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KURZFASSUNG

Das Softwaregeschäft und dessen Technologien entwickeln sich rasant weiter und die Anforderun-

gen an Unternehmen und Projekte steigen. Die Größe als auch die Komplexität von Entwick-

lungsprojekten haben ein Niveau erreicht, bei dem es schwer ist, zuverlässige Aussagen über

die Qualität zu machen. Personen, die für das Steuern von Softwareprojekten verantwortlich

sind, müssen wissen, wie sich das Produkt entwickelt, um auf Projektebene reagieren zu können.

Informationen über Softwareevolution ermöglichen die Eigenschaften des resultierenden Soft-

waresystems einzuschätzen, wie zum Beispiel die erwartete Anzahl an Fehlern, wodurch viele

projektrelevante Entscheidungen unterstützt werden (z.B. welche Aktionen als nächstes umge-

setzt werden sollten, damit ein besseres Produkt erzeugt werden kann).

Diese Dissertation zielt auf die Entwicklung von Werkzeugen und Methoden zur Bewertung

von Softwareprojekten ab. Die Entwicklung eines Sofwaresystems kann durch eine Sequenz

von Ingenieursaktivitäten beschrieben werden, welche auf einem hohen Abstraktionsniveau zu

Prozessmodellen der Softwareentwicklung zusammengefasst werden. In solchen Aktivitätsse-

quenzen sind die einzelnen Ereignisse nicht isoliert, sondern mit einander verknüpft. Für die

Bewertung der gegenseitigen Abhängigkeiten in Projekten können wir Informationssysteme ver-

wenden, welche die Entwicklungsaufgaben unterstützen. Als Quellen für die Information über

die Evolution verwenden wir daher Konfigurationsmanagementsysteme (z.B. CVS und Sub-

version) und Ticketing-Systeme (z.B. Jira und Bugzilla). Da die gewonnenen Datenmengen

sehr groß sind, ist eine manuelle Analyse beinahe unmöglich. Daher wenden wir verschiedene

Data-Mining Methoden zur Extraktion relevanter Fakten an. Association-Mining ermöglicht

die Identifikation von Verknüpfungen zwischen Softwareelementen sowie die Beschreibung der

Architektur von einer Evolutionsperspektive. Zukünftige Aktivitäten and Produkteigenschaften

können mit Hilfe von Methoden für Regression und Klassifikation vorhergesagt werden.

Wir haben bestehende Ansätze durch Data-Mining von Werteserien erweitert, welche auf Evolu-

tionsattributen basieren und den Verlauf der Entwicklung über die Zeit beschreiben. Die Erken-

nung von sequenziellen Mustern ist essenziell, da sie zur Verbesserung der Genauigkeit von

Vorhersagemodellen genutzt werden kann. Als Grundlage für Series-Mining zur Vorhersage

der Anzahl von Fehlern rekonstruieren wir die Aktivitätstypen des Softwareevolutionsprozesses.

Das Verhältnis zwischen unterschiedlichen Typen von Aktivitäten bietet sehr gute Ergebnisse

mit einer Korrelation von mehr als 0,9 zwischen der vorhergesagten und tatsächlichen Anzahl

von Fehlern. Diese Werte basieren auf Vorhersagemodellen, welche Aktivitäten einbeziehen, die

durch Ausdrücke wie ”refactor” oder ”comment” gekennzeichnet werden. Daher erreichen un-

sere Vorhersagemodelle eine sehr hohe Genauigkeit, was durch die Verwertung der sequentiellen

Eigenschaften von Softwareevolution erreicht wird. Für die Bewertung von Softwareprojekten

definieren wir eine große Anzahl an Evolutionsmetriken und beschreiben Techniken wie diese

Metriken genutzt werden können, um zukünftige Ereignisse zu antizipieren. Unsere Vorhersage-

modelle fokussieren auf kurze Zeitintervalle und ermöglichen es Refactorings und Fehler der

nächsten zwei Monate vorherzusagen, wobei wir Evolutionsmetriken der vorherigen zwei bis

drei Monaten verwenden.



ABSTRACT

The software business and its technology continuously advance and the requirements on manu-

facturers of software systems increase. The size and complexity of development projects have

reached a level, where it is difficult to make reliable statements about quality. People responsi-

ble for steering software projects need to know how the application evolves to react on project

level. Information on software evolution can be used to assess the characteristics of the resulting

system, which provides support for many project related decisions (e.g. which activities should

be realized next to achieve a better product in terms of quality).

This thesis aims at the development of tools and techniques for the assessment of software

projects. The development of a system can be described through a sequence of engineering

events. On a high level, these events are grouped to process models for software development.

In such sequences events are rarely isolated but related to each other. For the assessment of

the interdependencies in products and projects we can utilize information systems of today that

support development projects. Our sources of evolution information are configuration manage-

ment systems (e.g. CVS and Subversion) and issue tracking systems (e.g. Jira and Bugzilla).

The amount of data from such tools is very large and the manual investigation is almost impos-

sible. Therefore, we apply different data mining methods for the extraction of relevant facts.

Association mining enables us to identify coupling between software entities and to describe the

architecture from an evolution perspective. Future activities and product attributes can be antici-

pated with the help of regression and classification methods. We evaluate our approach based on

a field study of commercial and open source projects.

We extend the basic data mining approaches with the mining of value series, which are based on

evolution attributes describing the course of development over time. The recognition of sequen-

tial patterns is essential, because it can be exploited to improve the accuracy of our prediction

models. For the input to this series mining algorithm we reconstruct the event types of software

evolution processes. The relation between different types offers very good results with a high

correlation of more than 0.9. These values are reached with prediction models in which events

are involved that are described through the terms ”refactor” or ”comment”. Thus, our predictions

have a very high accuracy, which is due to the exploitation of the sequential nature of software

evolution. For the assessment of software projects we define a large number of evolution metrics

and techniques to apply them for the anticipation of future events. Our prediction models focus

on short time frames and allow us to predict refactorings and defects in the next two months

based on evolution metrics from just the previous two or three months.
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Chapter 1

Introduction

To be successful in the software industry it is important to provide solutions on time and within

budget, which requires to continuously improve the development methodology. For this goal a

thorough understanding of the underlying technical and project related issues is necessary. This

thesis called sPACE is about sustainable pace in software projects. It describes techniques for

the assessment of software projects and provides support for several roles in a software project.

Software engineers are focused on the technical aspects of the project and in particular on devel-

opment of the software product. We utilize data on software evolution to provide an architectural

inspection of the product based on its development history. Additionally, we create prediction

models for future events in the project. The structure of the models and the involved attributes

help software engineers to understand the influences on the resulting product and in particular its

quality measured in terms of defect densities.

Project managers have to focus on keeping software projects on track and to deliver the product

on time an with the desired characteristics. To fulfill their role they need a more coarse-grained

view on the project and the product in comparison to software engineers. Our prediction models

support project managers in several ways. First, they provide information about the expectations

(predictions) for the near future and allow taking the right decisions. Second, the models also

point out the interrelations of the underlying aspects in software projects, which helps to guide

the involved people in the right way.

One of the management related tasks is the right use of the (scarce) resources. This aspect is

important for multiple roles in software projects and in particular for the testing team. Due to

the fact that this group does not focus on ”productive” work, but support in the quality assurance

of different aspects of projects and products, the resource limitations are often very tight for

the testing people. sPACE supports to focus on elements that are expected to miss the desired

characteristics. For example the parts of the product with the highest probability for defects

could be tested spending more time and investing this limited resource.

1
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1.1 MOTIVATION

Software maintenance as a phase of the software life cycle is a very resource consuming task. An

effective way to overcome or avoid the negative effects of software aging is by placing change

in the center of the software development process. Without explicit and immediate support for

change and evolution, software systems become more and more complex, fragile, and unreliable.

This negative spiral is rapidly shortening due to hardware and business innovations, changes in

legislation and continuing internationalization. We must therefore advance beyond the current

software engineering practice and provide fundamental support for software change and evolu-

tion.

When software systems evolve, we need to measure the quality of the systems to support evolv-

ability. Therefore, certain characteristics of software are critical for the success of software

projects like the remaining number of defects. During evolution, software is constantly changed

and adapted to new requirements. This includes bug fixes during the entire evolution period.

According to the staged life cycle [100], bug fixes are the last kind of software changes that take

place after the transition from the evolution phase to the servicing phase.

To estimate the quality of a software system for project purposes, we need to measure the data

about the evolution itself. This data provides information about the change events that took

place. All events together build up an evolution process that could be described by standards

of software processes such as the Rational Unified Process (RUP [61]). The attributes of events

in the software evolution process are essential to evaluate the software development to manage

the project properly. For example the frequency of refactoring (see Section 2.6) and testing

cycles provide insights into the quality of the software. Further attributes such as the number of

detected defects during the testing cycles are important measures for software projects following

a software process [29].

1.2 RESEARCH STATEMENT

This thesis investigates software evolution patterns to effectively assess software projects. Es-

timation models for large object-oriented software systems are built by exploiting the huge

amounts of information that resides in version control and bug tracking systems, which has been

largely ignored by software engineering so far.

Software vendors are interested in the characteristics of software systems before they are installed

on customer sites. A wide range of prediction models has been proposed (see Section 2.7), in

which often size and complexity metrics are used, such as McCabe [79] or Halstead [57]. These

models are intended to predict the number of defects in a system or to estimate the reliability of

the system in terms of time to failure.

However, size and complexity metrics are often not sufficient for the prediction of defects and

other software quality characteristics [34]. The predictive power is not accurate enough and the

interpretations of the results are inconsistent. As software systems can be measured in many
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dimensions, taking a single metric seems to be inappropriate. Other types of measures for soft-

ware quality seem more promising. For instance, prediction models involving careful collection

of data about defects discovered during early inspection and testing phases provide impressive

accuracy.

Companies in Japan [22,71] as well as the NASA Space shuttle team [66] claim to achieve results

on defect prediction within 95 percent confidence limits. The idea of these quality estimation

studies relies on the phases of the software development process. With predefined phases at

which data is collected, statistical extrapolation techniques are used to predict the defect rate of

the next phase.

The goal of this thesis is to provide means for software project assessment and controlled soft-

ware evolution based on evolution data at various levels. Specifically, it aims to answer the

following questions:

• Q1: How to set up metrics from sources such as modification reports and process/project

management tools? We are particularly aiming at investigating this integration of data

sources for evolution analysis and software project assessment.

• Q2: How do software evolution metrics relate to external software product attributes?

We analyze the distribution and correlation of selected metrics and study their effects on

software quality attributes such as the number of defects.

• Q3: How can data mining be efficiently utilized in software projects to improve software

evolution? We inspect events and phases of software projects to assess the quality of

the resulting products and services and to provide prediction models in software project

assessment.

• Q4: How can models on evolution processes be effectively adapted for the assessment of

software projects? We evaluate the influence of process events during software evolution

on software quality and predictability of quality attributes.

• Q5: How to set up effective models that result in prediction with high accuracy? We focus

on this question in several experiments and investigate the influence of different metrics

covering multiple aspects of software evolution.

We propose to tackle these questions by exploiting and understanding the huge amounts of infor-

mation which reside in release history data. We focus on large-scale software systems both from

the open source and the industrial area. We evaluate sPACE with the help of a field study con-

sisting of three different software projects. Two of them are representatives of the open source

community. The first one is ArgoUML, which is a widely used UML engineering tool for the

design of systems. As second project we selected the Spring framework, which is an application

server well known in the context of enterprise Java programs. ArgoUML and Spring framework

are large projects both developed in the Java programming language and consist of about 5.000

and 10.000 classes 1, respectively. The third project that complements the field study is a large

1in the entire document classes are a synonym for object-oriented classes



Chapter 1: Introduction 4

software system of a health care company for radiology applications. It is a Picture Archiving

and Communication System (PACS) that includes a viewing workstation for the visualization of

radiological material and an archive. The radiological material is acquired from different modal-

ities such as magnetic resonance, computer tomography, or ultrasound scanning. This system is

written in Java and currently contains more than 8.600 classes with 735.000 lines of code. In

Java classes are almost equivalent to files, thus we use files as basic instances in our approach.

1.3 CONTRIBUTIONS

The objective of this thesis is to define effective models for the assessment of software engineer-

ing projects and especially to estimate the quality. The contributions of this thesis comprise:

• Definition of multiple evolution measures. The definition of a large set of evolution features

measures different aspects of software prjectes for their assessment. Based on the data from

software repositories we extract evolution attributes grouped in several categories such as

size, team relationships, process orientation, complexity of existing solution, difficulty of

problem, relational aspects, time constraints, and testing.

• Effective predictions on short time frames. We show that our prediction approaches utilize

only two or three months of development time for the prediction of subsequent two months.

Thus, project managers can estimate the best release date based on the lowest number of

predicted defects.

• Different types of events in software processes can be predicted. In addition to defects,

our approach allows us predicting other events such as refactoring, which is one type of

perfective maintenance in modern software projects.

• Locations that should be refactored from a quality perspective can be detected based on

evolution data. Refactoring as a state-of-the-art technique in the field of software engineer-

ing should be thoroughly applied in a software project to maximize the effectiveness for

future project trends. We identify locations needing refactoring utilizing evolution analy-

sis and inspect the system for a period after the applied refactoring, which provides insight

whether the refactoring show the right effect.

• Prediction models with very high accuracy taking time series and process information into

account. Evolution metrics change over time. This fact should be taken into account for

improvements of prediction models. With genetic programming we automatically select

transformations and functions on value series to extract meta-features for our prediction

models.

Field studies illustrate the applicability of our approach to several projects from multiple domains

with different business models (open source and commercial).
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1.4 THESIS OUTLINE

The remainder of the thesis is structured as follows:

Chapter 2 introduces different research areas to which sPACE is related to. Especially previous

work on software evolution has a deep impact on the current work. Evolution activities

and refactoring, as one of their prominent representatives, are used in this thesis in several

ways: As input to assessment, as target element that has to be identified, and as techniques

to improve evolvability. Our assessment of software projects focus on different aspects of

software quality such as evolvability of software systems and reliability measured through

the number of defects. For the assessment we use metrics and data mining techniques,

which are discussed in this chapter as well as prediction approaches in the context of

software evolution.

Chapter 3 settles the foundation of this research work. In this chapter, we describe the extrac-

tion of evolution information from different data sources and the processing of the data to

define multiple measures of evolution attributes. This provides an answer of Q1 of Sec-

tion 1.2 on the set-up of metrics from modification reports and process/project management

tools.

Chapter 4 gives a motivating example how evolution data can be applied to project assessment.

The building block of this first step in sPACE is co-change coupling, which is detected

with the help of a technique that is similar to association mining. The co-change coupling

is then explored through visualization and navigation facilities that we support through a

tool called EvoLens. The reference to association mining directs us towards data mining,

which is extensively used in the following chapters.

Chapter 5 shows how to use metrics and data mining for the identification of design short-

comings, which are software entities that demand refactoring in the future. According to

Fowler [38] refactoring is a technique to improve the design of existing code. Thus, if a

class in an object-oriented system needs refactoring, it indicates that the design has defi-

ciencies. In contrast to Chapter 4, Chapter 5 does not require the interaction of the user

on the visualization, but detects the locations of design weaknesses automatically with the

help of data mining.

Chapter 6 focuses on an aspect of customer perceived quality that is approached with the iden-

tification of defect-prone classes. We analyze the predictability of different categories of

defects such as the ones before a software release in contrast to the ones after it and com-

pare the accuracy of the different prediction models. Additionally, this chapter provides an

insight into the reason of defect proneness trough an evaluation of the evolution measures

that contribute best to the prediction models.

Chapter 7 introduces a general approach for the improvement of predictions in the field of

software engineering. Software evolution is a continuous process where different types

of activities are applied on software entities to satisfy customer requirements. As a result,
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we have to incorporate the information about the sequential nature of evolution into our

models. Based on value series we develop prediction models utilizing linear regression

and genetic programming. The results show that by focusing on series mining we obtain

models with very high correlations.

Chapter 8 describes the final step of sPACE where information about the software evolution

process is used as an input to our prediction approach. Therefore, we recover the building

blocks (i.e. events) of evolution processes and show that this information together with the

series mining of Chapter 7 is sufficient to establish prediction models with high correlation

and low error values. An analysis of the events that enable the creation of the best pre-

diction models provides an insight into the evolution process and the relationship between

evolution events and software defects.

Chapter 9 discusses the results of this thesis and relates them to the research questions raised

in Section 1.2. Additionally, it describes the benefits of sPACE in the context of software

projects and shows how the different roles can use the techniques described in this thesis

to improve their way of working.

Chapter 10 concludes the thesis and summarizes the major contributions of this work. It de-

scribes the lessons learned in sPACE and gives an outlook on potential future work.



Chapter 2

Related Research Areas

In this chapter, we give an overview of the related work of other researchers that concern this

thesis. The basics for sPACE are given by research in the field of software evolution. The

software evolution phenomenon was especially recognized within the research done by Lehman

and Belady [73]. Software evolution includes the phases of initial development and continuous

maintenance. We obtain data about the software evolution from versioning systems and issue

tracking systems and use several processing steps to extract information for the assessment of

the software itself and the development processes and projects. An insight into the research done

on software evolution is given in Section 2.1.

The information about software evolution is utilized in this thesis for the assessment of software

projects and the developed software products. We particularly aim to investigate software quality,

which is approximated through the number of defects. However, defects are just one of the

measurable effects of quality factors such as understandability, changeability, testability, etc.

Several quality models and the related factors and attributes are presented in Section 2.2. In

addition to the number of defects, sPACE focuses on evolvability as a quality aspect. With our

architectural analysis of co-change couplings in Chapter 4 we support the understanding of the

forces that influence evolvability. Also the prediction models of the subsequent chapters and

their internal structure provide insight into the interrelations of the factors in software projects

that influence the resulting product and its quality.

To be able to assess software projects we must measure their attributes and condense them into

facts. This leads to the next related research area of metrics that is elaborated in Section 2.3. Ac-

cording to Daskalantonakis [24] software metrics can be defined as ”a method of quantitatively

determining the extent to which a software process, product, or project possesses a certain at-

tribute. This includes not only the formula used for determining a metric value, but also the chart

used for presenting metric value as well as the guidelines for using and interpreting the chart and

metrics in the context of specific projects.” In this thesis we measure evolution attributes and use

them as input to our investigations and the creation of assessment models.

The data base containing all the evolution metrics that are defined in this thesis is very large.

This makes the assessment for human beings a tedious and difficult task. As a result we use data

mining and related techniques in sPACE to support fact extraction from the large amount of data.

7
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In Section 2.4 we provide an overview of research in the field of data mining, which is a technique

for discovering recurring patterns in data. In this thesis we investigate software evolution, which

is a continuous process and demands appropriate techniques for its analysis. As classical data

mining techniques focus on a fixed state and build models to reveal the dependencies between the

input values, we use sequential data mining techniques in the field of software engineering as one

of the first researchers. The approaches to sequential data mining are introduced in Section 2.4.1.

All tasks within software development projects can be described on a high level as software

processes. Several processes have been proposed for software development such as the Rational

Unified Process (RUP) [61] or Extreme Programming (XP) [7]. But what about the actual course

in software projects? This information is an important input for project assessment and there-

fore we reconstruct process events from software evolution data as an input to the data mining

techniques. The research area of software processes is further elaborated in Section 2.5.

Software processes contain different types of events such as adaptive, corrective, and perfec-

tive activities. Refactoring is one of the perfective activities as it is a technique to improve the

structure of existing software without changing the external behavior [38]. This type of software

evolution is particularly interesting in the context of software quality as it is often used to im-

prove understandability and changeability of a system. Thus, we expect that information about

refactorings in software projects provide valuable input for the prediction techniques in sPACE.

We describe research related to refactoring in Section 2.6.

The ability to predict future events and results is strongly requested in software projects as several

different people can profit, which is described in Chapter 9. Prediction models based on data

mining are one of the cornerstones of sPACE. The existing approaches to predictions in software

engineering are described in Section 2.7.

2.1 SOFTWARE EVOLUTION

In [43] evolvability is defined as ”the capability of software products to be evolved to continue to

serve its customer in a cost-effective way.” Many steps have to be fulfilled to respond to a change

request of a user: First, the current system has to be analyzed and it has to be identified how the

request can be satisfied. This analysis leads to the location which parts of the software have to be

changed. Second, the implementation of the necessary changes may demand further adaptation

of other parts. Thus, the software architecture has to be revised after the modifications. Third,

the changed product is tested and the correctness of the functionality is ensured. Therefore, the

evolvability of a software system is determined by:

• Analyzability

Is the ability to of the system to be clear and to enable the analysis by software engineers

to implement necessary changes.

• Changeability

The system is transformable from one stable state to another.
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• Stability

The architecture of the system must be flexible enough to allow necessary changes to be

made, whereas the existing functionality should not be harmed.

• Testability

Functional and non-functional properties of the system have to be guaranteed to serve the

customers needs.

• Compliance to standards

If a product is developed according to standards, the evolution of this product is simplified.

Lehman and Belady’s Laws of Software Evolution [73] establish that as systems evolve, they

become more complex, and consequently more resources are needed to preserve their structure.

They also establish that successful systems / E-type systems (i.e. embedded in a real-world en-

vironment) must change, or they become progressively less useful in that environment. Lehman,

Perry and Ramil explored the implication of evolution metrics on software maintenance [74] [75].

They used the number of modules to describe the size of a version and defined evolutionary mea-

surements which take into account differences between consecutive versions. By focusing on the

dynamic behavior of a relatively large and mature (12 years old) system, they made a number of

observations about the size and complexity growth of the system. These investigations led to the

laws of software evolution:

• Continuing change

• Increasing entropy (or: complexity)

• The fundamental law of software evolution

• Conservation of organization stability (invariant work rate)

• Conservation of familiarity

• Continuing growth

• Declining quality

• Feedback system

The software life cycle and its stages were subject to many discussions. One of the models

defining the different steps software passes is the staged model for the software life cycle of

Rajlich and Bennett [100]. They state that the software life cycle should be changed to place

evolution at its center.

There are several approaches that analyze the influence of changes in an evolving software sys-

tem: Burd and Munro analyzed the influence of changes on the maintainability of software

systems by defining a set of measurements to quantify the dominance relations which are used to

depict the complexity of the calls [15]. Gold and Mohan defined a framework to understand the
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conceptual changes in an evolving system [53]. Based on measuring the detected concepts, they

could differentiate between different maintenance activities. In terms of change effects, impact

analysis approaches (e.g. [5]) attempt to determine, given a point in the source code involved in

a modification task, all other possible points in the code that are transitively dependent upon this

seed point. Many of these approaches are based on static slicing (e.g. [45]) or dynamic slicing

(e.g. [2]).

The development process has large impact on program complexity and affects software related

events such as release dates. Negative effects on software can be detected by examining logs of

the source code repository [58]. Mathematical concepts from information theory can guide the

investigation of software evolution. Textual descriptions of changes often indicate the type of the

performed change. Mockus et al. [83] discovered that a strong relationship exists between the

type and size of a change and the time required to carry it out. Gefen and Schneberger [48] ex-

plored two distribution patterns of software maintenance modifications (constant and decreasing)

to determine if the distribution is homogeneous. They noted that generally the rate of mainte-

nance modifications decreases over time, but not if viewed in individual phases. They distinguish

three different phases: stabilization, improvement, and expansion.

Rajlich and Bennet [100] identified several stages in their ”staged life cycle model” of software

systems:

Initial development: During this phase of the life cycle the first version of the software is devel-

oped. The finished product is shipped to the user. This phase is crucial to the remaining lifetime

of the system, as appropriate software architecture of the application domain has to be estab-

lished.

Evolution: When a system is exploited in a real world environment, the ongoing changes of the

environment have to be reflected in the software to handle new requirements. The established

needs of the customer have to be satisfied, through (possibly) major extensions of the function-

ality and adaptations.

Servicing: Based on the symptoms of software aging, changes to the system are entailed with

growing expense and effort. At a certain point in time it is not possible to evolve the system

any more, because each extension introduces more errors and thereby losing the ability to serve

customer needs. Thus, only minor defect repairs and simple functional changes are applied in

the servicing phase.

Phase-out: When changes are not supported by a transparent architecture, servicing cannot be

fulfilled anymore. The company tries to gain benefits from the unchanged software as long as

possible. The users have to work around existing pitfalls.

Closedown: Finally, the product is withdrawn from the users and possibly replaced by a new

software system.

For most software projects the initial development and the evolution phase are responsible for

almost the entire effort measured in financial expenses and consumed time. The longer a system

exists the more important becomes the evolution phase of the software life cycle. Many business-

critical applications are in place for many years or even decades. These systems are often very

large.

In addition to source code repositories, several other information sources such as mail messages

and defect reports can by explored to get a better understanding how a software product has
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evolved since its conception [49]. In [52] four different kinds of studies for software evolution

are presented and compared. The studies consider long-running observations of growth and evo-

lution as well as fine-grained issues such as code cloning and software architecture. Software

evolution analysis is a very computational intensive task, where Bevan et al. have implemented a

system called Kenyon for the efficient fact extraction from data sources such as software reposi-

tories and bug tracking systems and storage of the evolution information for further analysis [8].

