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Abstract

Identifying tractable problems and providing polynomial time algorithms for them has long
been a key focus in the study of computational complexity. More recently, the focus has been on
trying to identify tractable fragments of problems that are, in the general case, intractable. One
such line of work is to look at the structural properties of problems such as constraint satisfaction
and conjunctive query evaluation. The structure of these problems is naturally expressed as
hypergraphs, and it is a long standing result that instances of these problems whose underlying
hypergraph structure is acyclic are solvable in polynomial time. This then led to generalisations
of acyclicity, in the form of hypergraph decompositions and the notion of width which signifies
the complexity of the hypergraph that is being decomposed. Finding decompositions of low
width, or determining quickly that none may exist, is thus of key importance for identifying and
solving tractable fragments of constraint satisfaction problems or conjunctive query evaluation.
In this thesis, we advance the ability to provide such low-width decompositions or proofs of
their non-existence for these important problems.

As a first step, we focus on the particular type of hypergraph decomposition known as generalized
hypertree decompositions (GHD). For this class, we provide the first parallel algorithm, called
BalancedGo, that makes use of balanced separators. We also provide a number of general
optimisations in the form of pre-processing steps and prove that they do not affect the correctness
of any algorithm making use of them. We also show the potential of combining multiple distinct
algorithms into one, and showcase the practicality of this by implementing a hybrid algorithm
which combines our novel parallel algorithm with an older sequential one. This hybrid system
turned to out to combine the best of both worlds, combining the strengths of each individual
method. We conclude this first study with an extensive experimental evaluation of our developed
methods against other state of the art methods for computing GHDs and show that our hybrid
system outperforms all other approaches.

Following this, we explored another type of hypergraph decomposition, namely (regular)
hypertree decompositions (HD). These represent a smaller class of hypergraph decompositions
when compared to GHDs, which have the desirable property of being computable in polynomial
time, when looking at decompositions of a fixed width. On the other hand, HDs are rooted,
and our GHD algorithm constructs fragment of the GHD and heavily depends on re-rooting
these fragments when combining them. In order to allow the use of balanced separators for
constructing HDs, we provide an entirely new idea. This involved guessing pairs of nodes,
parent node and child node. This allowed us to construct an HD in arbitrary order, allowing
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for the implementation of a parallel algorithm which can then use balanced separation to split
the hypergraph into subproblems and work on them concurrently. We also describe how a
series of optimisations allowed us to lessen the computational cost of the guess of pairs of
nodes. We again conclude this line of study by an extensive experimental evaluation, this time
focusing on state of the art decomposition methods for HDs and we show that our novel method
log-k-decomp, as part of a more involved hybrid algorithm, managed to provide the best results.

Finally, we also explore the use of highly distributed systems for the computation of hypergraph
decompositions. The focus on these distributed systems is motivated by two observations: the
first one is the presence of very large hypergraphs in the commonly used benchmarks, which
all existing state of the art methods have failed to solve optimally and the second one is the fact
that the most computationally powerful systems are all highly distributed machines, composed
of a large number of interconnected computers. Currently proposed methods cannot claim to
make use of these distributed systems, as they need shared memory architectures, limiting them
to be run on a single machine. By taking on some key ideas from the recent work of Gottlob,
Lanzinger, Pichler and Razgon (JACM, 2021), we propose a novel algorithm, composed of several
individual programs that can work concurrently. This distributed system is built on the notion
of a block – which encodes subhypergraphs which need to be decomposed – and allows workers
to independently search for balanced separators for all possible subhypergraphs that need to be
explored to find a decomposition. These blocks are then processed at a central location to see if
a decomposition of the input hypergraph has been found. This forms a distributed system and
it has the property that the search for balanced separators can – in principle – use an unlimited
number of machines and CPUs and thus tackle ever larger instances. We also develop a first
prototype of this distributed algorithm and report on preliminary experimental results.

viii



Kurzfassung

Das Identifizieren von praktisch lösbaren Problemen und das Entwickeln von konkreten Algo-
rithmen die diese in Polynomialzeit lösen können ist ein Hauptaugenmerk der Komplexitäts-
theorie. In jüngerer Zeit lag der Schwerpunkt auf dem Versuch, praktisch lösbare Fragmente
von Problemen zu identifizieren, die im allgemeinen Fall nicht praktisch lösbar sind. Eine solche
Forschungsrichtung beschäftigt sich damit die strukturellen Eigenschaften von Problemen
zu untersuchen, wie z. B. das Lösen eines Constraint-Satisfaction-Problems (CSP; deutsch:
Bedingungserfüllungsproblem) oder das Auswerten einer Conjunctive Query (CQ; deutsch: kon-
junktive Anfrage). Die Struktur dieser Probleme wird in der Regel als Hypergraph ausgedrückt,
und es ist ein bekanntes Ergebnis, dass Instanzen dieser Probleme, deren zugrunde liegende
Hypergraphenstruktur azyklisch ist, in Polynomialzeit lösbar sind. In der Folge führte dies
dann zu Werken die die Verallgemeinerung von Azyklizität untersuchten. Dies führte dann
zu Hypergraph-Zerlegungen und dem Begriff von width (deutsch: Breite), der die Komplexität
des zu zerlegenden Hypergraphen erfasst. Das Auffinden von Zerlegungen mit niedriger width
oder das schnelle Bestimmen, dass keine solche Zerlegungen vorhanden sind, ist daher von
entscheidender Bedeutung für das Identifizieren und Lösen effizient lösbarer Fragmente von
CSP sowie die Auswertung von CQs. In dieser Dissertation ergründen wir neue Methoden um
Zerlegungen mit geringer width effizient zu finden.

In einem ersten Schritt betrachten wir eine spezielle Art der Hypergraph-Zerlegung, die als
generalized hypertree decomposition (GHD; deutsch: verallgemeinerte Hyperbaum-Zerlegung)
bekannt ist. Für diese Klasse stellen wir den ersten parallelen Algorithmus bereit, genannt
BalancedGo, welcher Resultate zu balancierte Separatoren aus der Graphtheorie verwendet.
Wir entwickeln auch eine Reihe allgemeiner Optimierungen, die auf eine allgemeine Klasse
von Algorithmen zur Berechnung von Hypergraph-Zerlegungen anwendbar sind, und wir
beweisen, dass diese Optimierungen sicher zu verwenden sind, d. h. sie beeinträchtigen die
Korrektheit der Algorithmen nicht. Wir zeigen auch das Potenzial, mehrere unterschiedliche
Algorithmen zu einem zu kombinieren, und demonstrieren den praktischen Nutzen dieser
Kombination, indem wir einen hybriden Algorithmus implementieren, der unseren neuartigen
parallelen Algorithmus mit einem älteren sequentiellen kombinieren. Es stellte sich heraus, dass
Hybridsysteme das Beste aus beidenWelten kombiniert und die Stärken der einzelnen Methoden
vereinen. Wir beenden diese erste Studie mit einer umfangreichen experimentellen Evaluierung
unserer entwickelten Methoden im Vergleich zu anderen Methoden aus der Literatur und zeigen,
dass unser Hybridsystem alle anderen Ansätze schlagen kann.
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Anschließend haben wir eine andere Art der Hypergraphen-Zerlegung untersucht, nämlich
(reguläre) hypertree decompositions (HD; deutsch: Hyperbaum-Zerlegung). Diese stellen eine
kleinere Klasse von Hypergraph-Zerlegungen im Vergleich zu GHDs dar, die die wünschenswer-
te Eigenschaft haben, in Polynomialzeit berechenbar zu sein, wenn Zerlegungen mit konstanter
width betrachtet werden. Die Eigenschaften von HDs machen es schwierig, den gleichen Ansatz,
den wir für GHDs verwendeten, direkt wieder zu verwenden. Stattdessen präsentieren wir hier
eine völlig neue Idee. Dies beinhaltete das Erraten von Knotenpaaren in der finalen HD, je
einen Elternknoten und je einen Kindknoten. Das Berücksichtigen aller dieser Kombinationen
ermöglichte es uns, eine HD in beliebiger Reihenfolge zu konstruieren, was in der Folge die
Implementierung eines parallelen Algorithmus ermöglichte, der dann balancierte Separatoren
verwenden kann, um den Hypergraphen in Teilprobleme aufzuteilen und parallel an ihnen zu
arbeiten. Wir beschreiben auch, wie wir durch eine Reihe von Optimierungen den Rechenauf-
wand für das Schätzen von Knotenpaaren verringern konnten. Wir schließen dieses Kapitel
erneut mit einer experimentellen Evaluierung ab, diesmal mit Fokus auf moderne Methoden für
das Berechnen von HDs, und wir zeigen, dass unsere neuartige Methode log-k-decomp, als Teil
eines komplexeren Hybridalgorithmus, die besten Ergebnisse erzeugt.

Schließlich untersuchen wir auch die Verwendung verteilter Systeme zur Berechnung von
Hypergraph-Zerlegungen. Der Fokus auf diese verteilten Systeme ist durch zwei Beobach-
tungen motiviert: die erste Beobachtung ist die Existenz von sehr großen Hypergraphen in
den Benchmarks die für Hypergraph-Zerlegungen verwendet werden. Diese sehr schweren
Instanzen konnten von keinem der bestehenden Methoden optimal gelöst werden. Die nächste
Beobachtung ist die Tatsache, dass die rechen-stärksten Computersysteme in der Regel nicht aus
einzelnen Maschinen bestehen, sondern aus einer großen Anzahl an verbundenen Maschinen.
Die bisher vorgeschlagenen Methoden zur Hyperbaum-Zerlegung sind allerdings nur dafür
gedacht, auf Einzelmaschinen zu laufen. In dem wir Schlüsselideen aus einer neuen Arbeit
von Gottlob, Lanzinger, Pichler und Razgon (JACM, 2021) übernehmen, entwickeln wir einen
neuartigen Algorithmen, welcher aus mehreren individuellen Programmen besteht welche
simultan arbeiten können. Dieses verteilte System basiert auf der Idee von Blöcken – ein Block
ist hier stellvertretend für einen konkreten Teilhypergraphen welcher zerlegt werden muss –
und erlaubt es dass Arbeiter unabhängig von einander nach balancierten Separatoren für alle
möglichen Teilhypergraphen suchen, welche untersucht werden müssen um eine Hypergraph-
Zerlegung zu finden. Diese Blöcke werden dann an eine zentrale Stelle gesendet, wo dann
festgestellt werden kann ob bereits genug Information vorhanden ist um eine vollständige
Hypergraph-Zerlegung bestimmen zu können. In Summe formt dies ein verteiltes System und
es hat die Eigenschaft dass die Suche nach balancierten Separatoren auf einer unbeschränkten
Anzahl an Maschinen ausgeführt werden kann. Wir entwickeln als Teil dieser Arbeit auch einen
ersten Prototypen von diesem verteilten Algorithmus und berichten von ersten experimentellen
Ergebnissen.
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Chapter 1

Introduction

In order to make this thesis approachable for a general audience, the first two sections of this
introduction are written with somewhat less technical rigour, motivating instead the high-level
ideas leading to the relevant research questions. Starting from Section 1.3, we provide a more
technical description into the use of structural decomposition methods in the area of constraint
satisfaction problems as well as conjunctive query evaluation. A reader that is more familiar
with either of these topics can easily omit the initial sections and jump directly to Section 1.3.

The work presented here was created in close collaboration with many colleagues. Detailed
acknowledgments and key publications for the research topics of this thesis are provided in
Section 1.4.

1.1 Importance of Constraint Satisfaction Problems

Many problems we face in real life can be described as having a large set of possible choices one
is faced with, while only having a relatively small set of actual solutions. One common example
that many people likely face are scheduling problems of any kind. One needs to arrange a
meeting, or a party, or any other kind of event where some number of people need to attend
for some time. The problem lies in the fact that every person has some constraints. These can
be things like their work hours, having to bring their children to school or other events they
have already scheduled before. If not everyone can agree on the same date, we might also have
to choose which combination of people we want to invite or we might also try changing the
duration of the event. It is easy to see that as the number of participants grows and our options
to modify parameters of the event, this problem becomes ever harder to solve. Another problem
with similar properties can be found in many newspapers, the crossword puzzle. One is given
a grid, with empty boxes and some black ones that are blocked. Each row and column has
some hint, a word that is sought. The difficulty lies not only in finding words that have the
right length and match the given clue, but also finding words that are consistent with the other
solutions, where they cross in the grid. Thus, in addition to the potentially large number of
possible words that satisfy the hint, we need to consider their combinations too. As this type
of problem grows, the search space explodes in size. An example for a crossword puzzle can
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1. Introduction

1 2

3

4

5 Across Down

1. deity 2. not young
3. song of praise 5. furniture for sleeping
4. body of water

Figure 1.1: An example for a crossword puzzle. On the left is the grid where the solution needs
to be provided, on the right are the definitions of the puzzles which need to be solved.

be seen in Figure 1.1. Finally, another type of problem common in real-life are configuration
problems. When purchasing a new car, for example, there is a large number of options on
additional features that the car could have. For each category, like the type of tyre, we are given
a list of available choices. Between two separate categories, there might be interdependencies.
One choice in one category might require the choice of another option in another category. By
that same logic, two choices in separate categories might also exclude each other. As before, as
the number of categories and options increases, the number of possible combinations rises too
and in fact it rises exponentially. All these problems are known as combinatorial problems and
in case we have some goal we want to minimise or maximise, one also speaks of combinatorial
optimisation. CSPs also occur very frequently in Artificial Intelligence research [10, 28, 66, 76].

For all three examples, we could try to find solutions by testing every possible combination,
essentially enumerating the entire search space. Indeed, for very small instances, such as the
small crossword puzzles one finds in the newspaper, this might be a good idea, with little
implementation overhead and giving us a solution in reasonable time. If we consider larger
instances, however, this method, called a brute force method, will require more and more time
as the search space grows, quickly reaching its limits. Without a similarly exponential growth
in computational power, we would require far better algorithms to solve such complex instances
of combinatorial problems. Due to the fact that many of these combinatorial problems are
NP-hard [17], it is generally assumed that there is no way of finding an algorithm to solve them
in polynomial time.

The formalism of constraint satisfaction problems (CSP) very naturally captures these types
of problems, and despite the computational complexity we mentioned, the need to solve these
problems in the real world has led to many highly sophisticated CSP solvers to be developed.
These solvers are capable of solving many instances in reasonable time and continue to improve,
as can be seen by various competitions. Despite the success of this area, however, there are still
many hard instances that cannot be solved well. This is of course not surprising, as we are still
talking about NP-hard problems. However, developments such as the rise of Big Data in the
real world will likely only push the need to solve ever larger combinatorial problems, and thus
there is a constant need to identify ever larger fragments that can be solved efficiently.

Our work will highlight one promising idea for how to speed up CSP solving, by the use of
the structural properties of CSPs. By the structure, we refer to how things are connected. To
return to the example of the crossword puzzle, we can already see the structure of the problem
in its grid layout. Every word that needs to be filled in can, in principle, intersect with a large
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1.2. Importance of Conjunctive Queries

number of other words. It is these intersections that lead to a combinatorial explosion in the
search space. These structural properties are therefore a critical component for the complexity
of CSPs. Our work is now aimed at providing tools that allow for nearly all real world CSPs to
quickly identify whether they are solvable in polynomial time due to such properties.

1.2 Importance of Conjunctive Queries

Another area that is perhaps even more important to every day life, especially in the commercial
area, is the use of databases. Storing large amounts of structured data and being able to answer
queries on that data in a short amount of time is crucial to our modern world. There is essentially
no complex system which needs to work in any form with large amounts of information that
is not reliant on this. For the sake of brevity and since it can be assumed that practically any
reader will be familiar with the use cases for databases, we will omit any specific examples here.

For our work, we want to focus on a specific subset of queries that one can pose to a relational
database management system (RDBMS). We will refer to this subset as conjunctive queries (CQs),
and a more formal definition will follow later in this thesis. For the purposes of this introduction,
it should suffice to claim that CQs correspond to simple SELECT-FROM-WHERE queries in
SQL, where only equality between table attributes is allowed in the WHERE clause. To be more
specific, we are also excluding the ability to form subexpressions within either clause, and we
also exclude the use of any views. The latter is not a real restriction, however, since one can
simply “unpack” the view, as long as the view itself is still a CQ, to form a larger expression.

It might be surprising that this limited subset of SQL is already NP-complete in combined
complexity [11]. That is, unless P = NP, it is impossible to solve this type of problem efficiently.
The reason for this lies in the fact that CQs allows us to encode combinations of potential
solutions. To connect it with the crossword example in CSPs, we can use the individual tables
to store the possible words for a given row or a given column, and then use join conditions to
indicate where the solutions must overlap to satisfy the crossword instance.

In many systems, heuristics are used to tackle ever larger instances of CQs. As the number
of tables that need to be joined increases, systems struggle to find effective query plans. The
RDBMS PostgreSQL [75], for example, uses genetic algorithms to try to find some order of joins
that will yield the best run time, when dealing with queries which involve a high number of
tables. Unsurprisingly, these approaches have no runtime guarantees what so ever. A recent
paper that explores this topic is from Mancini et al. [70]. They produce synthetic CQs over
a real-world database, and show that existing RDBMSs have a very hard time dealing with
queries that involve a larger number of tables, while their own research prototype for a parallel
query engine is still able to solve a majority of them within milliseconds, even in cases where
PostgreSQL times out.

It is notable that when one analyses the synthetic queries from [70], it turns out that a majority
of them are acyclic. It is a long standing result in the literature that CQs, despite their complexity
in the general case, are solvable in output-polynomial time when the structure of the instance
is acyclic [93]. So despite being faced with tractable instances, modern RDBMSs do not achieve
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1. Introduction

Figure 1.2: An example visualisation of a hypergraph.

competitive run times. Clearly the use of structural properties would be a natural idea. One of
the core aims of our work is to give these systems better tools to identify acyclicity as well as
generalisations of acyclicity very quickly, and also provide witnesses that show how a good
query plan might look like in the form of hypergraph decompositions. While we do not believe
that decompositions alone will suffice to enable RDBMSs to solve these CQs efficiently, as further
quantitative information also needs to be considered, it is a first important step in this direction.
We note again that our aim here is not to provide prototypes for the use of decompositions, but
instead solve the more fundamental problem of producing decompositions. After all, without
the ability in the first place to quickly produce good decompositions for a large number of
real-word instances, the question of using them cannot have practical value.

1.3 Exploiting Generalisations of Acyclicity

When talking about the structure of CQs or CSPs, or really any kind of problem, it is sensible to
use graphs, since they allow us to model only the structure – how various parts of the instances
connect with each other – and abstract away all the other aspects of the problems. In the case of
CQs, which correspond to simple SELECT-FROM-WHERE queries in SQL [3], we think of each
table as a set and the attributes of the tables to be elements within this set. This gives us initially
a disjoint set, as each table has distinct attributes. In the next step we look at the equalities in
the WHERE clause and represent two attributes that appear inside an equation by only one
element. Thus the sets will be connected by shared elements exactly as the corresponding tables
are “connected” via their joins.

To express the structure of these sets, we make use of a generalisation of graphs which is called
hypergraphs. Instead of edges only containing two vertices, we generalise the notion of edge to
hyperedge, where a hyperedge can contain an arbitrary amount of vertices. Thus we can easily
represent the interconnected set of sets we described above as a hypergraph, which is just a
set of hyperedges. An example visualisation of a hypergraph can be seen in Figure 1.2. This
hypergraph has eight hyperedges, and the visualisation shows the vertex sets that make up
each hyperedges, for example 𝑒6 consisting of the vertex set {ℎ, 𝑖, 𝑗}.
While there is only a singular notion of acyclicity for regular graphs, there are multiple possible
notions for acyclicity when looking at hypergraphs. For a thorough introduction to types of
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1.3. Exploiting Generalisations of Acyclicity

acyclicity in hypergraphs, we refer the interested reader to [21]. Throughout this thesis, we
shall use the notion of 𝛼-acyclicity when talking about the acyclicity of hypergraphs. It has
been shown by Yannakakis [93] that solving CQs is tractable when they exhibit an acyclic
structure. This is made more precise by Gottlob, Leone and Scarcello [41] who show that this is
evaluating acyclic CQs is complete for the complexity class LogCFL. 𝛼-acyclicity has long been
known to lead to many useful applications in database theory [9, 94]. Since the two problems of
CSPs and CQs can be reduced to each other, the same algorithm gives rise to a polynomial-time
algorithm for solving CSPs as well.

So while the problems of CSP solving and CQ evaluation are tractable when we deal with acyclic
instances, this does not immediately help us when dealing with cyclic cases. Especially for
CSPs, it is not at all unusual to have cycles.

When looking at regular graphs, a very common generalisation of acyclicity is the use of tree
decompositions (TD) [80, 81]. We formally introduce this concept in the next chapter. Since
connected, acyclic regular graphs are simply trees, TDs measure the “closeness” of a graph
to tree. A tree decomposition is a tree where the nodes of the tree have a bag, which is a set
of vertices from the graph. For every edge of the graph, there needs to be a node whose bag
contains all its vertices. Furthermore, when looking at all nodes of the TD that contain a certain
vertex in their bag, then this subset of nodes must form a connected subtree within the tree
decomposition. For a given tree decomposition, its width is simply the size of the largest bag
minus one. And the treewidth of a graph is smallest width across all its tree decompositions.
The closeness of a graph to a tree is expressed by its treewidth, where a treewidth of 1 indicates
that we are dealing with trees, and the higher the width gets, the more “cyclicity” the graph
exhibits. For a class of graphs, we say it has “bounded treewidth” if there exists a constant such
that no graph in the class has a treewidth higher than this constant.

To use TDs for hypergraphs, we simply adapt the first property and define analogously that
for TDs of hypergraphs it must hold that for each hyperedge of the hypergraph there needs to
exist one node in the TD such that its bag contains all vertices of the hyperedge in question.
The problem with TDs when using them for hypergraphs lies in the fact that the width of TDs
is dependent on the size of the hyperedges covered in the bags. For regular graphs this is not
a problem as all edges have the same size. In hypergraphs, this means that even classes of
𝛼-acyclic hypergraphs may have an unbounded treewidth: simply look at hypergraphs that
consist of a single hyperedge, of unbounded size. Thus TDs are not a useful tool if we want
to find islands of tractability for CQ evaluation and CSP solving based on their hypergraph
structure.

The solution came in the form of hypergraph decompositions. To the best of our knowledge, the
first of these were query decompositions, introduced by Chekuri and Rajaraman [14]. We shall
not focus on them in this work, and will instead focus on the notion of hypertree decomposition
from Gottlob, Leone and Scarcello [43]. There are two reasons for this. The first reason
is that for a given hypergraph and positive integer 𝑘 , computing query decompositions is
intractable, even when only looking at query decompositions of width at most 𝑘 . On the other
hand, this problem is tractable for hypertree decompositions. The second reason is that query
decompositions cannot permit lower widths for a given hypergraph when comparing them
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to hypertree decompositions, as is shown in [43]. Hypertree decompositions are extensions
of TDs which additionally also have an edge cover. Thus in addition to the bag, each node
of a hypertree decomposition has an edge cover too, which is a set of hyperedges and it is
required that the union of the vertices of the hyperedges is a superset of the bag. The width of
a hypertree decomposition is the size of the largest edge cover. Thus the width measure is no
longer about the number of vertices of the involved edges, but instead directly about the number
of edges needed to cover the vertices of the bag. We identify as the hypertree width (h𝑤 ) of a
hypergraph the smallest width of all its hypertree decompositions. Hypertree decompositions
actually properly generalise 𝛼-acyclicity. All acyclic hypergraphs are identified by the fact that
they have a h𝑤 of 1. To more formally explain why we focus on hypertree decompositions, we
need to introduce the formal problem that our work will focus on solving.

CheckHD
Input hypergraph 𝐻 = (𝑉 , 𝐸);
Parameter 𝑘 ;
Output HD of 𝐻 of width ≤ 𝑘 if it exists and answer ‘no’ otherwise.

As we said before, the crucial property of hypertree decompositions is the fact that the CheckHD
problem can be solved in polynomial-time. We say a family of hypergraphs has bounded hypertree
width, if there exists some constant 𝑘 such that every hypergraph in this family has hw of
less or equal 𝑘 . It has been shown that many results that hold on acyclic CQs or CSP can
be naturally generalised for CQs or CSPs with bounded hypertree width [79]. There are also
results in the literature that show the application of hypertree width in areas beyond CQs
and CSPs [31, 32, 33]. There have since also been further generalisations, such as generalized
hypertree decompositions [4], fractional hypertree decompositions [53] and when focusing on
width measures alone, even further generalisations such as adaptive width [72] or submodular
width [73]. For the purposes of this thesis, we will restrict our focus on only two classes of
decompositions, generalized hypertree decompositions and (regular) hypertree decompositions.

The use of hypergraph decompositions has also found its way into experimental database
systems or CSP solvers [1, 2, 5, 7, 56, 67, 77, 90], as well as commercial systems [59, 60, 61, 62].
These research prototypes and early commercial systems show the potential of hypergraph
decomposition for the areas of CQ evaluation and CSP solving.

There have also been initial attempts at computing hypergraph decompositions [23,25,50,64,74,
86]. When looking at comprehensive data which compares their performance against real-world
datasets of hypergraphs, however, these first attempts show their limitations. Thus, while we
are given a promising solution to checking structural properties and providing witnesses in
the form of hypergraph decompositions, there is still more work to do to make this useable in
practice for a large class of instances of CSPs and CQs. This is exactly where this thesis picks up,
aiming to provide significant improvements to the practical computation of various hypergraph
decomposition methods.
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In order to measure the effectiveness of any hypergraph decomposition method, there needs to
be a benchmark of hypergraphs, representing a diverse sample of possible hypergraph structures.
Such a dataset was provided by Fischl, Gottlob, Longo and Pichler [39] in the form of HyperBench.
It consists of 3648 hypergraph instances, from a large variety of sources. This dataset features
hypergraphs of real-world instances of CSPs and CQs, as well as synthetic instances. It contains a
diverse set of hypergraphs and therefore provides a meaningful benchmark for the effectiveness
of a given decomposition method in practice. HyperBench has since been used many times in the
literature for the purpose of experimental evaluation of decomposition methods [20,37,49,85,86].

Combinatorial top-down hypergraph decomposition. Before we list our contributions,
we must first introduce some key notions that make up the type of algorithm we explored and
designed in our work. The first such algorithmwas designed by Gottlob, Leone and Scarcello [43].
This was a theoretical algorithm which was meant to run on a generalisation of Turing Machines
called Alternating Turing Machines [12]. As such, it is not suitable for a direct implementation in
real-world machines. The two core ideas of combinatorial guess of edge covers, and a top-down
construction of a hypergraph decomposition, were already present. The first deterministic
algorithm, which replaced the mechanism of guessing among a set of combinations with a
backtracking-based search, was provided by Gottlob and Samer [50], called det-𝑘-decomp.
The backtracking is necessary to ensure that in the search for a decomposition, all possible
choices for a node and all possible choices for building a decomposition by combinations of
nodes are accounted for. The soundness and, of particular importance, the completeness of this
algorithm was also shown by the authors. In the sequel, we will refer to these concepts, namely
combinatorial, backtracking-based, top-down algorithms for hypergraph decomposition.

1.4 Main Challenges and Contributions

We have so far highlighted the potential of hypergraph decompositions for the tasks of solving
CSPs and the evaluation of CQs, as they generalise the useful properties of acyclicity for a larger
class of instances. They thus bring very desirable complexity guarantees for these instances
and the use of decompositions would extend the ability of existing CSP solvers and RDBMS to
solve more effectively a larger class of instances. Nonetheless, to achieve this goal the ability to
provide hypergraph decompositions for real-world instances needs to be improved. We present
here a number of research questions and challenges related to this endeavour and answer some
of these questions as well as tackle some of the involved challenges.

The contributions we detail in this thesis were only possible through the joint work of multiple
collaborators and the actual list of collaborators as well as key publications will be listed in the
respective chapters.

1.4.1 The Fast and Parallel Computation of Generalized Hypertree
Decompositions

The work presented as part of this subsection was achieved in close collaboration with Georg
Gottlob and Reinhard Pichler. The main results were first published at the International Join
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Conference for Artificial Intelligence (IJCAI) 2020 [47]. Initial work on this topic was also pub-
lished at the Alberto Mendelzon International Workshop on Foundations of Data Management
in 2019 [46]. An extended version of the first publication was subsequently submitted to the
journal Constraints, and accepted in 2022 [49].

When considering the problem of computing GHDs and aiming to extend the ability to compute
optimal decompositions for awider class of instanceswithin a given time budget, one observation
is that none of the previously existing state of the art decomposition methods for GHDs utilised
parallelisation. As our aim must be to utilise existing hardware to the best possible extent, it
is apparent that purely sequential solutions cannot actually claim to do so. Aside from small
embedded systems, virtually all computing hardware has multi-core CPUs. Thus it seems natural
to ask if we can make use of parallelisation when tackling the problem of GHD computation.

Research Challenge: Are there effective parallel algorithms for the computation
of generalized hypertree decompositions?

To give more context for why this is a complex problem, we shall highlight some key issues that
effective combinatorial algorithms for computing GHDs need to address to meet this challenge.

Minimising synchronisation delay as much as possible As we are ultimately talking
about search problems, any parallel implementation will need to split the search space into
multiple parts. To achieve any kind of improvement in the time needed to find a solution, the
implementation needs to ensure that any effort needed to synchronise parts of the search does
not cause so much delay that any gains by the splitting of the search space are offset.

Finding a way to partition the search space equally among CPUs, and thus utilising
the resources optimally As the aim is to use modern hardware optimally, it is also critical
to design parallel algorithms for GHD computation which ensure that the work is split equally
among the various CPU cores. This is needed to make sure that we can avoid idle times where
one or more cores do not have any work to do, thus wasting resources.

Supporting efficient backtracking, a key element of all structural decomposition al-
gorithms presented so far As we will explain when more formally introducing top-down
approaches for computing hypergraph decompositions, backtracking is a key part of all of
them. In addition to the two challenges above, a parallel algorithm also needs to ensure that
backtracking is supported. This includes that no work must be lost when restarting the search
and trying to find another possible solution, made harder for a parallel search split up among
multiple cores.

Main Result 1: We have designed a novel parallel algorithm for the computation
of GHDs and provide also an implementation using the programming language Go.
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We were able to meet this challenge, in part due to utilising the modern programming language
Go, designed by a team at Google in 2009. Among its many features, it implements support for
concurrency via the use of so-called “goroutines”, themselves strongly inspired by the concept
of communicating sequential processes [57]. Go provided us with the tools needed to implement
a parallel algorithm for the computation of GHDs. The basis for this parallel implementation
was the balanced separator algorithm introduced in [25].

While the use of parallelisation provided us a major speed-up, there were many cases that were
still not solvable within our set time budget when run on our test machines. As a next step, we
thus considered if there was still room to improve the implementation of top-down algorithm
as a whole, looking beyond just our particular implementation. This led to the next challenge.

Research Challenge: Are there general improvements for the computation of
hypergraph decompositions?

For this challenge, while also aiming to provide optimisations which are specific to GHDs, we
also wanted to systematically explore whether there are general ways of speeding up algorithms
for hypergraph decomposition. We thus worked out a number of optimisations, consisting of
the preprocessing of hypergraphs to reduce the effective search space. In addition to this, we
also provide ways to speed up the search for balanced separators in the setting of GHDs via a
more intelligent use of assumptions like the bounded intersection property (BIP), to be detailed
in the next chapter.

Main Result 2: We provide a number of algorithmic optimisations and techniques
to speed up the computation of GHDs, applicable even beyond our research proto-
type.

Even after this step, we still noticed that the performance of many of the individual approaches
was unsatisfactory. We did observe, however, that the strength and weaknesses of individual
methods, including our parallel implementation was often complimentary, meaning that we
observed cases where one algorithm was very effective, whereas the other was slow and cases
where we saw the opposite behaviour. This led us to the next immediate question, namely to
find ways to pool their various strengths together, while making up for the shortcomings of
individual cases.

Research Challenge: Is it possible to push the ability to compute GHDs for a large
number of real world instances via the combination of multiple distinct algorithms?

We ended up choosing two methods. The first is the parallel balanced separator algorithm
we developed as part of the earlier challenge. It proved effective when dealing with instances
with very large search spaces, and was good at quickly determining when one was dealing
with a negative instance. The other method is based on the existing algorithm det-𝑘-decomp,
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introduced by Gottlob and Samer [50] and extended for GHD computation by Fischl et al. [25].
It is sequential in nature and is highly efficient for very small instances. Our combined hybrid
thus initial uses the parallel Balanced Separator Approach to prune the search space, leading
to smaller and smaller instances. Then it switches to det-k-decomp to solve the remaining
small subproblems. This work also required us to completely rewrite det-k-decomp in the Go
language, as we needed a tight integration to minimise any potential overhead from using two
approaches at once.

Main Result 3: We propose a hybrid algorithm, combining our novel parallel
algorithm with existing sequential methods, which outperforms either individual
technique and show its effectiveness in an extensive empirical evaluation.

As part of this work, we thus also provide an experimental evaluation using the hybrid methods,
as well as the involved individual methods and other state of the art decomposition methods. We
show that the hybrid algorithm clearly outperforms all other methods, managing to optimally
solve over 78% of all instances of the HyperBench for the problem of finding GHDs.

1.4.2 The Fast and Parallel Computation of Hypertree Decompositions

The work presented as part of this subsection was achieved in close collaboration with Georg
Gottlob, Mathias Lanzinger and Reinhard Pichler. The main results were presented at the
SIGMOD-SIGACT-SIGAI Symposium on the Principles of Database Systems (PODS) 2022 [37].
The journal ACM Transactions on Database Systems (TODS) also invited us to publish an
updated version of this work as one of four "best of PODS 2022" papers.

The next topic in this thesis concerns the faster computation of a more restricted class of
hypergraph decompositions, namely Hypertree Decompositions. There is a number of inter-
esting properties they have, when compared to the wider class of GHDs. For one, finding a
small HD, formally solving the check problem for a fixed constant width, is tractable for HDs,
whereas in the general case the check problem for GHDs is NP-complete, already at width
2 [39,45]. Another very interesting property of HD computation is the fact that it falls under the
complexity class LogCFL [43,91]. This class is known to be in principle highly parallelisable due
to its connection to the boolean circuit classes AC1 and NC2 [42, 82, 83]. For more information
on complexity classes for parallel computation models, we refer to Greenlaw and Hoover [52].

Given the effectiveness of the Balanced Separator Approach for computing GHDs in parallel,
this leads us to the natural next challenge.

Research Challenge: Is it possible to use the Balanced Separator Approach beyond
just the computation of Generalized Hypertree Decompositions?

What makes this challenge interesting, is the fact that HDs are actually rooted. That is, the
order of nodes in an HD is important, and if we try to re-use the idea of “rerooting” – reversing
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the parent-child relationship inside the tree to form a new tree – we might end up with a result
that is no longer a valid HD. Therefore, the use of balanced separators to split the problem into
ever smaller subproblems cannot be directly used for HDs.

We took inspiration for this problem from an algorithm called divide-𝑘-decomp, described in
the PhD dissertation of Dimitri Akatov [6]. At first glance, it seems to describe a way of solving
this exact problem, using balanced separation to compute HDs via a parallel algorithm. Sadly,
when trying to implement this method and carefully analysing its informal description, we
discovered that divide-𝑘-decomp is not actually a correct algorithm for computing HDs. In the
process of trying to understand what went wrong there, we actually came up with a novel idea
to solve this challenge.

Main Result 4: We propose a novel parallel algorithm for HDs, which allows the
use of balanced separators for computing (regular) Hypertree Decompositions.

We shall proceed to briefly sketch out our solution. To utilise the Balanced Separator Approach
for HDs, we need to determine the relative position of the subproblems to the final HD we are
computing. In other words, we need to guess which subproblems end up being covered below
the current node in the tree, and which belong further up. This ensures that we can carefully
maintain the properties of a valid HD while still creating ever smaller subproblems which can
be solved in parallel. The crucial idea, however, lies in the fact that to do so, we cannot just
guess the edge covers of a single node, as we do in the GHD case. We instead guess edge covers
of two nodes at once, the current node as well as its potential parent node in the tree. Making
use of a critical Lemma from [43], combining the two lambda labels allows us to determine
the complete bag of the current node, thus giving us the ability to determine the subproblems
needed to construct the rest of the HD.

Our initial description of this algorithm, which first guesses a parent node and afterwards
guesses a child node, while interesting from an algorithmic point of view, is too slow to help
with finding a competitive decomposition method for HD solving. The number of possible
parent-child parings quickly grows out of control for even moderate hypergraphs and edge
cover sizes, leading to unsatisfactory run times. We were thus faced with the problem of finding
ways to mitigate this cost.

Research Challenge: Can the cost of guessing two nodes at once be mitigated, to
allow for the design of a competitive algorithm?

We ended up with an optimised version of our algorithm, called log-k-decomp. In addition to
many minor changes, one of the larger modifications lies in the idea of first looking for the
target node, and trying to find the parent only afterwards. The reason this is faster, is that we
can look for balanced separators right away. Since for most hard instances, there are only few
possible choices of edges that lead to balanced separation, this leads to a reduction in the search
space. Another key idea was to forgo computing the root first, allowing us to jump right into
the problem of finding balanced separators.
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Main Result 5: We propose a series of optimisations which enable us to to match
and even exceed the performance of other state of the art decomposition methods
for HDs.

As with our work for GHDs, we show the strength of our method by an experimental evaluation
of various state of the art methods for computing HDs and show that log-k-decomp outperforms
them all. We note that our final solution again employed a hybrid system, one that switches to
using the far simpler algorithm det-k-decomp, once the subproblems have been reduced by a
predefined metaparameter. As such the nature of the hybridisation here is more complex than
in our previous work, where the switch to det-k-decomp depended only on the depth of the
recursion.

1.4.3 Utilising Distributed Systems for the Highly Parallelised Computation
of Hypergraph Decompositions

What follows is currently on-going work in collaboration with Matthias Lanzinger.

For the last topic of this thesis, we focus on the problem of findingways of computing hypergraph
decompositions with essentially unlimited levels of parallelisation. For the hardest instances in
the HyperBench dataset, all existing approaches failed to find optimal decompositions. We also
note that all existing systems so far run on single machines. Most commodity hardware only
has CPUs with a relatively small number of cores, somewhere between 4 to 16. Even the most
expensive server-grade CPUs have on a single machine little more than 100 cores. On the other
hand, the most powerful computing systems today are clusters that pool the computational
power of a large number of individual machines. It is therefore natural to ask if we could
use these highly distributed computing systems for the purposes of computing hypergraph
decompositions.

Research Challenge: Are there effective algorithms for computing hypergraph
decompositions on highly distributed systems, such as modern commercial cloud
platforms?

To highlight the complexity of this task, we consider that the two novel methods we presented
so far, one for GHD and another for HD, require shared-memory systems and employ direct
back-tracking to find new edge covers in case negative subproblems were encountered. A naive
translation of such an algorithm to a distributed system, where the various recursive function
calls are executed on different machines, would require a lot of back and forth communication,
essentially leading to a huge communication cost. When dealing with highly distributed systems,
communication cost is of key importance and needs to be minimised as much as possible if one
wants competitive solutions.

Instead of trying tomodify existing algorithmswhichwere written with shared-memory systems
in mind, we therefore look at an entirely new approach, better suited for this new scenario. We
focus on the concept of candidate tree decompositions (CTD), described by Gottlob et al. [39].
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There, a very high-level description of a polynomial time algorithm for the computation of CTDs
is provided. While this algorithm is not at all suitable for a practical implementation, due to the
fact that it requires all possible bags which might occur in any decomposition to be provided as
input, it does highlight how the various subproblems that make up the combinatorial top-down
approach can be encoded in the form of so-called “blocks”. A block is a pair of two vertex
sets, where the head represents a bag, and the tail represents a connected component of the
head when separating the input hypergraph. A block may be “satisfied”, if there exists a CTD
such that its root has as its bag the head of the block, and the hypergraph covered by the CTD
corresponds to the component in the tail.

