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Kurzfassung

Die Entwicklung von Domain-spezifischen Mikroprozessoren ist ein herausforderndes und
ressourcenintensives Unterfangen. Einer der wichtigsten Schritte dabei ist es, ein effizientes
Prozessordesign zu finden. Idealerweise können Hardwarearchitekt:innen während dieses
Prozesses schnell Ideen probieren und evaluieren. Die Vienna Architecture Description
Langauge (VADL) unterstützt Ingenieure und Ingenieurinnen während dieses Prozesses.
Das Ziel der Sprache ist es, eine kontinuierliche Verfeinerung der Prozessorarchitektur zu
erlauben. Während dieses Prozesses, können Generatoren die Information in einer VADL
Spezifikation nutzen, um Simulatoren, Compiler und Hardwareschemata zu generieren.

Vor dieser Arbeit konnte der Compilergenerator keinen Assembler und Linker erzeugen.
Daher war es Nutzer:innen nicht möglich, C oder Assembly Programme in ausführbare
Dateien zu übersetzen. Obwohl dieser Umstand durch handgeschriebene Werkzeuge
überbrückt werden kann, verlangsamt sich die Designexploration erheblich. Das Ziel
dieser Arbeit war es den Compilergenerator so zu erweitern, dass dieser einen Assembler
und Linker (Low-Level Entwicklerwerkzeuge) erzeugen kann.

In dieser Arbeit entwickelten wir einen Prototyp, der erfolgreich Low-Level Entwickler-
werkzeuge für RISC-ähnliche Architekturen erzeugen kann. Beide Komponenten unter-
stützen komplexe Funktionen sowie die das Schreiben und Anwenden von Relocations.
Um diese Anforderungen zu unterstützen, erweiterten wir VADL um ein Assembly-
Beschreibungselement. Weiters generiert unser Prototyp automatisch Parserregeln aus
der Formatierungsfunktion einer Instruktion. Darüber hinaus implementierten wir auch
zwei Generierungsstrategien für Relocations welche es Benutzer:innen erlauben, Symbole
in manchen Instruktionen zu verwenden, ohne Relocations manuell anlegen zu müssen.
Unser Beitrag ermöglicht eine effizientere Designexploration, indem es Nutzer:innen für
den Prozessor zugeschnittene Entwicklungswerkzeuge zur Verfügung stellt.
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Abstract

Developing microprocessors tailored to a domain-specific problem is a challenging and
resource-intensive task. A crucial step is coming up with an efficient processor design.
Rapid design exploration allows hardware architects to quickly test and evaluate new
ideas, ranging from specialized instructions to unique pipeline structures. The Vienna
Architecture Description Language (VADL) supports engineers during this process. Its
goal is to allow continuous refinement of a processor’s architecture. During this process,
generators can leverage the information in the VADL specification to emit simulators,
compilers, and hardware schematics.

However, prior to this work, the compiler toolchain generator could not emit an assembler
and linker. As a result, users could not generate executables from C or assembly programs.
While this gap can be bridged by manually writing the necessary software, this significantly
slows down the design exploration process. This additional overhead is most apparent
when introducing new instructions or altering the architecture’s encoding. This work
aimed to alleviate this issue by extending the compiler tool generator with an assembler
and a linker – low-level developer tools.

In this work, we developed a prototype that successfully generates a sophisticated
assembler and linker for RISC-like architectures. Both components support complex
features such as emitting and applying relocations. To facilitate this, we extended VADL
with an assembly description element. Furthermore, our program automatically generates
parser rules from pretty printers to reduce the specification burden of users. Lastly, we
implemented two relocation generation strategies that allow passing symbols to some
instructions without manually defined relocations. This contribution allows a more
streamlined design exploration process by providing low-level developer tools tailored to
the architecture.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Low-level developer tools, such as assemblers and linkers, build the foundation of a
modern compiler toolchain. Therefore, these executables must be correct and provide
sufficient capabilities. Otherwise, the correctness and completeness of all depending tools
(e.g., high-level language compilers) are impeded. The Vienna Architecture Description
Language (VADL) is a Processor Description Language (PDL) that allows the generation
of developer tools, hardware, and simulators from a single specification. This versatility
allows for the re-use of concepts in different parts of the system. For example, the
description of the assembler syntax may also be helpful in the simulator to print the
executed commands. Most PDLs only focus on one or two of the artifacts that can be
generated from VADL.

An Application Specific Instruction Set Processor (ASIP) is a processor tailored to a
specific problem domain by including instructions that may not make sense in general-
purpose processors. As a result, engineers can design more efficient algorithms in this
domain by leveraging these instructions. Contrary to an Application Specific Circuit
(ASIC), the nature of an ASIP still allows programmability, thus improving the end
product’s flexibility. The downside of both techniques is the high initial engineering cost.
The goal of VADL is to decrease this expenditure by providing hardware designers with
a high-level specification language that is powerful and intuitive. VADL specifications
capture the information necessary for generating a versatile tool suite. Engineers can test
the performance of new processor designs on the Instruction Set Simulator (ISS) and
the Cycle-Accurate Simulator (CAS) before actual hardware needs to be manufactured.
Furthermore, a compiler toolchain can be generated for every specification, reducing
the initial costs of developing software for the newly designed ASIP. Finally, hardware
designers can use the emitted schematics to speed up the development process of the
final product.
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1. Introduction

Prior to this work, the generated compiler toolchain lacked support for many essential
developer tools. These tools include an assembler and a linker. Fortunately, engineers
could still get assembly code from the previous code generator version. However, they
relied on a manually adjusted and compiled tool suite to generate executable files from
the emitted assembly code. The lack of these tools mitigated much of the engineering
cost reduction that the generated compiler toolchain promised.

1.2 Aim of this Work

This thesis aims at implementing a powerful generator for low-level developer tools based
on VADL. Furthermore, we aim to make specifying the assembler syntax and semantics,
the central part of this work, as simple as possible. The aspiration is that an engineer
that sees the specification for the first time can understand it. Additionally, the language
shall be flexible enough to express a variety of assembly languages. All of that shall
be achieved without putting too much specification burden on the engineers. Lastly,
we want to gain confidence in the correctness of our tools and thus make them usable
in the industry. Given this thesis’s results, generators that build upon VADL shall
generate correct low-level developer tools for several processors that perform similarly to
handcrafted alternatives. We expect our implementation to be flexible enough to support
common assembly languages.

1.3 Methodological Approach

This section describes the methodological approach. We carry out this work in five
different phases. While some phases may overlap, each has a distinguished goal that we
strive to achieve.

1.3.1 Onboarding

VADL is a large project with thousands of commits. We need to familiarize ourselves
with the characteristics of the system. We do this by implementing small tasks that
scratch all components this thesis needs to improve upon. The first task is introducing a
new expression type and then migrating the old assembly printing implementation to
general-purpose functions. After that, we implement a basic parser. While doing these
tasks, we will gain a good understanding of the parts that need adjustment. Furthermore,
we can identify the most challenging problems that require the most attention in this
work. Using this knowledge as a foundation, we can create a methodology and formulate
research questions. All of this has already been completed by us. The research questions
are presented in Section 1.4.
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1.3. Methodological Approach

1.3.2 Developing a Prototype

We develop a high-fidelity prototype for generating low-level developer tools. We inter-
twine this process with answering the research questions. Once we want to develop a
feature that relates to a research question, we will take a break and answer said question
to the necessary extent. After acquiring the necessary knowledge, we will develop a proof
of concept for the feature and review its applicability in practice. This approach allows
us to gain the necessary background information before developing a feature while still
meeting the research project’s milestones. Furthermore, we can react better to changes
in requirements, similarly to agile development [BBVB+01]. After this phase, a working
generator for the RV32I processor is available.

1.3.3 Study on assembly languages

After we have a working prototype with an LL(1)-parser, we want to examine other
languages to determine if such a system is sufficient for our purpose. We choose the
following assembly languages as targets of this study: AArch64, MIPS, RISC-V, Hexagon
(very long instruction words (VLIW)), and Intel x86 (CISC). The study results will
guide our decision if the prototype meets our expectations, needs extensions, or if an
out-of-the-box approach (e.g., ANTLR[PQ95]) is favorable.

1.3.4 Evaluation

We start the evaluation by implementing support for a VLIW architecture. This task shall
give us an idea of how flexible our solution is when a new concept is introduced to VADL.
Furthermore, we analyze how much specification work is required to create a functioning
assembler and linker. We will evaluate the automated grammar rule generation using a set
of formatting functions for the processors used in step 3. Lastly, we will benchmark the
executables and compare the performance of our RISC-V assembler with the open-source
RISC-V assembler that ships with LLVM. If we chose to use a different parser generator
in step 3, we might compare our initially generated parser with the more sophisticated
approach.

1.3.5 Correctness

We will implement a comprehensive testing system for the implemented generator and
the resulting binaries. These tests shall execute automatically. How these tests will
be facilitated depends on the findings of the research questions. Note that the initial
prototype implementation and the tests created during the evaluation cover a large part
of this phase.
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1. Introduction

1.4 Research Questions
This section lists the research questions we derived during this thesis’s onboarding phase.
Most contributions of this work are associated with at least one of these questions.

RQ 1: What language constructs can be used to concisely specify assembler-related
properties while adhering to the design philosophy of VADL?

Because VADL has numerous specification elements, each part shall adhere to a common
design philosophy so that the language is consistent across different components. A
syntax for describing an assembler has to be designed within that philosophy. It shall
be intuitive and expressive. Common problems in constructing an assembler shall be
easily expressible without losing generality. Such problems include, but are not limited to,
instruction syntax, modifiers, number representations, and multiple assembly syntaxes.
All of this shall be expressible with a concise specification. If an assembler syntax has
special needs, the specification required shall deteriorate gracefully. We evaluate the
expressibility of the proposed syntax by specifying the assembler for a set of processors.

RQ 2: Given a forward function that formats an instruction to a string, to what extent
can we automatically infer grammar rules describing the inverse transformation to a
parser generator?

A user should only need to specify a property once. The user has already specified
the instruction syntax by writing a function that formats an instruction to a string. It
shall not be necessary to define this format again for the assembler parser. Instead, the
system shall be able to infer parsing rules from the formatting functions. The posed
problem is a modified version of the automatic program inversion problem. Instead of
directly emitting an inverse to a function, our algorithm shall be able to build a grammar
rule that describes said inverse to a parser generator. We will evaluate our grammar
rule inference by examining how many rules can be automatically inferred for a set of
predefined processors.

RQ 3: Assuming a parser is only used for assembly languages, how powerful does the
parsing algorithm need to be? Especially to what extent is LL(1) sufficient to parse
assembly languages?

To the best of our knowledge, no work analyzes the grammar of modern assembly
languages. Therefore, we will conduct a small study that evaluates how powerful our
generated parser has to be. For now, a left-to-right parser with a look ahead of one token
(LL(1)-Parser) will be sufficient for our purpose. Whether or not this is true will be
evaluated on the processors described in Section 1.3.

RQ 4: Allowing complex assembly concepts like very large instruction words, how much
concept-specific code needs to be written in the generator?

4



1.5. Structure of this Work

Designers of processor architectures should not be limited by their software tools. Some
assembly constructs are specific to certain processor features. Constructs like these are
usually not encountered while handling “standard” assembly code. While we try to design
our specification language flexibly, some concepts may need dedicated support. One such
feature is VLIW. By examining this feature’s impact on the generators’ code, we want to
estimate how many changes are required to support a new construct.

RQ 5: How can we establish confidence in the correctness and completeness of the
generated tools?

Correctness is paramount for a compiler toolchain. A bug in the assembler or linker
could cause a malfunction in a production system. We want to find a way that gives us
high confidence in the correctness of our solution. By analyzing how many and what
kind of bugs our approach detects, we can get a sense of how effective the solution is.

1.5 Structure of this Work
Chapter 2 introduces the reader to the background necessary to understand the remaining
thesis. Furthermore, it gives an overview of VADL and introduces the posed problems.
Using this knowledge, Chapter 3 gives an overview of other PDLs and their approach
to describing assembly language. After that, Chapter 4 discusses how the prototype is
implemented in the LLVM Compiler Backend (LCB) generator. Then Chapter 5 discusses
our findings and the performance of our implementation. Finally, Chapter 6 gives ideas
for further improvements, while Chapter 7 summarizes this thesis.

5





CHAPTER 2
Preliminaries

This section will introduce the necessary background for understanding the remaining
thesis. We assume exposure to programming languages and a high-level understanding
of how a computer works. Moreover, a basic understanding of formal language theory
may be beneficial, but not necessary.

2.1 Vienna Architecture Description Language
The Vienna Architecture Description Language is a mixed PDL (explained in Chapter 3).
Based on a VADL specification, generators can emit a compiler toolchain, different types
of simulators, and hardware schematics. The goal is to leverage overlaps between the
different artifacts and eliminate redundant specification work – fewer specification results
in less space for errors. This section starts by giving a coarse overview of VADL and the
types of specification elements it contains. Furthermore, we will explain different data
structures and summarise how our generators use them. Finally, specification elements
essential for this work will be discussed in detail.

Keep in mind that we present the current snapshot of VADL. Even though we will cover
numerous language elements, this is not an exhaustive list. Also, remember that VADL
is still under active development. Therefore, the syntax and semantics of the presented
code snippets may change over time. We even had to rewrite this section because some
parts of the specification changed during this writing process.

The definition of a processor consists of multiple layers that build upon each other. The
Instruction Set Architecture (ISA) builds the foundation of a processor description. Its
purpose is to define the set of available instructions, the main memory, and the set of
available registers. Once specified, the Application Binary Interface (ABI) defines calling
conventions, gives alignment information and defines register aliases. Furthermore, users
can specify the structure of system calls. A microprocessor implements an ISA with a
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2. Preliminaries

particular ABI. This element defines the startup behavior that allows the generation of
simulators. Furthermore, a micro-architecture element can be defined to support the
generation of hardware schematics. Finally, an additional assembly description element
can be associated with an ABI to customize the assembler and linker of the generated
compiler toolchain.

Our generators process a VADL specification in multiple stages. They transform the
source code into a Concrete Syntax Tree (CST) with the help of Xtext1, a framework
for developing domain-specific languages. Next, the system transforms the CST into
an Abstract Syntax Tree (AST). In this phase, referenced VADL modules are loaded
and merged into a single specification. Furthermore, symbol resolution takes place,
and a powerful type inference system annotates all nodes with their corresponding
type. Therefore, it is a significant milestone to have a valid AST representation when
introducing a new language construct. After the first round of validations, the AST is
transformed into the VADL Intermediate Representation (VIR) - the central intermediate
representation of the VADL generators. We refrain from explaining the data structures
in detail because this will be part of another work. However, Section A.1 introduces all
instructions explicitly mentioned in this thesis.

During the transformation from the AST to the VIR, all elements are associated with
a microprocessor. Furthermore, we introduced further data structures to store artifact-
specific information. The Generic Compiler Backend (GCB) is a compiler-specific
representation essential for this work. For example, we store further information about
immediates, instruction operands, and registers. However, there is a push to move more
and more of the GCB back into the VIR because some of the analysis still proved beneficial
for other components. Orthogonal to the compiler backend, the Register Transfer Level
(RTL) enables the generation of hardware schematics. The simulators do not have a
specialized intermediate representation (IR). They derive an in-memory representation
of C++ routines directly from the VIR to model the simulators’ behavior. Note that
other backends also use this infrastructure to generate C++ code.

Because most analyses happen on the VIR, we need a powerful representation to model
behavior. On the one hand, we have functions that model pure computations consisting
of a single expression. On the other hand, processes model sequential computations with
access to the state of the processor. One of the essential usages of functions is to model
immediates, while one crucial task of processes is to define instruction semantics. Note
that both of these constructs are loop-free and support no recursion. Therefore, VADL is
not Turing-complete. This design decision is intended to make some analysis possible or
more straightforward. The code within a function and process is represented using single
static assignment (SSA) form [RWZ88].

1https://www.eclipse.org/Xtext/
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2.1. Vienna Architecture Description Language

2.1.1 Instruction Set Architecture
An ISA is an abstraction of a machine that can execute a sequence of instructions.
Such a machine is called an implementation for the defined architecture. In reality,
the complexity and nature of different implementations vary greatly. For example,
simple instruction set simulators and highly optimized silicon may operate over the
same instruction sequence. The standardized ISA makes this possible. This section will
present the essential definitions that make up an ISA in VADL. Note that we will not list
constructs we consider irrelevant for this thesis. Listing 2.1 shows the primary definition
of an ISA. All other elements discussed in this section are children of this element.

1 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {
2 // . . .
3 }

Listing 2.1: An Instruction Set Architecture

Defining Resources

An essential part of a computer is the main memory. The address width is one of
the most crictical aspects of this component. Listing 2.2 defines a 4 GiB memory. In
processes, MEM can be used as a function that takes a 32-bit address as input and returns
the corresponding byte from the memory location. Access to this memory element is
type-checked to catch erroneous specifications during design time. The using-declaration
seen in this example is a type alias.

1 us ing Address = Bi t s <32>
2 memory MEM : Address −> Byte

Listing 2.2: Definition of Memory

Similarly to a memory definition, a register file is modeled as a function that takes an
index as input and returns the value of a register. The input parameter type determines
the number of addressable registers within the file. Listing 2.3 defines a register file X
with 16 addressable 32-bit registers. Furthermore, this listing also declares the 32-bit
register R. Annotations can restrict the value range of a register to model zero registers
as seen in, for example, the RISC-V ISA [WLP+14].

1 us ing I n t e g e r R e g i s t e r = Bi t s < 32 >
2 r e g i s t e r R : I n t e g e r R e g i s t e r
3 r e g i s t e r f i l e X : B i t s < 4 > −> I n t e g e r R e g i s t e r

Listing 2.3: Definition of Registers and Register Files

9



2. Preliminaries

The program counter (PC) is a special-purpose register that keeps track of the program
sequence. Listing 2.4 shows the definition of a standard PC. VADL supports three
different kinds of PCs. During instruction execution, each kind differs in the register’s
value. The value of a “current” PC (the default) points to the start of the current
instruction word. In the same way, a “next” PC points to the start of the next instruction
word, i.e., the end of the current instruction word. The 32-bit ARM specification uses
a special PC kind. A “next next” PC will always point to the end of the following
instruction word. In this case, the following instruction word must be of the same size as
the currently executed instruction. Most architectures will only use “current” and “next”.
An annotation on the definition of the PC may indicate its kind.

1 program counter PC : B i t s <32>

Listing 2.4: Definition of a Program Counter

Defining Instruction Formats

Most architectures feature different types of instructions (e.g., arithmetic, load). Often,
each type has a different layout. VADL allows a user to define several instruction formats.
Listing 2.5 shows the definition of the JType instruction format of the RISC-V processor
family. It consists of a list of format fields that have associated ranges, effectively dividing
the instruction word2 into multiple values. VADL computes the size of each format field
based on the size of ranges. In this case, the opcode field has a type of Bits< 7 >. It
is possible to store a field non-contiguously. The offset field is an example of that.

1 format JType : B i t s < 32 >=
2 { o f f s e t [ 3 1 , 1 9 . . 1 2 , 20 , 3 0 . . 2 1 ]
3 , rd [ 1 1 . . 7 ]
4 , opcode [ 6 . . 0 ]
5 }

Listing 2.5: Definition of an Instruction Format

In VADL, custom immediates capsule the difference between the physical value of a
format field and the semantic value used in an instruction’s behavior. This concept is
best explained with an example. The JAL instruction of the RISC-V ISA has a format
field offset that consists of 20-bits. The semantic value corresponding to this bit vector
is a 32-bit wide unsigned integer. We can construct the semantic value by sign-extending
the format field to 31 bits and shifting this value by one. Listing 2.6 shows how this can
be modeled in VADL. We extend the instruction type from the last example with the
custom immediate ImmediateJ. Currently, an immediate definition consists of three

2In this thesis, instruction word refers to the bit string encoding a single instruction.
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2.1. Vienna Architecture Description Language

components – an encoder, a decoder, and a predicate. While the encoder transforms the
semantic value into the format field, the decoder acts as a natural inverse. The predicate
checks whether a given value is a valid instance for this immediate. The code generator
needs this functionality during instruction selection and machine-dependent optimizations.
In this example, the compiler checks whether a given offset is small enough to use a
relative jump3. The compiler must resort to an absolute jump if the predicate does not
hold. In addition to the code generator, the assembly parser uses the predicate to check
the validity of assembly operands. In the future, the VADL team wants to synthesize
the encoder and predicate automatically from the decoder definition. Furthermore, the
decoder function may be inferred from the instruction semantics, thus enabling users to
write specifications without explicitly defining immediates.

1 format Jtype : B a s e I n s t r u c t i o n F o r m a t =
2 { o f f s e t [ 3 1 , 1 9 . . 1 2 , 20 , 3 0 . . 2 1 ]
3 , rd [ 1 1 . . 7 ]
4 , opcode [ 6 . . 0 ]
5 , ImmediateJ = ( o f f s e t as SInt <31>, 0b0 )
6 : p r e d i c a t e
7 { ImmediateJ =>
8 i f ImmediateJ (0 ) = 0b0 then
9 match ImmediateJ ( 3 1 . . 2 0 ) with

10 { 0 x000 => t r u e
11 , 0 x f f f => t r u e
12 , _ => f a l s e
13 }
14 e l s e
15 f a l s e
16 }
17 : encode
18 { o f f s e t => ImmediateJ ( 2 0 . . 1 )
19 }
20 }

Listing 2.6: JType with Immediates

The difference between these two representations leads to two different “views” on
immediates. In VADL, a user should only think in format fields. Therefore, returning to
the last example, offset always refers to the 20-bit format field value. The semantic
value can be accessed by calling the immediate directly. However, the internal data
structures in the LCB exclusively use the semantic value. This circumstance makes it
easier and less error-prone to model the behavior of instructions. While this leads to a
clean specification (no mixing of immediate views) and better implementation, it creates
a mismatch at the boundaries of the LCB. Section 4.4.1 discusses this problem in detail.

3Note that this particular check only works if the offset is a known value. When using symbols, the
linker is responsible for this optimization.
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2. Preliminaries

Defining Instructions

Instruction definitions are at the heart of the ISA as they capture a processor’s capabilities.
VADL distinguishes between three different types of instructions. A machine instruction
is an actual operation that the processor can execute. Therefore, these instructions
need to be encoded and decoded. A pseudo instruction only exists in the assembly code
and thus cannot be encoded in an object file. Nevertheless, an ISA standardizes these
instructions. Lastly, compiler instructions are internal to the code generator; in other
words, they cannot be used in assembly code. As a result, these definitions do not have
an assembly printing function. Otherwise, this instruction type behaves similarly to a
pseudo instruction.

Listing 2.7 defines the ADDI instruction of the RISC-V ISA. This instruction is based
on the Itype format. Therefore, all format fields and immediates of this definition
are available in the instruction semantics. The behavior of the ADDI instructions adds
a constant to a register and saves the result in a potentially different register. This
particular definition makes use of a destination register index (rd), a source register index
(rs1), and a custom immediate (ImmediateI). The code within the braces describes the
semantics of the instruction, which is modeled by a process. Furthermore, the expression
X( i ) indexes the register file X with i.

1 i n s t r u c t i o n ADDI : I t y p e =
2 {
3 X( rd ) := X( r s 1 ) + Immed ia te I
4 }

Listing 2.7: Definition of a Machine Instruction

Pseudo and compiler instructions are similar in some regards. Because a processor
cannot execute them, they do not have a process that describes the instruction semantics.
However, the designers need to specify an expansion for these instructions. Listing 2.8
shows the definition of a pseudo and a compiler instruction. The body of the instructions
specifies the expansion to actual machine instructions. Chapter 4 discusses when the
LCB expands pseudo and compiler instruction. The annotations define these instructions
as “sequences”. This information instructs the compiler to use this instruction for special
purposes, for example, loading a constant. Usually, compiler instructions only make sense
in conjunction with a sequence annotation.

1 [ re tu rn sequence ]
2 pseudo i n s t r u c t i o n RET =
3 {
4 JALR{ r s 1 = 1 , rd = 0 , imm = 0 }
5 }
6
7 [ constant sequence ]
8 compi ler i n s t r u c t i o n LOAD32S( rd : Index , imm : SInt <32> ) =
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9 {
10 LUI { rd=rd , imm20=h i20 ( imm ) }
11 ADDI{ rd=rd , r s 1=rd , imm=lo12 ( imm ) }
12 }

Listing 2.8: Definition of Pseudo and Compiler Instructions

As mentioned, machine instructions must be encoded to create an object file. Some
format fields of the instruction format may be constant, while others depend on the
operands of a particular instruction. Listing 2.9 depicts the encoding for the ADDI
instruction. Constants can be assigned to the fields defined in the instruction format. In
this example, the opcode field has the value 19. Unbound format fields build the set of
parameters.

1 encoding ADDI =
2 { opcode = 0b001 ’0011
3 , f u n c t 3 = 0b000
4 }

Listing 2.9: Definition of an Instruction Encoding

To define an instruction’s assembly representation, a user has to specify an assembly
printing function. The purpose of this function is to format an instruction word into a
human-readable form. It has access to all non-constant format fields of the instruction.
Furthermore, it can contain calls to auxiliary functions. The AssemblyInliningPass
inlines these function calls later in the generator’s pipeline. This step is necessary for the
grammar rule inference described in Section 4.2. Listing 2.10 displays the printing function
of the ADDI instruction of the RISC-V ISA. Note that the tuple syntax represents an n-ary
concatenation operator. The mnemonic keyword is transformed into a string constant
referring to the mnemonic of the current instruction during the AST to VIR translation.
This construct helps to define proper printing functions in macros. The built-in functions
register and decimal are used to print registers and immediate operands. Section
4.1.1 discusses these constructs in detail. To the best of our knowledge, PDLs never
expressed assembly syntax in the form of general-purpose formatting functions. Even
though this fits well into the overall philosophy of VADL, it introduces more complexity
than a simple string pattern.