Besides this work, some approaches also consider the change history of the system under study:

Zimmermann et al. place their analysis at the level of entities in a meta-model [124]. Their

focus was to provide a mechanism to warn developers that: “Programmers who changed these

functions also changed . . . ”. Association analysis was also used in the work of Ying et al. [122]

for change predictions. After the detection of undesired evolution patterns the software should

be restructured to support evolvability. Several re-engineering patterns have been discovered by

Demeyer et al. [28]. The range of software evolution analysis was extended by Bird et al. as they

developed a technique to identify the submission and acceptance of software patches in open

source projects [10].

In terms of re-engineering activities, Demeyer et al. [28] propose practical guidelines to identify

where to start a re-engineering effort: working on the most buggy part first or focusing on the

client’s most important requirements. This approache is based on information that is outside the

code whereas the above mentioned approaches work with the code base.

Additionally, several factors play an important role and affect how systems evolve. In particular,

three properties of evolving systems should be mentioned here: domain of the system, experience

of stakeholders, and development process covering methodology, technology and organization.

An aspect of the research work done by Cook et al. [21] is the including of internal metrics for

complexity, cohesion or coupling to obtain an enriched impression of the quality of a software

system. Based on such measurements, the evolvability of a system can be determined and support

for re-engineering activities can be provided. Also the risk of a change to break an already

existing feature can be assessed by analyzing software changes [84].

Clustering techniques may be used to improve modularity and support evolution. A measure

for similarity or dissimilarity between two objects has to be identified to subdivide objects into

clusters. Chung-Horng Lung [77] presents examples for utilizing clustering techniques for the

improvement of software architecture. He suggests incorporating reverse engineering tools to

identify the dependencies among classes.

2.2 SOFTWARE QUALITY

Strongly related with the evolvability of software systems is its internal quality. Several factors

may play an important role in the evolution of a system. They affect how systems evolve and

emphasize the requirements for well-engineered software systems. One of the first quality mod-

els was established by McCall et al. [80] that is a category based hierarchical model. The first

level is defined by the three perspectives product revision as the ability to undergo changes, prod-

uct transition as the ability for adaptability to new environments for the software, and product
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operations describing the external product attributes. Each of these three categories assembles

several quality factors:

1. Product revision

• Maintainability: effort to locate and fix a fault

• Flexibility: ease of making changes

• Testability: ease of testing

2. Product transition

• Portability: effort to transfer software to another environment

• Reusability: ease of reusing software for a different purpose

• Interoperability: effort to link the software with another system

3. Product operations

• Correctness: how software conforms to specifications

• Reliability: ability not to fail

• Efficiency: in the context of processor time and storage

• Integrity: protection from unauthorized access

• Usability: ease to access functionality

Almost at the same time another quality model was developed by Boehm et al. [12] that exhibits

also a hierarchical structure. They focus more on the aspect of measurement and provide at-

tributes and metrics. The first level of their model is comprised of three characteristics: As-is

utility describing how easy and efficient the system can be used, maintainability describing the

effort needed for understanding and modifying the system, portability describing how the system

can be extended to other environments. Figure 2.1 depicts the entire model.

Dromey [32] discards the hierarchical quality model and relates three factors with each other:

Components are the software entities, quality attributes, and component properties that influence

quality attributes. He defines the following quality carrying properties:

1. Correctness properties

• Computable

• Complete

• Assigned

• Precise

• Initialized

• Progressive
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Figure 2.1: Quality model of Boehm et al. [12]

• Variant

• Consistent

2. Structural properties

• Structured

• Resolved

• Homogeneous

• Effective

• Non-redundant

• Direct

• Adjustable

• Range-independent

• Utilized

3. Modularity properties

• Parameterized

• Loosely coupled

• Encapsulated

• Cohesive
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• Generic

• Abstract

4. Descriptive properties

• Specified

• Documented

• Self-descriptive

A quality model summarizing all the efforts in a common standard was defined by the Interna-

tional Standards Organization (ISO) as standard ISO 9126 [91]. It contains the following quality

factors:

• Functionality

• Reliability

• Usability

• Efficiency

• Changeability

• Portability

Bansiya et al. [6] uses the same categories as ISO 9126 and defines metrics covering the quality

carrying properties of Dromey. These metrics can represent the quality categories as numerical

values. A master thesis of Jetter [62] focusing on software quality attributes describes more

details of quality models.

Software quality assurance accounts for approximately 50% of the development time [51]. There-

fore, it is important to improve defect-detection techniques as well as reduce their costs. Bug

finding tools can find defects in software source code using an automated static analysis. This

automation may be able to reduce the time spent for other testing and review activities. For

this we need to have a clear understanding of how the defects found by bug finding tools relate

to the defects found by other techniques. There are various techniques to identify critical code

pieces. The most common one is to define typical bug patterns that are derived from experience

and published common pitfalls in a certain programming language. Wagner et al. [115] ana-

lyzed several industrial and development projects with the help of bug finding tools as well as

with other types of defect-detection techniques. The main finding is that the bug finding tools

predominantly discover different defects than can be found through testing but nevertheless the

types that can be detected are analyzed more thoroughly. They additionally have a significant

ratio of false positives. Hence, bug finding tools can not substitute dynamic tests or reviews, as

they discover significantly more and different defect types.
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2.3 METRICS

Software metrics provide scalability for analysis approaches and are therefore a widely used

technique to establish a broad understanding of software evolution and the development process.

Lanza and Marinescu [72] give an overview how metrics can be applied in software engineering,

where they deduce many single and combined threshold values from multiple industrial projects.

Numerical values are easily comparable, which helps to evaluate a broad range of systems. In the

context of software evolution a number of studies investigated the long-term stability of software

systems and the ability to cope with new requirements. Different types of measurements are

applied to get insights into evolvability.

A number of metrics have been suggested to evaluate diverse kinds of software engineering

activity in recent years. Chidamber and Kemerer’s metrics [18] are often used to detect faulty

classes. Tsantalis et al. [112] try to quantify the change probability of each class in future releases

with the help of these metrics. Forward and backward logistic regression was performed with the

result, that only some proposed measures such as class size were relevant in the analyzed case

studies. Their work identifies classes that have a high probability of change and at the same time

can affect a large number of classes.

Different types of measurements are applied to get insights into maintainability. Software metrics

are used to establish a broad understanding of the software system and the development process.

Numerical values are easily comparable, which helps to evaluate a broad range of systems. On

the contrary, the human brain is capable to distinguish multiple aspects of a complex problem

based on a graphical visualization. Hence, an interesting approach is to combine the advantages

of visualization with the scalability of metrics. A graph can be enriched with metric informa-

tion concerning the attributes classes. Nodes representing object-oriented entities may be used to

provide additional information based on the node size, the node position, and the node color. De-

meyer et al. [27] incorporated simple metrics collected from source code into graphical layouts.

Different graphs were combined with different metrics, which provided an initial understanding

of the studied software and assisted in the unveiling of design anomalies.

In relation to the successes that can be achieved with the help of software metrics, an evaluation

is necessary which metrics are useful for which types of problems. Demeyer et al. [26] evaluated

a number of existing size and inheritance metrics on three releases of a medium sized object-

oriented framework. From framework documentation they deduced that the transition from the

first release to the second release was mostly restructuring. On the contrary the functionality

was extended from the second to the third release. This restructuring and extension could be

confirmed with the help of measurements. During the restructuring phase inheritance hierarchies

were reordered that could be identified by investigating the structure of class hierarchies. The

number of defined methods was used as another indicator for restructuring activities.

Other metrics such as cohesion and coupling could be incorporated to round up the analysis

approaches. Kabaili et al. [63] investigated whether cohesion metrics could also be used as

changeability indicators and concluded that this is not the case; at least not for the common

cohesion metrics LCC (loose class cohesion [9]) and LCOM (lack of cohesion in methods [76]).

Therefore, more suitable cohesion metrics have to be developed. As a result coupling metrics

have to be regarded to receive a better understanding of a software system.
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Stevens et al. [109], who first introduced coupling in the context of structured development tech-

niques, define coupling as ”the measure of the strength of association established by a connection

from one module to another”. It is supposed that, the stronger the coupling between modules the

more difficult these modules are to understand and correct. This results in a more complex soft-

ware system [14].

One work concerning coupling metrics identified coupling between objects (CBO). CBO is de-

fined in [17] as follows: ”CBO for a class is a count of the number of non-inheritance related

couples with other classes.” An object of a class is coupled to another, if methods of one class

use methods or attributes of the other one. In [18], a revised definition is proposed: ”CBO for a

class is a count of the number of other classes to which it is coupled — this includes coupling

due to inheritance.”

Many coupling measures are based on source code and the exposed attributes. One of the re-

search approaches base on source code were introduced by Eder et al. [33]. There three different

types of coupling were identified:

• Interaction relationships between methods: This type of relationship is caused by message

passing.

• Component relationships: Each object has a unique identifier (the object identity). An

object may reference another object using the identifier of object. This introduces a com-

ponent relationship between the two classes.

• Inheritance relationships between classes: Two classes c, and c′ are inheritance coupled, if

one class is an ancestor of the other.

With this classification one can derive different dimensions of coupling which are classified

according to different strengths.

Hitz and Montazeri [60] defined two different kinds of coupling, which are determined by the

state of an object or an object’s implementation. The state of an object is determined by its

attributes at a given moment at runtime. The state of an object’s implementation is identified by

the class interface and body at a given time in the development cycle. From these definitions,

they derive two ”levels” of coupling:

• Class level coupling (CLC): CLC represents the coupling resulting from state dependencies

between two classes in a system during the development life cycle. This consideration is

important for maintenance and change dependencies. Changes in one class may lead to

changes in other classes which use it.

• Object level coupling (OLC): OLC represents the coupling resulting from state dependen-

cies between two objects during the runtime of a system. The authors claim that OLC is

relevant for runtime oriented activities such as testing and debugging.

Instead of couplings that are manifested in the source code we focus on co-change coupling

in terms of change patterns [41, 43]. If programs change together across module or subsystem



Chapter 2: Related Research Areas 17

boundaries, the decomposition structure of the application should be reconsidered and possibly

restructured or re-engineered. Our approach attempts to measure coupling based on analysis of

multiple releases of a system. This approach is based on observed change behavior of modules

in a system and may be categorized as retrospective. Our measures may be used not only as

coupling measures to guide restructuring efforts but also to validate the effectiveness of predictive

and code-level coupling measures [41, 42, 44].

Coupling and cohesion measures are a way to measure structural cohesiveness of a design. The

main purpose is to evaluate how maintainable a design and resulting implementation are, and to

guide improvement efforts. The basic idea is that the more dependencies exist among modules

the less maintainable the system is because a change in one module will necessitate changes in

many dependent modules.

2.4 DATA MINING

Metrics provide the benefit that they are usually numeric values and therefore easily comparable.

Additionally, large systems can be characterized with a small number of metrics, if the measures

of the attributes can be condensed so much. However, when measurements are established in

software projects, a large number of metrics is often gathered. This huge data amount renders

manual analysis more difficult or makes it even impossible. To cope with this situation we utilize

data mining techniques to extract recurring patterns in the data. These techniques enable to

answer concrete questions (e.g. how many defects are expected for the near future). Moreover,

some resulting models from the data mining (e.g. decision trees) enable the interpretation of the

interrelations between the input attributes. Automation is important in the context of the usability

of data mining in software projects. To improve this situation Gonnet [54] has integrated the

Weka data mining tool [119] with the Eclipse development environment.

Most studies related to decision trees in software engineering use size and complexity metrics

of the software system itself to predict reliability during the usage of software [96]. The applied

algorithms have sound statistical foundations and the predictions provide reasonable accuracy.

The quality of prediction models based on internal software metrics are often improved to obtain

better results or simpler prediction models. One way to improve prediction models based on

classification trees is the application of Akaike Information Criterion, based on maximum like-

lihood estimation and least number of complexity metrics [110]. In contrast, we propose using

metrics related to the software evolution (e.g. number of authors or number of commit messages)

to predict events in the software life cycle.

Software quality is often predicted based on two aspects. First, in the time domain the reliability

of software is measured as the probability of failure-free operation for a specific time period

under a given environment. Second, in the input domain the reliability of a software system

is the probability of failure-free operation for specific input states. Tian [111] integrates these

two approaches with tree-based models, where the relationship between the estimated reliability

and its input state or timing predictors is available in a tree structure. These models have the

advantage that both numerical and non-numerical attributes can be used. The attributes for his

integrated reliability analysis are gained from runs of the program.
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Classification trees generate partition trees based on a training data set describing known expe-

riences of interest (e.g. characteristics of past software development). The technique of classi-

fication trees can handle both continuous and discrete variables and interdependencies between

variables are taken into account. Additionally, the tree structure is intuitive and can be easily

interpreted. Briand et al. [13] even try to improve the predictive capabilities by combining the

expressiveness of classification trees with the rigor of a statistical basis. Their approach called

OSR generates a set of patterns relevant to the predicted object. The algorithm groups similar

objects and extracts an optimal pattern vector, estimated based on the entropy H.

Khoshgoftaar et al. [68] use software metrics as input to classification trees to predict fault-

prone modules. One release provides the training dataset and the subsequent release is used

for evaluation purpose. They claim that the resulting model achieved useful accuracy in spite

of the very small proportion of fault-prone modules in the system. With the help of statistical

tests subsets of modules can be detected with uncertain classifications allowing enhancement

strategies to resolve uncertainties. They used historical data for evaluation purposes, but the

prediction model is based on conventional software metrics.

2.4.1 SEQUENTIAL DATA MINING

Quality models in software engineering rely on condensed metrics but do not consider the course

of time. In our research we focus especially on this aspect. According to Geurts [50] the time

series classification problem can be defined as follows: Given a universe of objects. Each object

is described by a certain number of temporal attributes and classified into one particular class.

The goal of the machine learning algorithm is to find a function f(o) that is as close as possible

to the true classification c(o). This function should only depend on attribute values.

Kadous solves the problem of multivariate time series classification with the help of parameter-

ized event primitives. The extracted events are clustered to create prototypical events. They are

used as the basis for creating more accurate and comprehensible classifiers than hidden Markov

Models or recurrent neuronal networks. [64] Manganaris developed a system for supervised clas-

sification of univariate signals using piecewise polynomial modeling combined with a scale-

space analysis technique (i.e. a technique that allows the system to cope with the problem that

patterns occur at different temporal scales) and applies them to space shuttle data as well as to

an artificial dataset. [78]

2.5 SOFTWARE PROCESSES

Data mining techniques are applied for several tasks in the software engineering domain. One

field for the application of data mining is software defect prediction. Another important field

is process mining where patterns of processes are analyzed to investigate if the behavior is as

expected. One of the first addressing the problem of discovering process models from event logs

were Cook and Wolf [20]. They analyzed three different algorithms that automatically discover

models capable to explain all the events in log traces. Even before Garg et al. [46] presented a
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meta-process for reuse, process discovery, and evolution. They investigated process history to

analyze in the context of process improvement how the process should be changed for the next

cycle.

According to [120] process data capture is the activity of obtaining information about an existing

software process and process analysis is the manipulation of that information for purposes of

problem identification. Wolf and Rosenblum developed a model of the software process and

defined a taxonomy for events, which are identifiable, instantaneous milestones in a process.

Tools were used to automatically capture event information from the log files of a build tool.

This method enables the recording of event data through independent, direct observations. In a

study carried out at AT&T the captured build process was analyzed through queries on the event

data about the relationships among events, such as dependencies and time intervals to gain a

deeper understanding for a following process improvement effort.

In our approach we use the event data captured from software evolution to generate time series,

which describe the relationship of different event types. In research focusing on discovering

process models the representation used to describe process models are often some kind of net-

works. Aalst et al. [113] use Petri nets when extracting process models from workflow logs,

which contain information about the workflow process as it is actually being executed. The

presented α-algorithm is able to recover workflow processes.

An extension for the idea of process recovery is introduced by Greco et al. [56] by searching for

similarities in different workflow traces to reduce the complexity of the resulting model. They

propose a novel framework for the discovering of process models, where they explicitly account

for the identification of different variants for the process. A hierarchical clustering technique is

used for grouping similar execution traces, where each group is modeled with with a different

schema. This increases soundness while preserving maximum completeness. The approach starts

with with a preliminary non-disjunctive model that can be obtained with any process mining

algorithm from literature and iteratively and incrementally refines the process model to get a

monotonic improvement in soundness.

All software systems are produced according to some process model. For many critical systems a

defined process model (e.g. Rational Unified Process, V-Model XT, etc.) is a necessary ingredi-

ent to build a system of defined quality. The process view is currently very common in industry,

which can be observed through the growing importance of quality standards such as ISO 9000

or CMMI. Quality standards enforce a defined process model or at leased the necessity for a

definition of the process model to follow. The process model has to be set up compliant with

several characteristics laid down by the quality standard. For example the ISO 9000 demands a

production process with a planning phase where the system requirements have to be defined, and

a development phase where the results have to be verified and validated.

However, projects even under the guidance of quality standards deserve a certain level of con-

trol. Process models define how a system ”should be” constructed, but how the system ”is”

constructed has a large impact on the success of each project. As a result the project manager

and the senior management are interested in the capabilities the projects carried out. For project

management it is interesting to know which phases were passed through during the software de-

velopment or which events took place. This information is necessary in order to take steering

actions.
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Software process and life cycle models are elaborated in detail in [105], where a software life

cycle model is defined as either a descriptive or prescriptive characterization of how software

is or should be developed. In contrast, software process models are described to represent a

networked sequence of activities, objects, transformations, and events that embody strategies for

accomplishing software evolution.

2.6 REFACTORING

An important aspect of software evolution is the existence of preventive maintenance activities

to avoid future problems. These activities are of major interest for our research as a strong re-

lationship between preventive maintenance such as refactoring and software quality is expected.

As it is described in [38], refactoring is designed to improve the structure of existing software.

It is a technique utilizing behavior-preserving transformations to restructure object-oriented ap-

plications. It helps to place code that changes together into one separate place like a class or

a particular hierarchy of classes. Refactoring as a technique to reorganize object-oriented con-

structs has been investigated for quite some years now. The work of Opdyke [90] is one of the

first in the area of academic research. It gave inspiration to additional work. Most of the followed

studies aimed to automate the application of refactoring on source code (e.g. [19]).

Simon et al. [108] postulate that refactoring should be regarded as a key issue to increase internal

software quality. Their approach demonstrates how to use cohesion metrics based on generic

distance measures to identify which software elements are closely related and should therefore

be assembled in object-oriented entities. Source code inspections are another field where code

smells have to be evaluated. jCOSMO was developed to automatically detect code smells such

as the ones defined by Fowler [38] and to visualize their distribution in the system [114].

A number of publications show the usefulness of refactoring for software development. Capiluppi

et al. [16] found that understandability was increased by refactorings in several projects. Kataoka

et al. [65] try to measure the maintainability enhancement effect of program refactorings based on

coupling metrics. In a larger experiment the developer’s subjective evaluations match the results

of the author’s approach to determine the effectiveness of refactorings. Najjar et al. [88] investi-

gate refactoring of constructors, because constructors do not ideally communicate the developer’s

intention, and secondary produce duplicated code. The study investigated several Java systems

and found that the code of two systems could be economized. A survey paper, which extensively

discusses research in the field of software refactoring was written by Mens and Tourwé [81].

It discusses refactoring activities and numerous techniques. Demeyer et al. [25] validate sev-

eral metrics for identifying if refactorings took place for a given file. In contrast, we perform a

prediction task based on evolution data.

Antoniol et al. [4] analyze the evolution of object-oriented source code at the class level. The

focus is on a limited number of refactoring events, which are identified based on a vector space

model. The application of the proposed approach to an open source domain name service pro-

duced a list of class refactoring operations. Advani et al. [1] analyzed a range of open source

systems, regarding whether a refactoring occurred and if so which were the most common. They
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found that simple refactorings, like basic operations on fields and methods occurred more fre-

quently, than more interweaved refactorings, such as those, requiring manipulation of the inher-

itance hierarchy.

In a previous work we investigated the design of a software system based on evolution data,

extracted from source code management systems [102]. This information is used to detect archi-

tectural shortcomings in the design of the analyzed software and how refactoring can support the

evolvability of software systems.

2.7 PREDICTION IN SOFTWARE ENGINEERING

As described in Section 2.3, software metrics provide quantitative information that can be used

to measure software projects — an important software quality indicator. Complexity and design

quality as well as some other properties of the final software can be predicted by analyzing

the data. One question that remains to be answered is, how internal software metrics relate to

external software attributes such as software quality, which is most useful but difficult to measure

objectively. Our work aims to provide support to answer this question. Other researchers have

also addressed this topic from different viewpoints. For example Yu et al. [123] present a case

study, where first the distributions and mutual correlations of selected metrics are analyzed and

then the effects on software fault-proneness are studied. Two techniques are used: Regression

analysis and discriminant analysis. One important result obtained in this study is that coupling

within and especially across inheritance hierarchies shows significantly different effects on fault-

proneness. A multivariate analysis shows that it is fairly possible in predicting the actual number

of faults for each class and more effective in just identifying whether a class contains faults.

Many organizations want to predict the number of defects in software systems, before they are

used, to predict the likely quality and maintenance effort. The testing of a program is a costly

part of software development. Defect-detection techniques are the mostly used method to assess

quality in software. Therefore, we need to understand the relations between costs regarding those

techniques. Wagner and Seifert [116] proposed a cost model for defect-detection techniques

that uses a reliability model to analyze the future failure behavior of the software and hence to

predict the external costs. The other costs are determined based on expert estimations and direct

measurements.

An interesting approach was presented by Weiß et al. [118]. They predict the necessary effort to

fix a bug based on the comparison to other similar bugs. As input for their predictions they use an

issue tracking system (i.e. Jira), which is also used in our approach for the data on defects in our

study. In their work, the issue title, which is a one-line summary, and the detailed description of

the issue are used to identify similar bug records with the help of the nearest neighbor approach

(kNN). In our study we use the EM algorithm for the search of text similarities.

In a previous study the application of machine learning (inductive) technique is tested to the soft-

ware maintenance process. Shirabad et al. [107] presents an example of an artificial intelligence

method that can be used in future maintenance activities. They call it the inductive or machine

learning method which belongs to the category of classification learning. This system does not
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require a large body of knowledge as it learns from past experience. An induction algorithm is

applied to a set of pre-classified training examples of the concept we want to learn e.g. a relation

between fields. The output of the induction algorithm is referred to as a classifier, which is also

known as model or concept. Each training example is a known or solved case. Once a model or

classifier is learned from a set of training examples it can be used to predict the class or outcome

of unclassified or unsolved examples. The authors explain how to find out if other files are af-

fected by the changes applied from a software user. The best results are obtained by combination

of text-based features with syntactic structures which improves the results and are even more ap-

propriate for real life deployment. The large size and complexity of systems, high staff turnover,

poor documentation and the long periods of time these systems must be maintained lead to a lack

of knowledge in how to proceed the maintenance of software systems.

Nikora and Munson [89] developed a standard for the enumeration of faults based on the struc-

tural characteristics of the MDS software system. This program allows one measuring and pre-

dicting faults precisely and accurately. Units are measured proportional to the way that the

system changes over time. Changes to the system are visible at the module level (procedures and

functions) and therefore the level of granularity is measured. Since the measurements of system

structure are collected at the module level, another aim is to collect information about faults at

the same granularity. A fault, by definition, is a structural imperfection in a software system that

may eventually lead to a defect during the operation of the system. There are different reasons

for each fault: Some faults are existing because of errors in the specification of requirements.

Others are directly attributable to error committed in the design process. Finally, there are faults

that are introduced directly into the source during implementation. The standard of Nikora and

Munson and the related fault measurement process was applied to a software system’s structural

evolution during its development. Every change to the software system was measured and every

fault was identified and tracked to a specific line of code.

Only a small number of empirical studies using industrial software systems have been performed

and published. Ostrand and Weyuker [92] believe that this is because it is difficult to get access

to these large systems and needs a lot of money and time to analyze the data. They evaluated a

large inventory tracking system at AT&T. In that case study data was collected whenever a fault

is identified in the software system. Furthermore faults are detected how they are distributed

over different releases. They discover that faults are always heavily concentrated in a relatively

small number of releases during the entire life cycle. Additionally, the number of faults in these

releases is getting higher as the product matures and high-fault releases tend to remain faulty in

later releases. So it would be worthwhile to concentrate fault detection only in a relatively small

number of high fault-prone releases, if they can be identified early.

