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Abstract—Cyber-physical systems are highly distributed, flexi-
ble, and closely connected to the physical world. State preserva-
tion is an essential aspect of operating cyber-physical systems. If
stateful applications fail, the current state needs to be restored
so that the system can operate again. With the entry of edge
computing, applications can now be containerized close to the
equipment and allow new use cases. The lack of persistent storage
in containers to ensure statefulness requires external, centralized,
or distributed solutions. This paper explores this spectrum by
comparing three experimental implementations and indicates
possible causes for state loss. The underlying aim is to provide
a starting point for choosing which state preservation approach
is most suitable for which application type. The paper concludes
with future research steps.

Index Terms—distributed computing, stateful applications,
edge computing, cyber-physical systems

I. INTRODUCTION

Undoubtedly, modern software systems are required to
evolve towards being more distributed, flexible, autonomous,
and closely connected to the physical world. Cyber-physical
systems (CPSs) represent this best in all facets [1]. In such
systems, several applications/components work together to
achieve a goal, such as creating a product or providing
a service. The complexity involved that comes along with
building a CPS is not negligible [2]. Designing a distributed
system where different applications interact requires careful
planning and implementation, especially if the system needs
to be highly reliable, scalable, and maintainable.

One essential aspect of a CPS is that all parts perform
their tasks correctly. Strongly simplified, CPS parts are state
machines that perform a task and wait for the next one [3].
Some state machines, will always return the same output
given a specific input. Others, however, change their ”state”
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and the output changes accordingly. Such state machines or
applications are stateful. For example, if a process requires
a certain sequence of state changes and the state machine
crashes, the process needs to start all over again. In a CPS,
where applications work concurrently together, such a state
loss of one component could create complete unexpected
system behavior [3]. The reasons for state loss could be due
to component damage or external influence.

Preventing state loss is an old concern in computing or
automation. For example, in production lines controlled by
programmable logic controllers (PLCs), the PLCs have inter-
nal storage to save their current state [4]. In case of a power
failure, such a local backup allows a recovery to the last state,
and the system can proceed with its task. However, new use
cases requiring statefulness appeared with the arrival of the
Internet of Things (IoT) and specifically the entry of edge and
fog computing in operational technology (OT) [5].

The idea behind edge/fog computing is to bring computing
resources closer to the network’s edge [5]. That allows applica-
tions to be hosted in virtual machines or containers running on
fog devices providing various kinds of services. Examples are
computation offloading, virtual PLCs, or runtime analytics [6].
Some applications are stateful and require, in case of failure,
their state to be restored, which is not as straightforward in a
distributed and mostly containerized environment [7].

One issue in container-based systems is the presence of
volatile storage, i.e., the available storage is part of the
container and is lost when there is a redeployment [8].
There are several solutions to provide persistent storage for
distributed applications hosted on fog nodes [7]. Some are
centralized on a server or are fully distributed and replicate
the information among all nodes, while others are in-between
this spectrum [9]. Nevertheless, most are use case-specific and
are rarely compared with others. Therefore, this paper aims
to compare different state preservation solutions along this
spectrum and provide insights to choose among them.
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The paper introduces possible causes for state loss in
containerized distributed systems and a design rationale for
persistent storage solutions. In a further step, a centralized, a
hybrid, and a fully distributed prototype for persistent storage
are compared. Each of the prototype implementations utilizes
a compute cluster with container capabilities and a simple
stateful application that provides the state that needs to be
stored. The evaluation setup allows comparing the prototypes
related to their scalability and state replication performance.

The contribution of this paper is twofold. Each of the
implemented prototypes is openly available and the obtained
measurements give a starting point for an application developer
to decide which solution might be most suitable. Secondly,
the paper suggests evaluation parameters to compare different
persistent storage solutions.

This paper proceeds by introducing the related work. Sec-
tion III sheds light on possible causes for state loss, the design
rationale, and possible solutions for persistent storage solu-
tions. Section IV presents the actual implementation details
of the three prototypes. The evaluation and the results are
contained in Section V. Section VI discusses the findings, and
Section VII concludes the paper and points to future research
directions.

II. RELATED WORK

Distributed storage systems for fog, edge, or cloud comput-
ing mainly focus on two problems: providing fault-tolerant
permanent data storage and decentralized consensus [10].
Possible solutions are an optimal allocation of redundancy,
reducing utilization, or introducing techniques for error de-
tection utilizing consensus protocols based on system re-
quirements [11]. In Jonathan et al. [12], an instance for
optimal redundancy allocation in distributed storage systems
is described. A limiting factor in the proposed method is that
it only works efficiently with low failure rates, limiting its
usability in fog applications and container-based architectures.