1 assembly ADDI = (mnemonic , " " , r e g i s t e r ( rd ) , " , " , r e g i s t e r ( r s 1 ) ,
2 " , " , d ec ima l ( imm ) )

Listing 2.10: Assembly Printing Function

Lastly, we would like to mention other definitions that are used in the VLIW context.
In VADL, designers can build subsets of instructions using the operations construct.
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Furthermore, a group definition defines a bundle – a set of instruction instances with
explicit instruction-level parallelism (ILP). These groups are annotated with constraints
that may make use of the aforementioned operations. By analyzing these restrictions, a
system can decide whether a given bundle is valid. Furthermore, the compiler uses the
same information to create valid bundles in the first place.

2.1.2 Application Binary Interface
The ABI describes the interface between two binary programs. For example, a user
program that wants to call into a library needs to adhere to certain restrictions that the
interface imposes. Users must specify these restrictions so the compiler toolchain can
produce correctly working binaries. Listing 2.11 shows the primary definition of an ABI.
Note that this element always depends upon an ISA. All other elements described in this
section are children of this element.

1 a p p l i c a t i o n b ina ry i n t e r f a c e ABI f o r ISA =
2 {
3 // . . .
4 }

Listing 2.11: Application Binary Interface Definition

The alias register construct associates a name with a register or an index in a register file.
Listing 2.12 shows an example of assigning the name zero to the first register in register
file X. Note that the right-hand side of this assignment can also be another alias register.

1 a l i a s r e g i s t e r z e r o = X(0)

Listing 2.12: Alias Registers

Listing 2.13 shows the definition of a calling convention. In the first two lines, the set of
caller and callee saved registers are defined. These sets describe who is responsible for
preserving which register values over a subroutine invocation. Furthermore, we define a
set of registers that allow efficient argument passing. If a routine needs more than seven
argument registers, the caller will push the remaining values on the stack. Lastly, we
define the register that contains the return address and the set of return value registers.

1 c a l l e r saved = [ ra , a { 0 . . 7 } , t { 0 . . 6 } ]
2 c a l l e e saved = [ sp , fp , s { 0 . . 1 1 } ]
3
4 f unc t i on argument = a { 0 . . 7 }
5
6 re tu rn address = ra
7 re tu rn va lue = a { 0 . . 1 }
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Listing 2.13: Calling Conventions

The ABI also specifies important system registers. To illustrate this, Listing 2.14 contains
the necessary specification to define the frame, stack, and global pointer. The following
list explains these registers.

• The frame pointer always refers to the base of the current stack frame in the call
stack. Often, this register is just a convenience for programmers as they can easily
refer to arguments and local variables with fixed offsets. However, when supporting
dynamic stack allocations, this register is essential.

• The stack pointer points to the top of the stack. The value of this register may
change during the execution of a stack manipulation operation, such as push and
pop. The alignment annotation instructs the compiler to align the stack pointer to
a 16-byte boundary on procedure entry.

• Finally, the global pointer can be used to relax access to global variables. For
example, assuming the RISC-V Unix ABI [WLP+14, Chapter 18], loading a 32-bit
address requires two instructions. However, using the global pointer allows us to
load addresses in the vicinity of the global pointer with a single instruction, for
example, by adding an offset to the global pointer.

1 frame po in te r = fp
2
3 [ a l i gnment : B i t s < 128 > ]
4 stack po in te r = sp
5
6 g l o b a l po in te r = gp

Listing 2.14: System Registers

2.1.3 Micro Processor
The definitions within the microprocessor are currently not relevant to this thesis.
Therefore, we will not cover the supported definitions in detail. The microprocessor
definition mainly contains information relevant to the simulators. For example, it contains
processes for exception handling, startup code, and processor firmware. Listing 2.15
shows the primary definition of a RISC-V processor. This element connects all other
definitions, thus allowing the generation of an LLVM backend.

1 [ t a r g e t = " r v 3 2 i " ]
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2 [ d e s c r i p t i o n = "32− b i t RISC−V I n t e g e r " ]
3 micro processor CPU implements RV32I with ILP32 =
4 {
5 // . . .
6 }

Listing 2.15: Micro Processor Definition

2.1.4 Micro Architecture
To allow the generation of hardware schematics from a specification, VADL supports
defining a micro-architecture for a given microprocessor. Generally speaking, a user can
describe the pipeline structure in this section. While this is yet to be relevant for the LCB,
a generator may deduce compiler-relevant information from the architecture’s structure.
For example, we could infer the instruction delay used for instruction scheduling from the
pipeline description. Listing 2.16 defines a micro-architecture for the CPU microprocessor.

1 micro a r c h i t e c t u r e CPU_5_stage implements CPU =
2 {
3 // . . .
4 }

Listing 2.16: Micro Architecture Definition

2.2 Low-Level Developer Tools
In this work, “Low-Level Developer Tools” refers to software programs at the end of
a compiler toolchain. We use the canonical compiler process depicted in Figure 2.1 to
clarify this. Some terms in this paragraph will be introduced later. The goal of this
paragraph is to provide an overview. We cover the details in the following sections. The
“Source Files” in the figure represent a program written in a high-level language (e.g., C).
The code generator ingests the input program and produces assembly files. While the
assembly printer is part of this work, we do not consider the code generator a low-level
developer tool. The assembler reads the assembly files and emits a relocatable object
file per input file. Lastly, the linker combines the relocatable object files into a single
executable object file. The linker script describes the structure of the output file to the
program. For example, a developer can choose at what address parts of the program
should be loaded. Note that often multiple steps in this process are combined to limit
overhead. For example, more complex compilers tend to skip emitting assembly by
directly generating object files.

Historically, the output of an assembler or compiler is called object code. Object files
bundle this code together. Multiple formats for storing such bundles exist. However, this
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Figure 2.1: Canonical Compiler Process

work will focus on the Executable and Linkable Format (ELF). We will discuss three
different flavors of object files. First, relocatable object files are usually the product of
an assembler or compiler. They contain the machine code of an assembly unit but are
not executable. Partly, this is because symbols (e.g., a routine name) within relocatable
objects files are unresolved; in other words, format fields containing symbols are zero4.
Second, executable object files are usually created by merging (i.e., linking) multiple
relocatable files into a single binary. During this step, the linker resolves referenced
symbols. Section 2.2.3 discusses this process in detail. Lastly, the third flavor is shared
libraries. This work will primarily deal with the former two types.

2.2.1 Executable and Linking Format
This section discusses the basics of the ELF and is primarily based on the book “Linkers
and Loaders”[Lev99] and the System V ABI specification [MHJM13]. The ELF originated
in the initial System V ABI as a successor to the prevailing “a.out” format. Its purpose was
to improve the support for modern system features such as dynamic linking. The format’s
popularity started gaining traction when Unix systems picked it up. Furthermore, the
86open project5 chose ELF as the default binary format on Unix-like operating systems.
Nowadays, ELF is one of the most used object file formats in computing.

An ELF file starts with a header that provides general information. We will not enumerate
every header field, just the relevant ones in this work’s context. The class header
field specifies the size of addresses for a given ELF file. For example, is this a 32-bit
or 64-bit object file? The address mode also influences other properties, like how many
different relocation types an architecture can support. The data field indicates the
endianness of the file and the archtype field specifies for which architecture this file is
intended. Lastly, the filetype field encodes the type of the ELF file (e.g., relocatable
or executable).

An ELF file has two opposing viewpoints. First, from the assembler’s point of view,
an ELF file consists of sections. A section consists of a name, additional headers, and

4Actually, in ELF, this depends on the used relocation entry type. REL entries may use this format
field to store addends to the resolved symbol, while RELA entries store the addend in the relocations
entry. Section 2.2.1 discusses this topic further.

5https://web.archive.org/web/20070311032337/http://www.telly.org/86open-faq
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data. This construct is flexible enough to represent program code, data, and auxiliary
information. The type of a section is stored in a header field and gives information about
the section’s content. For example, a PROGBITS section may contain machine code,
while a REL section contains relocation information essential to the linker. The system
reserves itself the usage of all sections starting with a dot. For example, the .text
section usually contains the instruction sequence of the program. The System V ABI
lists all special-purpose sections. Contrary to the assembler, the loader sees the ELF
file as a set of segments that map into specific memory locations. Segments also have
an associated header that, for example, indicates whether this segment is modifiable or
not. For example, one segment may contain all object code, while another holds all the
data. These segments may consist of multiple sections. The section and program header
tables store all of this information. Note that the separation of viewpoints is not black
and white. For example, the linker must know both viewpoints as it is responsible for
mapping sections to segments.

Relocations are the primary communication channel between the assembler and the linker.
This communication is necessary because some information is unknown during assembly
and cannot be embedded directly in the machine code. For example, the assembler cannot
know the address of a symbol. This circumstance is trivially true for external symbols
as these are outside of the assembler’s scope. However, less intuitively, symbols within
the same assembly file cannot be addressed in most circumstances. On the one hand,
absolute addressing does not work because the linker may move the symbol to a different
location. On the other hand, while relative addressing may work in simple scenarios,
necessary assumptions break when using, for example, linker relaxations or alignment
directives. See Section 2.2.3 for further discussions. In both scenarios, the linker needs
to know which instruction refers to which symbol. We use relocations to materialize this
information. Now, if the assembler encounters a symbol usage, it emits a placeholder
value in the unknown format field. Additionally, it allocates an entry in a relocation table
with two crucial properties: the type of the relocation and the target symbol. During
link-time, once the final layout of the file is determined, the linker resolves the addresses
of the symbols and applies the necessary transformations.

ELF defines two formats for storing relocation data – REL and RELA entries. The
difference is the handling of addends, in other words, the number that the linker adds to
the resolved symbols’ address. The former format stores the addends implicitly in the
instruction word, while the latter stores the addends explicitly in the relocation entries
themselves. As a result, RELA relocations consume more disk space but are easier to
handle for the linker. Note that not all relocations are resolved in the same way. For
example, sometimes, they are resolved as an absolute address. Other times they are
resolved relative to the PC.

2.2.2 Assembler
Assembly languages are low-level programming languages that target specific computer
architectures. Usually, the instructions in such languages mirror the hardware’s instruc-
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tions. However, as this file is not actual machine code, a program is required to create an
object file from an assembly program – the assembler. We call this process “assembly”.
On top of providing a text representation of machine code, most assembly languages
support additional functionality. The following list contains commonly found features in
assemblers.

• Labels mark specific points in an assembly file so other instructions can refer to
them. This technique is preferred over simply using a hardcoded address due to
the improved readability and the support for relocations. Jump instructions make
heavy use of labels in real-world code.

• Directives are commands to the assembler. In many assembly languages, directives
start with a dot. Some common commands include aligning a section, fixing the
size of a constant in memory (e.g., 4 bytes), defining external symbols, and many
more.

• Expressions allow passing complex calculations as an operand to an instruction.
This technique is advantageous because the exact value of an immediate is often
unknown until link time (e.g., symb + 4). To solve this issue, the assembler must
provide a possibility to defer the evaluation of an expression. This issue can be
addressed by accepting expressions with symbols as operands and emitting necessary
information (relocations) in the resulting relocatable object file. Because the linker
will already evaluate the expression, no superfluous instruction is executed at
run-time to calculate the result of the expression.

• A computer architecture may have multiple assembly languages. One such example
is the Intel and AT&T syntax for the x86 ISA. Therefore, many assemblers allow
switching between these languages with a command line argument.

• Pseudo instructions may expand to multiple machine instructions. Sometimes,
this instruction sequence depends on the inputs of the pseudo instruction. For
example, a small immediate may be loaded with a single instruction, while a large
immediate requires two instructions. The assembler is responsible for choosing the
best instruction sequence.

2.2.3 Linker
The assembly process usually generates relocatable object files. A linker is a program
that can combine multiple relocatable object files into a single executable object file.
We call this process linking. This section is primarily based on the book “Linkers and
Loaders” [Lev99].

There are two primary linking techniques – static linking and dynamic linking. A statically
linked object file contains all referenced object code in a single file. Therefore, a device
that implements the proper ISA and ABI can load and run this file independently. On
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the other hand, a dynamically linked program can defer the linkage of symbols to the
program load time. Such executables contain a list of dynamically linkable symbols in
which each symbol is associated with a library. The loader can then read the referenced
libraries and resolve the symbols while the program is already in memory. This technique
blurs the line between a linker and a loader by moving linking tasks into the loading
process. Because this work will solely deal with static linking, the term “linking” will
refer to static linking in the remaining work.

One of the most important jobs of a linker is resolving symbols and applying relocations.
Section 2.2.1 already discussed the background of this topic. In this work, applying the
relocations and patching the corresponding instruction words will be our primary concern
regarding linking. Note that modern linkers have an abundance of complex features that
we do not list here because they are irrelevant to this work. Some may be out-of-scope,
while the target-agnostic part of LLVM does the heavy lifting of other features the LCB
supports.

Another target-specific component is linker relaxation or link-time optimization (LTO).
The goal is to leverage the additional information a linker has of other modules and the
object files’ final structure. Because this information is not available at compile-time,
such techniques cannot be applied earlier. The following paragraph explains this concept
with an example.

Let us assume the architecture at hand has two unconditional jumps, an absolute and a
PC-relative one. Furthermore, in this architecture, executing an absolute jump requires
two cycles, while a relative jump requires a single cycle. Unfortunately, our relative
jump only supports small offsets (e.g., 1 MiB) to the PC, while the absolute jump can
address the whole virtual memory. When a compiler for this ISA encounters a jump to
an unknown routine, it will emit an absolute jump because it does not know how many
bytes separate the jump instruction’s address from the target address. However, the
linker knows how far apart these two addresses are. Therefore, an LTO can replace the
absolute jump with a relative jump, thus improving the program’s performance. A similar
optimization exists for RISC-V processors. The absolute jump usually is slower than a
relative one because materializing arbitrary 32-bit addresses requires two instructions on
the 32-bit RISC-V architecture.

Unfortunately, applying linker relaxations is not straightforward. Firstly, applying an
LTO interacts with other relaxation candidates because the code size tends to shrink
when linker relaxations are applied. For example, applying the relaxation from the last
example frees 4 bytes per transformation, assuming a 32-bit instruction word. Such a
code size reduction could then enable another jump LTO that was too far from the target
address prior to this reduction. Other techniques, such as dead code elimination and only
preserving selected caller-saved registers, promise further space savings [DBDSVP+04].
Thus, doing linker relaxations in an iterative process may prove beneficial. All of that
has to be done without violating other program invariants, such as alignment directives.
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2.2.4 Disassembler
The disassembler is the inverse of an assembler. It receives a series of bytes as input and
outputs the assembly representing the machine code. Note that the disassembler cannot
reproduce all constructs that an assembler supports. For example, the information on
label positions in the original program may be lost in executable object files to save space.
Its primary purpose is analyzing existing object files, reverse engineering a program, and
supporting other debugging techniques.

2.3 Parsing
Parsing is the process of analyzing a text string and checking its validity against a set of
syntax rules. Furthermore, the process derives a concrete syntax tree - a data structure
representing the input hierarchically. We also refer to these structures as “parse trees”.
Depending on the complexity of the task, tools that ingest text-based specifications may
use the CST as IR.

Generally, parsing is a well-studied and well-understood problem. As a result, many
different approaches have proven to work well in practical settings. This section will
present an overview of the design space of a text parsing system. Usually, the first
decision is to write the parser by hand or use a parser generator that derives the parser
from a formal specification. However, in this work, user input influences the language’s
syntax. Thus, we cannot write a parser upfront and must resort to a generated parser
approach. The remaining Chapter is based on the book “Engineering a Compiler”[CT11,
Chapter 3].

First, we will start by introducing a formal notion to describe parsing. A Context-Free
Grammar (CFG) LG = (T, NT, S, P ) is a quadruple that formally specifies the syntax of
a language L. Firstly, T is the set of terminal symbols. Informally, they describe the
output of the lexer – a token annotated with a token type. We also refer to a token as a
word. Furthermore, we will use lowercase letters to indicate terminal rules. Secondly, NT
is the set of non-terminal symbols used in productions to provide abstraction. Similar to
terminal symbols, we will use uppercase letters to indicate non-terminal rules. Thirdly,
S is the start symbol of the grammar. Lastly, P defines the set of allowed productions of
the form α → β, where α is a single non-terminal symbol.

Using the definition of a grammar, we can define the parsing process more formally
by using the notion of derivation. The derivation process always starts at a particular
element – the start symbol. Each derivation step applies a single production to the string.
We achieve this by replacing an occurrence of the left-hand side with the right-hand side
of the production. The notion α → β denotes that we can derive β from α in a single
step. We use the symbol →+ to indicate that such a derivation can happen in one or
more steps. Given a string i ∈ T ∗ as input, the parser’s goal is to check whether S →+ i.
We can construct the parse tree from the applied production rules. The leaves of this
tree will be the words of the input sentence.
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During the derivation process, we may encounter a string with two or more non-terminals.
If that is the case, we must decide which non-terminal we would like to replace. There
are two practically relevant strategies for choosing this non-terminal – left-most and
right-most derivation. As their names indicate, we either expand the left-most or right-
most non-terminal. Even if one of these strategies is applied, a grammar may permit
multiple parse trees deriving the same sentence. We call such grammars ambiguous.

Non-deterministic pushdown automata can check whether a string is part of a context-free
language [Cho56]. In other words, these automata can recognize these languages. Unfor-
tunately, a parser implementing an arbitrary CFG may not have a linear computational
complexity regarding the number of tokens. Fortunately, some sub-sets of CFGs are
expressive enough to define general-purpose programming languages while still producing
parsers with linear complexity. Because we do not need to parse a complex programming
language, we will restrict ourselves to a sub-set with a straightforward implementation –
LL(1) grammars.

An LL(1)-parser is a left-to-right parser that uses left-most derivation. Because this
family uses a top-down parsing approach, the algorithm builds the parse tree from the
top by starting with the initial non-terminal symbol. Therefore, the initial parse tree has
a single node. Now the parser’s job is to expand this tree so that the fringe of the tree
covers all input words. Such a tree is only possible if the string is a valid derivation of
the start symbol. To reach such a state, the algorithm selects the left-most non-terminal
symbol for expansion until the fringe of the tree has no non-terminal symbols. Once a
non-terminal was chosen, the parser searches the set of productions for rules that can
replace the selected symbol. At this point, the parser may run into the problem that it
has multiple productions for the chosen non-terminal rule. One solution to this problem
is to try all alternatives and reset the state if no derivation can be found. We call this
technique backtracking. However, applying this technique may lead to longer parse times
as the algorithm must keep track of all choices while trying out many productions. To
speed up this process, we want a parser that always knows which production to apply –
a deterministic parser.

The first step to solving this problem is to track what parts of the input string our
algorithm already matched, in other words, which tokens are already leaves of the parse
tree. As a result, the first word of the input string that the algorithm did not match yet,
needs to be matched next. We refer to this word as a lookahead of one. To make use of this
ability, the parser generator computes the FIRST set for each available production. This
set contains the first words of all sentences derivable from the production’s right-hand
side. Intuitively, applying a production is futile if the lookahead token is not in the
FIRST set of said production because the first word of the derivations can never match
the current lookahead token. Note that the parser generator needs special handling for
productions to the empty symbol ϵ. This element represents an empty sequence and does
not match any word. Therefore, if this symbol is in the FIRST set of the right-hand side
of a non-terminal, the generator must compute the FOLLOW set of the left-hand side of
the non-terminal. We omit this description here because, in its current state, VADL does
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not allow the use of ϵ.

Now we can create a deterministic parser by ensuring that for every rule application,
there is at most one production with a FIRST set that contains the current lookahead.
This approach can be extended by looking at k words instead of one word. We call
this a LL(k) parser. Furthermore, some approaches use arbitrary long lookaheads and
can further execute semantic checks when choosing a production rule. We call such a
system a predicated LL(∗) parser [PQ95]. However, in practice, LL(1)-parsers are still
interesting because they have a straightforward implementation and language designers
often ensure that their grammars are in LL(1).

We have yet to discuss how to derive the input for the parser. Usually, the input consists
of text characters and not tokens of T . To bridge this gap, a lexer (or scanner) can
transform a string of characters into a string of tokens. In practical systems, all terminal
symbols t ∈ T are annotated with a regular expression. If a regular expression accepts a
character string, it may be emitted together with the token type t. There are techniques
to derive a lexer from the annotated terminal symbols [CT11, Chapter 2]. We do not
discuss them here because the LCB uses the handcrafted LLVM lexer.

Lastly, we will discuss the relationships between the mentioned grammar types. In this
paragraph, G1 ⊂ G2 denotes that grammars of type G2 can model more languages than
G1. First, LL(k) grammars are a real subset of CFG grammars. Thus LL(k) ⊂ CFG
holds. One source of this relation is that LL(k) grammars cannot handle left-recursion.
This problem arises when a grammar calls itself (indirectly) on the left-hand side of a
production rule. Some algorithms [Moo00] try to address this problem. Furthermore,
the relation LL(k) ⊂ LL(k + 1) [RS69] holds. However, while not true in general, many
LL(k) grammars can be modelled with an LL(1) grammar. For example, the grammar
in Listing 2.17 can be transformed to LL(1) by hoisting the terminal x into a new helper
non-terminal. This technique is called left-factoring. While the new grammar is LL(1),
writing such grammar is often tedious.

1 # LL (2)
2 A −> B | C ;
3 B −> x y ;
4 C −> x z ;
5
6 # LL (1)
7 A −> x T ;
8 T −> B | C ;
9 B −> y ;

10 C −> z ;

Listing 2.17: LL Grammars for a Simple Language
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2.4 Pretty Printers and their Inversions
A pretty printer transforms structured data into text while adhering to some notion of
readability [HH95]. In the case of programming languages, this structured data is often
referred to as AST. However, a single AST may have multiple representations in the
concrete syntax (i.e., the source code). The goal of the pretty printer is to emit this data
in a form that is pleasant to read. For example, most programs are easier to read with
carefully set indentations than with no indents.

One of the first systems to explore this topic was Syn [Bou96]. The program aims to
derive a language front-end from a Backus-Naur form (BNF) grammar. The generated
output includes the code for the AST itself, a pretty printer, a lexer, and a parser. The
grammar rule structure dictates the shape of the AST. Like other systems, Syn can derive
the lexer and parser directly from the given grammar. Annotations embedded in the
grammar instruct the pretty printer to format the grammar. For example, the rule [<h
1> "a" "b"] instructs the printer to insert one space between the two string literals.
For the parser, this is equivalent to "a" "b". Intuitively, the formatting annotation
gets ignored. While this system can derive a parser and pretty printer, the grammar
specification can become verbose by inserting the formatting rules.

Some systems similar to Syn fall into the BNF converter family. The first iteration [FR04]
takes a labeled Backus-Naur form (LBNF) [FR03] grammar as input and can produce a
parser and pretty printer for that language. Further work [DJ11] improved the existing
solution by providing meta-programming capabilities. The generated program includes
default implementations for a pretty printer. However, these default configurations cannot
be customized.

Other efforts present an approach that does not rely on a specification that either fits
pretty printing or parsing more naturally. Instead, they define the relationship between
the AST and concrete syntax with a set of combinators that have two interpretations -
one for each direction [RO10]. The only difference is applying the combinator’s parser
or pretty printing semantic. However, for function applications, this requires the usage
of partial isomorphisms, in other words, invertible functions practicable for parsers.
Furthermore, users may use syntax descriptions to model the parser’s and printer’s
differences. For example, during parsing, we may want to accept arbitrary whitespace,
while during printing, we want a single space.

The insight that “prettiness” is too complex to be inferred led to the implementation
of FliPpr [MW13]. This system allows the developers to implement a pretty printer
themselves. Then, the system derives a parser from this program using grammar-based
program inversion [MMHT10]. Unfortunately, the parser only accepts the pretty printer’s
exact format without additional information. This behavior is undesirable as we often
want to accept differently formatted input. To solve this problem, users must introduce
“ugliness” into the pretty printer. To do so, the authors introduced the biased choice
operator. This construct allows the definition of multiple alternative outputs. During
printing, the program will always emit the first operand. However, this construct
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gives the necessary information to the parser to accept other not-so-pretty alternatives.
Additionally, FliPpr has special rules for handling whitespaces during the parsing process.

Alternatively, we can view this problem purely from the viewpoint of program inversion.
Here we will consider the problem of injective string encoder inversion. Given a string
encoder function γ, we want to derive a decoder function δ such that δ(y) = x, iff
γ(x) = y for all x in the domain of f . In our case, x is the instruction word, while y
is the assembly string. Note that this definition only works for injective functions, i.e.,
functions that do not map two inputs to the same output. This property often holds
for pretty printers. However, all solutions to this problem suffer from the same problem
already explained in the context of FliPpr. The inverted function γ will only accept the
exact string that the pretty printer produces. Therefore, such a solution cannot handle
semantically equivalent syntax. The solutions we present in the following paragraphs do
not address this problem. However, with some adjustments, these approaches may lend
themselves very well to generating a parser from a pretty printer.

We already mentioned one such example, grammar-based program inversion [MMHT10],
the technique used to generate a parser in FliPpr. This approach splits the problem into
two sub-problems. First, the system derives a grammar that approximates the evaluation
tree of the original program. The second task is to find an efficient parsing method for
the generated grammar. A valuable property of this approach is that the complexity of
parsing the grammar gives an upper bound to the complexity of the inverse.

Another effort translates the problem of finding an inverse to a graph search [HVQ+12].
This process is split into multiple steps. First, the algorithm builds an equivalent SSA
representation from the original program. Then, the system constructs a value search
graph. This data structure explicitly models equivalency relations, thus enabling an
effective approach to recovering values from the forward execution. This graph contains
two types of nodes. Available nodes have a known value, while target nodes still need
to be computed. Route graphs are sub-graphs of the value search graph that allow
the computation of all target nodes. The algorithm selects a route graph based on the
heuristic and then constructs the inverse program.

Qinheping et al. [HD17] describe a general-purpose solution inverting encoding functions
operating over lists. Their solution can automatically infer the inverse functions of string
encoders by leveraging symbolic transducers, i.e., automata with outputs. Moreover, their
technique guarantees the inverse function’s correctness by using syntax-guided program
synthesis in conjunction with a state-of-the-art SMT solver (e.g., [MB08]). However, this
approach presents a complex solution to the problem with significant dependencies.

