ

g =
αA

(
1
k∗
)1−α − (1 + τE)PEξK − δ − ρ

θ

r∗Z =
1

1 + τZ
[(1− α) βA (k∗)α − (1 + τE)PEξZ ]− δ,

r∗K =αA

(
1

k∗

)1−α

− (1 + τE)PEξK − δ

w∗ =(1− α)A (k∗)α(
Y

K

)∗
=A(k∗)α−1.
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Lastly, there are long term variables which are not constant along the BGP, but converge
towards a fixed value as t → ∞. This applies to electricity consumption per unit of tra-
ditional capital E

K
, tax revenue per unit of traditional capital T

K
, electricity consumption

(in kWh) per unit of output E
Y
, the proportion of output used to buy electricity EPE

Y
, tax

revenue per unit of output T
Y
and the proportion of tax revenue to GDP (value added):

E

K
(∞) = lim

t→∞
ξKK(t) + ξZZ(t)

K(t)
= ξK + lim

t→∞
ξZ

Z(t)

βZ(t) + L, ,, ,
→1/β

βZ(t) + L

K, ,, ,
=1/k∗

T

K
(∞) =

τZR
∗
Z

βk∗ + τEPE

[
ξK +

ξZ
βk∗

]
E

Y
(∞) = lim

t→∞
ξKK(t) + ξZZ(t)

AK(t)(k∗)α−1
=

ξK
A(k∗)α−1

+
ξZ

A(k∗)αβ
EPE

Y
(∞) = PE

[
ξK

A(k∗)α−1
+

ξZ
A(k∗)αβ

]
T

Y
(∞) =

τZR
∗
Z

A(k∗)αβ
+ τEPE

[
ξK

A(k∗)α−1
+

ξZ
A(k∗)αβ

]
.

T

GDP
(∞) =

T

Y
(∞) · 1

1− EPE

Y
(∞)

3.3 The Baseline Case

Using the baseline calibration from above, we get the following results:

T (0) rK(0) r∗K rZ(0) r∗Z k∗ w∗ g

0 15.752% 15.752% 15.752% 15.752% 203515 111958 5.376%

E
Y
(∞) T

Y
(∞) E

K
(∞) EPE

Y
(∞) T

K
(∞) Y

K
(∞) T

GDP
(∞)

1.092 0 0.90109 7.927% 0 0.82518 0

As we can see, all short term and BGP interest rates are the same at 15.752%, as
would be expected if the model was calibrated correctly. Tax revenue is zero since all
tax rates were set to zero. The annual wage of a worker is 111958✩, which more than
the 76391✩ per year reported by the U.S. Bureau of Economic Analysis (2022a) for the
manufacturing sector. The consumption growth rate g = 5.376% is also higher than
the 1.9% annual growth that U.S. manufacturing experienced from 2014-2019 according
to the National Institute of Standards and Technology (2021). In the long term, 1.092
kWh is used to produce a final good worth 1✩ and 7.927% of output is used to purchase
electricity, compared to E0PE

Y0
= 2.47% now.

Since the economy is on the BGP, we can calculate the growth rates of M(t), Z(t)
and K(t) at t = 0 according to Proposition 2. We assume that revenue from electricity
is not transferred to households. This assumption has no consequences on later sections
discussing comparative statics. The results are displayed in Table 3. As we can see,
automation capital more than doubles in a year, with a growth rate of 134.64%, while
total capital grows at a strong 21.20%. Traditional capital and output grow at an 8.02%
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annual rate. The exceptional growth of Z(t) is due to the fact that there is still relatively
little automation capital relative to labor, as R0

R0+L
= 5.96%.

Table 3: Initial Capital Growth Rates

Growth rate Value

gM(0) 21.20%
gZ(0) 134.64%
gK(0) = gY (0) 8.02%

Furthermore, we can calculate and visualize how the growth rates will develop in the
future. The results are plotted in Figure 2. All growth rates fall exponentially towards
g, but it takes more than 30 years to achieve something like convergence. Automation
capital expands at an extreme pace of more than 20% per year for the next half decade
before settling down to a more reasonable speed.