Concerning error detection, Chervaykov et al. [13] propose
a reconfigurable data storage system based on Redundant
Residue Number System (RRNS). The system aims to calcu-
late the probability of information loss, data redundancy, and
configure parameters. In a similar area, the authors in Shahaab
et al. [11] were looking into 66 consensus protocols such as
Raft [14], Byzantine Fault Tolerance [15], or Sieve [16]. Their
study objectives were to investigate the sustainability or effi-
ciency of the protocols, and they concluded that no consensus
protocol could fulfill all requirements of a distributed system.

Narrowing down to solutions for persistent storage solutions
for container-based architectures in cloud platforms, several
authors look into that subject [17]–[21]. In Sharma et al. [19],
the authors propose a distributed storage system using storage
application deployment on Kubernetes. In their work, they do
not consider any consensus algorithms or address the transient
storage issue Kubernetes orchestrated pods. A similar solution
is found in Kristiani et al. [22], where the authors introduce a
persistent volume (PV) for container-based architectures using
Openstack and Kubernetes. While the applications run on the

edge resources, the PV is located in the cloud, which can cause
response delays for each data access request.

In Netto et al. [21], a solution is introduced where state-
machine replication is executed in all containers (and their
replicas). All incoming requests are processed in all con-
tainers, but only one replica will respond to the request.
The underlying protocol utilizes shared memory to project
communication and persists data. In a follow-up paper [23],
the authors integrate an execution layer and a firewall container
between clients and containers. This so-called Koordinator
receives the clients’ requests and sends them to the respective
application containers. Comparable solutions can be found
in [24] and [25], however, with a lower level of protection.

Moreover, in more recent work by Netto et al. [18], a
solution is presented that incorporates the Raft protocol in
Kubernetes. This setting allows a request to be sent to any
replicated container to achieve better load balancing. However,
the solution increases the overhead quite significantly. In the
works of Bakhshi et al. [26], [27], the authors introduce a
container-based local state replication solution that utilizes the
Raft protocol and addresses most of the shortcomings of the
papers mentioned beforehand. In summary, most of the related
work focuses on distributed solutions and does not compare to
other solutions that, for example, utilize centralized storage.

III. BACKGROUND / PRELIMINARIES

This section provides the necessary background information
for the following sections. Particular emphasis is given to the
difference between stateful, and stateless applications, possi-
ble failures and state preservation solutions in containerized
distributed systems.

A. Virtualization, Docker and Kubernetes

Virtualization techniques are the preferred option for de-
ploying applications in fog networks as it allows the allocation
of isolated execution of components in heterogeneous envi-
ronments [28]. Containerization is a lightweight virtualization
approach for deploying applications by bundling the code and
all needed dependencies [7], [29]. In order to control the com-
munication and manage the deployment of containers, tools
such as Kubernetes [30] provide a framework that facilitates
the maintenance of deployed services, monitors the health
of containers, and redeploys them if necessary. Additionally,
various components, like an abstraction of service discovery
or controllers to coordinate the replication and deployment of
containers, allow for the operation of complex combinations of
container setups. A vital feature of Kubernetes is the introduc-
tion of so-called pods. Pods provide a closed local environment
for multiple containers, including local storage (volumes).
However, since a pod is mortal, the volume inside the pod
is also volatile (ephemeral). Files are stored transiently in the
local system spaces. Terminating a pod leads to that data and
information are not accessible anymore. Figure 1 visualizes
the relations between Kubernetes, pods, and containers.
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B. Stateful Vs. Stateless Applications

Nevertheless, before identifying possible failures that could
cause state loss, stateful applications need some definition.

Figure 2 depicts the difference between stateless and stateful
applications. On the left side of the figure (a), the application
is stateless. As for any given input, the outputs depend only
on the input, the application can easily be replaced, or in
other words, such applications are interchangeable. If a failure
occurs (e.g., the application crashes), a replica can take over
without disturbing the system.

In stateful applications, however, such an exchange is not
possible. The reason is that the application changes its current
state with every input, and therefore, the output changes
accordingly, i.e. the output depends on the input and on the
current state of the application. In case of a failure, the state is
lost, and the application does not produce the expected output,
despite it being recovered and redeployed. Figure 2 depicts
such a scenario on the right side (b). Therefore, for stateful
applications, a state loss needs to be avoided to ensure the
correct functioning. Typical means to avoid a state loss is
having the state stored unaffected by any kind of failure.