Similarly to this solution, we could leverage program synthesis without symbolic transduc-
ers. Generally, a synthesis algorithm generates a program that fulfills a given specification.
This specification could describe the inverse of the pretty printer to leverage this approach
for our purpose. In theory, such an inverse can be generated by using a formula such as
∃f−1 ∈ F , ∀x ∈ D, f−1(f(x)) = x. In other words, does a program (f−1) exist in the set
of all possible programs (F) that inverts f for every value in the domain (D) of f . Our
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system then passes this specification to an SMT solver, with f being our pretty printer.
However, in practice, this query will time out at some point due to the complexity of the
request. Note that we also need to define the semantics of a program in a formal theory.

Counter Example Guided Inductive Synthesis (CEGIS) [SL08] tries to solve this efficiency
problem. Implementing such an architecture requires two components, a component that
generates a candidate (symbolic) program based on the set of learned counterexamples
and a component that verifies if this program fulfills the whole specification. If the
program does not adhere to the specification, a new counter-example is provided and
added to the set of known input-output pairs. The premise is that the relatively small
set of counter-examples covers the corner cases that the program has to implement. This
approach tries to eliminate the all-quantifier in the synthesis step. A similar approach
could work based on a formal grammar, not programs. Nevertheless, such a solution
would significantly increase the complexity of our generator.

Another synthesis technique focuses on inferring a general solution from examples. The
main issue is that the provided input is inherently ambiguous. For example, an infinite
number of functions fulfill the requirement f(0) = 0. Recent efforts [ZLWG20] applied
this approach to the problem of generating a regular grammar that accepts a given set of
strings while rejecting another set. The authors could generalize the provided examples
by using interactive user input to guide the synthesis process. In an approach tailored
to our problem, programs like pretty-printers could generate an initial set of examples,
which a domain expert refines in an interactive session.

2.5 LLVM
While initially designed as a research infrastructure for dynamic compilation techniques,
LLVM [LA04] evolved into one of the most impactful compiler projects in industry and
research. It is an umbrella for many sub-projects ranging from a C-Compiler to a tool
that optimizes already-built executable object files. A list of sub-projects can be found
on the official website6. This section will introduce the relevant parts of LLVM.

1 d e f i n e i 3 2 @adder ( i 3 2 %x , i 3 2 %y ) {
2 e n t r y :
3 %tmp = add i 3 2 %x , %y
4 r e t i 3 2 %tmp
5 }

Listing 2.18: LLVM IR Example

The most crucial sub-project, LLVM Core, is a retargetable compiler framework with a ca-
pable optimizer. This framework revolves around the LLVM-IR – an SSA-based [RWZ88]
IR that abstracts away many, but not all, target-dependent properties of actual machine

6https://llvm.org/
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Figure 2.2: Canonical LLVM Compiler Process

code. This data structure has three different representations. First, the text-based
representation is the only human-readable form of the IR as it is similar to a program-
ming language. For example, Listing 2.18 defines a simple function that takes two input
parameters and adds them together. A programmer may recognize many of the constructs
used in this example without prior LLVM knowledge. The second form of the LLVM
IR is a bitcode format that allows a denser encoding than text files. Users may switch
between the two formats by using the LLVM assembler and disassembler. Lastly, the
LLVM IR has a corresponding in-memory structure used by the optimizer.

Even though the textual representation of the IR looks a lot like a programming language,
its intent differs from most. The goal of the LLVM-IR is to be a target for other
compilers. A compiler for an LLVM-based language is responsible for transforming the
source code to an equivalent LLVM-IR. From there on, LLVM will handle the rest of the
compiler pipeline, including many optimizations and code-emission for multiple target
processors. We refer to these supported architectures as targets. Such an architecture
allows new languages to profit from a mature compiler infrastructure with comparatively
low developer investment. This idea itself is not new. A similar approach, the Universal
Computer Oriented Language (UNCOL) [Con58], was already proposed by Conway in
1958. However, LLVM is one of the first truly successful implementations of such an idea
by supporting many industry-grade platforms, such as the LLVM C compiler (clang)
and the reference Rust [MK14] compiler (rustc).

In the following paragraph, we will revisit the canonical compiler process from Section
2.2 for an LLVM-based compiler architecture. We start with code written in the source
language. The compiler for that language (e.g., clang) is now responsible for emitting
equivalent LLVM-IR. The LLVM Static Compiler (llc) can then ingest the code and
generate assembly files for all processors that LLVM supports. Note that the -S flag
has to be specified to output the assembly code. Otherwise, the compiler will emit an
object file directly. The rest of the process is equivalent to the standard compilation
process. However, we will still cover the remaining steps as we will discuss this in the
context of the LLVM toolchain. The assembler in our toolchain is the LLVM Machine
Code (llvm-mc) program. It is responsible for generating relocatable object files. Lastly,
the LLVM Linker (lld) is the capable linker that will emit our executable program.
Naturally, its purpose is to link the object files emitted by the assembler. Note that the
LLVM Linker’s command line interface is compatible to the GNU Linker.

Because LLVM supports many different architectures, developers tried to streamline
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the process of adding and maintaining an architecture. One essential part is defining a
standard interface for every architecture that other parts of LLVM can use. This software
design allows defining target-dependent passes once and parameterizing them based on
the information of the current target. However, defining all the necessary information in
regular C++ files is cumbersome. Therefore, much of the target-dependent information
the optimizer needs is defined in TableGen7 files. TableGen is a declarative domain-specific
language that allows the concise definition of records. An LLVM backend uses these
files to define information, such as the set of available registers and the ISA instructions.
From these definitions, a TableGen backend8 emits several C++ files. Some files describe
these records to the optimizer, while others implement large parts of the instruction
encoding.

Internally, LLVM uses different data structures to represent the current code. This
complexity arises because different aspects are either relevant or pragmatic in different
circumstances. For example, inter-instruction dependencies are essential during instruc-
tion scheduling. However, during assembly, we mainly deal with a single instruction at a
time. As a result, the two different tasks benefit from different data structures. The data
structures used at the end of the toolchain are part of the MachineCode or MC layer.
The remaining section introduces the most notable classes in this component. Note that
all these classes or class hierarchies contain target-specific properties or logic.

An instance of the MCInst class represents a machine code instruction. Each instruction
has an opcode that identifies the associated operation, for example, add two registers.
Note that this opcode is LLVM internal and does not correspond to the opcode field
commonly used in the instruction encodings. Furthermore, each instruction can have
multiple MCOperand instances that represent the instruction’s operands. An operand
can contain an integer, a register, a floating-point value, a complex expression, or a
sub-instruction.

The most versatile operand type contains an expression. To represent complex assembly
expressions, we use the MCExpr class hierarchy. The subtypes of this hierarchy include a
class for constant values, symbol values, and binary expressions. By composing objects
of these classes together, we can express a variety of non-trivial terms. In addition to
denoting a computation, each expression has the notion of being absolute and relocatable.
If an expression is absolute, it will evaluate to a fixed constant value, independent of
the context. For example, an expression with a single integer constant is absolute, but
a symbol reference is not. This is because the object file layout, which is part of the
context, influences the symbol’s address and thus its value. Moreover, we consider an
expression relocatable if we can rewrite it to another expression of the form a − b + c,
where a and b are symbols and c is a constant.

In addition to the core data structures, the machine code layer consists of several
components working with objects of the presented classes. Because the machine code

7https://llvm.org/docs/TableGen/ProgRef.html
8A TableGen backend is a generator that uses TableGen files as input.
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layer is not primarily relevant to optimizations9, its primary use is emitting and ingesting
different machine code representations. As a result, most components come in pairs –
one part is responsible for reading and one for writing a particular file type.

The MCInstPrinter is the base class for target-specific instruction printer implemen-
tations. This class is responsible for emitting the assembly representation of a given
MCInst to an output stream. The counterpart to the printer are classes that derive
from the MCTargetAsmParser class. They have two responsibilities crucial to parsing
an assembly file. Firstly, they need to transform an assembly string into a sequence
of operands. Secondly, they need to match the sequence of operands to a particular
instruction opcode. After matching the operand sequence, the matching phase creates
the machine instruction instance. Furthermore, this class also supports the handling of
target-specific directives. Usually, large parts of these two classes are autogenerated by
supplying the AsmString property in the TableGen instruction definitions. However,
because VADL allows using general-purpose functions instead of string templates, we
cannot straightforwardly leverage these capabilities.

The target-specific sub-types of the MCCodeEmitter class can emit the binary encoded
version of a given machine code instruction into an output stream. Additionally, this class
generates a set of fixups while emitting the code. These fixups will become relocations in
the resulting object file. Target-specific classes that extend the MCDisassembler class
handle the other direction. The goal is to create the IR for a machine instruction from a
byte array. Much of the encoding and decoding logic is autogenerated by supplying the
mapping from format fields to instruction word ranges in the relevant TableGen files.

The last component, the linker, is technically not part of the regular LLVM machine
code layer but a project on its own. Therefore, the data structures presented in this
section do not exist there. As a result, we cannot leverage the disassembler and code
emitter to apply the necessary relocations to a particular instruction word. Section 4.4.7
discusses the consequences of this circumstance. The most notable class in the linker
implementation is TargetInfo. In our use case, the primary purpose of this class is to
support applying relocations to an instruction word.

2.6 Testing Compilers
Due to the inherent complexity of compilers, ensuring correctness is a challenging task.
This section gives an overview of techniques that help to strengthen confidence in the
correctness of compilers. Even though these methods were not explicitly designed for
low-level developer tools, some approaches may translate very well to assemblers and
linkers. Furthermore, the LCB also generates a functioning compiler that we can test
in conjunction with the binary tools. This section is largely based on a thorough study
conducted by Chen et al. [CPP+20] on the testing of compilers.

9While LLVM does not perform optimizations at this level, some components can emit hints to the
linker for link-time optimization.
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Most approaches to compiler testing rely on test programs. The test compiles the program
and then tests whether the compiled program captures the same semantics as the source
program. The first problem is obtaining a good set of test programs, as they need
to be valid without undefined behavior and diverse enough to cover large parts of the
implementation. The oldest solution to this problem is manually crafting a set of tests.
Most compilers make use of handcrafted test suites. One approach to creating such a
test suite is to read every sentence of a language specification and write a test case if this
line is testable. While this process is effective, it is work-intensive. Therefore, multiple
paradigms surfaced that try to automate the test suite generation. Many approaches
use a language’s grammar to guide a program synthesis algorithm. One famous example
of this category is Csmith [YCER11]. Note that such tools need complex rules to avoid
undefined behavior. Other tools introduce mutations in existing programs to cover more
language features. These mutations can preserve or alter the semantics of a program.

An essential part of running a test is to recognize undesired behavior. This is called
the test-oracle problem. In the case of a handcrafted test suite, the developer may
write a set of expectations. If the result does not meet the assertions, the test will fail.
However, we do not have such a set of expectations for a generated program. Differential
testing is a technique that requires at least two compilers that implement the same
language specification. We can detect differences between the program’s behavior by
compiling the program on both versions. This difference is undesired as both compilers
should produce programs with the same semantics, assuming the input program does
not have undefined behavior. Note that we can do similar tests by, for example, using
different optimization levels in a compiler. Alternatively, a test suite can generate multiple
equivalent test programs and test whether they behave equally. This technique is an
example of metamorphic testing.
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Creating an efficient processor design is a resource-intensive process that includes trying
many architectural features and configurations. These choices may prove effective or
ineffective while evaluating the new design. Unfortunately, this process may include
laborious manual steps, such as searching an assembly code for possible applications of a
new instruction. To allow a fast design exploration, we require a streamlined evaluation
process. A promising approach to this problem is describing a processor’s architecture in
a domain-specific language – a PDL. From such a specification, a tool can generate, for
example, an optimizing compiler that can leverage the new instructions that an engineer
is currently evaluating. The remaining section is based on the introduction by Prabhat
Mishra and Nikil Dutt [MD08].
To truly profit from using a PDL, a team must integrate it into their design process.
Ideally, the language would be the central part of the process, similar to how programming
languages are central to software design. Depending on the language’s nature, programs
can emit three categories of artifacts from this specification. We call such programs
generators. Firstly, as already discussed in the example, one of these categories refers to
developer tools that support the evaluation (and later development) process. In particular,
many PDLs support the generation of compiler toolchains and simulators. Secondly,
generators can emit hardware schematics to speed up the development process of the
actual silicon. Lastly, generators may automatically produce a test suite to ensure the
correctness of the generated or manually implemented artifacts.
One of the quintessential decisions in developing a PDL is choosing the abstraction level.
Similar to programming languages, this decision will influence the whole development
process. Often, this is a trade-off between abstraction and generality. For example, when
a PDL has a low abstraction level by operating over an RTL specification, generators
will have a hard time inferring high-level properties of the component. On the other
hand, when a language chooses a high level of abstraction by representing high-level
constructs (e.g., reorder buffers) as built-ins, a generator can infer a lot more about the
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semantics of the processor. However, this may reduce the generality as some designs are
baked into the language’s design. One remedy to this problem is allowing refinement. For
example, allowing users to specify the ISA on a high level while mapping the semantics
to a lower-level specification detailing the hardware implementation.
Naturally, the information that a PDL captures must differ depending on its goal. For
example, synthesizing configurable hardware components requires a different level of
abstraction than a compiler generator. Therefore, choosing the right abstraction level for
a new specification language is crucial. Based on these different requirements, we can
classify PDLs based on two criteria: content and objective.
First, we will discuss content-based categorization. Here, we distinguish based on the
information that the PDL captures. Behavioral languages capture the semantics of
the implemented ISA. This information allows the generation of compilers and ISSs.
However, synthesizing hardware will not be possible as more details are necessary, for
example, the pipeline architecture. While a generator could make many assumptions
to generate hardware from an ISA, the resulting schematics will be rigid due to the
defaults. Structural languages solve this problem by capturing the components and
interconnections of the circuit itself. Such a description allows the generation of a CAS
and flexible hardware schematics. For example, an RTL representation may be used
to specify these properties. Unfortunately, recovering the behavioral semantics from
such a low-level representation is infeasible. Therefore, a specification language must
incorporate a high-level behavioral view and a low-level structural view to support
generating compilers and hardware schematics. Mixed PDLs implement this idea. As a
result, such languages are particularly well suited for design automation. However, such
an approach will inevitably lead to a more complex specification language.
Secondly, the objective-based classification argues over the goal behind a PDL. The first
example, compilation-oriented languages, enable the generation of a compiler from the
specification. The ISA is the central part of the specification for such languages, as the
compiler needs to know the instruction semantics. Therefore, behavioral languages are
well-suited. On the other hand, the primary goal of synthesis-oriented languages is the
generation of hardware schematics – the primary use-case of structural PDLs. Simulation-
oriented languages have multiple facets, as the simulator can operate on different levels
of abstraction. For example, generating an ISS requires an ISA specification, while
generating a CAS needs details about the implementation of the processor. A similar
situation arises for validation-oriented languages. A behavioral or structural language is
the better fit depending on the output. Note that mixed PDLs support all use cases.
One question remains, how can a team integrate PDLs into their design process? Ob-
viously, the most crucial part is designing a processor in the specification language.
However, more often than not, the first design can be improved. Mishra and Dutt [MD08]
proposed a model with two essential feedback loops for improving an initial processor
design. The first loop is between the simulator and the specification, while the second is
between the hardware schematics and the specification. The former provides essential
(cycle-accurate) benchmark figures for a set of chosen programs. Note that the tailored
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Figure 3.1: Feedback Loops in the Design Process

compiler toolchain is essential for producing optimized executables. The second feedback
loop can be used to infer the maximum clock frequency of the generated hardware
components. Furthermore, restrictions concerning the die size and production cost can be
considered. These insights may lead to changes in the specification, which then triggers
a new evaluation cycle. Figure 3.1 shows a simplified version of these feedback loops.

Lastly, we will illustrate the feedback loops with an example. In this scenario, we are
developing a processor that should execute a particular set of programs efficiently. First,
we will look at the problems and develop an “intuitive” idea for a processor design. Then,
we will generate a CAS, a compiler toolchain, and hardware schematics from this initial
specification effort. We start by optimizing our architecture for the given set of programs.
To do so, we compile the benchmark programs with the generated compiler toolchain
to get an executable file. We then execute our benchmark suite on the CAS. This step
will give us the number of cycles necessary for executing the benchmark suite. While
iterating through new designs, we also must consider the limitations of the generated
hardware. By doing that, we can ensure that the die will fit on a predefined surface area
and that the clock rate is high enough. For example, even if a highly complex instruction
results in fewer CPU cycles, it may still be counterproductive if a reduced clock frequency
is necessary.

These promises of a more efficient development process led to the creation of many
PDLs. Some specialize in a particular aspect (e.g., simulation), while others try to cover
all four objectives. The remaining section will present some well-known specification
languages. While summarising the projects, we will pay special attention to the modeling
of assembler and linker-related features, most notably the assembly syntax.

The heart of an nML [Fre91] specification is an attributed grammar [Knu05]. Such a
grammar enables a user to attach auxiliary information to symbols, thus enriching the
AST’s information. In nML, the grammar itself defines the ISA of the processor. The
start symbol of the grammar is the instruction symbol. Each string derivable from
this symbol corresponds to a single instruction. Note that the grammar’s language must
be finite; otherwise, the ISA would contain infinite instructions. In other words, recursive
rules are not allowed. Additionally, a user can define memory locations and registers
outside of the grammar. Furthermore, nML defines a set of predefined annotations that
generators can use. These annotations must be present at the root of the derivation tree
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(the instruction rule). The syntax attribute specifies the assembly representation by
defining an expression that evaluates to a string. The format built-in allows printing
operands. It consists of a string similar to a printf template and a sequence of
arguments (= operands). Using different formatting placeholders (e.g., %s for a string,
%b for a binary formatted number) gives the user control over the assembler syntax. The
encoding of instructions is defined similarly by the image attribute that evaluates to a
string consisting solely of zeros and ones. This construct also uses the same formatting
syntax as the syntax attribute. Lastly, the action attribute defines the semantics of an
instruction. Furthermore, nML also allows the definition of structural components such
as pipeline architecture. Thus, the language is a mixed PDL.

The goal of the Instruction Set Description Langauge (ISDL) [HHD97] is to describe the
semantics and syntax of an ISA. The language specializes in VLIW processors. First, the
language user has to define what instruction format fields exist and how they compose
the instruction word (e.g., opcode). After specifying the general structure, the user
has to define multiple properties for each instruction, such as the assembly syntax of
the instruction and how the parameters relate to the format fields of the instruction
word. ISDL uses a “grammar rule” that includes the mnemonic and operands to specify
the syntax of an instruction. This rule can use predefined tokens (e.g., Register) and
user-defined non-terminals. In this context, non-terminals are groupings of tokens with
an optional action consisting of arbitrary C code. Because this code will be embedded
into a lex/yacc [LMB92] generated parser, knowledge about these tools may be required.
Furthermore, designers may specify bundle constraints to support the specification of
VLIW architectures. Because ISDL aims to specify an architecture’s semantics, it is
a behavioral PDL. As a result, generators can emit an assembler, code generator, and
simulator from a specification. The idea is that engineers can evaluate new designs
quickly by analyzing the architecture’s performance on the simulator.

A specification written with Expression [GHK+98] consists of Lisp-like expressions, thus
keeping the language’s syntax simple. Its primary use case is developing System-on-Chip
(SOC) architectures and ILP processors. Users must specify the opcode, operands, and
behavior to define an operation. For example, a simple operation may add two registers
together. Furthermore, each operand in an operation is associated with a group that
specifies valid operand types. However, by themselves, operations are not very useful.
Users must define instructions to capture the ILP semantics of the processor. Each
instruction consists of multiple slots that can be assigned to operands. The designer
can specify constraints for each slot, for example, two operations may only operate on
different functional units. Furthermore, the language supports operation mappings that
define the lowering of compiler-internal operations to architecture-specific ones. Such
patterns also may represent target-specific optimizations. In addition to the behavioral
definitions, Expression allows for defining structural aspects such as bus connections,
caches, and functional units. Thus, the language falls into the mixed PDL category. From
a specification, generators can emit a CAS and retargetable compiler.

Modeling a processor is also possible in general-purpose programming languages, as
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systems such as SystemC [Pan01], a set of C++ class libraries, show. However, because
the goal is to describe the hardware architecture of a processor, the abstraction level
of SystemC is relatively low compared to other languages presented in this section.
Therefore, generating tools such as compilers is infeasible. As a result, evaluating a new
ISA is a cumbersome process for SystemC users. To improve on that, ArchC [ARB+05]
targets this user group by providing a familiar syntax and an abstraction level that allows
the generation of developer tools. Furthermore, the ecosystem provides a co-verification
process that allows comparing the behavior of a reference ArchC specification to a more
refined specification. The idea is that including details in the specification may introduce
erroneous behavior. Therefore, the co-verification strategy can detect errors by comparing
the complex model to a simpler, hopefully correct, model. Users can set the assembly
syntax and encoding by “calling” the respective setters on the instruction elements in the
“constructor” of the ISA. This design decision shows the commitment to SystemC users.
To specify the assembly syntax, the language uses a string template with formatting
placeholders parameterized with operands. An instruction’s semantics must be captured
as a function of the pipeline architecture. For example, if a pipeline was defined, the
instruction’s behavior must be distributed across the different stages. Fortunately, the
reference model can use an architecture with no pipeline, thus allowing designers to catch
errors using the co-verification infrastructure. Because ArchC allows defining behavioral
and structural elements, it is considered a mixed PDL.

The Language for Instruction Set Architecture (LISA) [PHZM99] was developed to
support modern the architecture of a modern digital signal processor (DSP). Furthermore,
the language supports superscalar architectures and VLIW processors. LISA is a source
language for many artifacts, including a compiler, CAS, and hardware schematics. The
language uses different models at different abstraction levels to support such diverse
tools. For example, users can define operations in the instruction set model and pipeline
behavior in the timing model. This versatility makes Likes a mixed PDL. Furthermore,
the definitions are organized in sections, for example, the CODING section contains the
instruction encoding. LISA uses a sequence consisting of string constants and operands
to describe the assembly syntax. Users can annotate operands with formatting directives
similar to format placeholders. C-like expressions can be used to define the semantics of
an operation. In addition to LISA, The Retargetable Architecture Description Language
(RADL) [Sis98] is another effort that synthesizes developer tools for complex DSPs.

Some languages, such as the Machine Independent Microprogramming Language (MI-
MOLA) [Mar84], incorporate representative processor workloads into the specification.
These programs are transformed into an executable format which the system then uses
to evaluate the processor design. The primary goal of the MIMOLA Software Systems
(MSS), the generators operating on the specification language, is to synthesize efficient
hardware schematics. Performance profiling tools provide execution frequencies per
hardware component to guide the developers in this task. With this data, engineers can
make informed decisions about future processor design modifications.

Retargetable compiler frameworks such as LLVM [LA04] also use string templates to
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define the assembly syntax. Engineers may specify an AsmString in the instruction
definition when implementing a new target architecture. The string contains the mnemonic
and references to operands. This property is solely used to define the order and general
layout of the assembler string. Emitting a particular operand (e.g., register, immediate)
is facilitated by using general-purpose C++ functions.
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CHAPTER 4
Implementation

This chapter discusses the implementation of the high-fidelity prototype. Our generator
can emit a tailored LLVM target for the described microprocessor. Tools such as a code
generator1, assembler, disassembler, and linker are part of the target. First, Section 4.1
explains the newly introduced specification concepts. Secondly, Section 4.2 discusses the
automatic grammar generation for assembly printing functions. Section 4.3 presents the
used data structures, while Section 4.4 talks about the tool generation in detail. Lastly,
Section 4.5 then finalizes this chapter by discussing our testing strategy.

4.1 Language Design
The assembly description element captures various aspects required for generating a
fully-functional assembler and linker. This language construct depends on an ABI and, by
extension, an ISA. All microprocessors that implement said ABI automatically include the
assembly description. Defining an assembly description for a microprocessor is mandatory
when generating an LCB. For each assembly flavor (e.g., x86 Intel, x86 AT&T), a separate
assembly description definition needs to be specified. An assembly description may consist
of up to three different sub-elements. The following sections describe these elements
and necessary adaptations of the existing language. Some behavior can be changed with
annotations to support additional flexibility. The generator falls back to a default if a
section or annotation is missing.

4.1.1 New Expressions
Prior to this thesis, VADL did not use general-purpose functions to format assembly
instructions. To support this use case, we were required to introduce new expression

1The code generator is not part of this work.
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types to the language. Mainly, we made instructions such as formatting a number explicit.
This section gives an overview of the new constructs.

Because our approach is similar to FliPpr’s [MW13], we face similar challenges. One
such problem is instructing the parser to accept multiple versions. For example, in a
given assembly language, a blank or a comma may separate assembly operands. The
printer will always emit the canonical representation with commas. How is the grammar
rule inference (see Section 4.2) supposed to know about this circumstance? We solve this
problem similarly to FliPpr by introducing the biased choice operator. The printer will
always emit the first operand of this construct, while the parser may accept all operands.
Listing 4.1.1 shows the application of the biased choice operator in VADL. The semantics
are equivalent to the semantics in FliPpr. Users may use a user-defined function to
abstract the separator to avoid repeating the same choice operator.

1 assembly ADDI = (mnemonic , " " , r e g i s t e r ( rd ) , c h o i c e ( " , " , " " )
2 , r e g i s t e r ( r s 1 ) , c h o i c e ( " , " , " " ) , d ec ima l ( imm ) )

Listing 4.1.1 also contains the new constructs register and decimal. These built-in
functions transform the format field into the assembly text representation. In addition
to decimal, we also support binary, octal, and hexadecimal number representations. In
addition to the printing primitives, the operands can be used in complex constructs such
as conditionals. The printer must transform the operand to an integral value for that to
work. Unfortunately, the LCB cannot guarantee this property for every operand. For
example, if the immediate operand contains a complex expression with symbols, we cannot
simply extract a number. The built-in formatting functions handle this gracefully by, for
example, printing the symbol’s name. The printer will emit an error if we cannot extract
an integer from an operand used outside of the built-ins. It is the user’s responsibility
to ensure that for every instance of this instruction, the used operand only contains
an integer. For example, in the processor’s grammar, a user would use the Integer
rule that only accepts integers instead of the ImmediateOperand rule to ensure this
invariant.