Another approach using software histories for defect prediction presented by Kim et al. [69]

does not focus on metrics but tries to identify entities that are in the locality of other bugs (or

bug fixes). They exploit temporal and spatial locality and keep the information in a bug cache to

predict locations where defect inducing changes took place. The approach is based on the idea

that failure inducing changes are related with each other. When bug fixes take place they use

this information to identify failure inducing changes. From this information they deduce other

elements that have been involved or related with these changes and are therefore also suspicious
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to contain defects. As this approach provides impressive results, it focuses on one of the aspects

related with defects. Fenton and Neil [34] provide a critical review of literature that describes

several software metrics and a wide range of prediction models with the purpose to predict the

likely quality and maintenance of a software product. He found out that most of the statistical

models are based on size and complexity metrics within the aim to predict the number of defects

a system. Others are based on testing a testing process, the ”quality” of the development process,

or take a multivariate approach. However, there are a number of fundamental serious theoretical

and methodological problems in many studies. As a result, they recommend holistic models

for software defect prediction using Bayesian Belief Networks, as alternative approaches to the

single-issue models used in the past. Therefore, we use measures covering multiple aspects in

our prediction approaches.

By focusing on the types of changes, costs and efforts to evolve, Kemerer and Slaughter [67]

suggest that future trends within a particular system are predictable. Within their research they

collected, coded, and analyzed more then 25000 change events of 23 commercial software sys-

tems over a 20-year period. Two of these systems were compared to show the efficacy of flexible

phase mapping and gamma sequence analytic methods originally developed in social psychology

to examine group problem solving processes. With this study the authors wanted to identify and

understand the phases of these techniques through which a software system travels as it evolves

over time.
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Measures of Software Evolution

The availability of a broad range of metrics supports an in-depth analysis of software projects.

The current chapter focuses on the definition of multiple evolution metrics, where different as-

pects of software projects are taken into account. We define 63 metrics to cover different topics

and according to the guidance of Fenton and Neil [34] we organized our evolution metrics into

the following categories: size, process orientation, defect discovery, team, complexity of exist-

ing, difficulty of problem, relational aspects, and time constraints.

3.1 PREPARING EVOLUTION DATA

Development projects usually maintain a lot of information concerning the evolution of the sys-

tem. Project managers have to be able to observe the status of single tasks as well as the progress

of the entire project. Developers need information about what is requested from them and need

storage systems for their results. Thus, different aspects are covered by different systems, which

we have to integrate for our analysis. To mine software development projects we use versioning

systems (e.g. CVS) and issue tracking systems (e.g. Jira).

Versioning systems enable the handling of different versions of files in cooperating teams. These

tools log every change, which provides the necessary information about the history of a soft-

ware system. The log-information for our mining approach—pure textual, human readable

information—is retrieved via standard command line tools, parsed and stored in a relational

database [35].

Issue tracking systems manage data about project issues such as bug reports and feature requests.

These systems provide a view of software products on project level and give a chronological

overview of the requirements and their implementation. We extract the data from such systems

based on their backup facilities, where the entire issue data can be exported into XML files.

These files are processed to import the information into our evolution database.

24
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Figure 3.1: Evolution Data Model
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3.1.1 DATA ELEMENTS AND TRANSACTIONS

Figure 3.1 describes the data model of the evolution database. The upper part shows the entities

containing data from versioning systems. Revisions are located in the center and are strongly

related to modification reports (MR). Both provide historical data about files such as the change

date, the size of the change measured on the basis of lines, and the author of the change. Re-

visions are related with each other as the code of one revision replaces the code of the previous

one. This information is maintained by modification reports in our model. Releases are defined

as collections of revisions of all files maintained by the particular versioning system. Addition-

ally to this grouping of revisions, they are related to each other based on commits of developers.

When a developer checks in changes based on several files at once, the versioning system only

stores the dates of the new revisions for each particular file, but does not maintain the transaction

information that the files where commited together. As a result, we have to reconstruct commit

transactions (also called change sets) identifying the files that were changed together in a post

processing phase.

Transactions Tn are sets of files that were checked-in into the versioning system by a single

author with equal commit messages within a short time-frame—typically a few minutes. To

capture entire transactions possibly lasting several minutes we use a dynamic time adaptation

approach. Each transaction is initially set to last for 60 seconds. The revisions of different files

with equal author and commit message within the time window of the transaction is added to

this particular transaction. The window is expanded on each detected revision to last for 60

seconds after the time of the last revision related to this transaction. Transactions are then used

in the evaluation of couplings between software entities. We refer to a co-change coupling as:

Two entities (e.g. files) are co-change coupled, if modifications to the implementation affected

both entities over a significant number of commit transactions. The strength of the co-change

coupling between two entities a, b can be determined easily by counting all common transactions

of a and b, i.e., C = {〈a, b〉|a, b ∈ Tn} is the set of co-change coupling and |C| is the strength of

the coupling of these two software entities. [43]

We compute the change couplings as follows:

1. Extract all software entities of interest: The couplings are generated based on classes.

If the user selects modules as a point of interest, all classes within this module and all its

descendant submodules have to be considered for the determination of the couplings:

E = {e|e ∈M, d(M)}

M is set of selected entities (i.e. modules and classes) and

d(M) are all descendants of the selected modules

2. Detect transactions within the give time period: Based on a given time window T for

which the coupling of the selected entities should be computed, we have to identify the

commit transactions ct that happened in the given time period (i.e. the time t(ct) of the

commit transaction is contained in the given time window T ).

CT = {ct|t(ct) ∈ T}
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t(ct) is the time of the commit transaction ct and

T is the given time period

3. Get all revisions of the discovered commit transactions: To calculate the co-change

coupling for a group of entities (i.e. classes) we need to detect the revisions r of related

classes that have been changed together with the entities of interest (i.e. E) within the

defined time frame:

R = {r|ct(r) ∈ CT, (e(ct(r)) ∩ E) = ∅}

ct(r) is the commit transaction of revisions r and

e(ct(r)) is the set of classes related by the commit transaction

4. Extract coupling for classes of interest: We are looking for pairs of classes that represent

coupled software entities, where at least one class is an element of the selected modules or

classes:

C = {c =< e1, e2 > |(e1 = e(r1) ∨ e2 = e(r2)) ∈ E, ct(r1) = ct(r2), r1, r2 ∈ R}

e(r) is the class of the revision r.

|C| is defined as the strength of the coupling.

3.1.2 RELATING DATA SOURCES

The data items from versioning systems are related with issue tracking data in two dimensions.

The first one relates revisions of file histories with issue objects based on the commit message of

revisions. Usually when developers commit changes to a versioning system they have to specify

which issue is addressed by these changes. For our analysis the issue key is extracted from the

commit message and the database is searched for existing issues with the given key. If a matching

issue is found the date of the issue is compared to the date of the revision. The relation between

the revision and the issue are only accepted if the issue has been created before the date of the

revision, because developers can only solve issues that are known at the time of development.

For example in Jira a key of an issue may be ”PJVI-1482”. When a string with such a pattern

(i.e. PJVI-[1-9]*) is found in a commit message of a file, the appropriate issue is searched in the

database and the two entities are related with each other.

Additionally, versioning and issue tracking systems are related with each other based on the

accounts (i.e. IDs) of people working on the project. The accounts of CVS and Jira are related

with each other when the account names have a similarity of more than 3 characters. With the

mapping between the accounts it is possible to divide the issues in different groups: Issues that

are created by developers and issues that are created by customers and customer related staff

such as service personnel and project managers.
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Name Description

linesAdded number of added lines

normalized on the total lines of code (LOC)

linesModified number of modified lines

normalized on the total lines of code (LOC)

linesDeleted number of deleted lines

normalized on the total lines of code (LOC)

linesType indicating relation of added to modified lines

negative if more lines added otherwise positive

largeChanges number of changes with added lines >= 2*average

normalized on the total number of changes

smallChanges number of changes with added lines <= average/2

normalized on the total number of changes

Table 3.1: Size related evolution metrics.

3.2 EVOLUTION METRICS

From the basic data model we derive 63 evolution metrics, which are gathered on a file basis,

where data from all revisions of a file within a given time period (i.e. the training period) is

summarized. To build balanced assessment models we create multiple metrics to represent sev-

eral important aspects of software development such as the complexity of the designed solution,

process used for development, interrelation of classes, etc. As previous studies (e.g. [70, 86])

found out that relative values provide better performance in prediction than absolute ones, we

decide that all our evolution metrics have to be relative measures. We set up the following cate-

gories of metrics for each file containing changes within the given time period:

3.2.1 SIZE

Table 3.1 provides an overview of our size related metrics. This category groups ”classical”

metrics such as lines of code, but from an evolution perspective: linesAdded, linesModified, or

linesDeleted relative to the total LOC of a file. The last metrics measures a certain aspect of the

discipline of the developers, where developers remove code that they regard as unnecessary to

keep the system simple. Other metrics of this category are linesType, which describes if there are

more lines added or lines modified. Additionally, we use largeChanges that describes changes,

which have more than double of the LOC of the average change size and smallChanges, which

indicates changes with less than half of the average LOC. We expect that the last one is an

important metrics, as other studies have found out that small modules are more defect prone than

large ones (e.g. [59, 85]).
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Name Description

authorCount number of authors working on file

normalized on the number of changes

authorSwitches number of hands over between authors

normalized on the number of authors

peopleCount number of assignees of the related issue

normalized on the number of authors

peopleSwitches number of re-assignments of issue

normalized on hands over between authors

Table 3.2: Team related evolution metrics.

3.2.2 TEAM

As we see in Table 3.2 this category contains several people related metrics. The number of

authors working on a common piece of software influences the way software is developed. We

expect that the more authors are working on the changes the higher is the possibility of rework

and mistakes. In this context D’Ambros et al. [23] presented an analysis of developer effort. We

define a metric for the authorCount regarding the number of authors in terms of CVS relative

to the number of changes. Further, the interrelation in the work of developers is interesting.

We investigate work rotation between the authors involved in the changes of each file as au-

thorSwitches. The number of people assigned to an issue (peopleCount) is put in relation to the

number of authors contributing to the implementation of this issue.

3.2.3 PROCESS ORIENTATION

In this category (see Table 3.3) we assemble metrics that define how disciplined individuals

follow software development processes and which effects this has on their development work.

On source code changes developers have to include the issue number in their commit message

to the versioning system. We define a metric regarding issueCount relative to the number of

changes. At least the developer should provide some rational for the implemented changes in the

commit message. Thus, we use withNoMessage measuring the number of changes without any

commit comment.

In each project the distribution between different priorities of issues should be balanced. Usually,

the number of issues with highest priority is very low. A high value may indicate problems in

the project that have effects on quality and re-work amount. Accordingly, we investigate high-

PriorityIssues and middlePriorityIssues relative to the total number of issues. Also the time to

close certain classes of issues provides interesting input for project assessment and we use avg-

DaysHighPriorityIssues and avgDaysMiddlePriorityIssues in relation to the average number of

days that are necessary to close an issue. To get estimation for the work habits of the developers,

we inspect the number of addingChanges and modifyingChanges per file.
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Name Description

issueCount number of issues

normalized on the number of changes

withNoMessage number of changes without even a comment

normalized on the number of changes

highPriorityIssues number of issues with priority high

normalized on the number of issues

middlePriorityIssues number of issues with average priority

normalized on the number of issues

avgDaysHighPriorityIssues number of days to close high priority

normalized on the average days for closure

avgDaysMiddlePriorityIssues number of days to close middle priority

normalized on the average days for closure

addingChanges number changes: lines added > changed

normalized on the number of changes

modifyingChanges number changes lines added < changed

normalized on the number of changes

Table 3.3: Process oriented evolution metrics.

3.2.4 COMPLEXITY OF EXISTING SOLUTION

Table 3.4 summarizes our evolution metrics related to the complexity of the existing solution.

We expect that according to the laws of software evolution [73], software continuously becomes

more complex. Changes are more difficult to add, as the software is more difficult to under-

stand and the contracts between existing parts have to be retained. As a result, we investigate

the changeCount of the training period in relation to the number of changes during the entire

history of each file. The changeActivityRate is defined as the number of changes during the

entire lifetime of the file relative to the number of months measuring the entire lifetime. The

linesActivityRate describes the number of lines of code of the file relative to the age of the file in

months.

We approximate the quality of the existing solution by the bugfixCountBefore, which describes

the number of bug fixes implemented before our training period. Again we use relative values

and compute the division of the number of bug fixes before and the number of changes. We

expect that the higher the fix rate is before a given period the more difficult it is to establish a

better quality later on. The bugfixCount is used as well as bugfixLinesAdded, bugfixLinesMod-

ified, and bugfixLinesDeleted in relation to the base values such as the number of lines of code

added, modified, and deleted for this file. Usually, for bug fixes not much new code should be

necessary, as most code is added for new requirements. Therefore, linesAddPerBugfix, linesMod-

ifiedPerBugfix, and linesDeletedPerBugfix are potential indicators to reveal the complexity of the

existing solution.
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Name Description

changeCount number of changes in training period

normalized on the total number during lifespan of the file

changeActivityRate total number of changes during lifespan

normalized on the number of months of the lifespan

linesActivityRate total number of lines of code

normalized on the age of the file measured in months

bugfixCountBefore number of bugs before the training period

normalized on the number of changes of any type

bugfixCount number of bug fixes

normalized on the overall number of changes

bugfixLinesAdded number of lines added within bug fixes

normalized on the overall number of added lines

bugfixLinesModified number of lines changed within bug fixes

normalized on the overall number of changed lines

bugfixLinesDeleted number of lines deleted within bug fixes

normalized on the overall number of deleted lines

linesAddPerBugfix number of lines added within bug fixes

normalized on the number of bug fixes

linesModifiedPerBugfix number of lines changed within bug fixes

normalized on the number of bug fixes

linesDeletedPerBugfix number of lines deleted within bug fixes

normalized on the number of bug fixes

Table 3.4: Evolution metrics focusing on the complexity of the existing solution.
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Name Description

coChangeNewFiles number of new files introduced with changes of this file

normalized on the number of co-changed files

issueAttachments number of attachments of the related issues

normalized on the number of issues

Table 3.5: Evolution metrics focusing on the difficulty of the problem.

3.2.5 DIFFICULTY OF PROBLEM

Table 3.5 shows our metrics related to the difficulty of the existing solution. We expect that new

classes are added to object-oriented systems when new features and new requirements have to be

satisfied. We use the information whether together with changes to the file of interest other files

were newly introduced. To measure how often a file was involved during the development with

the introduction of other new files we use coChangeNewFiles as an indicator. Co-changed files,

which are files that have co-change coupling with the particular file of interest, are identified as

described in Section 3.1.1.

The amount of information necessary to describe a requirement is also an important source of

information. The metric issueAttachments identifies the number of attachments per issue.

3.2.6 RELATIONAL ASPECTS

Table 3.6 provides an overview of the evolution metrics for relational aspects. In object-oriented

systems the relationship between classes is an important information. We use the co-change

coupling between files to estimate their relationship (see section 3.1.1). The first metric of this

category is couplingChanges, which describes the number of changes/revisions where a group

of files were commited in one transaction. We use the number of co-changed files relative to

the change count as metric cochangedFiles, which counts the number of other files that where

changed together with a particular file. Thus, several co-changed files may be related to one

couplingChange.

Additionally, we quantify co-changed couplings with metrics based on commit transactions sim-

ilar to the size metrics for individual files: tLinesAdded, tLinesModified, and tLinesDeleted rel-

ative to lines of code added, modified, and deleted. The tLinesType describes if the transactions

contained more lines added or lines modified. tChangeType is a coarser grained metric that

describes if this file was part of transactions with more adding revisions or more modifying revi-

sions.

For file relations we also use bug fix related metrics: tLinesAddedPerBugfix and tLinesChanged-

PerBugfix are two representatives. Additionally, we use tBugfixLinesAdded, tBugfixLinesModi-

fied, and tBugfixLinesDeleted relative to the linesAdded, linesModified, and linesDeleted.
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Name Description

couplingChanges number of changes together with other files

normalized on the overall number of changes

cochangedFiles number of co-changed files

normalized on the number of changes

tLinesAdded number of added lines in all files of the commit transactions

normalized on the number of added lines in the particular file

tLinesModified number of changed lines in all files of the commit transactions

normalized on the number of changed lines in the particular file

tLinesDeleted number of deleted lines in all files of the commit transactions

normalized on the number of deleted lines in the particular file

tLinesType indicating relation of added to modified lines of the transactions

negative if more lines added otherwise positive

tChangeType indicating if this file was part of more adding or changing transact.

negative if more adding transactions otherwise positive

tLinesAddedPerBugfix corresponding to linesAddedPerBugfix just for transactions

tLinesChangedPerBugfix corresponding to linesModifiedPerBugfix for transactions

tBugfixLinesAdded corresponding to bugfixLinesAdded regarding transactions

tBugfixLinesModified corresponding to bugfixLinesModified regarding transactions

tBugfixLinesDeleted corresponding to bugfixLinesDeleted regarding transactions

Table 3.6: Evolution metrics focusing on relational aspects.

Name Description

avgDaysBetweenChanges number of days

relative to the number of changes

avgDaysPerLine number of days

relative to the number of lines added + changed

relativePeakMonth (sequence number of month with most changes)

/ (number of months)

peakChangeCount number of changes in the peak month

normalized on the overall number of changes

changeActivityRate number of changes

relative to the number of months in the period

linesActivityRate number of lines added + changed

relative to the number of months

Table 3.7: Evolution metrics focusing on time constraints.
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Name Description

bugfixesDiscoveredByDeveloper number of bugs reported by developer

(before the training period)

normalized on the overall number of bugs

(before the training period)

Table 3.8: Evolution metrics focusing on time constraints.

3.2.7 TIME CONSTRAINTS

Table 3.7 shows our evolution metrics related to time constraints. As software processes stress

the necessity of certain activities and artifacts, we consider the time constraints to be important

for software predictions. The avgDaysBetweenChanges metric is defined as the average number

of days between revisions. The number of days per line of code added or changed captured as

avgDaysPerLine.

Peaks and outliers have been shown to give interesting events in software projects [43]. We

measure for relativePeakMonth the location of the peak month, which contains most revisions

within the prediction period. The peakChangeCount metric describes the number of changes

happening during the peak month normalized on the overall number of changes. The number of

changes is measured based on the months in the training period with changeActivityRate. For

more fine-grained data the lines of code added and changed relative to the number of months is

regarded for linesActivityRate.

3.2.8 DEFECT DISCOVERY

We use data (see Table 3.8) on the discovery of defects as an input to our assessment models,

because they allow estimating the remaining defect number. The number of bug fixes initiated

by the developers itself provides insight into the quality attentiveness of the team and are covered

by metric bugfixesDiscoveredByDeveloper.

With the definition of the evolution metrics we are able to predict events in software projects

such as defects and refactorings.

3.3 RÉSUMÉ

Many assessment approaches in software engineering rely on some kind of measurements. In our

case we defined a large number of evolution metrics that provide information about the evolution

of the analyzed system. This is the foundation of the assessment models of sPACE and provides

the null hypothesis for the following experiments.

H0: Information about software evolution can be provided in a form that is suitable for software

project assessment. We described how data items from sources such as software repositories (i.e.

CVS) and issue tracking systems (i.e. Jira) can be extracted and processed. Additionally, we
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show how the data items from the two data sources (i.e. CVS and Jira) can be combined with

each other. This is done on two levels:

• The accounts of the two information systems are mapped on each other based on similari-

ties of the account names. This allows one to investigate who actually worked on a file of

interest and if this person was also the one that got the issue describing the requirements for

the change assigned. If work on an issue is handed over from one developer to the other,

is this also reflected in the modifications to the source files? Additionally, we can identify

how many bug related issues are reported by developers in contrast to internal testers or

external customers. A research on the relationship of individuals working on different IT

systems was also done by Bird et al. [11], where they investigated the activities in mail-

ing lists compared with the ones on versioning systems. A human being can have several

accounts (e.g. several mailing addresses and several CVS accounts in different projects).

In the case of mailing lists one individual may access the system using different accounts

and therefore it is necessary to recover the different aliases for one person. For CVS (and

also Jira) access and accounts are usually controlled centrally for each project and no alias

analysis is necessary.

• The major information items (i.e. revisions in CVS and issues in Jira) are related to each

other based on textual references. Therefore, the commit messages from CVS are parsed

to identify possible identification strings relating to Jira. Then the Jira issues with the

discovered IDs are compared by date with the revisions. Only if the revision is established

after the creation of the issue then the relationship between these two information items

is accepted. With the help of this link we can get more insight into the reason for the

change. For example we can identify the changes that should resolve a reported bug,

which provides the basis for defect prediction models.

The major research question of Chapter 1.2 that is addressed by this chapter is Q1: How to set

up metrics from sources such as modification reports and process/project management tools?

After establishing the relationships between different data items, it is possible to focus on evo-

lution attributes covering different aspects of software projects. Based on the categorization of

Fenton and Neil [34] we divide our evolution metrics into different categories: size, process ori-

entation, testing, team, complexity of existing, difficulty of problem, relational aspects, and time

constraints.

This leads us to another research question Q5: How to set up effective models that result in

prediction with high accuracy? With the help of the large number of evolution measures and the

grouping we can identify which aspects are important for defect prediction, which enables an

understanding of the influences of different elements of software projects on software quality.
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Design Assessment based on Co-change

Coupling

This chapter provides a motivating example on how information about software evolution may

be used for the assessment of software projects. In particular the co-change coupling between

classes in an object-oriented system are utilized to identify locations within the software sys-

tem that seem to be difficult to evolve and demand re-engineering activities. For an in-depth

analysis of a software and to discover potential shortcomings we utilize EvoLens, a tool we have

implemented that enables the visualization of co-change coupling and the navigation through

several dimensions such as time and structure. To evaluate our approach we apply this technique

on a commercial software system and improve the evolvability of the system with the help of

refactoring.

Making evolutionary aspects explicit via visual representations can help the engineer to focus

on particular software parts to identify design erosion that has occurred over the past releases.

Although many tools exist that provide zooming-in and -out within the hierarchical decomposi-

tion of a software system, only our visualization allows an engineer to view a system through a

kind of lens view. Our approach called EvoLens is a visualization approach for explorations of

evolution data across multiple dimensions. EvoLens is based on temporal lens views a technique

similar to fisheye-views [40]. But the graphical representation of this visualization integrates

enhanced zooming by navigating through software hierarchies with arbitrary selectable groups

of software parts across module or package boundaries. EvoLens allows an engineer to define a

focal point for the lens view and navigate along the time dimension by user-defined sliding time

windows. The comprehension is supported by using color for metrics of classes.

4.1 TOOL SUPPORT

We implemented a tool for the visualization of evolution data such as co-change couplings,

which is derived trough a technique similar to association mining. According to Zimmermann et

al. [124] ”an association rule r is a pair (x1, x2) of two disjoint entity sets x1 and x2.” Our defin-

ition of co-change coupling (see Chapter 3) reduces the entity sets x1 and x2 to single entities e1

36
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and e2. A detailed description how co-change coupling is derived can be found in Chapter 3. Our

tool, called EvoLens, parses log files of CVS and calculates co-change couplings between classes

based on their common change behavior. The couplings are then visualized together with struc-

tural information. Our EvoLens tool provides the capability to navigate easily through structure

and time. For every selectable software part and every period in the system’s history, EvoLens

can show the internal and external couplings of the system. Additionally, growth metrics of

classes are also visualized with EvoLens to help assessing the necessity of re-engineering.

4.1.1 VISUALIZATION

We aim to support the software engineers when they have to learn and understand large legacy

software. As legacy systems are often sporadically documented, we incorporate evolution data

as another source of information into the reverse engineering process. With the help of EvoLens

the developer obtains deeper insight into the evolution and maintenance process of the analyzed

software.

NESTED GRAPHS

The extracted dependencies between programming entities like classes are depicted by utiliz-

ing nested graphs. Nodes, which describe classes, are connected with each other based on the

co-change coupling. The thickness of edges between classes represents the strength of the re-

lationship. Relationships between classes in respective parts are defined as internal coupling

e.g. the relations between classes of a single module and its submodules. The connections be-

tween classes within this module and any other part of the software are considered as external

couplings.

As software elements are grouped to build up nested graphs, the couplings between modules can

be analyzed. While examining the system for common change patterns the attention is drawn

towards the modularity of applications. Maintainability can be improved when the system is

well composed of self-contained components. An ideal situation would allow changing each

component independently of others. If changes must be propagated, the smallest possible set

of components should be involved. As a result we organize the graph according to the module

structure of the application. The resulting graph groups files, which contain classes according to

their package membership.

LENS VIEW

Classes in software projects are organized in a hierarchical tree structure such as a file in a file

system. As we want to visualize couplings between classes that are organized in modules, it

would be very complex to display them in a tree representation. Therefore, we selected the

nested graph shown in Figure 4.1. For the visualization we use lens-views, which are based on

nested graphs with a focal point. We apply a visualization based on focus + context.