C. Potential Failures Causing State Loss

The following are potential failures in containerized state-
ful applications that can lead to state loss. Other authors,
e.g., [21], [26], found similar issues specific to containerized
applications. The introduced taxonomy of errors discussed by
Parker [31] provides the necessary guidance. Other types of er-
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Fig. 2. Stateless (a) vs stateful (b)

rors, e.g., a hardware failure, as described in Kleppmann [32],
are summarized as one error, i.e., a whole node stops working.

As previously described, the applications are placed in
containers running within pods, and all handling is left to Ku-
bernetes. This arrangement opens up several potential failures
causing state loss:

• Node Failure: A node can completely fail due to discon-
nection or any hardware failure.

• Application Execution Failure: The application stops
working due to an undefined internal reason.

• Application Deployment Failure: The application is not
correctly initially deployed or re-deployed. Several rea-
sons are possible, such as no available resources, losing
communication to available nodes, or improper resource
management.

• File Access Failure: Applications fail to access required
files, states, and other necessary data to continue working.
This encompasses the loss of volumes in pods, e.g., due
to Node Failure.

• Management failure: This includes all failures caused by
functions required to run a container environment, e.g.,
Docker Engine, Kublet, Kube-proxy [29], [30].

While all of these failures can result in state loss, the most
serious is losing access to the state stored in the local pod
volume. This situation can be caused by Node Failure and
File Access Failure as there is no persistent storage. While
Kubernetes supports stateful applications by providing PVs
(a filesystem to store data in a pod), and stateful set, they
have some shortcomings. According to Vayghan et al. [7],
[24], when a pod fails, the recreation time plus access time
to a PV is considerably high, limiting applications with high
availability requirements. Additionally, in the event of a node
failure, the stateful set cannot recover a pod until the specific
node is back on the network. Restoring and redeploying a pod
to a new node can only be done manually but involves an
inevitable loss of access to PV. In addition, reliable PV can
only be implemented using cloud storage, which causes higher
latency in data access requests [7], [33]. Kubernetes also
supports PersistentVolumeClaims, which have been analyzed
by Vayghan et al. [7], [24].

In summary, as long as a solution provides highly available
persistent storage for state recovery, stateful applications can
run in containerized environments. A wide range of solutions
adds even more relevant functionality to this type of storage.

D. Design Rationale for Persistent Storage Solutions

The design rationale for fault-tolerant persistent storage
for states of stateful applications is as follows. The main
objective of the solution is to guarantee that correct and up-
to-date state data is available at each execution of any stateful
application. In other words, any state data stored during an
invocation needs to be available for the following invocation
of the respective application. This goal must be met even if
the application loses its current state due to an outage or is
deployed to another node.
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In addition, the solution must support the fundamentals of
distributed container systems, e.g., on-demand scalability, mi-
gration of containers between different nodes, and self-healing
properties when an application fails. Using containerization
already satisfies some of the additional requirements, as it
tolerates configuration and task completion failures through
self-healing mechanisms, most notably the ability to restart
failed containers. However, a PV file system is not sufficient
for persistent storage, as elaborated in [7], [24], [26].

Solutions that meet these goals are best described along the
spectrum from centralized to fully distributed. Figure 3 illus-
trates the idea of categorizing fault-tolerant persistent storage
solutions along the spectrum, particularly as some solutions
combine aspects of centralized and distributed systems.

E. Centralized

A centralized fault-tolerant persistent storage provides a
centralized point to save all states of the various applications.
In the simplest case, the data storage is a database located on
a server that stores the states when they arrive.

This type of solution allows a relatively quick state restoring
of a failed node, as the restored node only requests the latest
entry in the database. The downsides of centralization are,
for example, having a single point of failure, more traffic on
the network, or longer latencies depending on the physical
connection between the nodes and the database [32]. Neverthe-
less, there are several enhancements available that negate some
of the drawbacks. For example, databases can be redundant,
located closer to the edge on more powerful fog nodes to
reduce latency, or network splitting reduces the load on a
single server [6]. A side effect of extending a single data store
is ensuring the consistency of a state stored in several places.
The more the solution wanders on the spectrum towards fully
distributed, the more relevant becomes consistency between
replicated data.