In Figure 3, output is broken down according to the types of expenditures (left) and
income (right) and plotted for the next 30 years. On the expenditure side, we can see that
the consumption share falls from 55% to under 40%, as more money needs to be allocated
to pay for depreciation and electricity costs. Right away, net investment in automation
capital is higher than in traditional capital, at 19% of output (even though there are few
robots initially), before falling slightly. Net investment in traditional capital also falls
marginally. Depreciation and electricity costs are bolstered by the growing automation
capital stock, which increases faster than output Y (t). Depreciation grows from 13.5% to
32.5%, contributing to the fact that gross investment makes up more than 50% of output
after 30 years. Likewise, industrial spending on electricity grows from 2.5% to 7.2%.

In the other plot, we can see that the labor income share collapses from 62.7% to
under 10% in 30 years, since wages and population stagnate. Conversely, the interest
payments to owners of automation capital explode from 2.2% all the way to 32.2%, the
biggest share of the income pie (excluding depreciation), reflecting the growth of the
robot capital stock. The share of income paid out as interest for traditional capital stays
constant at 19%, as K(t) grows at the same rate as Y (t).
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Figure 2: Various growth rates over the next 30 years for the baseline calibration.
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Figure 3: Development of the components of output Y (t) in the baseline calibration over the
next 30 years. On the left, output is broken down according to expenditures, on the right
according to the types of income.
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3.4 A Rise in Electricity Prices

Before discussing taxes, it might be interesting to look at a rise in electricity prices like
the one observed in the present situation. According to the U.S. Energy Information
Administration (2022), industrial electricity prices saw a modest 15% increase over the
2021 average to 8.35 Cents/kWh in May 2022.

Applying a comparative static analysis, we obtain the following results:

T (0) rK(0) r∗K rZ(0) r∗Z k∗ w∗

PE = 0.0726 0 15.75% 15.75% 15.75% 15.75% 203,515 111,958

P̃E = 0.0835 0 15.49% 15.42% 15.38% 15.42% 204,290 112,100
-0.26pp -0.33pp -0.37pp -0.33pp +0.38% +0.13%

E
Y
(∞) T

Y
(∞) E

K
(∞) EPE

Y
(∞) T

K
(∞) Y

K
(∞) g

PE = 0.0726 1.092 0 0.90109 7.927% 0 0.82518 5.38%

P̃E = 0.0835 1.0917 0 0.89859 9.116% 0 0.8231 5.21%
-0.02% -0.28% +1.189pp -0.25% -0.17pp

An immediate effect of the price rise is that the amount of output needed to purchase

electricity increases from E0PE

Y0
= 2.47% to E0P̃E

Y0
= 2.84%, which in turn contracts the

value added of the manufacturing sector (Y0−E0P̃E) by 0.38%. As we can see in the table
above, the price increase leads to a short term imbalance in the interest rates. The return
to automation capital Z(t) sinks by 0.37 percentage points since it consumes electricity.
Likewise, the return to traditional capital K(t) also decreases, but only by 0.26pp since
K(t) is assumed to be using less electricity. This leads to investment in K(t), leading to
a rise in the traditional capital intensity k(t). Due to the relative increase in traditional
capital, the marginal product of labor rises, meaning that workers receive a slightly higher
wage than before. The growth rate g drops modestly to 5.21%. In the long term, there
is a slight decrease in the usage of electricity per unit of output, while the amount spent
on electricity rises from 7.927% to 9.116%.

3.5 Equivalent Taxes

Using comparative statics, this section will explore the possibility of substituting a robot
tax of 10% with an equivalent tax on industrial electricity consumption. However, both
taxes have distinct effects and therefore we will have to examine different ways in which
the taxes produce the same result:

1. Choose τE to equalize short term tax revenue T (0)

2. Choose τE to equalize long term tax revenue per unit of traditional capital T
K
(∞)

3. Choose τE to equalize the BGP traditional capital intensity k∗

4. Choose τE to equalize long term tax revenue per unit of output T
Y
(∞)

5. Choose τE to equalize the BGP growth rate of consumption g
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The results are summarized in Table 4, which includes the case with a 10% robot tax,
the baseline case of no taxes, as well as the 5 versions for obtaining the equivalent τE.