The focus is defined by a selection of a number of classes or modules and the lens-views show

the co-change coupling for the selected software entities. However, the graph could become
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Figure 4.1: The EvoLens tool displaying the evolution of module jvision
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very large, when the selected entities have a lot of couplings. Therefore, we filter based on the

strength of the coupling and display only the ones above a threshold, which can be adjusted by

the user of EvoLens. Additionally, we limit the nesting levels by two. Thus only a module and

their submodules are displayed through the lens-views. The classes below the second level (i.e.

the ones of the sub-submodule or even lower) are projected on the second level of sub-modules,

if their coupling is strong enough to be filtered for visualization. Thus, the depicted submodules

contain all classes of their own, their sub-submodules and so on. The main focus of the coupling

analysis relies on classes. These are the smallest units in the design and architecture of software

and the quality of software can be measured on the coupling between these units. Therefore, we

avoid too many levels of the hierarchy, which may overload the graph because of the density of

evolution data, where some modules contain more than 10 levels of submodules.

We show external couplings of the selected elements to other parts of the software system. These

provide the context of our visualization to get a detailed picture of the point of interest. We

reduce the context to a small subset of elements to prevent overloading of the visualization. The

context based on the visualization of the co-change coupling is limited to the ones that have

direct coupling to the selected entities. Transitive couplings are ignored (i.e. if a is a selected

entity with coupling to b, then a, b, and their coupling are displayed, but the coupling of b to any

other entity that was not selected is not displayed).

In earlier works, researchers have presented views for hierarchical-organized, two-dimensional

graphs (e.g. [31]). However, our nesting level and the handling of leaf nodes differ as the nested

graph does not depict the entire module hierarchy. The gray box in Figure 4.1 represents the focal

point for the nested graph visualization. This focal point is usually represented by a module,

which is selected by the user. Within this module the submodules are incorporated as rectangles

and classes are represented as ellipses. The connections between the ellipses depict the co-change

coupling between the related classes.

4.1.2 A CASE STUDY WITH EVOLENS

This section describes the visualizations of EvoLens, and provides some examples. The screen

shots are taken from the industrial case study, a Picture Archiving and Communication System

(PACS) in the health care domain (see Section 1.2).

COLOR INDICATING CLASS METRICS

We use color to indicate evolution metrics of single classes. The color scale from a light to a quite

intensive color allows us distinguishing the growth both in color visualization and in gray scale

printing. Therefore, we are mapping growth metrics of classes to a color scale from light yellow

to dark red. Therefore, we are mapping growth metrics of classes to a color scale from light

yellow to dark red ( , , ..., ). When a class has a low growth value for the selected time

window, it is colored light yellow. The higher the growth value becomes the more intensive red

is the represented class colored. The advantage is that growth measures are visualized together

with system structure and coupling data. Additionally, numerical values are mapped to colors,

so that they can be compared visually instead of reading the values.
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The coloring of Figure 4.1 provides hints about what happened during this time.In contrast to

MainFrame2, which grew much within the first half of the selected time window, VisDisplay2

has many more lines of code at the end of the observation period than in the middle. The strong

growth of classes is an alarming sign, because strong couplings of large classes make it difficult to

replace them or to decompose them into smaller pieces. The relationship of View and ImgView2

is also striking. Although View grew by more than 300 lines of code, ImgView2 remained almost

constant at 150 lines of code. This information is obtained from the coloring of the classes.

These two classes have strong coupling, nevertheless only one grows whereas the other remains

equal in size and is continuously modified. Therefore, the continuously changing class desires a

clean interface, to improve its relationship to other classes.

MULTI-DIMENSIONAL VISUALIZATION (STRUCTURE AND TIME)

EvoLens integrates different dimensions of information:

• Time on the basis of version history data.

• Hierarchies on the basis of software structure

• Co-change coupling as representation of common change history

We use a combination of structural information enriched with evolution data to provide better

understanding of the development process of large software.

Based on nested graph representations of module structures we visualize evolution data. In Evo-

Lens this coupling information is interweaved with the hierarchy information of the module

structure. This module is shown as surrounding rectangle. Edges of different thickness connect-

ing ellipses, which represent classes, give an impression on the common change patterns.

Figure 4.1 shows an example of coupling visualization based on the industrial case study PACS.

The focal point of this figure is on the —in Java package— module jvision. This module is further

divided into submodules. All classes displayed for package jvision are included in its submod-

ules. Thus, the user has an impression of how the system is structured, how many modules are

related with each other, and if the modules are further divided into smaller units.

In addition to this structural information, the image describes the evolution of the software.

It shows which parts were changed at the same time by the programmers of the development

team. This provides hints for further maintenance. This coupling describes implications like: ”If

class MainFrame2 has to be changed, then consider also treating other classes like JVision2 or

VisDisplay2. This has to be done because they have typically been changed together.”

FOLDED GROSS STRUCTURE

Often it is important to get a coarse-grained picture of large software systems. Then, not the

couplings between classes are of main interest, but the ones between entire modules. In Evo-

Lens such folded views as depicted in Figure 4.2 provide a good general map of the system with



Chapter 4: Design Assessment based on Co-change Coupling 41

Figure 4.2: Folded Gross Structure of module jvision describing module dependencies

jvision as focal point. We draw internal couplings and also couplings to other external modules.

For external modules, which make up the context in our focus+context visualization, we limit

couplings to the ones with the focused module. As this kind of visualization of nested graphs

gets often crowded the gross structure only shows the couplings between modules. Classes are

not displayed, but instead all classes are denoted through empty circles within modules.

Users may be interested in the individual classes that take part in the overall coupling. In that

case they can unfold the graph. Every submodule and every module can be unfolded on its own.

For example, it is possible to unfold the focal point to see all the internal couplings but leave the

external modules folded. The user may decide on the balance between the clarity of the image

and the detail of the class level.

SELECTIVE COUPLING

Since module boundaries are sometimes too restrictive for in-depth inspections, we decided to

incorporate the visualization of individually selected sets of classes. The user can choose some

classes during the inspection of the software and let EvoLens show the change relationships for

this selected set of modules and classes. 1

For Figure 4.3 we select four classes: MainFrame2, VisDisplay2, ImgView2, and Localizer of

Figure 4.1. These classes are the ones that build up the coupling between submodules. In Fig-

ure 4.3 all non-selected modules are folded. Figure 4.3 shows that the four selected classes have

coupling with some non-selected classes of jvision. Furthermore MainFrame2 has weak cou-

pling with classes of module chkclass. With the help of this feature the user can select classes

from all over the software system and inspect their coupling.

1The selection is accomplished through simple holding the ”ctrl” key and clicking on the desired elements.
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Figure 4.3: Selective Coupling of classes MainFrame2, VisDisplay2, ImgView2, and Localizer

ZOOMING THROUGH MODULE HIERARCHY

EvoLens is capable of describing two levels of a class hierarchy within each visualization step.

For each module all directly included classes and all submodules on the next level are displayed.

Within the submodules, classes are directly included as if there were no further levels down the

hierarchy. Classes with strong coupling that are located within the sub-hierarchy of submodules

are projected onto the submodule level. EvoLens allows one stepping up and down the hierarchy

interactively. The lens view shows one particular module in detail. Within this module the next

level of submodules can be directly reached. Thus, users of EvoLens step down to one of the

displayed submodules. In the same manner they can step up the module hierarchy. On every step

the co-change coupling is interactively displayed.

Figure 4.4 describes the zoom-in into module jvision/main visualized in Figure 4.1 with the focal

point jvision. It shows that many classes of module main are involved in the couplings. There are

many external couplings too. In Figure 4.4 a new module called chkclass is related to the classes

of the focused module main.

With this lower threshold we detect the external co-change coupling of module jvision. The main

class itself called JVision2 is related with external classes. This finding could be justified by the

fact that JVision2 is the start-up class and has therefore to be related with many parts of the entire

application. However, when analyzing the software in more detail, we found out that JVision2

exposes access to many parts of the system through static member variables. Thus, we detected

design erosion within the module jvision.

PANNING BETWEEN MODULES

As well as navigating through the hierarchy, the user of EvoLens can navigate to sibling modules

and submodules. This horizontal navigation incorporates extended ”panning” into our visual-

ization framework. Thus, EvoLens provides navigation not only vertically but also horizontally.
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Figure 4.4: Navigation of the module hierarchy by extended Zooming and Panning

Interactive users can move the magnifying glass over a related module. Then this module be-

comes the new focused one.

COUPLING THRESHOLD

Users of EvoLens may decide to navigate through the structure and decide which part of the

system they are interested in. Within each step only the couplings above a selected threshold

are depicted. To find a good balance between clarity and information details, the user can indi-

vidually adjust the lower bound of the visualized couplings. The threshold defines the minimal

strength for couplings that are extracted to be displayed by EvoLens.

Based on the settings of Figure 4.1 we instruct EvoLens to set the threshold of couplings to

10 instead of 15 to see more couplings and the related classes. Figure 4.5 shows the resulting

image. With the help of this lower threshold we obtain a finer-grained picture of the couplings

within this case study. The classes ImgView2 and VisDisplay2 exhibit coupling with several

other classes of submodules within module jvision. The coupling of ImgView2 seems reasonable

because the related classes are part of the imaging framework. However, VisDisplay2 should not

be changed often together with SeqPanel2 as the display of images has not much in common

with administrative information presented by SeqPanel2.

SLIDING TIME WINDOW

Change couplings are measured in a time window. For example, software engineers may be

interested in the coupling of a module through the last six months. With the help of EvoLens

they can adjust the desired beginning and end of the time window and interactively retrieve the

coupling information. Additionally, a fixed size time window may be slided over the timeline.

Therefore, the slider has to be dragged, which interactively adapts the start and end date of the

time window.
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Figure 4.5: Detailed View with a low coupling threshold

Users of EvoLens do not have to switch to another view to navigate in time. They can adjust the

size of the time window itself. The graph responses interactively to these adaptations. Figure 4.1

shows the coupling of module jvision within the entire eighteen months of the inspection period.

In contrast, Figure 4.6 describes the first nine months of this period. So we see how the rela-

tionships between the classes evolved. In Figure 4.6 no coupling can be detected between class

MainFrame2 and class VisDisplay2. At the end of the eighteen month period these two classes

are strongly related.

4.2 CHANGE SMELLS

In this section we present an example for the usage of co-change couplings together with refactor-

ing for the improvement of evolvability of the software system. The notion of ”bad smells” was

introduced by Fowler [38] and describes a vague suspicion that the software contains design de-

ficiencies that should be refactored. We extend the concept of ”bad smells” to introduce ”change

smells”, wich are structural weaknesses that are detectable with the help of software evolution

(i.e. the visualization of co-change coupling). Refactoring is a vital technique to improve the

design of existing code by changing a software system in such a way that the external behavior

of the code is not changed yet the internal structure is improved. Many different refactorings

have already been identified (e.g. [38, 90]). Based on our visualization approach of co-change

couplings we identify locations of change smell and apply refactoring to improve the evolvabil-

ity. After a time period of several moths we analyze this part of the software a second time to

see whether the initially suggested and implemented refactorings were effective with respect to
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Figure 4.6: Sliding Time Window: First half of the inspection period

co-change coupling.

For demonstration how the evolvability of software can be improved with the help of our visu-

alisation approach we focus on the PACS system described in Section 1.2. For the evaluation of

our approach on the improvement of evolvability we investigate the history of the system over

a period of 30 months (15 before the refactoring and 15 after). During this time the software

grew from approximately 2000 to more than 5000 classes. Within the analysis of the historical

data received from CVS we identify a small module (i.e. Java package) with a high changing

activity. So we calculate the logical couplings of this module called jvision/workers. To get a

better understanding of logical couplings for the classes of jvision/workers we use a simplified

grafical representation (see Figure 4.7).

In this representation classes are depicted as small ellipses. The ellipses are grouped by their

membership to modules. Modules themselves are depicted as bounding ellipses surrounding

their classes. This structural information is enriched with historical data. From CVS we extract

the evolution of classes and calculate co-change coupling between classes. This coupling is

depicted in Figure 4.7 through edges connecting the ellipses whereas the thickness of the edges

describes the ”strength” of the visualized couplings. The more often a pair of classes is changed

at the same time the thicker is the representing edge. This visualization approach has been

extended with class based metrics and implemented in EvoLens. The navigation through the

couplings based on our visualization approach helps to locate a change smell that we call Man-

in-the-middle for the class ImageFetcher.

Man-in-the-Middle: A central class evolves together with many others that are scattered over

many modules of the system. Thus, we detect co-change couplings between the central class and

the related ones; these related classes often exhibit co-change couplings among each other as

well. A Man-in-the-Middle smell hinders the evolution of single modules, because of the strong

dependencies to other parts of the system. The central class does not necessarily contain much
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Figure 4.7: Change smell: Man-in-the-Middle
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code. Refactorings such as Move Method and Move Field [38] can repair such a smell. Then the

functionality can be pulled to the data and slim interfaces may be introduced.

The class ImageFetcher in Figure 4.7 has multiple strong co-change couplings that is often exter-

nal coupling with other classes. The situation is even worse as it often changes with other classes

not from one other part of the system but with several classes of different packages. Thus, when

a change has to be made by an engineer, it is scattered over the system. ImageFetcher is one of

the largest classes of the entire software; it contains almost 2000 lines of code. The methods of

this class are of exceptional length: Some of them contain more than 100 lines of code. When

trying to reveal the reasons for such ”spaghetti code”, we discover that many methods are similar.

Thus, the entire class is internally redundant. The length of the class itself does not automatically

lead to the necessity of refactoring, but ImageFetcher often changes together with other classes.

Thus, each change has to be thoroughly analyzed to implement all necessary changes, which

may be scattered over a large part of the system. This has a severe impact on the maintenance

effort: When a bug is discovered within one of the methods of this class, many other methods

have to be changed in a similar way. Often such changes are missed and have to be fixed later

when the bug re-occurs. This results in a high changing activity.

Additionally, this class seems to have divergent changes [38], because it changes together with

a lot of classes of other modules. Thus, some methods seem stronger related with classes of a

particular module, whereas other methods of ImageFetcher have to be changed in conjunction

with classes of other modules. When inspecting the source of the ImageFetcher we determine

that the principle of separation of concerns is violated. This class implements a thread pool,

a queue for work items, and logic for loading images altogether. As a result, different classes

implementing different functionality are related with ImageFetcher.

4.2.1 REFACTORING TO IMPROVE EVOLVABILITY

We apply several refactorings to reduce the disadvantages of this change smell. Then we con-

tinue to observe the evolution of the module jvision/workers again for 15 months to see if the

evolvability has been improved through evolution guided refactoring.

To minimize code duplication, we first extract code clone parts of methods and reuse the newly

formed methods where appropriate. For that, we apply the Extract Method refactoring that helps

to get reusable items. After these improvements the class contains just 1100 lines of code, be-

cause of the removal of duplication.

To further improve the evolvability, we split ImageFetcher into new classes encapsulating the

different concerns. We move the methods and data for image loading into a separate class called

FetchWorker. The logics for thread pooling and the handling of the work queue are left together

in ImageFetcher. After the movements we obtain a surprising result: FetchWorker contains just

one public method called loadimage(). This simple interface results in reduced coupling. Also

ImageFetcher has a simple interface after the refactorings. It provides methods for starting and

stopping the thread pool and for adding orders to load certain images into the work queue.



Chapter 4: Design Assessment based on Co-change Coupling 48

4.2.2 EVOLUTION AFTER REFACTORING CHANGE SMELLS

After our refactorings, we observe the software again for 15 months, which is exactly the period

we analyzed the system before the refactoring. We inspect the system for such a long period

to gain more accurate assessments. Fig. 4.8 describes the co-change couplings of module jvi-

sion/workers after the refactorings, in contrast to Fig. 4.7 that presents the couplings, which are

used as trigger for the refactorings. In Fig. 4.7 we observe the system from January 2002 until

March 2003. At the end of March 2003 we refactor ImageFetcher and Fig. 4.8 represents the

development from April 2003 until June 2004.

During the second 15 months the development of the module jvision/workers continued on a

high level. A lot of functionality was added and improved. As a result, new classes such as

VisualWorker, VisualWorkerData, VolVisualWorkerData, and HiSpdFetcher were added during

that time. However, Figure 4.8 exhibits no strong co-change coupling for the classes of module

jvision/workers. Hence, several classes are changed during the second observation period, but

not even two classes have been changed more than six times together. The refactored classes

ImageFetcher and FetchWorker have fewer then 4 common changes with other classes. The

external coupling to other classes can be reduced significantly. When asking developers for the

reason of this evolution, they stated that the interfaces of the new classes were now much clearer

and the classes could be developed more individually. As a result of the refactoring based on

co-change couplings we can improve the structure of evolutionary hot spots and the evolvability

of the software system.

Fig. 4.8 contains a web of co-change couplings within module jvision/workers. Especially, Im-

ageFetcher is connected with many other classes. One of these classes is the newly refactored

class FetchWorker. These two classes have been changed together twice. Thus, the absolute

level is low. What about the entire web of connected classes? Many of the involved classes

provide different load strategies to ImageFetcher, but they are not organized in a well-designed

inheritance hierarchy. Therefore, we need a second refactoring step to build up an inheritance

hierarchy for different image loading approaches. Again, this situation can be detected with the

help of our approach visualizing co-change couplings.

4.3 RÉSUMÉ

This chapter focused on project assessment from an architectural perspective. The relationship

between elements within an object-oriented system is an important information for software en-

gineers. Several dependencies are discoverable through statical analysis of the source code such

as inheritance or invocation. Others are related to the development process and are discoverable

through software evolution analysis. Our extraction of co-change couplings is an example for

such an analysis. We use a technique to discover common change behavior that is similar to as-

sociation mining [124], where we identify correlations between items in a dataset (i.e. co-change

coupling). This enables the extraction and visualization of evolution patterns and provides the

foundation for the identification of undesired software evolution.
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Figure 4.8: Evolution after refactoring of change smell
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• Regarding the research questions stated in Chapter1.2 this chapter focuses in particular on

Q3: How can data mining be efficiently utilized in software projects to improve software

evolution? We adopted the concept of ”bad smells” and provided additional change smells

based on change coupling analysis. Such a smell is hardly visible in the code, but easy

to spot when viewing the change history. With our approach of visualization we could

identify location of the anti-patterns Man in the Middle. Based on the co-change couplings

and the proposed change smells, the developer obtains support where to apply refactorings

efficiently. In an industrial case study we have shown how these change smells can be

cured and how refactoring can be based on them. It turned out that after the refactorings

had been implemented, the evolution of the system that we observed for another 15 months

was facilitated and did not lead to the originally strong change couplings or change smells.

When talking to the developers, they stated that the directed refactorings were effective for

them and the new interfaces and classes were much clearer and easier to use. From this we

conclude, that such an approach can help in improving the evolvability of a large software

system.

• To be able to address the research question Q3 we have also to focus on Q1: How to

set up metrics from sources such as modification reports and process/project management

tools? In this chapter, we have only extracted data from software repositories (i.e. CVS),

which provide information about changes to files. To identify work steps of developers as

a whole we reconstruct transactions when a developer commits changes to a group of files.

For this task we implement a technique similar to association mining, where we ”deduce”

co-change coupling from commit transactions. The frequency of common commits of files

describes the strength of the coupling that we visualize for the analysis of change smells.

• This leads to Q2: How do software evolution metrics relate to external software product

attributes? We use co-change coupling to investigate how well a system can be evolved

to fulfill customer needs, which is one of the external product attributes relevant in soft-

ware projects in addition to software defects. Evolvability of software systems addresses

quality attributes such as understandability (i.e. the source code can be easily read and

understood) and changeability (i.e. the effort needed to implement modifications). If we

find very strong coupling or a large network of interrelated classes, these are indicators

for the necessity for an in-depth analysis. Our visualization approach supports software

engineer in the exploration of the historical development of a system. They can inspect the

dependencies that influence the progress of developers and can try to change the situation

like we did with the help of refactoring.



Chapter 5

Identification of Design Deficiencies:

Prediction of Refactoring

Chapter 4 focuses on the retrospective assessment of software systems utilizing co-change cou-

pling between files, where the effect of activities such as refactoring is assessed after these activ-

ities take place. In this chapter, we provide indicators for the future trends in software projects.

How well can we predict the events that will take place within the next few months based on the

evolution metrics defined before? We show that it is possible to predict files that are prone to

refactoring in the next two months with the help of evolution metrics from just three months of

development time.

Refactoring is a state-of-the-art practice in software development to improve the design of exist-

ing software systems without changing the external behavior. Developers often use this technique

to prepare object-oriented systems for further improvements and extensions of functionality. The

identification of hot-spots where refactorings will take place improves the effectiveness of engi-

neers in focusing on the relevant classes that will undergo changes in future [65]. For project

managers it is interesting to know which locations are likely to demand refactoring. Refactoring

improves the understandability of the code, but on the other hand requires development time [29].

The prediction of future refactorings allows project managers a better coordination of software

development and project management, a more accurate budgeting, and efficient manpower uti-

lization.

As refactoring is a technique to improve the design, the need for refactoring points to locations

that have to be improved in terms of design. Thus, the prediction of refactorings is also a predic-

tion of files that are likely to contain design deficiencies. Certainly, source code inspection can

be used to reveal the demand of refactorings, too. However, this work is very labor intensive and

must be carried out by specialists. As a result, the identification of software entities that need

refactoring is expensive. Therefore, we describe an automation of this approach by utilizing data

mining. A source to determine required refactorings of software entities such as classes can be

their past evolution history. An entity, which undergoes many changes in the past, bears a cer-

tain probability for refactoring. For this technique for project assessment we use the evolution

metrics defined in Chapter 3.

51
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Hypotheses

H0 Information about software evolution can be provided in a form

that is suitable for software project assessment.

H1 Evolution data is a good predictor of future refactoring.

H2 It is possible to predict refactoring on short time frames.

H3 We can accurately predict the number of future refactorings for each file.

H4 There is a common subset of features essential for predictions in different projects.

Table 5.1: Research hypotheses

5.1 HYPOTHESES

Previous research activities investigated the predictability of quality measures such as error

proneness, defect densities and time to failure [55, 70, 93]. We create models for the predic-

tion of another type of event within software engineering projects such as refactorings. Similar

to defects, refactorings provide an insight into the necessary rework we have to expect in fu-

ture development activities. Table 5.1 summarizes our hypotheses to guide our research. The

hypothesis H0 applies to all our prediction techniques and is addressed in Chapter 3.

5.2 PREDICTION TARGET: REFACTORING

With the features described in Section 3.2 we predict the number of refactorings. Our predictions

are based on nominal models where two different groups of elements can be distinguished. Thus,

we group files in one of the two classes: with vs. without refactoring. Further, we investigate

the refactoring prone files in more detail and divide this group again in two classes: having one

refactoring vs. having several refactorings (see Figure 5.1). In the field of data mining this

method is called classifier stacking [39, 121]. For the evaluation in this chapter we use only two

out of the three projects of our field study described in Section 1.2. This is due to the fact that

the developers of commercial PACS project do not apply refactorings regularly and we cannot

identify enough refactorings (more than 1%) to create prediction models. As a result, we focus

on ArgoUML and the Spring framework, where the number of refactorings is approximately

10% of all changes.

5.2.1 IDENTIFICATION OF REFACTORINGS.

The number of refactorings is obtained from the commit messages of the versioning system.

We use evolution data not only for the computation of data mining features, but also for the

identification of change events as refactorings. For our prediction models we do not distinguish

different types of refactorings (e.g. create super class, rename of method/class, extract method,

etc.). We only assess the fact that developers intend to improve the design, where they state that

they applied refactoring. As a result, for our investigated projects we identify refactorings based
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Figure 5.1: Analysis setup

on the commit message, which are provided by developers as comments for their modifications

of source code. We start our identification by search for the term ”refactor”. With this simple

approach we find 2070 changes to files (i.e. revisions) for ArgoUML and 1959 changes for the

Spring framework. We analyze the results and discovere that the code is not a refactoring, when

”needs refactoring” is included in the commit message. Thus, we optimized our search in an

interative approach, where we leave out changes that are not refactoring and contain phrases

such as ”needs refactoring”. Finally, based on the term ”refactor” we find 1467 changes for

ArgoUML and 1798 for the Spring framework. As next step we add new terms to our iterative

search approach. For ArgoUML we focus on the terms ”refactor”, ”restruct”, ”clean”, ”not

used”, ”unused”, ”reformat”, ”import”, ”remove”, ”replace”, ”split”, ”reorg”, ”rename”, and

”move”. For the Spring framework we use ”refactor”, ”restruct”, ”clean”, ”not used”, ”unused”,

”reformat”, ”import”, ”remove”, ”replace”, ”split”, ”reorg”, ”rename”, and ”move”. With several

refinements we used for each project 15-20 SQL queries to mark modifications as refactorings.

EVALUATION OF REFACTORING IDENTIFICATION.