F. Consistency Model

Replication means that a copy of the same data is stored on
multiple machines in a network [32]. That can mean that each
node has all data of all the other nodes or a small subset of it.
The tricky part of replication is to ensure that all nodes have
the ”right” data at the right time when data is changing. Some
well-known algorithms such as single-leader, multi-leader, or
leader-less are a typical means to approach this issue.

In a single leader environment, the nodes send their data
writes to a single node (leader), which in turn sends the

changed data events to all other nodes (followers). Reading
data can happen at any node. In multi-leader, there are
several leader nodes that accept data writes and exchange
their updates. In leader-less data writes are sent to various
nodes, and reading can happen in parallel. All algorithms have
their benefits and drawbacks; while single-leader is easier to
implement, multi-leader and leader-less show more robustness
in the presence of faulty nodes, high latency, or network
errors [32]. The cost is, however, lower consistency.

Replication can be synchronous or asynchronous, affecting
the behavior of the system in case of failure. Asynchronous
replication is considered fast yet more sensitive to replication
lag and failing nodes. If a leader node fails and a new node
is appointed, the last committed data is lost.

Replication lag in a leader-follower environment can create
different types of effects concerning consistency. One example
in asynchronous replication is the possibility of outdated
information and inconsistency. Sending the same request to
a leader and follower, at the same time, can result in two
different answers, because not all writes have been processed
in the follower. This inconsistency is of temporary nature
and will resolve eventually. Nevertheless, such effects require
approaches to ensure consistency.

A potential consistency model to avoid replication lag is
read-your-writes consistency [32]. This model ensures that a
node always gets back its latest write, but does not make the
same promise for other nodes. In asynchronous replication,
that can be achieved, for example, by always asking the leader
for the latest write. However, a leader might be overloaded
with too many requests, and if a leader fails, the write is
lost before replicated, and therefore the consistency model
is not fulfilled. In that case, synchronous replication and a
consensus algorithm (e.g., Raft) between the nodes is the better
choice [14]. Such a combination fulfills the consistency model,
as it tolerates a leader failure.

Errors that cannot be identified are erroneous writes from
an application. Erroneous writes can be caused by either
malfunctioning applications or incorrect initialization of the
application after a restart. Solving the first issue would require
a traditional spatial redundancy, either with replicated nodes
or with replicated applications. While improper application
restart is to a certain level, prevented by the existence of a
persistent storage solution.

After introducing replication, it is possible to describe the
concept of a distributed persistent storage.

G. Distributed

At the other end of the spectrum are fully distributed so-
lutions. A distributed fault-tolerant persistent storage provides
storage divided over several nodes [19]. The storage can be
simple local file storage, replicated to the other nodes, or
more advanced solutions involving databases and a variety
of consensus algorithms. In the extreme example, each node
keeps the states of every application in the network. The
authors in Bakhshi et al. [26] present such an approach based
on PV and Raft as a consensus algorithm.
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Fig. 4. Sequence diagrams depicting the interactions involved in the three prototype implementations.

The benefit of distribution is that there is no single point
of failure; leader nodes that fail can be replaced quickly,
increasing the system’s availability [7]. A downside is the
increased complexity involved in building and maintaining
such systems [1]. Difficulties are, for example, imperfect
networks that fail to deliver writes, timing effects that cause
unexpected behavior, or partial failures. There is a wide range
of solutions to counteract those difficulties; some introduce
elements of centralized solutions and create hybrids.

H. Hybrid

As indicated beforehand, hybrid distributed fault-tolerant
persistent storage solutions utilize elements from both ends
of the spectrum. Examples of hybrid approaches are several
databases that replicate states of the connected nodes, network
partitioning, or nodes that host databases taking care of the
replication. The significant difference is that the nodes within
a group provide data replication for each other (cf. Figure 3).
There is only limited communication with outside nodes.

I. Performance Evaluation Parameters

How to compare or evaluate the solutions along the spec-
trum is not uniquely consented, as there is no commonly
agreed test setting. This situation leads to most academic
papers evaluating only a specific aspect of the presented solu-
tions. Nevertheless, potential performance evaluation param-
eters are: Network or data latency (including response times
of the system) [21], replication lag, or created network traffic.
Moreover, the authors evaluate failure, restart times of nodes,
or how long the system requires to find a new leader. Some
also focus on container-related parameters, such as startup time
or resource consumption (CPU, memory, storage space) [18]–
[20]. More specific measurements are fault tolerance (the
number of nodes that can fail simultaneously), maximum node
size, or the number of subgroups (partitioning).