According to the model, the introduction of a 10% robot tax would immediately raise
8.66 billion USD, or 0.33% of output over a year. In the short term, the return on
investment in automation capital falls by 2.34pp, while the return on traditional capital
remains the same. This encourages investment in K(t) and traditional capital intensity
k(t) rises until the new BGP level k∗ is reached. This development is accompanied by a
falling rK(t) and an increasing rZ(t), since K(t) becomes relatively more abundant and
Z(t) rare, until both rates are equal again along the BGP. The new BGP real interest
rate is 1.57pp lower than in the baseline case, due to taxation. Labor benefits as the
abundance of traditional capital means that it can demand a 2.9% higher wage. The
consumption growth rate falls by 0.79pp to 4.59% as a result of the distorting effect of
the robot tax. Over the long term, electricity consumption per unit of output decreases
only marginally. Tax revenue makes up 5.55% of output or 6.02% of GDP (value added),
a large jump from the short term effect that can be explained by the rapid growth of the
robot tax base, which makes up

R∗
ZZ

Y
(∞) = 55.48% of output in the long run.

Compared to the robot tax, the electricity tax behaves in a similar way if ξZ > ξK .
Here, both interest rates decrease, but rZ(t) falls more than rK(t), since automation
capital uses more electricity and is therefore more affected by the tax. This again leads
to an accumulation of K(t) and rising wages, until the BGP is reached.

(1) Equalize short term tax revenue T (0)

This results in a 13.33% tax on electricity, reflecting a slightly smaller tax base E0PE in
the short term when compared to the robot tax base RZ(0)Z0. While T (0) is equalized,
the longer term consequences are much less severe than the robot tax. Interest rates
fall only slightly, while wages increase negligibly and growth is not as affected when
comparing to the baseline. In the long term, the tax base makes up EPE

Y
(∞) = 7.93% of

output, which is much less than the previous robot tax base and results in tax revenues
comprising only 1.06% of output and 1.15% of GDP.

(2) Equalize long term tax revenue per unit of traditional capital T
K
(∞)

(4) Equalize long term tax revenue per unit of output T
Y
(∞)

(5) Equalize the BGP growth rate of consumption g

These three approaches all yield similar tax rates of around 70% and short term tax
revenues of 45 billion USD. The reason why such rates are necessary to equalize longer
term effects is that the electricity tax base does not grow as quickly as the robot tax
base. The long term effects are quite similar to the robot tax, with the exception that
traditional capital is not as abundant and wages are therefore also lower in comparison.

(3) Equalize the BGP traditional capital intensity k∗

This approach results in by far the most extreme tax rate, 344.67%, and a short term tax
revenue of 223.8 billion USD. While this has the desired result in reproducing the effects
on k∗, w∗, E

Y
(∞), E

K
(∞), EPE

Y
(∞) and Y

K
(∞), it also completely crashes all interest rates

and the growth rate g. In the long term, tax revenue would make up 27.19% of output
and 29.52% of GDP.
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T (0) rK(0) r∗K rZ(0) r∗Z k∗ w∗ g

τZ = 0.1 8,661,204,642 15.75% 14.18% 13.41% 14.18% 222,326 115,306 4.59%

τZ = τE = 0 0 15.75% 15.75% 15.75% 15.75% 203,515 111,958 5.38%
-100% +0pp +1.57pp +2.34pp +1.57pp -8.46% -2.90% +0.79pp

(1) τE = 0.13337 8,661,204,642 15.52% 15.46% 15.43% 15.46% 204,203 112,084 5.23%
+0% -0.23pp +1.28pp +2.01pp +1.28pp -8.15% -2.79% +0.64pp