With our SQL queries based on the commit messages we labeled 7758 of 60369 changes as

refactorings for ArgoUML (13%) and 6251 of the 56050 changes for the Spring framework

(11%). To estimate the number of refactorings we marked correctly with our method, we used

a statistical evaluation. For each project we randomly selected a subset of 100 modifications

and checked whether or not it is a refactoring and if we labeled them as refactoring. Table 5.2

shows that many changes can be labeled correctly with our SQL queries: For ArgoUML only

one modification (in the random set of 100) was labeled as refactoring, which turned out not

to be a refactoring (false positive) and two refactorings were missed (false negative). For the

Spring framework we received even better results. Although Spring exhibits a very unbalanced

distribution of only 11% refactorings in our random selection, we missed only one refactoring

in our labeling with the help of SQL queries and identified only one modification wrong as

refactoring.
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Project Modifications Identified Other False False

Refactorings Types Positives Negatives

ArgoUML 100 16 84 1 2

Spring 100 11 89 1 1

Table 5.2: Evaluation of classifying modifications as refactorings

5.3 DATA MINING

5.3.1 CLASSIFIERS: DATA MINING ALGORITHMS FOR PREDICTION MOD-

ELS

For the generation of prediction models we use several data mining algorithms:

• J48. 1 This classifier builds its decision nodes based on entropy information. It includes

improvements for dealing with numeric attributes, missing values, and noisy data (prun-

ing). The great advantage of decision tree compared to other algorithms is that they can be

easily interpreted by humans.

• LMT. This is a data mining algorithm for building logistic model trees, which are classifi-

cation trees with logistic regression functions at the leaves. It uses validation to determine

how many iterations to run, when fitting the logistic regression function at a node of the

decision tree. Thus it is a classification algorithm where first regression is built and the

result is converted into classes of elements.

• Rip. Repeated Incremental Pruning is a propositional rule learner. It uses a growth phase,

where antecedents are greedily added until the rule reaches 100% accuracy. Then in the

pruning phase, metrics are used to prune rules until the defined length is reached.

• NNge is a Nearest Neighbor generalization. In this case a nearest-neighbor algorithm is

used to build rules using non-nested generalized exemplars.

EVALUATION OF CLASSIFICATION.

To evaluate our prediction models we use 10-fold cross validation. In our analysis of predic-

tion models for refactoring we use precision, recall, and F-measure — three essential markers

characterizing model performance. These evaluation measures are defined based on formulas re-

garding different rates such as true positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN). True positives describe the predictions that are correctly classified. False

positives are the ones that are classified to be in a particular group (e.g. number refactorings =

0), but the classification is wrong (e.g. number refactorings = 1 or≥ 2). The number of elements

that is correctly classified not to belong to the given group forms the true negatives. False neg-

atives are elements that belong to the group of interest, but are erroneously classified to belong

outside of the group. (see Table 5.3)

1J48 is the WEKA implementation of the state-of-the-art decision tree learner C4.5
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Predicted

yes no

Actual yes true positive (TP) false negative (FN)

no false positive (FP) true negative (TN)

Table 5.3: Outcome of prediction of two groups

Learning Period Target Period Ref.=0 Ref.=1 Ref.>=2
∑

Files

Oct.04 - Dec.04 (3 months) Jan. - Feb.05 603 181 129 913

Jul.04 - Dec.04 (6 months) Jan. - Feb.05 603 181 129 913
(a) ArgoUML

Learning Period Target Period Ref.=0 Ref.=1 Ref.>=2
∑

Files

Aug.05 - Oct.05 (3 months) Nov. - Dec.05 750 110 35 895

May 05 - Oct.05 (6 months) Nov. - Dec.05 750 110 35 895
(b) Spring framework

Table 5.4: Refactoring distribution for analyzed periods by project

• Precision describes the percentage of correctly classified entities.

precision =
TP

TP + FP
· 100% =

predicted correct

total predicted

The higher the precision the more predictions are correct.

• Recall describes the percentage of entities classified from the group of positive entities.

recall =
TP

TP + FN
· 100% =

predicted correct

total positive

The higher the recall the more elements are found.

• F-measure is a dimensionless measure combining precision and recall by the formula.

F −measure =
2 · TP

2 · TP + FP + FN
=

2 × recall × precision

recall + precision

We use the F-measure to compare the performance of our prediction models.

5.4 RESULTS

To investigate our hypotheses in Table 5.1 we carried out several trials. For the investigation of

the following research questions we focus particularly on the results of ArgoUML. Tables 5.5,5.6,

and 5.7 show that the values of ArgoUML and Spring are comparable.
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Algorithm Refactoring = 0

Prec.(%) Recall(%) F-measure

J48 0.819 0.834 0.827

LMT 0.81 0.801 0.806

Rip 0.768 0.844 0.804

NNge 0.804 0.849 0.826

Algorithm Refactoring >= 1

Prec.(%) Recall(%) F-measure

J48 0.666 0.642 0.654

LMT 0.621 0.635 0.628

Rip 0.624 0.503 0.557

NNge 0.67 0.597 0.631
(a)ArgoUML

Algorithm Refactoring = 0

Prec.(%) Recall(%) F-measure

J48 0.884 0.937 0.91

LMT 0.874 0.961 0.916

Rip 0.876 0.975 0.923

NNge 0.893 0.913 0.903

Algorithm Refactoring >= 1

Prec.(%) Recall(%) F-measure

J48 0.53 0.366 0.433

LMT 0.586 0.283 0.381

Rip 0.689 0.29 0.408

NNge 0.492 0.434 0.462
(b) Spring framework

Table 5.5: Predicting non-refactoring-prone vs refactoring-prone classes

5.4.1 IS EVOLUTION DATA A GOOD PREDICTOR OF FUTURE REFACTOR-

INGS?

To answer this question we take a look at Table 5.5, which describes the quality of the prediction

models for ArgoUML and the Spring framework. We analyze the prediction of two groups of

object-oriented classes, the ones having no refactoring in the target period (defined in Table 5.4)

and classes that have one or more refactorings. For both open source projects we list four differ-

ent classification algorithms: J48, LMT, Rip, and NNge.

We can see that the prediction of classes that are non-refactoring-prone have better quality in-

dicators than classes exhibiting refactorings. For ArgoUML both precision and recall are about

0.8, which results in a high F-measure of 0.8. For classes with refactorings the value range is

0.5 to 0.67, which results in F-measures of approximately 0.6 for the ArgoUML project. These

values express that classes with refactorings are more difficult to predict than classes that are not
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Figure 5.2: Predicting non-refactoring-prone vs refactoring-prone classes: ROC of ArgoUML

with J48

prone to refactoring. One possible explanation is that we do not distinguish between different

types of refactorings. Thus, changes to variables, methods and classes are weighted equally. We

are solely interested in the fact that refactoring takes place. However, the discrepancy between

the prediction measures of classes with zero refactoring and classes subject to refactoring is due

to the fact that the distribution of these two groups is not equal.

As in both projects the precision is above 0.5 (except the NNge model for Spring) the number of

correctly predicted instances is high, which is important for practical application of our approach.

When the developer wants to be proactive and to take care of those classes that are prone for

refactoring, one has a high probability (in most cases more than 2/3) to investigate relevant files.

Table 5.4 shows that for the first period of ArgoUML that we investigate the number of classes

not being refactored is 603 and the ones with refactoring is 310 (181 + 129). The algorithms

are biased towards the dominant class distribution (prior) and therefore overestimate classes with

no refactoring. To assess the algorithms on equally distributed data sets, we adjust the number

of classes by randomly ignoring non-refactoring-prone files. Now, the prediction algorithms

perform even better: both refactoring and non-refactoring-prone classes are predicted very well

with a F-measure better than 0.85 for ArguUML and 0.75 for the Spring framework.

For a visual illustration of the results we use ROC (receiver operating characteristic) curves,

where the tradeoff between the hit rate and the false alarms is shown [119]. Figure 5.2 describes

the prediction results of refactoring-prone classes for ArgoUML using the J48 algorithm. In

ROC curves put false positive values of each prediction on the x-axis and the true positive values

on the y-axis. The area under the ROC curve (AUC) is a value that can be used to compare the

performance of the predictions. For ArgoUML we get an AUC value of 0.75; the closer this

value is to 1 the better the predictions.

Therefore, we confirm our hypothesis H1:
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Algorithm Refactoring = 0

Prec.(%) Recall(%) F-measure

J48 0.811 0.826 0.818

NNge 0.799 0.849 0.823

Algorithm Refactoring >= 1

Prec.(%) Recall(%) F-measure

J48 0.581 0.556 0.568

NNge 0.593 0.507 0.547
(a) ArgoUML

Algorithm Refactoring = 0

Prec.(%) Recall(%) F-measure

J48 0.874 0.912 0.893

NNge 0.887 0.899 0.893

Algorithm Refactoring >= 1

Prec.(%) Recall(%) F-measure

J48 0.514 0.349 0.416

NNge 0.481 0.413 0.444
(b) Spring framework

Table 5.6: Predicting refactoring proneness based on a larger time frame (6 months)

It is possible to predict refactoring with evolution data with a high accuracy.

5.4.2 IS IT POSSIBLE TO PREDICT REFACTORINGS ON SHORT TIME FRAMES?

To answer the question we compare Table 5.5 with Table 5.6. The first one describes the pre-

diction of refactorings happening in two months based on features taken from three previous

months and the second describes the prediction of the same two months based on features from

six months (for exact period definition see Table 5.4). The prediction with the help of three

months shows even better results than the prediction based on six months. Why do we obtain

these interesting results? Most open source projects, also ArgoUML, work with development

practices, where refactoring is used to improve design of source code that has been introduced

lately. Therefore, the last few months before refactoring takes place are the ones with the most

relevant attributes.

Figure 5.3 shows the ROC curve of ArgoUML with J48 for the predictions taking six months

of development time into account. Also the ROC curve confirms the trend that the prediction

performance decreases, when taking six months instead of three. The F-measure decreased

for ArgoUML when using the J48 algorithm from 0.827 (refactoring-prone: 0.654) to 0.818

(refactoring-prone: 0.568) and the Area under the ROC curve (AUC) also decreases from 0.75

to 0.71.
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Figure 5.3: Predicting refactoring proneness based on a larger time frame (6 months): ROC of

ArgoUML with J48

Thus, we conclude:

It is possible to predict refactorings of the next two months based on the last three months of

development time.

5.4.3 IS IT POSSIBLE TO DISTINGUISH BETWEEN DIFFERENT GROUPS OF

FILES: WITHOUT REFACTORING, WITH JUST ONE REFACTORING, AND

WITH SEVERAL REFACTORINGS?

We investigate this research question with the help of two classification tasks: First we distin-

guish between classes without refactorings and classes having refactorings. Then we take the

second group and examine if we can distinguish classes with just one refactoring from classes

with several refactorings (see Figure 5.1). Table 5.5 shows the quality values for the prediction

of non-refactoring-prone vs. refactoring-prone. We obtain high values for the F-measure, which

indicates the overall performance of the prediction models. In Section 5.4.1 we describe that we

could get even better measures, if the number of classes in each group is similar. As a result we

can distinguish classes with and without refactoring very well.

Table 5.7 shows the results of the prediction models distinguishing classes with one refactoring

from classes with several refactorings. The F-measures are not as high as the ones for the predic-

tion of refactoring-proneness. An F-measure of 0.75 and 0.65 for the two groups of files having

refactoring is still good, as the number of classes is much lower than for the prediction models

of Table 5.5, which we can see in Table 5.4.

When developers take care of classes that are highly refactoring-prone, they would investigate

the group with >= 2 refactorings. In this group the precision is quite high being close to or above
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Algorithm Refactoring = 1

Prec.(%) Recall(%) F-measure

J48 0.747 0.735 0.741

NNge 0.767 0.746 0.756

Algorithm Refactoring >= 2

Prec.(%) Recall(%) F-measure

J48 0.636 0.651 0.644

NNge 0.657 0.682 0.669
(a)ArgoUML

Algorithm Refactoring = 1

Prec.(%) Recall(%) F-measure

J48 0.694 0.718 0.708

NNge 0.713 0.725 0.719

Algorithm Refactoring >= 2

Prec.(%) Recall(%) F-measure

J48 0.624 0.617 0.62

NNge 0.593 0.638 0.615
(b) Spring framework

Table 5.7: Predicting classes with one refactoring vs. classes with several refactorings

0.6, which is important, because developers have a high probability to look at relevant classes. As

the recall is also around 2/3, developers have the opportunity to analyze many refactoring-prone

classes to assess their design quality and their impact on the software architecture.

Figure 5.4 shows the ROC curve for the distinction between classes with one refactoring and

classes with several refactorings based on the J48 algorithm. We can see that this curve is not

as good as the one predicting refactoring-prone classes (Figure 5.2). However, the trend of the

F-measures is also noticeable in the area under the ROC curve (AUC). The AUC of the prediction

of classes with several refactorings is 0.69, whereas the AUC for the prediction of refactoring-

proneness is 0.75. Similarly the F-measure of between these two experiments decreases from

0.827 (refactoring-prone: 0.654) to 0.741 (several refactorings: 0.644) for ArgoUML using the

J48 algorithm.

We come to the following conclusions:

Refactoring-prone/non-refactoring-prone classes can be identified accurately.

The distinction between classes with one or several refactorings is possible.
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Figure 5.4: Predicting classes with one refactoring vs. classes with several refactorings: ROC of

ArgoUML with J48

5.4.4 IS THERE A COMMON SUBSET OF ATTRIBUTES FOR DIFFERENT PROJECTS?

To answer this question we take a look at the decision trees of the two projects in our case

study (Figure 5.5). The trees represent the result of the classification of instances containing no

refactoring vs. instances with one or more refactorings. The higher the nodes in the tree the

more relevance they have for the prediction. We restrict our trees in Figure 5.5 to five levels out

of twelve to investigate only the most important features.

ArgoUML

The topmost attributes of model ArgoUML, starting from the root are: linesChangePerChange,

linesActivityRate, coChangedFiles, changeFrequencyBefore, coChangedNew, relNumberChanges,

and tLinesType.

Spring framework

The topmost attributes of model Spring, starting at the root are: tChangesType, coChangedNew,

lastChangeMonth, linesActivityRate, tLinesChangePerChange, tLinesAddPerBugfix, coChanged-

Files, largeChanges, relativePeakMonth, largeTransactions, lastChangeMonth, and linesChange.

Common Both tree models of ArgoUML and Spring framework have the following attributes in

common: coChangedNew, linesActivityRate, and coChangedFiles. The first one coChangedNew

describes the number of files that are created (newly introduced) together with changes to the

inspected instance. This feature indicates that new functionality is added, because new classes

are introduced together with modifications of the inspected class. If linesActivityRate describes

that lines are changed often during the entire lifetime of the class, then also the probability for

the number of refactorings rises. The number of classes changed together with the inspected one

is described by coChangedFiles, which takes into account the importance of interrelationships in

object-oriented software systems.
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Figure 5.5: Decision trees based on classifier J48 for classification 0 vs. >= 1 refactoring



Chapter 5: Identification of Design Deficiencies: Prediction of Refactoring 63

The trees have more commonalities than just these features. linesChangePerChange is the top-

most feature in the tree of ArgoUML, which describes the average number of altered lines within

change events, which is measured for each predicted instance. A similar measure appears in the

Spring framework where tLinesChangePerChange is located on the third level in the second half

of the tree, which describes the number of altered lines within the files of the entire transaction

where the file of interest was changed. It is surprising that people related features like the number

of authors are not represented in the trees of our case study.

We conclude that:

There is a common subset of attributes for different projects: coChangedNew, linesActivi-

tyRate, and coChangedFiles.

5.5 RÉSUMÉ

In this chapter, we focused on one particular aspect of software evolution: Refactoring to improve

the design of existing code without changing the external behavior. In particular it supports un-

derstandability as it aims to clarify object-oriented systems through restructuring. Also methods

such as renaming help to express what the code is intended to do. Other quality aspects can be

addressed with the help of refactoring too. The basis of refactorings are often unit tests to ensure

that the changes do not introduce unintended side effects. Thus, testability can be also supported

with the regular application of refactoring on software projects. In general the flexibility of a

project is leveraged with refactoring, as necessary extensions and adaptations can be prepared to

fit in the overall design. With our prediction models for future refactoring activites we can iden-

tify classes that are prone to refactoring and therefore have design deficiencies. The following

research questions of Chapter 1.2 are covered by the current chapter:

• Q2: How do software evolution metrics relate to external software product attributes? In

contrast to previous studies where quality measured by the number of defects is predicted

(e.g. [103]), we created classification models for refactoring, which reflects the need for

design improvements. Refactoring is an essential element to keep the quality high and to

allow further evolution based on new customer needs. We demonstrated that several fea-

tures such as lines activity rate and number of lines altered per commit provide substantial

information for the assessment of refactorings. But also the structure of the system is cru-

cial for refactorings, as the number of co-changed files and the number of files introduced

during the maintenance are relevant features in the established prediction models.

• Q3: How can data mining be efficiently utilized in software projects to improve software

evolution? This question is covered in this chapter through several aspects: With our

approach of refactoring prediction we can point to locations of a system, where this kind

of preventive maintenance usually takes place. The software engineers can pro-actively

take a look at the predicted classes and investigate the necessity for the improvement of
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the existing design. Thus, the knowledge that refactoring is probable to happen in the near

future can be used to work on the items as early as possible, which helps to focus on the

design on these parts that need more effort. Additionally, the effort can be estimated by the

project manager. Based on the predictions one obtains an overview how many refactorings

will take place in the next few months and also how the maintenance activities will be

scattered over the system’s architecture. Then the required time for refactorings can be

planned in accordance with the project time lines and the largest effort for refactoring

coordinated with release dates, as around the release the time runs out and the focus is

directed to release the software and not to improve the design for future changes.



Chapter 6

Predictability of Different Defect

Categories

In the previous chapters we focused on the quality of the design a certain system has from a

technical perspective. In the current chapter we take the first steps towards an important aspect of

customer perceived quality: The number of defects. First we show that defects can be predicted

on a short-term basis like the predictions of refactorings as an indicator for design deficiencies

in the previous chapter. This time we not only distinguish different groups of files (refactoring-

prone vs. non-refactoring-prone), but create numeric prediction models for the exact number

of defects in a file. Afterwards, we compare the predictability of pre-release defects with post-

release defects. The second group is then divided into the ones that are discovered by internal

staff (e.g. in testing even after a release) and the files containing defects reported by external

parties. The analysis of different defect categories is rounded off by an investigation of the

predictability of defects with high severity.

Successful prediction models have to take into account many aspects of the software development

and maintenance [34]. In contrast to previous attempts on defect prediction based on software

evolution (e.g. [70]), we use detailed data from a versioning system as well as an issue tracking

system to create new prediction models. As a result we consider different aspects such as dif-

ficulty of problem, complexity of existing solution, team structure, process orientation, testing

process (see Chapter 3) to build up an effective prediction model.

6.1 HYPOTHESES

To guide the metrics selection for defect prediction and our evaluation with a case study, we set

up several hypotheses. Previous studies discovered that data about software processes can be

efficiently used to build quality prediction models, where an increase in relative change events

results in a higher defect density of the analyzed software [86]. In contrast to these research

approaches we aim our hypothesis at a fine-grained level, to get an in-depth analysis of aspects

related to software quality.

In the following, we present our five hypotheses:

65
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• H1: Defect density can be predicted based on a short time frame. Previous research activi-

ties often focused on prediction of longer time frames such as releases. In our research we

focus on months as time scale. We predict defect densities for the next month or the next

couple of months.

• H2: Critical defects with high severity have a low regularity. Prediction models build on

the regularity of the underlying data and can predict events better that correspond to this

regularity. We expect that defects that are critical are more difficult to detect as they ”hide

better” during the testing and product delivery.

• H3: Quality predictions of pre-release defects are more accurate than for post-release de-

fects. Project quality can be estimated in different stages of the development process. Some

stages are more difficult to appraise than others. Previous studies have already indicated

that the accuracy of data mining in software engineering varies over time (e.g. [106]). We

expect that defects that are detected before a release date are easier to predict than defects

that are reported afterwards.

• H4: Defects discovered by internal staff have more regularity than defects reported by the

customer. For prediction model creation it is an important input to know where the defect

comes from. Was it recognized by internal staff (e.g. during testing) or does the defect

report come from customer sites? We expect that internally and externally detected defects

have different characteristics. As a result one group can be easier predicted than the other

one.

• H5: Software and development team data have to be considered for an accurate defect

prediction. We use a large amount of evolution indicators for defect prediction. These

indicators can be grouped into several categories such as size and complexity measures,

indicators for the complexity of the existing solution, and team related issues. For defect

prediction we expect that data mining features from many different categories are impor-

tant.

6.2 DEFECT DATA

For our defect prediction models we are counting known defects during the history of source code

files, which approximately correspond to classes in Java. We estimate defects within a given

period (usually two months) based on the previous development history. To obtain the defect

rate for each source file we use the data from the issue tracking system where the relationship

between versioning system and issue tracking is established as described in Section 3.1.2. As

defect we interpret each revision of a file that has an issue attached of type bug.
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6.3 DATA MINING

For model generation and evaluation we use the data mining tool called Weka [119]. It provides

many algorithms for different data mining tasks such as classification, clustering, and association

analysis. For our prediction and classification models we selected linear regression, regression

trees (M5), and classifier C4.5. The regression algorithms are used to predict the number of

defects for a class from its evolution attributes.

• Linear regression is a method of estimating the conditional expected variable given the

values of some other variables, which are called features. It is called ”linear” because the

relation of the response to the explanatory variables is assumed to be a linear function of

some parameters. In contrast, a multi-layer neuronal network is an example of a nonlinear

regression model [119].

• Regression trees (i.e. M5) produce decision trees with numeric output for leaf nodes, where

the average numeric value is used for the prediction. Such trees are built through binary

recursive partitioning, which is an iterative process of splitting the data into partitions, and

then splitting it up further on each of the branches. The algorithm chooses the split that

partitions the data into two parts such that it minimizes the sum of the squared deviations

from the mean in the separate parts [97, 119].

• The C4.5 classifier includes improvements for dealing with numeric attributes, missing

values, and noisy data. This classifier compares one of the input attributes against a thresh-

old and partitions the input space with axis parallel splits [98, 119].

6.3.1 PREDICTION ASSESSMENT

The following metrics are used to assess the quality of our numeric prediction models:

• Correlation Coefficient (Corr. Coef.) ranges from -1 to 1 and measures the statistical

correlation between the predicted values and the actual ones in the test set. A value of

0 indicates no correlation, whereas 1 describes a perfect correlation. Negative correla-

tion indicates inverse correlation, but should not occur for prediction models. We use the

Spearman correlation coefficient, as it is independent of the distribution of the underlying

data. The correlation coefficient is computed with the following formula:

1−
6 ∗

∑
i(xi − yi)

2

n ∗ (n2 − 1)

where

xi are the rankings of the predicted values and

yi are the rankings of the actual values.

The correlation coefficient is our primary performance indicator.
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• Mean Absolute Error (Abs. Error) is the average of the magnitude of individual absolute

errors. This assessment metrics does not have a fixed range like the correlation coefficient

(Corr. Coef.), but is oriented on the values to be predicted. In our case the number of

defects per file is predicted, which ranges from 1 to 6 and 16 respectively (see Table 6.3

and Table 6.4). As a result, the closer the mean absolute error is to 0 the better. A value of

1 denotes that on average the predicted value differs from the actual number of defects by

1 (e.g. 3 instead of 4). The mean absolute error is computed with the following formula:

|p1 − a1|+ . . . + |pn − an|

n

• Mean Squared Error (Sqr. Error) is the average of the squared magnitude of individual

errors and it tends to exaggerate the effect of outliers - instances with larger prediction

error - more than the mean absolute error. The range of the mean squared error is oriented

on the ranges of predicted values, similar to the mean absolute error. But this time the

error metrics is squared, which overemphasizes predictions that are far away of the actual

number of defects. The quality of the prediction model is good, when the mean squared

error is close to the mean absolute error. The formula for mean squared error is:

(p1 − a1)
2 + . . . + (pn − an)2

n

6.4 EVALUATION

For the evaluation of the predictability of different classes of defects we analyzed the commercial

software system (PACS) from our field study described in Section 1.2. For our experiments we

investigate 8 months of software evolution in our case study. Figure 6.1 depicts that we use two

months of development time to predict the defects of the following two months, which builds

up a 4 months time frame. We compare the predictions of pre-release defects with predictions

of post-release ones, which results in a period of 8 months. Before the release we create pre-

diction models for defects in general and for defects with high severity. These models can be

compared to the ones for post-release defects. After the release date we additionally distinguish

defects discovered by internal staff vs. defects reported from the field (customer). With this

experimentation set up we test our hypotheses from section 6.1.

6.4.1 RESULTS

This section presents the results of our evaluation distinguishing the different cases.