4.1.2 Grammar

The grammar definition is the heart of the assembly description. It describes the overall
structure of the assembly language and is the foundation for generating the assembly
parser. A grammar consists of a set of terminal rules and non-terminal rules. The
DefaultGrammarInjectionPass defines a set of default rules that are part of every
definition. The defaults include the predefined terminal symbols. Because a user cannot
define custom terminals, the alphabet the parser operates on (T ) is the same for all
generated backends. Currently, T is a subset of the terminal symbols that the default
LLVM lexer emits. Therefore, the LCB can use the default lexical analysis of LLVM.
In addition to the alphabet of the parser, the default grammar also contains a set of
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Name Description
Statement This rule represents the start symbol of the grammar.

All instructions need to be derivable from this symbol.
The default implementation calls the Instruction non-
terminal rule.

Register Applying this rule consumes an identifier and converts
the result into a register.

ImmediateOperand Acts as an extension point for custom expressions. A
specification should override this rule when a custom
expression, such as a modifier, should be possible in
an immediate operand.

Identifier Equivalent to the identifier terminal.
Expression The default implementation consists of a parser builtin

that can handle complex expressions. Most specifica-
tions should not override this rule.

Instruction If not overridden, this rule contains an alternative that
covers all rules that produce an instruction.

Integer A positive or negative number.
Natural A positive number.
Symbol Applying this rule consumes an identifier and interprets

it as a symbol.

Table 4.1: Default Non-terminal Rules

non-terminal symbols. Table 4.1 describes all default non-terminal rules.

A user can specify custom non-terminal rules. Each rule has a name and a body, which
is a tree that consists of grammar elements. The syntax and semantics of the basic
building blocks are simple. Listing 4.1 shows four different grammar elements. The
comment next to a rule specifies its semantics. These four constructs describe the syntax
of the grammar. The remaining grammar elements give semantic meaning to parts of
the grammar or work with the obtained data. In this work, we refer to the execution of
the grammar element’s semantics to a token sequence as application. Before discussing
these essential parts, we need to discuss the type system.

1 grammar = {
2 L i t e r a l : " a " ; // Accepts the S t r i n g ’ a ’
3 R u l e R e f e r e n c e : <R e g i s t e r > ; // Accepts the same i n p u t s as R e g i s t e r
4 A l t e r n a t i v e : [ " a " , "b" ] ; // Accepts ’ a ’ o r ’ b ’
5 Sequence : ( " a " "b" ) ; // Accepts ’ a ’ f o l l o w e d by ’ b ’
6 }

Listing 4.1: Basic Grammar Elments
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An essential invariant for most VIR nodes is that they always have a type. Definition
elements that other nodes do not reference (e.g., the whole grammar) usually have a type
of Void. Nonetheless, each grammar element has a type associated that indicates what
data is acquired by applying the element. While these types integrate into the general
type system of VADL, the language defines a special-purpose type for describing grammar
elements – the AsmType. It represents the primitive values that the parser collects from
the input string. Note that the actual data structures representing each data type are
highly generator-specific. For example, an elementary assembler generator that does not
support symbols may use integers to represent operands. In contrast, complex generators
that target a retargetable compiler must use the structures that the framework dictates.
The following itemization lists all primitive types.

• @constant is a 64-bit signed integer. The default rules Integer or Natural produce
this type.

• @expression represents a complex expression operand. It may refer to a single
constant or an expression tree containing external symbols. VADL provides a built-
in that can parse complex expressions. The default definition of the Expression
rule makes use of this construct. In the LCB, this corresponds to an MCExpr.

• @instruction represents an entire machine or pseudo instruction. It is composed
of at least one @operand. Note that the mnemonic is part of the operands. In the
LCB, this type corresponds to an MCInst.

• @modifier holds a reference to a custom relocation. The modifier-mapping
construct presented in Section 4.1.4 defines the relationship between the string and
the actual relocation.

• @operand represents a machine operand. Once created, operands are used to
construct instructions. The parser can convert most other primitives into an
operand. In the LCB, this type corresponds to an MCOperand.

• @register represents a successfully matched register. Therefore, the parser already
resolved the name to a particular register.

• @string represents a character string. Most terminals produce values of this type.

• @symbol represents a reference to a symbol, such as an assembly label.

• @void is the empty data type. No value is stored.

Like general-purpose programming languages, casts allow transitions between the different
types. For example, one may cast an integer to a register index. The cast operations
are type-checked on the AST level. As a result, all casts in a VIR grammar are valid.
Attributes provide the ability to cast and transform the parsed data. The type system
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Source Type Target Type Description
@operand @instruction An instruction has to consist of at least

one operand. These elements will make up
the operand vector matched against the
set of available instructions.

@register @operand Wrap the register number in an operand.
@constant @operand Wrap the constant in an operand.
@string @operand Wrap the string in an operand.
@expression @operand Wrap the expression in an operand.
@symbol @operand Wrap the symbol in an operand.
@modifier with
@expression

@operand Create a custom expression with the mod-
ifier relocation. Wrap the resulting expres-
sion in an operand.

@string @register The string represents a register name. We
match this string against the available reg-
isters to retrieve the register number.

@constant @register Reinterpret the value as a register index.
@string @modifier The string represents a modifier name.

Search for the correct relocation with the
modifier mapping.

@string @symbol Reinterpret the value as a symbol name.
Any @void Drop all data from an element.

Table 4.2: Possible Casts with LCB Semantics

checks whether a cast can succeed. However, it does not guarantee successful casting
operations. For example, the cast from @string to @register may fail if the string
does not correspond to a known register. This approach is similar to casting reference
types in many object-oriented languages. A cast that can never succeed is a compiler
error. A cast that may succeed may become a runtime error during execution. Listing
4.2 demonstrates this concept. The Register rule calls the terminal rule IDENTIFIER,
which produces a @string. Then, the result of the rule is cast to @register. Table
4.2 lists most of the available casts and gives their semantics in the context of the LCB.
In addition to the casts from the table, we support the extraction of a single element
from a map.

1 grammar = {
2 // Type @ r e g i s t e r
3 R e g i s t e r : <IDENTIFIER>@ r e g i s t e r ;
4 }

Listing 4.2: Basic Grammar
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VADL features a robust type inference algorithm. We extended the existing type inference
to support the newly introduced grammar elements. Fortunately, most grammar elements
have a trivial type inference rule. For example, a rule reference gets its type from the
referenced rule. However, the type inference rule of a sequence may be noteworthy because
a sequence needs to distinguish between relevant and irrelevant data. For example, the
mnemonic is essential to the semantics, while the comma that separates the operands
is not. Nevertheless, both elements have the same type (@string). Furthermore, a
sequence contains multiple elements. How do we represent the aggregated data?

To address this problem, a user may indicate the significance of a value with a binding
to a feature. Features allow a grammar element to have a value that consists of multiple
named sub-elements, similar to how structs are composed of members. As a result,
a sequence will only collect a parsed value if it is bound to feature, i.e., considered
significant, thus separating relevant and irrelevant parts of the assembly string. The type
of a sequence is a mapping of features to values – the MapType. Listing 4.3 demonstrates
the usage of feature bindings in conjunction with sequences.

1 grammar = {
2 // Type { mod : @mod i f i e r , sym : @symbol }
3 Modi f i edSymbol : mod=<I d e n t i f i e r >@mod i f i e r
4 " ( " sym=<I d e n t i f i e r >@symbol " ) " ;
5 }

Listing 4.3: Sequence with Feature Bindings

Alternatives describe mutually exclusive paths a parser can take. We also refer to
these paths as branches. The formal pendant to this construct is multiple productions
for the same non-terminal symbol. Recall that all productions are valid substitutions.
Similarly, all branches are valid syntax alternatives that a parser can match. However,
in an unambiguous grammar, only a single branch may lead to a successful derivation.
Furthermore, in VADL, every branch of an alternative element has to be of the same
type. This restriction allows straightforward and efficient operational semantics of an
alternative. Section 4.3 discusses both issues further.

Sometimes it may be necessary to transform the parsed value. For example, we may
need to invert the value of an integer if a minus precedes it. In VADL, designers can
model such a use case with transformation functions. A transformation function is an
arbitrary VADL function that takes the target type of the cast annotation as input and
produces another value of the same type. For example, a function may take an @integer
as input and produces another @integer. To be precise, the function must take the
operational equivalent of the AsmType as input. This distinction is necessary because
the VIR instructions do not have a semantic for an AsmType. The same relationship
also applies to the return type of the transform function. Listing 4.4 shows an exemplary
usage of transformation functions. The first branch of the alternative will negate the
parsed constant because a minus precedes it. The generator creates a new function
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AsmType Operational Type
@constant SInt<64>
@string String
@void Void

Table 4.3: Operational Types for Grammar Elements

that contains the code within the parenthesis to facilitate this transformation. The
input parameter x refers to the annotated grammar element’s operational value. The
transformation function will be fully typed and optimized in the same way as a regular
user-defined function. Table 4.3 maps some grammar types to their operational pendants.
In the future, transformation functions may transform more complex assembly types. A
full-fledged generator would support arbitrary functions operating over map types.

1 grammar = {
2 // Type @constant
3 I n t e g e r : [
4 (<MINUS> v=<INTEGER>)@constant ( x => x ∗ −1) ,
5 <INTEGER>
6 ] ;
7 }

Listing 4.4: Transformation Functions

Note that the grammar should not handle custom immediates with transformation,
i.e., the parser should have the “format field view” discussed in Section 2.1.1. After
successful parsing, the framework automatically applies the decoding function to the
parsed immediate operands. Any associated predicates will be evaluated and checked
beforehand to ensure we produce a valid immediate instance.

To conclude this section, we want to give a real-world example. The grammar definition
shown in Listing 4.5 describes the syntax and semantics of the LUI instruction. This
snippet assumes that the necessary modifiers and instructions are correctly defined.

1 grammar = {
2 // Example : LUI ra ,% h i ( main )
3 L U I I n s t r u c t i o n : (
4 mnemonic=’LUI ’ @operand
5 rd=<R e g i s t e r >@operand
6 " , "
7 imm20=<ImmediateOperand>
8 ) @ i n s t r u c t i o n ;
9

10 // o v e r r i d e immediate operand to a l l o w m o d i f i e r s
11 ImmediateOperand : [
12 <Exp r e s s i on >@operand ,
13 ( "%" r e l o c=<Mod i f i e r > " ( " v a l=<Exp r e s s i on > " ) " ) @operand
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14 ] ;
15 M o d i f i e r : [ " h i " , " l o " ] @m od i f i e r ;
16 }

Listing 4.5: Grammar Rule for LUI

4.1.3 Alias Directives

Directives are commands to the assembler embedded in assembler files. The LCB uses the
directives natively supported by the LLVM framework. If users want different directive
names, alias directives can map a new directive identifier to an already existing directive.
Example 4.6 shows a possible mapping. The new alias directive “.word” is mapped to
the existing LLVM directive “.4byte”. This capability is convenient when the processor
uses an established assembly syntax.

1 a l i a s d i r e c t i v e s = {
2 " . word " −> " . 4 byte " ,
3 " . hword " −> " . 2 byte "
4 }

Listing 4.6: Alias Directives

4.1.4 Modifier Mapping

Modifiers are value transformations used in assembly programs. Sometimes modifiers
can be applied during assembly (constants) and sometimes during linking (symbols). A
modifier mapping defines the relationship between the modifier and the relocation that
implements the transformation. Listing 4.7 describes a subset of the modifiers defined
by the RISC-V instruction set architecture. It maps the string used in the assembler
language (e.g., hi and lo) to the relocations that implement them. This relationship
allows the parser to map a string to a particular transformation (cast to @modifier).
Furthermore, the printer can emit the correct assembly name.

1 m o d i f i e r s =
2 {
3 " h i " −> RV32I : : h i20 ,
4 " l o " −> RV32I : : l o 12
5 }

Listing 4.7: Modifier Mapping
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4.1.5 Annotations
VADL supports annotations for all definitions. They provide supplementary information
regarding the annotated specification element. The behavior of the generated low-level
developer tools can be influenced by attributing the assembly description definition.
Listing 4.8 contains examples of the supported annotations. In addition, the following
list explains them briefly.

• alignmentIsInBytes indicates whether the .align directive is given in bytes
(true) or as an exponent (false). When the alignment is given as an exponent,
.align 4 will align to a 24 = 16 byte boundary. The default is true.

• caseSensitive indicates whether the parser should be case-sensitive. This behavior
applies to all string comparisons in the parser (e.g., mnemonics, modifiers). The
default is false.

• commentString sets the character that initiates a line comment. Note that C-style
multiline comments are always possible. The default is "#".

• generateGrammarRules allows users to disable the grammar generation for this
assembly description.

• relocationStrategy dictates the relocation strategy when generating the ELF
definitions for the architecture. See Section 4.4.2 for a thorough discussion.

1 [ a l i g n m e n t I s I n B y t e s = t r u e ]
2 [ c a s e S e n s i t i v e = f a l s e ]
3 [ commentStr ing = " ; " ]
4 [ generateGrammarRules = t r u e ]
5 [ r e l o c a t i o n S t r a t e g y = " per fo rmance " ]
6 assembly d e s c r i p t i o n ASM f o r ABI = {
7 . . .
8 }

Listing 4.8: Example for Assembly Description Annotations

4.2 Grammar inference
Machine and pseudo instruction require an associated assembly printing function. They
take the format fields of a concrete instruction instance as input and produce a string
that represents it. Our generator also needs a grammar that describes the assembly
language for the parser, the inverse of the assembly printer. Naturally, both definitions
have a similar structure. The goal of the grammar inference system is to limit a user’s
specification burden by generating large parts of the grammar from the printing functions.
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Section 2.4 introduces multiple approaches to this problem. Our approach is similar to
FliPpr [MW13]. We let the user define the pretty printer and infer a parser from the
formatting function. However, we can leverage the restrictions of VADL functions to
use a more straightforward approach to program inversion. As of this writing, functions
have no side effects and cannot be recursive. Furthermore, the size of possible inputs in
printing functions is usually tiny compared to general program inversion. Given these
circumstances, we were able to apply a simple scheme that proved successful in practice.
See Section 5.4 for a detailed discussion of the results. We also considered implementing
it the other way around, inferring the printing functions from the grammar definition.
However, this approach combined poorly with the macro system of VADL.

We introduce the notion of slices – our immediate representation that contains the
necessary information to generate a grammar rule. A slice represents a part of a string.
Naturally, the different types of slices mirror the structure of the grammar elements.
For example, an AlternativeSlice indicates that this part of the string has multiple
possible structures. In addition to slices representing grammar elements, there is an
EmptySlice that represents data that is not associated with a token of the input and a
BotSlice that indicates an unparseable part of a string. Each slice contains metadata
indicating the type and whether the slice is associated with a parameter or a VADL
function. Each slice, except BotSlice, can generate a semantically equivalent grammar
element.

Each VIR node has an associated slice semantic that represents a mapping from the node
to a slice. Some nodes have native semantics encoded in our analysis pass, while others
default to a scheme presented later in the section. Table 4.4 explains all native semantics in
natural language. Note that some nodes take a vector of nodes n as input. The expression
ni denotes the i-th element of the operand vector. We decided against introducing a
formal definition because we consider these semantics very intuitive, so formalisms would
only hinder readability. We can emit grammar rules for many instruction formatting
functions with only these eight semantics. For example, the assembly printing function
defined in Listing 4.9 can be successfully analyzed solely with native slice semantics.
Furthermore, note that this is the only special-purpose code required to support the
biased choice operator in the parser.

1 assembly ADDI = ( " add i " , " " , r e g i s t e r ( rd ) , " , " ,
2 r e g i s t e r ( r s 1 ) , " , " , d ec ima l ( imm ) )

Listing 4.9: Assembly Formatting Function for RISC-V ADDI

We handle instructions without a native slice instruction with a generic constant evaluation
approach. For this purpose, the algorithm requires an evaluation program that operates
over the VIR. We denote the evaluation process as θ ⊢f i ↓ v. This formula means that in
function f , the instruction i evaluates to value v given the environment θ. Furthermore,
let θ(x) denote the value of x in the environment θ. Fortunately, the instructions used for

46



4.2. Grammar inference

Node Type Semantic
AsmInstruction(n) If the operand type is formatted as a register, we emit

a RegisterSlice with the metadata of n1.
CastInstruction(n) If we cast an integral value to a string, we emit an

ExpressionSlice with the metadata of n1. Oth-
erwise, this instruction does not have a native slice
semantic.

ChoiceInstruction(n) Emit an AlternativeSlice that covers all ni.
ConcatInstruction(n) Create a SequenceSlice with all semantics of ni as

children.
ConstInstruction If the constant is a StringConstant, use a

StringSlice with the constant’s value. Further-
more, we emit metadata if the string constant is the
mnemonic of the currently processed instruction. Oth-
erwise, this instruction does not have a native slice
semantic.

ParameterDefinition() Emit a BotSlice with the parameter name as meta-
data.

ProbeInstruction(n) Use the slice from the parameter n1.
RetInstruction(n) Use the slice from the parameter n1.

Table 4.4: Native Slice Semantics

assembly printing functions have no access to any state (e.g., global variables). Therefore,
the environment only consists of the parameter assignment. This assignment has to be
complete, i.e., each parameter has a known constant value. As a result, all instructions
in the function have a value solely determined by the parameter assignment. Note that
this only holds for pure VADL functions, not processes. However, the assembly printer
only uses the former type.

In order to construct the evaluation program, we thought of two implementations. Both
programs take a function definition and a parameter assignment θ as input. The first
approach is to interpret the control flow of the function. The algorithm finds the solution
once the interpreter evaluates the instruction i to a value v. While this works, the
generator wastes time evaluating instructions that are not required. For example, even if
instruction a comes before instruction b in the control flow, the value of a may not flow
into b, thus making the computation unnecessary. In contrast, the second approach only
evaluates instructions necessary for computing the value of i. Fortunately, the VIR stores
operands as references to the instructions that produce them. This data layout allows a
straightforward implementation of this algorithm by starting at the return instruction
and recursively evaluating the operands. The fact that each assembly printing function
only has a single return instruction makes this approach even more manageable. After
considering both options, we implemented our evaluator with the latter strategy. The
following paragraphs explain the role of this component in the context of an example.
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1 f unc t i on WRegSP ( x : I ndex ) −> S t r i n g =
2 i f ( x = 31 ) then "wsp" as S t r i n g e l s e ( "w" + dec ima l ( x ) )
3
4 assembly ADDI32 = ( " add " , WRegSP( rd ) , " , " , WRegSP( rn ) ,
5 " , " , d ec ima l ( imm12 ) )

Listing 4.10: Assembly Formatting Function for more complex ADDI

The more complex formatting function shown in Listing 4.10 has instructions that do
not have a native slice semantic. We will refer to this function as p in the following
example. Before our generator can start inferring grammar rules, it must eliminate calls
to other functions. This step is necessary because our evaluator only works locally in a
single function. It is the responsibility of the VirAssemblyInliningPass to inline
all function calls within assembly printing functions.

The evaluation of slice semantics starts at the single return instruction. The native
slice semantics of the RetInstruction is equal to the semantics of its operand. For
the ADDI32 formatting function, this operand is a ConcatInstruction. The slice
information of a concatenation is a sequence slice spanning all slices of the operands.
Operands such as the string constants have a simple native slice semantic. However,
at one point, our analysis will compute the slice information of one of the multiplexer
instructions from the WRegSP function. This instruction does not have a native slice
semantic. Therefore, the generator falls back to an evaluation-based strategy.

The algorithm starts by computing the parameter set of the multiplexer expression. We
will refer to this instruction as m in the following paragraphs. This set contains all
parameter definitions reachable by recursively following the operands of m. In other
words, all parameters that influence the value of m. In order to keep tracing a concrete
example, let us assume that m instruction corresponds to the expression WRegSP(rd).
The parameter set of this instruction is {rd}.

The algorithm now looks up the bit width of this format field and iterates through
all possible values. In this case, rd has 25 = 32 possible values. Then, the algorithm
computes a parameter assignment for every value, setting operands not in the parameter
set to 0, thus creating 32 different evaluation environments. For each environment θi,
the generator calls the constant evaluator, which will compute θi ⊢p m ↓ vi. Because
the concatenation produces a string, all operands must have a string type2. In this
example, this constant may be the string “w1” when evaluated with θ1(rd) = 1. Once the
algorithm has acquired vi, it creates a string literal grammar element matching against
vi. Then, the algorithm combines this grammar element with a producer (explained in
Section 4.3) generating the original value of rd in θi in a sequence element. Intuitively
this construct matches against the result of the constant evaluation and emits the value

2This is because the string concatenation is only defined over other strings. If this instruction has a
type other than string, the type inference would have failed earlier in the pipeline.
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that produced said output. Afterwards, the generator collects all 32 computed sequences
into a single alternative slice, representing the slice information for m.

1 // S i m p l i f i e d v e r s i o n wi th f ewe r known r e g i s t e r s
2 f unc t i on f o rmatCSRReg i s t e r ( i n d e x : B i t s < 12 > ) −> S t r i n g =
3 match ( i n d e x ) with
4 { 0 x000 => " u s t a t u s " , 0 x004 => " u i e " , 0 x005 => " utvec "
5 , 0 x040 => " u s c r a t c h " , 0 x041 => " uepc " , 0 x042 => " ucause "
6 , _ => hex ( i n d e x )
7 } as S t r i n g
8
9 assembly CSRRW = (mnemonic , ’ ’ , r e g i s t e r ( rd ) , ’ , ’ ,

10 f o rmatCSRReg i s t e r ( imm ) , ’ , ’ , r e g i s t e r ( r s 1 ) )

Listing 4.11: Assembly Formatting Function for CSRRW

The proposed generation schema may derive unnecessary complex rules or rules that
will lead to unintuitive error messages containing thousands of possible alternatives.
A good example is the CSRRW instruction of the RISC-V ISA. Listing 4.11 shows the
assembly printing function of this instruction. The idea is that a control and status
register (CSR) may not have a name. However, for well-known registers, we want to emit
the human-readable version, i.e., the string representation. Unfortunately, applying the
presented approach will lead to an alternative with 212 = 4096 branches. Furthermore,
our grammar would be too restrictive as we would no longer allow other representations
for these registers. For example, defining the register index with a decimal or using a
number for a well-known CSR is no longer possible. Note that designers can solve parts
of this problem with the biased choice operand.

We address this issue with a relaxation technique which is currently very simple. During
the constant evaluation, we track which instruction produced the final constant. Instruc-
tions that simply forward the result do not alter this metadata. For example, the return
instruction at the end of a function will not erase the “source” of the constant. The
current strategy is to collapse all constants produced by a number formatting instruction
to a single call to the Integer non-terminal. While this solution is not perfect, it is
sufficient to handle the CSR instruction in the RISC-V specification. Listing 4.12 shows
the generated grammar with the relaxation strategy in place.

1 [ { v a l u e : @constant } ]
2 Computed_0 : [
3 ( " u s t a t u s " v a l u e =(produce_0 . 0 ) ) , ( " u i e " v a l u e =(produce_4 . 0 ) ) ,
4 ( " u tvec " v a l u e =(produce_5 . 0 ) ) , ( " u s c r a t c h " v a l u e =(produce_64 . 0 ) ) ,
5 ( " uepc " v a l u e =(produce_65 . 0 ) ) , ( " ucause " v a l u e =(produce_66 . 0 ) ) ,
6 v a l u e=<I n t e g e r >
7 ] ;
8
9 [ @ i n s t r u c t i o n ]

10 CSRRSIns t ruc t i on : [ (
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11 mnemonic=’CSRRS ’ @operand
12 rd=<R e g i s t e r >@operand
13 " , "
14 imm=[[<Computed_0>] @constant ] @operand
15 " , "
16 r s 1=<R e g i s t e r >@operand
17 ) ] @ i n s t r u c t i o n ;

Listing 4.12: Generated Parser Rules for CSRRW

Another problem was that our solution computed duplicate helper non-terminals (e.g.,
Computed_0) when applying the fall-back slice semantic for the multiple equivalent
expression trees. These duplicates clutter the grammar definition, thus making debugging
more cumbersome. By remembering what slices the algorithm has already computed, it
can avoid unnecessary non-terminals. Furthermore, the solution needs to know whether
two instructions must have the same semantics, thus allowing it to reuse already computed
non-terminal symbols. Again, we use the fact that assembly printing functions cannot
depend on any form of state. Thus equivalent instructions with equivalent (transitive)
operands must produce the same value. The idea is that two instructions must have the
same slice semantics if they always evaluate to the same value. An important aspect
is that the name of a parameter definition is irrelevant, but its size is integral. The
improved algorithm will reuse existing computed non-terminals if it encounters equivalent
instructions.

Lastly, we would like to discuss a similar approach we tried for generating grammar
rules. In this solution, every VIR node had a native slice semantic. Nodes without
a corresponding implementation for this semantic caused the generator to abort the
rule generation. Even though the VADL team tried to keep the semantics of the VIR
as simple as possible, the complexity of the analysis surged due to the number of
different instructions. Therefore, while working on analysing multiplexer instructions,
we took our time to try another approach – the current implementation. Firstly, the
new implementation is more straightforward than defining complex slice semantics for
all instructions. Furthermore, in the old implementation, adding an instruction to the
VIR required defining a new slice semantic. The new approach reuses the operational
semantics of the instruction. Lastly, this architecture profits from all improvements to
the constant evaluation component. However, we acknowledge that a more sophisticated
approach may lead to better results.

4.3 Immediate Representation
Before we discuss the generation of the generator code, we need to discuss the immediate
representation associated with the language design. The AssemblerDescription
object bundles the information necessary for generating low-level developer tools. Each
assembler description consists of multiple definitions resembling the elements described
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in Section 4.1. While most classes representing this information are simple POJOs that
mirror the information of the language structures, some of the grammar elements have
invariants that simplify code generation. In this section, we want to briefly describe the
IR’s semantics and present any existing peculiarities.