(2) τE = 0.66802 43,380,606,823 14.58% 14.27% 14.11% 14.27% 206,992 112,592 4.64%
+400.86% -1.17pp +0.09pp +0.70pp +0.09pp -6.90% -2.35% +0.05pp

(3) τE = 3.4467 223,828,173,265 9.71% 8.13% 7.29% 8.13% 222,326 115,306 1.57%
+2484.26% -6.04pp -6.04pp -6.12pp -6.04pp +0% +0% -3.02pp

(4) τE = 0.70065 45,499,721,498 14.52% 14.20% 14.03% 14.20% 207,164 112,623 4.60%
+425.33% -1.23pp +0.02pp +0.62pp +0.02pp -6.82% -2.33% +0.01pp

(5) τE = 0.7104 46,132,622,805 14.51% 14.18% 14.01% 14.18% 207,215 112,632 4.59%
+432.64% -1.25pp +0pp +0.60pp +0pp -6.80% -2.32% +0pp

E
Y (∞) T

Y (∞) E
K (∞) EPE

Y (∞) T
K (∞) Y

K (∞) T
GDP (∞)

τZ = 0.1 1.0866 5.55% 0.84529 7.89% 0.043164 0.77796 6.02%

τZ = τE = 0 1.092 0% 0.90109 7.98% 0 0.82518 0%
+0.50% -5.55pp +6.60% +0.039pp -100% +6.07% -6.02pp

(1) τE = 0.13337 1.0918 1.06% 0.89887 7.93% 0.0087038 0.82333 1.15%
+0.48% -4.49pp +6.34% +0.038pp -79.84% +5.83% -4.88pp

(2) τE = 0.66802 1.0908 5.29% 0.89001 7.92% 0.043164 0.81592 5.75%
+0.39% -0.26pp +5.29% +0.03pp +0% +4.88% -0.28pp

(3) τE = 3.4467 1.0866 27.19% 0.84529 7.89% 0.21152 0.77796 29.52%
+0% +21.64pp +0% +0pp +390.04% +0% +23.49pp

(4) τE = 0.70065 1.0908 5.55% 0.88948 7.92% 0.045245 0.81547 6.03%
+0.39% +0pp +5.23% +0.03pp +4.82% +4.82% +0.002pp

(5) τE = 0.7104 1.0907 5.63% 0.88932 7.92% 0.045866 0.81533 6.11%
+0.39% +0.08pp +5.21% +0.03pp +6.26% +4.80% +0.09pp

Table 4: Resulting equivalent taxes and affected variables. Each tax regime is compared to τZ = 0.1, with percentage or percentage point
deviations given.
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3.6 Comparative Statics with Electricity Efficient Robots

Zhang et al. (2022) and Wang et al. (2022) show that the introduction of robots can
lower the energy intensity of an industry. If this holds also for electricity in particular,
this would mean that ξZ < ξK , i.e. that traditional capital uses more electricity than
automation capital. In this section, we set sξZ = 0.6, meaning that Z(t) uses 40% less
power than K(t). Note that this has a minor effect on the calibration, as we can observe
in Table 5.

Table 5: New derived parameter values

Parameter Value Parameter Value

A 2860.5 β 2.4025× 10−6

K0 3167 billion USD Z0 388 billion USD
ξK 0.2631 ξZ 0.1579

Again, we try to find electricity tax rates that are in some way equivalent to a robot
tax of τZ = 0.1. We consider the same approaches as before, with the exception of (3),
which tries to equalize the BGP traditional capital intensity k∗. This is not possible
anymore, since a robot tax will increase capital intensity, while an electricity tax will now
decrease it. The results of this exercise are summarized in Table 6.

As we can see, the new calibration leads to significantly different long term power
consumption. Since Z(t) is now more efficient, it now takes only 0.70827 kWh to produce
one good worth 1 USD and spending on electricity comprises only 5.14% of output. The
introduction of the robot tax has much the same effect as before.