SHORT TIME FRAMES

Our analysis focuses on short time frames. To evaluate H1 of Section 6.1 we use two months of

development time to predict the following two months. Table 6.1 shows several models predict-

ing pre-release defects where the two months period for defect counting are laid directly before
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Figure 6.1: Experiment setup. Goal is to compare accuracy of E1 with E2

Corr. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.4778 0.4604 0.7881

M5 0.6645 0.3602 0.6674
(a) All defects

Corr. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.5012 0.1352 0.3173

M5 0.4844 0.0792 0.2589
(b) High severity defects

Table 6.1: Prediction pre-release defects
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Corr. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.4985 0.9443 1.5285

M5 0.4959 0.7743 1.4152
(a) All defects

Corr. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.5055 0.9012 1.5151

M5 0.5232 0.688 1.3194
(b) Defects discovered internally (through test + development)

Corr. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.4675 0.3663 0.5699

M5 0.5266 0.2606 0.4574
(c) Defects discovered externally (through customer + partner companies)

Corr. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.4741 0.1973 0.3175

M5 0.449 0.1492 0.3048
(d) High severity defects

Table 6.2: Prediction post-release defects

the release date and the other two months before this two target months are taken to collect fea-

ture variables for the prediction models. In Table 6.1(a) we can see that we obtain a correlation

coefficient larger than 0.6, which is a quite good correlation. The mean absolute error is low with

0.46 for linear regression and 0.36 for M5 and the mean squared error is also low with 0.79 for

linear regression and 0.67 for M5. In order to assess these prediction errors, Table 6.3 describes

the defect distribution of the two target months. As mean squared error emphasizes outliers, we

can state that the overall error performance of the prediction of all pre-release defects is good.

To confirm our first hypothesis Table 6.2(a) lists the quality measures for the prediction of post-

release defects. There the values are not as good as for pre-release defects, but the correlation

coefficients are still close to 0.5. Therefore, we confirm H1:

Failures Number Failures Number

all severities files high severity files

1 46 1 10

2 11 2 2

3 5 3 1

4 7 4 0

5 2 5 0

6 1 6 0

Table 6.3: Pre-release: Number of files per defect class
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Number Files Files Files Files

failures (all) (internal) (external) high severity

1 46 30 32 21

2 21 12 7 1

3 8 6 1 0

4 6 4 1 0

5 5 4 0 0

7 1 1 0 0

12 1 1 0 0

16 1 1 0 0

Table 6.4: Post-release: Number of files per defect class

We can predict defects on a short time frames of two months with feature data taken from the

predecessing two months.

HIGH SEVERITY

Table 6.1(b) shows the results for the prediction models on pre-release defects with high severity.

We get the severity level of each defect from the issue tracking system, where the defect reporter

assigns severity levels. The quality measures for the predictions of high severity defects differ

from the prediction of all defects, because the number and distribution of high severity defects

have other characteristics (see Table 6.3). It is interesting that linear regression has a higher

correlation coefficient for defects with high severity than for all defects together. M5 can only

reach lower value of 0.48 for defects with high severity, which is much lower than the value of

0.65 for all defects. The overall error level is low because of the small defect bandwidth of 0 up

to 3 defects for the high severity class.

For the post-release prediction of high severity defects in Table 6.2(d) we can see that the corre-

lation coefficient is even lower with 0.47 for linear regression and 0.45 for M5. The prediction

errors are also poorer, which is due to the fact that there are more post-release defects with high

severity than pre-release. However, in general we can conclude:

Failures with high severity cannot be predicted with such a precision as overall defects.

PRE- VS. POST-RELEASE PREDICTIONS

Our hypothesis H3 states that pre-release defects can be better predicted than the post-release

ones. When we compare Table 6.1(a) with Table 6.2(a) we see that our hypothesis seems to

be confirmed. The correlation coefficients of linear regression are better for all post-release

defects than for the pre-release ones, but all other correlation values are better for pre-release

defects. This situation is even more remarkable for M5, as the pre-release correlation coefficient
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reaches 0.65 whereas the post-release stays at 0.49. For these prediction models also the two

error measures are much higher for post-release.

What about high severity defects? Do we get also better pre-release predictions than post-release

ones in the context of defects with high severity? When we look at Table 6.1(b) and Table 6.2(d)

we see a similar picture for high severity defects to the overall prediction performance. The

correlation values of pre- and post-release defects are closer together for defects with high sever-

ity, but overall pre-release defects can be better predicted than post-release ones. This could be

because the defects reported from customers are ranked higher than when they are discovered

internally, to stress the fact that the defects from customers have to be fixed fast. Therefore, we

can confirm the third hypothesis:

Predictions of post-release defects have higher errors than for models generated for pre-

release.

INTERNAL VS. EXTERNAL ORIGIN OF DEFECTS

We can see the difference between prediction of defects discovered by internal staff (testers, de-

velopers) vs. defects discovered externally (e.g. customer, partner companies) in Table 6.2(b)

and Table 6.2(c). The correlation coefficients are very similar for both cases. For linear regres-

sion it is higher with 0.51 for internally discovered defects than 0.47 for externally discovered

defects. With M5 the results are almost equal. Although it seems that the prediction error is

lower for external defects than for internal ones, this result may be caused by the fact that there

are no files with many externally discovered defects (see post-release defect distribution in Ta-

ble 6.4). As a result, we can partly reject H4 and conclude that:

The predictability of defects that are discovered internally by testers and developers is com-

parable to the predictability of defects that are reported externally by customers and partner

companies.

ASPECTS OF PREDICTION MODELS

To analyze the aspects of prediction models in more detail we created two cases using the C4.5

tree classifier: The first model distinguishes between files containing defects and files without

defects. The second model separates the files with just one defect from the ones with several

defects. The following tree represents the model for pre-release defect-prone files. At each node

in the tree a value for the given feature is used to divide the entities into two groups. For each file

the tree has to be traversed according to its features to obtain the predicted class: defect-prone

vs. non-defect-prone.

The feature with the most information concerning pre-release defect-proneness is the location

of the relativePeakMonth, which is the month that exhibits the most change events for the an-

alyzed file. Features on the second level are changeActivityRate and authorcount. As we can

see in Figure 6.2 the tree is composed of features from many different categories. relative-

PeakMonth and changeActivityRate represent the category of time constraints. authorCount and
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Figure 6.2: Pre-release: with/without defects

authorSwitches belong to the team category. The issueCount, the number of resolved issues in

relation to all issues referenced by source code revisions is an indicator for the process category,

similar to the number of addingChanges in relation to the overall change count. Also the ra-

tio of revisions without a commit message (withNoMessage) describes the process orientation

of the development. The number of linesAddedPerBugfix provides insight into the development

process itself. It is interesting that not size and complexity measures are dominating pre-release

defect-proneness but process orientation and discipline of the developers.

Figure 6.3 describes the prediction model to evaluate if a defect-prone file contains more than

one defect. This classification tree is much smaller than the previous one for prediction of defect-

prone files. Nevertheless, it contains data mining features from many categories. It is interesting

that the top level and the bottom level both regard lines edited during bug fixing, but on the

first level the linesAdded to the file are of interest whereas at the bottom the relational aspect is

central with tLinesDeleted in all files of common commit transactions. Additionally, the team

aspect plays an important role, as the number of authorSwitches is the feature on the second level.

The model is completed by features indicating the ratio of adding and changing modifications

(changeType).

From the pre-release classifications we can conclude that:

Time constraints, process orientation, team related and bug-fix related features play an impor-

tant role in prediction models of pre-release defects.

Figure 6.4 describes the classifier for distinguishing post-release files as defect-prone and non

defect-prone. We can see that most information bears the ratio of revisions withNoMessage
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Figure 6.3: Pre-release: one vs. several defects

to the ones with issues related to them (issueChanges). The first sub tree is even reduced to

this process related feature. The number of changes during the relativePeakMonth of each file

defines the second level of this tree. Another process oriented feature counting revisions with

issues attached (issueChanges) is located on the third level. The other feature on the third level is

an indicator for the complexity of the existing solution, which is defined as the relative number

of changes measured for prediction. Several other features of this tree define the relationship

of the analyzed file with other files changed on the same occasions by the same author such as:

coChangedFiles, tLinesAdd, tLinesDel, tLinesChangePerBugfix.

Figure 6.5 describing the classifier of post-release defect amounts has on top the location of

the relativePeakMonth within the prediction period. This feature was already an important in-

formation source for pre-release defect-proneness. Several other features are new for defect

predictions. The average days needed to close major issues seems to provide a general indica-

tor for the efficiency of bug fixing. It is surprising that on this second level the feature fileNew

(coChangeNewFiles) is located, as it describes if a file was newly introduced in the prediction

period. This feature is an indicator of new functionality. We would not expect such a high impact

in the post-release prediction of defect rates, because this short period after the release (together

with a versioning branch) is probably be used for stabilization and not too often for feature im-

plementation. These new features should be included in the subsequent release and therefore

should not influence the defect rate in the current release.

On the other hand it is understandable that largeChanges influence code stability. Again surpris-

ing is the appearance of the measure related to defect discovery bugFixesDiscoveredByDeveloper

in this late phase of the software life cycle. We would expect to see this feature in the pre-release

phase. Hence, the stabilization for the release seems still to go on after the release date.

In this case study the number of categories contributing to the post-release classifications is even
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Figure 6.4: Post-release: with/without defects
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Figure 6.5: Post-release: one vs. several defects
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higher than for the pre-release ones:

Process orientation, time constraints, change amount and timing, relational aspects, as well as

defect discovery measures are relevant for post-release defect classification.

6.5 RÉSUMÉ

This chapter takes the first step towards defect prediction models. It incorporates the data min-

ing features defined in Chapter 3 and focuses on fine-grained issues in the prediction of short

term defects. With this prediction approach we address the following research questions from

Chapter 1.2:

• Q2: How do software evolution metrics relate to external software product attributes? In

this chapter, we described a study dealing with fine-grained predictions of defects. We

estimate the defect proneness based on a short time frame, where data from two months is

used to predict defects of the following two months. With this approach a project manager

can decide on the best time frame for release and take preventive actions to improve user

satisfaction after a release. Additionally, we compared defect prediction before and after

releases of our case study and discovered that in both cases an accurate prediction model

can be established. We could show that defects reported by customers need other prediction

models than defects discovered by internal staff such as testing. In general we can conclude

that software evolution metrics have a strong relationship with software product attributes.

Prediction models can be built to predict defects on short time intervals for the next two

months with the help of evolution measures from two months of development time.

• Q3: How can data mining be efficiently utilized in software projects to improve software

evolution? In the experiments of this chapter we use three different data mining algorithms

(i.e. Linear Regression, M5 Regression Tree, and C4.5 Decision Tree). The two regres-

sion related algorithms predict the exact number of expected defects in a file. The C4.5

Decision Tree distinguishes between two groups of instances, for example between the

defect-prone files and the files in which no defects are predicted. Both strategies provide

valuable discoveries. In a first step the focus on defect-prone classes can help to structure

the verification process more efficiently, where more effort is spent on the classes in which

defects are expected. The prediction of the exact number of defects provides a ranking

of classes in the order of most expected defects. Classes with multiple predicted defects

could be tested thoroughly to identify more than one defect per class. Additionally, the

relationship between evolution metrics and defects can help software engineers to under-

stand influences of their work on the results and can help them to define better development

processes.

• Q5: How to set up effective models that result in prediction with high accuracy? To create

well-balanced prediction models we inspected different aspects of software projects. As
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size was already used in many other studies it is still an important input for prediction.

Other aspects of our approach are the complexity of the existing solution and the diffi-

culty of the problem that the particular piece of software addresses, as they are causes of

software defects. We included people issues of different types such as authorCount and

authorSwitches in our analysis to cover another important cause of defects. When a devel-

oper has to work on software that somebody else has initially written, mistakes could arise,

because he has to understand the design of her colleague. Factors such as author switches

are covered by our team features. The discipline of a developer does also influence defect

probability. As a result we used indicators for process related issues. Finally, we included

time constrains and testing related features into our defect prediction models. The multiple

aspects of software evolution enable the creation of accurate prediction models. However,

especially features related to process orientation and time constraints had a deep impact on

defect prediction. Thus, in the next chapters we will focus on the time and sequence aspect

of evolution measures (Chapter 7) and relationship between different event types of evolu-

tion processes (Chapter 8), which yields to prediction models with very high accuracy.



Chapter 7

Optimizing Predictions with Series Mining

Sequential patterns are important in many domains, because they can be exploited to improve the

prediction accuracy of classifiers. A sequence x = 〈x1, x2, x3, . . . , xn〉 of change events during

software development contains the information on the course of development additionally to the

pure attributes of the sum of all change events describing the state at the final point in time.

As one of the first studies we analyze value series of evolution data to create defect prediction

models.

Defect prediction models of previous studies often rely on metrics that represent the state of the

software system at a defined moment in time (e.g. [30, 55, 70, 87]). For instance such metrics

describe the sum of changes implemented in a certain part of the system or are other types of

measures such as size and complexity metrics (e.g. [18]).

In the previous chapters we have seen how prediction models can be set up with evolution met-

rics. However, the previous models regarded time only as one of several aspects that are incorpo-

rated in form of metrics into the model. The change over time is an essential aspect of software

evolution. Software evolution is a continuous process where different types of activities are ap-

plied in a sequential manner on software entities to satisfy customer requirements. Therefore,

we describe the change over time as sequences of metrics, where the data points are captured for

each day of the training period (two months). Based on this information we create prediction

models utilizing genetic programming and linear regression with very high accuracy.

7.1 KNOWLEDGE DISCOVERY PROCESS

Several consecutive steps are executed in our knowledge discovery process to obtain prediction

models based on value series. The basic workflow is as follows:

1. The data collection steps extract evolution data from two systems: versioning systems

such as CVS and issue tracking systems such as Jira. Data items taken from different

systems have to be assembled into a joined data model to establish an evolution database.

Additionally, a relationship is established between data items from a single data source

(e.g. co-changed coupling based on commit transactions).

79
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2. The evolution database is used to compute change attributes such as the number of lines

added for bug fixes, the number of co-changed files, or the number of modifications without

a commit message. These are the characteristics of our data items that are used to create

value series for defect prediction. Fenton and Neil [34] pointed out that a sound prediction

model has to incorporate different types of attributes. Accordingly, we analyze several

types of attributes, where a value series is created for each attribute type. Additionally,

series containing attributes of all categories represent the changes over time from a single

instance (i.e. a file).

3. We take the value series of evolution attributes as the basis of our defect prediction mod-

els. To be able to apply classification algorithms to the value series we extract features

describing the relevant characteristics of the value series. Such features can be the max-

imum number of co-changed files. The feature extraction is done automatically with the

help of genetic programming, in which several operations are applied on the data points

in the value series. The genetic algorithm searches the feature space guided by a fitness

function (i.e. the correlation coefficient of our defect prediction models). The best fea-

tures discovered through genetic programming are the input of the regression algorithms

to create the prediction model. The platform for our series mining activities is the YALE

machine learning environment [82].

4. We describe the results of a field study, in which we applied the prediction models to sev-

eral projects taken from three different domains to evaluate the accuracy of the prediction.

The following sections describe each step in detail and present our results.

7.2 GENERATING EVOLUTION SERIES

We focus on the change of metrics of source files during software evolution. For this we measure

a set of evolution attributes for each source file over time and compose multiple value series de-

scribing the data points of the attributes as a sequence of measures. We investigated the project of

our field study (see Section 1.2) where we use two months of development time (series period) to

predict the defects of the following two months (target period). The first two months comprise 61

days, where for each day in this series period we measure the attributes for each file. For example

the number of lines added within one day is summarized for the data points of this attribute in

the value series. As a result many values in the series are zero, as in a development project not all

source files are modified every day. The number of defects is predicted for the entire period of

the following two months for each source file. Thus, the instances for the prediction models are

files. In the following we describe the different evolution attributes and the generation of series

in detail.

A definition of generalized series is used for value series: In a series each element xi is composed

of two components. The first is the index describing a position on a straight line (e.g. time); the

second is a vector of values. In our case we use two types of vectors: one is a reduced case where

only one attribute represents the vector; in the second case the dimension of the vector is given

by the number of all evolution attributes used in our approach of series mining.
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7.2.1 VALUE SERIES

For each day the relative attribute value is computed and added to the value series. For example,

we use the number of authors relative to the number of changes on each day in our series period.

We give a small sample for the computation of the data points for the number of authors: The

sequence 1/1, 0, 2/3, 1/1 would be the result for four days of the series period, when one change is

committed on the first day, no changes are done on the second day, two developers implemented

a total of three changes on the third day, and one change is committed on the fourth day.

For our series mining approach we use only a subset of the metrics described in Chapter 3,

because the computation of the prediction models based on value series is very time consuming.

As a result the following metrics are computed for each file and for each day in the series period.

We use slightly different names for the metrics in this chapter to show the fact that the metrics

have another meaning as this time they are computed for each individual day instead of a sum

over all days as described in Chapter 3.

• LinesAdd: Lines of code added within a day / Total lines of code until this day.

• LinesDel: Lines of code deleted within a day / Total lines of code until this day.

• ChangeCount: Number of changes within a day / Total number of changes in the history

of the file until this day.

• Authors: Number of authors within a day / Number of changes within this day

• AuthorSwitches: Number of switches of the author / Number of authors

• CommitMessages: Number of different commit messages / Number of changes

• WithNoMessage: Number of changes without commit message / Number of commit mes-

sages

• BugfixCount: Number of bug fixes / Number of changes

• BugfixLinesAdd: Lines added for bug fixes / Number of lines added (any type)

• BugfixLinesDel: Lines deleted for bug fixes / Number of lines deleted (any type)

• CoChangeCount: Number of co-change changes (changes that involve other files) / Num-

ber of changes

• CoChangedFiles: Number of co-changed files / Number of changes

• CoChangedNewFiles: Number of newly introduced files that are co-changed / Number of

co-changed files

• TLinesAdd: Number of lines added in all co-changed files / Number of couplings

• TLinesDel: Number of lines deleted in all co-changed files / Number of couplings
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• TBugfixLinesAdd: Number of lines added in all files for bug fixes / Number of lines added

• TBugfixLinesDel: Number of lines deleted in all files for bug fixes / Number of lines

deleted

7.3 PREDICTING DEFECTS BASED ON EVOLUTION SERIES

Given the value series of evolution attributes as described in the previous section, the aim of our

approach is to derive models for predicting the number of defects in source files. For the model

generation we use ”classical” data mining algorithms such as linear regression, which are not

able to handle value series in the explicit representation, but can operate on sets of attributes

instead of ordered series of values.

Given the ordered values of attributes, how can we use these evolution series as input to data

mining algorithms such as linear regression? We generate a new representation of our series

information that is suitable for prediction algorithms. This task is called feature extraction,

where each series is described by a set of relevant characteristics that make different evolution

series distinguishable. In a similar manner we could describe a value series containing positions

of the sun on earth with the following features: one cycle lasts for 24 hours, the maximum is

reached at noon, sunrise and sunset are related with the degree of latitude on earth, etc. Features

are then used as input attributes to data mining algorithms such as linear regression.

The feature extraction itself is decomposed into a sequence of basic operators, which delivers a

set of features in the end. For example functions returning the minimum, average, or maximum

of the values in a series are basic operators. Other basic operators return an index such as the

location of a peak value within a given series. Such basic operators have to be combined into

a sequence generating the final features for the data mining algorithms. However, the manual

selection of an optimal set of operators for feature extraction is a tedious task. Therefore, machine

learning can be used to select appropriate operators and group them into an operator tree. The

selection of suitable operators is done with the help of genetic algorithms, which is described in

the next section.

Thus we have to carry out two learning tasks for our defect prediction:

1. Learning of a set of basic operators for the feature extraction utilizing genetic program-

ming. The resulting features describe relevant characteristics of evolution series for data

mining algorithms such as linear regression.

2. Learning a model for defect prediction from the extracted features.

7.3.1 FEATURE GENERATION

In the process of feature extraction a number of basic operators is organized into a tree, where

each operator uses the output of the predecessor. The output of the operators at the leaves produce
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the features of the series. We distinguish two types of basic operators: Transformations and

functions:

Transformations convert a series into another series. Different types of transformations are avail-

able for our defect prediction approach such as filters (e.g. smoothing), frequency transforma-

tions (e.g. fourier transformation), generalized windowing, etc. Windowing operators apply a

given function on a range of values within the series and additionally slide the window over the

series. Others are branches that pass on the interim results to two successing sub-trees.

Functions generate single values based on the entire value series and are always the last step of

the feature extraction process (i.e. the leaf nodes of the operator tree). Examples of functions are

statistics such as average, variance, standard deviation. These functions may be applied on the

values themselves or on the indexes of the values, where for example the index of a peak value

could be extracted. For an extensive list of transformations and functions see [82].

GENETIC PROGRAMMING

The (locally) optimal feature extraction approach (i.e. operator tree of transformations and func-

tions) is elicited with genetic programming utilized on the operator trees.

Mutations randomly insert a new operator, delete an operator, replace an operator, or change the

parameters of an operator.

Crossover switches a sub-tree from one feature description tree by a sub-tree from another tree.

According to the standard process of genetic programming the instances with the highest fitness

are selected for the next generation.

Selection is done based on a tournament between all members of a generation in the genetic

algorithm.

Fitness of the operator trees for the tournament selection is assessed based on the defect predic-

tion capability of the resulting features. Our fitness function is the regression algorithm itself

that is used for the generation of the prediction model. Thus, for each operator tree a regres-

sion function is generated based on a training set of a random sample containing 50 evolution

series instances and the accuracy of the prediction of defects is used as the fitness value. As a

result, the operator trees generating features that predict the defects best are selected for the next

generation.

Initiation of the first generation in the genetic algorithm is based on 50 operator trees, where the

operators are randomly selected from the pool of available transformations and functions.

We limited the maximal number of generations to 8, which yields good results of the predic-

tions and still keeps the time for the computations quite short. We have set the parameters for

the generic algorithm higher than the default values given in YALE [82], the machine learning

platform we use for our experiments. As a result, the following parameters are defined for our

approach: probability of adding a new operator = 0.4 to enable frequent use of new operators;

probability of adding a branching operator to create new sub-trees = 0.05, because branches

did not prove to increase the performance of the predictions very much and branches make the

computation even more time consuming; probability of changing an operator = 0.4, because we
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aim to use many different combinations of operators in the genetic algorithm; probability of re-

moving an operator = 0.2, because the number of operators should not decrease to much to give

the genetic algorithm more flexibility; probability of performing a crossover = 0.5, exchange

of information between feature description trees often improves the predictions; probability of

changing a parameter = 0.1, because parameter changes have not proven to change prediction

results very much.

7.3.2 APPLYING DATA-MINING ALGORITHMS TO SERIES FEATURES

The best features selected by the genetic programming algorithm are used for the creation of the

prediction of defects. The primary data mining algorithm for our prediction is linear regression,

as our outcome as well as our features from value series are numeric. This is a staple method in

statistics where the predicted value is represented by a linear combination of the input attributes

(i.e. features) with weights w0, w1, w2, . . . , wn and attributes a0, a1, a2, . . . , an:

x = w0 + w1a1 + w2a2 + . . . + wnan

The weights are derived from the training data set minimizing the sum of squares of the distance

between the predicted value x and the actual one y. The distance is summarized for all instances

k of the training data set: ∑

k

(y −
∑

n

wiai)
2

The numeric prediction algorithms are used twice in our process. In the previous section we

described the generation of features from value series, where the correlation coefficient is used

as fitness function for the quality of the feature generation. Finally, we apply the prediction

algorithms on the extracted features taking all instances of the training set into account to create

the final prediction model.

7.4 EVALUATION

We evaluated the approach of defect prediction based on series mining with the help of our

field study (see Section 1.2), where we use three different real world projects (two open source

projects: ArgoUML and the Spring framework, and a commercial PACS system) and analyzed

the predictability of defects in the near future.

7.4.1 EVALUATION SETUP

To estimate the accuracy of our defect prediction approach we use the same time periods for

all projects, regardless in which development state the project is. In Chapter 6 we have shown

that pre-release defects can be better predicted than post-release defects. Thus, if we select the

time periods for our evaluation independent of the release dates, we obtain reliable prediction
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results that have a high probability to be reproducible within the entire project life time. Only the

periods for the commercial system are related with the release dates, because they are the same

as in Chapter 6 to be able to directly compare the prediction performance. This gives additional

insight into improvement of predictions through the employment of data mining based on value

series of evolution metrics. In our approach on series mining we use two periods:

• Series Period: November-December 2005. In this period we take evolution attributes from

the versioning system and construct value series to represent the flow of the development

over time. Each series of the attributes from Section 7.2.1 has a length of 61 days given the

two months of the series period. This information is used in our series mining to predict

the defects of a source file in the next period.

• Target Period: January-February 2006. With our prediction models based on series mining

we try to predict the number of all defects in the target period, where the defects are

counted based on the information from the issue tracking system and are mapped to files

as described in Section 3.1.2.

7.4.2 MEASURING PREDICTION PERFORMANCE

For the assessment of our prediction models we use the following performance measures, which

are the ones that we use in Chapter 6:

• Correlation Coefficient (Corr. Coef.) measures the statistical correlation between the pre-

dicted values and the actual ones.

• Mean Absolute Error (Abs. Error) is the average of the magnitude of individual absolute

errors.

• Mean Squared Error (Sqr. Error) is the average of the squared magnitude of individual

errors and it tends to exaggerate the effect of outliers.