Equipped with these ideas, we set out to implement our distributed algorithm, which does not
actually require all bags to be provided as input and allows for an essentially unlimited number
of machines to be used as part of the search for new blocks. We limit our search to blocks that
have as head a balanced separator.

Main Result 6: Based on the idea of candidate tree decompositions from Gottlob et
al. [39], we propose the first algorithm for computing GHDs on distributed systems.

We provide a pseudo-code description of our algorithm later in this thesis. We stress that this is
an entirely new approach, with the algorithm from [39] only serving as the initial inspiration.

As part of our on-going work, we have also created a first prototype of this algorithm, written
in the programming language Go and running on the Google Cloud Platform. We conclude this
topic with a report on first promising results.

1.4.4 Exploring Threats to Validity of the Empirical Evaluations

We want to address here threats to validity [16, 19, 22] with respect to the empirical evaluations
that will be presented in Chapters 3, 4 and 5. Since these chapters share very similar test
methodology, it seems easier to summarise the salient points here in a single location.

Conclusion Validity. In [16], the authors define conclusion validity as follows:

Every empirical study establishes relationships between the treatment, represented by
the independent variables, and the outcomes, represented by the dependent variables.
The researcher derives conclusions from these relationships, which should have practical
use. Conclusion validity refers to the belief in the ability to derive conclusions from
the relationships.

In our case, the independent variables are the algorithms we want to consider and compare.
The dependent variables the run times their implementations produce when run against the
benchmark we consider. Hence, a threat to conclusion validity is an element of the design
of the experiments that makes it difficult to draw such a conclusion from algorithms to run
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times. In our case, it could stem from using a sub-par implementation, thus making it hard
to draw a conclusion on the usefulness of the underlying algorithm. We believe this threat is
reasonably well addressed by referring to implementations developed by the respective authors
of the algorithms themselves, who are surely well versed with their own work and make sure
to publish only the best possible implementation, within their abilities. Of course, one could
always potentially improve on an implementation with newer technology, newer techniques or
exploring alternative programming languages. Thus this threat cannot be completely avoided,
it can only be mitigated by making sure the best known implementations of the investigated
algorithms are used under ideal circumstances (i.e. with enough CPU, memory and other needed
resources) in order to make sure they run as effectively as possible.

Internal Validity. In [16], internal validity is defined as:

This validity refers to the belief that the changes to the dependent variable A are solely
caused by changes of the independent variable set S of the model.

Before we explain further, we want to differentiate internal validity from conclusion validity.
Conclusion validity is the general claim, that there is a relationship between the dependant
variables and the independent variables, and if we have such a relationship then it allows us
to draw valid conclusions on the algorithms (i.e. the independent variables) by looking at
run times of implementations (i.e. the dependent variables). Internal Validity is concerned
with a finer point, namely that changes to dependent variables are solely caused by and due
to the independent variables. Without conclusion validity, the question of internal validity is
meaningless. On the hand, faulty internal validity could still threaten our ability to draw useful
conclusions, even if we know there is a direct relationship between algorithms and run times of
implementations.

So to repeat, the dependent variable we measure in all experiments of this thesis is the run
time. And indeed we want to make the claim that the run times we measure are solely due to
inherent strengths or weaknesses of the algorithms themselves. Threats to internal validity
are thus factors that might affect the run times. This could be due to problems with our test
machines, leading to run times being overly affected by the machines they run on, rather
than the characteristics of the algorithms themselves, irrespective of the machine. As with the
conclusion validity, these threats cannot be completely avoided, it can only be mitigated. In order
to mitigate small variances in the run times introduced by the test machines, we avoid reporting
on individual instances when tests include instances with low run times (below 1 second), and
instead report on aggregates over 3000 of test cases. When conducting experiments, we also
make sure that no other unrelated processes are running on a test machine, thus hopefully
providing more reliable results for the specific implementations we test.

Construct Validity. In [16], construct validity is defined as:

Construct validity refers to the belief that the dependent variables and independent
variables represent the theoretical concept of the phenomenon accurately.
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Since we focus here only on the computation of hypergraph decompositions, there is no external
“phenomenon” we need to model or deal with. Thus, due to the theoretical nature of this work
this particular definition of validity does not seem to apply, and as such we believe that we do
not need to worry about threats to construct validity as well.

External Validity. Lastly, in [16], external validity is defined as:

External validity refers to the generalization of the results, e.g., it being “safe” to apply
the results of a software study to all software of that type.

In our context, this means whether our experiments on the chosen benchmark are truly represen-
tative of the kinds of hypergraph instances one would find when trying to find decompositions
of the hypergraphs underlying real-world CQs and CSPs. This risk has been mitigated by the
careful design of the HyperBench dataset itself, which draws not only from actual real-world
samples of CQs and CSPs, but has also been enriched by synthetic instances [25]. Together, it
seems likely that a rather large percentage of hypergraph structures one would find in the real-
world has been covered. Of course, there is no way to prove this without in-depth real-world
studies, which go beyond the scope of our work. As such, and like the other three types of risk,
we cannot fully avoid some threats to external validity either.

On the role of alternative frameworks for parallelisation and distributed computing.
As a final note on the validity of our experiments, we comment on a somewhat related topic,
namely the chosen technologies with which we have realised our proof-of-concept implementa-
tions. We stress here that the focus of this thesis is not to produce implementations that can
already be used inside real-world applications. Instead, we wish to showcase the usefulness
of the underlying parallel and distributed algorithms we designed as part of this thesis. As
such, we are already “happy” if we can show improvements on the state of the art with our
proof-of-concept implementations. Nevertheless, one may ask if other technologies, such as
the OpenMP [13] framework for parallel computation might have been used in Chapter 3 and
Chapter 4 instead of the Go programming language [18]. For Chapter 5, there is then also the
question if the MPI framework [54] for distributed computing could have been used, instead of
extending Go with PubSub to enable message passing. We would answer these two questions
positively. Indeed, for our implementations, we had to simply choose among a large field of
options. We leave the exploration of other methods as future work, and while alternatives
might have proven even more effective, improving on the run times we report in this thesis,
this would only strengthen our results, namely the usefulness of the parallel and distributed
algorithms we present.

1.5 Overview of this Thesis

The rest of this thesis is organised as follows. In Chapter 2 we recall needed definitions and
results from the literature.
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The following three chapters make up the main results of this thesis, where each chapter corre-
sponds to one of the topics that was detailed in Section 1.4. While each of these topics follows a
different goal in the search for better methods for computing hypergraph decompositions, it is
recommended to read them in order since the overall aims connect very naturally. Each chapter
also has its own introduction and conclusion, to provide context for how the work described
fits into the overall scientific context.

The conclusion of the thesis is in Chapter 6. It provides a summary over all main results and puts
them into the larger context, how they connect to other important subjects in the field. We also
include a section dedicated to future work. In this section we list further research challenges
and sketch out some possible new lines of research in the area of structural decomposition
methods.

16



Chapter 2

Preliminary Definitions

In this chapter we provide the reader with the necessary definitions and concepts to follow
the subsequent chapters of the thesis more easily. We also fix the notations that will be used
throughout this work. Important results from the literature that are of general relevance to the
entire thesis will also be stated in this chapter, whereas results with more specific relevance
to individual chapters will be stated in those places where they play an important role. For
an overall more in-depth introduction to the relevant definitions and topics in the area of
hypergraph decompositions, we refer to [35].

2.1 CSPs, CQs & Hypergraphs

A constraint satisfaction problem (CSP) 𝑃 is a set of constraints (𝑆𝑖 , 𝑅𝑖) with 1 ≤ 𝑖 ≤ 𝑚, where
each 𝑆𝑖 = {𝑠0, . . . 𝑠𝑛} is a set of variables and 𝑅𝑖 = {𝑡0 . . . , 𝑡ℓ } a constraint relation which contains
tuples of size 𝑛 using values from a domain 𝐷 . The variables of the constraints of 𝑃 may overlap.
A solution to 𝑃 is an assignment 𝜙 :

�
𝑖 𝑆𝑖 → 𝐷 from the variables to values from the domain

𝐷 , such that for each constraint (𝑆𝑖 , 𝑅𝑖) with 𝑆𝑖 = {𝑠0, . . . 𝑠𝑛} and 𝑅𝑖 = {𝑡0 . . . , 𝑡ℓ }, we have that
there exists some 𝑡 ∈ 𝑅𝑖 such that {𝜙 (𝑠0), . . . , 𝜙 (𝑠𝑛)} = 𝑡 . Less formally, for any constraint
(𝑆𝑖 , 𝑅𝑖) in 𝑃 the solution 𝜙 must assign the constraint variables 𝑆𝑖 to some tuple in the constraint
relation 𝑅𝑖 . For the standard definitions and more in-depth discussion of CSPs, we refer the
interested reader to the book on this topic by Tsang [89].

Conjunctive queries (CQs) are arguably one of the most fundamental types of queries in the
database world. Formally, they are given by a first-order formula 𝜙 using only the connectives
in {∃,∧} and disallowing {∀,∨,¬}. A relational signature 𝜎 is a finite set of relation symbols,
each with some arity. A database 𝐷 over a relational signature 𝜎 consists of a finite domain and
a relation 𝑅𝐷 for each relation symbol 𝑅 in the signature. A CQ 𝑞 is a set of positive literals,
each from a relational signature 𝜎 :

𝑞 : OUT(y) :− 𝑅𝑖 (x0) ∧ · · · ∧ 𝑅ℓ (xℓ ).

The output literal OUT is merely syntactic sugar and used here for notational convenience.
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2. Preliminary Definitions

In FO, the output variables would correspond to free variables and all other variables would
be existentially quantified. In our notation above, we require that the output variables are a
subset of the variables occurring in literals, or formally y ⊆ �

𝑖 x𝑖 . For a CQ 𝑞, we use the
shorthand vars(𝑞) =

�
𝑖 x𝑖 . An assignment 𝑎 : vars(𝑞) → 𝐷 is a total function that assigns to

each variable of 𝑞 some value of the domain. Given a signature 𝜎 and a database 𝐷 over 𝜎 ,
we say an assignment 𝑎 satisfies a given CQ 𝑞, if for each literal 𝑅𝑖 (x𝑖), with xi = {𝑥0, . . . , 𝑥𝑛},
we have that {𝑎(𝑥0), . . . , 𝑎(𝑥𝑛)} ∈ 𝑅𝐷 . Given a satisfying assignment 𝑎 of a CQ 𝑞, we say the
output of 𝑞 under 𝑎 is OUT𝑎 = {𝑎(𝑦0), . . . , 𝑎(𝑦𝑚)}, where the set {𝑦0, . . . , 𝑦𝑚} = y consists of
the output variables of 𝑞. To evaluate a CQ 𝑞 means to iterate over the set of all satisfying
assignment functions 𝐴, and producing the union of outputs:

Eval(𝑞) = {OUT𝑎 | 𝑎 ∈ 𝐴}.

We can observe that CQs correspond to SELECT-FROM-WHERE queries in SQL, such that the
WHERE-clause may only contain equality conditions combined with AND [3]. In practice, CQs
also occur in graph databases, and are known as Basic Graph Patterns in the query language
SPARQL [78]. For a more in-depth introduction and study of CQs and related definitions, we
refer to Abiteboul, Hull and Vianu [3] and Maier [69].

A hypergraph 𝐻 is a tuple (𝑉 (𝐻 ), 𝐸 (𝐻 )), consisting of a set of vertices 𝑉 (𝐻 ) and a set of
hyperedges (synonymously, simply referred to as “edges”) 𝐸 (𝐻 ) ⊆ 2𝑉 (𝐻 ) , where the notation
2𝑉 (𝐻 ) signifies the power set over 𝑉 (𝐻 ). We may assume w.l.o.g. that there are no isolated
vertices, i.e., for each 𝑣 ∈ 𝑉 (𝐻 ), there is at least one edge 𝑒 ∈ 𝐸 (𝐻 ) with 𝑣 ∈ 𝑒 . We can thus
identify a hypergraph 𝐻 with its set of edges 𝐸 (𝐻 ) with the understanding that 𝑉 (𝐻 ) = {𝑣 ∈
𝑒 | 𝑒 ∈ 𝐸 (𝐻 )}. A subhypergraph 𝐻 ′ of 𝐻 is then simply a subset of (the edges of) 𝐻 . By slight
abuse of notation we may thus write 𝐻 ′ ⊆ 𝐻 with the understanding that 𝐸 (𝐻 ′) ⊆ 𝐸 (𝐻 ) and,
hence, implicitly also 𝑉 (𝐻 ′) ⊆ 𝑉 (𝐻 ). We are frequently dealing with sets of sets of vertices
(e.g., sets of edges). For 𝑆 ⊆ 2𝑉 (𝐻 ) , we write

�
𝑆 as a short-hand for the union of such a set of

sets, i.e., for 𝑆 = {𝑠1, . . . , 𝑠ℓ }, we have� 𝑆 =
�ℓ

𝑖=1 𝑠𝑖 .

To get the hypergraph of a CSP 𝑃 , we consider 𝑉 (𝐻 ) to be the set of all variables in 𝑃 , to be
precise

�
𝑖 𝑆𝑖 , and each 𝑆𝑖 to be one hyperedge. Here, we disregard the constraint relations,

as they contain no additional structural information. For hypergraphs of CQs, we consider
them as defined above to be first-order formulas. For such a formula 𝜙 , the hypergraph 𝐻𝜙

corresponding to 𝜙 is defined as follows: 𝑉 (𝐻𝜙 ) = v𝑎𝑟𝑠 (𝜙), i.e., the variables occurring in 𝜙 ;
and 𝐸 (𝐻𝜙 ) = {v𝑎𝑟𝑠 (𝑎) | 𝑎 is an atom in 𝜙}.
In the sequel, we will only concentrate on hypergraphs, with the understanding that all results
ultimately apply to the underlying hypergraphs of CQs and CSPs as defined above.

Recall that solving a CSP corresponds to model checking a first-order formula Φ (representing
the constraints 𝑆𝑖 ) over a finite structure (made up by the relations 𝑅𝑖 ) such that the only
connectives allowed in Φ are ∃ and ∧, whereas ∀,∨, and ¬ are disallowed. Hence, formally, CSP
solving is equivalent to answering conjunctive queries (CQs) in the database world [63, 69, 73].

The intersection size of a hypergraph 𝐻 is defined as the minimum integer 𝑐 , such that for any
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2.2. Hypergraph Decompositions

two edges 𝑒1, 𝑒2 ∈ 𝐸 (𝐻 ), 𝑒1 ∩ 𝑒2 ≤ 𝑐 . A class C of hypergraphs has the bounded intersection
property (BIP), if there exists a constant 𝑐 such that every hypergraph 𝐻 ∈ C has intersection
size ≤ 𝑐 .

We are frequently dealing with sets of sets of vertices (e.g., sets of edges). For 𝑆 ⊆ 2𝑉 (𝐻 ) , we
write

�
𝑆 and

�
𝑆 as a short-hand for taking the union or intersection, respectively, of this set

of sets of vertices, i.e., for 𝑆 = {𝑠1, . . . , 𝑠ℓ }, we have� 𝑆 =
�ℓ

𝑖=1 𝑠𝑖 and
�
𝑆 =

�ℓ
𝑖=1 𝑠𝑖 . For a set 𝑆

of edges, we will alternatively also write 𝑉 (𝑆) to denote the vertices contained in any of the
edges in 𝑆 . That is, we have 𝑉 (𝑆) = �

𝑆 .

2.2 Hypergraph Decompositions

We introduce the used notation first: given a rooted tree 𝑇 = ⟨𝑁 (𝑇 ), 𝐸 (𝑇 )⟩ with node set 𝑁 (𝑇 )
and edge set 𝐸 (𝑇 ), we write𝑇𝑢 to denote the subtree of𝑇 rooted at 𝑢, where 𝑢 is a node in 𝑁 (𝑇 ).
Analogously, we write 𝑇 ↑

𝑢 to denote the subtree of 𝑇 induced by 𝑁 (𝑇 ) \ 𝑁 (𝑇𝑢). Intuitively, 𝑇𝑢 is
the subtree of 𝑇 “below” 𝑢 and including 𝑢, while 𝑇 ↑

𝑢 is the subtree of 𝑇 “above” 𝑢. By slight
abuse of notation, we sometimes write 𝑢 ∈ 𝑇 instead of 𝑢 ∈ 𝑁 (𝑇 ) to denote that 𝑢 is a node
in 𝑇 . Below, we shall introduce node-labelling functions 𝜒 and 𝜆, which assign to each node
𝑢 ∈ 𝑇 a set of vertices or edges, respectively, from some hypergraph 𝐻 , i.e., 𝜒 (𝑢) ⊆ 𝑉 (𝐻 ) and
𝜆(𝑢) ⊆ 𝐸 (𝐻 ). For a node-labelling function 𝑓 with 𝑓 ∈ {𝜒, 𝜆} and a subtree 𝑇 ′ of 𝑇 , we define
𝑓 (𝑇 ′) as 𝑓 (𝑇 ′) = �

𝑢′∈𝑇 ′ 𝑓 (𝑢′).
We are now ready to recall the definitions of hypertree decompositions and generalized hypertree
decompositions. We begin, however, by first defining tree decompositions, as they shall play a
role in Chapter 5.

A tree decomposition [80, 81] (TD) D of a hypergraph 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) is a tuple D = ⟨𝑇, 𝜒⟩,
such that 𝑇 = ⟨𝑁 (𝑇 ), 𝐸 (𝑇 )⟩ is a rooted tree, 𝜒 is a node-labelling function with 𝜒 : 𝑁 (𝑇 ) →
2𝑉 (𝐻 ) and the following conditions hold:

(1) for each 𝑒 ∈ 𝐸 (𝐻 ), there exists a node 𝑢 ∈ 𝑁 (𝑇 ) with 𝑒 ⊆ 𝜒 (𝑢);
(2) for each 𝑣 ∈ 𝑉 (𝐻 ), the set {𝑢 ∈ 𝑁 (𝑇 ) | 𝑣 ∈ 𝜒 (𝑢)} is connected in 𝑇 ;

The width of a TDD = ⟨𝑇, 𝜒, 𝜆⟩ is the maximum size of the 𝜒-labels over all nodes 𝑢 ∈ 𝑇 minus
one, i.e., w𝑖𝑑𝑡ℎ(D) = max𝑢∈𝑇 |𝜒 (𝑢) | − 1. Moreover, the treewidth of a hypergraph 𝐻 , denoted
t𝑤 (𝐻 ), is the minimum width over all TDs of 𝐻 . Condition (2) is called the “connectedness
condition”. The set 𝜒 (𝑢) is often referred to as the “bag” at node 𝑢 and we will also call it the
“𝜒-label” of node 𝑢.

Next we define hypertree decompositions, which introduce an additional node-labelling function
to TDs:

A hypertree decomposition [43] (HD) D of a hypergraph 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) is a tuple D =
⟨𝑇, 𝜒, 𝜆⟩, such that 𝑇 = ⟨𝑁 (𝑇 ), 𝐸 (𝑇 )⟩ is a rooted tree, 𝜒 and 𝜆 are node-labelling functions with
𝜒 : 𝑁 (𝑇 ) → 2𝑉 (𝐻 ) and 𝜆 : 𝑁 (𝑇 ) → 2𝐸 (𝐻 ) and the following conditions hold:
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𝜆 = {𝑒1, 𝑒6}
𝜒 = {𝑘, 𝑙, 𝑓 , 𝑔, ℎ, 𝑗}

𝜆 = {𝑒2, 𝑒5}
𝜒 = {𝑙, 𝑎, 𝑏, 𝑒, 𝑑, 𝑓 }

𝜆 = {𝑒2, 𝑒4}
𝜒 = {𝑙, 𝑎, 𝑏, 𝑒, 𝑐, 𝑑}

𝜆 = {𝑒7, 𝑒8}
𝜒 = {𝑘,𝑔, ℎ, 𝑗, 𝑖}

Figure 2.1: An example hypergraph, where the vertices are represented by letters, with explicit
edge names, together with a GHD of width 2.

(1) for each 𝑒 ∈ 𝐸 (𝐻 ), there exists a node 𝑢 ∈ 𝑁 (𝑇 ) with 𝑒 ⊆ 𝜒 (𝑢);
(2) for each 𝑣 ∈ 𝑉 (𝐻 ), the set {𝑢 ∈ 𝑁 (𝑇 ) | 𝑣 ∈ 𝜒 (𝑢)} is connected in 𝑇 ;
(3) for each 𝑢 ∈ 𝑁 (𝑇 ), 𝜒 (𝑢) ⊆ �

𝜆(𝑢);
(4) for each 𝑢 ∈ 𝑁 (𝑇 ), 𝜒 (𝑇𝑢) ∩

� �
𝜆(𝑢)� ⊆ 𝜒 (𝑢).

The width of an HD D = ⟨𝑇, 𝜒, 𝜆⟩ is the maximum size of the 𝜆-labels over all nodes 𝑢 ∈ 𝑇 ,
i.e., w𝑖𝑑𝑡ℎ(D) = max𝑢∈𝑇 |𝜆(𝑢) |. Moreover, the hypertree width of a hypergraph 𝐻 , denoted
h𝑤 (𝐻 ), is the minimum width over all HDs of 𝐻 . As with TDs, Condition (2) is called the
“connectedness condition” and condition (4) is referred to as the “special condition” in [43]. The
set 𝜆(𝑢) will be referred to as either the edge cover of 𝑢 or also the “𝜆-label” of 𝑢.

It has been shown by Gottlob et al. [44] that hypertree width can also be characterised using
logical and game-theoretical approaches.

If we drop the special condition from the above definition then we get so-called generalized
hypertree decompositions (GHD):

A generalized hypertree decomposition (GHD) [43] of a hypergraph 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) is a tuple
⟨𝑇, 𝜒, 𝜆⟩, where 𝑇 = (𝑁 (𝑇 ), 𝐸 (𝑇 )) is a tree, and 𝜒 and 𝜆 are node-labelling functions, which
map to each node 𝑢 ∈ 𝑁 two sets, 𝜒 (𝑢) ⊆ 𝑉 (𝐻 ) and 𝜆(𝑢) ⊆ 𝐸 (𝐻 ).
The functions 𝜒 and 𝜆 have to satisfy the following conditions:

(1) for each 𝑒 ∈ 𝐸 (𝐻 ), there is a node 𝑢 ∈ 𝑁 (𝑇 ) s.t. 𝑒 ⊆ 𝜒 (𝑢);
(2) for each 𝑣 ∈ 𝑉 (𝐻 ), {𝑢 ∈ 𝑁 (𝑇 ) | 𝑣 ∈ 𝜒 (𝑢)} is connected in 𝑇 ;
(3) for each 𝑢 ∈ 𝑁 (𝑇 ), we have that 𝜒 (𝑢) ⊆ �(𝜆(𝑢)).

The second condition is also referred to as the connectedness condition. The width of a GHD is
defined as max{|𝜆(𝑢) | | 𝑢 ∈ 𝑁 }. The generalized hypertree width (ghw) of a hypergraph is the
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Figure 2.2: Connected components and their respective separator, visually marked.

smallest width of any of its GHDs. Deciding if ghw(𝐻 ) ≤ 𝑘 for a hypergraph 𝐻 and fixed 𝑘 is
NP-complete, as one needs to consider exponentially many possible choices for the bag 𝜒 (𝑢)
for a given edge cover 𝜆(𝑢) [39, 45].
It was shown in [24] that for any class of hypergraphs enjoying the BIP, one only needs to
consider a polynomial set of subsets of hyperedges (called subedges ) to compute their ghw. This
fact will be explained in more detail in Section 2.5.
Example 2.1. An example of a hypergraph is shown in Figure 2.1, as well as a GHD of this
hypergraph. We can see that no 𝜆-label uses more than two hyperedges, and thus this GHD
has width 2, and the gℎ𝑤 of the hypergraph is also ≤ 2. In fact, the hypergraph contains alpha
cycles [21], e.g., {𝑒2, 𝑒3, 𝑒4, 𝑒5}. Hence, we also know its gℎ𝑤 must be > 1. Taken together, its
gℎ𝑤 is therefore exactly 2.

Throughout this paper, we will be dealing with a hypergraph 𝐻 and a tree 𝑇 of a TD, HD or
GHD of 𝐻 . To avoid confusion, we will consequently refer to the elements in 𝑉 (𝐻 ) as vertices
(of the hypergraph) and to the elements in 𝑁 (𝑇 ) as the nodes of 𝑇 (of the decomposition).

2.3 Components & Separators

Consider a set of vertices𝑊 ⊆ 𝑉 (𝐻 ). A set of edges 𝐶 ⊆ 𝐸 (𝐻 ) is [𝑊 ]-connected if for any
two distinct edges 𝑒, 𝑒′ ∈ 𝐶 there exists a sequence of vertices 𝑣1, . . . , 𝑣ℎ and a sequence of
edges 𝑒0, . . . , 𝑒ℎ (ℎ ≥ 1) with 𝑒0 = 𝑒 and 𝑒ℎ = 𝑒′ such that 𝑣𝑖 ∈ 𝑒𝑖−1 ∩ 𝑒𝑖 and 𝑣𝑖 ∉ 𝑊 for each
𝑖 ∈ {1, . . . , ℎ}. In other words, there is a path from 𝑒 to 𝑒′ which only goes through vertices
outside𝑊 . A set 𝐶 ⊆ 𝐸 (𝐻 ) is a [𝑊 ]-component, if 𝐶 is maximal [𝑊 ]-connected. For a set of
edges 𝑆 ⊆ 𝐸 (𝐻 ), we say that 𝐶 is “[𝑆]-connected” or an “[𝑆]-component” as a short-cut for 𝐶 is
“[𝑊 ]-connected” or a “[𝑊 ]-component”, respectively, with𝑊 =

�
𝑆 . We also call 𝑆 a separator

in this context. The size of an [𝑆]-component 𝐶 is simply its cardinality. For a hypergraph 𝐻
and a set of edges 𝑆 ⊆ 𝐸 (𝐻 ), we say that 𝑆 is a balanced separator if all [𝑆]-components of 𝐻
have size ≤ |𝐸 (𝐻 ) |

2 .
Example 2.2. An example for a separator that generates multiple connected components can
be seen in Figure 2.2. The separator 𝑆 consists of two hyperedges 𝑒2, 𝑒6, marked by thicker
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edges. The corresponding [𝑆]-components 𝐶1 = {𝑒3, 𝑒4, 𝑒5} and 𝐶2 = {𝑒1, 𝑒7, 𝑒8} are highlighted
visually.

It was shown in [4] that, for every GHD ⟨𝑇, 𝜒, 𝜆⟩ of a hypergraph 𝐻 , there exists a node 𝑛 ∈ 𝑁
such that 𝜆(𝑛) is a balanced separator of 𝐻 . This property can be used when searching for a
GHD of size 𝑘 of 𝐻 , as we shall recall in Section 2.5 below.

2.4 Computing Hypertree Decompositions (HDs)

We briefly recall the basic principles of the det-𝑘-decomp program from [50] for computing
Hypertree Decompositions (HDs), which was the first implementation of the original HD
algorithm from [43]. HDs are GHDs with an additional condition to make their computation
tractable in a way explained next.

For fixed 𝑘 ≥ 1, det-𝑘-decomp tries to construct an HD of a hypergraph 𝐻 in a top-down
manner. It thus maintains a set 𝐶 of edges, which is initialised to 𝐶 := 𝐸 (𝐻 ). For a node 𝑛 in
the HD (initially, this is the root of the HD), it “guesses” an edge cover 𝜆(𝑛), i.e., 𝜆(𝑛) ⊆ 𝐸 (𝐻 )
and |𝜆(𝑛) | ≤ 𝑘 . For fixed 𝑘 , there are only polynomially many possible values 𝜆(𝑛). det-𝑘-
decomp then proceeds by determining all [𝜆(𝑛)]-components 𝐶𝑖 with 𝐶𝑖 ⊆ 𝐶 . The additional
condition imposed onHDs (comparedwith GHDs) restricts the possible choices for 𝜒 (𝑛) and thus
guarantees that the [𝜆(𝑛)]-components inside 𝐶 and the [𝜒 (𝑛)]-components inside 𝐶 coincide.
This is the crucial property for ensuring polynomial time complexity of HD-computation – at
the price of possibly missing GHDs with a lower width.

Now let 𝐶1, . . . ,𝐶ℓ denote the [𝜆(𝑛)]-components with 𝐶𝑖 ⊆ 𝐶 . By the maximality of compo-
nents, these sets 𝐶𝑖 ⊆ 𝐸 (𝐻 ) are pairwise disjoint. Moreover, it was shown in [43] that if 𝐻
has an HD of width ≤ 𝑘 , then it also has an HD of width ≤ 𝑘 such that the edges in each 𝐶𝑖

are “covered” in different subtrees below 𝑛. More precisely, this means that 𝑛 has ℓ child nodes
𝑛1, . . . , 𝑛ℓ , such that for every 𝑖 and every 𝑒 ∈ 𝐶𝑖 , there exists a node 𝑛𝑒 in the subtree rooted at
𝑛𝑖 with 𝑒 ⊆ 𝜒 (𝑛𝑒). Hence, det-𝑘-decomp recursively searches for an HD of the hypergraphs 𝐻𝑖

with 𝐸 (𝐻𝑖) = 𝐶𝑖 and 𝑉 (𝐻𝑖) = �
𝐶𝑖 with the slight extra feature that also edges from 𝐸 (𝐻 ) \𝐶𝑖

are allowed to be used in the 𝜆-labels of these HDs.
Example 2.3. We shall demonstrate how a top-down algorithm for computing HDs works by an
example run. Formally, we assume our algorithm solves the Check HD problem. In this setting
we take as input a hypergraph and have some parameter 𝑘 and accept and output an HD of our
input hypergraph with width 𝑘 or less, if it exists or reject if no such HD exists for our input
hypergraph.
We take as the input hypergraph the one shown in Figure 2.1 and name it 𝐻 and we fix 𝑘 to
be 2. Let us recall that we are considering an algorithm which works in a top-down manner,
first determining a possible root node, then separating the input hypergraph into smaller
subhypergraphs and finding hypertree decompositions for those which connect with the root
node and proceeding in the same way for the subhypergraphs, until we find an HD of the entire
input hypergraph.
For the sake of simplicity, let us assume our algorithm decides on the bag 𝜒𝑟 = {𝑎, 𝑏, 𝑒, 𝑙, 𝑓 , 𝑔, ℎ, 𝑗}
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and the edge cover 𝜆𝑟 = {𝑒2, 𝑒6} as the root node. The [𝜆𝑟 ]-components of 𝐻 can be seen in
Figure 2.2. We get two components, namely 𝐶1 = {𝑒3, 𝑒4, 𝑒5} and 𝐶2 = {𝑒1, 𝑒7, 𝑒8}. Thus, our
algorithm now tries to find subtrees for each of the two components. Let us look at the case for
𝐶1. Since we are allowed to choose edge covers of size 2, we can simply set 𝜆𝑢1 = {𝑒3, 𝑒5} and
𝜒𝑢1 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } and will thus cover the entire component. The case for𝐶2 is more complex.
We need to maintain connectivity, thus the set of vertices {ℎ,𝑔, 𝑗, 𝑙} needs to be covered next, as
these vertices form the intersection between the bag of the root and the set of edges that need
to be covered (i.e. 𝐶2). If we only restrict ourselves to edges in 𝐶2, we would need to choose
all three edges, which we are not allowed to do with 𝑘 set to 2. The solution is that we can
simply reuse 𝑒6 again, and set 𝜆𝑢2 = {𝑒1, 𝑒6} and the bag as 𝜒𝑢2 = {𝑙, 𝑘, ℎ, 𝑔, 𝑗}. There is only
one [𝜆𝑢2]-component of 𝐶2, namely 𝐶3 = {𝑒7, 𝑒8}. As this component has only 2 edges, we can
trivially cover it by just including all edges and vertices in the edge cover and bag, thus giving
us 𝜆𝑢3 = {𝑒7, 𝑒8} and 𝜒𝑢3 = { 𝑗, 𝑔, ℎ, 𝑖, 𝑘 .𝑙}.
Thus we are done, having decomposed 𝐻 and found an HD of width 2.

2.5 Computing GHDs and the Balanced Separator Approach

It was shown in [26] that, even for fixed 𝑘 = 2, deciding if ghw(𝐻 ) ≤ 𝑘 holds for a hypergraph
𝐻 is NP-complete. However, it was also shown there that if a class of hypergraphs satisfies
the BIP, then the problem becomes tractable. The main reason for the NP-completeness in the
general case is that, for a given edge cover 𝜆(𝑛), there can be exponentially many bags 𝜒 (𝑛)
satisfying condition 3 of GHDs, i.e., 𝜒 (𝑛) ⊆ 𝐵(𝜆(𝑛)). In principle any of these exponentially
many bags may be needed to get the desired decomposition

Now let 𝜆(𝑛) = {𝑒𝑖1, . . . , 𝑒𝑖ℓ } with ℓ ≤ 𝑘 . Of course, if we restrict each 𝑒𝑖 𝑗 to the subedge
𝑒′𝑖 𝑗 = 𝑒𝑖 𝑗 ∩ 𝜒 (𝑛) and define 𝜆′(𝑛) = {𝑒′𝑖1, . . . , 𝑒′𝑖ℓ }, then we get 𝜒 (𝑛) = 𝐵(𝜆′(𝑛)). The key to the
tractability shown in [26] in case of the BIP (i.e., the intersection of any two distinct edges is
bounded by a constant 𝑏) is twofold: first, it is easy to see that w.l.o.g., we may restrict the search
for a GHD of desired width 𝑘 to so-called “bag-maximal” GHDs. That is, for any node 𝑛, it is
impossible to add another vertex to 𝜒 (𝑛) without violating a condition from the definition of
GHDs. And second, it is then shown in [26] for bag-maximal GHDs, that each 𝑒′𝑖 𝑗 is either equal
to 𝑒𝑖 𝑗 or a subset of 𝑒𝑖 𝑗 with |𝑒′𝑖 𝑗 | ≤ 𝑘 · 𝑏. Hence, there are only polynomially many choices of
subedges 𝑒′𝑖 𝑗 and also of 𝜒 (𝑛). More precisely, for a given edge 𝑒 , the set of subedges to consider
is defined as follows:

𝑓𝑒 (𝐻,𝑘) =
�

𝑒1,...,𝑒 𝑗 ∈ (𝐸 (𝐻 )\{𝑒 }), 𝑗≤𝑘
2(𝑒∩(𝑒1∪···∪𝑒 𝑗 ) ) ) (2.1)

In [24], this property was used to design a program for GHD computation as a straightforward
extension of det-𝑘-decomp by adding the polynomially many subedges 𝑓𝑒 (𝐻,𝑘) for all 𝑒 ∈ 𝐸 (𝐻 )
to 𝐸 (𝐻 ). In the hypergraph extended in this way, we can thus be sure that 𝜆(𝑛) can always be
replaced by 𝜆′(𝑛) with 𝜒 (𝑛) = 𝐵(𝜆′(𝑛)).
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2. Preliminary Definitions

Algorithm 2.1: SequentialBalSep [25]
Input: A hypergraph 𝐻 .
Parameter :An integer 𝑘 ≥ 1.
Output: A GHD of 𝐻 of width ≤ 𝑘 if it exists, null otherwise.

1 Main
2 Make 𝐻 globally visible
3 return Decompose(𝐻, ∅)
4 Function Decompose(𝐻 ′: hypergraph, 𝑆𝑝 : set of special edges)
5 if |𝐸 (𝐻 ′ ∪ 𝑆𝑝) | == 1 then
6 return node 𝑢 with 𝐵𝑢 ← 𝑉 (𝐻 ′ ∪ 𝑆𝑝) and 𝜆𝑢 ← 𝐸 (𝐻 ′ ∪ 𝑆𝑝)
7 if |𝐸 (𝐻 ′ ∪ 𝑆𝑝) | == 2 then
8 Let 𝑒1, 𝑒2 be the two edges of 𝐻 ′ ∪ 𝑆𝑝
9 Create node 𝑢 with 𝐵𝑢 ← 𝑒1 and 𝜆𝑢 ← {𝑒1}
10 Create node 𝑣 with 𝐵𝑣 ← 𝑒2 and 𝜆𝑣 ← {𝑒2}
11 AttachChild(𝑢, 𝑣)
12 return 𝑢;
13 BalSepIt ← InitBalSepIterator(𝐻,𝐻 ′, 𝑆𝑝 , 𝑘)
14 while HasNext(BalSepIt) do
15 𝜆𝑢 ← Next(BalSepIt)
16 𝐵𝑢 ← 𝐵(𝜆𝑢)
17 subDecomps ← {}
18 foreach 𝑐 ∈ ComputeSubhypergraphs(𝐻 ′, 𝑆𝑝 , 𝐵𝑢) do
19 D ← Decompose(𝑐.𝐻, 𝑐.𝑆𝑝 ∪ {𝐵𝑢}) ⊲ 𝑐.𝑆𝑝 are the extracted special edges from 𝑐

20 if D ≠ null then
21 subDecomps ← subDecomps ∪ {D}
22 else
23 subDecomps ← null
24 break

25 if subDecomps == null then
26 continue
27 return BuildGHD(𝐵𝑢, 𝜆𝑢, subDecomps)

28 return null

Algorithm 2.2: Function ComputeSubhypergraphs
1 Function ComputeSubhypergraphs(𝐻 ′: hypergraph, 𝑆𝑝 : set of special edges,
2 𝐵𝑢 : set of vertices)
3 𝐻𝑒𝑥 ← 𝐸 (𝐻 ′ ∪ 𝑆𝑝) ⊲ an “extended” hypergraph with special edges
4 return [𝐵𝑢]-components of 𝐻𝑒𝑥
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2.5. Computing GHDs and the Balanced Separator Approach

Algorithm 2.3: Function InitBalSepIterator
1 Function InitBalSepIterator(𝐻 , 𝐻 ′: hypergraphs, 𝑆𝑝 : set of special edges, 𝑘 : integer)
2 𝐸rel ← 𝐸 (𝐻 ) ∩ (𝑆𝑝 ∪ 𝐸 (𝐻 ′)) ⊲ relevant edges for finding a bal. sep. of 𝐻 ′

3 combinations ← 𝐸𝑘rel ⊲ the set of all 𝑘 combinations from edges in 𝐸rel
4 balSeps ← {𝑠 | 𝑠 ∈ combinations ∧ 𝑠 is a balanced separator of 𝐻 ′}
5 return an iterator that produces one element of balSeps at a time

Balanced Separator Approach. Fischl, Gottlob, Longo and Pichler introduce in [24] the
Balanced Separator Approach for computing GHDs. It is based on the use of balanced separators
and extends ideas from [6]. The idea is to use the fact that every GHD must contain a node
whose 𝜆-label is a balanced separator. Hence, in each recursive decomposition step for some
subset 𝐸′ of the edges of 𝐻 , the algorithm “guesses” a node 𝑛′ such that 𝜆(𝑛′) is a balanced
separator of the hypergraph with edges 𝐸′. Of course, this node 𝑛′ is not necessarily a child
node 𝑛𝑖 of the current node 𝑛 but may lie somewhere inside the subtree 𝑇𝑖 below 𝑛. However,
since GHDs can be arbitrarily rooted, one may first compute this subtree 𝑇𝑖 with 𝑛′ as the root
and with 𝑛𝑖 as a leaf node. This subtree is then (when returning from the recursion) connected
to node 𝑛 by rerooting 𝑇𝑖 at 𝑛𝑖 and turning 𝑛𝑖 into a child node of 𝑛. The definition of balanced
separators guarantees that the recursion depth is logarithmically bounded. This makes the
Balanced Separator algorithm a good starting point for our parallel algorithm to be presented
in Chapter 3.