A Grammar definition consists of multiple NonterminalRules and TerminalRules.
Each rule is identified with a unique name. On the one hand, each terminal rule
has an associated regular expression. Using this information, we can infer a terminal
rule for a given string literal. We use this capability to check for ambiguities in the
grammar definition. On the other hand, a non-terminal rule has a body that is a single
GrammarElement.

“Grammar element” is an umbrella term used for elements on the right-hand side of a
non-terminal rule definition. Each such element has an operational semantic associated
with it. Intuitively, this semantic represents a parser implementation. The remaining
section discusses different instances of such grammar elements and their semantics. For
each IR element, we will elaborate on the operational semantics in natural language.
Furthermore, we will give a computational description in Haskell3, a well-known functional
programming language. Even though the used data structures are straightforward, readers
can find the definitions in Section A.2. However, the most important aspects will be
discussed in this section. The parse function presented in Listing 4.13 models the
semantics. Given a grammar element and a list of tokens, it returns a parsing result.
The Res type can either represent success or failure. A successful parsing process also
contains the obtained data and the remaining tokens. We define the semantics of each
grammar element as cases of the parse function.

1 p a r s e : : GrammarElement −> [ Token ] −> Res

Listing 4.13: Definition of the Parsing Function

A StringLiteral is one of the most simple grammar elements. It has one parameter
that describes the expected string. Listing 4.14 shows the definition of the semantics.
During parsing, we compare the current token’s string value to the string stored in the
literal. If the two values match, the result will be the string value itself. Otherwise,
we emit an error. Another critical building block is the RuleReference. It allows
applying another rule to the input. In other words, we call the method generated for
the rule. The value of the rule reference is the same as the value produced by the rule
application.

1 p a r s e ( Nonte rm ina lRu l e _ body ) tokens = p a r s e body tokens
2
3 p a r s e ( L i t e r a l e xpec t ed ) ( (_, ( DStr a c t u a l ) ) : x s ) =
4 i f e xpec t ed == a c t u a l

3https://www.haskell.org/
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5 then Ok ( DStr a c t u a l ) xs
6 e l s e E r r "Wrong S t r i n g "
7 p a r s e ( L i t e r a l _) _ = Er r " Token was no s t r i n g "

Listing 4.14: Non-terminal Rule and String Literal Semantics

We must use constructs that combine multiple elements to model more complex derivations.
For example, a Sequence chains multiple elements together. The system applies each
element to the input and checks whether the element was parsed successfully or not. If
there was an error during the application, the value of the sequence is the error itself. If
all elements were processed successfully, the result of the sequence is the combination of
all MapTypes. Recall that a MapType associates a key with a particular value. To hoist
a standard value to a map type, we use the Binding construct. It is parameterized
by a key and an inner grammar element. Once the algorithm applies the inner element
successfully, the resulting value is associated with the key. Values not associated with
a key are not part of the sequence value. This rule allows a user to drop semantically
irrelevant parts of the assembly string (e.g., commas). Note that we validate that the
keys in a MapType do not collide. Therefore, we do not have to handle this case in the
operational semantics. Listing 4.15 provides a reference implementation of the sequence
and binding semantics.

1 p a r s e ( Sequence [ ] ) t oken s = Ok Void [ ]
2 p a r s e ( Sequence ( x : x s ) ) token s =
3 l e t rem = ( Sequence xs ) i n
4 case ( p a r s e x token s ) o f
5 Ok ( DKeys e l 1 ) t s 1 −>
6 case ( p a r s e rem t s 1 ) o f
7 Ok ( DKeys e l 2 ) t s 2 −> Ok ( DKeys ( e l 1 ++ e l 2 ) ) t s 2
8 Ok _ t s 2 −> Ok ( DKeys e l 1 ) t s 2
9 e r r −> e r r

10 Ok _ t s 1 −> p a r s e rem t s 1
11 e r r −> e r r
12
13 p a r s e ( Bind to i n n e r ) t s =
14 case ( p a r s e i n n e r t s ) o f
15 Ok v a l rem −> Ok ( DKeys [ ( to , v a l ) ] ) rem
16 e r r −> e r r

Listing 4.15: Sequence and Binding Semantics

An Alternative allows different branches in the application of a rule. Each branch
represents a sub-element of the alternative. Listing 4.16 shows the semantics. The
choose_alt function is responsible for selecting the best branch. The only requirement
is that if it is possible to apply a branch successfully, then this branch has to be chosen.
To give a more concrete example that is also highly relevant to the LCB, we will discuss
a function that selects a branch for decisions in an LL(1) grammar. Note that the
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restrictions for VADL grammars apply in this scenario. The function computes the
FIRST set for every possible branch. Then it checks whether the head of the tokens
list is compatible with an element in the FIRST set of the branch. In an unambiguous
LL(1) grammar, this condition should only hold for at most a single branch. This branch
is returned and then applied in the semantics. In the case that no branch fulfills the
requirements, an error is emitted.

1 p a r s e ( A l t e r n a t i v e xs ) tokens =
2 case ( choo s e_a l t xs ) o f
3 Ju s t a l t −> p a r s e a l t t oken s
4 _ −> Er r "No branch i s s e l e c t a b l e "

Listing 4.16: Alternative Semantics

During the DefaultGrammarInjectionPass, our generator injects some special-
purpose builtins that a user cannot create via the language. The LCB lowers some of
these builtins to traditional grammar elements at the end of the pipeline. For example, a
pass replaces the Instruction built-in with an alternative referencing all rules with
a type of @instruction. Therefore, these builtins do not require an operational
semantic. As of this writing, the only built-in that is not lowered is Expression.
During application, this element must be able to construct complex assembly expressions.
The complexity of these expressions is implementation-specific.

Finally, we have IR elements that operate on the data values from other grammar
elements. The Binding construct is also part of this group. It was explained earlier
due to the strong connection with the sequence element. Listing 4.17 contains the
definition of the remaining grammar elements. One such data-focused element is the
ValueProducer. This construct produces a value without consuming tokens. It does
this by calling a function with zero parameters. Naturally, its value is equal to the value
that it creates by evaluating said function. Note that this element is the only construct
with no pendant in the specification language. Similarly, a ParsedValueTransform
element can transform a single value into a different one by calling a function with the
original value as an argument. The value of the element is the return value of the called
function.

In a concrete implementation, the ParsedValueCast is the most complex element
because it depends on the type of the cast. For example, the cast from a @constant to
a @register is relatively straightforward, as we are just changing the interpretation of
the value. Other casts, such as the cast from @string to @register, need to match
the text against the set of available registers and register aliases. The table 4.2 gives a
good impression of the logic that is necessary to implement the required casting behavior.
However, recall that the data structures are implementation-specific. By extension, the
casts also do not have a well-defined operational semantic. The only restriction is that
the result has to be compatible with the definition of the target type. Therefore, in the
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casting semantics, we wrap the original data in a cast element. Evaluating this element
will correspond to executing the cast operation in implementations.

1 p a r s e ( Cast to i n n e r ) t s =
2 case ( p a r s e i n n e r t s ) o f
3 Ok r e s u l t rem −> Ok ( DCast to r e s u l t ) rem
4 e r r −> e r r
5
6 p a r s e ( Transform fn i n n e r ) t s =
7 case ( p a r s e i n n e r t s ) o f
8 Ok v a l rem −> Ok ( fn v a l ) rem
9 e r r −> e r r

10
11 p a r s e ( Producer fn ) t s = Ok ( fn ) t s

Listing 4.17: Semantics of Data Elements

VADL imposes an additional restriction on alternatives. Each branch has to have the
same type. This way, the value of the alternative is equivalent to the value of the applied
branch. No transformation into a different data type is necessary. If we had chosen to
lift the restriction, we would have to use a type that describes multiple possible types –
an AlternativeType. While this is possible in VADL, the algorithm would need to
do runtime checks to determine which value is currently present in the element’s value.
For example, consider the following alternative, one branch produces a @register
while the other creates a @constant. The result of the alternative is transformed to
an @operand. Both casts are valid, thus the cast of the alternative type is valid too.
Without grammar rewriting or other optimization techniques, the parser would have to
check which concrete value the element holds. This check is necessary because the casting
semantics depend on whether the register or constant branch was matched. Furthermore,
this would require that the data type of variables must be flexible enough to have multiple
values. With the restriction in place, each element has exactly one statically known value
type, thus there is no alternative type in the whole grammar.

4.4 Tool Generation

Parallel to designing the specification language, we implemented a low-level developer
tool generator in the LCB. Recall that this generator can emit a new target for LLVM.
This work enhances the existing implementation by emitting the machine code layer for
the target. In an LLVM target, this layer is responsible for processing assembly and
object files. This section discusses the significant extensions to the LCB made during this
thesis. Many correspond to a low-level developer tool presented in Section 2.2. Before
we discuss the tools themselves, we shall give an overview of topics that pervade multiple
tools, such as immediate handling and relocations.
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Figure 4.1: Internal and External Instruction Representations

4.4.1 Automatic handling of immediates
As discussed in Section 2.1.1, there are two views on immediate operands. This section
presents a solution to bridge the gap between the two views. We consider the MCInst
representation our internal system, while all other forms representing instructions are
considered external. For example, the assembly code for a particular instruction is an
external representation, while the in-memory data produced by the parser is considered
internal. All immediate operands internal to the system are in the semantic view.
Therefore, all tools that produce the internal data structures must be able to correct a
possible mismatch. These tools represent the boundaries of our internal system. Figure
4.1 shows the different representations. The diagram shows the internal representation in
green and all external systems in blue. The arrows correspond to border systems that
either ingest (entry boundary) or create (exit boundary) external representations. By
requiring a uniform internal representation, each boundary system is independent. As
a result, for example, the code emitter does not have to check whether the data comes
from the parser or the instruction lowering. Both types of data are represented and
handled in the same way. An astute reader may have noticed that the linker is not
part of the diagram. This is because the LLVM linker implementation does not use the
MCInst internal representation. Still, the linker has to adhere to similar rules regarding
immediate handling. Section 4.4.7 discusses this issue further.

We will use an example to illustrate the responsibilities at the system boundaries. Imagine
an assembly file for a RISC-V processor that consists of a single LUI instruction. This
instruction has a 20-bit wide format field. To get the semantic value, one needs to shift
this format field by twelve bits and interpret the result as a 32-bit unsigned integer. Our
task is to ingest the assembly file and then pretty print it. This task is facilitated by
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converting all instructions into the internal machine code representation and emitting
this data into another assembly file.

The assembly parser is the first relevant component in this scenario. It reads the line
with the LUI instruction and constructs a vector of operands. The first operand contains
the mnemonic, the second is the target register, and the third is the immediate operand.
The parser is aware that it needs to shift the value of the imm operand if it is an integer
value. However, the operand may also be a hi modifier which already produces a 32-bit
integer. In this case, shifting would extend the value to a 44-bit integer, thus producing
an invalid immediate value. If the operand requires shifting, our parser wraps the value
in a custom expression class that contains the immediate decoding logic.

Now that the system obtained a canonical representation of the instruction, its task is to
print it. Again, our instruction printer can encounter two scenarios: The LUI instruction
is an integer or a complex expression containing a symbol. For the former case, the
system can evaluate the operand to an integer and apply the encoding function of the
immediate. In this case, it would shift the 32-bit value twelve bits to the right, thus
obtaining the original 20-bit value that fits in the format field. In the latter case, the
printer textually emits the expression tree.

Even though the process is slightly different for every entry boundary system, the rules
for adjusting the immediate value are the same. The following enumeration lists the
different scenarios that the boundary system may encounter. Note that some systems
may have a simplified version. For example, the disassembler will not have to handle
custom expressions.

1. The semantic value and the format field value coincide and no modifier is applied.
In this case, no transformation is necessary. Note that our implementation still
emits a custom expression representing this circumstance. However, the contained
code will be a no-op.

2. The semantic value and the format fields value differ and no modifier is applied. The
LUI example covers this case. The boundary system must wrap the operand in a
custom expression that bridges the gap between the two immediate representations.
Another approach could transform the respective integer value.

3. The operand has an associated modifier. In this case, the system uses the custom
expression for that modifier. Because this relocation must return the semantic
value of the operand, there is no need for another custom expression.

4.4.2 Relocations
In hand-crafted LLVM backends, relocations are carefully designed to be as efficient and
expressive as possible. Being efficient is necessary because the number of relocation types
per architecture is limited. The info field of a relocation entry consists of the symbol
table index and the relocation type. In the LLVM infrastructure, the lowest byte of this
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Relocation Type Description
NONE Signals that no relocation is necessary.
32 The value of this relocation is emitted as 32-bit integer.
64 The value of this relocation is emitted as 64-bit integer.

Table 4.5: Default Relocations

field indicates the relocation type, while the remaining field points to the symbol table
entry. As a result, each architecture may define up to 256 relocations. Note that this
limit only applies to the 32-bit version of ELF. It should be noted that most hand-crafted
backends also have a wider variety of supported relocation types (e.g., symbols in a
procedure linkage table).

This limitation leads to an interesting trade-off – the number of relocations versus the
information associated with a single relocation type. The following example illustrates this.
The official RISC-V backend in LLVM defines the two relocation types R_RISCV_LO12_I
and R_RISCV_LO12_S. Both of these relocations take the lower twelve bits of the
relocatable value. The postfix indicates whether this is for an IType or JType instruction.
Both instruction formats store the immediate operand in different bit ranges. With this
knowledge, the linker can override the necessary bits without further analysis. Otherwise,
the program must decode (parts of) the instruction word to infer the bit ranges. In
this case, the designers decided to favor the amount of information over the number of
relocations. Another backend may use a single relocation to represent both cases at the
cost of linker performance.

Often, the backend designers can estimate how many relocation entries are needed. This
information may guide them while considering the tradeoffs. However, we do not know
how large a specification may become, so we need to to allocate relocations efficiently.
Table 4.5 lists the default relocations that every LCB-generated target allocates.

Before deciding on how much information we want to implicitly associate with each
relocation type, we need to find a solution to infer the rest of the information. For
example, we need to know the format field that the relocation changes and the respective
immediate encoding function. We close this gap by using a decoder in the linker. This
decoder takes the instruction word as input and returns the instruction type. Therefore,
the relocations only need enough information to determine the format field within the
inferred instruction type. While this technique will hurt linking performance, it will
allow us to keep the number of used relocations low. However, to provide users with
additional flexibility, we implemented two different allocation strategies – conservative
and performance. Chapter 5 discusses the performance tradeoffs.

1 ELF_RELOC(R_CPU_NONE, 0)
2 ELF_RELOC(R_CPU_32 , 1)
3 ELF_RELOC(R_CPU_64 , 2)
4 ELF_RELOC( R_RV32I_hi20_1 , 3)
5 ELF_RELOC( R_RV32I_lo12_1 , 4)
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6 ELF_RELOC(R_CPU_SYMB_12_PCREL, 5)
7 ELF_RELOC(R_CPU_SYMB_20_PCREL, 6)

Listing 4.18: Relocations of the RV32I Processor with Conservative Strategy

Before discussing the two relocation strategies, we want to explain the architecture of
our relocation system. First, and most importantly, we distinguish between two types of
relocations – regular and ELF relocations. Regular relocations are the functions that
users can define themselves. Their most important aspect is defining the transformation
function. Now, a regular relocation may have multiple associated ELF relocations. Each
one is connected with at least one machine instruction format field. An ELF relocation
may encode further details about the format field, for example, the immediate and the
encoding ranges. In the conservative relocation strategy, the ELF relocations will not
encode additional information. Therefore, each regular relocation will have at most one
ELF relocation4. However, in the performance relocation strategy, some relocations will
have multiple ELF relocations, for example, representing the lo12 relocation similar to
the official RISC-V backend.

Additionally to these two types, the LCB has two passes that specifically handle relo-
cations. One pass inserts default relocations to reduce the specification burden on the
users, while the other pass generates ELF relocations based on the set of regular reloca-
tions and the available machine instructions. The GcbRelocationInjectionPass is
responsible for creating default relocations for format fields that allow storing a refer-
ence to a symbol. In general, this will not be possible for absolute relocations because
the format field would need to be 32-bits wide, assuming a 32-bit architecture. The
GcbElfRelocationGenerationPass generates the necessary ELF relocations.

The LCB supports two primary types of relocations – absolute and PC relative. This
distinction is necessary to steer the computation of the format field’s value based on
the symbol. The infrastructure passes this value into a target-specific function that
patches the instruction word. With this architecture, computing the symbol’s value is
target-agnostic. However, this computation does not respect some architecture-specific
properties. For example, in some architectures, the PC points to the end of the instruction
word, while LLVM’s infrastructure assumes it points to the start of the current instruction.
As a result, linkers for these architectures would produce invalid PC-relative relocation
values without further effort. We can obtain the correct value by either emitting an
addend in the relocation entry or subtracting the same value in the target-specific part.

Both relocation strategies use the relocation type in their encodings. In this context,
encoding refers to including information in the name and semantics of the relocation. For
example, if the system encodes an immediate in a relocation, only format fields with this
immediate will be associated with this relocation. Additionally, the conservative strategy

4A regular relocation may have no associated ELF relocation. This happens when no machine
instruction has a fitting format field for a given regular relocation.
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encodes the width of the format field in the relocation. This information allows us to
support multiple differently-sized immediate operands in a single instruction. Listing
4.18 shows the list of relocations for the RV32I processor with the conservative strategy.
R_CPU_SYMB_12_REL is the automatically generated relative relocation for format fields
12-bit wide. However, this representation gives us no information about the format field’s
immediate type and encoding ranges.

In contrast to the conservative strategy, the performance strategy contains all the necessary
information for relocating a value. Firstly, instead of only recording the bit-width of a
format field, we use the whole set of encoding ranges. For example, 12_31 indicates
that the format field is stored in the range [31..12]. Additionally, we also enrich the
information by recording the immediate type. Listing 4.19 shows the list of relocations5

for the RV32I processor with the performance strategy. Note that two different ELF
relocations represent the lo12 relocation. This strategy works in the current state
of VADL so well that we chose the performance relocation strategy as default. The
conservative strategy may become more and more useful once VADL supports more
sophisticated relocations and thus needs more relocation entries. Architectures may
switch to the conservative relocation strategy by specifying an annotation.

1 ELF_RELOC(R_CPU_NONE, 0)
2 ELF_RELOC(R_CPU_32 , 1)
3 ELF_RELOC(R_CPU_64 , 2)
4 ELF_RELOC( R_RV32I_hi20_1_ImmediateU_12_31 , 3)
5 ELF_RELOC( R_RV32I_lo12_1_ImmediateS_25_31_7_11 , 4)
6 ELF_RELOC( R_RV32I_lo12_1_ImmediateI_20_31 , 5)
7 ELF_RELOC(R_CPU_SYMB_12_PCREL_ImmediateB_31_31_7_7_25_30_8_11 , 6)
8 ELF_RELOC(R_CPU_SYMB_20_PCREL_ImmediateJ_31_31_12_19_20_20_21_30 , 7)

Listing 4.19: Relocations of the RV32I Processor with Performance Strategy

4.4.3 Assembly Printer

The assembly printer is responsible for emitting the in-memory representation of an
assembly file. Some parts of this process are target-agnostic such as emitting most
directives. However, the most crucial part, printing the instructions, is target-dependent.
In VADL, every instruction that may be present in an assembly file needs an assembly
printing function. This general-purpose function maps an instruction word to a string
representation. Before applying this function to the operands of an instruction, we need
to apply immediate transformations, as discussed in Section 4.4.1.

Furthermore, compiler instructions need special attention while emitting the assembly
code. While the stream of instructions may contain them, they do not have a string
representation and, by design, should not be part of any assembly file. Because compiler

5The list contains shortened names to improve readability. All essential information is still included.
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instructions are a specialized type of pseudo instruction, calls to other instructions express
their semantics. We call the process of translating compiler and pseudo instructions to
their semantic equivalent “pseudo instruction expansion”. During this process, we may
need to apply immediate transformations. Fortunately, this process has already been
implemented in the generator. Note that we do not lower regular pseudo instructions in
this component as they often improve the readability of the resulting assembly file.

1 f unc t i on f o rmatCSRReg i s t e r ( i n d e x : B i t s < 12 > ) −> S t r i n g =
2 match ( i n d e x ) with
3 { 0 x000 => " u s t a t u s "
4 , 0 x004 => " u i e "
5 , _ => hex ( i n d e x )
6 } as S t r i n g
7
8 assembly CSRR =
9 (mnemonic , r e g i s t e r ( rd ) , ’ , ’ , f o rmatCSRReg i s t e r ( c s r ) )

Listing 4.20: Complex Expression with Operand

A user may use the operands of a function for complex expressions (e.g., in a conditional).
Listing 4.20 shows a simplified example of such a use case. Unfortunately, this feature
comes with a big CAVEAT. Our evaluation strategy for such constructs is relatively
straightforward. First, we wrap the MCOperand (e.g., csr) in a wrapper class. This class
may be used directly in the number and register formatting builtins. Outside of these
builtins, the printer evaluates the contained operand to the format field value it represents.
However, such an evaluation is only possible for operands with a constant value or an
absolute expression. In other words, if an expression contains a symbol, the instruction
printer issues an error. A more sophisticated approach could hoist the types into a new
domain that handles missing values. Such a solution requires defining additional VIR
semantics in the hoisted domain. For example, comparing to a non-existing value could
always return false or trigger the fallback branch of a match expression.

4.4.4 Disassembler

LLVM makes it relatively easy to emit a working disassembler. The TableGen definition
of an instruction definition contains all the information necessary for decoding it. The
disassembler needs to provide the decoding capabilities for operands. Decoding a register
operand is relatively straightforward, consisting only of a validation step followed by
emitting the correct register number. The pendant for immediate operands may be
slightly more involved as the disassembler needs to apply the necessary immediate
transformations.
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4.4.5 Assembly Parser
The assembly parser ingests assembly language and produces the corresponding in-
memory representation. Looking at a particular architecture, we distinguish between
two major parts of the parser – the target-agnostic and the target-specific. Fortunately,
assembly languages tend to be similar so that we can offload much work to the target-
agnostic part of the parser. These functionalities include but are not limited to, lexical
analysis, handling most directives, and helper methods for parsing complex expressions.
Furthermore, the target-agnostic part acts as the driver for the parsing process. Once
the analysis encounters a target-specific construct (e.g., an instruction), the system calls
into the respective target to analyze it in a target-dependent way.

At its core, the target-specific part of the assembler must be able to parse a single
statement. LLVM separates this process into two steps. First, the parser transforms a
statement into a vector of operands. Then, the parser uses this operand list to create a
machine instruction. The grammar of the assembly description specifies the former step.
The LCB generates a deterministic LL(1) recursive descent parser using this specification.
For each rule, the generator emits a different method. For example, the rule Register
has a method in the parser class with the same name.

How the generator emits the body of the rule’s method depends on the rule type. On the
one hand, the implementation of a non-terminal rule is derived by visiting the grammar
elements in the body of the rule and emitting the corresponding operational semantics
as described in Section 4.3. On the other hand, each terminal rule checks whether the
current token is of a particular type. This check is possible because each terminal symbol
has precisely one associated AsmToken, i.e., a token that the lexer emits. Analogous
to the semantics, the result of any rule application is the parsed value or an error. The
cast to @instruction transforms the map holding different operands into the operand
vector. Note that this vector also includes the mnemonic of the instruction, if present.

Once the parser obtains the operands, the algorithm matches the operands against the
set of defined instructions I. The goal of the matching algorithm is first to find a set
V ⊆ I that corresponds to legal instruction definitions regarding the given operands.
Then, the algorithm picks a definition v ∈ V and constructs the correct in-memory data
structure. The LLVM internal opcode of this MCInst solely depends on v. Note that
more sophisticated versions may use an ordering over V that dictates which instruction
definition the algorithm selects (e.g., choose compressed over regular version). The
following paragraphs explain the solution in the context of the LCB.

The most involved of the matching process is obtaining the set of legal instruction
definitions V. Note that if V = ∅, the system emits an error to the user. We use the
following three predicates to determine whether an instruction definition is applicable
given a vector of operands.

1. If present, the mnemonic of the instruction needs to match the mnemonic of the
definition. For most architectures, this rules out the majority of candidates.
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2. For every format field not assigned to a constant encoding, there has to be an
operand with the respective name.

3. Given an absolute value v of an immediate operand o, its immediate encoding
function eo and decoding function do, the equality do(eo(v)) = v must hold. In other
words, the value must “survive” an encoding and decoding round-trip. Furthermore,
the parser checks the predicate of the operand against the decoded value.

Given the instruction definition v, the parser knows the instructions opcode and operand
layout. In the internal representation, each instruction has a fixed operand order that
may deviate from the assembly representation. Therefore, the system may re-order the
operands according to the internal representation. Lastly, the program adjusts immediate
operands as described in Section 4.4.1. This routine results in an instance of the MCInst
class that represents the parsed machine code instruction.

The first and second requirements are very intuitive. However, the third predicate is
also necessary for some architectures, as multiple instruction variants may share the
same mnemonic and operand names. For example, an ISA may use an instruction with a
compressed encoding if the operands only use small immediate values. As a result, the
algorithm must not match the compressed instruction definition if the immediate value
is too big. Similar compression schemes apply when using particular register indices.
Currently, the LCB does not support such architectures. However, we see no reason why
this would prove difficult. Therefore, the number of predicates will increase in future
generator versions.

An essential aspect of our design is separating the specification from the actual implemen-
tation. We want to refrain from polluting our specification language with LLVM-specific
constructs. Furthermore, this allows the generation of multiple generators. For example,
one could compare the performance and ergonomics of a Binutils-based generator to the
LCB. Furthermore, it allows us to separate the limitations of our implementation from
the limitations of the specification. For example, the implementation presented in this
section can only handle LL(1) grammars, while other implementations may be able to
handle LL(k) grammars. However, using different constructs from the target system will
make the interface between the generator and the target system more complex. This
complexity arises from the necessity of inferring the structures necessary for the target
system. For example, in LLVM, the syntax of an instruction definition is denoted by a
string template. The implementation in the LCB would have been more straightforward,
if VADL would require exactly this specification. However, this binds the specification
language closer to LLVM, which we want to avoid.