As validation method we use 10-fold cross validation to estimate the performance of our pre-

diction models. In this method the set of source files is randomly split into 10 disjoined sets of

equal size. The validation is executed 10 times, where the linear regression is trained on 9 of the

10 folds and the remaining one is used to calculate the error rates and the correlation coefficient.

After the 10 turns the final performance estimates are generated through averaging the results of

the 10 turns.

The validation used two times: First it is used for the assessment of the fitness of the features

during genetic programming and finally it is used for the assessment of the prediction models

resulting from linear regression with the best features (see Section 7.3).

7.4.3 RESULTS

In the following we describe the field study with the selected software projects and discuss per-

formance measures of our prediction models. Furthermore, we investigate the significance of

evolution attributes.
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Corr. Coef. Abs. Error Sqr. Error

Commercial system 0.946 0.306 0.508

Spring framework 0.716 0.229 0.770

ArgoUML 0.730 0.208 0.624

Table 7.1: Defect prediction with series including all evolution attributes

Number of defects Commercial system Spring framework ArgoUML

per file

1 46 80 47

2 11 15 9

3 5 3 2

4 7 2 0

5 2 0 0

6 1 0 0

Table 7.2: Defect distribution

HOW WELL CAN WE PREDICT THE NUMBER OF DEFECTS IN SOURCE FILES WITH SERIES

MINING?

To answer this question we take the entire evolution series containing values of all attributes such

as LinesAdd or Authors (see Section 7.2.1). Table 7.1 describes the performance measures of our

defect prediction models. The first remarkable number is the very high correlation coefficient of

the commercial system from the healthcare domain. A correlation coefficient of 1 would indicate

perfect correlation of the prediction with the actual value, where the received 0.946 indicates that

very strong prediction models can be built based on evolution series. The other two projects reach

a correlation coefficient of more than 0.7, which is still good.

According to the first performance indicator also the mean absolute error of all projects is low.

The absolute error has to be measured in relation with the predicted quantities. In our case we

predict the number of defects that lie in the range of 0 up to 7. As a result, the measured mean

absolute errors of 0.208 to 0.306 are low. The commercial project has a higher absolute error

than the two open source projects because it has more files with multiple defects (e.g. 5 or 6

defects), which can be seen in Table 7.2.

The good prediction measures are supported by the mean squared error, which emphasizes out-

liers more than the mean absolute error. The squared error is lowest for the commercial project

with a value of 0.508. This corresponds with the high correlation coefficient and indicates that

the prediction is very accurate. However, also the mean squared errors of Spring with 0.770 and

of ArgoUML with 0.624 are low. Thus, we conclude:

Accurate prediction models can be developed based on series mining of evolution data.
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WHICH ATTRIBUTES ARE MOST SIGNIFICANT FOR DEFECT PREDICTION?

In the previous section we presented prediction models based on series mining with a very high

correlation coefficient and good error measures. These models are created from an evolution

series containing all attributes described in Section 7.2. We are interested to find out which

attributes are most significant to create accurate prediction models. For this we create prediction

models on value series for each single evolution attribute. Table 7.3 presents the correlation

coefficients of all generated models, as this performance indicator represents the relationship

between the predicted values and the actual ones.

All three projects of the field study exhibit high values for the correlation coefficient on the

series containing the number of authors. In the commercial system as well as ArgoUML this

single series is even the one with the highest correlation coefficient. For the Spring framework it

is only exceeded by the series with ChangeCounts, which describes the number of changes per

day in relation to total number of changes for this particular file. In the two other projects the

ChangeCount is ranked only in the middle-field.

Authors seems to provide good input to series mining, which contrasts the results of Graves et

al. [55]. In our knowledge discovery process we use value series for defect prediction. Therefore,

we measure how many authors have implemented modifications to a given file and set this mea-

sure in relation to the number of modifications implemented by these authors. We use relative

measures, as they have shown to be better predictors than absolute measures [86]. Moreover,

we observe the alteration of the number of authors implementing modifications over time, which

can provide more accurate data to the prediction models than metrics focusing on a fixed point

in time.

Another interesting sub-series is the one containing the number of commit messages in relation

to the number of changes. This CommitMsgs series has even the second highest correlation

coefficient in the commercial project and ArgoUML. In the Spring framework it is on position

five with a correlation coefficient of 0.48. We see the commit message as an indicator for the

discipline of developers, as we recognized the pattern that developers sometimes tend to reuse

the message of the last commit. This work pattern is supported by IDEs that allow one to select a

message from a list of the last few messages or to type in a new one before committing changes.

It is quite surprising that the highest performance measures are not reached by size or com-

plexity metrics, but by process and workflow related aspects such as Authors and CommitMsgs.

However, on the third position for ArgoUML and Spring appears the series of TLinesAdd (see

Table 7.3). This attribute incorporates the number of lines changed within a commit transaction

counting added lines of all files that are involved in the transaction. This series reflects an aspect

of the interdependency in object oriented software systems, as we take changes to other (related)

files within a transaction into account. Contrary, the pure size measure of added lines of a par-

ticular file is represented by LinesAdd. Although this sub-series plays a remarkable role for the

commercial system, it has a very low correlation coefficient in the open source projects. For the

sub-series we conclude:

Projects have different rankings of sub-series, where common aspects can be identified, such

as the number of authors or commit messages.
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Commercial system Spring framework ArgoUML

Corr. Coef. Corr. Coef. Corr. Coef.

LinesAdd 0.616 0.195 0.161

LinesDel 0.305 0.111 0.234

ChangeCount 0.517 0.653 0.268

Authors 0.946 0.628 0.760

AuthorSwitches 0.622 0.210 0.357

CommitMsgs 0.943 0.480 0.459

WithNoMsg 0.273 0.008 -0.054

BugfixCount 0.455 0.290 0.253

BugfixLinesAdd 0.437 0.294 0.295

BugfixLinesDel 0.736 0.319 0.244

CoChangeCount 0.548 0.336 0.388

CoChangedFiles 0.481 0.240 0.409

CoChangedNew 0.426 0.171 0.233

TLinesAdd 0.598 0.622 0.442

TLinesDel 0.586 0.579 0.225

TBugfixLinesAdd 0.482 0.318 0.362

TBugfixLinesDel 0.460 0.319 0.296

series of all attributes 0.946 0.716 0.730

Table 7.3: Correlation coefficients of series with a single attribute and the summarizing series

including all attributes
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In defect prediction based on value series of evolution metrics the number of authors and

the number of commit messages are significant for defect prediction and are superior to size

metrics such as the number of lines added or complexity measures such as number of bug

fixes.

7.5 RÉSUMÉ

In our approach an entire series of measurements is used to predict a single label (i.e. the number

of defects in a file containing object-oriented entities). The series of values describes the flow

of development over time and improves the prediction in relation to fixed metrics describing

a particular point in time. Thus, we get an impressive improvement in the accuracy of our

predictions in comparison to Chapter 6. In this chapter, we especially focused on the following

research questions from Chapter 1.2:

• Q1: How to set up metrics from sources such as modification reports and process/project

management tools? Daily data points of our evolution attributes (see Section 7.2) were

captured over a period of two months to predict the defects in the subsequent two months

in a project. The data points represent the development within the entire day. If several

changes are committed to a file within one day then the attribute values are summed up

and result in one data point of the evolution series. As we establish series for each file,

many data points are zero. Nevertheless, the series of many zero values also contain much

information. For example it is possible to extract how many non-zero values are in a series

or how many zero values on average are between two expressive values. As a result, value

series of evolution attributes provide valuable information for project assessment, where

we exploited it for one possible scenario: the prediction of software defects.

• Q2: How do software evolution metrics relate to external software product attributes? In

contrast to other studies that employed size or complexity measures as predictors, we have

identified the number of authors and the number of commit messages to versioning systems

as excellent predictors of defect densities. This indicates that additional to product related

aspects we should take into account process related ones that are sometimes called ”soft

issues”. The teamwork in software projects is based on our results important for software

quality. Not only the productivity of a team is strongly dependent on its internal structure,

but also the quality of the product.

• Q5: How to set up effective models that result in prediction with high accuracy? Our re-

sults showed that evolution series are excellent predictors of defect densities. We described

an analysis focusing on sub-series, where the prediction models based on series of a single

variable are sometimes even superior to the overall model. An interesting proponent of this

category is the number of authors, where good models can be created (up to a correlation

coefficient of 0.946). These high accuracy is reached through the combination of linear re-

gression with genetic programming. First the genetic algorithm selects feature extraction
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methods from a pool of basic operators such as transformations and functions. Based on

the best features a prediction model is set up with the help of linear regression. An im-

portant factor in this approach is the input of evolution series, where samples of evolution

attributes are taken per day.



Chapter 8

Process Events for Quality Assessment

In Chapter 5 we could show that the commit messages software engineers enter when submitting

changes to a software repository provide important information about refactoring activities [104].

Now, we show how we can use the information within commit messages to recover different

types of events during software evolution and utilize the ratio between different types for software

defect prediction. We address the question: What is the right time/ratio of different change types

for software quality assessment?

Reading a lunar calendar you may have come across predictions like: ”When the planet Jupiter

stays in the star constellation of Aquarius and afterwards Pluto crosses the path of Neptune it is

the best time to bake a delicious cake for your wife.” or ”When Mars is in line with Jupiter then

during the following full moon it is finally time to cut down a tree in the garden.” These state-

ments have in common that they expect a certain series of events that is the optimal precondition

for some following actions.

In software projects we have similar lunar cycles, which refer to the different iterations and

phases during development and evolution of software systems. To create a high quality product

we should follow a defined series of actions. A lunar calendar gives advise for the right time for

certain actions to reach the best result. What is the right time in software development processes

for one type of a modification or another? The software life cycle and its stages were subject to

many discussions. One of the models defining the different steps software passes is the ”staged

model for the software life cycle” [99]. After delivering the software to the customer several

different types of actions are performed on the system [94]:

• Corrective: This includes the fixing of bugs discovered during the use of the system.

• Perfective: Perfective maintenance aims to improve certain attributes of the software, like

the performance, the logging facilities, or the administration.

• Adaptive: This type of activities supports the coping with changing environment.

• Preventive: These changes combine all actions necessary for improvements to avoid future

problems. Refactoring is one such type of changes in this area [38].

91
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8.1 EVENTS OF THE SOFTWARE EVOLUTION PROCESS

To analyze software evolution processes we have to recover the events during the process execu-

tion. To accomplish this task we utilize information provided by software engineers within their

daily work when implementing changes during software evolution. Text messages are inspected

for recurrent chunks of information and then word vectors are created to represent the content of

each piece of text. Afterwards, we use clustering techniques as a method in data mining for un-

supervised learning task to divide the word vectors into groups of different text messages. Each

group describes a particular type of process events applied during the workflows of the software

project. We applied our approach for event extraction and defect prediction on our field study

consisting of three different software projects as described in Section 1.2.

In our approach we use three time periods for the different data elements:

• Event Period. During this period the commit messages are evaluated and event types are

recovered. In our field study this period is May 2005 - May 2006.

• Series Period. We use the evolution events within this period to generate value series

representing relationships between events of different type (see Section 8.2). This lays the

foundation for the defect prediction models. This period is Sep.-Dec. 2005 in our study.

• Target Period. This is the time frame immediately after the series period, where we count

the number of defects we want to predict. In our study we use Jan.-Feb. 2006.

8.1.1 WORD VECTORS FROM COMMIT MESSAGES

The commit messages taken from the CVS provides information from the developers about the

applied modifications. We decompose the text from all messages into their word or parts of

words. For this task we use the word vector tool (WVTool) of the YALE machine learning

environment [82]. We apply statistical language modeling, which allows us creating word vector

representations of text documents in the vector space. Each commit message is represented by

a vector of terms, which are entities such as entire words or parts of words reduced to some

linguistic base form. Additionally, abstract concepts are used, as for example any number in a

text is described by the term ”number”.

The resulting word vector for a commit message contains the weights describing the relevance

of the word according to the following formula:

wij =
fij

fdj

log(
|D|

fti
)

where

wij is the weight of the term i in document j,

fij is the number of occurrences of term i in document j,

fdj is the total number of terms occurring in document j,
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cluster name ArgoUML Spring Commercial

cluster c0 459 327 6

cluster c1 194 964 57

cluster c2 435 138 136

cluster c3 170 602 65

cluster c4 341 162 767

cluster c5 — 287 183

cluster c6 — 200 397

cluster c7 — — 3

cluster cx — — 1∑
1599 2680 1615

Table 8.1: Number of distinct commit messages per event type (cluster).

|D| is the total number of documents, and

fti is the total number of documents in which term i appears at least once.

Each commit message is counted only once for the creation of the process model. As a result, the

term are not weighted higher, if a developer uses the same message for several commit activities.

8.1.2 EVENT TYPES: CLUSTERING WORD VECTORS

The set of commit messages supplied by software engineers is converted according to the de-

scription of the previous section into word vectors representing the relevance of the terms within

the message. Thus, each instance is composed of a list of numerical attributes, which is the input

to a clustering algorithm. It groups similar items that seem to belong together. Clustering is an

unsupervised learning technique in contrast to classification and regression, which we use for

defect prediction. As we do not want to prescribe a given number of clusters (i.e. event types),

we apply the expectation maximization (EM) clustering algorithm. The expectation is described

by the probability belonging to each of the clusters, which is assigned by the EM algorithm to

each instance. Then 10-fold cross validation is used to decide how many clusters to create with

the goal to maximize the likelihood of distributions. The algorithm works in the following steps:

1. Only one cluster is created.

2. The set of instances is randomly split into 10 folds.

3. The EM algorithm is performed 10 times on the 10 folds to generate the probabilities.

4. The loglikelihood is averaged over all 10 results.

5. If the loglikelihood has increased the number of clusters is increased by 1 and execution is

continued at step 2.
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cluster name ArgoUML Spring Commercial

cluster c0 2389 4459 46

cluster c1 754 5866 187

cluster c2 1226 918 874

cluster c3 599 3265 66

cluster c4 1052 755 5724

cluster c5 — 1825 792

cluster c6 — 1248 1734

cluster c7 — — 6

cluster cx — — 10186∑
6020 18336 19615

Table 8.2: Number of file changes per event type (cluster).

With the help of the clustering and validation algorithm we divide the commit message of the

select software projects into different event types. Based on the probability measures of the

EM algorithm we obtain 5 event types (=clusters) for ArgoUML, 7 for the Spring framework

and for the commercial system we could identify 9 clusters, where the cluster cx summarizes

all modifications for which no commit message was supplied. It is interesting that only the

commercial system contained modification without commit message in the inspected periods.

Table 8.1 shows the distribution of distinct messages on the event types for each project. The

number of messages accumulated into a particular cluster vary widely, as for example for the

commercial system the EM algorithm created two groups with less than 10 messages (c0:6,

c7:3) whereas other clusters contain several hundred instances. However, the number of clusters

identified by the EM algorithm is related with the diversity of the text in the commit messages.

Thus, in the commercial project the developers use more different terms to describe their work.

This could be based on the number of people that is certainly higher for this project than for the

open source projects.

In contrast to that, Table 8.2 presents for each project the number of file modifications (i.e.

revisions) for each event type. When comparing the two tables we can see that there seems to be

correlation between the number of modifications and the number of messages. There are only

a few outliers such as cluster c3, where 66 modifications where committed with 65 different

messages.

8.1.3 RESULTING TERM FREQUENCIES

Based on the word vector representation of the commit messages and the EM clustering algo-

rithm we have subdivided the modifications of software engineers into different event types.

These types are analyzed based on the most frequent terms within each group. The following list

shows for each project and each event type the top seven terms:
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ArgoUML

+ c0: remov (166), issu (111), method (66), class (53), test (49), fix (48), model (46)

+ c1: issu (50), model (35), event (35), chang (31), number (26), make (23), action (23)

+ c2: issu (199), fix (91), stereotyp (71), diagram (56), multipl (50), except (47), allow (46)

+ c3: comment (57), issu (45), make (26), chang (25), improv (23), text (22), updat (20)

+ c4: issu (89), number (64), chang (55), review (43), name (43), code (43), delet (40)

While focusing on ArgoUML we can see that there are certain terms that appear in each group

such as ”issu”. Thus, the developers within this project seem to follow a defined process model,

where they provide a reference to the issue tracking system in many commit messages. For

the first cluster c0 the terms such as ”method”, ”class’, and ”model” could be references to the

domain of the project itself instead of the actual modification, because ArgoUML as a UML tool

is strongly related with design and development support. The remaining terms ”remov”, ”test”,

and ”fix” probably point to the direction of the intension of the modification. Thus, the terms of

c0 relate to testing and bug fixing.

The second event type c1 is not related to corrective actions, but the terms ”chang” and ”make”

indicate that these are some kind of enhancements. c2 contains similar to c0 terms describing

fixes such as ”fix” and ”except”. In contrast to c0, c2 points to the repairing of the exception han-

dling. Preventive actions are implemented through c3 based on the terms ”comment”, ”chang”,

”improv”, and ”updat”. The terms ”chang”, ”review”, and ”delet” of c4 indicate enhancements

similar to c1. However, c1 seems more to be adaptive and to add properties whereas c4 is more

perfective with reviews and cleanup activities.

Spring framework

+ c0: ad (101), test (92), fix (80), method (47), polish (45), work (35), action (25)

+ c1: ad (205), support (118), updat (69), remov (69), class (54), spring (40), move (37)

+ c2: introduc (30), synchron (20), ad (19), factor (17), view (16), access (15), refactor (15)

+ c3: ad (116), method (114), test (73), properti (62), except (49), check (49), flow (48)

+ c4: javadoc (76), correct (46), fix (45), typo (32), minor (28), method (20), error (18)

+ c5: name (64), support (42), ad (36), rework (35), chang (34), paramet (34), refin (33)

+ c6: ad (79), javadoc (51), file (37), java (33), renam (31), branch (23), mbranch (23)

For the Spring framework the first event type refers to corrective actions with the terms ”ad”,

”test”, ”fix”, and ”polish”. c1 indicates a clean up attitude with the terms ”support”, ”updat”,

”remov”, and ”move”. In addition, the term ”ad” indicates improvements in general. The third

event type c2 of the Spring framework an interesting element, because it explicitly references

refactoring with the term ”refactor”. Based on a detailed inspection of the commit messages the

term ”factor” refers to factoring-out, factories, and factory. Thus, together with the refactoring

are also other programming improvements introduced within the scope of c2. Similar to c2 of

ArgoUML, c3 of the Spring framework is related to exception handling. But this time the ex-

ception handling is improved preventively based on the terms ”ad”, ”test”, ”check”, and ”flow”.



Chapter 8: Process Events for Quality Assessment 96

An interesting event type is summarized by c4, as it combines improvements in understandabil-

ity (”javadoc”, ”correct”, and ”typo”) and also improvement of the stability (”fix”, ”method”,

and ”error”). The terms ”support”, ”rework”, ”chang”, and ”refin” describe that c5 implements

adaptations to changing requirements on the system. c6 focuses on administrative tasks with the

terms ”branch” and ”mbranch”. Additionally, ”javadoc” and ”renam” indicate improvements of

the documentation and readability.

Commercial system

+ c0: chang (5), java (4), fix (3), prepar (1), compil (1), enum (1), sort (1)

+ c1: handl (21), updat (16), file (14), error (11), call (6), pjvi (6), ad (5)

+ c2: ad (97), plugin (24), pjvi (23), imag (15), chang (11), fix (7), layout (7)

+ c3: file (65), java (65), initi (65), ad (65), branch (65), head (10), rawdatacontain (2)

+ c4: chang (101), pjvi (87), fix (51), remov (48), refactor (34), toolbar (33), call (33)

+ c5: fix (144), pjvi (98), problem (43), dialog (19), command (6), updat (6), solv (5)

+ c6: pjvi (175), make (65), view (43), work (35), ad (35), herd (34), load (29)

+ c7: chang (3), click (2), plugin (2), herd (1), allow (1), remove (1), segment (1)

+ cx: ”no commit message”

The reference to the issue tracking system is this time denoted by the term ”pjvi”, which is the

project identifier, instead of the term ”issu”. It is interesting that in the commercial system the

term ”fix” appears in the context of several event types. c0, c2, c4, and c5. The group of c0 is

very small with 46 modifications to files and is related to work-in-progress based on the terms

”chang” and ”prepar”. Also the event type c1 references to problems with the term ”error”.

Further, improvements in general are indicated by the terms ”handl” and ”update”. Although the

third type c2 contains the term ”fix” it seems more related to functional extensions with ”ad”,

”plugin”, and ”chang”.

c3 is the first element not referring to problems, but it focuses on administrative tasks, as ”branch”

and ”head” are common words in the context of CVS. Additionally, ”file”, ”java”, and ”initi” sup-

port the administrative nature of c3. Although c4 contains the term ”fix” it probably is related to

the preventive side of the actions based on the terms ”chang”, ”remov”, and ”refactor”. Contrary

to c4, c5 is the classical corrective activity with the terms ”fix”, ”problem”, ”updat”, and ”solv”.

The event type c6 is focused on the constructive work with functionality (”make”, ”work”, ”ad”).

c7 is the smallest group with only six modifications. It seems related with the GUI based on the

terms ”click” and ”plugin”, because many graphical extensions are implemented through plug-

ins in this architecture. For the last event type cx we cannot find any statements on the content,

as no commit message was provided by the developers for these modifications.

8.2 DEFECT PREDICTION BASED ON EVOLUTION EVENTS

After extracting events from software evolution data, we create a prediction model for software

defects. First a value series is created representing ratios between pairs of event types. The series
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are generated by accumulating the number of events per type and then by pairwise dividing the

sum of events. These value series of event ratios are input to the construction of the prediction

models. With the help of genetic programming we identify the best set of transformations and

functions that create an abstract description of the value series. The resulting abstraction of the

value series provides the features, which are input attributes for data mining algorithms. We

use linear regression as basic algorithm to set up our defect prediction models that are based on

events of software evolution.

8.2.1 VALUE SERIES OF EVENT RATIOS

The foundation of our prediction models are series of event ratios, where we use the event re-

construction described in Section 8.1. For the series we add up the occurrences of each event

type on each day. For the whole series period (see Section 8.1) we obtain the number of events

of a particular type from the beginning of the series period until the day of interest within the

period. Thus, the events happened on a particular day are added to the number of events already

accumulated before that day.

For each day the ratios of the number of events are computed pairwise between all different event

types. For example for ArgoUML the clustering algorithm identified five different event types

(c0, c1, c2, c3, and c4). These are used to generate the following event ratios: c0/c1, c0/c2,

c0/c3, c0/c4, c1/c2, c1/c3, c1/c4, c2/c3, c2/c4, and c3/c4. All ten ratios are used to create ten

value series, where for each day of the value of the ratio is entered into the particular series.

8.2.2 EVALUATING PREDICTION PERFORMANCE

For the assessment of our prediction models we use the following performance measures, which

are the ones that we use in Chapter 6:

• Correlation Coefficient (Corr. Coef.) measures the statistical correlation between the pre-

dicted values and the actual ones.

• Mean Absolute Error (Abs. Error) is the average of the magnitude of individual absolute

errors.

• Mean Squared Error (Sqr. Error) is the average of the squared magnitude of individual

errors and it tends to exaggerate the effect of outliers.

As validation method we utilize 10-fold cross validation to estimate the performance of our

prediction models.

8.2.3 PREDICTION RESULTS

The defect prediction based on evolution events is based on the series mining described in Chap-

ter 7. The value series of event ratios from the previous section is used as an input to the data

mining technique for the generation of prediction models.
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Corr. Coef. Abs. Error Sqr. Error

ArgoUML 0.843 0.218 0.457

Spring framework 0.681 0.189 0.473

Commercial system 0.581 0.237 0.475

Table 8.3: Performance measures of defect prediction based on value series of evolution events.

As we see in Table 8.3 all three projects from our field study show good results on defect predic-

tion. The correlation coefficient is the performance measure with the largest variation between

different projects. The lowest value was obtained with the commercial software system. How-

ever, even a correlation of 0.581 is good in comparison to previous results of Chapter 6 where

we could only reach a maximal correlations of 0.6. The Spring framework already reaches a

correlation of 0.681 and the best one was obtained based on the data of ArgoUML with a value

of 0.843.

In addition to these good correlation results, the error levels are low. The mean absolute error

is always below 0.25, which means that on average the predicted number of defects for a file is

only one quarter away from the actual value. This means that if all predictions would be just

one defect above or below the real number of defects, three of four predictions would be precise

and just one would miss the correct number of defects. The results of the mean squared error

emphasize the good prediction accuracy of our approach, as they exaggerate outliers more than

the mean absolute error. The values of the mean squared error of all three projects in our field

study are between 0.45 and 0.5, which are low measures. The mean absolute errors together with

the mean squared errors indicate that many predicted values are equivalent with the actual ones

and the predictions the miss the exact number of defects provides predictions that are very close.

Regarding the good prediction measures we conclude:

Software defects can be accurately predicted based on event ratios from evolution processes.

8.3 EVENT ASSESSMENT

Let us now take a look at separate series of event ratios and their predictive power. The correlation

coefficient describes the relationship between the predicted and the actual values. Therefore, we

use this performance measure to estimate which separate series can accurately predict the defects

in files.