Overview of the Sequential Balanced Separator Algorithm [25] We provide here the full
pseudo-code of the sequential Balanced Separator algorithm, which can be seen in Algorithm 2.1,
since it will prove vital to establish the correctness of our parallel GHD algorithm

We proceed to provide an overview. The algorithm takes as input a hypergraph 𝐻 and it needs
a parameter 𝑘 . It either returns null if no GHD of width 𝑘 or less can be found, or it returns
exactly such a GHD. On lines 1 to 3 we see the main procedure of the algorithm, which simply
consists of first making 𝐻 globally visible (i.e. accessible) and afterwards returns the result of
the recursive procedure Decompose with input 𝐻 and the empty set.
The recursive function Decompose has thus a primary role in this algorithm. As input it takes a
hypergraph 𝐻 ′ (not to be confused with the input hypergraph 𝐻 ) and a set of special edges 𝑆𝑝 .
These are simply edges that act like normal edges, but which appear in the GHD in the edge
cover of leaf nodes only. The lines 5 to 6 form a base case of the recursive function, when we
have an input with only one edge or special edge. In this case it returns a trivial node with the
entire hypergraph and special edge as bag and respectively edge cover. Another base case is
seen on lines 7 to 12, when we have in total 2 edges or special edges. In this case, the produced
GHD will have exactly two nodes, each with one edge or special edge.
The algorithm next produces an iterator over all balanced separators of 𝐻 ′ of size 𝑘 or less. We
can see a pseudo-code for the function InitBalSepIterator in Algorithm 2.2. We note here
that a given implementation of this function need not materialise all balanced separators at
once, but only needs to find one after the other.
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On lines 14 to 27, the algorithm iterates over all choices of separators in this iterator. Note that
in case there is no balanced separator of size 𝑘 or less, we skip the while loop and immediately
return null on line 28. In case we do have some balanced separators, we fix the current choice
of edge cover on line 15 and set the bag on line 16 to the union of all edges in 𝜆𝑢 . Next, on
lines 18 to 24, we compute first the subhypergraphs for the currently chosen 𝐵𝑢 . A detailed
pseudo-code for this function is given in Algorithm 2.2. It first unifies the edges and special
edges, and then computes the connected components and returns these.
On line 19, Algorithm 2.1, recursively tries to find decompositions for the components. We note
here that 𝑐.𝐻 (resp. 𝑐.𝑆𝑝 ) is understood as the set of normal (resp. special) edges within the
component 𝑐 . One important thing we have to do here is to add {𝐵𝑢} as a new special edge.
Special edges need to appear in the leaf nodes of GHDs. This will allow us to "piece together"
a complete GHD from the decompositions of the components. If any recursive call returns
null, then the loop is exited on line 24, and on line 25 we detect this and skip the current
choice of balanced separator. This corresponds to backtracking in our search for finding a GHD
for the current subhypergraph 𝐻 ′. If no recursive call returns null, then we call the function
BuildGHD and return its output. This function takes as input a bag, an edge cover, and a set of
decompositions. It uses the bag and edge cover to form a root, and attaches the decompositions
to the root by rerooting the decompositions looking for the special edge which was added on
line 19. For more technical details we refer the interested reader to [25]. The here presented
sequential balanced separator algorithm will serve as the basis for the parallel GHD algorithm
we will develop and present in Chapter 3.
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Chapter 3

Parallel Computation of Generalized
Hypertree Decompositions

In Section 1.3, we motivated the need for hypergraph decompositions to help improve the
ability of existing RDBMSs and CSP solvers. There has been recent progress in providing better
practical systems to produce hypergraph decompositions, more specifically for GHDs [25, 85].
However, as we will show in Section 3.5 of this chapter, they fail to produce optimal GHDs for a
large number of instances from the HyperBench dataset [25]. In this line of research, we set out
to introduce a new decomposition method to provide significant improvements on the existing
state of the art.

To this end, we begin by first providing a number of general algorithmic improvements in
Section 3.2. These improvements target all combinatorial algorithms and are not limited to
the parallel decomposition method which we introduce and test as part of this chapter. The
improvements cover preprocessing of the input hypergraph. This preprocessing enables us
to reduce the size of the input, thus reducing the runtime needed to find a decomposition.
Afterwards, we can apply modifications to the output decomposition, such that it becomes a
decomposition of the initial hypergraph, before the preprocessing. We proceed to introduce a
series of preprocessing steps, show that they can be applied in a don’t-care non-deterministic
fashion, and we prove that correctness of these rules.

Next we explore the use of parallelisation in Section 3.3. As we explained as part of Section
1.4, there are a number of challenges that need to be addressed to effectively utilise multi-core
systems for the purpose of computing hypergraph decomposition. We first introduce our chosen
strategy for parallelising the balanced separator algorithm, and then proceed to explain how
our chosen design addresses the challenges we have outlined. We also briefly introduce the idea
of using a hybrid method that combines our just introduced parallel algorithm with simpler
sequential algorithms, and argue that this hybrid system manages to combine the strengths of
both systems, quickly reducing the size of the input hypergraph, without introducing unneeded
overhead once small subproblems have been reached.

We conclude this chapter by an experimental evaluation of our decomposition method and other
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methods from the literature [25, 85]. We use as the basis of this evaluation the HyperBench
dataset we mentioned earlier. We proceed to show that an ensemble of all our methods can
solve 2924 out of 3648 instances optimally, or around ∼80 %.

This work was created in collaboration with Georg Gottlob and Reinhard Pichler and initial
work was first published at the Alberto Mendelzon International Workshop on Foundations of
Data Management in 2019 [46]. This was next followed by a publication at the International
Joint Conference for Artificial Intelligence (IJCAI) 2020 [47] and ultimately an extended journal
publication was published by the journal Constraints in 2022 [49].

3.1 Extended Subhypergraphs and their Balanced Separation

An important idea in the algorithm we will present in this chapter is to split the task of
constructing GHDs into subtasks of constructing smaller parts of the GHD. We shall call these
“GHD-fragments”. These GHD-fragments can be reordered, a process we shall introduce later in
this chapter, and then stitched together to form a GHD of a given hypergraph. This splitting into
GHD-fragments is realised by choosing a node 𝑢, and splitting the GHD into various subtrees.
We note here that we do not have to keep track of whether these subtrees are “above” or “below”
the node 𝑢 in the final GHD we want to construct. This is made possible by the fact that GHDs
are not rooted trees. In order to keep track of how to combine the subtrees later on, we introduce
the notion of a special edge. A special edge 𝑠 is a vertex set where 𝑠 ⊆ 𝑉 (𝐻 ), indicating exactly
the shared vertices between two GHD-fragments. For any given special edge, the goal will
be to find a GHD-fragment which covers the special edge in a leaf node, thus allowing for
the corresponding other GHD-fragment to be attached without breaking the connectednesss
property.

The decomposition algorithm we will present in Section 3.3 will have as its main procedure
the recursive function Decomp, which takes as input a subset 𝐸′ of the edges 𝐸 (𝐻 ) and a set of
special edges S𝑝 . The goal of Decomp is to construct a fragment of a GHD, such that every edge
𝑒 ∈ 𝐸′ is covered by some node 𝑢′ in the GHD-fragment (i.e., 𝑒 ⊆ 𝜒 (𝑢′)) and all special edges
are covered by some leaf node of this GHD-fragment. Formally, function Decomp deals with
extended subhypergraphs of 𝐻 in the following sense.

Definition 3.1 (extended subhypergraph). Let 𝐻 be a hypergraph. An extended subhypergraph
of 𝐻 is a tuple ⟨𝐸′, S𝑝⟩ with the following properties:

• 𝐸′ is a subset of the edge set 𝐸 (𝐻 ) of 𝐻 ;
• S𝑝 is a set of special edges, i.e., S𝑝 ⊆ 2𝑉 (𝐻 ) ;

We now extend several crucial definitions introduced in [43] for hypergraphs to extended
subhypergraphs.

Definition 3.2 (connectedness, components). Let 𝐻 be a hypergraph, let𝑈 ⊆ 𝑉 (𝐻 ) be a set of
vertices, and let 𝐻 ′ = ⟨𝐸′, S𝑝⟩ be an extended subhypergraph of 𝐻 .
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• We define [𝑈 ]-adjacency as a binary relation on 𝐸′ ∪ S𝑝 such that two (possibly special)
edges 𝑓1, 𝑓2 ∈ 𝐸′ ∪ S𝑝 are [𝑈 ]-adjacent, if (𝑓1 ∩ 𝑓2) \𝑈 ≠ ∅ holds.

• We define [𝑈 ]-connectedness as the transitive closure of the [𝑈 ]-adjacency relation.
• A [𝑈 ]-component of 𝐻 ′ is a maximally [𝑈 ]-connected subset 𝐶 ⊆ 𝐸′ ∪ S𝑝 .

Let 𝑆 be a set of edges and special edges with 𝑈 =
�
𝑆 . Then we will also use the terms [𝑆]-

connectedness and [𝑆]-components as a short-hand for [𝑈 ]-connectedness and [𝑈 ]-components,
respectively. Next we give the definition of generalized hypertree decompositions (GHDs) of
extended subhypergraphs.

Definition 3.3 (generalized hypertree decomposition). Let 𝐻 be a hypergraph and let 𝐻 ′ =
⟨𝐸′, S𝑝⟩ be an extended subhypergraph of 𝐻 . A generalized hypertree decomposition (GHD) of
𝐻 ′ is a tuple ⟨𝑇, 𝜒, 𝜆⟩, such that 𝑇 = ⟨𝑁 (𝑇 ), 𝐸 (𝑇 )⟩ is a rooted tree, 𝜒 and 𝜆 are node-labelling
functions and the following conditions hold:

(1) for each 𝑢 ∈ 𝑁 (𝑇 ), either
a) 𝜆(𝑢) ⊆ 𝐸 (𝐻 ) and 𝜒 (𝑢) ⊆ �

𝜆(𝑢) or
b) 𝜆(𝑢) = {𝑠} for some 𝑠 ∈ S𝑝 and 𝜒 (𝑢) = 𝑠;

(2) each 𝑓 ∈ 𝐸′ ∪ S𝑝 is “covered” by some 𝑢 ∈ 𝑁 (𝑇 ), i.e.:
a) if 𝑓 ∈ 𝐸′, then 𝑓 ⊆ 𝜒 (𝑢);
b) if 𝑓 ∈ S𝑝 , then 𝜆(𝑢) = {𝑓 } and, hence, 𝜒 (𝑢) = 𝑓 ;

(3) for each 𝑣 ∈ � �
𝐸′� ∪ � �

S𝑝
�
, the set {𝑢 ∈ 𝑁 (𝑇 ) | 𝑣 ∈ 𝜒 (𝑢)} is connected in 𝑇 ;

(4) if 𝜆(𝑢) = {𝑠} for some 𝑠 ∈ S𝑝 , then 𝑢 is a leaf of 𝑇 ;

Clearly, 𝐻 can also be considered as an extended subhypergraph of itself by taking the tu-
ple ⟨𝐸 (𝐻 ), ∅⟩. Then the GHDs of the extended subhypergraph ⟨𝐸 (𝐻 ), ∅⟩ and the GHDs of
hypergraph 𝐻 coincide.

In [43], Definition 5.1, a normal form for HDs (instead of GHDs) was introduced. Below, in Def-
inition 3.5, we will carry the notion of normal form over to GHDs of extended subhypergraphs.
To this end, it is convenient to first define the set of (possibly special) edges covered for the first
time by some node or by some subtree of an GHD.

Definition 3.4. Let 𝐻 ′ = ⟨𝐸′, S𝑝⟩ be an extended subhypergraph of some hypergraph 𝐻 and
let D = ⟨𝑇, 𝜒, 𝜆⟩ be an GHD of 𝐻 ′. For a node 𝑢 ∈ 𝑇 , we write c𝑜𝑣 (𝑢) to denote the set of
edges and special edges covered for the first time at 𝑢, i.e.: c𝑜𝑣 (𝑢) = {𝑓 ∈ 𝐸′ ∪ S𝑝 | 𝑓 ⊆ 𝜒 (𝑢)
and for all ancestor nodes 𝑢′ of 𝑢, 𝑓 ⊈ 𝜒 (𝑢′) holds}. For a subtree 𝑇 ′ of 𝑇 , we define c𝑜𝑣 (𝑇 ′) =�

𝑢∈𝑇 ′ c𝑜𝑣 (𝑢).
Definition 3.5 (normal form). Let 𝐻 ′ = ⟨𝐸′, S𝑝⟩ be an extended subhypergraph of some
hypergraph 𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩ be an GHD of 𝐻 ′. We say that D is in normal form, if for
every node 𝑝 in 𝑇 and every child node 𝑐 of 𝑝 , the following properties hold:
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1. There is exactly one [𝜒 (𝑝)]-component 𝐶𝑝 of 𝐻 ′ such that 𝐶𝑝 = c𝑜𝑣 (𝑇𝑐);
2. there exists 𝑓 ∈ 𝐶𝑝 with 𝑓 ⊆ 𝜒 (𝑐), where𝐶𝑝 is the [𝜒 (𝑝)]-component fulfilling Condition 1;
3.

� �
𝜆(𝑐)� ∩ 𝜒 (𝑝) ⊆ 𝜒 (𝑐).

By the connectedness condition, the following property holds in any GHD: if 𝐶′ is a [𝜒 (𝑝)]-
component of 𝐻 ′ with 𝐶′ ∩ c𝑜𝑣 (𝑇𝑐) ≠ ∅, then 𝐶′ ⊆ c𝑜𝑣 (𝑇𝑐) must hold. That is, c𝑜𝑣 (𝑇𝑐) is the
union of one or several [𝜒 (𝑝)]-components. Condition 1 of the normal form requires there to be
exactly one [𝜒 (𝑝)]-component 𝐶𝑝 of 𝐻 ′ satisfying 𝐶𝑝 ⊆ c𝑜𝑣 (𝑇𝑐).
Condition 2 intuitively requires that some “progress” must be made by the labelling of node 𝑐 .
Hence, in the first place, at least one vertex from

�
𝐶𝑝 not already present in 𝜒 (𝑝) must occur

in 𝜒 (𝑐). By the connectedness condition, this is only possible if one edge 𝑓 from 𝐶𝑝 occurs in
𝜆(𝑐). Hence, by condition (4) of the definition of GHDs, 𝑓 ⊆ 𝜒 (𝑐) must hold.
We now carry over two key results from [43], whose proofs can be easily adapted to our setting
of extended subhypergraphs and are therefore omitted here.

Theorem 3.6 (cf. [43], Theorem 5.4). Let 𝐻 ′ be an extended subhypergraph of some hypergraph
𝐻 and let D be an GHD of 𝐻 ′ of width 𝑘 . Then there exists an GHD D′ of 𝐻 ′ in normal form,
such that D′ also has width 𝑘 .

Lemma 3.7 (cf. [43], Lemma 5.8). Let 𝐻 ′ be an extended subhypergraph of some hypergraph
𝐻 and let D = ⟨𝑇, 𝜒 , 𝜆⟩ be an GHD in normal form of 𝐻 ′. Moreover, let 𝑝, 𝑐 be nodes in 𝑇 such
that 𝑝 is the parent of 𝑐 and let 𝐶𝑐 ⊆ 𝐶𝑝 for some [𝜒 (𝑝)]-component 𝐶𝑝 of 𝐻 ′. Then the following
equivalence holds: 𝐶𝑐 is a [𝜒 (𝑐)]-component of 𝐻 ′ if and only if 𝐶𝑐 is a [𝜆(𝑐)]-component of 𝐻 ′.

In [25], balanced separators were used to design an algorithm for GHD computation. Below, we
formally define balanced separators for our notion of extended subhypergraphs and we show
that in a GHD, a balanced separator always exists.

Definition 3.8 (balanced separators). Let𝐻 ′ be an extended subhypergraph of some hypergraph
𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩ be an GHD of 𝐻 ′. A node 𝑢 of𝑇 is a balanced separator , if the following
holds:

• for every subtree 𝑇𝑢𝑖 rooted at a child node 𝑢𝑖 of 𝑢, we have |c𝑜𝑣 (𝑇𝑢𝑖 ) | ≤ |𝐸′ |+|S𝑝 |
2 and

• |c𝑜𝑣 (𝑇 ↑
𝑢 ) | < |𝐸′ |+|S𝑝 |

2 .

Intuitively, this means that none of the subtrees “below” 𝑢 covers more than half of the edges of
𝐸′ ∪ S𝑝 and the subtree “above’ 𝑢 even covers less than half of the edges of 𝐸′ ∪ S𝑝 .

Lemma 3.9. Let 𝐻 ′ be an extended subhypergraph of some hypergraph 𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩
be an HD of 𝐻 ′. Then there exists a balanced separator in D.
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Proof of Lemma 3.9. We show that, given an arbitrary GHD, we can always find a balanced
separator as follows: Initially, we set 𝑢 = 𝑟 for the root node 𝑟 of 𝑇 and distinguish two cases:
if |c𝑜𝑣 (𝑇𝑢𝑖 ) | ≤ |𝐸′ |+|S𝑝 |

2 holds for every subtree 𝑇𝑢𝑖 rooted at a child node 𝑢𝑖 of 𝑢, then 𝑢 is a
balanced separator and we are done. Otherwise, there exists a child node 𝑢𝑖 of 𝑢 such that
|c𝑜𝑣 (𝑇𝑢𝑖 ) | > |𝐸′ |+|S𝑝 |

2 holds for the subtree 𝑇𝑢𝑖 rooted at 𝑢𝑖 . Of course, there can exist only one
such child node 𝑢𝑖 . Moreover, by c𝑜𝑣 (𝑇 ↑

𝑢𝑖 ) ∩ c𝑜𝑣 (𝑇𝑢𝑖 ) = ∅, we have |c𝑜𝑣 (𝑇 ↑
𝑢𝑖 ) | < |𝐸′ |+|S𝑝 |

2 .
Now set 𝑢 = 𝑢𝑖 and repeat the case distinction: if |c𝑜𝑣 (𝑇𝑢𝑖 ) | ≤ |𝐸′ |+|S𝑝 |

2 holds for every subtree
𝑇𝑢𝑖 rooted at a child node 𝑢𝑖 of 𝑢, then 𝑢 is a balanced separator and we are done. Otherwise,
there exists a child node 𝑢𝑖 of 𝑢 such that |c𝑜𝑣 (𝑇𝑢𝑖 ) | > |𝐸′ |+|S𝑝 |

2 holds for the subtree 𝑇𝑢𝑖 rooted
at 𝑢𝑖 . Again, there can only be one such 𝑢𝑖 . So we set 𝑢 = 𝑢𝑖 and iterate the same considerations.
This process is guaranteed to terminate since, eventually, we will reach a leaf node of 𝑇 . □

3.2 Algorithmic Improvements

In this section, we present several algorithmic improvements of decomposition algorithms.
We start with some simplifications of hypergraphs, which can be applied as a preprocessing
step for any hypergraph decomposition algorithm, i.e., they are not restricted to the GHD
algorithms discussed here. We shall then also mention further algorithmic improvements
which are specific to the GHD algorithms presented in this chapter. We note that, while the
GHD-specific algorithmic improvements are new, the simplifications mentioned below have
already been used before and/or are quite straightforward. We prove that their exhaustive
application to an arbitrary hypergraph yields a unique normal form up to isomorphism. For the
sake of completeness, we also prove the correctness and polynomial time complexity of their
application.

3.2.1 Hypergraph Preprocessing

An important step to speed up decomposition algorithms is the simplification of the input
hypergraph. Before we formally present such a simplification, we observe that we may restrict
ourselves to connected hypergraphs, formally those having only a single [∅]-component, since a
GHD of a hypergraph consisting of several connected components can be obtained by combining
the GHDs of each connected component in an “arbitrary” way, e.g., appending the root of one
GHD as a child of an arbitrarily chosen node of another GHD. This can never violate the
connectedness condition, since the GHDs of different components have no vertices in common.
It is easy to verify that the simplifications proposed below never make a connected hypergraph
disconnected. Hence, splitting a hypergraph into its connected components can be done upfront,
once and for all. After that, we are exclusively concerned with connected hypergraphs. Given a
(connected) hypergraph 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )), we thus propose the exhaustive application of the
following reduction rules in a don’t-care non-deterministic fashion:

The so-called GYO reduction was introduced in [51, 95] to test the acyclicity of a hypergraph. It
consists of the Rules 1 and 2 recalled below:
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Rule 1. Suppose that 𝐻 contains a vertex 𝑣 that only occurs in a single edge 𝑒 . Then we may
delete 𝑣 from 𝑒 and thus from 𝑉 (𝐻 ) altogether.

Rule 2. Suppose that 𝐻 contains two edges 𝑒1, 𝑒2, such that 𝑒1 ⊆ 𝑒2. Then we may delete 𝑒1
from 𝐸 (𝐻 ).
The next reduction of hypergraphs makes use of the notion of types of vertices. Here the type
of a vertex 𝑣 is defined as the set of edges 𝑒 which contain 𝑣 . We thus define Rule 3 as follows:

Rule 3. Suppose that 𝐻 contains vertices 𝑣1, 𝑣2 of the same type. Then we may delete 𝑣2 from
𝑉 (𝐻 ) and thus from all edges containing 𝑣2.
The next reduction rule considered here uses the notion of hinges. In [55], hinge decompositions
were introduced to help split CSPs into smaller subproblems. In [34], the combination of
hinge decompositions and hypertree decompositions was studied. We also make use of hinge
decompositions as part of our preprocessing. More specifically, we define the following reduction
rule:

Rule 4. Let 𝑒 ∈ 𝐸 (𝐻 ) and let C = {𝐶1, . . . ,𝐶ℓ } with ℓ ≥ 2 denote the [𝑒]-components of
𝐻 . Then we may split 𝐻 into hypergraphs 𝐻1 = (𝑉 (𝐻1), 𝐸 (𝐻1)),. . . , 𝐻ℓ = (𝑉 (𝐻ℓ ), 𝐸 (𝐻ℓ )) with
𝐻 (𝐸𝑖) = 𝐶𝑖 ∪ {𝑒} and 𝑉 (𝐻𝑖) = �

𝐸 (𝐻𝑖) for each 𝑖 .
The above simplifications (above all the splitting into smaller hypergraphs via Rule 4) may
produce a hypergraph that is so small that the construction of a GHD of width ≤ 𝑘 for given
𝑘 ≥ 1 becomes trivial. The following rule allows us to eliminate such trivial cases:

Rule 5. If |𝐸 (𝐻 ) | ≤ 𝑘 , then 𝐻 may be deleted. It has a trivial GHD consisting of a single node
𝑛 with 𝜆(𝑛) = 𝐸 (𝐻 ) and 𝜒 (𝑛) = �

𝐸 (𝐻 ).
We shall note that the main reason we consider the trivial Rule 5 is purely technical, in that
it allows us to prove that the arbitrary application of all rules, including Rule 5, always leads
to a unique normal form. The inclusion of Rule 5 does not do any harm as any practical
decomposition method will at any rate check if the currently investigated hypergraph already
has edge cover number of 𝑘 or less.

In Theorems 3.10 and 3.11 below, we state several crucial properties of the reductions. Most im-
portantly, these reductions neither add nor lose solutions. Moreover, preprocessing a hypergraph
with these rules can be done in polynomial time.

Note that, even though all Rules 1 – 5 are applied to a single hypergraph, the result in case of
Rule 4 is a set of hypergraphs. Hence, strictly speaking, these rules form a rewrite system that
transforms a set of hypergraphs into another set of hypergraphs, where the starting point is a
singleton consisting of the initial hypergraph only. However, to keep the notation simple, we
will concentrate on the effect of these rules on a single hypergraph with the understanding that
application of one of these rules comes down to selecting an element from a set of hypergraphs
and replacing this element by the hypergraph(s) according to the above definition of the rules.
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Theorem 3.10. Preprocessing an input hypergraph 𝐻 via Rules 1 – 5 is correct. More precisely, let
{𝐻1, . . . , 𝐻𝑚} be the result of exhaustive application of Rules 1 – 5 to a hypergraph 𝐻 . Then, for
any 𝑘 ≥ 1, we have ghw(𝐻 ) ≤ 𝑘 if and only if, for every 𝑖 ∈ {1, . . . ,𝑚}, ghw(𝐻𝑖) ≤ 𝑘 holds.

As for the complexity, this transformation of 𝐻 into {𝐻1, . . . , 𝐻ℓ } is feasible in polynomial time.
Moreover, any collection of GHDs of width ≤ 𝑘 of 𝐻1, . . . , 𝐻ℓ can be transformed in polynomial
time into a GHD of 𝐻 of width ≤ 𝑘 .

Proof. We split the proof in two main parts: first, we consider the complexity of exhaustive
application of Rules 1 – 5 and then we prove the correctness of the rules. The polynomial-time
complexity of constructing a GHD of 𝐻 from GHDs of the resulting hypergraphs {𝐻1, . . . , 𝐻𝑚}
will be part of the correctness proof.

Complexity of exhaustive rule application. Rules 1 – 3 have the effect that the size of 𝐻 is
strictly decreased by either deleting vertices or edges. Hence, there can be only linearly many
applications of Rules 1 – 3 and each of these rule applications is clearly feasible in polynomial
time. Likewise, Rule 5, which allows us to delete a non-empty hypergraph, can only be applied
linearly often and any application of this rule is clearly feasible in polynomial time. Checking if
Rule 4 is applicable and actually applying Rule 4 is also feasible in polynomial time. Hence, it only
remains to show that the total number of applications of Rule 4 is polynomially bounded. To see
this, we first of all make the following observation on the number of edges in each 𝐻𝑖 : consider
a single application of Rule 4 and suppose that, for some edge 𝑒 , there are ℓ [𝑒]-components
𝐶1, . . . ,𝐶ℓ . These [𝑒]-components are pairwise disjoint and we have 𝐶𝑖 ⊆ 𝐸 (𝐻 ) \ {𝑒} for each
𝑖 . Hence, if |𝐸 (𝐻 ) | = 𝑛 and |𝐶𝑖 | = 𝑛𝑖 with 𝑛𝑖 ≥ 1, then 𝑛1 + · · · + 𝑛ℓ ≤ 𝑛 − 1 holds. Moreover,
|𝐸 (𝐻𝑖) | = 𝑛𝑖 + 1, since we add 𝑒 to each component. We claim that, in total, when applying Rules
1 – 4 exhaustively to a hypergraph 𝐻 with 𝑛 ≥ 3 edges, there can be at most 2𝑛 − 3 applications
of Rule 4. Note that for 𝑛 = 1 or 𝑛 = 2, Rule 4 is not applicable at all.

We prove this claim by induction on 𝑛: if 𝐻 has 3 edges, then an application of Rule 4 is only
possible, if we find an edge 𝑒 , such that there are 2 [𝑒]-components 𝐶1,𝐶2, each consisting of
a single edge. Hence, such an application of Rule 4 produces two hypergraphs 𝐻1, 𝐻2 with 2
edges each, to which no further application of Rule 4 is possible. Hence, the total number of
applications of Rule 4 is bounded by 1 and, for 𝑛 = 3, we indeed have 1 ≤ 6 − 3 ≤ 2𝑛 − 3.
For the induction step, suppose that the claim holds for any hypergraph with ≤ 𝑛 − 1 edges
and suppose that 𝐻 has 𝑛 edges. Moreover, suppose that an application of Rule 4 for some
edge 𝑒 is possible with ℓ ≥ 2 [𝑒]-components 𝐶1, . . . ,𝐶ℓ and let |𝐶𝑖 | = 𝑛𝑖 . Then 𝐻 is split into
ℓ hypergraphs 𝐻1, . . . , 𝐻ℓ with |𝐸 (𝐻𝑖) | = 𝑛𝑖 + 1. Note that applications of any of the Rules 1 –
3 to the hypergraphs 𝐻𝑖 can never increase the number of edges. These rules may thus be
ignored and we may apply the induction hypothesis to each 𝐻𝑖 . Hence, for every 𝑖 , there are
at most 2(𝑛𝑖 + 1) − 3 = 2𝑛𝑖 − 1 applications of Rule 4 in total possible for 𝐻𝑖 . Taking all the
resulting hypergraphs𝐻1, . . . , 𝐻ℓ together, the total number of applications of Rule 4 is therefore
≤ (2𝑛1 + · · · + 2𝑛ℓ ) − ℓ . Together with the inequalities 𝑛1 + · · · +𝑛ℓ ≤ 𝑛 − 1 and ℓ ≥ 2, and adding
the initial application of Rule 4, we thus have, in total, ≤ 2(𝑛 − 1) − ℓ + 1 = 2𝑛 − 2 − ℓ + 1 ≤
2𝑛 − 2 − 2 + 1 = 2𝑛 − 3 applications of Rule 4.
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Correctness. For the correctness of our reduction system, we have to prove the correctness of
each single rule application. Likewise, for the polynomial-time complexity of constructing a
GHD of 𝐻 from the GHDs of the final hypergraph set {𝐻1, . . . , 𝐻𝑚}, it suffices to show that one
can efficiently construct a GHD of the original hypergraph from the GHD(s) of the hypergraph(s)
resulting from a single rule application. This is due to the fact that we have already shown
above that the total number of rule applications is polynomially bounded. It thus suffices to
prove the following claim:

Claim A. Let 𝐻 be a hypergraph and suppose that 𝐻 ′ is the result of a single application of
one of the Rules 1 – 3 to 𝐻 . Then gℎ𝑤 (𝐻 ) ≤ 𝑘 if and only if gℎ𝑤 (𝐻 ′) ≤ 𝑘 . Moreover, in the
positive case, a GHD of 𝐻 of width ≤ 𝑘 can be constructed from a GHD of 𝐻 ′ of width ≤ 𝑘 in
polynomial time.

Likewise, suppose that 𝐻1, . . . , 𝐻ℓ is the result of a single application of Rule 4 to 𝐻 . Then
gℎ𝑤 (𝐻 ) ≤ 𝑘 if and only if, for every 𝑖 ∈ {1, . . . , ℓ}, gℎ𝑤 (𝐻𝑖) ≤ 𝑘 holds. Moreover, in the
positive case, a GHD of 𝐻 of width ≤ 𝑘 can be constructed from GHDs of 𝐻1, . . . , 𝐻ℓ of width
≤ 𝑘 in polynomial time.

Note that we have omitted Rule 5 in this claim, since both the correctness and the polynomial-
time construction of a GHD of width ≤ 𝑘 are trivial. The proof of Claim A is straightforward
but lengthy due to the case distinction over the 4 remaining rules. It is therefore deferred to
Section 3.2.3. □

Note that the application of one rule may enable the application of another rule; so their
combination may lead to a greater simplification compared to just any one rule alone. Now
the question naturally arises if the order in which we apply the rules has an impact on the
final result. We next show that exhaustive application of Rules 1 – 5 leads to a unique (up to
isomorphism) result, even if they are applied in a don’t-care non-deterministic fashion.

Theorem 3.11. Transforming a given hypergraph with Rules 1 – 5 leads to a unique normal
form. That is, let 𝐻 be a hypergraph and let {𝐻1, . . . , 𝐻𝑚} be the result of exhaustively applying
Rules 1 – 5. Then {𝐻1, . . . , 𝐻𝑚} is unique (up to isomorphism) no matter in which order the Rules 1
– 5 are applied.

Proof. Recall that, in Theorem 3.10, we have already shown that the rewrite system is terminating
(actually, we have even shown that there are at most polynomially many rule applications). In
order to show that the rewrite system guarantees a unique normal form (up to isomorphism),
it is therefore sufficient to show that it is locally confluent [8]. That is, we have to prove the
following property: LetH be a set of hypergraphs and suppose that there are two possible ways
of applying Rules 1 – 5 to (an element 𝐻 of)H , so thatH can be transformed to eitherH1 or
H2. Then there exists a set of hypergraphsH ′, such that bothH1 andH2 can be transformed
into H ′ by a sequence of applications of Rules 1 – 5. In the notation of [8], this property is
succinctly presented as follows:

H1 ← H → H2 ⇒ H1 ↓ H2
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Table 3.1: Overview of the complexity of the four methods considered for ordering hyperedges.

Method of edge ordering Runtime Worst Case Complexity

Maximal cardinality search ordering 𝑂 ( |𝐸 (𝐻 ) |2)
Maximal separator ordering 𝑂 ( |𝐸 (𝐻 ) | · |𝑉 (𝐻 ) |3)
Vertex degree ordering 𝑂 ( |𝐸 (𝐻 ) |2)
Edge degree ordering 𝑂 ( |𝐸 (𝐻 ) |2)

To prove this property, we have to consider all possible pairs (𝑖, 𝑗) of applicable Rules 𝑖 and 𝑗 .

This case disctinction is rather tedious (especially the cases where Rule 4 is involved) but not
difficult. We thus defer the details to Section 3.2.4. □

3.2.2 Finding Balanced Separators Fast

It has already been observed in [50] that the ordering in which edges are considered is vital
for finding an appropriate edge cover 𝜆(𝑛) for the current node 𝑛 in the decomposition fast.
However, the ordering used in [50] for det-𝑘-decomp, (which was called MCSO, i.e., maximal
cardinality search ordering) turned out to be a poor fit for finding balanced separators. A
natural alternative was to consider, for each edge 𝑒 , all possible paths between vertices in the
hypergraph 𝐻 , and how much the length of these paths increases after removal of 𝑒 . This
provides a weight for each edge, based on which we can define the maximal separator ordering.
In our tests, this proved to be a very effective heuristic. Unfortunately, computing the maximal
separator ordering requires solving the all-pairs shortest path problem. Using the well-known
Floyd-Warshall algorithm [27, 92] as a subroutine, this leads to a fairly high complexity – see
Table 3.1 – which proved to be prohibitively expensive for practical instances. We thus explored
two other, computationally simpler, heuristics, which order the edges in descending order of
the following measures:

• The vertex degree of an edge 𝑒 is defined as
�

𝑣∈𝑒 deg(𝑣), where deg(𝑣) denotes the degree
of a vertex 𝑣 , i.e., the number of edges containing 𝑣 .

• The edge degree of an edge 𝑒 is |{𝑓 : 𝑒∩ 𝑓 ≠ ∅}|, i.e., the number of edges 𝑒 has a non-empty
intersection width.

In our empirical evaluation, we found both of these to be useful compromises between speeding
up the search for balanced separators and the complexity of computing the ordering itself, with
the vertex degree ordering yielding the best results, i.e., compute 𝜆(𝑛) by first trying to select
edges with higher vertex degree.

Finding the next balanced separator. Finding a balanced separator fast is important for
the performance of our GHD algorithm, but it is not enough: if the balanced separator thus
found does not lead to a successful GHD computation, we have to try another one. Hence, it
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is important to find the next balanced separator fast and to avoid trying the same balanced
separator multiple times. The GHD algorithm based on balanced separators presented in [24]
searches through all ℓ-tuples of edges (with ℓ ≤ 𝑘) to find the next balanced separator. The
number of edge-combinations thus checked is

�𝑘
𝑖=1

�𝑁
𝑖

�
, where 𝑁 denotes the number of edges.

Note that this number of edges is actually higher than in the input hypergraph due to the
subedges that have to be added for the tractability of GHD computation (see Section 2.5). Before
we explain our improvement, let us formally explain how subedges factor into the search. Let
us assume that we are given an edge cover (𝑒1, . . . , 𝑒𝑘 ), consisting of exactly 𝑘 edges. Using the
function 𝑓𝑒 (𝐻,𝑘) which generates the set of subedges to consider for any given edge 𝑒 , defined
in Section 2.5, we get the following set of edge combinations when factoring in all the relevant
subedges:

{(𝑒′1, . . . , 𝑒′𝑘 ) | 𝑒′𝑖 ∈ {𝑒𝑖 ∪ 𝑓𝑒𝑖 (𝐻,𝑘)}, 1 ≤ 𝑖 ≤ 𝑘}

We note a significant source of redundancy in this set. If one only focuses on the combination
of 𝑙 ≤ 𝑘 edges to intersect with 𝑒 , it is possible that the same bags (when taking the union of
their vertices) can be generated multiple times

We can address this by shifting our focus on the actual bags 𝜒 (𝑛) generated from each 𝜆(𝑛)
thus computed. Therefore, we initially only look for balanced separators of size 𝑘 , checking�𝑁
𝑘

�
many initial choices of 𝜆(𝑛). Only if a choice of 𝜆(𝑛) and 𝜒 (𝑛) =

�
𝜆(𝑛) does not lead

to a successful recursive call of the decomposition procedure, we also inspect subsets of 𝜒 (𝑛)
– strictly avoiding the computation of the same subset of 𝜒 (𝑛) several times by inspecting
different subedges of the original edge cover 𝜆(𝑛). We thus also do not add subedges to the
hypergraph upfront but only as they are needed as part of the backtracking when the original
edge cover 𝜆(𝑛) did not succeed. Separators consisting of fewer edges are implicitly considered
by allowing also the empty set as a possible subedge.

Summary. Our initial focus was to speed up existing decomposition algorithms via improve-
ments as described above. However, even though these algorithmic improvements showed some
positive effect, it turned out that a more fundamental change is needed. We have thus turned
our attention to parallelisation, which will be the topic of Section 3.3. But first we present the
missing parts of the proofs of Theorems 3.10 and 3.11 in Sections 3.2.3 and 3.2.4, respectively.

3.2.3 Completion of the Proof of Theorem 3.10

It remains to prove Claim A from the proof in Section 3.2.1.

Proof of the Claim. We prove the claim for each rule separately. It is convenient to treat 𝐸 (𝐻 ) as
a multiset, i.e., 𝐸 (𝐻 ) may contain several “copies” of an edge. This simplifies the argumentation
below, when the deletion of vertices may possibly make two edges identical. Note that, if at
all, this only happens in intermediate steps, since Rule 2 above will later lead to the deletion of
such copies anyway.
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Rule 1. 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) contains a vertex 𝑣 that only occurs in a single edge 𝑒 and we
delete 𝑣 from 𝑒 and from 𝑉 (𝐻 ) altogether. Let 𝑒′ = 𝑒 \ {𝑣}. Then 𝐻 ′ = (𝑉 (𝐻 ′), 𝐸 (𝐻 ′)) with
𝑉 (𝐻 ′) = 𝑉 (𝐻 ) \ {𝑣} and 𝐸 (𝐻 ′) = (𝐸 (𝐻 ) \ {𝑒}) ∪ {𝑒′}.
⇒: Let D = ⟨𝑇, 𝜒, 𝜆⟩ be a GHD of 𝐻 of width ≤ 𝑘 . We construct GHD D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩ as
follows: the tree structure 𝑇 remains unchanged, i.e., we set 𝑇 ′ = 𝑇 . For every node 𝑛 in the
tree 𝑇 ′, we define 𝜆′(𝑛) and 𝜒 ′(𝑛) as follows:

• If 𝑒 ∈ 𝜆(𝑛), then 𝜆′(𝑛) = (𝜆(𝑛) \ {𝑒}) ∪ {𝑒′}.
• If 𝑣 ∈ 𝜒 (𝑛), then 𝜒 ′(𝑛) = 𝜒 (𝑛) \ {𝑣}.
• For all other nodes 𝑛 in 𝑇 ′, we set 𝜆′(𝑛) = 𝜆(𝑛) and 𝜒 ′(𝑛) = 𝜒 (𝑛).

It is easy to verify that D′ is a GHD of 𝐻 ′. Moreover, the width clearly does not increase by
this transformation.