IV. PROTOTYPE IMPLEMENTATIONS

The following three prototype implementations of a central,
distributed, and hybrid approach fulfill the design rationale in
Section III-D. As depicted in the sequence diagrams in Fig-
ure 4, all three approaches share the same stateful application.
The application simulates the behavior of a stateful application

requiring state preservation. When started (either due to a
failure or startup), the application tries to retrieve a previous
state from the application programming interface (API)’s get
endpoint of the respective persistent storage approach. If there
is no previous state, the application initializes its state as
its instance name and enters the main application loop. In
this infinite loop, the application performs a state change by
hashing its last state and using the result as the new state.

Further, it stores the new state using the set endpoint of the
respective persistent storage approach and sleeps five seconds
after completion. The sequence diagrams depict each persistent
storage solution. Depending on the approach, this storage is
provided to the application in a central, distributed, or hybrid
architecture.

A. Centralized Approach

The first prototype represents the centralized approach
described in Section III-E, which utilizes an instance of a
database and provides access via a service controller (cf.
Figure 5). The prototype implementation uses CouchDB1 to
store non-relational data in the form of JSON documents. Each
document contains a unique id, a revision number, a value,
and an expiration date indicating the validity of the state.
Using CouchDB’s API endpoints, clients can read and write
to the database structure. Figure 4 (a) illustrates the interaction
between a client, i.e., an application replica, and the database.

1https://couchdb.apache.org/
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Fig. 5. Centralized approach to provide persistent storage
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B. Distributed Approach

The distributed approach (see Section III-G) stores the states
in the different nodes and increases the fault tolerance of
the system. As discussed earlier, the solution needs to fulfill
read-your-writes consistency; therefore, the nodes need to
agree on every state change. The consensus is achieved by
using etcd2. Each pod contains a companion container that
acts as a consensus service interface. The applications in the
pod can use the etcds set and get endpoints to store and
retrieve its state. Etcd takes care to replicate the states to
every other etcd instance in the system by utilizing the Raft
consensus algorithm. Raft ensures that the state updates are
only acknowledged after the cluster has reached a consensus.
More than half of the nodes need to accept the state change
to reach a consensus. Figure 4 (c) depicts how the application
interacts with the consensus service, and Figure 6 shows the
architecture of the approach.

C. Hybrid Approach

Like the distributed approach, the hybrid approach uses a
deployment strategy consisting of the application container
and consensus service. The consensus service provides set and
get endpoints for data manipulation. In this case, the service
uses a Hazelcast CP subsystem3 as a distributed crash-fault
tolerant replication system. Every service instance joins the
CP subsystem cluster, which executes the Raft algorithm to
achieve consensus on the list of members. The cluster assigns
the members to CP groups of three to seven to store data and
balance resource usage between all nodes. The CP groups run
the Raft algorithm to reach a consensus every time a state
should be stored. As in the distributed approach, Raft ensures
that the state updates are only acknowledged after consistency
has been reached in the cluster. More than half of the nodes
need to accept the state change to reach a consensus. Figure 4
(b) depicts how the application interacts with the consensus
service, and Figure 6 shows the architecture of the approach.

2Etcd (v3.5.2) is a consistent and highly-available key-value store used as
Kubernetes’ backing store for all cluster data.

3Hazelcast (v4.2) is an in-memory data grid (IMDG) solution
(https://hazelcast.com/). The CP subsystem is a component of a Hazelcast
cluster that provides strongly constituent data structures.

V. EVALUATION AND RESULTS

This section uses some of the previously presented evalua-
tion parameters to compare the three prototypes. Due to space
limitations, the section only contains memory and CPU usage,
store and retrieve latency, and start-up delay. A Raspberry Pi
cluster enabled all measurements.

A. Evaluation Environment

The Raspberry Pi cluster connects 24 Raspberry Pi 4
computers over a dedicated 1Gbit network as nodes, and
Kubernetes (1.21.4) provides the management interface. For
further details on the cluster, the reader is directed to [34].

For retrieving metrics, the cluster uses Prometheus4. The
application sends the evaluation parameters to the Prometheus
service hosted within the cluster at regular intervals. Addi-
tionally, Prometheus queries the Kubernetes controller, which
stores up-to-date information about each pod.

B. Measurement Scenario

The actual measurements on the cluster follow the same
scenarios as depicted in Figure 4. Following the sequences
allows obtaining the different parameters of each approach.
While start-up delay, store and retrieve latency, and start-up
delay are reported directly from the application, Kubernetes
delivers CPU and memory consumption.