Imposing an electricity tax now has the effect that rK(t) falls more than rZ(t), since
the inefficient traditional capital is more affected by the tax. Therefore investment goes
towards automation capital, leading to a fall in traditional capital intensity k(t). As Z(t)
becomes more abundant, rZ(t) falls and rK(t) rises, until the BGP with k(t) = k∗ and
rZ(t) = rK(t) = r∗ is reached. The relative rarity of K(t) also leads to a drop in wages,
because labor’s marginal product is lowered. The growth rate g is again diminished
due to the tax’s negative impact on capital accumulation. In the long term, electricity
consumption per unit of output is decreased slightly, since the economy is forced to use
relatively more efficient traditional capital.

(1) Equalize short term tax revenue T (0)

Similarly to the previous section, a 13.99% electricity tax is required to achieve the robot
tax’s short term tax revenue. Again, the effects of this tax are relatively minor and do
not have nearly the same impact in the long run, since the tax base does not grow as
fast. The long term tax base comprises 5.14% of output, while the robot tax base makes
up 56.32%.
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(2) Equalize long term tax revenue per unit of traditional capital T
K
(∞)

(4) Equalize long term tax revenue per unit of output T
Y
(∞)

(5) Equalize the BGP growth rate of consumption g

These approaches again result in similar tax rates of roughly 113%. The reason why
this is significantly higher than the previous section’s 70% is that, due to the lower power
consumption of automation capital, the long term tax base is now only 5.12% of output.
In the previous section it was 7.92%, significantly higher. Compared to the robot tax,
these electricity taxes result in a similarly decreased growth rate g and wages that are
roughly 3.95% lower. In the short term, tax revenues are much higher compared to the
robot tax, while in the long run they are roughly the same in terms of percent of output
and GDP.
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T (0) rK(0) r∗K rZ(0) r∗Z k∗ w∗ g

τZ = 0.1 9,082,738,850 15.75% 14.15% 13.41% 14.15% 221,297 115,346 4.58%

τZ = τE = 0 0 15.75% 15.75% 15.75% 15.75% 202,364 111,958 5.38%
-100% +0pp +1.60pp +2.34pp +1.60pp -8.56% -2.94% +0.80pp

(1) τE = 0.1399 9,082,738,850 15.49% 15.56% 15.59% 15.56% 201,577 111,813 5.28%
+0% -0.27pp +1.41pp +2.18pp +1.41pp -8.91% -3.06% +0.70pp

(2) τE = 1.0474 68,019,188,381 13.75% 14.29% 14.55% 14.29% 196,570 110,879 4.65%
+648.88% -2.00pp +0.14pp +1.14pp +0.14pp -11.17% -3.87% +0.07pp

(4) τE = 1.1338 73,628,936,152 13.59% 14.17% 14.45% 14.17% 196,102 110,791 4.59%
+710.65% -2.17pp +0.02pp +1.04pp +0.02pp -11.39% -3.95% +0.01pp

(5) τE = 1.1492 74,625,651,290 13.56% 14.15% 14.44% 14.15% 196,019 110,775 4.58%
+721.62% -2.20pp +0pp +1.02pp +0pp -11.42% -3.96% +0pp

E
Y
(∞) T

Y
(∞) E

K
(∞) EPE

Y
(∞) T

K
(∞) Y

K
(∞) T

GDP
(∞)

τZ = 0.1 0.71626 5.81% 0.56 5.20% 0.045425 0.78184 6.13%

τZ = τE = 0 0.70827 0% 0.58778 5.14% 0 0.82987 0%
-1.12% -5.81pp +4.96% -0.06pp -100% +6.14% -6.13pp

(1) τE = 0.1399 0.70796 0.72% 0.58905 5.14% 0.006% 0.83203 0.76%
-1.16% -5.09pp +5.19% -0.06pp -86.83% +6.42% -5.37pp

(2) τE = 1.0474 0.706 5.37% 0.59735 5.13% 0.05% 0.84611 5.66%
-1.43% -0.44pp +6.67% -0.07pp +0% +8.22% -0.47pp