⇐: Let D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩ be a GHD of 𝐻 ′ of width ≤ 𝑘 . By the definition of GHDs, 𝑇 ′ must
contain at least one node 𝑛, such that 𝑒′ ⊆ 𝜒 ′(𝑛). We arbitrarily choose one such node 𝑛̂ with
𝑒′ ⊆ 𝜒 ′(𝑛̂). Then we construct GHD D = ⟨𝑇, 𝜒, 𝜆⟩ as follows:

• 𝑇 contains all nodes and edges from𝑇 ′ plus one additional leaf node 𝑛′ which we append
as a child node of 𝑛̂.

• For 𝑛′, we set 𝜆(𝑛′) = {𝑒} and 𝜒 (𝑛′) = 𝑒 .

• Let 𝑛 be a node in 𝑇 ′ with 𝑒′ ∈ 𝜆′(𝑛). Then we set 𝜆(𝑛) = (𝜆′(𝑛) \ {𝑒′}) ∪ {𝑒} and we
leave 𝜒 ′ unchanged, i.e., 𝜒 (𝑛) = 𝜒 ′(𝑛).

• For all other nodes 𝑛 in 𝑇 , we set 𝜆(𝑛) = 𝜆′(𝑛) and 𝜒 (𝑛) = 𝜒 ′(𝑛).

Clearly, D can be constructed from D′ in polynomial time. Moreover, it is easy to verify that
D is a GHD of 𝐻 . In particular, the connectedness condition is not violated by the introduction
of the new node 𝑛′ into the tree, since vertex 𝑣 ∈ 𝜒 (𝑛′) occurs nowhere else in D and all other
vertices in 𝜒 (𝑛′) are also contained in 𝜒 (𝑛̂) for the parent node 𝑛̂ of 𝑛′. Moreover, the width
clearly does not increase by this transformation since the new node 𝑛′ has |𝜆(𝑛′) | = 1 and for
all other 𝜆-labels, the cardinality has been left unchanged.

Rule 2. Suppose that 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) contains two edges 𝑒1, 𝑒2, such that 𝑒1 ⊆ 𝑒2 and we
delete 𝑒1 from 𝐸 (𝐻 ), i.e., 𝐻 ′ = (𝑉 (𝐻 ′), 𝐸 (𝐻 ′)) with 𝑉 (𝐻 ′) = 𝑉 (𝐻 ) and 𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒1}).
⇒: Let D = ⟨𝑇, 𝜒, 𝜆⟩ be a GHD of 𝐻 of width ≤ 𝑘 . We construct GHD D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩ as
follows: the tree structure 𝑇 remains unchanged, i.e., we set 𝑇 ′ = 𝑇 . For every node 𝑛 in the
tree 𝑇 ′, we define 𝜆′(𝑛) and 𝜒 ′(𝑛) as follows:
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• If 𝑒1 ∈ 𝜆(𝑛), then 𝜆′(𝑛) = (𝜆(𝑛) \ {𝑒1}) ∪ {𝑒2}.

• For all other nodes 𝑛 in 𝑇 ′, we set 𝜆′(𝑛) = 𝜆(𝑛).

• For all nodes 𝑛 in 𝑇 ′, we set 𝜒 ′(𝑛) = 𝜒 (𝑛).

It is easy to verify that D′ is a GHD of 𝐻 ′ and that the width does not increase by this
transformation.

⇐: Let D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩ be a GHD of 𝐻 ′ of width ≤ 𝑘 . It is easy to verify that then D′ is also a
GHD of 𝐻 . Indeed, we only need to verify that 𝑇 ′ contains a node 𝑛 with 𝑒1 ⊆ 𝜒 ′(𝑛). By the
definition of GHDs, there exists a node 𝑛 in 𝑇 ′ with 𝑒2 ⊆ 𝜒 ′(𝑛). Hence, since we have 𝑒1 ⊆ 𝑒2,
also 𝑒1 ⊆ 𝜒 ′(𝑛) holds.

Rule 3. Suppose that 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) contains two vertices 𝑣1, 𝑣2 which occur in precisely
the same edges and we delete 𝑣2 from all edges and thus from 𝑉 (𝐻 ) altogether, i.e., 𝐻 ′ =
(𝑉 (𝐻 ′), 𝐸 (𝐻 ′)) with 𝑉 (𝐻 ′) = 𝑉 (𝐻 ) \ {𝑣2} and 𝐸 (𝐻 ′) = {𝑒 \ {𝑣2} | 𝑒 ∈ 𝐸 (𝐻 )}.
It is convenient to introduce the following notation: suppose that 𝐸 (𝐻 ) = {𝑒1, . . . , 𝑒ℓ }. Then we
denote 𝐸 (𝐻 ′) as 𝐸 (𝐻 ′) = {𝑒′1, . . . , 𝑒′ℓ }, where 𝑒′𝑖 = 𝑒𝑖 \ {𝑣2}. Of course, we have 𝑒′𝑖 = 𝑒𝑖 whenever
𝑣2 ∉ 𝑒𝑖 .

⇒: Let D = ⟨𝑇, 𝜒, 𝜆⟩ be a GHD of 𝐻 of width ≤ 𝑘 . We construct GHD D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩ as
follows: the tree structure 𝑇 remains unchanged, i.e., we set 𝑇 ′ = 𝑇 . For every node 𝑛 in the
tree 𝑇 ′, we define 𝜆′(𝑛) and 𝜒 ′(𝑛) as follows:

• Suppose that 𝜆(𝑛) = {𝑒𝑖1, . . . , 𝑒𝑖 𝑗 } for some 𝑗 ≤ 𝑘 . Then we set 𝜆′(𝑛) = {𝑒′𝑖1, . . . , 𝑒′𝑖 𝑗 }.

• For all nodes 𝑛 in 𝑇 ′, we set 𝜒 ′(𝑛) = 𝜒 (𝑛) \ {𝑣2}.

It is easy to verify that D′ is a GHD of 𝐻 ′ and that the width does not increase by this
transformation.

⇐: Let D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩ be a GHD of 𝐻 ′ of width ≤ 𝑘 . Then we construct GHD D = ⟨𝑇, 𝜒, 𝜆⟩
as follows: the tree structure 𝑇 ′ remains unchanged, i.e., we set 𝑇 = 𝑇 ′. For every node 𝑛 in the
tree 𝑇 , we define 𝜆(𝑛) and 𝜒 (𝑛) as follows:

• Suppose that 𝜆′(𝑛) = {𝑒′𝑖1, . . . , 𝑒′𝑖 𝑗 } for some 𝑗 ≤ 𝑘 . Then we set 𝜆(𝑛) = {𝑒𝑖1, . . . , 𝑒𝑖 𝑗 }.

• For all nodes 𝑛 in 𝑇 ′ with 𝑣1 ∈ 𝜒 ′(𝑛), we set 𝜒 (𝑛) = 𝜒 ′(𝑛) ∪ {𝑣2}.

• For all other nodes 𝑛 in 𝑇 ′, we set 𝜒 (𝑛) = 𝜒 (𝑛)′.
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Clearly this transformation is feasible in polynomial time and it does not increase the width.
In order to show that D is indeed a GHD of 𝐻 , there are two non-trivial parts, namely: (1) for
every 𝑒𝛼 ∈ 𝐸 (𝐻 ), there exists a node 𝑛 in 𝑇 with 𝑒𝛼 ⊆ 𝜒 (𝑛) and (2) 𝜒 (𝑛) ⊆ 𝐵(𝜆(𝑛)) holds for
every node 𝑛 even if we add vertex 𝑣2 to the 𝜒-label. These are the two places where we make
use of the fact that 𝑣1 and 𝑣2 occur in precisely the same edges in 𝐸 (𝐻 ).
For part (1), note that there exists a node 𝑛 in 𝑇 ′ (and hence in 𝑇 ), such that 𝑒′𝛼 ⊆ 𝜒 ′(𝑛). If
𝑣1 ∉ 𝜒 ′(𝑛), then 𝑣1 ∉ 𝑒′𝛼 and, therefore 𝑣1 ∉ 𝑒𝛼 . Hence, (since 𝑣1 and 𝑣2 have the same type) also
𝑣2 ∉ 𝑒𝛼 . We thus have 𝑒𝛼 = 𝑒′𝛼 and 𝑒𝛼 ⊆ 𝜒 (𝑛) = 𝜒 ′(𝑛). On the other hand, if 𝑣1 ∈ 𝜒 ′(𝑛), then
𝑣2 ∈ 𝜒 (𝑛) by the above construction of D. Hence, 𝑒𝛼 ⊆ 𝜒 (𝑛) again holds, since 𝑒𝛼 ⊆ 𝑒′𝛼 ∪ {𝑣2}.
For part (2), consider an arbitrary vertex 𝑣 ∈ 𝜒 (𝑛). We have to show that 𝑣 ∈ 𝐵(𝜆(𝑛)). First,
suppose that 𝑣 ≠ 𝑣2. Then we have 𝑣 ∈ 𝜒 ′(𝑛) ⊆ 𝐵(𝜆′(𝑛)) ⊆ 𝐵(𝜆(𝑛)). It remains to consider
the case 𝑣 = 𝑣2. Then, by the above construction of D, we have 𝑣1 ∈ 𝜒 ′(𝑛). We observe the
following chain of implications: 𝑣1 ∈ 𝜒 ′(𝑛) ⇒ 𝑣1 ∈ 𝑒′𝛼 for some 𝑒′𝛼 ∈ 𝜆′(𝑛) ⇒ 𝑣1 ∈ 𝑒𝛼 for
some 𝑒𝛼 ∈ 𝜆(𝑛) ⇒ (since 𝑣1 and 𝑣2 have the same type) 𝑣2 ∈ 𝑒𝛼 for some 𝑒𝛼 ∈ 𝜆(𝑛). That is,
𝑣 ∈ 𝐵(𝜆(𝑛)) indeed holds.
Rule 4. Suppose that 𝐻 = (𝑉 (𝐻 ), 𝐸 (𝐻 )) contains an edge 𝑒 with [𝑒]-components 𝐶1, . . . ,𝐶ℓ

with ℓ ≥ 2. Further, suppose that we apply Rule 4 to replace 𝐻 by the hypergraphs 𝐻1 =
(𝑉 (𝐻1), 𝐸 (𝐻1)), . . . , 𝐻ℓ = (𝑉 (𝐻ℓ ), 𝐸 (𝐻ℓ )) with 𝐻 (𝐸 𝑗 ) = 𝐶 𝑗 ∪ {𝑒} and 𝑉 (𝐻 𝑗 ) =

�
𝐸 (𝐻 𝑗 )

for each 𝑗 .

⇒: LetD = ⟨𝑇, 𝜒, 𝜆⟩ be a GHD of 𝐻 of width ≤ 𝑘 . We construct GHDsD𝑗 = ⟨𝑇𝑗 , 𝜒 𝑗 , 𝜆 𝑗 ⟩ of each
𝐻 𝑗 as follows: by the definition of GHDs, there must be a node 𝑛 in 𝑇 such that 𝑒 ⊆ 𝜒 (𝑛) holds.
We choose such a node 𝑛 and, w.l.o.g., we may assume that 𝑛 is the root of D. Let {𝐷1, . . . , 𝐷𝑚}
denote the [𝜒 (𝑛)]-components of 𝐻 . It was shown in [43], that D can be transformed into
a GHD D′ = ⟨𝑇 ′, 𝜒 ′, 𝜆′⟩, such that the root node 𝑛 is left unchanged (i.e., in particular, we
have 𝜒 (𝑛) = 𝜒 ′(𝑛) and 𝜆(𝑛) = 𝜆′(𝑛)) and 𝑛 has𝑚 child nodes 𝑛1, . . . , 𝑛𝑚 , such that there is a
one-to-one correspondence between these child nodes and the [𝜒 ′(𝑛)]-components 𝐷1, . . . , 𝐷𝑚

in the following sense: for every edge 𝑒𝑖 ∈ 𝐷𝑖 , there exists a node 𝑛′𝑖 in the subtree rooted
at 𝑛𝑖 in 𝑇 ′ such that 𝑒𝑖 ⊆ 𝜒 ′(𝑛′𝑖 ). Intuitively, this means that the subtrees rooted at each of
the child nodes of 𝑛 “cover” precisely one [𝜒 ′(𝑛)]-component. We make the following crucial
observations:

1. For every [𝜒 ′(𝑛)]-component 𝐷𝑖 , there exists a unique [𝑒]-component 𝐶 𝑗 , such that
𝐷𝑖 ⊆ 𝐶 𝑗 . This is due to the fact that every [𝜒 ′(𝑛)]-connected set of edges is also [𝑒]-
connected, since 𝑒 ⊆ 𝜒 ′(𝑛).

2. Let 𝐷0 = {𝑓 ∈ 𝐸 (𝐻 ) | 𝑓 ⊆ 𝜒 ′(𝑛)}. Then 𝐸 (𝐻 ) is partitioned into 𝐷0, 𝐷1, . . . , 𝐷𝑚 . That is
𝐷0 ∪𝐷1 ∪ · · · ∪𝐷𝑚 = 𝐸 (𝐻 ) and 𝐷𝑖 ∩𝐷 𝑗 = ∅ for every pair 𝑖 ≠ 𝑗 of indices. This property
can be seen as follows: every edge 𝑓 ∈ 𝐸 (𝐻 ) with 𝑓 ⊈ 𝜒 ′(𝑛) must be contained in some
[𝜒 ′(𝑛)]-component. Hence, 𝐷0 ∪𝐷1 ∪ · · · ∪𝐷𝑚 = 𝐸 (𝐻 ) clearly holds. On the other hand,
by the very definition of components, any two distinct [𝜒 ′(𝑛)]-components 𝐷𝑖 , 𝐷 𝑗 with
𝑖 ≠ 𝑗 and 𝑖, 𝑗 ≥ 1, are disjoint. Finally, also 𝐷0 and any 𝐷𝑖 with 𝑖 ≥ 1 are disjoint since an
edge 𝑓 with 𝑓 ⊆ 𝜒 ′(𝑛) cannot be [𝜒 ′(𝑛)]-connected with any other edge.
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Then, for 𝑗 ∈ {1, . . . , ℓ}, we define a GHD D𝑗 = ⟨𝑇𝑗 , 𝜒 𝑗 , 𝜆 𝑗 ⟩ of 𝐻 𝑗 as follows:

• 𝑇𝑗 is the subtree of 𝑇 ′ consisting of the following nodes:

– the root node 𝑛 is contained in 𝑇𝑗 ;

– for every 𝑖 ∈ {1, . . . ,𝑚}, if 𝐷𝑖 ⊆ 𝐶 𝑗 , then all nodes in the subtree rooted at 𝑛𝑖 are
contained in 𝑇𝑗 ;

– no further nodes are contained in 𝑇𝑗 .

• For every node 𝑛̂ in 𝑇𝑗 , we set 𝜒 𝑗 (𝑛̂) = 𝜒 ′(𝑛̂) ∩𝑉 (𝐻 𝑗 ).

• For every node 𝑛̂ in 𝑇𝑗 , we distinguish two cases for defining 𝜆 𝑗 (𝑛̂):

– If 𝜆′(𝑛̂) ⊆ 𝐸 (𝐻 𝑗 ) holds, then we set 𝜆 𝑗 (𝑛̂) = 𝜆′(𝑛̂).
– If 𝜆′(𝑛̂) ⊈ 𝐸 (𝐻 𝑗 ) holds, then 𝛿 = 𝜆′(𝑛̂) \ 𝐸 (𝐻 𝑗 ) ≠ ∅ holds. In this case, we set

𝜆 𝑗 (𝑛̂) = (𝜆′(𝑛̂) \ 𝛿) ∪ {𝑒}.

It remains to verify that D𝑗 is indeed a GHD of width ≤ 𝑘 of 𝐻 𝑗 .

1. Consider an arbitrary 𝑓 ∈ 𝐸 (𝐻 𝑗 ). We have to show that there exists a node 𝑛̂ in 𝑇𝑗 with
𝑓 ⊆ 𝜒 𝑗 (𝑛̂). By the second observation above, we know that 𝑓 ∈ 𝐷𝑖 for some 𝑖 ≥ 0. If
𝑓 ∈ 𝐷0, then 𝑓 ⊆ 𝜒 𝑗 (𝑛) for the root node 𝑛 holds and we are done.
On the other hand, if 𝑓 ∈ 𝐷𝑖 for some 𝑖 ≥ 1, then there exists a node 𝑛̂ in the subtree
of 𝑇 ′ rooted at 𝑛𝑖 with 𝑓 ⊆ 𝜒 ′(𝑛̂). Moreover, since 𝐷𝑖 ∩ 𝐷0 = ∅, we know that 𝑓 ≠ 𝑒
and, therefore, 𝑓 ∈ 𝐶 𝑗 holds. By 𝑓 ∈ 𝐶 𝑗 and 𝑓 ∈ 𝐷𝑖 , we have 𝐷𝑖 ⊆ 𝐶 𝑗 . Hence, by our
construction of D𝑗 , 𝑛̂ is a node in 𝑇𝑗 . Moreover, 𝑓 ⊆ 𝑉 (𝐻 𝑗 ) and 𝑓 ⊆ 𝜒 ′(𝑛̂). Hence, we
also have 𝑓 ⊆ 𝜒 𝑗 (𝑛̂) = 𝜒 ′(𝑛̂) ∩𝑉 (𝐻 𝑗 ).

2. Consider an arbitrary vertex 𝑣 ∈ 𝑉 (𝐻 𝑗 ). We have to show that {𝑛̂ ∈ 𝑁 𝑗 | 𝑣 ∈ 𝜒 𝑗 (𝑛̂)} is a
connected subtree of 𝑇𝑗 , where 𝑁 𝑗 denotes the node set of 𝑇𝑗 . Let 𝑛̂1 and 𝑛̂2 be two nodes
in 𝑁 𝑗 with 𝑣 ∈ 𝜒 𝑗 (𝑛̂1) and 𝑣 ∈ 𝜒 𝑗 (𝑛̂2). Then also 𝑣 ∈ 𝜒 ′(𝑛̂1) and 𝑣 ∈ 𝜒 ′(𝑛̂2) hold. Hence,
in the GHD D′, for every node 𝑛̂ on the path between 𝑛̂1 and 𝑛̂2, we have 𝑣 ∈ 𝜒 ′(𝑛̂).
Hence, every such node 𝑛̂ also satisfies 𝑣 ∈ 𝜒 𝑗 (𝑛̂) by the definition 𝜒 𝑗 (𝑛̂) = 𝜒 ′(𝑛̂) ∩𝑉 (𝐻 𝑗 ).

3. Consider an arbitrary node 𝑛̂ in 𝑇𝑗 . We have to show that 𝜒 𝑗 (𝑛̂) ⊆ 𝐵(𝜆 𝑗 (𝑛̂)) holds. We
distinguish the two cases from the definition of 𝜆 𝑗 (𝑛̂):

• If 𝜆′(𝑛̂) ⊆ 𝐸 (𝐻 𝑗 ) holds, then we have 𝜆 𝑗 (𝑛̂) = 𝜆′(𝑛̂). Hence, from the property
𝜒 ′(𝑛̂) ⊆ 𝐵(𝜆′(𝑛̂)) for the GHD D′ and 𝜒 𝑗 (𝑛̂) ⊆ 𝜒 ′(𝑛̂) it follows immediately that
𝜒 𝑗 (𝑛̂) ⊆ 𝐵(𝜆 𝑗 (𝑛̂)) holds.
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• Now suppose that 𝜆′(𝑛̂) ⊈ 𝐸 (𝐻 𝑗 ) holds and let 𝛿 = 𝜆′(𝑛̂) \ 𝐸 (𝐻 𝑗 ) ≠ ∅. In this
case, we have 𝜆 𝑗 (𝑛̂) = (𝜆′(𝑛̂) \ 𝛿) ∪ {𝑒}. By 𝜒 𝑗 (𝑛̂) ⊆ 𝑉 (𝐻 𝑗 ), in order to prove
𝜒 𝑗 (𝑛̂) ⊆ 𝐵(𝜆 𝑗 (𝑛̂)), it suffices to show that 𝐵(𝜆 𝑗 (𝑛̂)) ⊇ 𝐵(𝜆′(𝑛̂)) ∩ 𝑉 (𝐻 𝑗 ). To this
end, it actually suffices to show that every 𝑓 ′ ∈ 𝛿 has the property 𝑓 ′ ∩𝑉 (𝐻 𝑗 ) ⊆ 𝑒:
By 𝑓 ′ ∈ 𝛿 , we have 𝑓 ′ ∈ 𝐶 𝑗 ′ for some 𝑗 ′ ≠ 𝑗 . Hence, for every 𝑓 ∈ 𝐶 𝑗 , we have
𝑓 ′ ∩ 𝑓 ⊆ 𝑒 by the definition of [𝑒]-components. Moreover, of course, also 𝑓 ′ ∩ 𝑒 ⊆ 𝑒
holds. Hence, we indeed have 𝑓 ′ ∩𝑉 (𝐻 𝑗 ) ⊆ 𝑒 .

4. Finally, the width of D𝑗 is clearly ≤ 𝑘 since 𝜆 𝑗 (𝑛̂) is either equal to 𝜆′(𝑛̂) or we add 𝑒 but
only after subtracting a non-empty set 𝛿 from 𝜆′(𝑛̂).

⇐: For 𝑗 ∈ {1, . . . , ℓ}, let D𝑗 = ⟨𝑇𝑗 , 𝜒 𝑗 , 𝜆 𝑗 ⟩ be a GHD of 𝐻 𝑗 of width ≤ 𝑘 . By the definition
of GHDs and by the fact that 𝑒 ∈ 𝐸 (𝐻 𝑗 ) holds for every 𝑗 , there exists a node 𝑛 𝑗 in 𝑇𝑗 with
𝑒 ⊆ 𝜒 𝑗 (𝑛 𝑗 ). W.l.o.g., we may assume that 𝑛 𝑗 is the root of 𝑇𝑗 . Then we construct GHD
D = ⟨𝑇, 𝜒, 𝜆⟩ as follows:

• The tree structure𝑇 is obtained by introducing a new node 𝑛 as the root of𝑇 , whose child
nodes are 𝑛1, . . . , 𝑛 𝑗 and each tree 𝑇𝑗 becomes the subtree of 𝑇 rooted at 𝑛 𝑗 .

• For the root node 𝑛, we set 𝜒 (𝑛) = 𝑒 and 𝜆(𝑛) = {𝑒}.
• For any other node 𝑛̂ of𝑇 , we have that 𝑛̂ comes from exactly one of the trees𝑇𝑗 . We thus
set 𝜒 (𝑛̂) = 𝜒 𝑗 (𝑛̂) and 𝜆(𝑛̂) = 𝜆 𝑗 (𝑛̂).

Clearly, D can be constructed in polynomial time from the GHDs D1, . . . ,Dℓ . Moreover, the
width of D is obviously bounded by the maximum width over the GHDs D𝑖 . It remains to
verify that D is indeed a GHD of 𝐻 .

1. Consider an arbitrary 𝑓 ∈ 𝐸 (𝐻 ). We have to show that there is a node 𝑛̂ in𝑇 , s.t. 𝑓 ⊆ 𝜒 (𝑛̂).
By the definition of [𝑒]-components, we either have 𝑓 ∈ 𝐶𝑖 for some 𝑖 or 𝑓 ⊆ 𝑒 . If 𝑓 ∈ 𝐶𝑖 ,
then there exists a node 𝑛̂ in the subtree rooted at 𝑛𝑖 with 𝜒 (𝑛̂) = 𝜒𝑖 (𝑛̂) ⊇ 𝑓 . If 𝑓 ⊆ 𝑒 ,
then we have 𝑓 ⊆ 𝜒 (𝑛).

2. Consider an arbitrary vertex 𝑣 ∈ 𝑉 (𝐻 ). We have to show that {𝑛̂ ∈ 𝑁 | 𝑣 ∈ 𝜒 (𝑛̂)}
is a connected subtree of 𝑇 , where 𝑁 denotes the node set of 𝑇 . Let 𝑣 ∈ 𝜒 (𝑛̂1) and
𝑣 ∈ 𝜒 (𝑛̂2) for two nodes 𝑛̂1 and 𝑛̂2 in 𝑁 and let 𝑛̂ be on the path between 𝑛̂1 and 𝑛̂2. If
both nodes are in some subtree 𝑇𝑖 of 𝑇 , then the connectedness condition carries over
from D𝑖 to D. If one of the nodes 𝑛̂1 and 𝑛̂2 is the root 𝑛 of 𝑇 , say 𝑛 = 𝑛̂1, then 𝑣 ∈ 𝑒 .
Moreover, we have 𝑒 ⊆ 𝜒 (𝑛𝑖) by our construction of D. Hence, we may again use the
connectedness condition on D𝑖 to conclude that 𝑣 ∈ 𝜒 (𝑛̂) for every node 𝑛̂ along the
path between 𝑛̂1 and 𝑛̂2. Finally, suppose that 𝑛̂1 and 𝑛̂2 are in different subtrees 𝑇𝑖 and
𝑇𝑗 . Then 𝑣 ∈ 𝑉 (𝐻𝑖) ∩𝑉 (𝐻 𝑗 ) holds and, therefore, 𝑣 ∈ 𝑒 by the construction of 𝐻𝑖 and 𝐻 𝑗

via different [𝑒]-components. Hence, we are essentially back to the previous case. That
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is, we have 𝑣 ∈ 𝜒 (𝑛̂) for every node 𝑛̂ along the path from 𝑛 to 𝑛̂1 and for every node 𝑛̂
along the path from 𝑛 to 𝑛̂2. Together with 𝑣 ∈ 𝜒 (𝑛), we may thus conclude that 𝑣 ∈ 𝜒 (𝑛̂)
indeed holds for every node 𝑛̂ along the path between 𝑛̂1 and 𝑛̂2.

3. Consider an arbitrary node 𝑛̂ in 𝑇 . We have to show that 𝜒 (𝑛̂) ⊆ 𝐵(𝜆(𝑛̂)). Clearly, all
nodes in a subtree 𝑇𝑖 inherit this property from the GHD D𝑖 and also the root node 𝑛
satisfies this condition by our definition of 𝜒 (𝑛) and 𝜆(𝑛).

3.2.4 Completion of the Proof of Theorem 3.11

We now make a case distinction over all possible pairs (𝑖, 𝑗) of Rules 𝑖 and 𝑗 applicable to some
hypergraphs𝐻𝑖 , 𝐻 𝑗 ∈ H and exhibit a concrete hypergraph setH ′ that can be obtained fromH
no matter if we first apply Rule 𝑖 to 𝐻𝑖 or Rule 𝑗 to 𝐻 𝑗 . Note that we only need to consider the
cases 𝑖 ≤ 𝑗 , since the cases 𝑖 > 𝑗 are thus covered by symmetry. Moreover, the only non-trivial
case is that both Rules 𝑖 and 𝑗 are applied to the same hypergraph, i.e., 𝐻𝑖 = 𝐻 𝑗 = 𝐻 for some
hypergraph 𝐻 ∈ H .

“(i,5)’: local confluence is immediate for any combination of Rule 5 with another rule. Let𝐻 ∈ H
with |𝐸 (𝐻 ) | ≤ 𝑘 and suppose that some other rule is also applicable to 𝐻 . Then the desired
hypergraph setH ′ isH ′ = H \ {𝐻 }. Clearly,H ′ is the result of applying Rule 5 to 𝐻 ∈ H and
no further rule application is required in this case. Now suppose that another rule is applied first
to 𝐻 : Rules 1,2, and 3 allow us to delete a vertex or an edge. In particular, the number of edges
of the resulting hypergraph is still ≤ 𝑘 and we may apply Rule 5 afterwards to getH ′ . Now
suppose that Rule 4 is applicable to𝐻 . This means that we may replace𝐻 by several hypergraphs
𝐻1, . . . , 𝐻ℓ with ℓ ≥ 2. However, all these hypergraphs satisfy |𝐸 (𝐻𝑖) | < |𝐸 (𝐻 ) | ≤ 𝑘 . Hence, we
may apply Rule 5 to each of them and delete all of the hypergraphs 𝐻1, . . . , 𝐻ℓ so that we again
end up withH ′.

“(1, 1)”: Suppose that two applications of Rule 1 to some hypergraph 𝐻 ∈ H are possible. That
is, 𝐻 contains a vertex 𝑣1 that only occurs in a single edge 𝑒1 and a vertex 𝑣2 that only occurs in
a single edge 𝑒2 with 𝑣1 ≠ 𝑣2. Note that, after deleting 𝑣1 from 𝑉 (𝐻 ), 𝑣2 still occurs in a single
edge 𝑒2. Likewise, after deleting 𝑣2 from 𝑉 (𝐻 ), 𝑣1 still occurs in a single edge 𝑒1. Hence,H ′ is
obtained by replacing 𝐻 inH by 𝐻 ′, which results from deleting both 𝑣1 and 𝑣2 from 𝑉 (𝐻 ).

“(1, 2)”: Suppose that an application of Rule 1 and an application of Rule 2 to the same hypergraph
𝐻 ∈ H are possible. That is, 𝐻 contains a vertex 𝑣 that only occurs in a single edge 𝑒 and 𝐻
contains edges 𝑒1, 𝑒2 with 𝑒1 ⊆ 𝑒2. Hence, on one hand, we may delete 𝑣 from 𝐻 by Rule 1 and,
on the other hand, we may delete 𝑒1 from 𝐻 by Rule 2. Note that 𝑒1 ≠ 𝑒 , i.e., 𝑣 cannot occur in
𝑒1 since we are assuming that 𝑣 occurs in a single edge and 𝑒1 ⊆ 𝑒2. Hence, after deleting 𝑣 from
𝑉 (𝐻 ), deletion of 𝑒1 via Rule 2 is still possible, since we still have 𝑒1 ⊆ 𝑒2 and also 𝑒1 ⊆ (𝑒2 \ {𝑣})
(the latter relationship is relevant if 𝑒 = 𝑒2 and we actually delete 𝑣 from 𝑒2). Likewise, 𝑣 still
occurs in a single edge 𝑒 after deleting 𝑒1 via Rule 2. Hence,H ′ is obtained by replacing 𝐻 in
H by 𝐻 ′, which results from deleting both 𝑣 from 𝑉 (𝐻 ) and 𝑒1 from 𝐸 (𝐻 ).

42



3.2. Algorithmic Improvements

“(1, 3)”: Suppose that an application of Rule 1 and an application of Rule 3 to the same hypergraph
𝐻 ∈ H are possible. That is, 𝐻 contains a vertex 𝑣 that only occurs in a single edge 𝑒 and
𝐻 contains vertices 𝑣1, 𝑣2 of the same type, i.e., they occur in the same edges. If 𝑣 is different
from 𝑣1 and 𝑣2, then we transform 𝐻 into 𝐻 ′ by deleting 𝑣 and 𝑣2 from 𝐻 . If 𝑣 = 𝑣2, then Rule
1 and Rule 3 are simply two different ways of deleting node 𝑣 from 𝑉 (𝐻 ). Hence, the only
interesting case remaining is that 𝑣 = 𝑣1 holds. In this case, also 𝑣2 occurs in edge 𝑒 only, since
we are assuming that 𝑣1, 𝑣2 are of the same type. Hence,H ′ is obtained by replacing 𝐻 by the
hypergraph 𝐻 ′ which results from deleting both 𝑣1 and 𝑣2 from 𝑉 (𝐻 ): if we first delete 𝑣1 via
Rule 1 then we may delete 𝑣2 afterwards also via Rule 1. Conversely, if we first delete 𝑣2 via
Rule 3, then Rule 1 is still applicable to 𝑣1 and we may thus delete it afterwards.

“(1, 4)”: Suppose that an application of Rule 1 and an application of Rule 4 to the same hypergraph
𝐻 ∈ H are possible. That is, 𝐻 contains a vertex 𝑣1 that only occurs in a single edge 𝑒1 and
𝐻 contains an edge 𝑒 such that 𝐻 has [𝑒]-components C = {𝐶1, . . . ,𝐶ℓ } with ℓ ≥ 2. Let
𝑒′1 = 𝑒1 \ {𝑣1}.
Case 1. Suppose 𝑒 ≠ 𝑒1. We have 𝑒1 ⊈ 𝑒 since 𝑣1 only occurs in 𝑒1. Hence, 𝑒1 is contained in
some [𝑒]-component 𝐶𝑖 . We distinguish two subcases.

Case 1.1. Suppose that (𝑒1 \ 𝑒) = {𝑣1}. We are assuming that 𝑣1 only occurs in 𝑒1. Hence, 𝑒1
is not [𝑒]-connected with any other edge and we, therefore, have 𝐶𝑖 = {𝑒𝑖}. In this case, H ′
is obtained by replacing 𝐻 in H by the hypergraphs 𝐻1, . . . , 𝐻𝑖−1, 𝐻𝑖+1, . . . , 𝐻ℓ with 𝐸 (𝐻 𝑗 ) =
𝐶 𝑗 ∪ {𝑒} for 𝑗 ≠ 𝑖 . If we first apply Rule 4 to 𝐻 , then we get ℓ hypergraphs 𝐻1, . . . , 𝐻ℓ with
𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒1} = {𝑒, 𝑒1}. We may thus delete 𝑒 from 𝐻𝑖 by Rule 2 (since we have 𝑒 ⊆ 𝑒1) to
get 𝐻 ′

𝑖 and then delete 𝐻 ′
𝑖 altogether by Rule 5 (since we have

��𝐸 (𝐻 ′
𝑖 )
�� = 1 ≤ 𝑘 for any 𝑘 ≥ 1).

Conversely, if we first apply Rule 1 and thus delete 𝑣1 from 𝑒1, then 𝑒 and 𝑒1 coincide. Hence, the
resulting hypergraph only has ℓ − 1 [𝑒]-components 𝐶1, . . . ,𝐶𝑖−1,𝐶𝑖+1, . . . ,𝐶ℓ . Rule 4 therefore
allows us to replace this hypergraph by 𝐻1, . . . , 𝐻𝑖−1, 𝐻𝑖+1, . . . , 𝐻ℓ with 𝐸 (𝐻 𝑗 ) = 𝐶 𝑗 ∪ {𝑒} for
𝑗 ≠ 𝑖 .

Case 1.2. Suppose that (𝑒1\𝑒) ⊃ {𝑣1}. Moreover, since 𝑣1 occurs in no other edge, 𝑒1 is connected
to the other edges in 𝐶𝑖 via vertices different from 𝑒 . Hence, after deleting 𝑣1 from 𝑒1, 𝐻 still
has ℓ [𝑒]-components C′ = {𝐶1, . . . ,𝐶𝑖−1,𝐶′

𝑖 ,𝐶𝑖+1, . . . , 𝐶ℓ } where 𝐶′
𝑖 = (𝐶𝑖 \ 𝑒1) ∪ {𝑒′1}. In this

case, H ′ is obtained by replacing 𝐻 in H by the hypergraphs 𝐻1, . . . , 𝐻𝑖−1, 𝐻 ′
𝑖 , 𝐻𝑖+1, . . . , 𝐻ℓ

with 𝐸 (𝐻 ′
𝑖 ) = 𝐶′

𝑖 ∪ {𝑒} and 𝐸 (𝐻 𝑗 ) = 𝐶 𝑗 ∪ {𝑒} for 𝑗 ≠ 𝑖 . We can get these hypergraphs by first
applying Rule 4 to get the hypergraphs 𝐻1, . . . , 𝐻𝑖−1, 𝐻𝑖 , 𝐻𝑖+1, . . . , 𝐻ℓ with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒} and,
afterwards, transforming 𝐻𝑖 into 𝐻 ′

𝑖 via Rule 1. Alternatively, we can get these hypergraphs
by first replacing 𝑒1 by 𝑒′1 in 𝐻 via Rule 1 and then applying Rule 4 to get the hypergraphs
𝐻1, . . . , 𝐻𝑖−1, 𝐻 ′

𝑖 , 𝐻𝑖+1, . . . , 𝐻ℓ via the [𝑒]-components C′ = {𝐶1, . . . ,𝐶𝑖−1,𝐶′
𝑖 ,𝐶𝑖+1, . . . ,𝐶ℓ }.

Case 2. Now suppose 𝑒 = 𝑒1. Let 𝐻 ′ with 𝐸 (𝐻 ′) = (𝐸 (𝐻 ) \ {𝑒1}) ∪ {𝑒′1}. Since 𝑣1 only occurs
in 𝑒1, there is no difference between the [𝑒1]-components of 𝐻 and the [𝑒′1]-components of 𝐻 ′.
Hence, in this case, H ′ is obtained by replacing 𝐻 in H by the hypergraphs 𝐻 ′

1, . . . , 𝐻
′
ℓ with

𝐸 (𝐻 ′
𝑖 ) = 𝐶𝑖∪{𝑒′1} for every 𝑖 ∈ {1, . . . , ℓ}. We can get these hypergraphs by first deleting 𝑣1 from

𝑒1 via Rule 1 to get hypergraph 𝐻 ′ and then applying Rule 4 to 𝐻 ′, where the [𝑒′1]-components
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of 𝐻 ′ are precisely C = {𝐶1, . . . ,𝐶ℓ }. Or we may first apply Rule 4 to 𝐻 to get the hypergraphs
𝐻1, . . . , 𝐻ℓ with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒} with 𝑒 = 𝑒1 and then apply Rule 1 to each of the resulting
hypergraphs 𝐻𝑖 and replace 𝑒1 by 𝑒′1 in each of them.

“(2, 2)”: Suppose that two applications of Rule 2 to the same hypergraph 𝐻 ∈ H are possible.
That is, 𝐻 contains edges 𝑒1, 𝑒′1, such that 𝑒1 ⊆ 𝑒′1 and edges 𝑒2, 𝑒′2, such that 𝑒2 ⊆ 𝑒′2. ThenH ′ is
obtained by replacing 𝐻 inH by 𝐻 ′ such that 𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒1, 𝑒2}. If 𝑒′1 ≠ 𝑒2 and 𝑒′2 ≠ 𝑒1,
then it makes no difference whether we first delete 𝑒1 or 𝑒2. In either case, we may afterwards
delete the other edge via Rule 2.

Now suppose that 𝑒′1 = 𝑒2 holds. The case 𝑒′2 = 𝑒1 is symmetric. Then, by 𝑒2 ⊆ 𝑒′2, we also have
𝑒1 ⊆ 𝑒′2. Hence, Rule 2 is applicable to 𝑒1, 𝑒′2 (thus allowing us to delete 𝑒1) and also to 𝑒2, 𝑒′2
(thus allowing us to delete 𝑒2). Hence, again, no matter whether we first delete 𝑒1 or 𝑒2, we are
afterwards allowed to delete also the other edge via Rule 2.

“(2, 3)”: Suppose that an application of Rule 2 and an application of Rule 3 to the same hypergraph
𝐻 ∈ H are possible. That is, 𝐻 contains edges 𝑒1, 𝑒2, such that 𝑒1 ⊆ 𝑒2 and vertices 𝑣1, 𝑣2 of the
same type. Hence, on one hand, we may delete 𝑒1 from 𝐻 by Rule 2 and, on the other hand, we
may delete 𝑣2 from 𝐻 by Rule 3.

First, suppose that 𝑣2 ∉ 𝑒1. Then also 𝑣1 ∉ 𝑒1. Hence, after deleting 𝑣2 from 𝐻 via Rule 3,
the resulting hypergraph still contains edges 𝑒1, 𝑒′2 with 𝑒1 ⊆ 𝑒′2, where 𝑒′2 = 𝑒2 (if 𝑣2 ∉ 𝑒2) or
𝑒′2 = 𝑒2 \ {𝑣2} (if 𝑣2 ∈ 𝑒2). Hence, after deleting 𝑣2 from 𝐻 via Rule 3, we may still delete 𝑒1 via
Rule 2. Conversely, if we first delete 𝑒1 from 𝐻 , then 𝑣1 and 𝑣2 still have the same type and we
may delete 𝑣2 afterwards.