We considered several design options for implementing the parser. One option was to
leverage LLVM’s parsing infrastructure based on string templates. Unfortunately, some
parts of the parser are inherently target-dependent. Thus, we would still need a system
for generating a (part of a) parser. Furthermore, we would then have to distinguish
between constructs that the LLVM parser can handle and constructs that we have to
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parse ourselves. This problem may have proven problematic in some contexts. Finally,
altering the specification language to a more fitting representation of this problem was
also not desired to avoid unnecessary coupling of VADL to LLVM. Even though this
approach would have reduced the size of the parser code, we decided against it.

Another option was using a powerful out-of-the-box parser generator like ANTLR [PQ95].
This solution would have eliminated the need to develop the parser generator ourselves.
Furthermore, it would have provided us with a predicated LL(∗) algorithm to handle
more complex languages. However, integrating into a complex system is difficult, so the
tool’s disadvantages may outweigh its benefits. Furthermore, every external dependency
incurs a long-term maintenance cost. For example, new developers need to learn another
tool and some necessary features may require a costly major version update of the
library. In addition, using our own parsing algorithm gives us precise control over the
process. This flexibility may be required for future features. Lastly, LL(1) is a simple
parser implementation that can parse many common assembly language constructs. The
recursive descent approach also allows designers to patch the generated LLVM code if
they wish to bridge the gap to a new LCB version. While such a workaround is also
possible with an ANTLR-based solution, this requires engineers to learn the basics of
the parser generator. The existence of parser tables would make such an approach more
cumbersome. For all these reasons, we decided against using such a system.

4.4.6 Machine Code Emitter
The machine code emitter transforms the in-memory representation of an assembly file
into an object file. This work will focus on ELF object files. Section 2.2.1 already
described the structure of such a file. As with most tools in the LLVM architecture, this
task consists of a target-agnostic and target-dependent part. The central architecture-
related issues are instruction encoding and fixup emission. A fixup is an LLVM concept
that indicates that the tool cannot resolve the value of an operand yet. All fixups that
cannot be made obsolete will become a relocation in the resulting object file. Because
the LCB does not yet support any form of relaxation, it emits a relocation for all emitted
fixups.

In VADL, only some instructions have an encoding definition. Analogous to the instruction
printer, the code emitter may need to emit a compiler or pseudo instruction. In contrast
to the printer, the code emitter must expand both types because a processor does not
implement pseudo instructions. The only difference is that the code emitter keeps track
of an offset during each expansion process. This value is necessary because a pseudo
instruction may expand to multiple machine instructions. By using the offset, the
assembler can associate fixups with instructions other than the first.

Like the disassembler discussed in Section 4.4.4, the LLVM infrastructure does much of
the heavy lifting. In particular, it auto-generates code that emits the format fields of
an MCInst at the correct ranges. Furthermore, it knows how to map constant format
fields to the corresponding binary value. However, the generated code relies on a target-
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Expression Type Fixup Type Description
SymbolRef A symbol reference uses the generic relocation created by the

default relocation injection. This case applies when symbols are
used in operands without modifiers.

Target Target-specific expressions come in two flavors. First, if the ex-
pression only represents an immediate, the system uses the fixup
type from the inner expression. Otherwise, the expression itself
contains the information of the fixup type.

Binary First, the system tries to rewrite the binary expression as a + c
where a is a symbol, and c is a constant. If that is the case, the code
emitter can emit a fixup with the normalized form. In the object
file, a relocation entry with an addend of c represents this fixup.
The linker emits an error if the expression cannot be rewritten to
that form.

Table 4.6: Fixup Type Description for Expression Types

specific method to produce the correct value for dynamic format fields, i.e., operands.
Furthermore, this method must also emit the necessary fixups if the operand’s expression
contains a symbol.

We start by discussing the calculation of the operand value that the assembler embeds in
the resulting instruction word. This process differs depending on whether the operand
represents an absolute or relocatable expression. Given an operand that is an absolute
expression, the code emitter only needs to adjust the value according to the immediate
rules of the LCB and embed it in the instruction word.

However, if this is not the case, the code emitter inserts a zero instead of the operand
value6. The code emitter associates a fixup with the instruction to inform the linker of
the missing symbol address. Currently, our generator can emit at most one fixup entry
per instruction. We must lift this limitation once VADL supports relaxation so that the
code emitter can indicate that an instruction is relaxable. Each fixup entry consists of an
expression and a fixup type which indicates the type that LLVM uses for the relocation
entry. Table 4.6 describes the fixup types of different expressions. Furthermore, Listing
4.21 shows three relocations in the disassembly of a relocatable object file. The first
relocation is autogenerated by the LCB and is used to jump to a label. The latter two
refer to the hi and lo user-defined relocations.

1 dc : 6 f 00 00 00 JAL zero , 0
2 000000 dc : R_CPU_SYMB_20_PCREL . LBB1_3
3 . . .
4 100 : b7 00 00 00 LUI ra , 0 x0
5 00000100: R_RV32I_hi20_1 f i b o n a c c i
6 104 : e7 80 00 00 JALR ra , 0 ( ra )

6Note that this is possible due to the usage of RELA relocation entries.
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7 00000104: R_RV32I_lo12_1 f i b o n a c c i

Listing 4.21: Disassembly of RISC-V Instructions

4.4.7 Linker
Because the linker project is separate from LLVM’s machine code infrastructure, the
generator must implement some operations manually that are usually generated by a
TableGen backend. One of the biggest ones is overriding a format field in the instruction
word. Furthermore, our backend may require a decoder to infer the necessary information
from the relocations. Additionally, the generator must emit files like the immediate
implementations, once for the LLVM infrastructure and once for the linker.

First, if the architecture uses the conservative relocation strategy, we need a decoder
to infer the missing information described in Section 4.4.2. Fortunately, VADL already
has a decoder synthesizer used by the simulators and hardware schematics. In order to
use this infrastructure, the generator creates a new dummy process that uses the VADL
decoder built-in. Various existing passes will expand the decoder to a set of bit vector
comparisons. Instead of executing the instruction similarly to the simulator, we will
return an identifier for the decoded instruction. We then translate the process into a
C++ procedure with the help of the object-oriented programming (OOP) infrastructure.

Furthermore, the linker also needs helper functions to patch the instruction words. In
the machine code infrastructure, arranging the format fields is done by a TableGen
backend. However, this code is based on different data structures and thus is unusable
for this system. Conceptually, the most admirable solution would be invoking a decoder
to get all format fields. This data structure could be adjusted and then re-encoded
into the instruction word. However, this solution is more complex than necessary and
may perform worse than the simple approach of overriding a single format field. To
facilitate such operations, the LCB generates a helper class with a function for every
instruction and format field pair. For example, the helper functions for the RISC-V
ISA would contain a function with the name Override_LUI_imm20. Each function
consists of only a single expression that composes multiple parts to the new instruction
word. Because our generator uses RELA entries, we do not require functions that read
the format field value. This functionality is unnecessary because the addends reside in
the relocation table of the ELF file.

The target-agnostic part of LLVM covers many responsibilities of the linker. Our
paramount goal is to apply the relocations to the instruction words. For every relocation
entry, the driver program will invoke two methods. The first method returns the relocation
type (e.g., absolute) that dictates how the relocated value should be computed. For
example, the value for an absolute relocation needs to be calculated differently from a
PC-relative relocation. Using this information, LLVM will call the second method with
two important parameters. The new value of the relocation and the bytes containing the
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instruction word that needs patching. The procedure will then apply the transformation
associated with a relocation to the given value. For example, the hi relocation from the
RISC-V ISA will shift the value by twelve bits to the right.

Then the system, if necessary, invokes the decoder on the current instruction word.
From the opcode of the instruction, the linker can infer the immediate encoding and the
format field that needs adjustment. Using this information, it applies the immediate
transformation to the value and uses the encoding helper class to override the format field
in the byte array. Note that the program does not know the exact instruction definition
it currently patches when using the performance strategy. Fortunately, the relocation
implicitly dictates the immediate and the format field encoding. Thus, the linker may
select any override function of a format field associated with the ELF relocation.

4.5 Testing
With the introduction of low-level developer tools in the LCB, we can leverage multiple
testing techniques. We have three major types of tests. Firstly, we use unit tests that
test the implementation of a single class or pass. The second type of test uses small
specifications that the generator processes to an AST or VIR. We then do assertions
on the intermediate representations. For example, we have multiple test specifications
with different assembly printing functions that test the grammar rule inference. These
two test types do not require a full-blown VADL specification usable by the LCB, thus
making them essential during the first development steps.

Naturally, we need more extensive specifications for generating a compiler backend or a
simulator, as a minimum amount of information is necessary. For example, generating an
ISS requires a startup code definition. While the VADL team is working on producing a
minimal specification that allows generating all artefacts, we resort to existing processor
descriptions to test our implementation integratively. The most mature one is the RV32I
processor. Integrative tests with the whole compiler toolchain represent the third and
most powerful test type.

1 i n t b e g i n _ s i g n a t u r e [ ] ={ 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 } ;
2 i n t end_s i gna tu r e = 6 ;
3
4 t y p e d e f un s i gned i n t u in t32_t ;
5 s t a t i c u in t32_t f i b o n a c c i ( u in t32_t v ) ;
6
7 i n t main ( v o i d )
8 {
9 b e g i n _ s i g n a t u r e [ 0 ] = f i b o n a c c i ( 0 ) ; // => 0

10 b e g i n _ s i g n a t u r e [ 1 ] = f i b o n a c c i ( 1 ) ; // => 1
11 b e g i n _ s i g n a t u r e [ 2 ] = f i b o n a c c i ( 2 ) ; // => 1
12 b e g i n _ s i g n a t u r e [ 3 ] = f i b o n a c c i ( 3 ) ; // => 2
13 b e g i n _ s i g n a t u r e [ 4 ] = f i b o n a c c i ( 4 ) ; // => 3
14 b e g i n _ s i g n a t u r e [ 5 ] = f i b o n a c c i ( 5 ) ; // => 5
15 }
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16
17 s t a t i c u in t32_t f i b o n a c c i ( u in t32_t n )
18 {
19 i f ( n <= 1 ) {
20 r e t u r n n ;
21 }
22 r e t u r n f i b o n a c c i ( n − 1 ) + f i b o n a c c i ( n − 2 ) ;
23 }

Listing 4.22: Example of a Test Program

Before the tests, we generate a LCB and compile the resulting LLVM target. This build
gives us access to all the tools LLVM supports. We started by using these tools to make
small test cases like re-printing an assembly file. Then we introduced tests that assemble
and disassemble instructions to test the expansion of pseudo instructions and cover more
components of the machine code layer. Lastly, we have multiple truly integrative tests in
our test suite. The first type uses a C file as input and feeds it through the whole LLVM
toolchain. We link the resulting object file together with two runtime files and execute
this file on the simulator. We then check if the simulator generated the expected signature.
In essence, the signature is the value of a global array at the end of the program. Listing
4.22 shows a simple test. Lastly, we use the same strategy to run a RISC-V compliance
suite on multiple simulators. The primary idea is that if the simulators produced the
correct output, the assembler and linker must have processed their respective inputs
correctly.
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CHAPTER 5
Evaluation

We extended the existing AArch64, MIPS IV, and RV32I (RISC-V) architectures with
the language constructs described in Section 4.1 to evaluate our prototype. Furthermore,
Section 5.5 discusses a VLIW prototype based on the Hexagon architectures. Before
discussing the evaluation, Table 5.1 gives an overview of the specifications. Note that the
number of instructions should only indicate the size and complexity of the specification.
The Aarch64 specification defines specialized instructions based on properties such as the
mode (32-bit or 64-bit) and extended register operations (e.g., shifting a register value
before using it). This technique produces many instructions but allows for more succinct
semantics per instruction definition.

5.1 Expressiveness
First, we would like to discuss the expressibility of the introduced language constructs.
However, quantifying expressibility is problematic as many factors need to be considered.
This evaluation uses the number of lines necessary to define an assembler and linker for
a particular architecture as a proxy for expressibility. While this metric certainly has

Name #Instructions Description
RV32I 78 Baseline ISA primarily used for developing this

prototype.
MIPS IV 106 A dollar sign precedes registers.
AArch64 1439 Relatively complex ISA with many instruc-

tions. Multiple instructions can have the same
mnemonic. Pound symbol precedes immediates.

Hexagon 2 Small proof-of-concept for VLIW architectures.

Table 5.1: List of Specifications used for the Evaluation
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problems (e.g., not every line has equivalent information content), it helps to get a rough
idea. However, this metric has some ambiguities when it comes to counting lines. For
example, VADL has a powerful macro system that allows users to reduce the amount of
specification code by magnitudes. Is the original specification or the expanded concrete
syntax used for counting?

To be as transparent as possible, we will divide the number of lines used into multiple
categories. Not all of these categories are relevant to this work. Once we obtain the
classification, we separate each type by whether it is highly relevant to low-level developer
tools or not. This separation gives a rough idea of what part of the specification targets
low-level developer tools. Unfortunately, clearly separating the categories is difficult as
some things are essential to multiple components. For example, the encoding information
is essential to the code emitter and disassembler. However, it is also paramount for the
hardware design and all simulators (instruction decoding). In general, this is a positive
thing as the premise of VADL, using the same information in multiple artifacts, bears
fruits.

Furthermore, we will list the number of lines with and without expanded macros. We
stripped comments and empty lines before counting the lines and tried to preserve
formatting conventions between the hand-written and macro-expanded versions. We will
use the RV32I architecture in this evaluation due to its maturity. However, note that
the characteristics differ significantly between different architectures. For example, the
RV32I does not use many macros. At the same time, the AArch64 specification expands
to a file roughly 20 times as long as the original.

Figure 5.1 displays the number of lines per defined category. We refrain from explaining
every category here. Section A.3 lists all data points and discusses them in detail. However,
we would like to point out that the three categories directly associated with instructions
profit from the macro system. Fortunately, this includes the assembly printing functions.
In other architectures, the difference between macros and macro expanded specifications
increases drastically. Leveraging this benefit for assembly definitions relies heavily on the
grammar rule inference system. Suppose our approach fails to synthesize the grammar
rules. In that case, each instruction created by a macro requires manually defining a
corresponding production rule in the grammar, thus increasing the assembly-related
specification code.

In this work, we will count alias registers, the assembly description, assembly printing
functions, any used auxiliary formatting functions, instruction encoding, and relocation
definitions towards the number of specification lines dedicated to defining low-level devel-
oper tools. Nevertheless, we want to emphasize that some of these constructs are essential
to other generated artifacts. For example, leaving out the assembly printing functions will
also impact the generation of a code generator. Figure 5.2 compares the number of lines
devoted to low-level developer tools. This comparison shows that the assembly-related
definitions profit disproportionately from the macro system1. By examining the line

1The macro system implementation is not part of this work.
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Figure 5.1: Comparison of Lines per Category

counts we conclude that the proposed language constructs are expressive enough, given a
working grammar rule inference. This circumstance is highlighted by the fact that most
lines are quintessential for other artifacts. Moreover, we recognize that a flawed grammar
inference system seriously poses problems to the system’s usability.

5.2 Tool Performance
This section evaluates the performance of the generated artifacts. Firstly, we chose the
RISC-V specification to measure the tool performance. Table 5.2 contains information
about the test system. The data points were acquired with the following methodology.
Before measuring, we compiled LLVM once with the official RISC-V target and once
with the LCB-generated one. The programs in the compliance suite act as benchmarks
for this evaluation. For each benchmark, measurements indicate the time it takes the
assemblers to emit the relocatable object file and the linker to emit the executable object
file. To ensure the correctness of these processes, we use the same commands already in
use in the continuous integration build. The tool hyperfine2 was used to gather the data.

Before presenting the numbers, we want to recall that we only executed microbenchmarks.
In practice, assembling and especially linking such small workloads is not the focus of

2https://github.com/sharkdp/hyperfine
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Figure 5.2: Lines devoted to Low-Level Developer Tools

Component Name Version
CPU AMD Ryzen 9 3900X -
OS Ubuntu LTS (WSL) 22.04.1

Kernel microsoft-standard-WSL2 5.15.68.1
Host OS Windows 11 Build 22621.674
Compiler g++ 11.2.0

LLVM LLVM 10.0.0
Compliance Suite RISC-V Architecture Test SIG 2.7.4
Benchmark Tool Hyperfine 1.12.0

Table 5.2: Test System used for Benchmarks
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Figure 5.3: Assembly Benchmarks Relative to Official RISC-V

optimizations. As a result, we can only roughly estimate real-world performance from
these benchmarks.

Figure 5.3 shows the assembly microbenchmark measurements. The horizontal axis
corresponds to an assembly file that tests the compliance of a particular instruction. For
example, the add compliance file mainly contains instances of the ADD instruction. The
first sub-plot contains the runtimes of the LCB and the official RISC-V backend from
LLVM. Our experiments showed that the LCB performs similarly to the official RISC-V
backend.

Moreover, Figure 5.4 displays our measurements of the linking time. In our experiments,
the LCB with performance relocations performs similarly to the official RISC-V backend.
However, the conservative relocation mode performs worse in almost all benchmarks. We
expected these results due to the increased overhead of decoding the instructions words
prior to applying relocations. However, in our measurements, the loss in performance is
still acceptable if large numbers of relocation types are necessary. Nevertheless, keep in
mind that we used small test programs. Therefore, larger test files may make the gap
between performance and conservative relocations more apparent.

5.3 Assembly Language Study
This section discusses the findings of the assembly language study. First, Section 5.3.1
describes the methodology and ideas behind our approach. Then, Section 5.3.2 discusses
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Figure 5.4: Linker Benchmarks Relative to Official RISC-V

our results. Lastly, Section 5.3.3 gives ideas for applying the findings to the implemented
prototype.

5.3.1 Study Parameters
The target architectures for this study are AArch64, MIPS, RISC-V, Hexagon (VLIW),
and Intel x86 (CISC). This study aims to find evidence of whether the assembly language
of a given processor is in LL(1) or not. A large test corpus is used as an approximation
of the actual language. We assume that this corpus will have a test suite that covers
most, if not all, relevant assembly constructs. As a result, if an LL(1) grammar can
capture the syntax of all test cases, it is likely that the actual language is also in LL(1).

To be more specific, if the assembly language is in LL(1), we can construct an LL(1)
grammar that will 1) recognize all valid test cases and 2) reject all syntactically invalid
test cases. The distinction between syntactically and semantically invalid is crucial. In
this study, the syntax only describes the structure of an assembly string, not whether an
operand of a particular instruction should be a register or an immediate. Because most
of the invalid tests of assembler test suites check semantic properties (e.g., immediate
size), this study will omit them. We acknowledge that this approach may lead to us
describing a different dialect of the assembly language. However, we took great care
during the grammar construction to not overspecialize our grammar to the test set.

It should be mentioned that this study will operate in a slightly different setting as
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Architecture # tests # lines # pos % pos.
RISC-V 82 2089 82 100
MIPS 244 9051 244 100

AArch64 211 12643 209 99.05
Hexagon 81 1795 81 100
Intel x86 24 10799 23 95.83

Table 5.3: Results of Test Suites

the LCB parser. For example, the grammar in the study needs to handle labels, while
LLVM’s target-agnostic part handles this part for the LCB. By doing so, we decouple this
study from LLVM’s infrastructure. Even though, as a result, our study does not directly
apply to our prototype, we consider this a more valuable contribution. The following list
presents aspects different from the requirements from the LCB.

• The parsers in the study need to derive the whole assembly file, not only instructions.
As a result, they must cope with all directives and labels.

• The grammars will not specify the operand names.

• The grammars will not specify the operand types.

This study uses version 3 of ANTLR to generate the parser and lexer for the languages.
This version allows users to define maximum lookahead values for the parser. If a decision
requires inspecting more tokens, a warning is shown to the user. By setting the maximum
lookahead to one and ensuring the tool does not emit warnings, we constructed our LL(1)
grammars.

5.3.2 Results
The test corpus for this study was sourced from LLVM’s official machine code layer test
suite. Each test corresponds to a single assembly file. Note that some of them may
contain hundreds of valid instructions. Because every file only consists of valid assembly
strings, a parser describing the assembly language must be able to derive all tests. The
test runner will mark a test case as invalid if the parser cannot derive the whole assembly
file.

Table 5.3 presents the study’s results. By comparing the total number of tests (# tests)
against the number of tests that succeeded with the developed LL(1) grammar (# pos),
we can get an idea of how limited the grammar is in the context of a particular assembly
language. The number of lines in the test cases (# lines) indicates the size of the test
suite. Note that comments and empty lines have been removed.

Firstly, the limitations in the AArch64 test are due to the usage of macros. Our lexer
and parser do not have a functioning macro system. Therefore, these failing tests are
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not due to the LL(1) restriction. Furthermore, the failing test case in the Intel x86 test
suite is due to a limitation of the lexer. The assembly syntax allows defining hexadecimal
numbers by appending a “H” to the end of the number (e.g., “123H”). This introduced a
problem because the lexer expected the label reference “1f” to be a hexadecimal number.
However, because no “H” followed this number, the lexer emitted an error. Therefore,
the failing Intel x86 test is also not due to the LL(1). We were able to derive all test
files in the RISC-V, MIPS, and Hexagon test suites.

1 lw $31 , ( $29 )
2 lw $31 , (8 ∗ 4) ^ (8 ∗ 31) ( $29 )

Listing 5.1: Two Variants of the MIPS LW Instruction

We found that most constructs in standard assembly languages can be parsed with LL(1).
However, sometimes this requires applying left-factoring, which results in complex rules.
For example, Listing 5.1 shows two valid assembly strings of the LW instruction in
the MIPS architecture. This construct allows offsetting the value of the register by an
expression. The first grammar rule in Listing 5.2 is an intuitive grammar to this problem.
Unfortunately, an expression may also start with a parenthesis. Once an LL(1) parser
encounters the first parenthesis, it cannot decide if it should accept this as part of an
expression or as the parenthesis surrounding a register. Such a decision is only possible
by looking at the following token and checking whether this is a register. To reduce the
necessary lookahead, one can left-factor the grammar rule by hoisting the conflicting
productions. Unfortunately, this results in complex rules, as this example shows.

1 # LL (2)
2 r e g o f f s e t :
3 ’ ( ’ i r e g ’ ) ’
4 | e x p r e s s i o n ’ ( ’ i r e g ’ ) ’
5 ;
6
7 # LL (1)
8 r e g o f f s e t :
9 ’ ( ’ (

10 i r e g ’ ) ’ |
11 e x p r e s s i o n ’ ) ’ ( b inop b i n a r y )? ’ ( ’ i r e g ’ ) ’
12 )
13 | m o d i f i e d ( b inop b i n a r y )? ’ ( ’ i r e g ’ ) ’
14 | s y m b o l r e f ( b inop b i n a r y )? ’ ( ’ i r e g ’ ) ’
15 | unaryop ? NUMBER ( b inop b i n a r y )? ’ ( ’ i r e g ’ ) ’
16 ;

Listing 5.2: ANTLR Grammar Snippet for LW Instruction

Another result from our study is that in standard assembly languages most problematic
constructs arise from abbreviated syntaxes. In the last example, this is the optional
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expression preceding the register value. As a result, a LL(1) grammar can model most
assembly instructions without complex rules if the abbreviated syntax is omitted. Similar
problems arise with the optional “#” in the AArch64 assembly syntax. However, note
that the example with the register offset is not due to an abbreviated syntax.

5.3.3 Applying the Results to the LCB
As already mentioned, the study does not represent the exact use case of the LCB. The
parser in our prototype currently has problems with abbreviated syntaxes. However, this
study shows that LL(1) grammars can model many abbreviated assembly strings. This
section discusses why the LCB does not support such constructs and how the results of
this study can be applied to the assembly parser prototype.

Recall that LLVM divides the assembly parsing process into two steps: parsing and
matching. In the current version of the LCB, the parsing step is responsible for assigning
names to the parsed operands. Unfortunately, this makes it impossible to parse some
abbreviated syntaxes with LL(1), assuming operand renaming is not possible. Listing
5.3 shows two valid versions of the RISC-V JALR instruction. This instruction consists
of two registers (rd and rs1) and one immediate, which is omitted here. There is no
way for an LL(1) parser positioned after the mnemonic to know which name it should
assign to the first register. This is because the first operand may correspond to rd or
rs1, depending on whether another register follows.

1 j a l r x2
2 j a l r ra , x2

Listing 5.3: Two Variants of the RISC-V JALR Instruction

However, by postponing the operand naming to the matching phase, the LCB could parse
these constructs with an LL(1) parser. The sole responsibility of the parsing phase would
be to produce an operand vector without any metainformation, i.e., operand names. The
generator can compute all possible operand sequences based on the assembly printing
function. For example, in the case of the JALR instruction, there is one version with one
register operand and one with two register operands. This information is then used in
the matching phase to determine the operand names. The parser then assigns default
values to all omitted operands. This would allow the parser to use an LL(1) grammar
while still allowing abbreviated syntaxes. If this approach is better suited for the problem
at hand requires further investigation.

To summarize, while most assembly constructs can be modeled with LL(1), we conclude
that a user-facing specification should not burden a user with left-factoring the grammar
manually. The main reason is the unintuitive rule structures resulting from the hoisting
process. This problem can be solved with automatic grammar rewriting or using a more
powerful parsing algorithm. However, because this limitation is only relevant to our
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Name #Insts #Inverted Percent # Rules
RV32I 74 74 100 75

MIPS IV 106 104 98.11 105
Aarch64 1439 1437 99.86 1446

Table 5.4: Number of Generated Grammar Rules

prototype and not the VADL specification, we defer this implementation to future work
on the LCB.

5.4 Grammar Rule Generation
We evaluate the grammar rule generation based on the Aarch64, MIPS IV, and RV32I
specifications. All instructions that have an assembly representation constitute our test
set. In contrast to the table at the beginning of this chapter, this does not include
compiler instructions. The grammar rule generation process is tasked with finding inverse
rules for the test set. In this step, the system throws an exception if it cannot infer a
grammar rule from an assembly printer. Using this fact, one can count how many rules
the generator could successfully invert. Furthermore, our system counts the number of
emitted grammar rules. This figure may be higher than the number of instructions due
to generated helper non-terminals. We already validated the rules generated from the
RV32I specification by using them in our test suite. To provide some quality assurance for
other architectures, the generated grammar symbols are sampled and checked manually.