(4) τE = 1.1338 0.70582 5.81% 0.59815 5.12% 0.05% 0.84745 6.12%
-1.46% +0pp +6.81% -0.08pp +8.39% +8.39% -0.005pp

(5) τE = 1.1492 0.70579 5.89% 0.59829 5.12% 0.05% 0.84769 6.21%
-1.46% +0.08pp +6.84% -0.08pp +9.89% +8.42% +0.08pp

Table 6: Resulting equivalent taxes and affected variables for the case where automation capital uses less electricity. Each tax regime is
compared to τZ = 0.1, with percentage or percentage point deviations given.
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4 Conclusion

This thesis has explored the effects of power consumption, robot and electricity taxes
on economic growth. Steigum’s (2011) model framework was expanded such that firms
additionally have to pay taxes and electricity costs when employing traditional and au-
tomation capital. Then it was shown that a unique market equilibrium exists where
interest rates are equalized and households invest in both capital stocks.

Assuming reasonable parameter values, endogenous growth is achieved along this
balanced growth path (BGP). If the economy is thrown off the BGP - for instance due
to an external shock - households adapt by investing only in the more attractive capital
stock, until the traditional capital intensity k(t) reaches its new optimal level, meaning
that the economy automatically returns to balanced growth.

With or without transfers, automation capital grows fastest, at a non-constant rate,
followed by traditional capital and output, while consumption increases slowest, at a
constant pace. All rates converge in the long term. We compared these results with
Steigum (2011), finding them compatible, and corrected an error in one of his formulas.
Furthermore, we showed that tax revenue and spending on electricity both fall between
traditional and automation capital when it comes to growth.

The introduction of government transfers leads to an increase in consumption at
every point in time, while the growth rate of C(t) remains unaffected. Furthermore, the
inclusion of transfers slows down the growth of automation and traditional capital. We
found that robot and electricity taxes decrease interest rates and growth, suggesting that
subsidies could have an opposite, pro-growth effect. Robot taxes always increase wages,
while an electricity tax only does so when automation capital is relatively power hungry.

The model was then calibrated with data from the U.S. manufacturing sector. This
baseline calibration predicted rapid growth for automation capital and a collapsing labor
income share over the next 30 years. Next, the consequences of the currently rising
electricity prices was discussed. We observed slightly lower growth, modestly higher
wages and, over the long term, a larger portion of output needed to pay for electric
power.

Finally, we calculated what electricity tax rates could replicate the short or long term
effects of a 10% robot tax. It was found that a 13.33% electricity tax can raise the same
revenue in the short term, while recreating the long term effects of the robot tax requires
exorbitant rates. This is partially due to the fact that the robot tax base, i.e. automa-
tion capital, grows faster than spending on electricity. We also observed that the robot
tax tends to stymie growth more than an electricity tax with the same rate. Finally,
we repeated this exercise with the assumption that robots are less power hungry than
traditional capital. This led to similar results, albeit with a lower proportion of output
having to be spent on electricity in the long term. Overall, the numerical section implies
that it is not straightforward to substitute one type of tax with the other, since the long
term consequences can differ severely.

One of the leading economists of our time, Daron Acemoglu, has compared the state of
robot taxation to climate change research 30 or 40 years ago, adding: ”We’re very much
asleep at the wheel in terms of worrying, measuring, understanding this issue.” (Wall
Street Journal (2020)). In line with this sentiment, there are several ways in which the
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model framework discussed in this thesis could be expanded to address further research
questions. It would be of great interest to include the environment and emissions in
the model, perhaps opening up the possibility of welfare enhancing taxes and an end
to unlimited growth. To explore any kind of welfare effects, more attention needs to
be directed to the economy outside of the BGP and the calculation of the path towards
equilibrium. Another important research question concerns obtaining better estimates for
ξK and ξZ , determining which capital stock is actually more power hungry. Furthermore,
population growth could be re-introduced to the model, allowing for an expanding labor
force. Finally, modeling the electricity sector in a more sophisticated way might also be
a useful model extension.
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