It remains to consider the case 𝑣2 ∈ 𝑒1. Then also 𝑣2 ∈ 𝑒2. Hence, after deleting 𝑣2 from 𝐻 via
Rule 3, the resulting hypergraph contains the edges 𝑒′1 = 𝑒1 \ {𝑣2} and 𝑒′2 = 𝑒2 \ {𝑣2} with 𝑒′1 ⊆ 𝑒′2.
Hence, after deleting 𝑣2 from 𝐻 via Rule 3, we may delete 𝑒′1 via Rule 2. Conversely, if we first
delete 𝑒1 from 𝐻 , then 𝑣1 and 𝑣2 still have the same type and we may delete 𝑣2 afterwards.

“(2, 4)”: Suppose that an application of Rule 2 and an application of Rule 4 to the same hypergraph
𝐻 ∈ H are possible. That is, 𝐻 contains edges 𝑒1, 𝑒2, such that 𝑒1 ⊆ 𝑒2 and 𝐻 contains an edge 𝑒
such that 𝐻 has [𝑒]-components C = {𝐶1, . . . ,𝐶ℓ } with ℓ ≥ 2. We distinguish several cases and
subcases:

Case 1. Suppose that 𝑒1 ≠ 𝑒 .

Case 1.1. If 𝑒1 ⊆ 𝑒 , thenH ′ is obtained by replacing𝐻 inH by𝐻1, . . . , 𝐻ℓ with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒}
for every 𝑖 ∈ {1, . . . , ℓ}. If we first apply Rule 4 to 𝐻 , then the subedges of 𝑒 are not contained
in any of the components 𝐶𝑖 . Hence, we do not even need to apply Rule 2 anymore to get rid of
edge 𝑒1. Alternatively, if we first delete 𝑒1 via Rule 2, then Rule 4 is still applicable to 𝐻 ′ with
𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒1}, and we get exactly the same hypergraphs 𝐻1, . . . , 𝐻ℓ as before.

Case 1.2. If 𝑒1 ⊈ 𝑒 , then also 𝑒2 ⊈ 𝑒 and both 𝑒1, 𝑒2 are contained in exactly one [𝑒]-component
𝐶𝑖 . In this case, H ′ is obtained by replacing 𝐻 in H by 𝐻1, . . . , 𝐻𝑖−1, 𝐻 ′

𝑖 , 𝐻𝑖+1, . . . 𝐻ℓ with
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𝐸 (𝐻 ′
𝑖 ) = (𝐶𝑖 \ {𝑒1}) ∪ {𝑒} and 𝐸 (𝐻 𝑗 ) = 𝐶 𝑗 ∪ {𝑒} for 𝑗 ≠ 𝑖 . If we first apply Rule 4 to 𝐻 , then we

get the hypergraphs 𝐻1, . . . , 𝐻𝑖−1, 𝐻𝑖 , 𝐻𝑖+1, . . . 𝐻ℓ with 𝐻𝑖 = 𝐶𝑖 ∪ {𝑒}. Now Rule 2 is applicable
to 𝐻𝑖 and we may delete 𝑒1 from 𝐻𝑖 to get 𝐻 ′

𝑖 . Conversely, we may first apply Rule 2 to delete
𝑒1 from 𝐻 . Let 𝐻 ′ with 𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒1} denote the resulting hypergraph. Then 𝐻 ′ has
the [𝑒]-components C′ = {𝐶1, . . . ,𝐶𝑖−1,𝐶′

𝑖 ,𝐶𝑖+1, . . . ,𝐶ℓ } with ℓ ≥ 2 and 𝐶′
𝑖 = 𝐶𝑖 \ {𝑒1}. Note

that 𝐶′
𝑖 ≠ ∅, since 𝑒2 ∈ 𝐶𝑖 . Hence, application of Rule 4 to 𝐻 ′ yields the same hypergraphs

𝐻1, . . . , 𝐻𝑖−1, 𝐻 ′
𝑖 , 𝐻𝑖+1, . . . 𝐻ℓ as before.

Case 2. Suppose that 𝑒1 = 𝑒 . Then 𝑒2 is contained in one of the [𝑒]-components. W.l.o.g.,
assume 𝑒2 ∈ 𝐶ℓ . Now let D = {𝐷1, . . . , 𝐷𝑚} denote the [𝑒2]-components of 𝐻 . By 𝑒 ⊆ 𝑒2, every
[𝑒2]-component 𝐷 𝑗 is contained in exactly one [𝑒]-component𝐶𝑖 . That is, every [𝑒2]-connected
set of edges of 𝐸 (𝐻 ) is also [𝑒]-connected but the converse is, in general, not true. Such a
situation that the converse is not true may happen if a path connecting two edges uses one
of the vertices in 𝑒2 \ 𝑒 . Note however that only the [𝑒]-component 𝐶ℓ with 𝑒2 ∈ 𝐶ℓ contains
vertices in 𝑒2 \ 𝑒 . Hence, the [𝑒]-components𝐶1, . . . ,𝐶ℓ−1 are also [𝑒2]-components and we may
set 𝐷𝑖 = 𝐶𝑖 for every 𝑖 ∈ {1, . . . , ℓ − 1}. For the [𝑒]-component 𝐶ℓ , we distinguish the following
2 subcases:

Case 2.1. If all edges in 𝐶ℓ are subedges of 𝑒2, then the [𝑒2]-components of 𝐻 are D =
{𝐷1, . . . , 𝐷ℓ−1}. In this case, we obtainH ′ by replacing 𝐻 inH by 𝐻1, . . . , 𝐻ℓ−1 with 𝐸 (𝐻𝑖) =
𝐶𝑖 ∪ {𝑒} for every 𝑖 ∈ {1, . . . , ℓ − 1}. If we first apply Rule 4 to 𝐻 , then we get the hypergraphs
𝐻1, . . . , 𝐻ℓ−1, 𝐻ℓ with 𝐸 (𝐻ℓ ) = 𝐶ℓ ∪ {𝑒}. Since we are assuming that 𝑒2 ∈ 𝐶ℓ and all edges in 𝐶ℓ

are subedges of 𝑒2, we may apply Rule 2 to 𝐻ℓ multiple times to delete all edges except for 𝑒2.
Finally, when 𝐻ℓ has been reduced to a hypergraph consisting of a single edge, we may delete
𝐻ℓ altogether by Rule 5.

Conversely, we may first delete 𝑒 from 𝐻 via Rule 2. That is, we get hypergraph 𝐻 ′ with
𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒}. Then the [𝑒2]-components of 𝐻 ′ are simply D = {𝐷1, . . . , 𝐷ℓ−1}, i.e., the
subedge 𝑒 ∈ 𝑒2 is not contained in any of the [𝑒2]-components of 𝐻 anyway.

Case 2.1.1. If ℓ ≥ 3, then we may apply Rule 4 to 𝐻 ′ and replace 𝐻 ′ by 𝐻 ′
1, . . . , 𝐻

′
ℓ−1 with

𝐻 ′
𝑖 = 𝐷𝑖 ∪ {𝑒2}. Recall that 𝐶𝑖 = 𝐷𝑖 for every 𝑖 ∈ {1, . . . , ℓ − 1} and that none of the vertices in

𝑒2 \ 𝑒 occurs in 𝐶𝑖 . Hence, each 𝐻 ′
𝑖 is actually of the form 𝐻 ′

𝑖 = 𝐶𝑖 ∪ {𝑒2}. Moreover, in each 𝐻 ′
𝑖 ,

the vertices in 𝑒2 \ 𝑒 only occur in 𝑒2 and nowhere else in 𝐻 ′
𝑖 . Hence, in every hypergraph 𝐻 ′

𝑖 ,
we may delete each of the vertices in 𝑒2 \ 𝑒 via Rule 1 so that we ultimately reduce 𝑒2 to 𝑒 . That
is, we transform every 𝐻 ′

𝑖 into 𝐻𝑖 and we thus indeed replace 𝐻 by 𝐻1, . . . , 𝐻ℓ−1.

Case 2.1.2. If ℓ = 2, then 𝐻 and also 𝐻 ′ consists of a single [𝑒2]-component 𝐷1 = 𝐶1. Moreover,
all edges in 𝐸 (𝐻 ′) \𝐷1 are subedges of 𝑒2. Hence, 𝐸 (𝐻 ′) \𝐷1 is of the form {𝑒2, 𝑓1, . . . , 𝑓𝑚} with
𝑚 ≥ 0, such that 𝑓𝑗 ⊆ 𝑒2 holds for every 𝑗 . Hence, we may delete all subedges 𝑓𝑗 of 𝑒2 via Rule 2
to transform 𝐻 ′ into 𝐷1 ∪ {𝑒2} = 𝐶1 ∪ {𝑒2}. Then we again have the situation that all vertices
in 𝑒2 \ 𝑒 only occur in 𝑒2. Hence, we may delete all these vertices via multiple applications of
Rule 1. In total, we may thus replace 𝐻 by 𝐻1 with 𝐸 (𝐻1) = 𝐶1 ∪ {𝑒}.
Case 2.2. If not all edges in 𝐶ℓ are subedges of 𝑒2, then 𝐶ℓ has at least one [𝑒2]-component.
In total, the [𝑒2]-components of 𝐻 are D = {𝐷1, . . . , 𝐷ℓ−1, 𝐷ℓ , . . . , 𝐷𝑚} with 𝑚 ≥ ℓ , such
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that {𝐷ℓ , . . . , 𝐷𝑚} are the [𝑒2]-components of 𝐶ℓ . In this case, we obtain H ′ by replacing
𝐻 in H by 𝐻1, . . . , 𝐻ℓ−1, 𝐻 ′

ℓ , . . . , 𝐻
′
𝑚 with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒} for every 𝑖 ∈ {1, . . . , ℓ − 1} and

𝐸 (𝐻 ′
𝑗 ) = 𝐷 𝑗 ∪ {𝑒2} for every 𝑗 ∈ {ℓ, . . . ,𝑚}. If we first apply Rule 4 (w.r.t. to edge 𝑒) to 𝐻 , then

we get the hypergraphs 𝐻1, . . . , 𝐻ℓ−1, 𝐻ℓ with 𝐸 (𝐻ℓ ) = 𝐶ℓ ∪ {𝑒}. Now consider 𝐻ℓ .

Case 2.2.1. If 𝐻ℓ consists of a single [𝑒2]-component 𝐷ℓ , then we simply delete all edges in
𝐸 (𝐻ℓ ) \ 𝐷ℓ to get 𝐻 ′

ℓ = 𝐷ℓ ∪ {𝑒2}. This is possible since all edges in 𝐸 (𝐻ℓ ) \ 𝐷ℓ are subedges
of 𝑒2 and we may therefore delete them via Rule 2. Conversely, suppose that we first delete 𝑒
from 𝐻 via Rule 2 to get 𝐻 ′ with 𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒}. Then we may apply Rule 4 (w.r.t. edge
𝑒2) and replace 𝐻 ′ by 𝐻 ′

1, . . . , 𝐻
′
ℓ with 𝐸 (𝐻 ′

𝑖 ) = 𝐷𝑖 ∪ {𝑒2} for every 𝑖 ∈ {1, . . . , ℓ}. Again, for
𝑖 ∈ {1, . . . , ℓ − 1}, we have 𝐷𝑖 = 𝐶𝑖 and the vertices in 𝑒2 \ 𝑒 do not occur in 𝐶𝑖 . Hence, in each
hypergraph𝐻 ′

𝑖 with 𝑖 ∈ {1, . . . , ℓ −1} we may delete all vertices in 𝑒2 \𝑒 by multiple applications
of Rule 1. In total, we thus replace 𝐻 by 𝐻1, . . . , 𝐻ℓ−1, 𝐻 ′

ℓ as before.

Case 2.2.2. If 𝐻ℓ consists of several [𝑒2]-components 𝐷ℓ , . . . , 𝐷𝑚 with𝑚 > ℓ , then we may apply
Rule 4 to 𝐻ℓ and replace 𝐻ℓ by 𝐻 ′

ℓ , . . . , 𝐻
′
𝑚 with 𝐸 (𝐻 ′

𝑗 ) = 𝐷 𝑗 ∪ {𝑒2} for every 𝑗 ∈ {ℓ, . . . ,𝑚}.
Conversely, suppose that we first delete 𝑒 from 𝐻 via Rule 2 to get 𝐻 ′ with 𝐸 (𝐻 ′) = 𝐸 (𝐻 ) \ {𝑒}.
Then we may apply Rule 4 (w.r.t. edge 𝑒2) and replace 𝐻 ′ by 𝐻 ′

1, . . . , 𝐻
′
𝑚 with 𝐸 (𝐻 ′

𝑖 ) = 𝐷𝑖 ∪ {𝑒2}
for every 𝑖 ∈ {1, . . . ,𝑚}. Moreover, as in Case 2.2.1, every 𝐻 ′

𝑖 with 𝑖 ∈ {1, . . . , ℓ − 1} can
be transformed into 𝐻𝑖 with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒} by deleting all vertices in 𝑒2 \ 𝑒 via multiple
applications of Rule 1 and using the equality 𝐶𝑖 = 𝐷𝑖 for 𝑖 ∈ {1, . . . , ℓ − 1}.

“(3, 3)”: Suppose that two applications of Rule 3 to the same hypergraph 𝐻 ∈ H are possible.
That is, 𝐻 contains vertices 𝑣1, 𝑣 ′1 of the same type and vertices 𝑣2, 𝑣 ′2 of the same type. ThenH ′
is obtained by replacing 𝐻 inH by 𝐻 ′ such that 𝑣1 and 𝑣2 are deleted from all edges in 𝐻 and,
thus from 𝑉 (𝐻 ) altogether. If 𝑣 ′1 ≠ 𝑣2 and 𝑣 ′2 ≠ 𝑣1, then it makes no difference whether we first
delete 𝑣1 or 𝑣2. In either case, we may afterwards also delete the other vertex via Rule 3.

Now suppose that 𝑣 ′1 = 𝑣2 holds. The case 𝑣 ′2 = 𝑣1 is symmetric. Then, all vertices 𝑣1, 𝑣 ′1, 𝑣2, 𝑣 ′2
have the same type. Hence, Rule 3 is applicable to 𝑣1, 𝑣 ′2 (thus allowing us to delete 𝑣1) and also
to 𝑣2, 𝑣 ′2 (thus allowing us to delete 𝑣2). Hence, again, no matter whether we first delete 𝑣1 or 𝑣2,
we are afterwards allowed to delete also the other vertex via Rule 3.

“(3, 4)”: Suppose that an application of Rule 3 and an application of Rule 4 to the same hypergraph
𝐻 ∈ H are possible. That is, 𝐻 contains vertices 𝑣1, 𝑣2 of the same type and an edge 𝑒 such
that 𝐻 has [𝑒]-components C = {𝐶1, . . . ,𝐶ℓ } with ℓ ≥ 2. For any edge 𝑓 , we write 𝑓 ′ to denote
𝑓 ′ = 𝑓 \ {𝑣2}.
Case 1. Suppose that 𝑣2 ∉ 𝑒 . Then 𝑣2 is contained in 𝑉 (𝐶𝑖) for precisely one [𝑒]-component
𝐶𝑖 . Moreover, since 𝑣1 has the same type as 𝑣2, also the set 𝐶′

𝑖 obtained from 𝐶𝑖 by deleting 𝑣2
from all edges remains [𝑒]-connected. This is because that all paths that use the vertex 𝑣2 may
also use the vertex 𝑣1 instead. Hence, after deleting 𝑣2 from 𝑉 (𝐻 ), 𝐻 still has ℓ [𝑒]-components
C′ = {𝐶1, . . . ,𝐶𝑖−1,𝐶′

𝑖 , 𝐶𝑖+1, . . . ,𝐶ℓ }. In this case, H ′ is obtained by replacing 𝐻 in H by the
hypergraphs 𝐻1, . . . , 𝐻𝑖−1, 𝐻 ′

𝑖 , 𝐻𝑖+1, . . . , 𝐻ℓ with 𝐸 (𝐻 ′
𝑖 ) = 𝐶′

𝑖 ∪ {𝑒} and 𝐸 (𝐻 𝑗 ) = 𝐶 𝑗 ∪ {𝑒} for
𝑗 ≠ 𝑖 . We can thus get these hypergraphs by first applying Rule 4 to get the hypergraphs
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𝐻1, . . . , 𝐻𝑖−1, 𝐻𝑖 , 𝐻𝑖+1, . . . , 𝐻ℓ with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒} and, afterwards, transforming 𝐻𝑖 into
𝐻 ′
𝑖 via Rule 3. Alternatively, we can get these hypergraphs by first deleting 𝑣2 from 𝐻 via
Rule 3 and then applying Rule 4 to get the hypergraphs 𝐻1, . . . , 𝐻𝑖−1, 𝐻 ′

𝑖 , 𝐻𝑖+1, . . . , 𝐻ℓ via the
[𝑒]-components C′ = {𝐶1, . . . ,𝐶𝑖−1,𝐶′

𝑖 ,𝐶𝑖+1, . . . ,𝐶ℓ }.
Case 2. Suppose that 𝑣2 ∈ 𝑒 . Let 𝑒′ = 𝑒 \ {𝑣2}. Suppose that we first transform 𝐻 into 𝐻 ′ by
deleting 𝑣2 from 𝐻 via Rule 3. Then the [𝑒′]-components of 𝐻 ′ are C′ = {𝐶′

1, . . . ,𝐶
′
ℓ } where, for

every 𝑖 ∈ {1, . . . , ℓ}, 𝐶′
𝑖 is obtained from 𝐶𝑖 either by deleting 𝑣2 from 𝑉 (𝐶𝑖) if 𝑣2 ∈ 𝑉 (𝐶𝑖) or by

setting 𝐶′
𝑖 = 𝐶𝑖 otherwise. Note that here we do not even make use of the fact that 𝑣1 and 𝑣2

have the same type. As long as a vertex 𝑣2 ∈ 𝑒 is deleted from 𝑒 and from all other edges, the
[𝑒]-components of𝐻 and the [𝑒′]-components of𝐻 ′ are exactly the same (apart from the fact, of
course, that𝐻 ′ and, hence, its [𝑒′]-components no longer contain vertex 𝑣2). We may thus apply
Rule 4 to replace 𝐻 ′ by the set of hypergraphs {𝐻 ′

1, . . . , 𝐻
′
ℓ } with 𝐻 ′

𝑖 = 𝐶′
𝑖 ∪ {𝑒′}. Alternatively,

we may first apply Rule 4 to replace 𝐻 by the hypergraphs 𝐻1, . . . , 𝐻ℓ with 𝐸 (𝐻𝑖) = 𝐶𝑖 ∪ {𝑒}.
Then, in every 𝐻𝑖 , we still have the property that 𝑣1 and 𝑣2 have the same type. Hence, we may
apply Rule 3 to each hypergraph 𝐻𝑖 and delete 𝑣2 from 𝑉 (𝐻𝑖). This results in the same set of
hypergraphs {𝐻 ′

1, . . . , 𝐻
′
ℓ } as before.

“(4, 4)”: Suppose that two applications of Rule 4 to the same hypergraph 𝐻 ∈ H are possible.
That is, 𝐻 contains edges 𝑒1 ≠ 𝑒2, such that 𝐻 has [𝑒1]-components C = {𝐶1, . . . ,𝐶ℓ } with ℓ ≥ 2
and 𝐻 has [𝑒2]-components D = {𝐷1, . . . , 𝐷𝑚} with𝑚 ≥ 2. Recall that we are assuming that
each hypergraph 𝐻 ∈ H consists of a single connected component.

Case 1. Suppose that 𝑒1 ⊆ 𝑒2 or 𝑒2 ⊆ 𝑒1 holds. The cases are symmetric, so we only need to
consider 𝑒1 ⊆ 𝑒2. This case is very similar to “(2,4)”, Case 2, where 𝑒1 now plays the role of 𝑒 from
“(2,4)”. Indeed, w.l.o.g., we again assume 𝑒2 ∈ 𝐶ℓ . If Rule 4 is applied to the [𝑒1]-components
first, then we end up in precisely the same situation as with “(2,4)”. On the other hand, if Rule 4
is applied to the [𝑒2]-components first, then all subedges of 𝑒2 are actually deleted – including
𝑒1. Hence, we again end up in precisely the same situation as with “(2,4)”.

Case 2. Suppose that 𝑒1 ⊈ 𝑒2 and 𝑒2 ⊈ 𝑒1 holds. Let 𝑑 = 𝑒1 ∩ 𝑒2.

Case 2.1. Suppose that 𝑑 = ∅. The edge 𝑒1 lies in exactly one [𝑒2]-component and 𝑒2 lies in
exactly one [𝑒1]-component. W.l.o.g., assume 𝑒1 ∈ 𝐷𝑚 and 𝑒2 ∈ 𝐶ℓ . We claim that then all of
𝐷1 ∪ · · · ∪ 𝐷𝑚−1 ∪ {𝑒2} is contained in 𝐶ℓ . This can be seen as follows: we are assuming that 𝐻
is connected. Then also 𝐷1 ∪ · · · ∪ 𝐷𝑚−1 ∪ {𝑒2} is connected, i.e., there is a path between any
two vertices in 𝐷1 ∪ · · · ∪ 𝐷𝑚−1 ∪ {𝑒2} and this path does not need to make use of any edge in
𝐷𝑚 . This follows immediately from the fact𝑉 (𝐷𝑚) ∩ (𝑉 (𝐷1) ∪ · · · ∪𝑉 (𝐷𝑚−1) ∪𝑒2) ⊆ 𝑒2, which
holds by the definition of components. Moreover, 𝑒1 ∈ 𝐷𝑚 and we are assuming 𝑒1 ∩ 𝑒2 = ∅.
Hence, 𝑒1 ∩

�
𝑉 (𝐷1) ∪ · · · ∪𝑉 (𝐷𝑚−1) ∪ 𝑒2

�
= ∅. This means that, if 𝐷1 ∪ · · · ∪ 𝐷𝑚−1 ∪ {𝑒2} is

connected, then it is in fact [𝑒1]-connected, i.e., it lies in a single [𝑒1]-component, namely 𝐶ℓ .
By symmetry, also 𝐶1 ∪ · · · ∪𝐶ℓ−1 ∪ {𝑒1} is contained in a single [𝑒2]-component, namely 𝐷𝑚 .

LetH ′ be the set of hypergraphs obtained fromH by replacing 𝐻 inH by the following set of
hypergraphs: 𝐺1, . . . ,𝐺ℓ−1, 𝐻1, . . . , 𝐻𝑚−1, 𝐾 with 𝐸 (𝐺𝑖) = 𝐶𝑖 ∪ {𝑒1} for every 𝑖 ∈ {1, . . . , ℓ − 1},
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𝐸 (𝐻 𝑗 ) = 𝐷 𝑗 ∪ {𝑒2} for every 𝑗 ∈ {1, . . . ,𝑚 − 1}, and 𝐸 (𝐾) = (𝐶ℓ ∩ 𝐷𝑚) ∪ {𝑒1, 𝑒2}. It remains to
show thatH ′ can be reached both, if Rule 4 is applied to the [𝑒1]-components first and also if
Rule 4 is applied to the [𝑒2]-components first. Actually,H ′ is fully symmetric w.r.t. 𝑒1 and 𝑒2.
Hence, it suffices to show that we can reachH ′ if Rule 4 is applied to the [𝑒1]-components of 𝐻
first.

The application of Rule 4 to the [𝑒1]-components of 𝐻 allows us to replace 𝐻 by𝐺1, . . . ,𝐺ℓ with
𝐸 (𝐺𝑖) = 𝐶𝑖 ∪ {𝑒1} for every 𝑖 ∈ {1, . . . , ℓ}. Next, we apply Rule 4 to the [𝑒2]-components of 𝐺ℓ .
As was observed above, the [𝑒2]-components 𝐷1, . . . , 𝐷𝑚−1 of 𝐻 are fully contained in 𝐶ℓ and,
hence, in 𝐸 (𝐺ℓ ). Considering 𝐷1, . . . , 𝐷𝑚−1 as [𝑒2]-components of 𝐺ℓ , the application of Rule 4
gives rise to 𝐻1, . . . , 𝐻𝑚−1 with 𝐸 (𝐻 𝑗 ) = 𝐷 𝑗 ∪ {𝑒2} for every 𝑗 ∈ {1, . . . ,𝑚 − 1}.
It remains to consider the remaining [𝑒2]-component 𝐷𝑚 of 𝐻 , but now restricted to the
hypergraph𝐺ℓ = 𝐶ℓ ∪ {𝑒1}. Note that it suffices to show that (𝐶ℓ ∩𝐷𝑚) ∪ {𝑒1} is [𝑒2]-connected
because, in this case, we would indeed get 𝐾 = (𝐶ℓ ∩ 𝐷𝑚) ∪ {𝑒1, 𝑒2} as the remaining [𝑒2]-
component when applying Rule 4 to 𝐺ℓ . Suppose to the contrary that (𝐶ℓ ∩ 𝐷𝑚) ∪ {𝑒1} is
not [𝑒2]-connected, i.e., there exist edges 𝑓1, 𝑓2 ∈ (𝐶ℓ ∩ 𝐷𝑚) ∪ {𝑒1}, such that 𝑓1, 𝑓2 are not
[𝑒2]-connected. We distinguish two cases:
Case 2.1.1. One of the edges 𝑓1, 𝑓2 is 𝑒1, say 𝑒1 = 𝑓1. That is 𝑒1 and 𝑓2 are not [𝑒2]-connected
in 𝐺ℓ . However, they are in the same [𝑒2]-component 𝐷𝑚 in 𝐻 . This means that there is an
[𝑒2]-path in 𝐻 connecting them. Since this [𝑒2]-path is not in 𝐶ℓ ∪ {𝑒1}, it must make use of
an edge 𝑔 in some [𝑒1]-component 𝐶𝑖 with 𝑖 ∈ {1, . . . , ℓ − 1}. W.l.o.g., assume that this path
was chosen with minimal length. We can traverse this path from 𝑓2 via 𝑔 to 𝑒1. By assuming
minimal length, the path from 𝑓2 to 𝑔 does not involve any vertex from 𝑒1. But then 𝑓2 and 𝑔 are
[𝑒1]-connected. This contradicts our assumption that 𝑔 and 𝑓2 lie in different [𝑒1]-components.
Case 2.1.2. Suppose that both edges 𝑓1, 𝑓2 are different from 𝑒1. Again, we have the situation that
𝑓1 and 𝑓2 are not [𝑒2]-connected in 𝐺ℓ , but they are in the same [𝑒2]-component 𝐷𝑚 in 𝐻 . This
means that there is an [𝑒2]-path in 𝐻 connecting them. Since this [𝑒2]-path is not in 𝐶ℓ ∪ {𝑒1},
it must make use of an edge 𝑔 in some 𝐶𝑖 with 𝑖 ∈ {1, . . . , ℓ − 1}. W.l.o.g., assume that this path
was chosen with minimal length. It may possibly involve 𝑒1 but, by the minimality, it uses 𝑒1
at most once. If 𝑒1 is not part of the path then we immediately get a contradiction since there
exists an [𝑒1]-path between any of the edges 𝑓𝑖 and edge 𝑔, where 𝑓𝑖 and 𝑔 are assumed to lie in
different [𝑒1]-components. On the other hand, if 𝑒1 is part of this path, then it must be either on
the path 𝑓1–𝑔 or 𝑓2–𝑔 but not both. By symmetry, we may assume w.l.o.g., that 𝑒1 is on the path
𝑓1–𝑔. Then the path 𝑓2–𝑔 is an [𝑒1]-path. Again, this contradicts our assumption that 𝑔 and 𝑓2
lie in different [𝑒1]-components.
Case 2.2. Suppose that 𝑑 ≠ ∅. Let 𝑅1, . . . , 𝑅𝑛 denote the [𝑑]-components of 𝐻 . We have 𝑑 ⊂ 𝑒𝑖
for both 𝑖 ∈ {1, 2}, since, in Case 2, we are assuming 𝑒1 ⊈ 𝑒2 and 𝑒2 ⊈ 𝑒1. Hence, 𝑒1 and 𝑒2 are
each contained in some [𝑑]-component.
Case 2.2.1. Suppose that 𝑒1 and 𝑒2 are in two different [𝑑]-components. W.l.o.g., we may assume
that 𝑒1 ∈ 𝑅𝑛−1 and 𝑒2 ∈ 𝑅𝑛 . We observe that all [𝑑]-components except for 𝑅𝑛−1 are also
[𝑒1]-components. Moreover, the remaining [𝑒1]-components of 𝐻 are entirely contained in
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𝑅𝑛−1 since every [𝑒1]-component is of course also [𝑑]-connected. Let 𝑆1, . . . , 𝑆𝛼 with 𝛼 ≥ 1
denote the [𝑒1]-components of 𝐻 inside 𝑅𝑛−1. Hence, in total, 𝐻 has the [𝑒1]-components
𝑅1, . . . , 𝑅𝑛−2, 𝑅𝑛, 𝑆1, . . . , 𝑆𝛼 .

Likewise, all [𝑑]-components except for 𝑅𝑛 are also [𝑒2]-components and the remaining [𝑒2]-
components of 𝐻 are entirely contained in 𝑅𝑛 . Let 𝑇1, . . . ,𝑇𝛽 with 𝛽 ≥ 1 denote the [𝑒2]-
components of 𝐻 inside 𝑅𝑛 . Hence, in total, 𝐻 has the [𝑒2]-components 𝑅1, . . . , 𝑅𝑛−1,𝑇1, . . . ,𝑇𝛽 .
LetH ′ be the set of hypergraphs obtained fromH by replacing 𝐻 inH by the following set of
hypergraphs: 𝐹1, . . . , 𝐹𝑛−2,𝐺1, . . . ,𝐺𝛼 , 𝐻1, . . . , 𝐻𝛽 with 𝐹𝑖 = 𝑅𝑖 ∪ {𝑑} for every 𝑖 ∈ {1, . . . , 𝑛 − 2},
𝐺𝑖 = 𝑆𝑖 ∪ {𝑒1} for every 𝑖 ∈ {1, . . . , 𝛼}, 𝐻𝑖 = 𝑇𝑖 ∪ {𝑒2} for every 𝑖 ∈ {1, . . . , 𝛽}. It remains to show
thatH ′ can be reached both, if Rule 4 is applied to the [𝑒1]-components first and also if Rule 4
is applied to the [𝑒2]-components first. Actually,H ′ is fully symmetric w.r.t. 𝑒1 and 𝑒2. Hence,
it suffices to show that we can reachH ′ if Rule 4 is applied to the [𝑒1]-components of 𝐻 first.

As observed above, the [𝑒1]-components of 𝐻 are 𝑅1, . . . , 𝑅𝑛−2, 𝑅𝑛, 𝑆1, . . . , 𝑆𝛼 . Hence, we may
replace 𝐻 by the hypergraphs 𝐹 ′1, . . . , 𝐹 ′𝑛−2, 𝐹 ′𝑛 , 𝐺1, . . . , 𝐺𝛼 , where the 𝐺𝑖 ’s are defined as above
and the hypergraphs 𝐹 ′𝑖 with 𝑖 ≠ 𝑛 − 1 are obtained as 𝐸 (𝐹 ′𝑖 ) = 𝑅𝑖 ∪ {𝑒1}. By assumption, 𝑒1 is in
the [𝑑]-component 𝑅𝑛−1. Hence, 𝑒1 ∩𝑉 (𝑅𝑖) ⊆ 𝑑 for all 𝑖 ≠ 𝑛 − 1. In other words, the vertices in
𝑒1 \ 𝑑 only occur in a single edge of 𝐹 ′𝑖 with 𝑖 ≠ 𝑛 − 1, namely in the edge 𝑒1. We may therefore
apply Rule 1 multiple times to each of the hypergraphs 𝐹 ′𝑖 with 𝑖 ≠ 𝑛 − 1. In this way, we replace
𝑒1 in each of these hypergraphs by 𝑑 and we indeed transform 𝐹 ′𝑖 into 𝐹𝑖 for every 𝑖 ≤ 𝑛 − 2.
Also in 𝐹 ′𝑛 = 𝑅𝑛 ∪ {𝑒1} we thus replace 𝑒1 by 𝑑 . Recall that we are assuming that 𝑒2 ∈ 𝑅𝑛 .
Hence, we may delete 𝑑 by Rule 2 since, 𝑑 ⊆ 𝑒2. Hence, 𝐹 ′𝑛 is ultimately transformed into 𝑅𝑛 .
Now consider the [𝑒2]-components of 𝐻 inside 𝑅𝑛 , namely 𝑇1, . . . ,𝑇𝛽 with 𝛽 ≥ 1. These are
also the [𝑒2]-components of the hypergraph 𝑅𝑛 , i.e., 𝑇𝑖 ⊆ 𝐸 (𝑅𝑛) and 𝑇𝑖 is (maximally) [𝑒2]-
connected for every 𝑖 . If 𝛽 ≥ 2, then we may apply Rule 4 to 𝑅𝑛 and we get precisely the desired
hypergraphs 𝐻𝑖 = 𝑇𝑖 ∪ {𝑒2} for every 𝑖 ∈ {1, . . . , 𝛽}. On the other hand, if 𝛽 = 1, then 𝑅2 has
a single [𝑒2]-component 𝑇1. Note that all edges of a hypergraph not contained in any of its
[𝑒2]-components are subedges of 𝑒2. Hence, we may again transform 𝑅𝑛 into 𝐻1 = 𝑇1 ∪ {𝑒2} by
multiple applications of Rule 2, which allows us to delete all subedges of 𝑒2.

Case 2.2.2. Suppose that 𝑒1 and 𝑒2 are in the same [𝑑]-component. W.l.o.g., we may assume
that {𝑒1, 𝑒2} ⊆ 𝑅𝑛 . We observe that all [𝑑]-components except for 𝑅𝑛 are also [𝑒1]-components
and [𝑒2]-components. Moreover, the remaining [𝑒1]-components of 𝐻 and also the remaining
[𝑒2]-components of 𝐻 are entirely contained in 𝑅𝑛 . Let 𝑆1, . . . , 𝑆𝛼 with 𝛼 ≥ 1 denote the [𝑒1]-
components of𝐻 inside 𝑅𝑛 and let𝑇1, . . . ,𝑇𝛽 with 𝛽 ≥ 1 denote the [𝑒2]-components of𝐻 inside
𝑅𝑛 . Then, in total, 𝐻 has the [𝑒1]-components 𝑅1, . . . , 𝑅𝑛−1, 𝑆1, . . . , 𝑆𝛼 and the [𝑒2]-components
𝑅1, . . . , 𝑅𝑛−1,𝑇1, . . . ,𝑇𝛽 .

We are assuming that {𝑒1, 𝑒2} ⊆ 𝑅𝑛 . Hence, 𝑒1 is in precisely one [𝑒2]-component𝑇𝑗 inside𝑅𝑛 and
𝑒2 is in precisely one [𝑒1]-component 𝑆𝑖 inside 𝑅𝑛 . W.l.o.g., we may assume that 𝑒1 ∈ 𝑇𝛽 and 𝑒2 ∈
𝑆𝛼 . Analogously to the Case 2.1, we claim that then all of𝑇1∪ · · ·∪𝑇𝛽−1∪{𝑒2} is contained in 𝑆𝛼 .
This can be seen as follows: we are assuming that𝐻 is connected. Then also𝑇1∪· · ·∪𝑇𝛽−1∪{𝑒2}
is connected and even [𝑒1]-connected, since 𝑒1 ∈ 𝑇𝛽 . Hence,𝑇1∪ · · · ∪𝑇𝛽−1∪ {𝑒2} lies in a single
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[𝑒1]-component, namely 𝑆𝛼 . By symmetry, also 𝑆1 ∪ · · · ∪ 𝑆𝛼−1 ∪ {𝑒1} is contained in a single
[𝑒2]-component, namely 𝑇𝛽 .
We now define the set H ′ of hypergraphs by combining the ideas of the Cases 2.1 and 2.2.1.
LetH ′ be the set of hypergraphs obtained fromH by replacing 𝐻 inH by the following set
of hypergraphs: 𝐹1, . . . , 𝐹𝑛−1, 𝐺1, . . . ,𝐺𝛼−1, 𝐻1, . . . , 𝐻𝛽−1, 𝐾 with 𝐸 (𝐹𝑖) = 𝑅𝑖 ∪ {𝑑} for every
𝑖 ∈ {1, . . . , 𝑛 − 1}, 𝐸 (𝐺𝑖) = 𝑆𝑖 ∪ {𝑒1} for every 𝑖 ∈ {1, . . . , 𝛼 − 1}, 𝐸 (𝐻𝑖) = 𝑇𝑖 ∪ {𝑒2} for every
𝑖 ∈ {1, . . . , 𝛽 − 1}, and 𝐸 (𝐾) = (𝑆𝛼 ∩𝑇𝛽 ) ∪ {𝑒1, 𝑒2}. It remains to show thatH ′ can be reached
both, if Rule 4 is applied to the [𝑒1]-components first and also if Rule 4 is applied to the [𝑒2]-
components first. Again, sinceH ′ is fully symmetric w.r.t. 𝑒1 and 𝑒2, it suffices to show that we
can reachH ′ if Rule 4 is applied to the [𝑒1]-components of 𝐻 first.