As expected, our approach inverted all instructions in the RV32I specification. Further-
more, it performs very well on the MIPS IV architecture. We inspected the generated
rules and found that they are sensible. Handling the dollar prefix for registers proved to
be unproblematic. However, our algorithm could not infer the slice information for two
rules – syscall and ebreak. The problem is that they have an abbreviated syntax that
omits the code field if it is zero, thus making use of a multiplexer instruction. However,
this format field is 20-bits wide. Therefore, our approach needs to test 220 = 1048576
different values, which causes an out-of-memory exception. Fortunately, we can manually
specify the rules for these two instructions to prevent the rule inference for the prob-
lematic instructions. Another alternative would be removing the abbreviated syntax in
the printing function. Then all constructs have a native slice semantic, thus avoiding
constant evaluation.

Lastly, we also tested the approach on the AArch64 specification. While most assembly
printing functions were unproblematic, the system could not cope with two instruction
definitions. The two errors originate from the inability to evaluate certain casting expres-
sions. One could solve this problem by extending the constant evaluator. Furthermore,
some problems arise from the specialized instructions described at the beginning of this
chapter. Firstly, because many instructions have the same mnemonic, the generated
grammar is not LL(1) (without left-factoring). For example, this specification has 152
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different versions of the ADDS instruction. In the alternative consisting of all instructions,
these rules have overlapping FIRST sets. Furthermore, the matching process needs to
know which options an instruction has (e.g., is a value shifted before adding). This
information is currently not captured by the grammar. Therefore, the matcher cannot
know which concrete instruction definition should be assigned to the operand vector.

Still, the high percentage of invertible assembly printing functions gives us confidence
in the chosen architecture. Even though the concept of our rule generation is simple,
it can generate parser rules for large parts of the test set. Still, designers must pay
attention during their specification work to only use constructs supported by our system.
For example, our implementation cannot handle a string that maps to multiple tokens
(e.g., a comma followed by a parenthesis). Users are required to separate these tokens
into two strings manually. During this evaluation, such constructs in the MIPS IV and
AArch64 architectures had to be patched. However, we see no reason that a solution
based on lexical analysis can address this problem. Such a system would also be beneficial
for analyzing string constants provided by the constant evaluator. Furthermore, we
found that the system that re-uses already generated non-terminals works well because
the number of generated rules is only slightly higher than the number of instruction
definitions.

Lastly, we would like to discuss how much computational power the inference process
requires. This time is divided between the two most CPU-intensive passes – inlining
auxiliary functions and generating the rules. All other introduced passes are negligible.
We use the system from Section 5.2 to perform our measurements. Table 5.5 shows the
acquired data split between inlining (Inl) and generating (Gen). Our solution performs
reasonably well for MIPS IV and AArch64.

However, for the RISC-V architecture, the two passes consume almost a third of the
execution time. According to our analysis, this is due to the large function that formats the
CSRs. Our measurements showed that generating the corresponding alternative consumed
more than 90% of the pass’s runtime. Further analysis has to be done to pinpoint the
problem. After that, we can improve the problem by, for example, implementing a better
constant evaluator or using a more sophisticated approach. We also think the relative
difference between the AArch64 and MIPS IV architecture is due to calling auxiliary
formatting functions. Because the inlining phase was implemented prior to this work,
we do not know of any improvements in the assembly inlining pass. Note that some
pipeline parts that crashed were disabled while evaluating the AArch64 and MIPS IV
specifications. Thus, in a fully functional pipeline, the relative runtime is slightly lower.

5.5 Flexibility
We evaluate the flexibility of our solution based on two experiments that add experimental
low-level developer tools for two architectures – MIPS IV and the Hexagon architecture.
MIPS IV already has an existing rather complex specification. We extend this specification
with the necessary elements to describe the assembly. Then we will investigate which
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Name Total (ms) Inl (ms) Inl (%) Gen (ms) Gen (%)
RV32I 5162 633 12.26 1637 31.71

MIPS IV 3160 4 0.013 141 4.46
AArch64 30137 1599 5.31 434 1.44

Table 5.5: Performance of Grammar Rule Generation

features of the LCB are missing and how many lines of specification code are necessary
to support the new architecture. Furthermore, a new specification for the Hexagon
architecture was created to evaluate the burden of adding a new concept – VLIW syntax
support. We also wanted to conduct this experiment with the AArch64 architecture.
However, the problems discussed in Section 5.4 prevented such an undertaking.

This section first discusses extending one existing architecture and then introducing a
new concept. However, keep in mind that all architectures are highly experimental. The
LCB has yet to emit a functioning code generator for these architectures. Fortunately,
the VADL team pushed towards an architecture that allows a partial generation of the
LCB. While it is still necessary to manually patch some files, this capability enables us to
rapidly create a prototype without fulfilling all the code generator requirements. In our
case, our generator emits an assembler and linker while omitting the compiler altogether.
As a side-effect of the development stage, these architectures do not have a rigorous test
suite comparable to the RV32I architecture.

The goal of every experiment is to parse an assembly file and then pretty-print the
internal representation. This task represents a basic test case for the assembly parser and
printer. Section A.5 lists the test programs. Unfortunately, at the time of this writing,
we cannot test the code emitter and the disassembler because resolving the encoding
does not work for these architectures. The VADL team hopes to support a full-fledged
low-level developer tool suite for these architectures soon.

Firstly, the LCB was used to generate a MIPS IV assembler. This program was used
to ingest and print a hello world assembly program. Listing A.8 depicts this program.
Fortunately, the grammar rule generation works well for this architecture, thus significantly
reducing the amount of work necessary. In summary, we had to add an alias directive
for .asciiz, define a minimal subset of the ABI (register aliases), and provide the
two overrides discussed in Section 4.2. Additionally, we had to fix some bugs in the
generator’s pipeline. Overall, the experiment was carried out within a few hours.

The second experiment adds limited VLIW support to the assembly parser and printer. In
particular, we will define two instructions of the Hexagon architecture. In our prototype,
all instructions enclosed within braces will be put into one bundle. Furthermore, the
parser will wrap instructions not enclosed in braces into a bundle with a single instruction.
Note that our implementation will not validate the emitted bundles. Supporting bundle
validation would require two significant upgrades to the generator. First, the VIR must
be able to model the whole operation and group semantics which are used in VADL to
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model VLIWs. Secondly, the LCB must transform the bundle constraints into executable
code. This component is currently in development because the generated simulators
require a similar system.

Our experiment targets the small code snippet presented in Listing A.9. It only consists
of two instructions. Firstly, a move that sign-extends the 16-bit immediate to 32-bits
and saves it in the destination register. Secondly, the specification contains an ADD
instruction that adds two registers together and saves the result in a third one.

We thought of three different language designs for this prototype. The first one models
the bundle syntax with a built-in that the designer uses in the grammar’s start symbol.
Parameterizing the construct with, for example, the characters that start a bundle
provides additional flexibility. As an alternative, the second approach captures this
information in attributes, not in the grammar definition. The third design manifests the
syntax purely in terms of grammar elements. Additional types would denote bundles
and bundling operators. Furthermore, the grammar would need to support recursion
or ϵ-productions. The third approach is the most complex, while the other two have
similar complexity. In this prototype, we decided to implement the second idea because
the complexity of the third approach outweighs its advantages. The newly introduced
attribute is called vliwSyntax. One of its values describes the syntax of the Hexagon
ISA. In a production-ready design, the language could separate this annotation into
multiple ones, maybe even a dedicated language element.

Extending the LCB for this prototype took around 300 lines of code. First, the generator
now emits a member that holds a state over multiple statements in the assembly parser.
This state variable then indicates whether the current statement is enclosed in braces. If
yes, the parser adds the instruction to the current bundle. If not, a new bundle specifically
for this instruction is created and emitted. Note that the bundle is a regular MCInst
with a particular opcode and sub-instructions as parameters. Furthermore, we added
a similar mechanism to the assembly printer generator. When the printer encounters
an instruction with this opcode, it emits all instructions inside the bundle enclosed in
braces.

However, we encountered a problem during this experiment. Hexagon instructions have
a peculiar format compared to other assembly languages. Instead of starting with the
mnemonic, the two specified instructions start with the destination register (e.g., R1=#1).
The syntax is similar to assigning a variable in general-purpose programming languages.
Unfortunately, the combination of the LL(1) restriction and the type restrictions on
alternatives hinders us from specifying this grammar in the parser. In our experiment,
we introduced an identifier in the front of both instructions so that the parser can choose
the correct instruction with the first consumed token. Listing A.10 shows our adjusted
version. We successfully conducted our experiment with the modified syntax.
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CHAPTER 6
Future Work

While the assembler performance discussed in Chapter 5 is comparable to the official
backends, there is still potential for improvement. For example, matching a register to
a register number is still done with a chain of conditional statements making separate
string comparisons. In addition, global grammar analysis could also yield considerable
performance improvements. To elaborate, we currently cast the mnemonic to an operand
and assign it to a field in a struct. This field is then read and written into a larger struct
containing all operands of an instruction. The parser then appends all values in this
struct to the operand vector. While the C++ compiler may remove some intermediate
steps, removing these steps from the source code could significantly increase the assembly
performance. Other approaches could integrate the parsing and matching phase to
prevent duplicate analysis.
The LCB emits the target-specific code in the necessary LLVM files. To do this, we
crafted code generators that emit the code structure required by the framework while
incorporating the information from the VADL specification. As a result, we have copied
large parts of the target-specific code base and enriched them with templating functionality.
While this is a viable implementation strategy, it creates a strong coupling between the
LCB and the used LLVM version. Therefore, upgrading to a new major version of LLVM
may be laborious. One idea to mitigate this issue is to bundle all the code influenced by
the specification in a single point. The new generated LLVM target then only calls into
this wrapper when target information is necessary. This architecture would decouple
the changes to LLVM from the C++ we generate based on the specification. Therefore,
upgrading would mainly require changes to the LLVM side, which can be handled well
with modern version control systems. Furthermore, because the LCB uses LLVM 10,
such a refactoring could enable a straightforward upgrade to a newer version.
The current grammar generation works well when the assembly printing functions follow
some guidelines. For example, printing the string “,(” needs to be done with two literals
because this string consists of two lexer tokens. Unfortunately, as of this writing, the LCB
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does not support splitting the tokens automatically. This limitation also holds for string
constants acquired by the constant evaluation. Developing a solution to this problem in
the grammar rule generation allows the user to write more concise specifications.

One of the most critical future improvements is lifting some restrictions on the grammar
specification or the implementation itself. For example, while the evaluation shows
that a LL(1) grammar can define many common assembly constructs, it also shows its
limitations – especially when we need to assign values to parameters. We think that
extending our approach to LL(k) or LL(∗) will lift many of the limitations. However, this
also requires implementing recursive rules to model the additional lookahead required for
parsing expressions. Fortunately, some solutions will work with the existing type system
by only allowing recursive rules when the type does not change with each recursion.

An implementation with linker relaxation could improve the real-world performance of the
generated binaries. For example, in the RV32I specification, we could speed up function
invocations in the vicinity of the PC or global pointers. Furthermore, the LCB would
need to support some options to enable and disable relaxation. Generating relaxation
candidates by analyzing the instruction semantics is another interesting research question.

While we took care to cover all functionality with tests, our current test suite can still be
extended. Unfortunately, at this point, the VADL specifications need to be more mature
to compile many programs (e.g., missing floating point support). Nevertheless, once
this circumstance changes, larger programs should be incorporated into the continuous
integration process of the generators. Furthermore, we could also leverage advanced
techniques such as input program generation to gain more test coverage. Lastly, we may
adopt the test suites of other assemblers (e.g., LLVM’s official RISC-V backend) to our
infrastructure.

Naturally, future work may extend the set of specified processors. Similarly to the
AArch64 and MIPS IV specifications, we may encounter some aspects that VADL cannot
model or that the LCB still needs to implement. However, with every new addition, the
language’s feature set will become more powerful. Especially, successfully generating
low-level developer tools for the complex AArch64 specification would be a milestone.

Lastly, future work could evaluate fundamentally different design choices. For example, it
may prove beneficial to compute assembly operand sequences from the assembly printing
instructions as described in Section 5.3.3. Such a system could remove the necessity of
assigning operands to format fields by moving more logic to the matching phase of the
parser. While the slice semantics approach is successful, a more sophisticated approach
may improve the fallback semantics.
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CHAPTER 7
Conclusions

In this work, we extended the VADL to support the generation of low-level developer
tools. Furthermore, the LCB, a generator for an LLVM-based compiler backend, was
extended to support the new language constructs. During the development process, new
features were continuously incorporated into the RV32I specification. Our prototype
assembled and linked all programs in an extensive compliance suite.

One of the main challenges was parsing programs for various assembly languages. We
presented a specification allowing designers to describe an architecture’s assembly language
succinctly. Furthermore, we implemented a prototype parser generator for this description.
While the prototype’s performance was comparable to a handwritten LLVM backend,
some limitations exist. In particular, restricting the input grammar to LL(1) introduces
problems with assigning names to operands during the parsing process. However, we give
some ideas on extending the prototype to mitigate this issue.

To reduce the specification burden of users, an automatic grammar rule inference system
was devised. Based on the assembly printing functions, this component effectively
describes their inverses by emitting corresponding grammar rules. We evaluated our
approach in three architectures. The algorithm was able to generate grammar rules for
the vast majority of formatting functions.

Furthermore, two strategies for automatically generating relocations were proposed by us.
One approach tries to minimize the amount of generated relocations while the other tries
to improve the linking performance. We validated these expectations in an experiment.

Lastly, we conducted a study investigating to what extent LL(1) suffices to parse assembly
languages. It was found that this restriction can model most aspects of assembly languages.
However, some abbreviated instruction versions require complex production rules. This is
not necessary for more powerful parsing algorithms, thus making them more user-friendly.
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APPENDIX A
Appendix

A.1 VADL Intermediate Representation - Further
Information

This section introduces selected VIR instructions that were explicitly mentioned in this
work. Furthermore, we will give a short explanation of some facts stated in this thesis.
The AsmInstruction can format registers to strings. For this purpose, it uses the
register definitions and any existing alias registers. The architectural register (file) is
inferred from the instruction semantics.
The CastInstruction models VADL’s complex casting semantics. For example, this
concept can model all sign and zero extensions. Furthermore, it models casts from
integers to string values which is essential to this work. In other words, we model the
number formatting function (e.g., decimal) with this instruction.
The ChoiceInstruction implements the biased choice operator discussed in Section
4.1.1.
The ConcatInstruction is responsible for handling all sorts of concatenations. Ini-
tially, it was introduced to concatenate bit vectors. In this work, we extended the
instruction to handle string concatenations.
The ConstInstruction holds a reference to a constant value. The idea is that this
instruction allows modelling the value of a constant in the same way as any other value.
Recall that the VIR stores operands as references to other instructions.
The MuxInstruction has three critical parts. A list of choices, a list of values, and
a selector. There is a one-to-one mapping between choices and values. The instruction
compares the selector’s value to the list of choices. Once it finds a match, the multiplexer
instruction obtains its value corresponding to the selected choice. There is also an optional
fallback value. Note that, in actual hardware, all choices are evaluated simultaneously.
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The ParameterDefinition holds the definition of a parameter, including its type.

The ProbeInstruction is another concept inspired by hardware components. The
idea is that this is an explicit command to use the value of an operand at a given time.
For example, we may have a process that takes two cycles. When probing the value
in the first and the second cycle, both values can be used in the second cycle. This is
comparable to saving the old value of a value in a helper variable.

The RetInstruction defines the return value of a function.

Assembly printing functions do only have one return statement: This is true because the
function body only consists of a single expression. The IR models conditional expressions
such as “match” and “if” with multiplexer instructions (MuxInstruction). Instead of
branching to another control flow, we compute all possible values and select the correct
value at the end. The VADL team chose this architecture because the representation is
suited for generating hardware components. Listing A.1 shows the VIR code representing
the WRegSP function displayed in Listing 4.10.

1 f unc t i on @A64 . WRegSP. 1 ( b5 %x ) −> <0 x b8> = {
2 l b l %bb39 :
3 %751 = const <1 x b8> "w"
4 %752 = probe b5 %x
5 %753 = cast . dec <0 x b8> %752
6 %754 = add <0 x b8> %751, %753
7 %755 = const <3 x b8> "wsp"
8 %756 = cast <0 x b8> %755
9 %757 = probe b5 %x

10 %758 = const u5 31 ; ; ’0 x1f ’ , ’0 b11111 ’
11 %759 = equ b %757, %758
12 %760 = const b 0 ; ; ’0 x0 ’ , ’0 b0 ’
13 %761 = const b 1 ; ; ’0 x1 ’ , ’0 b1 ’
14 %762 = mux <0 x b8> %759
15 , [ b %761, <0 x b8> %756]
16 , [ b %760, <0 x b8> %754]
17 r e t <0 x b8> %762
18 }

Listing A.1: Internal VIR Code for the WRegSP Function

A.2 Parser Semantics Data Structures
Listing A.2 shows the data structures that are used for defining the parser semantics.
Each element of the IR has a corresponding alternative in the GrammarElement sum
type. The DataType describes the types of a VADL grammar. This data type is used in
casts. The Data type describes the actual data that is gathered by the parser. We have to
denote a cast with a special constructor as the cast semantics are implementation-specific.
The Res data type either describes a piece of data in conjunction with the remaining
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tokens, or an error message. Lastly, the Token type associates a data element with a
token type.

1 data GrammarElement =
2 Nonte rm ina lRu l e S t r i n g GrammarElement |
3 Sequence [ GrammarElement ] |
4 A l t e r n a t i v e [ GrammarElement ] |
5 Bind S t r i n g GrammarElement |
6 L i t e r a l S t r i n g |
7 Cast DataType GrammarElement |
8 Transform ( Data −> Data ) GrammarElement |
9 Producer ( ( ) −> Data ) |

10 B u i l t i n S t r i n g
11
12 data DataType = TStr | TInt | TReg | TMod | TKeys | TVoid | T In s t
13 | TExpr | TSymb
14
15 data Data =
16 DStr S t r i n g |
17 DKeys [ ( S t r i n g , Data ) ] |
18 Void |
19 DCast DataType Data
20
21 data Res =
22 Ok Data [ Token ] |
23 Er r S t r i n g
24
25 t ype Token = ( S t r i ng , Data )

Listing A.2: Data Structure for Parser Semantics

A.3 Evaluation Data
This section gives further insights into the data collected during this work. In particular,
it contains all measurements regarding expressibility and performance evaluation.

Table A.1 shows the line counts of the expressiveness evaluation with macros (# w/
M.) and with expanded macros (# w/o M.). Furthermore, each category is assigned
to a meta category that indicates whether we count these lines towards the number of
lines necessary to define low-level developer tools. Furthermore, the following list shortly
describes the concepts that were counted towards a particular category.

• Relocations: Only relocation definitions. Modifier Mapping is counted towards
the assembly category.

• Constants: Definition of constants, for example, word length.
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Category Meta Category # w/ M. # w/o M.
Relocations Low-Level Dev. 2 2
Constants Other 5 5

Calling Conventions Other 9 9
Macro Applications Other 24 0

Alias Register Low-Level Dev. 33 33
Compiler Other 36 36

Types Other 58 58
Encoding Low-Level Dev. 70 158
Structure Other 76 76
Assembly Low-Level Dev. 107 127
Formats Other 211 211

Semantics Other 235 307

Table A.1: Full Line Counts

• Calling Conventions: Defining special purpose registers (e.g., stack pointer) and
sets of callee/caller-saved registers.

• Macro Applications: Applications of macros.

• Alias Register: Aliases for registers. We count this to the assembly meta category
because most assembly code uses aliases instead of canonical names.

• Compiler: Contains sequence definition and custom LLVM patterns.

• Types: Type aliases and enumeration definitions.

• Encoding: Instruction encodings.

• Structure: Hardware structure (e.g., microarchitecture).

• Assembly: Assembly printing function and assembly definition.

• Formats: Formats for instructions and exceptions.

• Semantics: Instruction semantics.

Table A.2 shows the mean assembly duration for all assembler benchmarks. Table A.3
shows the mean linking duration for all benchmarks. An entry with “-” means that the
program could not assemble or link the benchmark.
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Benchmark Official LCB
add-01.s 14.61 14.85
addi-01.s 12.61 13.04
and-01.s 14.43 14.65
andi-01.s 12.69 13.1
auipc-01.s 2.7 3.32
beq-01.s − 66.96
bge-01.s − 67.58
bgeu-01.s − 84.86
blt-01.s − 69.94
bltu-01.s − 84.6
bne-01.s − 70.35

fence-01.s 1.65 1.72
jal-01.s − 234.92
jalr-01.s − 3.43

lb-align-01.s 2.28 2.36
lbu-align-01.s 2.2 2.49
lh-align-01.s 2.21 2.32
lhu-align-01.s 2.23 2.33

lui-01.s 2.35 2.53
lw-align-01.s 2.19 2.3

or-01.s 14.89 14.85
ori-01.s 12.72 13.06

sb-align-01.s 2.44 2.69
sh-align-01.s 2.49 2.72

sll-01.s 3.64 3.84
slli-01.s 3.48 3.61
slt-01.s 14.73 14.76
slti-01.s 12.69 13.04
sltiu-01.s 15.53 15.57
sltu-01.s 17.59 17.66
sra-01.s 3.72 3.76
srai-01.s 3.43 3.59
srl-01.s 3.66 3.94
srli-01.s 3.42 3.7
sub-01.s 14.51 15.03

sw-align-01.s 2.41 2.67
xor-01.s 14.4 14.91
xori-01.s 12.92 13.27

Table A.2: Assembly Performance Data in ms
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Benchmark Official LCB perf. LCB cons.
add-01.s 7.19 7.23 7.2
addi-01.s 7.22 7.37 7.7
and-01.s 7.19 7.14 7.6
andi-01.s 7.23 7.47 7.78
auipc-01.s 6.88 7.39 7.89
beq-01.s − 8.27 10.63
bge-01.s − 8.32 9.92
bgeu-01.s − 8.36 9.85
blt-01.s − 8.32 9.43
bltu-01.s − 8.09 9.82
bne-01.s − 7.92 9.37

fence-01.s 6.91 6.87 7.57
jal-01.s − 8.48 8.86
jalr-01.s − 7.02 7.4

lb-align-01.s 6.88 6.98 7.46
lbu-align-01.s 6.81 6.92 7.32
lh-align-01.s 7.0 6.9 7.33
lhu-align-01.s 6.87 6.92 7.41

lui-01.s 6.92 6.91 7.34
lw-align-01.s 6.98 6.96 7.38

or-01.s 7.04 7.12 7.9
ori-01.s 7.19 7.12 7.59

sb-align-01.s 7.05 7.0 7.46
sh-align-01.s 7.04 7.02 7.56

sll-01.s 6.99 6.96 7.31
slli-01.s 6.84 7.06 7.47
slt-01.s 7.26 7.1 7.61
slti-01.s 7.09 7.14 7.96
sltiu-01.s 7.16 7.22 8.16
sltu-01.s 7.21 7.34 7.85
sra-01.s 7.04 7.06 7.67
srai-01.s 6.97 6.95 7.54
srl-01.s 6.97 7.09 7.72
srli-01.s 7.02 6.94 7.4
sub-01.s 7.28 7.09 7.62

sw-align-01.s 7.49 7.02 7.43
xor-01.s 7.96 7.11 7.62
xori-01.s 7.16 7.16 7.63

Table A.3: Linking Performance Data in ms
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A.4 Study Grammars

This section lists the grammars used for parsing the test suites. Note that some of
these languages use a separate token type for registers (e.g., RISC-V), while others use
identifiers for registers and symbols. This was done to show that both versions are viable.
However, we found writing grammars not separating these concepts easier. Note that
these specifications were designed to simply match all inputs. We did not put much effort
into elegantly abstracting different concepts of the language.