For our defect prediction we use a mining approach containing two steps. This approach can

be applied on individual series as well as on the entire set. Table 8.4 presents the correlation

coefficient for each value series of event ratios. It is interesting that a few individual series

can outperform the entire set of value series measuring the prediction based on the correlation

coefficient. We can see that ArgoUML and the commercial system reach high correlation values

of more than 0.8 and even more than 0.9. The event series of ArgoUML seem to be particularly
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Corr. Coef. ArgoUML Spring framework Commercial PACS

> 0.3 c0 / c2 c0 / c2

c0 / c4

> 0.5 c0 / c1 c2 / c3,...,c6 c0 / c1,c2,c3

c3 / c5 c0 / c5,c6,c7

c4 / c6 c1 / c2,...,c7,cx

c2 / c3,...,c7

c3 / c4,...,c7,cx

c4 / c6

c5 / c6,c7,cx

c6 / c7,cx

> 0.6 c0 / c1 c0 / cx

c0 / c3,...,c6 c2 / cx

c1 / c2,...,c5 c4 / cx

c3 / c4 c7 / cx

c3 / c6

c4 / c5

c5 / c6

> 0.7 c0 / c3 c1 / c6

c1 / c3

> 0.8 c1 / c2 c4 / c7

c1 / c4

c2 / c3,c4

> 0.9 c3 / c4 c0 / c4

c4 / c5

Table 8.4: The correlation coefficient of individual ratios between different event types.

ArgoUML Spring Commercial

cluster c0 907 1370 34

cluster c1 190 1645 104

cluster c2 392 358 355

cluster c3 214 1377 13

cluster c4 341 233 1595

cluster c5 — 608 157

cluster c6 — 543 331

cluster c7 — — 0

cluster cx — — 196

Table 8.5: Number of file changes per event type (cluster) within the series period (Sep.-

Dec. 2005).
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suitable for defect prediction. Only most series in relation with the event type c0 have lower

correlation of 0.3 and 0.5, although this event type is related with bug fixing (see Section 8.1.3)

and most changes in the series period (see Table 8.5) are assigned to this type. The highest

correlation can be reached with the ratio c3/c4, where c3 is related to improvements such as

comments and c4 represents enhancements related to the terms ”chang”, ”review”, and ”delet”.

For the commercial system the relations c0/c4, c4/c5, and c4/c7 exhibit high correlation coeffi-

cients. From Section 8.1.3 we know that c4 is related to refactoring and c0, c5, and c7 are related

to corrective actions. Refactoring seems to provide valuable information for defect prediction,

as the related event type c4 has still a high correlation of more than 0.6 with the event type cx,

which represents unknown modifications.

For the Spring framework the only value series that can reach a correlation coefficient of more

than 0.7 is c1/c6. The event type c1 refers to clean up attitude with terms such as ”support”, ”up-

dat”, ”remov”, and ”move”. c6 supports the relevance of understandability for defect prediction,

because it contains the term ”javadoc” and ”renam”.

Based on the results of all three projects we draw the following conclusion:

Perfective actions with related terms such as ”refactoring”, ”comment”, ”javadoc”, and ”re-

nam” are important input to defect prediction.

8.4 RÉSUMÉ

This chapter focuses on the software evolution process as an input to project assessment. We

identify the type of changes based on the commit messages of developers and create defect

prediction models on top of this information. Our approach based on software evolution guides

project managers on the right time for the release dates of a software product, which is best when

the expected number of bugs is low in the near future. The following research questions are

particularly addressed in this chapter:

• Q1: How to set up metrics from sources such as modification reports and process/project

management tools? We developed an approach for the reconstruction of evolution events

that describe the intensions of software engineers while implementing modifications on a

software system. This data extraction is done with the help of a data mining technique

called clustering, in which groups of examples are sought that seem to belong to each

other based on their attributes. First the commit messages of developers are taken apart

into the contained terms, where similar words such as ”comments” and ”commenting” are

put together in one term. The terms and their frequencies are used to put each commit

message into a particular cluster. The number of clusters then describes the different event

type in the reconstructed evolution process. For the defect prediction we arrange the events

into value series, where the number of the events are recorded for each day. To be exact

we use ratios between two event types at a time to establish the value series. For example

one such series describes the course in the development between perfective and preventive

evolution activities.
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• Q3: How can data mining be efficiently utilized in software projects to improve software

evolution? The results of our fine-grained analysis of event ratios indicate that activities for

perfective maintenance are important for defect densities. The highest correlation values

could be reached with event types containing terms such as ”refactoring” and ”comment”.

This is an important message for managers to invest more in ”soft aspects” such as well-

designed software and not only one that implements all requested features. Additionally,

comments indicate that understandability is crucial for defects and the resulting mainte-

nance cost. It is interesting that both commercial as well as open source projects of our

case study exhibited the most accurate prediction models when focusing on these ”soft is-

sues”. From the developers perspective especially commenting source code seems to be a

very tedious task, but it definitely pays of when looking at the resulting defects. We already

discovered in Chapter 7 that discipline on the process is an important attitude in the work

of software engineers. This again is emphasized by the results of the current findings, as

regular refactoring and commenting are very much dependent on discipline.

• Q4: How can models on evolution processes be effectively adapted for the assessment

of software projects? We conducted one of the first studies using data about software

evolution events as an input for defect prediction. Software processes are usually defined

up front to guide development projects. We do an retrospective reconstruction of process

events from change descriptions provided with commits of modifications. Then we tear the

evolution process apart and regard ratios between pairs of event types and analyze them

as a value series over time. Only the information about the type of change is sufficient to

predict defects of the resulting products. In the experiments of the current chapter we do

not integrate any other attributes such as size or complexity measures. The pure evolution

process is investigated to assess the resulting product.

• Q5: How to set up effective models that result in prediction with high accuracy? To create

accurate prediction models we utilize data mining techniques related to sequential data,

which makes predictions possible with high correlation coefficients of more than 0.8 and

low error measures. The extracted information about the evolution process is organized

into value series to represent the trends in the project over time. This enables the creation

of prediction models with high accuracy. Although in this chapter we do not reach the

impressive numbers of Chapter 7, it is still surprising that the type of events and the time

of their appearance are sufficient to obtain good predictions.
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sPACE - Discussion

In this thesis we approached the topic of software project assessment from different angles.

Table 9.1 provides an overview on the research questions raised in Chapter 1.2 and the chapters

of this thesis that address them.

This thesis contributes to the body of knowledge in software evolution in several ways. First,

it defines a large set of evolution metrics. Thus, the question Q1: How to set up metrics from

sources such as modification reports and process/project management tools? is answered espe-

cially in Chapter 3, where we describe the data gathering and processing steps. The co-change

coupling as an important element of evolution measures is exploited in Chapter 4. As a next

step, Chapter 7 adds a new dimension in evolution metrics. As software evolution is a contin-

uous process over time, we also incorporate the timing and trend aspect in our measures. This

is refined in Chapter 8, where we extract event types of software evolution and investigate the

ratios between different types over time.

In Chapter 4 we could show that co-change coupling is able to describe software attributes such

as evolvability to answer Q2: How do software evolution metrics relate to external software

product attributes? Co-change smell was introduced to describe undesired evolution patterns

that should be handled by software engineers to improve productivity. However, refactorings

themselves can be predicted based on information about software evolution, which is described

in Chapter 5. In a contradictory view refactoring could be described as additional re-work that

the customer has to pay for. Our prediction models of refactoring allow an understanding of the

influences for the necessity of such changes. Moreover, Chapter 6 presents an analysis of several

sub-categories of software defects and describes the differences in the prediction models. This

provides an in-depth view on the relationship of evolution attributes and defect occurrences. This

analysis is rounded off by Chapter 7 that presents a study on different evolution series, where the

number of authors and the number of commit messages are important inputs to defect prediction.

Evolvability is explicitly worked out in Chapter 4 to answer question Q3: How can data mining

be efficiently utilized in software projects to improve software evolution? The identified loca-

tions of change smells are treated with refactoring to obtain a smoother evolution. The research

question is answered in Chapter 5 and Chapter 6, which enable a better understanding of the

influences of evolution measures on software attributes such as the necessity for refactoring and

102



Chapter 9: sPACE - Discussion 103

Q1 Q2 Q3 Q4 Q5

Metrics External Improved Process Prediction

Attributes Evolvability Assessment Accuracy

Chapter 3

Evolution Metrics X X

Chapter 4

Change Smells X X X

Chapter 5

Design Deficiencies X X

Chapter 6

Defect Prediction X X X

Chapter 7

Series Mining X X X

Chapter 8

Process Events X X X X

Table 9.1: Relationship between research questions and corresponding chapters

the probability of defects. Evolvability can be improved when keeping the influences in mind

while developing software systems. A higher level is described in Chapter 8, where we relate

software process events with the resulting number of defects.

Q4: How can models on evolution processes be effectively adapted for the assessment of software

projects? This question is particularly answered in Chapter 8. There we reconstruct events of the

evolution process and use this information as an input to the prediction of defects. Value series

of pair-wise ratios describe the balance within the evolution process that leads to certain product

attributes such as an increased number of defects. It is interesting that in all projects of the case

study soft issues related to the terms ”refactor” and ”comment” have the highest impact on defect

prediction.

Within the entire thesis the question Q5: How to set up effective models that result in prediction

with high accuracy? is of major interest. We have laid the foundation with the establishing of

a large number of evolution measures in Chapter 3, which are extensively used in Chapter 6 to

create our first defect prediction models. Our basic approach is refined in Chapter 7 where the

explicit focus is directed on the timing aspect in software projects. This enables the creation

of the best prediction models in this thesis. Finally, Chapter 8 uses only the information about

the types of changes without data describing the details to predict defects. It is astonishing that

with this input accurate prediction models can be constructed. This should raise the attention of

software engineers on software processes to develop products of desired characteristics.

We evaluated the techniques of sPACE in several case studies. Table 9.2 shows the time periods

that where used for the different experiments throughout this thesis. Our first approach to project

assessment based on co-change coupling that was presented in Chapter 4 demanded the longest

time period. In this chapter, we analyzed change smells as an indicator for the need of refactor-

ing. To spot such locations in a system, we had to investigate long time periods (15 months).
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Analyzed Project Input Period Target Period

Chapter 4

Change Smells PACS Jan. 2002 - Mar. 2003 Apr. 2003 - Jun. 2004

(15 months) (15 months)

Chapter 5

Design Deficiencies ArgoUML Jul/Oct. - Dec. 2004 Jan. - Feb. 2005

(3/6 months) (2 months)

Spring framework May/Aug. - Oct. 2004 Nov. - Dec. 2005

(3/6 months) (2 months)

Chapter 6

Defect Prediction PACS (pre-release) Nov. - Dec. 2005 Jan. - Feb. 2006

(2 months) (2 months)

PACS (post-release) Mar. - Apr. 2006 May - Jun. 2006

(2 months) (2 months)

Chapter 7

Series Mining All 3 projects Nov. - Dec. 2005 Jan. - Feb. 2006

(2 months) (2 months)

Chapter 8

Process Events All 3 projects Sep. - Dec. 2005 Jan. - Feb. 2006

(3 months) (2 months)

Table 9.2: Time periods used in the experiments
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To evaluate the improvements of evolvability through the application of refactoring we had to

observe another 15 months of the development history.

In Chapter 5 we predicted locations that are prone to refactoring and are therefore likely to

contain design deficiencies. The prediction models were built with the help of data mining

techniques, which enable us to do project assessment with short time frames. Only three months

of development time were required to predict refactorings in the following two months. An

extension of the input period from three to six months did not help to get better results, but

provided even less accurate perdition models.

Chapter 6 drew the attention to defects the first time in this thesis. As defects seem to be easier

predictable than refactorings, we needed just two months of development time to predict defects

of the following two months. The same time periods were used in Chapter 7, where we optimized

the predictions with the help of value series of evolution metrics.

Finally, we reconstructed events of the software evolution process in Chapter 8 and used this

data for defect prediction. As we focused only on the event types and did not use any other

information, we had to extend the input period from two to three months. However, in general

we are able to predict future activities in software project based on short time periods.

9.1 ROLES IN SOFTWARE PROJECTS

We have argued that several roles in software projects can benefit from this thesis in different

ways

9.1.1 PROJECT MANAGER

In their daily work project managers have to make manifold decisions and demand a sound basis

to make the right decisions. This thesis can help them to estimate product quality on a high level

where the number of expected defects can be predicted for the entire product. This can help to

define appropriate dates for releases and other milestones in the course of the project.

Further the relationship between elements of evolution processes such as different event types

and the resulting product attributes can be derived from the results of this thesis. This can help

project managers to understand the necessity for certain activities such as refactoring and pro-

vides them material to convince others.

9.1.2 SOFTWARE ENGINEER

Software engineers need a fine-grained picture of software evolution for their work. This thesis

describes through multiple prediction models the complex relationship between detailed evolu-

tion aspects and resulting product attributes. For example Chapter 7 shows that teamwork and

discipline are important to develop successful software products. Chapter 6 provides more details

on the related evolution measures and their importance for evolvability.
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Visual representations often help to establish a better understanding. Therefore, our EvoLens tool

that is described in Chapter 4 enables the explorative navigation through software architecture

and evolution to provide software engineers a clear picture of the system and the relationships of

its elements.

9.1.3 TESTING ENGINEER

Testing specialists usually do not need such a deep understanding of the software internals as

software engineers. On the other hand the high level view of the project manager is probably

also not sufficient for the work of the testing specialist. For this role the thesis provides detailed

prediction models on file basis to indicate locations with increased probability for defects. For

these parts of the system more effort could be invested as the chance to discover defects is higher.

This allows one a more efficient investment of people and time.

9.2 THREATS TO VALIDITY

In this section we present the threats to validity of our research. According to Gay and Airasian [47]

the threats to validity are divided into a group of internal threats and a group of external ones

(see also [117]).

The following list describes different types of internal threats to validity:

• History. Unexpected events occur between the pre- and posttest, affecting the dependent

variable.

• Maturation. Changes occur in the participants, from growing older, wiser, more experi-

enced, etc. during the study.

• Testing Effects. Taking a pretest alters the result of the posttest.

• Instrumentation. The measuring instrument is changed between pre- and posttesting, or

a single measuring instrument is unreliable.

• Statistical Regression. Extremely high or extremely low scorers tend to regress to the

mean on retesting.

• Selection of Participants. Participants in the experimental and control groups have dif-

ferent characteristics that affect the dependent variable differently.

• Mortality. Different participants drop out of the study in different numbers, altering the

composition of the treatment groups.

• Selection-Maturation Interaction. The participants selected into treatment groups have

different maturation rates. Selection interactions also occur with history and instrumenta-

tion.
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The following list describes different types of external threats to validity:

• Pretest-Treatment Interaction. The pretest sensitizes participants to aspects of the treat-

ment and thus influences posttest scores.

• Selection-Treatment Interaction. The nonrandom or volunteer selection of participants

limits the generalizability of the study.

• Multiple Treatment Interference. When participants receive more than one treatment,

the effect of prior treatment can affect or interact with later treatments, limiting generaliz-

ability.

• Specificity of Variables. Poorly operationalized variables make it difficult to identify the

setting and procedures to which the variables can be generalized.

• Treatment Diffusion. Treatment groups communicate and adopt pieces of each other’s

treatment, altering the initial status of the treatments comparison.

• Experimenter Effects. Conscious or unconsious actions of the researcher affects partici-

pants’ performance and responses.

• Reactive Effects. The fact of being in a study affects participants from their normal be-

havior. The Hawthorne and John Henry effects are reactive responses to being in a study.

9.2.1 INTERNAL THREATS TO VALIDITY

Our data rely strongly on automated processing. On one hand this ensures consistency, but on

the other hand it is a source blurring effects. As such we missed defects that were not managed

through the issue tracking system. We could try to handle this absence of information through

heuristics on commit messages or other metrics, but we would still miss data such as the severity

level of the defects. Furthermore, the mapping of issues to source code can only be done based on

heuristics. Thus, we extracted issue numbers from commit messages to map the two information

systems. To improve the situation we could try to map from bug reports to code changes based

on commit dates and issue dates as described in [106]. In our field study this approach does not

provide any valuable mappings, which we discovered on a random sample of 100 discovered

matches.

We identify refactorings based on the commit messages of revisions entered by developers, when

committing changes to files. To assess the quality of our identification technique, we tested our

labeling of refactoring with randomly selected revisions. As described in Section 5.2 the number

of false positives as well as the number of false negatives is very low.

Additionally, we do not distinguish between the type of refactorings such as class refactorings or

method refactorings. Instead we only try to predict the number of future refactorings based on the

past, independently from their nature. As a result, simple refactorings such as rename are counted

as one of many refactorings, which gives them the same relevance as more complex refactorings
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such as extract super-class or introduce new parameter. We found that we can predict refactoring

for the Spring framework quite well, but could get even better results for ArgoUML. This is

mainly due to their different project histories. ArgoUML is an older project and started in 1998,

whereas the Spring framework followed later and started in 2003. Spring exhibits a dynamic

evolution based on its young development history. For that, the results of ArgoUML are slightly

better, but we still get predictions for the Spring framework with a precision between 0.53 and

0.89.

In large search spaces such as the set of possible features for our prediction approach it is not

easy to find the global optimum. Genetic programming is one of the possible solutions, which

has the drawback that it sometimes does not find the global optimum. But in many real world

tasks genetic algorithms provide sufficient solutions. In such a manner the genetic algorithm

provides good results on the project in our study, where high correlation and low error values

could be achieved. Thus it seems suitable for the given task.

For our empirical study we selected software applications of different types such as graphical

workstations, UML modeling tools, and application servers. Nevertheless, we still cannot claim

absolute generalization of our approach on all different kinds of software systems. Therefore,

we advise to evaluate the applicability of our approach on each specific software project. To

provide some insight in the applicability to different domains we have selected different projects

for our field study: commercial vs. open source and different domains such as health care, UML

and application server. However, we cannot claim that these projects are representative for all

different types of software projects. As a result the application of our approach to other software

systems has to be re-evaluated on a per project basis.

9.2.2 EXTERNAL THREATS TO VALIDITY

In general our approach relies on the consistency and quality of the underlying data. As a result,

validity of our findings is related to the data of the versioning and issue tracking system. Ver-

sioning systems register single events such as commits of developers, which has certain effects

on our analysis. It depends on the work habits of developers, if they commit small parts of their

work or if they accumulate changes until a certain level. Thus, for example the measurement of

large transactions vs. small ones could be a threat. However, we could show that an averaging

effect supports statistical analysis [101] in general. Additionally, the data about work habits of

people is on its own interesting information that we use for our quality prediction, where our

balanced prediction models heavily rely on such features.

Especially, the reconstruction of evolution events (see Chapter 8) is dependent on the habits

and the discipline of the developers. Developers feel the need to phrase the commit messages

differently depending on whether they have the feeling that the fulfilled work had to be a quick

hack or whether the piece of code was well-developed according to the given processes. When

this information is reflected in the commit messages it even improves the reconstruction of event

types.

Defect data has to be reliable to create plausible defect models. In our study the defect related

information is extracted from issue tracking systems and mapped to files based on commit mes-
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sages from the versioning systems. Thus, there can be certain inconsistencies so that we miss

some defects. This approach is reliable enough to be suitable in this domain and it is commonly

used by many researchers (e.g. [87], [103], [69]).

Further, we can only identify locations of defects and derive prediction models for components

from this information. Bug fixes can take place at locations different to the source of defects.

Similar approaches are used by other researchers [86, 92, 106]. Although the search for defects

could be hindered through the fact that we predict defect corrections, but on the other hand we

could provide insight into review efforts as defects fixing locations could be places of necessary

code stabilizations.

The data points of our value series are computed as sums for each day. As a result, if a developer

works through the night and commits some modifications before midnight and the remaining

parts of modifications after midnight, we count the work on two days. Although this influences

our value series, such information could still be valuable for defect prediction, because the work-

ing over night might have consequences on the level of concentration and the resulting software

quality.
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Conclusions

In this thesis we presented the assessment of software projects from different perspectives taking

especially evolution data into account. Evolutionary events are maintenance activities such as

bug fixes, adding or enhancing a feature, refactorings, etc. Knowing them and evaluating their

effect on the software project allow us assessing the impact on the project and the involved soft-

ware modules. In project assessment we focus on the identification of elements of the system

that are likely to be critical for the evolution. This outcome enables guidance for project steering

based on the extracted evolution characteristics. To support the steering, we consider the evolu-

tionary events based on a cost function, which describes the necessary rework that slows down

the satisfaction of functional customer needs, as bug fixes use up a large amount of development

effort.

As software evolves, it changes its size, complexity, and characteristics through modifications.

The major costs do not arise because of software bugs, but because new and changing require-

ments lead to adaptations and enhancements [95]. As a result, it is important to keep software

maintainable to ensure adequate responses to the users’ needs. This thesis supports smooth and

long lasting evolution of software through the presentation of assessment approaches for differ-

ent aspects. In several studies we could show that evolution data is valuable for the anticipation

of future trends.

10.1 LESSONS LEARNED

Based on our experience with sPACE we can provide the following lessons learned:

• Many entangled aspects of software projects exist that contribute to the overall quality and

should be subject of assessment methodologies. We defined a large number of over 60

evolution metrics for the assessment of software. These are related to different aspects

such as size and complexity, team issues, process orientation, testing, etc. Our prediction

models show that metrics of several topics should be included to build meaningful models.

110
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• Metrics related to process orientation and team issues are important for defect prediction.

They can outperform a simple prediction model where entities with low quality in the past

will retain a high defect rate. To create better predictions we have to consider multiple

aspects of software process in addition to pure technology-related issues such as size and

complexity. The interconnection between people and their discipline are important for

software quality.

• Although the exact data items that create optimal results in prediction models vary from

project to project, we can still identify key aspect in development projects. When regard-

ing prediction models based on series mining we can identify common aspects between

projects such as the number of authors and commit messages.

• Prediction of different process events is possible. We can predicte bugs as well as mainte-

nance activities such as refactorings to assess software projects from several perspectives.

These event types can be predicted with a high accuracy and low error levels.

• Software events can be predicted on a short term basis. Two or three months of software

evolution are sufficient to predict evolution events within the succeeding two months. We

compared prediction models using information from either three or six months of develop-

ment time to predict future events. The results of both time periods were similar in terms of

accuracy. Thus, with the help of short time periods, project managers can better estimate

the optimal time schedule based on the predictions.

• The focus on progress of evolution attributes over time helps to improve significantly pre-

diction accuracy. Based on our primary approach to defect prediction we extended the

idea by focusing on the course of time in software projects. Timing information has al-

ready been identified as an important aspect in defect prediction (e.g. [55, 103]). High

correlation coefficients of more than 0.8 or even 0.9 can be reached with the help of series

mining, where the temporal relationship of software events is taken into account.

10.2 FUTURE RESEARCH

This thesis can be the foundation for several future extensions:

• Software structure. As we currently use evolution measures for quality estimations, we

intend to enrich our models with information about software structures. Object-oriented

inheritance hierarchies as well as data and control flow information provide much insight

into software systems, which we will include in our quality considerations. The research

work of Fluri et al. [36, 37] provide interesting starting-points for the incorporation of

fine-grained information into predictions based on software evolution.

• Understandability of prediction models. We want to enrich our series mining approach to

be able to analyze software projects in more detail and to get a better understanding of the
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forces that influence software quality. To accomplish this goal we also look for improve-

ments of series mining and the understandability of the resulting prediction models. For

example, classification and regression trees provide the benefit that they provide a clear

picture of the prediction model and the relationships of the used features. Kadous [64]

presents interesting ideas in that direction.

• Automation. Our analysis relies on automated data processing such as information re-

trieval, mapping of defect and version information, and feature computation. The model

creation relies on scripts using the Weka data mining tool [119] as well as the YALE ma-

chine learning environment [82]. Integrated tools providing different types of information

such as the most important features can help different stakeholders. On one hand, de-

velopers can benefit from this information best, when it is available in the development

environment. On the other hand, project managers need a lightweight tool separated from

development environments to base their decisions on. We will focus on the implementation

of appropriate tools for different scenarios.

• Knowledge for event reconstruction. Although the clustering algorithms seem to recover

reasonable event types (see Chapter 8), we would like to apply more knowledge from

the software engineering domain [3] to improve the identification of different software

modification types.

• Level of granularity. In this thesis we focused on single files as items for defect prediction.

In future we will investigate more fine-grained items such as methods and also the defect

densities of more coarse-grained items such as modules or plug-ins.

• Quality related factors. As already indicated by our defect prediction models, refactoring

is related to defect densities. Refactoring should be used to improve the design of existing

code. As such it is not surprising that it is related with software quality assessment. How-

ever, currently we miss more studies regarding the relationship of refactoring and defects.

We will focus in our future research activities on this topic.
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[26] Serge Demeyer and Stèphane Ducasse. Metrics: Do they really help? In Proceedings
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