As observed above, the [𝑒1]-components of 𝐻 are 𝑅1, . . . , 𝑅𝑛−1, 𝑆1, . . . , 𝑆𝛼 . Hence, we may
replace 𝐻 inH by the hypergraphs 𝐹 ′1, . . . , 𝐹 ′𝑛−1,𝐺1, . . . ,𝐺𝛼 , where the the hypergraphs 𝐹 ′𝑖 with
𝑖 ≤ 𝑛 − 1 are obtained as 𝐸 (𝐹 ′𝑖 ) = 𝑅𝑖 ∪ {𝑒1} and 𝐸 (𝐺𝛼 ) = 𝑆𝛼 ∪ {𝑒1}. For 𝑖 ∈ {1, . . . , 𝛼 − 1}, 𝐺𝑖 is
as defined above, i.e., 𝐸 (𝐺𝑖) = 𝑆𝑖 ∪ {𝑒1}. By assumption, 𝑒1 is in the [𝑑]-component 𝑅𝑛 . Hence,
𝑒1 ∩𝑉 (𝑅𝑖) ⊆ 𝑑 for all 𝑖 ≤ 𝑛 − 1. In other words, the vertices in 𝑒1 \ 𝑑 only occur in a single edge
of 𝐹 ′𝑖 with 𝑖 ≤ 𝑛−1, namely in the edge 𝑒1. We may therefore apply Rule 1 multiple times to each
of the hypergraphs 𝐹 ′𝑖 with 𝑖 ≤ 𝑛 − 1. In this way, we replace 𝑒1 in each of these hypergraphs by
𝑑 and we indeed transform 𝐹 ′𝑖 into 𝐹𝑖 for every 𝑖 ≤ 𝑛 − 1.
Now consider the hypergraph 𝐺𝛼 with 𝐸 (𝐺𝛼 ) = 𝑆𝛼 ∪ {𝑒1}. We apply Rule 4 to the [𝑒2]-
components of 𝐺𝛼 . As was observed above, the [𝑒2]-components 𝑇1, . . . ,𝑇𝛽−1 of 𝐻 are fully
contained in 𝑆𝛼 and, hence, in 𝐸 (𝐺𝛼 ). Considering 𝑇1, . . . ,𝑇𝛽−1 as [𝑒2]-components of 𝐺𝛼 , the
application of Rule 4 gives rise to𝐻1, . . . , 𝐻𝛽−1 with 𝐸 (𝐻𝑖) = 𝑇𝑖 ∪{𝑒2} for every 𝑖 ∈ {1, . . . , 𝛽−1}.
It remains to consider the remaining [𝑒2]-component 𝑇𝛽 of 𝐻 , but now restricted to the hyper-
graph𝐺𝛼 = 𝑆𝛼 ∪ {𝑒1}. It suffices to show that (𝑆𝛼 ∩𝑇𝛽 ) ∪ {𝑒1} is [𝑒2]-connected because, in this
case, we would indeed get (𝑆𝛼 ∩𝑇𝛽 ) ∪ {𝑒1} as the remaining [𝑒2]-component when applying
Rule 4 to 𝐺𝛼 , and 𝐾 with 𝐸 (𝐾) = (𝑆𝛼 ∩𝑇𝛽 ) ∪ {𝑒1, 𝑒2} would be the remaining hypergraph pro-
duced by this application of Rule 4. The proof follows the same line of argumentation as Case
2.1. More specifically, assume to the contrary that there are two edges 𝑓1, 𝑓2 in (𝑆𝛼 ∩𝑇𝛽 ) ∪ {𝑒1},
such that 𝑓1, 𝑓2 are not [𝑒2]-connected in𝐺𝛼 . However, 𝑓1, 𝑓2 are in the same [𝑒2]-component 𝑇𝛽
of 𝐻 . Hence, there exists a path between 𝑓1 and 𝑓2 using an edge from some [𝑒1]-component
different from 𝑆𝛼 . This can be exploited to derive a contradiction by constructing an [𝑒1]-path
between two different [𝑒1]-components. For details, see Case 2.1. □

3.3 Parallelisation Strategy

As described in more detail below, we use a divide and conquer method, based on the Balanced
Separator Approach [25], which we recalled in Section 2.5. This method divides a hypergraph
into smaller hypergraphs, called subcomponents. Our method proceeds to work on these
subcomponents in parallel, with each round reducing the size of the hypergraphs (i.e., the
number of edges in each subcomponent) to at most half their size. Thus after logarithmically
many rounds, the method will have decomposed the entire hypergraph, if a decomposition of
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Algorithm 3.1: Parallel Balanced Separator algorithm
Type: Comp=(𝐻 : Graph, 𝑆𝑝: Set of Special Edges)
Input: H: Hypergraph
Parameter :𝑘 : width parameter
Output: Accept if ghw of H ≤ 𝑘 , else Reject

1 begin
2 return Decomp(H, ∅) ⊲ initial call
3 Function Decomp(H’: Graph, Sp: Set of Special Edges)
4 if |H’ ∪ Sp| ≤ 2 then ⊲ Base Case
5 return Accept
6 M � a set of 𝑘-tuples ⊲ used to facilitate fast backtracking
7 repeat ⊲ SeparatorLoop
8 𝑠𝑒𝑝 � FindBalSep(H’, Sp, M)

9 if 𝑠𝑒𝑝 = ∅ then
10 break
11 subSep � 𝑠𝑒𝑝
12 repeat ⊲ SupEdgeLoop
13 comps � ComputeSubhypergraphs(H’, Sp,subSep) ⊲ returns Comp set
14 ch � a channel
15 for c ∈ comps do
16 go ch← Decomp(c.H, c.Sp ∪ �

subSep)

17 while any recursive call is still running do
18 out← ch: ⊲ waits on channel
19 if out = Reject then
20 subSep = NextSubedgeSep(subSep)
21 continue SubEdgeLoop
22 return Accept ⊲ found decomposition
23 until subSep = ∅
24 until 𝑠𝑒𝑝 = ∅
25 return Reject ⊲ exhausted search space

width 𝑘 exists. For the computation we use the modern programming language Go [18], which
has a model of concurrency based on [57].

In Go, a goroutine is a sequential process. Multiple goroutines may run concurrently. In the
pseudocode provided, these are spawned using the keyword go, as can be seen in Algorithm 3.1,
line 16. They communicate over channels. Using a channel 𝑐ℎ is indicated by← 𝑐ℎ for receiving
from a channel, and by 𝑐ℎ ← for sending to 𝑐ℎ.
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3.3.1 Overview

Algorithm 3.1 contains the full decomposition procedure, whereas Function FindBalSep details
the parallel search for separators, as it is a key subtask for parallelisation. To emphasise the
core ideas of our parallel algorithm, we present it as a decision procedure, which takes as input
a hypergraph 𝐻 and a parameter 𝑘 , and returns as output either Accept if 𝑔ℎ𝑤 (𝐻 ) ≤ 𝑘 or Reject
otherwise. Please note, however, that our actual implementation also produces a GHD of width
≤ 𝑘 in case of an accepting run.

For the GHD computation, we may assume w.l.o.g. that the input hypergraph has no isolated
vertices (i.e., vertices that do not occur in any edge). Hence, we may identify 𝐻 with its set of
edges 𝐸 (𝐻 ) with the understanding that 𝑉 (𝐻 ) = �

𝐸 (𝐻 ) holds. Likewise, we may consider a
subhypergraph 𝐻 ′ of 𝐻 as a subset 𝐻 ′ ⊆ 𝐻 where, strictly speaking, 𝐸 (𝐻 ′) ⊆ 𝐸 (𝐻 ) holds.

Our parallel Balanced Separator algorithm begins with an initial call to the procedure Decomp, as
seen on line 2 of Algorithm 3.1. The procedure Decomp takes two arguments, a subhypergraph
𝐻 ′ of 𝐻 for the current subcomponent considered, and a set S𝑝 of special edges. Together, these
form an extended subhypergraph, as introduced in Section 4.1. The special edges indicate the
balanced separators encountered so far, as can be seen on line 16, where the current separator
𝑠𝑢𝑏𝑆𝑒𝑝 is added to the argument on the recursive call, combining all its vertices into a new
special edge. The special edges are needed to ensure that the decompositions of subcomponents
can be combined to an overall decomposition, and are thus considered as additional edges. The
goal of procedure Decomp is thus to find a GHD D of ⟨𝐻 ′, S𝑝⟩ that fulfils the conditions given
in Definition 3.3.

Hence, the central procedure Decomp in Algorithm 3.1, when initially called on line 2, checks if
there exists a GHD of the desired width of the extended subhypergraph (𝐻, ∅), that is, a GHD
of hypergraph 𝐻 itself.

The recursive procedure Decomp has its base case on lines 4 to 5, when the size of 𝐻 ′ and 𝑆𝑝
together is less than or equal to 2. The remainder of Decomp consists of two loops, the Separator
Loop, from lines 7 to 24, which iterates over all balanced separators, and within it the SubEdge
Loop, running from lines 12 to 23, which iterates over all subedge variants of any balanced
separator. New balanced separators are produced with the subprocedure FindBalSep, used on
line 8 of Algorithm 3.1, and detailed in Function FindBalSep. After a separator is found, Decomp
computes the new subcomponents on line 13. Then goroutines are started using recursive calls
of Decomp for all found subcomponents. If any of these calls returns Reject, seen on line 19,
then the procedure starts checking for subedges. If they have been exhausted, the procedure
checks for another separator. If all balanced separators have been tried without success, then
Decomp rejects on line 25.

We proceed to detail the parallelisation strategy of the two key subtasks: the search for new
separators and the recursive calls over the subcomponents created from a chosen separator.
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Figure 3.1: An example hypergraph, where the vertices are represented by letters, with explicit
edge names.

3.3.2 Parallel Search for Balanced Separators

Before describing our implementation, we define some needed notions. For the search for
balanced separators within an extended subhypergraph ⟨𝐻 ′, S𝑝⟩, we can determine the set
of relevant edges from the hypergraph, defined as 𝐸∗ = {𝑒 ∈ 𝐸 (𝐻 ) | 𝑒 ∩ �(𝐻 ′ ∪ 𝑆𝑝) ≠ ∅}.
We assume for this purpose that the edges in 𝐸∗ are ordered and carry indices in {1, . . . , |𝐸∗ |}
according to this ordering. We can then define the following notion.

Definition 3.12. A 𝑘-combination for an ordered set of edges 𝐸∗ is a 𝑘-tuple of integers
(𝑥1, . . . , 𝑥𝑘 ), where 1 ≤ 𝑥𝑖 ≤ |𝐸∗ | and 𝑥1 < · · · < 𝑥𝑘 . For two 𝑘-combinations 𝑎, 𝑏, we say 𝑏 is
one step ahead of 𝑎, denoted as 𝑎 <1 𝑏, if w.r.t. the lexicographical ordering <𝑙𝑒𝑥 on the tuples,
we have 𝑎 <𝑙𝑒𝑥 𝑏, and there exists no other 𝑘-combination 𝑐 s.t. 𝑎 <𝑙𝑒𝑥 𝑐 <𝑙𝑒𝑥 𝑏. To generalise,
we say 𝑐 is 𝑖 steps ahead of 𝑎 with 𝑖 > 1, if there exists some 𝑏 s.t. 𝑎 <𝑖−1 𝑏 <1 𝑐 .

Example 3.1. Consider the hypergraph 𝐻 from Figure 3.1. Assume that we are currently
investigating the extended subhypergraph with 𝐻 ′ = {𝑒3, 𝑒4, 𝑒5} and S𝑝 = {{𝑎, 𝑏, 𝑒, 𝑓 }}. By the
definition above, this gives us the following set of relevant edges: 𝐸∗ = {𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6}. We
assume the ordering to be simply the order the edges are written in here, i.e., index 1 refers to
edge 𝑒2, 2 refers to 𝑒3, etc.

Let us assume that we are looking for separators of length 3, so 𝑘 = 3. We would then start
the search with the 3-combination (1, 2, 3), which represents the choice of 𝑒2, 𝑒3, 𝑒4. If we move
one step ahead, we next get the 3-combination (1, 2, 4), which represents the choice of 𝑒2, 𝑒3, 𝑒5.
Moving further 3 steps ahead, we produce the 3-combination (1, 3, 5), representing the choice
of 𝑒1, 𝑒4, 𝑒6.

In our parallel implementation, while testing out a number of configurations, we settled ulti-
mately on the following scenario, shown in Function FindBalSep: we first create𝑤 many worker
goroutines, seen on lines 3 to 4, where 𝑤 stands for the number of CPUs we have available.
This corresponds to splitting the workspace into 𝑤 parts, and assigning each of them to one
worker. Each worker is passed two arguments:
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Function FindBalSep(𝐻 ′, Sp, M)
1 Function FindBalSep(H’: Graph, Sp: Set of Special Edges, M: Set of 𝑘-tuples)
2 ch � a channel
3 for M𝑖 ∈ M do
4 goWorker(H’, Sp, M𝑖 , ch)
5 while any worker still running do
6 out← ch: ⊲ wait on channel
7 return out
8 return empty set ⊲ exhausted search space
9 Function Worker(H’: Graph, Sp: Set of Special Edges, M𝑖 : 𝑘-tuple of integers, ch: Channel)
10 for 𝑠𝑒𝑝 ∈ NextSeparator(M𝑖) do
11 if IsBalanced(sep, H’, Sp) then
12 ch← 𝑠𝑒𝑝 ⊲ send 𝑠𝑒𝑝 to FindBalSep

13 return ⊲ no separator found within M𝑖

First, the workers are passed a channel 𝑐ℎ, which they will use to send back any balanced
separators they find. The worker procedure iterates over all candidate separators in its assigned
search space, and sends back the first balanced separator it finds over the channel.

Secondly, to coordinate the search, each worker is passed a 𝑘-combination, where the needed
ordering is on the relevant edges defined earlier. Furthermore, each worker starts with a distinct
offset of 𝑗 steps ahead, where 0 ≤ 𝑗 ≤ 𝑤 − 1, and will only check 𝑘-combinations that are
𝑤 steps apart each. This ensures that no worker will redo the work of another one, and that
together they still cover the entire search space. An illustration for this can be seen in Figure 3.2.

Having started the workers, FindBalSep then waits for one of two conditions (whichever
happens first): either one of the workers finds a balanced separator, lines 6 to 7, or none of them
does and they all terminate on their own once they have exhausted the search space. Then the
empty set is returned, as seen on line 8, indicating that no further balanced separators from
edges in 𝐸∗ exist. We note that balanced separators composed from subedges are taken care
of in Algorithm 3.1 on lines 19 to 21, and are therefore not relevant for the search inside the
Function FindBalSep.

We proceed to explain how this design addresses the three challenges for a parallel implementa-
tion we outlined in the introduction.

i This design reduces the need for synchronisation: each worker is responsible for a share
of the search space, and the only time a worker is stopped is when either it has found a
balanced separator, or when another worker has done so.

ii The number of worker goroutines scales with the number of available processors. This
allows us to make use of the available hardware when searching for balanced separators,
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(1,2,3) (1,2,4) (1,2,5) (1,3,4) (1,3,5) (1,4,5) (2,3,4) (2,3,5)

Figure 3.2: Using 𝑘-combinations to split the workspace. Shown here with 3 workers, and 𝑘 = 3
and |𝐸∗ | = 5.

and the design above makes it very easy to support an arbitrary number of processors for
this, without a big increase in the synchronisation overhead.

iii Finally, our design addresses backtracking in this way: as explained, the workers employ
a set of 𝑘-combinations, called M in Function FindBalSep, to store their current progress,
allowing them to generate the next separator to consider. Crucially, this data structure is
stored in Decomp, seen on line 6 of Algorithm 3.1, even after the search is over. Therefore,
in case we need to backtrack, this allows the algorithm to quickly continue the search
exactly where it left off, without losing any work. If multiple workers find a balanced
separator, one of them arbitrarily “wins”, and during backtracking, the other workers can
immediately send their found separators to FindBalSep again.

3.3.3 Parallel Recursive Calls

For the recursive calls on the produced subcomponents, we create for each such call its own
goroutine, as explained in the overview. This can be seen in Algorithm 3.1, on line 15, where
the output is then sent back via the channel 𝑐ℎ. Each call gets as arguments its own extended
subhypergraph, as well as an additional special edge. The output is received on line 18, where
the algorithm waits on all recursive calls to finish before it can either return accept, or reject
the current separator in case any recursive call returns a reject.

The fact that all recursive calls can be worked on concurrently is also in itself a major perfor-
mance boost: in the sequential case we execute all recursive calls in a loop, but in the parallel
algorithm - see lines 14 to 15 in Algorithm 3.1 - we can execute these calls simultaneously.
Thus, if one parallel call rejects, we can stop all the other calls early, and thus potentially save
a lot of time. It is easy to imagine a case where in the sequential execution, a rejecting call is
encountered only near the end of the loop.

We state how we addressed the challenges of parallelisation in this area:

i Making use of goroutines and channels makes it easy to avoid any interference between
the recursive calls, and the design allows each recursive call to run and return its results
fully independently. Thus when running the recursive calls concurrently, we do not have
to make use of synchronisation at all.
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ii The second challenge, scaling with the number of CPUs, is initially limited by the number
of recursive calls, which itself is dependent on the number of connected components.
We can ensure, however, that we will generally have at least two, unless we manage to
cover half the graph with just 𝑘 edges. While this might look problematic at first, each of
these recursive calls will either hit a base case, or once more start a search for a balanced
separator which as outlined earlier, will always be able to make use of all cores in our
CPU. This construction is aided by the fact that Go can easily manage a very large number
of goroutines, scheduling them to make optimal use of the available resources. Thus our
second challenge has also been addressed.

iii The third challenge, regarding backtracking, was written with the search for a balanced
separator in mind, and is thus not directly applicable to the calls of the procedure Decomp.
To speed up backtracking also in this case, we did initially consider the use of caching
– which was used to great effect in det-𝑘-decomp [50]. The algorithm presented here,
however, differs significantly from det-𝑘-decomp by the introduction of special edges.
This makes cache hits very unlikely, since both the subhypergraph𝐻 ′ and the set of special
edges 𝑆𝑝 must coincide between two calls of Decomp, to reuse a previously computed
result from the cache. Hence, caching turned out to be not effective here.

Another important topic concerns the scheduling of goroutines. This is relevant for us, since
during every recursive call, we start as many goroutines as there are CPUs. Luckily, Go
implements a so-called “work stealing” scheduler, which allows idle CPUs to take over parts of
the work of other CPUs. Since goroutines have less of an overhead than normal threads, we
can be sure that our algorithm maximally utilises the given CPU resources, without creating
too much of an overhead. For more information about the scheduling of goroutines, we refer to
the handbook by Cox-Buday [15].

To summarise, two of the challenges were addressed and solved, while the third, which mainly
targeted the search for a balanced separator, was not applicable here. The parallelisation of
recursive calls therefore gives a decent speed-up as will be illustrated by the experimental
results in Section 3.5.

3.3.4 Correctness of the Parallel Algorithm

It is important to note that this parallel algorithm is a correct decomposition procedure. More
formally, we state the following property:

Theorem 3.13. The algorithm for checking the ghw of a hypergraph given in Algorithm 3.1 is
sound and complete. More specifically, Algorithm 3.1 with input 𝐻 and parameter 𝑘 will accept if
and only if there exists a GHD of 𝐻 with width ≤ 𝑘 . Moreover, by materialising the decompositions
implicitly constructed in the recursive calls of the Decomp function, a GHD of width ≤ 𝑘 can be
constructed efficiently in case the algorithm returns Accept.

Proof. A sequential algorithm for GHD computation based on balanced separators was first
presented in [25]. Let us refer to it as SequentialBalSep. A detailed proof of the soundness and
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completeness of SequentialBalSep is given in [25]. For convenience of the reader, we recall
the pseudo-code description of SequentialBalSep from [25] in the Preliminaries. In order to
prove the soundness and completeness of our parallel algorithm for GHD computation, it thus
suffices to show that, for every hypergraph 𝐻 and integer 𝑘 ≥ 1, our algorithm returns Accept if
and only if SequentialBalSep returns a GHD of 𝐻 of width ≤ 𝑘 . Hence, since both algorithms
operate on the same notion of extended subhypergraphs and their GHDs, we have to show that,
for every 𝑘 ≥ 1 and every input (𝐻 ′, S𝑝), the Decomp function of our algorithm returns Accept
if and only if the Decompose function of the SequentialBalSep algorithm returns a GHD of
𝐻 ′ ∪ 𝑆𝑝 of width ≤ 𝑘 .

To prove this equivalence between our new parallel algorithm and the previous Sequential-
BalSep algorithm from [24], we inspect the main differences between the two algorithm and
argue that they do not affect the equivalence:

1. Decision problem vs. search problem. While SequentialBalSep outputs a concrete GHD
of desired width if it exists, we have presented our algorithm as a pure decision procedure
which outputs Accept or Reject. Note that this was only done to simplify the notation. It
is easy to verify that the construction of a GHD in the SequentialBalSep algorithm on
lines 5 – 12 (for the base case) and on line 27 (for the inductive case) can be taken over
literally for our parallel algorithm.

2. Parallelisation. The most important difference between the previous sequential algo-
rithm and the new parallel algorithm is the parallelisation. As was mentioned before,
parallelisation is applied on two levels: splitting the search for finding the next balanced
separator into parallel subtasks via function FindBalSep and processing recursive calls of
function Decomp in parallel. The parallelisation via function FindBalSepwill be discussed
separately below. We concentrate on the recursive calls of function Decomp first. On lines
13 – 22 of our parallel algorithm, function Decomp is called recursively for all components
of a given balanced separator and Accept is returned on line 22 if and only if all these
recursive calls are successful. Otherwise, the next balanced separator is searched for. The
analogous work is carried out on lines 18 – 27 of the SequentialBalSep algorithm. That
is, the function Decompose is called recursively for all components of a given balanced
separator and (by combining the GHDs returned from these recursive calls) a GHD of
the given extended subhypergraph is returned on line 27 if and only if all these recursive
calls are successful. Otherwise, the next balanced separator is searched for.

3. Search for balanced separators. As has been detailed in Section 3.3.2, our function Find-
BalSep splits the search space for a balanced separator into𝑤 pieces (where𝑤 denotes
the number of available workers) and searches for a balanced separator in parallel. So in
principle, this function has the same functionality as the iterator BalSepIt in the Sequen-
tialBalSep algorithm. That is, the set of balanced separators of size 𝑘 for an extended
subhypergraph ⟨𝐻 ′, S𝑝⟩ found is the same when one calls the function FindBalSep until
it returns the empty set, or when one calls the iterator BalSepIt until it has no elements
to return any more. However, the calls of function FindBalSep implement one of the
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algorithmic improvements presented in Section 3.2.2: note that the SequentialBalSep
algorithm assumes that all required subedges of edges from 𝐸 (𝐻 ) have been added to
𝐸 (𝐻 ) before executing this algorithm. It may thus happen that, by considering different
subedges of a given 𝑘-tuple of edges, the same separator (i.e., the same set of vertices) is
obtained several times. As has been explained in Section 3.2.2, we avoid this repetition
of work by concentrating on the set of vertices of a given balanced separator (i.e., sep
returned on line 8 and used to initialise subSep on line 11) and iterate through all balanced
separators obtained as “legal” subsets by calling the NextSubedgeSep function on line 20.
This means that we ultimately get precisely the same balanced separators (considered as
sets of vertices) as in the SequentialBalSep algorithm. □

3.3.5 Hybrid Approach - Best of Both Worlds

Based on this parallelisation scheme, we produced a parallel implementation of the Balanced
Separator algorithm, with the improvements mentioned in Section 3.2. We already saw some
promising results, but we noticed that for many instances, this purely parallel approach was
not fast enough. We thus continued to explore a more nuanced approach, mixing both parallel
and sequential algorithms.

We now present a novel combination of parallel and sequential decomposition algorithms. It
contains all the improvements mentioned in Section 3.2 and combines the Balanced Separator
algorithm from Sections 3.3.1–3.3.3 and det-𝑘-decomp recalled in Section 2.4.

This combination is motivated by two observations: The Balanced Separator algorithm is very
effective at splitting large hypergraphs into smaller ones and in negative cases, where it can
quickly stop the computation if no balanced separator for a given subcomponent exists. It is
slower for smaller instances where the computational overhead to find balanced separators
at every step slows things down. Furthermore, for technical reasons, it is also less effective
at making use of caching. det-𝑘-decomp, on the other hand, with proper heuristics, is very
efficient for small instances and it allows for effective caching, thus avoiding repetition of work.

The Hybrid approach proceeds as follows: For a fixed number 𝑚 of rounds, the algorithm
tries to find balanced separators. Each such round is guaranteed to halve the number of
hyperedges considered. Hence, after those𝑚 rounds, the number of hyperedges in the remaining
subcomponents will be reduced to at most |𝐸 (𝐻 ) |

2𝑚 . The Hybrid algorithm then proceeds to finish
the remaining subcomponents by using the det-𝑘-decomp algorithm.

This required quite extensive changes to det-𝑘-decomp, since it must be able to deal with Special
Edges. Formally, each call of det-𝑘-decomp runs sequentially. However, since the𝑚 rounds can
produce a number of components, many calls of det-𝑘-decomp can actually run in parallel. In
other words, our Hybrid approach also brings a certain level of parallelism to det-𝑘-decomp.

3.4 An Illustrative Example

In order to illustrate how the parallel Balanced Separator algorithm we proposed in Section 3.3
works, we will consider an example run of the algorithm. The pseudo-code can be seen in
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𝑢1:
𝜆𝑢1 = {𝑅1, 𝑅6}

𝑢3:
𝜆𝑢3 = {𝑅7, 𝑅10}

𝑢5:
𝜆𝑢5 = {𝑅8, 𝑅9}

𝑢2:
𝜆𝑢2 = {𝑅2, 𝑅5}

𝑢4:
𝜆𝑢4 = {𝑅3, 𝑅4}

(a) GHD D of hypergraph 𝐻 from Section 3.4

𝜆𝑢2 = {𝑅2, 𝑅5}

𝑆𝑝 = {𝐵(𝜆𝑢1 )} 𝜆𝑢4 = {𝑅3, 𝑅4}
(b) GHD-fragment D1.1 implicitly constructed by
Call 1.1 of function Decomp

Figure 3.3: Visualisations of the GHD constructed as part of Section 3.4 and the GHD-fragments
used for its construction.

Algorithm 3.1. We consider as the input the hypergraph 𝐻 = (𝑉 , 𝐸) with 𝑉 = {𝑥1, . . . , 𝑥10} and

𝐸 = {𝑅1(𝑥1, 𝑥2), 𝑅2(𝑥2, 𝑥3), 𝑅3(𝑥3, 𝑥4), 𝑅4(𝑥4, 𝑥5), 𝑅5(𝑥5, 𝑥6),
𝑅6(𝑥6, 𝑥7), 𝑅7(𝑥7, 𝑥8), 𝑅8(𝑥8, 𝑥9), 𝑅9(𝑥9, 𝑥10), 𝑅10(𝑥10, 𝑥1)}.

In other words, 𝐻 is a essentially a cycle of size 10. A generalized hypertree decomposition D
of 𝐻 is shown in Figure 3.3a. Please note that for the sake of simplicity, we omit the 𝜒-labels
here. The reason for this is that in our parallel Balanced Separator algorithm, we simply take
the union of all vertices of the 𝜆-label to form the bags. Thus we can also choose a simpler
representation of GHDs which only concerns itself with the 𝜆-labels. We note here that this
example avoids the need to consider subedges. The reason for this is the fact that the algorithm
first finds a balanced separator (a set of edges), and only in case of encountering a failure case
does it begin to iterate over all possible subedges of edges in this balanced separator, as long as
such a combination is still a balanced separator itself. This means subeges are only computed
locally when needed. Since our particular example never encounters a failure case, we also do
not need to consider subedges.

We now walk through the parallel Balanced Separator algorithm. We assume that we run the
algorithm with hypergraph 𝐻 and parameter 𝑘 = 2.

In the SeparatorLoop on line 7 to line 24, the algorithm searches for a 𝜆-label, until it finds
a successful one. By “successful” we mean that the correct execution of the function Decomp

returns an Accept on line 22. To keep things simple in our discussion below, we will directly
choose a successful one with the understanding that this particular 𝜆-label will eventually be
selected by the program unless another successful one has already been found before.

Main program. The main program simply calls the function Decomp with the input of 𝐻 and the
empty set, as we have no special edges initially. Below we will simply enumerate the recursive
calls to Decomp in a hierarchical fashion, where for example the Call 𝑥 .𝑦.𝑧 signifies the 𝑧th
recursive call within Call 𝑥 .𝑦. Call 𝑥 .𝑦 is then the 𝑦th recursive call of function Decomp from
within Call 𝑥 . And finally Call 𝑥 is just the 𝑥th call from the Main program. Note that 𝑥 will
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always be just 1 here, since the main program of Algorithm 3.1 only calls Decomp exactly once.

Call 1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅1, . . . , 𝑅10}, 𝐻 ′.𝑆𝑝 = ∅.
Since the condition of the base case is not satisfied, the SeparatorLoop will be entered. It will
eventually try 𝑠𝑒𝑝 = {𝑅1, 𝑅6}. We shall already think of this as the 𝜆-label of node 𝑢1, which
will form the root of the GHD of 𝐻 . This splits 𝐻 ′ into 2 components 𝑐1 = {𝑅2, 𝑅3, 𝑅4, 𝑅5}
and 𝑐2 = {𝑅7, 𝑅8, 𝑅9, 𝑅10}, which are computed on line 13. The algorithm now proceeds to call
function Decomp with the input 𝑐1 (resp. 𝑐2) and the set of special edges being {𝐵(𝜆𝑢1)}.
As we shall work out next, Call 1.1 of function Decomp for the component 𝑐1 will return true
based on the GHD-fragmentD1.1 shown in Figure 3.3b. Likewise, Call 1.2 of function Decomp for
the component 𝑐2 will return true based on the GHD-fragment D1.2, which we do not visualise
here as its structurally analogous to D1.1

The left leaf node of D1.1 contains the special edge {𝐵(𝜆𝑢1)}, which acts as a placeholder for
the node 𝑢1 with label 𝜆𝑢1 = {𝑅1, 𝑅6} from the current call of Decomp.
The GHD of the successful Call 1 of function Decomp is then obtained by taking GHD-fragment
D1.1, rerooting it to the leaf node with 𝜆-label {𝐵(𝜆𝑢1)}, then replacing it by the node 𝑢1 with
𝜆𝑢1 = {𝑅1, 𝑅6}. We proceed analogously for the GHD-fragment D1.2, but attach it in the end
to the same node 𝑢1. The final GHD D (shown in Figure 3.3a) is thus obtained . We do not
visualise the rerooting process here, as it has already been described in Section 2.5.

Call 1.1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅2, 𝑅3, 𝑅4, 𝑅5}, 𝐻 ′.𝑆𝑝 = {𝐵(𝜆𝑢1)}.
On line 8, we will eventually choose 𝜆𝑢2 = {𝑅2, 𝑅5}. This choice leads to two components
being produced on line 13, namely 𝑐3 = {𝑅3, 𝑅5} and 𝑐4, which only consists of the special edge
{𝐵(𝜆𝑢1)}. Thus, Decomp is called the first time – as Call 1.1.1 – with input ∅ for the set of edges,
and the set {𝐵(𝜆𝑢1), 𝐵(𝜆𝑢2)} as the set of special edges. And the second time the function Decomp
is called – as Call 1.1.2 – with the input {𝑅3, 𝑅5} and the set {𝐵(𝜆𝑢2)} as the set of special edges.
The GHD-fragment associated with Call 1.1 can be seen in Figure 3.3b. This is produced by
combining the outputs from Calls 1.1.1 and 1.1.2 via rerooting to the leaf node with 𝜆-label of
{𝐵(𝜆𝑢2)} and replacing and attaching it to 𝑢2.

Call 1.1.1 of function Decomp with parameters 𝐻 ′.𝐸 = ∅ and 𝐻 ′.𝑆𝑝 = {𝐵(𝜆𝑢1), 𝐵(𝜆𝑢2)}. This call
immediately returns true since we have reached the base case on lines 4 - 5. The corresponding
GHD-fragment D1.1.1 consists of two nodes, one with 𝜆-label {𝐵(𝜆𝑢1)} and the other with
𝜆-label {𝐵(𝜆𝑢2)}.

Call 1.1.2 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅3, 𝑅5}, 𝐻 ′.𝑆𝑝 = {𝐵(𝜆𝑢2)}. On line 8, we
assume that 𝜆𝑢4 = {𝑅3, 𝑅4} will be chosen. This leads to a single component with no regular
edges, and special edges {𝐵(𝜆𝑢2), 𝐵(𝜆𝑢5)}. This leads to another recursive call, which we will
directly cover here since it falls into a base case. As with Call 1.1.1, this function call of Decomp
with input ∅ for 𝑐.𝐻 and special edges {𝐵(𝜆𝑢2), 𝐵(𝜆𝑢5)} will produce a GHD-fragment with two
nodes. After rerooting the output of this recursive call, the GHD-fragment associated with our
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current Call 1.1.2 will consist of two nodes: 𝑢4, with 𝜆-label 𝜆𝑢4 as defined above, and a leaf
node with 𝜆-label of {𝐵(𝜆𝑢2)} .

Call 1.2 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅7, 𝑅8, 𝑅9, 𝑅10}, 𝐻 ′.𝑆𝑝 = {𝐵(𝜆𝑢1)}. The
execution of this function call is very similar to the calls discussed above. Below, we therefore
do not discuss in detail the remaining recursive calls inside Call 1.2. Instead, we only list for
each such call the parameters, the balanced separator, and the corresponding GHD-fragments.

In Call 1.2 of function Decomp, eventually the balanced separator with 𝜆𝑢3 = {𝑅7, 𝑅10} will be
chosen, which gives rise to the recursive Calls 1.2.1 and 1.2.2 (both on line 16) of function
Decomp, which we briefly discuss below.

Call 1.2.1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅8, 𝑅9}, 𝐻 ′.𝑆𝑝 = {𝐵(𝜆𝑢3)} . As in the
Call 1.1.2, we now have an input consisting of two edges and a single special edge. Analogously
to Call 1.1.2, also Call 1.2.1 returns true and the corresponding GHD-fragment D1.2.1 consists of
2 nodes: the root node with 𝜆-label {𝑅8, 𝑅9} and its child nodes with 𝜆-label {𝐵(𝜆𝑢3)}.

Call 1.2.2 of function Decomp with parameters 𝐻 ′.𝐸 = ∅ and 𝐻 ′.𝑆𝑝 = {𝐵(𝜆𝑢1), 𝐵(𝜆𝑢3)}. Again,
we have an input consisting of no regular edges and two special edges. Analogously to the
Call 1.1.1, also Call 1.2.2 returns true and the corresponding GHD-fragment D1.2.2 consists of 2
nodes: the root node with 𝜆-label 𝜆𝑢1 and its child node with 𝜆-label {𝐵(𝜆𝑢3)}.
We can now construct the GHD-fragmentD1.2 of the successful Call 1.2 by taking GHD-fragment
D1.2.2, rerooting it to the leaf node with 𝜆-label {𝐵(𝜆𝑢3)}, and then replacing it by the node 𝑢3
with 𝜆𝑢3 = {𝑅7, 𝑅10} from Call 1.2 and appending the GHD-fragment D1.2.1 – after rerooting it
to the leaf node with 𝜆-label {𝐵(𝜆𝑢3)} and removing it – below this node 𝑢3.

3.5 Experimental Evaluation and Results

We have performed our experiments on the HyperBench benchmark from [24] with the goal
to determine the exact generalized hypertree width of significantly more instances. We thus
evaluated how our approach compares with existing attempts to compute the ghw, and we
investigated how various heuristics and parameters prove beneficial for various instances. The
detailed results of our experiments [48], in addition to the source code of our Go programs1 are
publicly available. Together with the benchmark instances, which are detailed below and also
publicly available, this ensures the reproducibility of our experiments.

3.5.1 Benchmark Instances and Setting

HyperBench. The instances used in our experiments are taken from the benchmark Hy-
perBench, collected from various sources in industry and the literature, which was released
in [24] and made publicly available at http://hyperbench.dbai.tuwien.ac.at. It consists
of 3648 hypergraphs from CQs and CSPs, where for many CSP instances the exact ghw was

1See: https://github.com/cem-okulmus/BalancedGo
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Table 3.2: Overview of the instances from HyperBench and their average sizes by group, as well
as sizes of groups themselves.

Instances

Group Avg sizes Arity Size
|𝑉 | |𝐸 | avg max

CSP Application 151.71 68.90 7.00 35 1090
CSP Random 40.74 67.58 4.85 15 863
CSP Other 372.40 395.68 4.24 14 82
CQ Application 30.88 7.03 11.03 145 1113
CQ Random 47.99 27.54 10.63 20 500

Total 79.34 51.39 8.15 145 3648

still undetermined. In this extended evaluation, we performed the evaluation on a larger set
of instances when compared with the original paper [47], to reflect the newest version of the
benchmark, published in [24]. We provide a more detailed overview of the various instances,
grouped by their origin, in Table 3.2. The first two columns of “Avg sizes”, refer to the sizes of
instances within the groups, and the final column “Size” refers to the cardinality of the group, i.e.
how many instances it includes. The two “Arity” columns refer to the maximum and average
edge sizes of the hypergraphs in each group.

Hardware and Software. We used Go 1.2 for our implementation, which we refer to as
BalancedGo. Our experiments ran on a cluster of 12 nodes, running Ubuntu 16.04.1 LTS with a
24 core Intel Xeon E5-2650v4 CPU, clocked at 2.20 GHz, each node with 256 GB of RAM. We
disabled HyperThreading for the experiments.

Setup and Limits. For the experiments, we set a number of limits to test the efficiency of
our solution. For each run, consisting of the input (i.e., hypergraph 𝐻 and integer 𝑘) and a
configuration of the decomposer, we set a one hour (3600 seconds) timeout and limited the
available RAM to 1 GB. These limits are justified by the fact that these are the same limits as
were used in [24], thus ensuring the direct comparability of our test results. To enforce these
limits and run the experiments, we used the HTCondor software [88], originally named just
Condor. Note that for the test results of HtdSMT, we set the available RAM to 24 GB, as that
particular solver had a much higher memory consumption during our tests.

3.5.2 Empirical Results

The key results from our experiments are summarised in Table 3.4, with Table 3.3 acting as a
comparison point. Under “Decomposition Methods” we use “ensemble” to indicate that results
from multiple algorithms are collected, i.e., results from the Hybrid algorithm, the parallel
Balanced Separator algorithm and det-𝑘-decomp. To also consider the performance of one of the
individual approaches introduced in Section 3.3, namely the results of the Hybrid approach (from
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Table 3.3: Overview of previous results: number of instances solved and running times (in
seconds) for producing optimal-width GHDs in [24] and [85]

Instances Decomposition Methods

Group

CSP Application
CSP Random
CSP Other
CQ Application
CQ Random

Total

NewDetKDecomp by [24]
#solved avg max stdev

386 150.82 2608.0 490.47
412 65.78 3240.0 379.12
27 126.43 2538.0 422.42

1113 0.00 0.0 0.00
281 2.12 335.0 21.14

2219 59.00 3240.0 325.03

HtdSMT by [85]
#solved avg max stdev

571 227.27 3508.5 529.90
587 366.93 3569.0 756.10
23 371.77 3340.3 728.27

1070 32.00 1437.0 113.60
254 192.30 3486.5 552.20

2505 158.25 3569.0 481.64

Table 3.4: Overview of our results: number of instances solved and running times (in seconds)
for producing optimal-width GHDs by our new algorithms.

Instances Decomposition Methods

Group

CSP Application
CSP Random
CSP Other
CQ Application
CQ Random

Total

Hybrid Approach BalancedGo ensemble
#solved avg max stdev #solved avg max stdev

762 6.24 3247.90 80.70 763 30.86 3572.78 211.83
578 29.31 3589.82 246.19 625 48.60 3589.82 297.21
42 34.33 2236.00 194.52 42 45.86 2438.64 223.75

1113 0.00 0.01 0.00 1113 0.00 1.74 0.02
355 16.45 3574.76 198.97 381 27.87 3574.76 231.01

2850 11.30 3589.82 145.47 2924 25.76 3589.82 207.32

Section 3.3.5) is separately shown in a section of the table. As a reference point, we considered
on one hand the NewDetKDecomp library from [24] and also the SAT Modulo Theory based
solver HtdSMT from [85]. For each of these, we also listed the average time and the maximal
time to compute a GHD of optimal-width for each group of instances of HyperBench, as well
as the standard deviation. The minimal times are left out for brevity, since they are always
near or equal to 0. Note that for HyperBench the instance groups “CSP Application” or “CQ
Application”, listed in Tables 3.3 and 3.4 are hypergraphs of (resp.) CSP or CQ instances from
real world applications.

In the left part of Table 3.4, we report on the following results obtained with our Hybrid
Approach described in Section 3.3.5, while the right part of that table shows the result for the
“BalancedGo ensemble”. Recall that by “ensemble” we mean the combination of the information
gained from runs of all our decomposition algorithms. For a hypergraph 𝐻 and a width 𝑘 , an
accepting run gives us an upper bound (since the optimal 𝑔ℎ𝑤 (𝐻 ) is then clearly ≤ 𝑘), and
a rejecting run gives us a lower bound (since then we know that 𝑔ℎ𝑤 (𝐻 ) > 𝑘). By pooling
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Figure 3.4: Study of the performance gain w.r.t. the number of CPUs used

Table 3.5: Comparison of BalancedGo, HtdSMT and TULongo on the PACE 2019 Challenge,
Track 2a. Columns 𝑡avg and 𝑡sum show the average time and the total time, respectively, over all
private instances.

Method # of solved instances # of solved private instances 𝑡avg (sec) 𝑡sum (h)

BalancedGo 172 86 134.24 3.21
HtdSMT 165 80 128.67 2.89
TULongo [68] 70 38 105.58 1.11

Table 3.6: Overview of exclusively solved instances of HyperBench for each decomposition
method.