1 s t a t emen t s : ( s ta tement )∗ ;
2
3 s ta t ement
4 : NUMBER ’ : ’ EOS? |
5 IDENTIFIER (
6 ( operand ? ( ’ , ’ operand )∗ ) EOS |
7 ’ : ’ EOS?
8 )
9 ;

10
11 operand :
12 r eg
13 | ’ ( ’ (
14 r eg ’ ) ’ |
15 e x p r e s s i o n ’ ) ’ ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
16 )
17 | m o d i f i e d ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
18 | symbol ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
19 | unaryop e x p r e s s i o n ( ’ ( ’ r eg ’ ) ’ )?
20 | NUMBER ( ’ b ’ | ’ f ’ )? ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
21 | t ype
22 ;
23
24 unaryop : ( ’ ~ ’ | ’ ! ’ | ’− ’ | ’+ ’ ) ;
25 b inop : ( ’<< ’ | ’+ ’ | ’− ’ | ’>> ’ | ’ ∗ ’ | ’ | ’ | ’ | | ’ | ’& ’ | ’&&’
26 | ’ ^ ’ | ’ / ’ | ’%’ ) ;
27 symbol : IDENTIFIER ( ’@ ’ IDENTIFIER )? ;
28 t ype : ’@ ’ IDENTIFIER ;
29
30 e x p r e s s i o n : b i n a r y ;
31 b i n a r y : unary ( b inop b i n a r y )? ;
32 unary : unaryop ? term ;
33 term : ’ ( ’ e x p r e s s i o n ’ ) ’
34 | NUMBER ( ’ b ’ | ’ f ’ )?
35 | symbol
36 | m o d i f i e d
37 ;
38 m o d i f i e d : ’%’ IDENTIFIER ’ ( ’ e x p r e s s i o n ’ ) ’ ;
39 r eg : REG ;

Listing A.3: ANTLR3 Grammar for RISC-V Test Set
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1 s t a t emen t s : ( s ta tement )∗ ;
2
3 s ta t ement
4 : NUMBER ’ : ’ |
5 ( IDENTIFIER | ’ b ’ | ’ f ’ ) (
6 ( operand ? ( ’ , ’ operand )∗ ) EOS |
7 ’ : ’ |
8 ’= ’ e x p r e s s i o n EOS
9 ) |

10 EOS
11 ;
12
13 operand :
14 r eg (
15 ( ’ ( ’ r eg ’ ) ’ )
16 | ’− ’ r eg
17 | ’ [ ’ ( e x p r e s s i o n | r eg ) ’ ] ’
18 )?
19 | ’ ( ’ (
20 r eg ’ ) ’ |
21 e x p r e s s i o n ’ ) ’ ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
22 )
23 | m o d i f i e d ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
24 | symbol ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
25 | unaryop e x p r e s s i o n ( ’ ( ’ r eg ’ ) ’ )?
26 | NUMBER ( ’ b ’ | ’ f ’ )? ( b inop b i n a r y )? ( ’ ( ’ r eg ’ ) ’ )?
27 | ( ’ b ’ | ’ f ’ )
28 | t ype
29 | STRING
30 | FLOAT
31 | ( ’ a t ’ | ’ f p ’ | ’ a r ch ’ ) ( ’= ’ ( IDENTIFIER PLUS? | r eg | NUMBER) ) ?
32 ;
33
34 unaryop : ( ’ ~ ’ | ’ ! ’ | ’− ’ | ’+ ’ ) ;
35 b inop : ( ’<< ’ | ’+ ’ | ’− ’ | ’>> ’ | ’ ∗ ’ | ’ | ’ | ’ | | ’ | ’& ’ | ’&&’ | ’ ^ ’
36 | ’ / ’ | ’%’ ) ;
37 symbol : IDENTIFIER ( ’@ ’ IDENTIFIER )? ;
38 t ype : ’@ ’ IDENTIFIER ;
39
40 e x p r e s s i o n : b i n a r y ;
41 b i n a r y : unary ( b inop b i n a r y )? ;
42 unary : unaryop ? term ;
43 term : ’ ( ’ e x p r e s s i o n ’ ) ’
44 | NUMBER ( ’ b ’ | ’ f ’ )?
45 | ( ’ b ’ | ’ f ’ )
46 | symbol
47 | m o d i f i e d
48 | FLOAT
49 ;
50 m o d i f i e d : ’%’ IDENTIFIER ’ ( ’ ( e x p r e s s i o n | r eg ) ’ ) ’ ;
51 r eg : INTREG | WREG | FLOATREG ;
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Listing A.4: ANTLR3 Grammar for MIPS Test Set

1 s t a t emen t s : ( s ta tement )∗ ;
2 s ta t ement
3 : NUMBER ’ : ’ |
4 ’ . l o h ’ ( IDENTIFIER | NUMBER) ( operand ? ( ’ , ’ operand )∗ ) EOS |
5 ( IDENTIFIER | immmodi f i e r | ’ b ’ | ’ f ’ ) (
6 ’ : ’ |
7 ( f s tOpe rand ? ( ’ , ’ operand )∗ ) EOS
8 ) |
9 EOS

10 ;
11 f s tOpe rand : REG
12 | OBJECT
13 | f s t E x p r e s s i o n
14 | a d d r e s s
15 | t ype
16 | s t r i n g
17 | r e g s e t
18 ;
19 operand : REG
20 | OBJECT
21 | e x p r e s s i o n
22 | a d d r e s s
23 | t ype
24 | s t r i n g
25 | r e g s e t
26 ;
27
28 r e g s e t : ’ { ’ r eg ( ’− ’ r eg ?)? ( ’ , ’ r eg ( ’− ’ r eg ? )? )∗ ’ } ’
29 ( ’ [ ’ NUMBER ’ ] ’ )? ;
30 s t r i n g : STRING ;
31 unaryop : ( ’ ~ ’ | ’ ! ’ | ’− ’ | ’+ ’ ) ;
32 b inop : ( ’<< ’ | ’+ ’ | ’− ’ | ’>> ’ | ’ ∗ ’ | ’ | ’ | ’ | | ’ | ’& ’ | ’&&’ | ’ ^ ’
33 | ’ / ’ | ’%’ ) ;
34 symbol : ( IDENTIFIER | ’ f ’ | ’ b ’ ) ;
35 m o d i f i e r : IDENTIFIER ;
36 t ype : ( ’%’ | ’@ ’ ) IDENTIFIER ;
37 a d d r e s s : ’ [ ’ a dd r e s sExp r ( ’ , ’ add r e s sExp r )∗ ’ ] ’ ’ ! ’ ? ;
38 add r e s sExp r : ( r eg | e x p r e s s i o n | s t r i n g ’@ ’ IDENTIFIER ) ;
39
40 f s t E x p r e s s i o n : f s t B i n a r y ;
41 f s t B i n a r y : f s t U n a r y ( b inop b i n a r y )? ;
42 f s t U n a r y : unaryop ? fstTerm ;
43 f s tTerm : ’ ( ’ e x p r e s s i o n ’ ) ’
44 | symbol
45 | immmodi f i e r (NUMBER | FLOAT | ’#’ unary )?
46 | (NUMBER ( ’ f ’ | ’ b ’ )? | FLOAT | ’#’ unary )
47 ;
48 e x p r e s s i o n : b i n a r y ;
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49 b i n a r y : unary ( b inop b i n a r y )? ;
50 unary : unaryop ? term ;
51 term : ’ ( ’ e x p r e s s i o n ’ ) ’
52 | ( ’ : ’ m o d i f i e r ’ : ’ )? symbol
53 | immmodi f i e r (NUMBER | FLOAT | ’#’ unary )?
54 | (NUMBER ( ’ f ’ | ’ b ’ )? | FLOAT | ’#’ unary )
55 ;
56 immmodi f i e r
57 : ’ l s l ’ | ’ msl ’ | ’ ux tx ’ | ’ a s r ’ | ’ l s r ’ | ’ uxtb ’ | ’ uxth ’ | ’ r o r ’ |
58 ’ sxtw ’ | ’ uxtw ’ | ’ s x t b ’ | ’ s x t x ’ | ’ s x t h ’ ;
59
60 r eg : REG;

Listing A.5: ANTLR3 Grammar for AArchTest Set

1 s t a t emen t s : ( s ta tement )∗ ;
2
3 s ta t ement
4 : ( ’ a c q u i r e ’ | ’ r e l e a s e ’ ) ’ l o c k ’ s ta tement |
5 STRING ’ : ’ EOS |
6 NUMBER ’ : ’ EOS |
7 IDENTIFIER (
8 ( operand ? ( ’ , ’ operand )∗ ) |
9 ’ : ’

10 ) EOS |
11 EOS
12 ;
13
14 operand :
15 e x p r e s s i o n
16 ;
17 maskregmod : ’ { ’ IDENTIFIER ’ } ’ ;
18 unaryop : ( ’ ~ ’ | ’ ! ’ | ’− ’ | ’+ ’ | ’ not ’ ) ;
19 b inop : ( ’<< ’ | ’+ ’ | ’− ’ | ’>> ’ | ’ ∗ ’ | ’ | ’ | ’ | | ’ | ’& ’ | ’&&’ |
20 ’ ^ ’ | ’ / ’ | ’%’ | IDENTIFIER ) ;
21 namedValue : ( IDENTIFIER | STRING) ( ’@ ’ IDENTIFIER )? ( a d d r e s s ) ? ;
22 t ype : ’@ ’ IDENTIFIER ;
23
24 e x p r e s s i o n : b i n a r y ;
25 b i n a r y : unary ( b inop b i n a r y )? ;
26 unary : unaryop ? term ( ’ ( ’ ( IDENTIFIER | NUMBER) ’ ) ’ | maskregmod +)?;
27 term : ’ ( ’ e x p r e s s i o n ’ ) ’
28 | NUMBER ( ’ b ’ | ’ f ’ )?
29 | a d d r e s s+
30 | namedValue
31 | ( ’ST ’ | ’ s t ’ )
32 | ( SIZE ( ’ p t r ’ | ’PTR ’ ) ? ) term
33 | SEGMENTREG ’ : ’ (NUMBER? a d d r e s s ?)
34 | r e g s e t
35 ;
36 r e g s e t : ’ { ’ IDENTIFIER ( ’− ’ IDENTIFIER )? ’ } ’ ;
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37 a d d r e s s : ’ [ ’ e x p r e s s i o n ( ’ , ’ e x p r e s s i o n )∗ ’ ] ’ ;

Listing A.6: ANTLR3 Grammar for x86 Test Set

1 s t a t emen t s : ( bund le )∗ ;
2
3 bund le
4 : s t a t ement
5 | ’ { ’ s ta tement ∗ ’ } ’
6 ;
7
8 s ta t ement :
9 IDENTIFIER (

10 c a l l A r g s ? ( ’ , ’ IDENTIFIER c a l l A r g s ?)?
11 ( ( ’ |= ’ | ’+=’ | ’= ’ | ’^= ’ | ’&=’ | ’−=’ ) e x p r e s s i o n )? |
12 o p l i s t
13 ) EOS |
14 ( ’ i f ’ | ’ IF ’ ) ’ ( ’ e x p r e s s i o n ’ ) ’ s ta t ement |
15 EOS
16 ;
17
18 unaryop : ( ’ ~ ’ | ’ ! ’ | ’+ ’ | ’− ’ ) ;
19 b inop : ( ’<< ’ | ’+ ’ | ’− ’ | ’>> ’ | ’ ∗ ’ | ’ | ’ | ’ | | ’ | ’& ’ | ’&&’ |
20 ’ ^ ’ | ’ / ’ | ’%’ | ’++’ | ’ != ’ ) ;
21 t ype : ’@ ’ IDENTIFIER ;
22
23 e x p r e s s i o n : b i n a r y ;
24 b i n a r y : unary ( b inop b i n a r y ?)? ;
25 unary : unaryop ? term ;
26 term : IDENTIFIER (
27 c a l l A r g s |
28 s e l e c t o r
29 )?
30 | NUMBER
31 | ’#’ (
32 unaryop ? ( IDENTIFIER | NUMBER) |
33 ( ’ HI ’ | ’ h i ’ | ’ l o ’ | ’LO ’ ) ( ’ ( ’ unary ’ ) ’ )? |
34 ’ ( ’ e x p r e s s i o n ’ ) ’
35 )
36 | ’##’ unaryop ? ( IDENTIFIER | NUMBER)
37 | STRING
38 | t ype
39 ;
40 c a l l A r g s : ’ ( ’ o p l i s t ’ ) ’ c a l l o p t ∗ s e l e c t o r ? ;
41 c a l l o p t : ’ : ’ ( ’<< ’ NUMBER | IDENTIFIER ) ;
42 o p l i s t : e x p r e s s i o n ( ’ , ’ e x p r e s s i o n )∗ ;
43 s e l e c t o r : ’ . h ’ | ’ . tmp ’ | ’ . new ’ | ’ . b ’ | ’ .w ’ |
44 ’ . uw ’ | ’ . uh ’ | ’ . ub ’ ;

Listing A.7: ANTLR3 Grammar for Hexagon Test Set
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A.5 Test Programs for Evaluation
This section contains the listings for the test program evaluation.

1 # " H e l l o World " i n MIPS assemb ly
2 # From : l a b s . c s . upt . ro / l a b s / so2 / html / r e s o u r c e s / nachos−doc/ mips f . html
3 . t e x t
4 . g l o b l main
5 main :
6 l i $v0 , 4
7 l a $a0 , msg
8 s y s c a l l 0
9 l i $v0 , 10

10 s y s c a l l 0
11 . data
12 msg : . a s c i i z " H e l l o World !\ n"

Listing A.8: Test Program for MIPS

1 {
2 R1=#1
3 R2=#2
4 }
5 R3=add (R1 , R2)

Listing A.9: Test Program for Hexagon

1 {
2 mov R1=#1
3 mov R2=#2
4 }
5 add R3=add (R1 , R2)

Listing A.10: Modified Test Program for Hexagon

98



List of Figures

2.1 Canonical Compiler Process . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Canonical LLVM Compiler Process . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Feedback Loops in the Design Process . . . . . . . . . . . . . . . . . . . . 33

4.1 Internal and External Instruction Representations . . . . . . . . . . . . . 55

5.1 Comparison of Lines per Category . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Lines devoted to Low-Level Developer Tools . . . . . . . . . . . . . . . . . 72
5.3 Assembly Benchmarks Relative to Official RISC-V . . . . . . . . . . . . . 73
5.4 Linker Benchmarks Relative to Official RISC-V . . . . . . . . . . . . . . . 74

99





List of Tables

4.1 Default Non-terminal Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Possible Casts with LCB Semantics . . . . . . . . . . . . . . . . . . . . . 41
4.3 Operational Types for Grammar Elements . . . . . . . . . . . . . . . . . . 43
4.4 Native Slice Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Default Relocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Fixup Type Description for Expression Types . . . . . . . . . . . . . . . . 64

5.1 List of Specifications used for the Evaluation . . . . . . . . . . . . . . . . 69
5.2 Test System used for Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Results of Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Number of Generated Grammar Rules . . . . . . . . . . . . . . . . . . . . 78
5.5 Performance of Grammar Rule Generation . . . . . . . . . . . . . . . . . . 80

A.1 Full Line Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Assembly Performance Data in ms . . . . . . . . . . . . . . . . . . . . . . 91
A.3 Linking Performance Data in ms . . . . . . . . . . . . . . . . . . . . . . . 92

101





Listings

2.1 An Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Definition of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Definition of Registers and Register Files . . . . . . . . . . . . . . . . 9
2.4 Definition of a Program Counter . . . . . . . . . . . . . . . . . . . . . 10
2.5 Definition of an Instruction Format . . . . . . . . . . . . . . . . . . . . 10
2.6 JType with Immediates . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Definition of a Machine Instruction . . . . . . . . . . . . . . . . . . . . 12
2.8 Definition of Pseudo and Compiler Instructions . . . . . . . . . . . . . 12
2.9 Definition of an Instruction Encoding . . . . . . . . . . . . . . . . . . 13
2.10 Assembly Printing Function . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 Application Binary Interface Definition . . . . . . . . . . . . . . . . . . 14
2.12 Alias Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.13 Calling Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.14 System Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.15 Micro Processor Definition . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.16 Micro Architecture Definition . . . . . . . . . . . . . . . . . . . . . . . 16
2.17 LL Grammars for a Simple Language . . . . . . . . . . . . . . . . . . . 23
2.18 LLVM IR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Basic Grammar Elments . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Basic Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Sequence with Feature Bindings . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Transformation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Grammar Rule for LUI . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Alias Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Modifier Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 Example for Assembly Description Annotations . . . . . . . . . . . . . 45
4.9 Assembly Formatting Function for RISC-V ADDI . . . . . . . . . . . . 46
4.10 Assembly Formatting Function for more complex ADDI . . . . . . . . 48
4.11 Assembly Formatting Function for CSRRW . . . . . . . . . . . . . . . 49
4.12 Generated Parser Rules for CSRRW . . . . . . . . . . . . . . . . . . . 49
4.13 Definition of the Parsing Function . . . . . . . . . . . . . . . . . . . . 51
4.14 Non-terminal Rule and String Literal Semantics . . . . . . . . . . . . . 51
4.15 Sequence and Binding Semantics . . . . . . . . . . . . . . . . . . . . . 52

103



4.16 Alternative Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.17 Semantics of Data Elements . . . . . . . . . . . . . . . . . . . . . . . . 54
4.18 Relocations of the RV32I Processor with Conservative Strategy . . . . 57
4.19 Relocations of the RV32I Processor with Performance Strategy . . . . 59
4.20 Complex Expression with Operand . . . . . . . . . . . . . . . . . . . . 60
4.21 Disassembly of RISC-V Instructions . . . . . . . . . . . . . . . . . . . 64
4.22 Example of a Test Program . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Two Variants of the MIPS LW Instruction . . . . . . . . . . . . . . . . 76
5.2 ANTLR Grammar Snippet for LW Instruction . . . . . . . . . . . . . 76
5.3 Two Variants of the RISC-V JALR Instruction . . . . . . . . . . . . . 77
A.1 Internal VIR Code for the WRegSP Function . . . . . . . . . . . . . . 88
A.2 Data Structure for Parser Semantics . . . . . . . . . . . . . . . . . . . 89
A.3 ANTLR3 Grammar for RISC-V Test Set . . . . . . . . . . . . . . . . . 93
A.4 ANTLR3 Grammar for MIPS Test Set . . . . . . . . . . . . . . . . . . 94
A.5 ANTLR3 Grammar for AArchTest Set . . . . . . . . . . . . . . . . . . 95
A.6 ANTLR3 Grammar for x86 Test Set . . . . . . . . . . . . . . . . . . . 96
A.7 ANTLR3 Grammar for Hexagon Test Set . . . . . . . . . . . . . . . . 97
A.8 Test Program for MIPS . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.9 Test Program for Hexagon . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.10 Modified Test Program for Hexagon . . . . . . . . . . . . . . . . . . . 98

104



Acronyms

ABI Application Binary Interface. 7, 8, 14, 15, 17, 18, 19, 37, 80

ASIC Application Specific Circuit. 1

ASIP Application Specific Instruction Set Processor. 1

AST Abstract Syntax Tree. 8, 13, 24, 33, 40, 66

BNF Backus-Naur form. 24

CAS Cycle-Accurate Simulator. 1, 32, 33, 34, 35

CFG Context-Free Grammar. 21, 22, 23

CSR control and status register. 49, 79

CST Concrete Syntax Tree. 8, 21

DSP digital signal processor. 35

ELF Executable and Linkable Format. 17, 18, 45, 57, 58, 59, 63, 65, 66

GCB Generic Compiler Backend. 8

ILP instruction-level parallelism. 14, 34

IR intermediate representation. 8, 21, 26, 27, 29, 51, 53, 88

ISA Instruction Set Architecture. 7, 9, 10, 12, 13, 14, 19, 20, 28, 32, 33, 34, 35, 37, 49,
62, 65, 66, 69, 81

ISDL Instruction Set Description Langauge. 34

ISS Instruction Set Simulator. 1, 32, 66

LBNF labeled Backus-Naur form. 24

105



LCB LLVM Compiler Backend. 5, 11, 12, 16, 20, 23, 29, 37, 38, 40, 41, 44, 52, 53, 54,
57, 58, 61, 62, 63, 64, 65, 66, 67, 73, 75, 77, 78, 80, 81, 83, 84, 85, 101

LTO link-time optimization. 20

OOP object-oriented programming. 65

PC program counter. 10, 18, 20, 58, 65

PDL Processor Description Language. 1, 5, 7, 13, 31, 32, 33, 34, 35

POJO Plain Old Java Object. 51

RTL Register Transfer Level. 8, 32

SOC System-on-Chip. 34

SSA single static assignment. 8, 25, 26

VADL Vienna Architecture Description Language. 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13,
16, 22, 29, 37, 38, 40, 42, 45, 46, 47, 50, 53, 54, 59, 62, 63, 64, 65, 66, 70, 78, 80, 83,
84, 85, 87, 88, 106

VIR VADL Intermediate Representation. 8, 13, 40, 42, 46, 47, 50, 60, 66, 80, 87, 88, 104

VLIW very long instruction words. 3, 5, 13, 34, 35, 69, 74, 80, 81

106



Bibliography

[ARB+05] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo,
Cristiano Araujo, and Edna Barros. The ArchC architecture description
language and tools. International Journal of Parallel Programming,
33(5):453–484, 2005.

[BBVB+01] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. Manifesto for agile software development. 2001.

[Bou96] Richard J. Boulton. Syn: a single language for specifiying abstract syntax
trees, lexical analysis, parsing and pretty-printing. Technical Report
UCAM-CL-TR-390, University of Cambridge, Computer Laboratory,
March 1996.

[Cho56] N. Chomsky. Three models for the description of language. IRE Trans-
actions on Information Theory, 2(3):113–124, 1956.

[Con58] Melvin E Conway. Proposal for an UNCOL. Communications of the
ACM, 1(10):5–8, 1958.

[CPP+20] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang,
Dan Hao, and Lu Zhang. A survey of compiler testing. ACM Comput.
Surv., 53(1), feb 2020.

[CT11] Keith D Cooper and Linda Torczon. Engineering a compiler. Morgan
Kaufmann, 2nd edition, 2011.

[DBDSVP+04] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique Chanet, and
Koen De Bosschere. Link-time optimization of ARM binaries. SIGPLAN
Not., 39(7):211–220, jun 2004.

[DJ11] Jonas Duregård and Patrik Jansson. Embedded parser generators. vol-
ume 46, pages 107–117, 12 2011.

[FR03] Markus Forsberg and Aarne Ranta. Labelled BNF: a highlevel formalism
for defining well-behaved programming languages. Proceedings of the
Estonian Academy of Sciences. Physics, Mathematics, 52, 01 2003.

107



[FR04] Markus Forsberg and Aarne Ranta. BNF converter. In Proceedings of
the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, page 94–95,
New York, NY, USA, 2004. Association for Computing Machinery.

[Fre91] Markus Freericks. The nML machine description formalism. Leiter der
Fachbibliothek Informatik, Sekretariat FR 5-4, 1991.

[GHK+98] Peter Grun, Ashok Halambi, Asheesh Khare, Vijay Ganesh, Nikil Dutt,
and Alexandru Nicolau. Expression: An ADL for system level design
exploration. Technical report, Citeseer, 1998.

[HD17] Qinheping Hu and Loris D’Antoni. Automatic program inversion using
symbolic transducers. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017,
page 376–389, New York, NY, USA, 2017. Association for Computing
Machinery.

[HH95] John Hughes and Chalmers Hogskola. The design of a pretty-printing
library. 06 1995.

[HHD97] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An
instruction set description language for retargetability. In Proceedings of
the 34th Annual Design Automation Conference, DAC ’97, page 299–302,
New York, NY, USA, 1997. Association for Computing Machinery.

[HVQ+12] Cong Hou, George Vulov, Daniel Quinlan, David Jefferson, Richard
Fujimoto, and Richard Vuduc. A new method for program inversion. In
Michael O’Boyle, editor, Compiler Construction, pages 81–100, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[Knu05] Donald Ervin Knuth. Semantics of context-free languages. Mathematical
systems theory, 2:127–145, 2005.

[LA04] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong
program analysis amp; transformation. In International Symposium on
Code Generation and Optimization, 2004. CGO 2004., pages 75–86, 2004.

[Lev99] John R. Levine. Linkers and Loaders. Morgan Kaufmann, 1999.

[LMB92] John R. Levine, Tony Mason, and Doug Brown. Lex & yacc, 2nd edition.
1992.

[Mar84] P. Marwedel. The MIMOLA design system: Tools for the design of digital
processors. In 21st Design Automation Conference Proceedings, pages
587–593, 1984.

108



[MB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[MD08] Prabhat Mishra and Nikil Dutt. Chapter 1 - introduction to architec-
ture description languages. In Prabhat Mishra and Nikil Dutt, editors,
Processor Description Languages, volume 1 of Systems on Silicon, pages
1–12. Morgan Kaufmann, Burlington, 2008.

[MHJM13] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System
V application binary interface. AMD64 Architecture Processor Supple-
ment, Draft v0, 99(2013):57, 2013.

[MK14] Nicholas D. Matsakis and Felix S. Klock. The Rust language. In Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity
Language Technology, HILT ’14, page 103–104, New York, NY, USA,
2014. Association for Computing Machinery.

[MMHT10] Kazutaka Matsuda, Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi.
A grammar-based approach to invertible programs. In Andrew D. Gordon,
editor, Programming Languages and Systems, pages 448–467, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[Moo00] Robert C Moore. Removing left recursion from context-free grammars.
In 1st Meeting of the North American Chapter of the Association for
Computational Linguistics, 2000.

[MW13] Kazutaka Matsuda and Meng Wang. FliPpr: A prettier invertible
printing system. In Matthias Felleisen and Philippa Gardner, editors,
Programming Languages and Systems, pages 101–120, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[Pan01] Preeti Ranjan Panda. SystemC: A modeling platform supporting multiple
design abstractions. In Proceedings of the 14th International Symposium
on Systems Synthesis, ISSS ’01, page 75–80, New York, NY, USA, 2001.
Association for Computing Machinery.

[PHZM99] Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr.
LISA—machine description language for cycle-accurate models of pro-
grammable DSP architectures. In Proceedings of the 36th Annual
ACM/IEEE Design Automation Conference, pages 933–938, 1999.

[PQ95] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL (k)
parser generator. Software: Practice and Experience, 25(7):789–810,
1995.

109



[RO10] Tillmann Rendel and Klaus Ostermann. Invertible syntax descriptions:
Unifying parsing and pretty printing. SIGPLAN Not., 45(11):1–12, sep
2010.

[RS69] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top
down grammars. In Proceedings of the First Annual ACM Symposium
on Theory of Computing, STOC ’69, page 165–180, New York, NY, USA,
1969. Association for Computing Machinery.

[RWZ88] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Global value
numbers and redundant computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 12–27, 1988.

[Sis98] C. Siska. A processor description language supporting retargetable
multi-pipeline DSP program development tools. In Proceedings. 11th
International Symposium on System Synthesis (Cat. No.98EX210), pages
31–36, 1998.

[SL08] Armando Solar-Lezama. Program synthesis by sketching. University of
California, Berkeley, 2008.

[WLP+14] Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic, Vol-
ume I User level Isa, Andrew Waterman, Yunsup Lee, and David Pat-
terson. The RISC-V instruction set manual. Volume I: User-Level ISA,
version, 2, 2014.

[YCER11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’11, page 283–294, New York, NY, USA, 2011. Association
for Computing Machinery.

[ZLWG20] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glass-
man. Interactive program synthesis by augmented examples. In Proceed-
ings of the 33rd Annual ACM Symposium on User Interface Software
and Technology, UIST ’20, page 627–648, New York, NY, USA, 2020.
Association for Computing Machinery.

110


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of this Work
	Methodological Approach
	Research Questions
	Structure of this Work

	Preliminaries
	Vienna Architecture Description Language
	Low-Level Developer Tools
	Parsing
	Pretty Printers and their Inversions
	LLVM
	Testing Compilers

	State of the Art
	Implementation
	Language Design
	Grammar inference
	Immediate Representation
	Tool Generation
	Testing

	Evaluation
	Expressiveness
	Tool Performance
	Assembly Language Study
	Grammar Rule Generation
	Flexibility

	Future Work
	Conclusions
	Appendix
	VADL Intermediate Representation - Further Information
	Parser Semantics Data Structures
	Evaluation Data
	Study Grammars
	Test Programs for Evaluation

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