At the starting point, all nodes start at the same time. The
number of nodes is variable from 5 to 21 nodes. Scaling the
nodes allows for obtaining different values of the evaluation
parameters. The application stores every 5 seconds a new state,
while a set (number of nodes) of measurements requires 2
minutes. Moreover, the Kubernetes Customization Framework
automates the entire measurement cycle.

C. Results

The graphs on the left side of Figure 7 depict the CPU and
memory usage of the approaches with an increasing number
of application replicas. In some ways not unexpected; the
centralized approach is not directly affected by the number
of nodes. The number of application replicas must be signifi-
cantly higher for the database to show some effects. There is
undoubtedly a need to investigate the required network traffic
in this solution. Different behavior is visible in the storage
latency depicted in Figure 7; as each request needs to be
processed in sequential order, the time increases.

The other two approaches show different behavior regarding
their CPU and memory usage. Significantly the distributed
approach is affected by the increasing number of application
replicas. The reason is the increased effort to find consensus
between the pods. Why the hybrid approach does not show
similar behavior is not completely clear. One assumption is
that Hazelcast uses many resources out of the box as it is
built upon JAVA and is instead not affected later. On the other
hand, the storage latency is constant in both approaches, as
the underlying Raft algorithm is better optimized.

4https://prometheus.io/docs/introduction/overview/
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Fig. 7. The two graphs on the left show the three approaches’ CPU and memory usage measurement results depending on the number of application replicas.
On the right side, the latency is depicted to store a state in each approach with an increasing number of application replicas.
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Fig. 9. Retrieve latency depending on the number of replicas

The results in Figures 8 and 9 show some interesting
behavior. While the startup time in the centralized and dis-
tributed approach is somewhat unreliable, the hybrid approach
is constantly high. The latter effect is explainable as the CP
subsystem always waits until all nodes are connected, while
the other approaches do not have an ordered startup sequence.
oo many starting nodes lead to traffic jams, supplemented by
the network, especially in the centralized approach. The startup
time is the same for a new start or after a node failure.

The effects visible in Figure 9 are similar to the storage
latency. The hybrid and the distributed provide a constant
retrieve latency, while the centralized shows an increase.
Again, the startup sequence could be the reason. A deeper
analysis is required of why the storage and retrieve latency
show significant differences in their absolute timing measures.

VI. DISCUSSION

The paper compares different state preservation solutions
applicable for containerized stateful applications distributed at
the edge of the network. As introduced in Section III, there are
several causes for state loss in such an environment. Notably,
the volatile storage in containers or simple PV in pods is
not sufficient to counter, for example, node failures. Only
persistent storage solutions, either centralized or distributed,
can fulfill the design rationale in Section III-D.

The three prototype implementations represent examples of
persistent storage solutions. While the chosen implementation
technologies are still specific, the obtained results show ap-
parent differences in their performance. Other authors such
as Bakhshi et al. [26], [27], or Netto et al. [21] reported
similar behaviors in their solutions. In addition, the evaluation
identified some effects that require further investigation.

There is a need to create an overview of which approach on
the spectrum can be used for specific use-cases, supported by
clear decision criteria. The findings indicate that there will not
always be a one-by-one relation between a persistent storage
solution and a use case. One reason is that the requirements
allow several persistent storage solutions along the spectrum
for some use cases. Therefore a systems architect needs criteria
to decide which approach is most suitable. Potential criteria
also employed in other studies [7] are, for example, failure
tolerance, the maximum amount of nodes, resource constraints
on the solution (e.g., edge devices), or the involved design
complexity when building the system.

Supporting this ambition could be the identified evaluation
parameters in Section III-I. The chosen parameters in the
evaluation have shown the prospect of building the foundation
for comparing other solutions. Further relevant parameters
could be the network traffic and the systems fault tolerance.



VII. CONCLUSION

The paper presents insights into persistent storage solutions
for stateful applications in distributed environments such as
edge computing or CPS. A design rationale for such systems is
introduced based on identifying possible causes of state loss in
containerized applications. This rationale led to implementing
three prototype instances, one centralized, one distributed,
and one hybrid. The evaluation of the prototypes shows no
one-to-one relationship between a particular persistent storage
solution and an intended use case. In addition, the evalua-
tion parameters used are suitable for comparisons between
different solutions. Future research steps should expand the
comparisons between different persistent storage solutions by
implementing further prototypes. Another goal is to examine
new evaluation parameters that categorize the respective so-
lution better. Such categorization allows a system architect to
choose the right solution for their application based on the
given requirements.
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