Method #exclusively solved

BalancedGo ensemble 284
NewDetKDecomp 11
HtdSMT 67

multiple algorithms, we can combine these produced upper and lower bounds to compute the
optimal width (when both bounds meet) for more instances than any one algorithm could
determine on its own. We note that the results for NewDetKDecomp from Fischl et al. [24] are
also such an “ensemble”, combining the results of three different GHD algorithms presented
in [24]. Across all experiments, out of the 3648 instances in HyperBench, we have thus managed
to solve over 2900. By “solved” we mean that the precise ghw could be determined in these
cases. It is interesting to note that the Hybrid Algorithm on its own is almost as good as
the “ensemble”. Indeed, the number of 2924 solved instances in case of the “ensemble” only
mildly exceeds the the number of 2850 instances solved by the implementation of our Hybrid
algorithm. The strength of the Hybrid algorithm stems from the fact that it combines the ability
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Figure 3.5: Overview of the distribution of the gℎ𝑤 of the solved instances.

of the parallel Balanced Separator Approach for quickly deriving lower bounds (i.e., detecting
“Reject”-cases) with the ability of det-𝐾-decomp for more quickly deriving upper bounds (i.e.,
detecting “Accept”-cases).

Figure 3.4 shows runtimes for all positive runs of the Hybrid algorithm over all instances of
HyperBench with an increasing number of CPUs used, where the used width parameter ranges
from 2 to 5. The blue dots signify the median times in milliseconds, and the orange bars show
the number of instances which produced timeouts. We can see that increasing the CPUs either
reduces the median (solving the same instances faster) or reduces the number of instances
which timed out. Actually, reducing the number of time-outs is potentially a much higher
speedup than merely reducing the median, and also of higher practical interest, as it allows
us to decompose more instances in realistic time. It should be noted that the increase of the
median time when we go from 8 CPUs to 12 CPUs does not mean at all that the performance
degrades due to the additional CPUs. The additional time consumption is solely due to the
increased number of solved instances, which are typically hard ones. And the computation time
needed to solve them enters the statistics only if the computation does not time out.

In order to fully compare the strengths and weaknesses of each of the discussed decomposition
methods, we also investigated the number of instances that could only be solved via a specific
approach. This can be seen in Table 3.6. We see that while our approach clearly dominates this
metric, there are still many cases where other methods were more effective.

In Figure 3.5 we see an overview of the distribution of the gℎ𝑤 of all solved instances of our
approach, and as a comparison we see how many instances for each width could be determined
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by NewDetKDecomp.

For the computationally most challenging instances of HyperBench, those of ghw ≥ 3, our result
signifies an increase of over 70 % in solved instances when compared with [24]. In addition,
when considering the CSP instances from real world applications, we managed to solve 763
instances, almost doubling the number from NewDetKDecomp. In total, we now know the
exact ghw of around 70% of all hypergraphs from CSP instances and the exact ghw of around
78% of all hypergraphs of HyperBench.

Another aspect of our solver we wanted to explore was the memory usage, and whether lifting
the restriction to merely 1 GB of RAM makes a difference in the number of GHDs that can be
found. We therefore looked at all test runs of lower width, ≤ 5 where our solver timed out.
There were 91 such instances. This restriction seems justified as the width parameter affects
the complexity of determining the gℎ𝑤 exponentially, thus it is only for lower widths that
one would expect memory to become a limiting factor as opposed to time. We reran these 91
test instances using 24 GB of RAM. It turned out that the increase in available memory made
no difference, however, as all 91 tests still timed out. In other words, the limiting factor in
computing hypergraph decompositions is time, not space.

We stress that, in the first place, our data in Table 3.4 is not about time, but rather about the
number of instances solved within the given time limit of 1 hour. And here we provide an
improvement for these practical CSP instances of near 100% on the current state of the art; no
such improvements have been achieved by other techniques recently. It is also noteworthy, that
the Hybrid algorithm alone solved 2850 total cases, thus beating the total for NewDetKDecomp
in [24], which, as mentioned, combines the results of three different GHD algorithms and also
beating the total for HtdSMT [85].

Comparison with PACE 2019 Challenge. In addition to experiments on HyperBench,
we also compared our implementation with various solvers presented during the PACE 2019
Challenge [20], where one track consisted in solving the exact hypertree width. We took the
100 public and 100 private instances from the challenge (themselves a subset of HyperBench),
and tried to compute the exact gℎ𝑤 of the instances within 1800 seconds, using at most 8 GB of
RAM. Since our test machine is different from the one used during PACE 2019 Challenge, we
took the implementations of the winner and runner up, HtdSMT and TULongo [68] and reran
them again using the same time and memory constraints. The results can be seen in Table 3.5.
BalancedGo managed to compute 86 out of the 100 private instances, improving slightly on
HtdSMT. It is noteworthy that this was accomplished while computing GHDs, instead of the
simpler HDs which were asked for during the challenge.

3.6 Summary

In this chapter, we have presented several generally applicable algorithmic improvements for
hypergraph decomposition algorithms, which together reduce the overall search space needed
for finding GHDs, without affecting the correctness of any decomposition methods which
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integrate them. The rules for simplifying hypergraphs also permit a don’t-care non-determinism
in how they are applied, leading to a unique normal form of the reduced hypergraph.

We then proceeded to present a novel parallel algorithm for computing GHDs, which is based
on the sequential Balanced Separator Approach from Fischl, Gottlob, Longo and Pichler [25].
We also show the practical applicability of our design by providing a publicly available imple-
mentation, called BalancedGo. This implementation was written in the programming language
Go and uses the concept of goroutines to reduce the need for explicit synchronisation as much
as possible. We show its practical applicability via a detailed experimental evaluation using
the benchmark dataset HyperBench and comparing our method against the state of the art
in computing GHDs. We demonstrated that our method BalancedGo provided significant
improvements, determining the exact gℎ𝑤 of 78% of all hypergraphs of HyperBench.
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Chapter 4

Novel Parallel Algorithm for
Hypertree Decomposition

In Chapter 3, we presented a parallel algorithm for computing GHDs. Our next goal is trying
to use the concept of balanced separators for computing HDs. The most obvious reason is
the complexity of the CheckHD problem, which is computable in polynomial time, whereas
solving the analogous CheckGHD is NP-hard, even for 𝑘 ≥ 2 [39]. The second reason is from
an observation from Fischl, Gottlob, Longo and Pichler [25]. For all the hypergraphs where they
could compute both their hypertree width and generalized hypertree width, they found that
they were the same. This suggests that there may be many instances in the real world where
it might be a better idea to just look for HDs. The use of balanced separators for HDs faces a
number of challenges, however, as we have outlined in Section 1.4.

This chapter begins with Section 4.1 which introduces a new form of extended hypergraph –
different from the one in Chapter 3 – , which we will need for technical reasons and will serve
as the underlying object that our algorithm will take as input and work with. For this new
type of hypergraph, we present a number of lemmas and theorems, introducing a new concept
of hypertree decomposition with restrictions to how it can connect, up and down, to other
decompositions. These will prove crucial to then prove the correctness of our algorithm.

We next introduce our actual algorithm itself in Section 4.2, provide the pseudo-code description
of it in Algorithm 4.1 and this is followed by a proof of its correctness in Section 4.3. We follow
this by a detailed example run of our algorithm in Section 4.4.

In order to truly strive for a competitive algorithm, we next introduce a number of optimisations
to the base algorithm given earlier. These improvements to our algorithm can be found in
Section 4.5, where we also state the full optimised definition of log-𝑘-decomp in Algorithm 4.2.

We end this chapter by providing an experimental evaluation in Section 4.6. We compare our
method with the state of the art in computing HDs. As the benchmark we use the HyperBench
dataset, already featured in Chapter 3. For the interested reader, we provide in Section 4.7
additional experiments and further details on our implementation, instead of the more high-level
experiments of Section 4.6.
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This work was created in collaboration with Georg Gottlob, Matthias Lanzinger and Reinhard
Pichler. Our work was published at the Symposion on Principles of Database Systems (PODS)
2022 [37]. The journal ACM Transactions on Database Systems (TODS) also invited us to publish
an updated version of this work as one of only four "best of PODS 2022" papers.

4.1 Connection Subhypergraphs and their Balanced Separation

As in Section 3.1 in the previous Chapter 3, we again introduce another type of extended
hypergraph, and then proceed to define the needed definitions of components, hypertree
decomposition and balanced separation on this new type of extended subhypergraph.

The key idea of our algorithm is to split the task of constructing an HD into subtasks of
constructing parts of the HD, which will be referred to as “HD-fragments” in the sequel. These
HD-fragments can later be stitched together to form an HD of a given hypergraph. This splitting
into HD-fragments is realised by choosing a node 𝑢 of the HD and splitting the HD into one
subtree above node 𝑢 and possibly several subtrees below 𝑢. In order to keep track of how to
combine these subtrees later on, we introduce the notion of special edges. Intuitively, a special
edge is the set 𝜒 (𝑢) of vertices for some node 𝑢 in the HD, and it is used to keep track of the
interface between the HD-fragment “above” node 𝑢 (we will denote this part of the HD as 𝑇 ↑

𝑢 )
and the HD-fragments at subtrees below node 𝑢. Conversely, for each of the subtrees𝑇𝑢𝑖 rooted
at the child nodes 𝑢𝑖 of 𝑢, we have to keep track of the interface to 𝜒 (𝑢) in the form of a set
C𝑜𝑛𝑛 of vertices, which is the intersection 𝜒 (𝑇𝑢𝑖 ) ∩ 𝜒 (𝑢).
At the heart of our decomposition algorithm in Section 4.2 will be a recursive function Decomp,
which takes as input a subset 𝐸′ of the edges 𝐸 (𝐻 ), a set of special edges S𝑝 , and a set of vertices
C𝑜𝑛𝑛. The goal of Decomp is to construct a fragment of an HD, such that every edge 𝑒 ∈ 𝐸′
is covered by some node 𝑢′ in the HD-fragment (i.e., 𝑒 ⊆ 𝜒 (𝑢′)), all special edges are covered
by some leaf node of this HD-fragment (hence, these are the interfaces to the HD-fragments
“below”) and C𝑜𝑛𝑛 must be fully contained in 𝜒 (𝑟 ) of the root 𝑟 of this HD-fragment (hence, this
is the interface to the HD-fragment “above”). Formally, function Decomp deals with extended
subhypergraphs of 𝐻 in the following sense. We shall note that this is a different concept than
the one introduced in Chapter 3.

Definition 4.1 (connection subhypergraph). Let 𝐻 be a hypergraph. An extended subhyper-
graphwith connection interfaces or short connection subhypergraph of𝐻 is a triple ⟨𝐸′, S𝑝,C𝑜𝑛𝑛⟩
with the following properties:

• 𝐸′ is a subset of the edge set 𝐸 (𝐻 ) of 𝐻 ;
• S𝑝 is a set of special edges, i.e., S𝑝 ⊆ 2𝑉 (𝐻 ) ;

• C𝑜𝑛𝑛 is a set of vertices, i.e., C𝑜𝑛𝑛 ⊆ 𝑉 (𝐻 ).

As we said, we shall now proceed to extend the notions defined over extended subhypergraphs
in Section 3.1 to connection subhypergraphs. Note that we will talk about HDs here, instead
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of GHDs. We shall also introduce a different type of normal form, one that will deviate in one
crucial point from the one introduced in [43]. Aside from these differences, the definitions are
kept analogous between the two chapters.

Definition 4.2 (connectedness, components). Let 𝐻 be a hypergraph, let𝑈 ⊆ 𝑉 (𝐻 ) be a set of
vertices, and let 𝐻 ′ = ⟨𝐸′, S𝑝,C𝑜𝑛𝑛⟩ be a connection subhypergraph of 𝐻 .

• We define [𝑈 ]-adjacency as a binary relation on 𝐸′ ∪ S𝑝 such that two (possibly special)
edges 𝑓1, 𝑓2 ∈ 𝐸′ ∪ S𝑝 are [𝑈 ]-adjacent, if (𝑓1 ∩ 𝑓2) \𝑈 ≠ ∅ holds.

• We define [𝑈 ]-connectedness as the transitive closure of the [𝑈 ]-adjacency relation.
• A [𝑈 ]-component of 𝐻 ′ is a maximally [𝑈 ]-connected subset 𝐶 ⊆ 𝐸′ ∪ S𝑝 .

Let 𝑆 be a set of edges and special edges with 𝑈 =
�
𝑆 . Then we will also use the terms [𝑆]-

connectedness and [𝑆]-components as a short-hand for [𝑈 ]-connectedness and [𝑈 ]-components,
respectively. Observe that the set C𝑜𝑛𝑛 plays no role in the above definition of connectedness
and components. This is in contrast to our definition of hypertree decompositions (HDs) of
connection subhypergraphs, which we give next.

Definition 4.3 (hypertree decomposition). Let 𝐻 be a hypergraph and let 𝐻 ′ = ⟨𝐸′, S𝑝,C𝑜𝑛𝑛⟩
be a connection subhypergraph of 𝐻 . A hypertree decomposition (HD) of 𝐻 ′ is a tuple ⟨𝑇, 𝜒, 𝜆⟩,
such that 𝑇 = ⟨𝑁 (𝑇 ), 𝐸 (𝑇 )⟩ is a rooted tree, 𝜒 and 𝜆 are node-labelling functions and the
following conditions hold:

(1) for each 𝑢 ∈ 𝑁 (𝑇 ), either
a) 𝜆(𝑢) ⊆ 𝐸 (𝐻 ) and 𝜒 (𝑢) ⊆ �

𝜆(𝑢) or
b) 𝜆(𝑢) = {𝑠} for some 𝑠 ∈ S𝑝 and 𝜒 (𝑢) = 𝑠;

(2) each 𝑓 ∈ 𝐸′ ∪ S𝑝 is “covered” by some 𝑢 ∈ 𝑁 (𝑇 ), i.e.:
a) if 𝑓 ∈ 𝐸′, then 𝑓 ⊆ 𝜒 (𝑢);
b) if 𝑓 ∈ S𝑝 , then 𝜆(𝑢) = {𝑓 } and, hence, 𝜒 (𝑢) = 𝑓 ;

(3) for each 𝑣 ∈ � �
𝐸′� ∪ � �

S𝑝
�
, the set {𝑢 ∈ 𝑁 (𝑇 ) | 𝑣 ∈ 𝜒 (𝑢)} is connected in 𝑇 ;

(4) for each 𝑢 ∈ 𝑁 (𝑇 ), 𝜒 (𝑇𝑢) ∩
� �

𝜆(𝑢)� ⊆ 𝜒 (𝑢);
(5) if 𝜆(𝑢) = {𝑠} for some 𝑠 ∈ S𝑝 , then 𝑢 is a leaf of 𝑇 ;

(6) the root 𝑟 of 𝑇 satisfies C𝑜𝑛𝑛 ⊆ 𝜒 (𝑟 ).

Clearly, 𝐻 can also be considered as a connection subhypergraph of itself by taking the triple
⟨𝐸 (𝐻 ), ∅, ∅⟩. Then the HDs of the connection subhypergraph ⟨𝐸 (𝐻 ), ∅, ∅⟩ and the HDs of
hypergraph 𝐻 coincide.

We also want to define a notion of normal form over HDs of connection subhypergraphs. In
order to do this, we first need to define the set of (possibly special) edges covered for the first
time by some node or by some subtree of an HD.
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Definition 4.4. Let 𝐻 ′ = ⟨𝐸′, S𝑝,C𝑜𝑛𝑛⟩ be a connection subhypergraph of some hypergraph
𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩ be an HD of 𝐻 ′. For a node 𝑢 ∈ 𝑇 , we write c𝑜𝑣 (𝑢) to denote the set
of edges and special edges covered for the first time at 𝑢, i.e.: c𝑜𝑣 (𝑢) = {𝑓 ∈ 𝐸′ ∪ S𝑝 | 𝑓 ⊆ 𝜒 (𝑢)
and for all ancestor nodes 𝑢′ of 𝑢, 𝑓 ⊈ 𝜒 (𝑢′) holds}. For a subtree 𝑇 ′ of 𝑇 , we define c𝑜𝑣 (𝑇 ′) =�

𝑢∈𝑇 ′ c𝑜𝑣 (𝑢).
Definition 4.5 (normal form of connection hypergraphs). Let 𝐻 ′ = ⟨𝐸′, S𝑝 , C𝑜𝑛𝑛⟩ be a con-
nection subhypergraph of some hypergraph 𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩ be an HD of 𝐻 ′. We say
that D is in normal form, if for every node 𝑝 in 𝑇 and every child node 𝑐 of 𝑝 , the following
properties hold:

1. There is exactly one [𝜒 (𝑝)]-component 𝐶𝑝 of 𝐻 ′ such that 𝐶𝑝 = c𝑜𝑣 (𝑇𝑐);
2. there exists 𝑓 ∈ 𝐶𝑝 with 𝑓 ⊆ 𝜒 (𝑐), where𝐶𝑝 is the [𝜒 (𝑝)]-component satisfying Condition 1;
3. 𝜒 (𝑐) = � �

𝜆(𝑐)� ∩ � �
𝐶𝑝

�
, where again𝐶𝑝 is the [𝜒 (𝑝)]-component satisfying Condition 1.

Condition 3 is the only place where we deviate from the normal form in [43]. The purpose
of Condition 3 in [43] is to make sure that 𝜒 (𝑐) is uniquely determined whenever 𝜆(𝑐), 𝜒 (𝑝),
and the [𝜒 (𝑝)]-component 𝐶𝑝 from Condition 1 are known. However, there also would have
been other choices to achieve this goal. Our Condition 3 chooses 𝜒 (𝑐) minimally. That is, to
ensure the special condition, 𝜒 (𝑐) must contain all vertices from �

𝜆(𝑐) that occur in 𝜒 (𝑇𝑐).
Since all edges in 𝐶𝑝 are covered at some node in 𝑇𝑐 , all vertices from

� �
𝜆(𝑐)� ∩ � �

𝐶𝑝
�
must

occur in 𝜒 (𝑐). On the other hand, there is no need to add further vertices to 𝜒 (𝑐), since vertices
not occurring in

�
c𝑜𝑣 (𝑇𝑐) can never violate the connectedness condition at node 𝑐 as long

as we stick to our strategy of choosing 𝜒 (𝑢) minimally also for all nodes 𝑢 ∈ 𝑇𝑐 . In contrast,
Condition 3 in [43] chooses 𝜒 (𝑐) maximally. That is, also all vertices in

� �
𝜆(𝑐)� that occur

in 𝜒 (𝑝) are added to 𝜒 (𝑐). This deviation from the normal form in [43] is crucial since, in our
construction of an HD, we will be able to derive the possible sets 𝐶𝑝 as soon as we have 𝜆(𝑝)
and 𝜆(𝑐) but we will “know” 𝜒 (𝑝) only much later in the algorithm.
As in Section 3.1, we now carry over two key results from [43].

Theorem 4.6 (cf. [43], Theorem 5.4). Let 𝐻 ′ be a connection subhypergraph of some hypergraph
𝐻 and let D be an HD of 𝐻 ′ of width 𝑘 . Then there exists an HD D′ of 𝐻 ′ in normal form, such
that D′ also has width 𝑘 .

Lemma 4.7 (cf. [43], Lemma 5.8). Let 𝐻 ′ be a connection subhypergraph of some hypergraph
𝐻 and let D = ⟨𝑇, 𝜒 , 𝜆⟩ be an HD in normal form of 𝐻 ′. Moreover, let 𝑝, 𝑐 be nodes in 𝑇 such
that 𝑝 is the parent of 𝑐 and let 𝐶𝑐 ⊆ 𝐶𝑝 for some [𝜒 (𝑝)]-component 𝐶𝑝 of 𝐻 ′. Then the following
equivalence holds: 𝐶𝑐 is a [𝜒 (𝑐)]-component of 𝐻 ′ if and only if 𝐶𝑐 is a [𝜆(𝑐)]-component of 𝐻 ′.

Note that our deviation from [43] in the definition of the 𝜒-label of nodes in a normal-form HD is
inessential, since the “downward” components in an HD are not affected by adding or removing
vertices from the parent node to the 𝜒-label of the child node. However, for our purposes, we
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need a slightly stronger version of the above lemma: recall that the HD construction in [43]
proceeds in a strict top-down fashion. Hence, when dealing with 𝜆(𝑐), the bag 𝜒 (𝑝) is already
known. This is due to the fact that, initially at the root 𝑟 , we have 𝜒 (𝑟 ) = �

𝜆(𝑟 ) by the special
condition. And then, whenever 𝜆(𝑐) is determined and 𝜒 (𝑝) plus a [𝜒 (𝑝)]-component are
already known, also 𝜒 (𝑐) can be computed. However, in our HD algorithm, which “jumps into
the middle” of the HD to be constructed, we only have 𝜆(𝑝) (but not 𝜒 (𝑝)) available when
determining 𝜆(𝑐). Hence, we need to slightly extend the above lemma to the following corollary,
which follows from Lemma 4.7 by an easy induction argument over the distance from the root
of the HD:

Corollary 4.8. Let𝐻 ′ be a connection subhypergraph of some hypergraph𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩
be an HD in normal form of 𝐻 ′. Moreover, let 𝑝, 𝑐 be nodes in 𝑇 such that 𝑝 is the parent of 𝑐 and
let 𝐶𝑐 ⊆ 𝐶𝑝 for some [𝜆(𝑝)]-component 𝐶𝑝 of 𝐻 ′. Then the following equivalence hods: 𝐶𝑐 is a
[𝜒 (𝑐)]-component of 𝐻 ′ if and only if 𝐶𝑐 is a [𝜆(𝑐)]-component of 𝐻 ′.

As the algorithm we will present relies on them, we also extend the definition of balanced
separators to connection subhypergraphs.

Definition 4.9 (balanced separators). Let 𝐻 ′ be a connection subhypergraph of some hyper-
graph 𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩ be an HD of 𝐻 ′. A node 𝑢 of 𝑇 is a balanced separator , if the
following holds:

• for every subtree 𝑇𝑢𝑖 rooted at a child node 𝑢𝑖 of 𝑢, we have |c𝑜𝑣 (𝑇𝑢𝑖 ) | ≤ |𝐸′ |+|S𝑝 |
2 and

• |c𝑜𝑣 (𝑇 ↑
𝑢 ) | < |𝐸′ |+|S𝑝 |

2 .

Lemma 4.10. Let 𝐻 ′ be a connection subhypergraph of some hypergraph 𝐻 and let D = ⟨𝑇, 𝜒, 𝜆⟩
be an HD of 𝐻 ′. Then there exists a balanced separator in D.

We will skip a separate proof of Lemma 4.10, as the exact same arguments in the proof of
Lemma 3.9 carry over to connection subhypergraphs and thus serve as a proof of Lemma 4.10
as well.

4.2 The log-𝒌-decomp Algorithm

We now describe the main ideas of algorithm log-𝑘-decomp. A pseudo-code description of
log-𝑘-decomp is shown in Algorithm 4.1.

Algorithm log-𝑘-decomp aims at constructing an HD in normal form according to Definition 4.5
of width ≤ 𝑘 for a given hypergraph 𝐻 and integer 𝑘 ≥ 1. The task of constructing an HD is
split into subtasks that can then be processed in parallel. At the heart of log-𝑘-decomp is the
recursive function Decomp: it takes as input a connection subhypergraph 𝐻 ′ of 𝐻 in the form of
parameter 𝐻 ′ of 𝐻 (with two fields 𝐻 ′.𝐸 and 𝐻 ′.S𝑝 for the sets of edges and special edges of
𝐻 ′, respectively) plus parameter C𝑜𝑛𝑛 for the interface of the HD-fragment to be constructed
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Algorithm 4.1: log-𝑘-decomp
Type: Comp=(𝐸: Edge set, S𝑝: Special Edge set)
Input: 𝐻 : Hypergraph
Parameter :𝑘 : width parameter
Output: true if hw of 𝐻 ≤ 𝑘 , else false

1 begin
2 𝐻𝑐𝑜𝑚𝑝 � Comp(𝐸: 𝐻 , S𝑝: ∅)
3 foreach 𝜆𝑟 ⊆ 𝐻 s.t. 1 ≤ |𝜆𝑟 | ≤ 𝑘 do ⊲ RootLoop
4 𝑐𝑜𝑚𝑝𝑠𝑟 � [𝜆𝑟 ]-components of 𝐻𝑐𝑜𝑚𝑝

5 foreach 𝑦 ∈ 𝑐𝑜𝑚𝑝𝑠𝑟 do
6 𝐶𝑜𝑛𝑛𝑦 � 𝑉 (𝑦) ∩�

𝜆𝑟
7 if not(Decomp(𝑦, 𝐶𝑜𝑛𝑛𝑦)) then
8 continue RootLoop ⊲ reject this root

9 return true
10 return false ⊲ exhausted search space
11 function Decomp(𝐻 ′: Comp, C𝑜𝑛𝑛: Vertex set)
12 if |𝐻 ′.𝐸 | ≤ 𝑘 and |𝐻 ′.S𝑝 | = 0 then ⊲ Base Cases
13 return true
14 else if |𝐻 ′.𝐸 | = 0 and |𝐻 ′.S𝑝 | = 1 then
15 return true
16 foreach 𝜆𝑝 ⊆ 𝐻 s.t. 1 ≤ |𝜆𝑝 | ≤ 𝑘 do ⊲ ParentLoop
17 𝑐𝑜𝑚𝑝𝑠𝑝 � [𝜆𝑝 ]-components of 𝐻 ′

18 if ∃𝑖 s.t. |𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] | > |𝐻 ′|
2 then

19 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 � 𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] ⊲ found child comp.
20 else
21 continue ParentLoop
22 if 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩𝐶𝑜𝑛𝑛 ⊈

�
𝜆𝑝 then

23 continue ParentLoop ⊲ connect. check
24 foreach 𝜆𝑐 ⊆ 𝐻 s.t. 1 ≤ |𝜆𝑐 | ≤ 𝑘 do ⊲ ChildLoop
25 𝜒𝑐 �

�
𝜆𝑐 ∩𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛)

26 if 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩�
𝜆𝑝 ⊈ 𝜒𝑐 then

27 continue ChildLoop ⊲ connect. check
28 𝑐𝑜𝑚𝑝𝑠𝑐 � [𝜒𝑐 ]-components of 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛

29 if ∃𝑖 s.t. |𝑐𝑜𝑚𝑝𝑠𝑐 [𝑖] | > |𝐻 ′|
2 then

30 continue ChildLoop
31 foreach 𝑥 ∈ 𝑐𝑜𝑚𝑝𝑠𝑐 do
32 C𝑜𝑛𝑛𝑥 � 𝑉 (𝑥) ∩ 𝜒𝑐
33 if not(Decomp(𝑥 , C𝑜𝑛𝑛𝑥)) then
34 continue ChildLoop ⊲ reject child

35 𝑐𝑜𝑚𝑝u𝑝 � 𝐻 ′\ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 ⊲ pointwise diff.
36 𝑐𝑜𝑚𝑝u𝑝 .S𝑝 = 𝑐𝑜𝑚𝑝u𝑝 .S𝑝 ∪ {𝜒𝑐 }
37 if not(Decomp(𝑐𝑜𝑚𝑝u𝑝 , C𝑜𝑛𝑛)) then
38 continue ChildLoop ⊲ reject child
39 return true ⊲ ℎ𝑤 of 𝐻 ′ ≤ 𝑘

40 return false ⊲ exhausted search space
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with the parts “above” in the final HD. It returns “true” if an HD-fragment of width ≤ 𝑘 of
𝐻 ′ exists and “false” otherwise. The top-level calls to function Decomp (line 7) are from the
main program of log-𝑘-decomp which, in a loop (lines 3 – 9), searches for the 𝜆-label of the
root node 𝑟 of the desired HD of 𝐻 . By the special condition, we have 𝜒 (𝑟 ) = �

𝜆(𝑟 ). Hence,
the [𝜆(𝑟 )]-components (computed on line 4) coincide with the [𝜒 (𝑟 )]-components. Function
Decomp is called (on line 7) for each of the connection subhypergraphs of 𝐻 corresponding to
the [𝜆(𝑟 )]-components.
The base case of function Decomp is reached (lines 12 – 15) when the existence of such an
HD-fragment is trivial, i.e.: either there are at most 𝑘 edges and no special edges left; or there is
no edge and only one special edge left. In these cases, the desired HD-fragment simply consists
of a single node whose 𝜆-label either consists of the ≤ 𝑘 edges or of the single special edge,
respectively.

Function Decomp is controlled by two nested loops (lines 16 – 39 for the outer loop and lines
24 – 39 for the inner loop), which search for the 𝜆-labels of two adjacent nodes 𝑝 and 𝑐 of the
desired HD-fragment, such that 𝑝 is the parent and 𝑐 is the child. The idea of determining two
nodes 𝑝 and 𝑐 is that, in an HD, we can determine 𝜒 (𝑐) from 𝜆(𝑐) if we know 𝜆(𝑝) and the
[𝜆(𝑝)]-component covered by the subtree 𝑇𝑐 rooted at 𝑐 , see Corollary 4.8 and Definition 4.5.
We want node 𝑐 to be a balanced separator of the connection subhypergraph𝐻 ′. By Lemma 4.10,
a balanced separator is guaranteed to exist. To find a balanced separator 𝑐 , we have to make
sure that node 𝑐 satisfies the two conditions of Definition 4.9, i.e.: (1) all of the subtrees rooted
at a child of 𝑐 cover at most half of the edges and special edges in 𝐻 ′ and (2) the subtree 𝑇 ↑

𝑐

“above” 𝑐 covers strictly fewer than half of the edges and special edges in 𝐻 ′. For the second
condition, observe that 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 (chosen on line 19) is meant to be covered precisely by 𝑇𝑐 .
Note that, w.l.o.g., we are searching for an HD in normal form. This is why we may assume
that𝑇𝑐 covers exactly one [𝜆(𝑝)]-component, namely 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 . Further observe that the edges
and special edges covered by 𝑇 ↑

𝑐 and the set 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 partition the edges and special edges
in 𝐻 ′. Hence, checking if 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 contains more than half of 𝐻 ′ (on line 18) is equivalent to
checking condition (2), i.e., 𝑇 ↑

𝑐 covers strictly fewer than half of the edges and special edges
in 𝐻 ′. In order to check that 𝑐 also satisfies the first condition of Definition 4.9, we have to
compute all [𝜆(𝑐)]-components inside 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 (line 28) and check that the size of each of
them is at most half of the size of 𝐻 ′ (line 29). Again, since we are only interested in HDs in
normal form, we may assume here that each subtree rooted at a child of 𝑐 covers exactly one of
these [𝜆(𝑐)]-components.
If such a balanced separator 𝜆(𝑐) together with the 𝜆-label 𝜆(𝑝) at its parent node has been found,
several checks have to be performed to make sure that the HD-fragment under construction
satisfies the connectedness condition. For instance, all vertices in the intersection of 𝐶𝑜𝑛𝑛 (i.e.,
the interface of the HD-fragment currently being constructed with the remaining HD “above”
this HD-fragment) with component 𝐶𝑝 (i.e., a component “below” node 𝑝) also have to occur in�

𝜆(𝑝) (line 22).
Suppose that all these checks succeed. From 𝜆(𝑝) and 𝜆(𝑐), we can compute 𝜒 (𝑐) according
to Condition 3 of the normal form introduced in Definition 4.5 (line 25). In the HD D′ to be
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constructed for the connection subhypergraph 𝐻 ′, the edges and special edges of 𝐻 ′ can be
split into 3 disjoint categories:

1. the edges and special edges covered by 𝜒 (𝑐),
2. the edges and special edges covered by a subtree rooted at some child node of 𝑐 , and

3. the edges and special edges covered in the HD “above” 𝑐 .

The edges and special edges covered by 𝜒 (𝑐) are done and need no further consideration. The
edges and special edges in the second and third category are taken care of by recursive calls
to the function Decomp (lines 33 and 37). To this end, we compute all [𝜒 (𝑐)]-components
𝐶1, . . . ,𝐶𝑚 (line 28). Now suppose that 𝐶1, . . . ,𝐶ℓ with 1 ≤ ℓ ≤ 𝑚 are the [𝜒 (𝑐)]-components
inside the [𝜆(𝑝)]component 𝐶𝑝 . Then the function Decomp is called recursively for each of
the [𝜒 (𝑐)]-components 𝐶1, . . .𝐶ℓ (line 33). In the call for component 𝐶𝑖 , the interface 𝐶𝑜𝑛𝑛𝑖 is
obtained simply as the intersection of the vertices in𝐶𝑖 and in 𝜒 (𝑐) (line 32). All of the remaining
[𝜒 (𝑐)]-components are taken care of by the HD-fragment “above” 𝑐 , which we try to construct
in another recursive call of function Decomp (line 37). In this recursive call, 𝜒 (𝑐) is added as yet
another special edge – in addition to the edges and special edges in the [𝜒 (𝑐)]-components
outside 𝐶𝑝 . The additional special edge in the recursive call for the HD-part “above” node 𝑐 and
the interfaces 𝐶𝑜𝑛𝑛 defined for each of the components as the intersection against 𝜒 (𝑐), in the
recursive calls for the HD-parts “below” node 𝑐 ensure that we can (provided that all recursive
calls of function Decomp are successful) stitch together the HD-fragments of these recursive
calls to an HD-fragment of the connection subhypergraph 𝐻 ′ of 𝐻 .

To sum up, if all recursive calls return “true” then the overall result of this call to function
Decomp is successful and returns “true” (line 39) . If at least one of the recursive calls returns
“false”, then we have to search for a different label 𝜆(𝑐) (in the next iteration of the “ChildLoop“).
If eventually all candidates for 𝜆(𝑐) have been tried out and none of them was successful, then
we have to search for a different label 𝜆(𝑝) of the parent node 𝑝 (in the next iteration of the
“ParentLoop“) and restart the search for 𝜆(𝑐) from scratch. Only when also all candidates for
𝜆(𝑝) have been tried out and none of them was successful, then function Decomp returns the
overall result “false” (line 40).

Below, we state the crucial property of log-𝑘-decomp, which makes this approach particularly
well-suited for a parallel implementation.

Theorem 4.11. Algorithm log-𝑘-decomp correctly checks for given hypergraph 𝐻 and integer
𝑘 ≥ 1, if h𝑤 (𝐻 ) ≤ 𝑘 holds. The algorithm is realised by a main program and the recursive
function Decomp, whose recursion depth is bounded logarithmically in the number of edges of 𝐻 ,
i.e., 𝑂 (log( |𝐻 |).

Proof. The size of the connection subhypergraphs in the calls of function Decomp in the main
program can only be bounded by the size of 𝐻 itself. However, in every subsequent execution of
Decomp for some connection subhypergraph (𝐻 ′.𝐸, 𝐻 ′.S𝑝,C𝑜𝑛𝑛), we always choose node 𝑐 as a
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balanced separator. By Lemma 4.10, such a balanced separator always exists. The connection
subhypergraphs in the recursive calls are therefore guaranteed to have size at most ⌈ |𝐻 ′ |

2 ⌉. Note
that the rounding up is necessary because the new special edge 𝜒 (𝑐) is added in the recursive
call for the HD-fragment above 𝑐 . Without this special edge, this component is guaranteed to
be strictly smaller than |𝐻 ′ |

2 . At any rate, also with the upper bound ⌈ |𝐻 ′ |
2 ⌉ on the size of the

connection subhypergraphs of 𝐻 in the recursive calls and with the additional calls of Decomp
from the main program, we thus get an upper bound 𝑂 (log( |𝐻 |) on the recursion depth. □

Note that we have formulated algorithm log-𝑘-decomp as a decision procedure that decides if
h𝑤 (𝐻 ) ≤ 𝑘 holds for given 𝐻 and 𝑘 . In case of a successful computation (i.e. return-value true)
it is easy to assemble a concrete HD of width ≤ 𝑘 of 𝐻 from the HD-fragments corresponding
to the various calls of procedure Decomp.

We emphasise two further important properties of algorithm log-𝑘-decomp: First, it should be
noted that the logarithmic bound on the recursion depth does not restrict the form of the HD
in any way. In particular, it does not imply a logarithmic bound on the depth of the HD. The
bound on the recursion depth is achieved by our novel approach of constructing the HD by
recursively “jumping” to a balanced separator of the HD-fragment to be constructed rather than
constructing the HD in a strict top-down manner as proposed in previous approaches [43, 50].

Second, we stress that it is crucial in our approach that we search for appropriate 𝜆-labels for
a pair (𝑝, 𝑐) of nodes, where 𝑝 is the parent of 𝑐 . The rationale is that we need the 𝜆-label of
the parent in order to determine 𝜒 (𝑐) from 𝜆(𝑐). And only when we know 𝜒 (𝑐), we can be
sure, which edges are indeed covered by 𝜒 (𝑐). This knowledge is crucial to guarantee that
all of the recursive calls of function Decomp have to deal with anconnection subhypergraph
whose size is halved, which in turn guarantees the logarithmic upper bound on the recursion
depth. This strategy is significantly different from all previous approaches of decomposition
algorithms. In [25], a parallel algorithm for generalised hypertree decompositions is presented.
There, the problem of determining the 𝜒-label of the balanced separator is solved by adding a
big number of subedges to the hypergraph so that one may assume that 𝜒 (𝑢) = �

𝜆(𝑢) holds
for every node 𝑢. Clearly, this addition of subedges, in general, leads to a substantial increase
of the hypergraph. In [6], a preliminary attempt to parallelise the computation of HDs was
made without handling pairs of nodes. However, in the absence of 𝜆(𝑝), we cannot determine
𝜒 (𝑐) from 𝜆(𝑐). Consequently, we do not know which edges covered by� 𝜆(𝑐) are ultimately
covered by 𝜒 (𝑐). Hence, all the edges covered by� 𝜆(𝑐) would have to be added to the recursive
call of Decomp for the HD-part “above” 𝑐 , thus destroying the balancedness and the logarithmic
upper bound on the recursion depth.

By Theorem 4.11, Algorithm log-𝑘-decomp guarantees a logarithmic bound on the recursion
depth and thus provides a good basis for a parallel implementation. Nevertheless it still leaves
room for several improvements. For instance, we can define also negative base cases to detect the
overall answer “false” faster, we can restrict the edges that may possibly be used in the 𝜆-labels
of a connection subhypergraph (and provide them as an additional parameter of the function
Decomp), etc. These ideas and several further improvements – together with the pseudo-code of
the resulting improved algorithm – are presented in Section 4.5.
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4.3 Correctness Proof of log-𝒌-decomp

We prove the soundness and completeness of the algorithm log-𝑘-decomp given in Algo-
rithm 4.1 separately. The polynomial-time upper bound on the construction of an HD in case of
a successful run of the algorithm (i.e., if it returns “true”) will be part of the soundness proof.

It is convenient to first prove the following claim:

Claim A. In every call of function Decomp in Algorithm 4.1 with parameters (𝐻 ′,C𝑜𝑛𝑛) it is
guaranteed that C𝑜𝑛𝑛 ⊆ 𝑉 (𝐻 ′) holds with 𝑉 (𝐻 ′) = � �

𝐻 ′.𝐸) ∪ � �
𝐻 ′.S𝑝).

Proof of Claim A. The proof is by induction on the call depth of the recursive function Decomp.

induction begin. The top-level calls of function Decomp on line 7 are with parameters (𝑦,C𝑜𝑛𝑛𝑦),
where C𝑜𝑛𝑛𝑦 is defined on line 6 as C𝑜𝑛𝑛𝑦 = 𝑉 (𝑦) ∩ �

𝜆(𝑟 ). Hence, C𝑜𝑛𝑛𝑦 ⊆ 𝑉 (𝑦) clearly
holds.

induction step. Suppose that Claim A holds for every call of function Decomp down to some call
level 𝑛 and suppose that function Decomp is called recursively during execution of Decomp at
call level 𝑛. Suppose that this execution of Decomp is with parameters (𝐻 ′,C𝑜𝑛𝑛). The only
places where function Decomp is called recursively are lines 33 and 37. More specifically, Decomp
is called with parameters (𝑥,C𝑜𝑛𝑛𝑥 ) on line 33 and with parameters (𝑐𝑜𝑚𝑝𝑢𝑝 ,C𝑜𝑛𝑛) on line
37. We have to show that both C𝑜𝑛𝑛𝑥 ⊆ 𝑉 (𝑥) (on line 33) and C𝑜𝑛𝑛 ⊆ 𝑉 (𝑐𝑜𝑚𝑝𝑢𝑝) (on line
37) hold. On line 33, the condition is trivially fulfilled, since C𝑜𝑛𝑛𝑥 is defined on line 32 as
C𝑜𝑛𝑛𝑥 = 𝑉 (𝑥) ∩ 𝜒 (𝑐).
It remains to consider the call of function Decomp on line 37. Suppose that 𝑐𝑜𝑚𝑝𝑠𝑐 on line 28 is
of the form 𝑐𝑜𝑚𝑝𝑠𝑐 = {𝑥1, . . . , 𝑥ℓ }. By the definition of components in Definition 4.2, 𝐻 ′ (that is,
𝐻 ′.𝐸 ∪ 𝐻 ′.S𝑝) can be partitioned into the following disjoint subsets:

• 𝑥1.𝐸 ∪ 𝑥1.S𝑝, . . . , 𝑥ℓ .𝐸 ∪ 𝑥ℓ .S𝑝

• 𝑦 = {𝑓 ∈ 𝐻 ′.𝐸 ∪ 𝐻 ′.S𝑝 | 𝑓 ⊆ 𝜒 (𝑐)}.
• 𝑧 = (𝐻 ′.𝐸 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .𝐸) ∪ (𝐻 ′.S𝑝 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .S𝑝)

We thus have 𝑉 (𝐻 ′) = �ℓ
𝑖=1𝑉 (𝑥𝑖) ∪𝑉 (𝑦) ∪𝑉 (𝑧) with 𝑉 (𝑦) ⊆ 𝜒 (𝑐). By construction (line 28),

all components 𝑥𝑖 are contained in 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 . Hence, we actually have𝑉 (𝐻 ′) = 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∪
𝜒 (𝑐) ∪𝑉 (𝑧). The recursive call of function Decomp on line 37 is with the edges and special edges
in 𝑧 plus 𝜒 (𝑐) as an additional special edge. Hence, we have 𝑉 (𝑐𝑜𝑚𝑝𝑢𝑝) = 𝑉 (𝑧) ∪ 𝜒 (𝑐) when
Decomp is called on line 37 with parameters (𝑐𝑜𝑚𝑝𝑢𝑝 ,C𝑜𝑛𝑛). It is therefore sufficient to show
that C𝑜𝑛𝑛 ⊆ 𝑉 (𝑧) ∪ 𝜒 (𝑐) holds.
By the induction hypothesis, we may assume that C𝑜𝑛𝑛 ⊆ 𝑉 (𝐻 ′) holds. The check on line 22
ensures thatC𝑜𝑛𝑛 ⊆ �

𝜆(𝑝) holds for some edge set 𝜆(𝑝). Moreover, the check on line 26 ensures
that

� �
𝜆(𝑝)) ∩ 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ⊆ 𝜒 (𝑐). In total, we thus have C𝑜𝑛𝑛 ∩ 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ⊆ 𝜒 (𝑐).

Together with𝑉 (𝐻 ′) = 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∪ 𝜒 (𝑐) ∪𝑉 (𝑧) and C𝑜𝑛𝑛 ⊆ 𝑉 (𝐻 ′), we may thus conclude
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C𝑜𝑛𝑛 ⊆ 𝑉 (𝑧) ∪ 𝜒 (𝑐) and, therefore, C𝑜𝑛𝑛 ⊆ 𝑉 (𝑐𝑜𝑚𝑝𝑢𝑝) (on line 37). Hence, also the call of
function Decomp on line 37 satisfies Claim A. □

Soundness Proof. Suppose that algorithm log-𝑘-decomp returns “true”. That is, for some value
of 𝜆(𝑟 ), each call of function Decomp on line 7 returns “true”. We have to show that there
exists an HD of width ≤ 𝑘 of 𝐻 . To construct such an HD, we take 𝜆(𝑟 ) as the 𝜆-label of
the root 𝑟 of this HD. By the special condition of HDs, we must take 𝜒 (𝑟 ) = �

𝜆(𝑟 ). Hence,
the [𝜒 (𝑟 )]-components and [𝜆(𝑟 )]-components of 𝐻 coincide and 𝑐𝑜𝑚𝑝𝑠𝑟 computed on line 4
contains all [𝜒 (𝑟 )]-components of 𝐻 .
Now suppose that function Decomp is sound (we will prove the correctness of this assumption
below), i.e., for an arbitrary connection subhypergraph (𝐸′, S𝑝,C𝑜𝑛𝑛) of 𝐻 , if function Decomp
returns “true” on input ((𝐸′, S𝑝),C𝑜𝑛𝑛), then there exists an HD of width ≤ 𝑘 of (𝐸′, S𝑝,C𝑜𝑛𝑛).
Hence, if the calls of function Decomp on line 7 all yield “true”, then, by assuming the soundness
of Decomp, we may conclude that an HD of width ≤ 𝑘 exists for each connection subhypergraph
of 𝐻 of the form (𝑦.𝐸,𝑦.S𝑝,C𝑜𝑛𝑛𝑦). Let each of these HDs be denoted by D[𝑦] with tree
structure 𝑇 [𝑦] and let 𝑟 [𝑦] denote the root of 𝑇 [𝑦]. Then we can construct an HD of 𝐻 by
taking 𝑟 with 𝜆(𝑟 ) from line 3 and 𝜒 (𝑟 ) = �

𝜆(𝑟 ) as root node and appending the HD-fragments
D[𝑦] to 𝑟 , such that the root nodes 𝑟 [𝑦] of the trees 𝑇 [𝑦] become child nodes of 𝑟 . It is easy
to verify that the resulting decomposition is an HD of 𝐻 , and this HD can be constructed in
polynomial time from the HD-fragments D[𝑦]. It remains to show that function Decomp is
sound.

Soundness of function Decomp. For an arbitrary connection subhypergraph (𝐸′, S𝑝,C𝑜𝑛𝑛) of 𝐻 ,
let function Decomp return “true” on input ((𝐸′, S𝑝),C𝑜𝑛𝑛); we have to show that then there
exists an HD of width ≤ 𝑘 of (𝐸′, S𝑝,C𝑜𝑛𝑛). Moreover, we have to show that by materialising
the decompositions implicitly constructed in the recursive calls of function Decomp, an HD of
width ≤ 𝑘 of (𝐸′, S𝑝,C𝑜𝑛𝑛) can be constructed in polynomial time whenever Decomp returns
“true”. The proof is by induction on |𝐸′ | + |S𝑝 |.
induction begin. Suppose that |𝐸′ | + |S𝑝 | = 1 and that function Decomp returns “true”. Hence,
we either have |𝐸′ | = 1 and |S𝑝 | = 0 or we have |𝐸′ | = 0 and |S𝑝 | = 1. In either case, an HD of
this connection subhypergraph can be obtained with a single node 𝑢 by setting 𝜆(𝑢) = {𝑓 } and
𝜒 (𝑢) = 𝑓 , where 𝑓 is the only (special) edge in 𝐸′ ∪ S𝑝 . This decomposition clearly satisfies
all conditions of an HD according to Definition 4.3, the only non-trivial part being Condition
(6): we have to verify C𝑜𝑛𝑛 ⊆ 𝜒 (𝑢). By Claim A above, we know that in every call of function
Decomp, C𝑜𝑛𝑛 is a subset of the vertices in 𝐸′ ∪ S𝑝 . Now in case |𝐸′ | + |S𝑝 | = 1 holds, we have
𝐸′ ∪ S𝑝 = {𝑓 } for a single (special) edge 𝑓 and, therefore, 𝜒 (𝑢) = 𝑓 =

� �
𝐸′� ∪ � �

S𝑝
�
. Hence,

we indeed have C𝑜𝑛𝑛 ⊆ 𝜒 (𝑢).

induction step. Now suppose that |𝐸′ | + |S𝑝 | > 1 and that function Decomp returns “true”. This
means that one of the return-statements on lines 13, 15, or 39 is executed. Actually, line 15
can be excluded for |𝐸′ | + |S𝑝 | > 1. Now consider the remaining two lines 13 and 39. If the
return-statement on line 13 is executed, then we have |𝐸′ | ≤ 𝑘 and |S𝑝 | = 0. In this case,
analogously to the induction begin, the desired HD consists of a single node 𝑢 with 𝜆(𝑢) = 𝐸′
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and 𝜒 (𝑢) = �
𝐸′. Again, all conditions of an HD according to Definition 4.3 are easy to verify;

in particular, the proof argument for Condition (6) is the same as above.

It remains to consider the case that “true” is returned on line 39. This means that, for a particular
value of 𝜆(𝑝) (chosen on line 16) and of 𝜆(𝑐) (chosen on line 24), all recursive calls of function
Decomp (on lines 33 and 37) return “true”. By the induction hypothesis, we may assume that for
each of the connection subhypergraphs processed by these recursive calls of Decomp, an HD of
width ≤ 𝑘 exists. Note that we are making use of Claim A here in that we may assume that all
recursive calls of Decomp are with properly defined connection subhypergraphs (in particular,
the vertex set supplied as second parameter is covered by the edges and special edges in the
first parameter of each such call). Now look at these recursive calls: we are studying a call of
function Decomp with parameters 𝐻 ′ and C𝑜𝑛𝑛, where 𝐻 ′ consists of a set 𝐻 ′.𝐸 of edges and a
set𝐻 ′.S𝑝 of special edges. That is, function Decomp is processing the connection subhypergraph
(𝐻 ′.𝐸, 𝐻 ′.S𝑝,C𝑜𝑛𝑛). The current call of function Decomp apparently has chosen labels 𝜆(𝑝)
and 𝜆(𝑐) for nodes 𝑝 and 𝑐 , such that all checks on lines 18, 22, 26, and 29 are successful in
the sense that program execution continues with these values of 𝜆(𝑝) and 𝜆(𝑐). In particular,
there exists a [𝜆(𝑝)]-component 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 of (𝐻 ′.𝐸, 𝐻 ′.S𝑝,C𝑜𝑛𝑛), satisfying the conditions
𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩ C𝑜𝑛𝑛 ⊆ �

𝜆(𝑝) (line 22) and 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩�
𝜆(𝑝) ⊆ 𝜒 (𝑐) (line 26).

Let {𝑥1, . . . , 𝑥ℓ } denote the set of [𝜒 (𝑐)]-components of 𝐻 ′ inside 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 . Then 𝐻 ′.𝐸 ∪𝐻 ′.S𝑝
(i.e., the set of edges and special edges in 𝐻 ′) can be partitioned into the following disjoint
subsets:

• 𝑥1.𝐸 ∪ 𝑥1.S𝑝, . . . , 𝑥ℓ .𝐸 ∪ 𝑥ℓ .S𝑝

• (𝐻 ′.𝐸 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .𝐸) ∪ (𝐻 ′.S𝑝 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .S𝑝)
• {𝑓 ∈ 𝐻 ′.𝐸 ∪ 𝐻 ′.S𝑝 | 𝑓 ⊆ 𝜒 (𝑐)}.

From the first two kinds of sets of edges and special edges, the following connection subhyper-
graphs are constructed, for which function Decomp is then called recursively on lines 33 and
37:

• for each𝑥𝑖 consisting of a set of edges𝑥𝑖 .𝐸 and special edges𝑥𝑖 .S𝑝 , define𝐻𝑖 = (𝑥𝑖 .𝐸, 𝑥𝑖 .S𝑝,C𝑜𝑛𝑛𝑖)
with C𝑜𝑛𝑛𝑖 = 𝑉 (𝑥𝑖) ∩ 𝜒 (𝑐);

• for (𝐻 ′.𝐸 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .𝐸) ∪ (𝐻 ′.S𝑝 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .S𝑝) define 𝐻 ↑ = (𝐸↑, S𝑝↑,C𝑜𝑛𝑛↑) with
𝐸↑ = 𝐻 ′.𝐸 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .𝐸) and S𝑝↑ = (𝐻 ′.S𝑝 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .S𝑝) ∪ {𝜒 (𝑐)} and C𝑜𝑛𝑛↑ = C𝑜𝑛𝑛.

By assumption, the recursive calls of Decomp for each of these connection subhypergraphs return
the value “true”. Thus, by the induction hypothesis, for each of these connection subhypergraphs,
there exists an HD of width ≤ 𝑘 . From these HDs, we construct an HD of (𝐻 ′.𝐸, 𝐻 ′.S𝑝,C𝑜𝑛𝑛)
as follows:

• First take the HD of 𝐻 ↑. We shall refer to this HD as D↑. Let 𝑟 denote the root node of
D↑. By C𝑜𝑛𝑛↑ = C𝑜𝑛𝑛, we have C𝑜𝑛𝑛 ⊆ 𝜒 (𝑟 ).
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• Recall that 𝜒 (𝑐) was added as a special edge to the connection subhypergraph 𝐻 ↑. Hence,
by Definition 4.3, the HDD↑ has a leaf node 𝑢 with 𝜆(𝑢) = {𝜒 (𝑐)} and 𝜒 (𝑢) = 𝜒 (𝑐). Now
we replace node 𝑢 inD↑ by node 𝑐 with 𝜆(𝑐) and 𝜒 (𝑐) according to the current execution
of function Decomp. Moreover, for every 𝑓 ∈ 𝐻 ′.S𝑝 with 𝑓 ⊆ 𝜒 (𝑐), we append a fresh
child node 𝑐 𝑓 to 𝑐 with 𝜆(𝑐 𝑓 ) = {𝑓 } and 𝜒 (𝑐 𝑓 ) = 𝑓 . It is easy to verify that the resulting
decomposition (let us call it D′) is an HD of the connection subhypergraph that contains
all edges and special edges of 𝐻 ′ except for the ones in any of the 𝑥𝑖 ’s. In particular, node
𝑟 with C𝑜𝑛𝑛 ⊆ 𝜒 (𝑟 ) is still the root of HD D′.

• Now we take the HDs D𝑖 of the connection subhypergraphs (𝑥𝑖 .𝐸, 𝑥𝑖 .S𝑝,C𝑜𝑛𝑛𝑖) and
append them as subtrees below 𝑐 in D′, i.e.: the root nodes of the HDs D𝑖 become child
nodes of 𝑐 . Let us refer to the resulting decomposition as D. It remains to show that D
indeed is an HD of width ≤ 𝑘 of the connection subhypergraph (𝐻 ′.𝐸, 𝐻 ′.S𝑝,C𝑜𝑛𝑛) of 𝐻 .
The width is clear, since all HD-fragments of D and also 𝜆(𝑐) have width ≤ 𝑘 . It is also
easy to verify that every edge in 𝐻 ′.𝐸 is covered by some node in D and every special
edge in 𝐻 ′.S𝑝 is covered by some leaf node in D. Moreover, also the connectedness
condition holds inside each HD-fragment (by the induction hypothesis) and between the
various HD-fragments. The latter condition is ensured by the definition of components
in Definition 4.2 and by the fact that any two connection subhypergraphs processed by
the various recursive calls of function Decomp can only share vertices from 𝜒 (𝑐).

Finally, note that the above construction of HD D from the HD-fragments constructed in the
recursive calls of Decomp is clearly feasible in polynomial time. □

Before we prove the completeness of algorithm log-𝑘-decomp, we introduce a special kind of
connection subhypergraphs: let 𝐻 be a hypergraph and let D = ⟨𝑇, 𝜒, 𝜆⟩ be an HD of 𝐻 with
root 𝑟 . We call 𝐻 ′ = (𝐸′, S𝑝,C𝑜𝑛𝑛) a D-induced connection subhypergraph of 𝐻 , if there exists a
subtree 𝑇 ′ of 𝑇 with the following properties:

• 𝐸′ = c𝑜𝑣 (𝑇 ′);
• let 𝐵 denote those nodes in 𝑇 which are outside 𝑇 ′ but whose parent node is in 𝑇 ′; then

S𝑝 = {𝜒 (𝑢) | 𝑢 ∈ 𝐵}.
• the root 𝑟 ′ of 𝑇 ′ is different from the root of 𝑇 ; hence, 𝑟 ′ has a parent node 𝑝 in 𝑇 ;

• C𝑜𝑛𝑛 = 𝑉 (𝐻 ′) ∩�
𝜆(𝑝).

An HD D′ = ⟨𝑆 ′, 𝜒 ′, 𝜆′⟩ of 𝐻 ′ is then obtained as follows:

• the tree 𝑆 ′ of D′ is the subtree of 𝑇 induced by the nodes of 𝑇 ′ plus the nodes in 𝐵;

• for all nodes u in 𝑇 ′, we set 𝜒 ′(𝑢) = 𝜒 (𝑢) and 𝜆′(𝑢) = 𝜆(𝑢);
• for all nodes u in 𝐵, we set 𝜒 ′(𝑢) = 𝜒 (𝑢) and 𝜆′(𝑢) = {𝜒 (𝑢)}.
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We shall refer to D′ as the induced HD of 𝐻 ′. It is easy to verify that D′ is in normal form,
whenever D is in normal form. In the completeness proof below, we shall refer to a D-induced
connection subhypergraph of 𝐻 simply as an “induced subhypergraph” of 𝐻 . No confusion can
arise from this, since we will always consider the same HD D of 𝐻 throughout the proof.

Completeness Proof. Suppose that hypergraph𝐻 has an HD of width ≤ 𝑘 . We have to show that
then algorithm log-𝑘-decomp returns “true”. By Theorem 4.6, 𝐻 also has an HD D = ⟨𝑇, 𝜒 , 𝜆⟩
of width ≤ 𝑘 in normal form. Note that, in order to apply Theorem 4.6, we are considering 𝐻
as a connection subhypergraph (𝐸 (𝐻 ), ∅, ∅) of itself. Let 𝑟 denote the root of 𝑇 . If algorithm
log-𝑘-decomp has not already returned “true” before, it will eventually try 𝜆(𝑟 ) in the foreach-
statement on line 3. Let 𝐶1, . . . ,𝐶ℓ with 𝐶𝑖 ⊆ 𝐸 (𝐻 ) for each 𝑖 denote the [𝜆(𝑟 )]-components
(and hence also the [𝜒 (𝑟 )]-components) of 𝐻 . By the normal form of D, we know that 𝑟 has
ℓ child nodes 𝑢1, . . . , 𝑢ℓ with c𝑜𝑣 (𝑇𝑢𝑖 ) = 𝐶𝑖 . Now let C𝑜𝑛𝑛𝑖 = 𝑉 (𝐶𝑖) ∩�

𝜆(𝑟 ) for 𝑖 ∈ {1, . . . , ℓ}.
Hence, (𝐶𝑖 , ∅,C𝑜𝑛𝑛𝑖) is a connection subhypergraph of 𝐻 . Moreover, by the connectedness
condition, we have C𝑜𝑛𝑛𝑖 ⊆ 𝜒 (𝑢𝑖). Hence, HD D restricted to the subtree 𝑇𝑢𝑖 is in fact an HD
of width ≤ 𝑘 of the connection subhypergraph (𝐶𝑖 , ∅,C𝑜𝑛𝑛𝑖).
Now suppose that function Decomp is complete on induced subhypergraphs of 𝐻 (we will prove
the correctness of this assumption below). By this we mean that if (𝐸′, S𝑝,C𝑜𝑛𝑛) is an induced
subhypergraph of 𝐻 , then function Decomp returns “true” on input (𝐸′, S𝑝),C𝑜𝑛𝑛). Hence,
the calls of function Decomp on line 7 all yield “true”. Therefore, program execution exits the
foreach-loop and executes the return-statement on line 9. That is, algorithm log-𝑘-decomp
returns “true” as desired. It remains to show that function Decomp is complete on induced
subhypergraphs.

Completeness of function Decomp. Consider an arbitrary induced subhypergraph (𝐸′, S𝑝,C𝑜𝑛𝑛)
of 𝐻 . We have to show that then function Decomp returns “true” on input ((𝐸′, S𝑝),C𝑜𝑛𝑛). We
proceed by induction on |𝐸′ | + |S𝑝 |.
induction begin. Suppose that |𝐸′ | + |S𝑝 | = 1. That is, we either have |𝐸′ | = 1 and |S𝑝 | = 0 or we
have |𝐸′ | = 0 and |S𝑝 | = 1. In the first case, “true’ is returned via the statement on line 13; in
the second case, “true’ is returned via the statement on line 15.

induction step. Now suppose that |𝐸′ | + |S𝑝 | > 1. If |𝐸′ | ≤ 𝑘 and |S𝑝 | = 0, then the return-
statement on line 13 is executed and the function returns “true”. It remains to consider the
case that |𝐸′ | > 𝑘 or |S𝑝 | > 1 holds. By Lemma 4.10, the HD D′ induced by 𝐻 ′ has a balanced
separator. Let us refer to this balanced separator as the node 𝑐 inD′. By the balancedness, it can
be easily verified that 𝑐 must satisfy 𝜆(𝑐) ⊆ 𝐸 (𝐻 ) (that is, 𝑐 is not a leaf node with 𝜆(𝑐) = {𝑓 }
for some special edge 𝑓 ). We distinguish two cases:

Case 1. Suppose that 𝑐 is the root node of D′. Recall that in our definition of induced sub-
hypergraphs, the root of the corresponding tree 𝑇 ′ is different from the root 𝑟 of D. Hence,
𝑐 has a parent node in D. Let us refer to this parent node as 𝑝 . If function Decomp has not
already returned “true” before, it will eventually try 𝜆(𝑝) in the foreach-statement on line 16.
Due to the normal form of D, all of 𝐻 ′ is a single [𝜆(𝑝)]-component. Hence, the if-condition
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on line 18 is satisfied and 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 is assigned all of 𝐻 ′ on line 19. The connectedness check
on line 22 succeeds, since 𝑝 is the parent of the root of D′ and C𝑜𝑛𝑛 = 𝑉 (𝐻 ′) ∩�

𝜆(𝑝) holds
by the last condition of the definition of induced subhypergraphs. Hence, the foreach-loop
on lines 24 – 39 is eventually entered. If function Decomp does not return “true” before, it
will eventually try 𝜆(𝑐) in the foreach-statement on line 24. Then 𝜒 (𝑐) assigned on line 25
is the correct 𝜒-label of 𝑐 according to the normal form. The connectedness check on line
26 succeeds since D satisfies the connectedness condition. By assumption, 𝑐 is a balanced
separator; hence also the check on line 29 succeeds. Thus, the foreach-loop on lines 31 –34 is
executed. It is easy to verify that the parameters supplied to Decomp in the recursive calls on
line 33 correspond to induced subhypergraphs. Therefore, all these calls of Decomp return “true”
by the induction hypothesis. Hence, also the statements on lines 35 – 37 are executed. In this
case, since 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 comprises all edges and special edges of 𝐻 ′, Decomp is called on line 37
with 𝑐𝑜𝑚𝑝𝑢𝑝 .𝐸 = ∅ and 𝑐𝑜𝑚𝑝𝑢𝑝 .S𝑝 = {𝜒 (𝑐)}. Hence, as was shown in the induction begin, this
call of Decomp returns “true”. Therefore, the return-statement on line 39 is executed and the
overall result “true” is returned by function Decomp.

Case 2. Suppose that 𝑐 is not the root node of D′. Then 𝑐 has a parent node inside D′.
Let us refer to this parent node as 𝑝 . If function Decomp has not already returned “true” before,
it will eventually try 𝜆(𝑝) in the foreach-statement on line 16. By Corollary 4.8, one of the
[𝜆(𝑝)]-components of 𝐻 ′ is the [𝜒 (𝑝)]-component consisting of the edges and special edges
which are covered in D by the subtree rooted at child node 𝑐 of 𝑝 . The check on line 18 is
successful because the child 𝑐 of 𝑝 is a balanced separator. Hence 𝑐 and the subtrees below 𝑐
cover more than half of the edges and special edges. The check on line 22 succeeds because
of the connectedness condition in D. Hence, the foreach-loop on lines 24 – 39 is eventually
entered. If function Decomp does not return “true” before, it will eventually try 𝜆(𝑐) in the
foreach-statement on line 24. Then 𝜒 (𝑐) assigned on line 25 is the correct 𝜒-label of 𝑐 accord-
ing to the normal form. The connectedness check on line 26 succeeds since D satisfies the
connectedness condition. By assumption, 𝑐 is a balanced separator; hence also the check on
line 29 succeeds. Thus, the foreach-loop on lines 31 –34 is executed. It is easy to verify that
the parameters supplied to Decomp in the recursive calls on line 33 correspond to induced
subhypergraphs. Hence, all these calls of Decomp return “true” by the induction hypothesis.
Hence, also the statements on lines 35 – 37 are executed. Again, it is easy to verify that also
the parameters supplied to Decomp in the recursive call on line 37 correspond to an induced
subhypergraph. Hence, by the induction hypothesis, also this call of Decomp returns “true”.
Therefore, the return-statement on line 39 is executed and the overall result “true” is returned
by function Decomp. □
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4.4 An Illustrative Example

To illustrate the notions introduced in Section 4.1 and the basic algorithm log-𝑘-decomp shown
in Algorithm 4.1, we consider the hypergraph 𝐻 = (𝑉 , 𝐸) with 𝑉 = {𝑥1, . . . , 𝑥10} and

𝐸 = {𝑅1(𝑥1, 𝑥2),
𝑅2(𝑥2, 𝑥3),
𝑅3(𝑥3, 𝑥4),
𝑅4(𝑥4, 𝑥5),
𝑅5(𝑥5, 𝑥6),
𝑅6(𝑥6, 𝑥7),
𝑅7(𝑥7, 𝑥8),
𝑅8(𝑥8, 𝑥9),
𝑅9(𝑥9, 𝑥10),
𝑅10(𝑥10, 𝑥1)}

In other words, 𝐻 is a essentially a cycle of size 10. A hypertree decompositionD of 𝐻 is shown
in Figure 4.1a.

We nowwalk through algorithm log-𝑘-decomp, which will allow us to see also the notions from
Section 4.1 in action. Suppose that we run log-𝑘-decomp with hypergraph 𝐻 and parameter
𝑘 = 2. In each of the loops on lines 3, 16, and 24, the algorithm searches for a 𝜆-label until it
finds a successful one. By “successful” we mean that the current execution of the main program
or of function Decomp returns true (on line 9 or 39, respectively). To keep things simple in our
discussion below, we will directly choose a successful one with the understanding, that this
particular 𝜆-label will eventually be selected by the program unless another successful one has
already been found before.

Main program. The RootLoop tests all possible candidates for 𝜆𝑟 . It will eventually try 𝜆𝑟 =
{𝑅1, 𝑅2} (as mentioned above – with the understanding that it has not found another successful
one before). There is only one [𝜆𝑟 ]-component 𝑦, namely 𝑦.𝐸 = {𝑅3, . . . , 𝑅10} and 𝑦.𝑆𝑝 = ∅.
Moreover, on line 6, we set 𝐶𝑜𝑛𝑛𝑦 = {𝑥1, 𝑥3} and call function Decomp for this combination of
component 𝑦 and vertex set 𝐶𝑜𝑛𝑛𝑦 .

Call 1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅3, . . . , 𝑅10}, 𝐻 ′.𝑆𝑝 = ∅, and𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥3}.
Since none of the conditions of the base case is satisfied, the ParentLoop will be entered. It
will eventually try 𝜆𝑝 = {𝑅1, 𝑅5}. This splits 𝐻 ′ into 2 components 𝑐1 = {𝑅3, 𝑅4} and 𝑐2 =
{𝑅6, 𝑅7, 𝑅8, 𝑅9, 𝑅10}. Component 𝑐2 satisfies the size constraint on line 18 and, therefore, becomes
𝑐𝑜𝑚𝑝𝑑𝑜𝑤𝑛 on line 19.

The ChildLoop will eventually try 𝜆𝑐 = {𝑅1, 𝑅6}. On line 25, we thus set 𝜒𝑐 = {𝑥1, 𝑥6, 𝑥7}. This
gives rise to a single component 𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] inside 𝑐𝑜𝑚𝑝𝑑𝑜𝑤𝑛 , namely 𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] = {𝑅7, 𝑅8, 𝑅9, 𝑅10}.
This component satisfies both the constraint for connectedness (line 26) and the size constraint
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𝑢1: 𝜆 = {𝑅1, 𝑅2}
𝜒 = {𝑥1, 𝑥2, 𝑥3}

𝑢2: 𝜆 = {𝑅1, 𝑅3}
𝜒 = {𝑥1, 𝑥3, 𝑥4}

𝑢3: 𝜆 = {𝑅1, 𝑅4}
𝜒 = {𝑥1, 𝑥4, 𝑥5}

𝑢4: 𝜆 = {𝑅1, 𝑅5}
𝜒 = {𝑥1, 𝑥5, 𝑥6}

𝑢5: 𝜆 = {𝑅1, 𝑅6}
𝜒 = {𝑥1, 𝑥6, 𝑥7}

𝑢6: 𝜆 = {𝑅1, 𝑅7}
𝜒 = {𝑥1, 𝑥7, 𝑥8}

𝑢7: 𝜆 = {𝑅1, 𝑅8}
𝜒 = {𝑥1, 𝑥8, 𝑥9}

𝑢8: 𝜆 = {𝑅1, 𝑅9}
𝜒 = {𝑥1, 𝑥9, 𝑥10}

(a) HDD of hypergraph𝐻 from
Section 4.4

𝜆 = {𝑅1, 𝑅7}
𝜒 = {𝑥1, 𝑥7, 𝑥8}

𝜆 = {𝑅1, 𝑅8}
𝜒 = {𝑥1, 𝑥8, 𝑥9}

𝜆 = {𝑅1, 𝑅9}
𝜒 = {𝑥1, 𝑥9, 𝑥10}

(b) HD-fragment D1.1 implic-
itly constructed by Call 1.1 of
function Decomp

𝜆 = {𝑅1, 𝑅3}
𝜒 = {𝑥1, 𝑥3, 𝑥4}

𝜆 = {𝑅1, 𝑅4}
𝜒 = {𝑥1, 𝑥4, 𝑥5}

𝜆 = {𝑅1, 𝑅5}
𝜒 = {𝑥1, 𝑥5, 𝑥6}

𝜆 = {𝑠1}
𝜒 = {𝑥1, 𝑥6, 𝑥7}

(c) HD-fragmentD1.2 implicitly
constructed by Call 1.2 of func-
tion Decomp

Figure 4.1: Visualisations of the HD constructed as part of Section 4.4 and the HD-fragments
used for its construction.

(line 29). Moreover, it leads to 2 recursive calls of function Decomp: one for the component
𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] = {𝑅7, 𝑅8, 𝑅9, 𝑅10} “below” the “child node” (on line 33) and one for the component
𝑐1 = {𝑅3, 𝑅4, 𝑅5} “above” (on line 37). For the component “below”, we have 𝑥 .𝐸 = {𝑅7, 𝑅8, 𝑅9, 𝑅10}
and 𝑥 .𝑆𝑝 = ∅; moreover, we set 𝐶𝑜𝑛𝑛𝑥 = {𝑥1, 𝑥7} on line 32. For the component “above”, we set
𝑐𝑜𝑚𝑝𝑢𝑝 .𝐸 = {𝑅3, 𝑅4, 𝑅5} on line 35 and 𝑐𝑜𝑚𝑝𝑢𝑝 .𝑆𝑝 = {𝑠1} with 𝑠1 = 𝜒𝑐 = {𝑥1, 𝑥6, 𝑥7} on line 36;
moreover, we take 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥3} from the current call of Decomp. Clearly, edge 𝑅6 from 𝐻 ′ is
already covered by 𝜒𝑐 = {𝑥1, 𝑥6, 𝑥7} and does not need to be further considered.

As we shall work out next, Call 1.1 of function Decomp for the component “below” will return
true based on the HD-fragmentD1.1 shown in Figure 4.1b. Likewise, Call 1.2 of function Decomp
for the component “above” will return true based on the HD-fragmentD1.2 shown in Figure 4.1c.
The leaf node of D1.2 contains the special edge 𝑠1, which acts as a placeholder for the node 𝑐
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with labels 𝜆𝑐 = {𝑅1, 𝑅6} and 𝜒𝑐 = {𝑥1, 𝑥6, 𝑥7} from the current call of Decomp.
The HD-fragment D1 of the successful Call 1 of function Decomp is then obtained by taking
HD-fragment D1.2, replacing the leaf node with 𝜆-label {𝑠1} by the node 𝑐 with 𝜆𝑐 = {𝑅1, 𝑅6}
and 𝜒𝑐 = {𝑥1, 𝑥6, 𝑥7} and appending the HD-fragment D1.1 below this node 𝑐 . In other words,
the HD-fragment D1 is precisely HD D minus its root node, i.e., nodes 𝑢2 – 𝑢8 of D. The final
HD D (shown in see Figure 4.1a) is obtained by combining the root node (whose 𝜆-label was
determined in the RootLoop of the main program, line 3) with HD-fragment D1.

Call 1.1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅7, 𝑅8, 𝑅9, 𝑅10}, 𝐻 ′.𝑆𝑝 = ∅, and 𝐶𝑜𝑛𝑛 =
{𝑥1, 𝑥7}. The ParentLoop (line 16) and the ChildLoop (line 24) will eventually choose 𝜆𝑝 =
{𝑅1, 𝑅7} and 𝜆𝑐 = {𝑅1, 𝑅8}, respectively. Then function Decomp is called recursively with
parameters 𝑥 .𝐸 = {𝑅9, 𝑅10}, 𝑥 .𝑆𝑝 = ∅, and 𝐶𝑜𝑛𝑛𝑥 = {𝑥1, 𝑥9} on line 33 for the only component
“below” and with parameters 𝑐𝑜𝑚𝑝𝑢𝑝 .𝐸 = {𝑅7}, 𝑐𝑜𝑚𝑝𝑢𝑝 .𝑆𝑝 = {𝑠2} with 𝑠2 = {𝑥1, 𝑥8, 𝑥9}, and
𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥7} on line 37 for the component “above”.

Call 1.1.1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅9, 𝑅10}, 𝐻 ′.𝑆𝑝 = ∅, and 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥9}.
This call immediately returns true since we have reached the base case on lines 12 - 13. The
corresponding HD-fragment D1.1.1 consists of a single node with 𝜆-label {𝑅9, 𝑅10}.

Call 1.1.2 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅7}, 𝐻 ′.𝑆𝑝 = {𝑠2} with 𝑠2 = {𝑥1, 𝑥8, 𝑥9},
and 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥7}. In the ParentLoop, eventually, 𝜆𝑝 = {𝑅1, 𝑅6} will be chosen on line 16. In
this case, 𝑐𝑜𝑚𝑝𝑑𝑜𝑤𝑛 is actually all of 𝐻 ′ and it clearly satisfies the size constraint on line 18. In
the ChildLoop, 𝜆𝑐 = {𝑅1, 𝑅7} will eventually be chosen on line 24. It gives rise to 𝜒𝑐 = {𝑥1, 𝑥7, 𝑥8}
on line 25 with a single [𝜒𝑐]-component 𝑐𝑜𝑚𝑝𝑠𝑐 [𝑖] = {𝑠2}. Function Decomp will therefore be
called on line 33 with parameters 𝑥 .𝐸 = ∅, 𝑥 .𝑆𝑝 = {𝑠2}, and𝐶𝑜𝑛𝑛𝑥 = {𝑥1, 𝑥8}. This call (referred
to as Call 1.1.2.1) returns true since we now have the base case on lines 14 - 15.

The recursive call of function Decomp on line 37 for the “components above” is a special case
where there are actually no such “components above” left. Hence, in this case, we have
𝑐𝑜𝑚𝑝𝑢𝑝 .𝐸 = ∅, 𝑐𝑜𝑚𝑝𝑢𝑝 .𝑆𝑝 = {𝑠3} with 𝑠3 = 𝜒𝑐 = {𝑥1, 𝑥7, 𝑥8}, and 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥7}. This
leads to the Call 1.1.2.2 of function Decomp, which returns true since we again have the base
case on lines 14 - 15.

In total, Call 1.1.2 of function Decomp is successful and the corresponding HD-fragment D1.1.2
consists of 2 nodes: the root node with 𝜆-label {𝑅1, 𝑅7} and its child node with 𝜆-label {𝑠2}
We can now also construct the HD-fragment D1.1 of the successful Call 1.1 of function Decomp.
More precisely, HD-fragment D1.1 is obtained by taking HD-fragment D1.1.2, replacing the
leaf node with 𝜆-label {𝑠2} by the node 𝑐 with 𝜆𝑐 = {𝑅1, 𝑅8} and 𝜒𝑐 = {𝑥1, 𝑥8, 𝑥9} from Call 1.1
and appending the HD-fragment D1.1.1 below this node 𝑐 . The resulting HD-fragment D1.1 is
shown in Figure 4.1b. That is, D1.1 is the subtree consisting of the bottom 3 nodes 𝑢6, 𝑢7, and
𝑢8, of the final HD D displayed in Figure 4.1a.

Call 1.2 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅3, 𝑅4, 𝑅5}, 𝐻 ′.𝑆𝑝 = {𝑠1} with 𝑠1 =
{𝑥1, 𝑥6, 𝑥7}, and 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥3}. The execution of this function call is very similar to the
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calls discussed above. Below, we therefore do not discuss in detail the remaining recursive calls
inside Call 1.2. Instead, we only list for each such call the parameters, the balanced separator
𝜒𝑐 , and the corresponding HD-fragments.

In Call 1.2 of function Decomp, eventually the balanced separator with 𝜆𝑐 = {𝑅1, 𝑅4} and
𝜒𝑐 = {𝑥1, 𝑥4, 𝑥5} will be chosen, which gives rise to the recursive Calls 1.2.1 (line 33) and 1.2.2
(line 37) of function Decomp, which we briefly discuss below.

Call 1.2.1 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅5}, 𝐻 ′.𝑆𝑝 = {𝑠1} with 𝑠1 = {𝑥1, 𝑥6, 𝑥7},
and 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥5}. As in the Call 1.1.2, we now have a connection subhypergraph of 𝐻
consisting of a single edge and a single special edge. Analogously to Call 1.1.2, also Call 1.2.1
returns true and the corresponding HD-fragment D1.2.1 consists of 2 nodes: the root node with
𝜆-label {𝑅1, 𝑅5} and its child node with 𝜆-label {𝑠1}.

Call 1.2.2 of function Decomp with parameters 𝐻 ′.𝐸 = {𝑅3}, 𝐻 ′.𝑆𝑝 = {𝑠4} with 𝑠4 = {𝑥1, 𝑥4, 𝑥5},
and 𝐶𝑜𝑛𝑛 = {𝑥1, 𝑥3}. Again, we have a connection subhypergraph of 𝐻 consisting of a single
edge and a single special edge. Analogously to the Calls 1.1.2 and 1.2.1, also Call 1.2.2 returns
true and the corresponding HD-fragment D1.2.2 consists of 2 nodes: the root node with 𝜆-label
{𝑅1, 𝑅3} and its child node with 𝜆-label {𝑠4}.
We can now construct the HD-fragment D1.2 of the successful Call 1.2 by taking HD-fragment
D1.2.2, replacing the leaf node with 𝜆-label {𝑠4} by the node 𝑐 with 𝜆𝑐 = {𝑅1, 𝑅4} and 𝜒𝑐 =
{𝑥1, 𝑥4, 𝑥5} from Call 1.2 and appending the HD-fragmentD1.2.1 below this node 𝑐 . The resulting
HD-fragment D1.2 is shown in Figure 4.1c.

4.5 Further Combinatorial Observations and Optimisations

As was shown in Theorem 4.11, algorithm log-𝑘-decomp introduced in Section 4.2 reaches the
primary goal of splitting the HD-construction into subtasks with guaranteed upper bound on
their size. In theory, this is enough to support parallelism. However, this basic algorithm still
leaves a lot of room for further improvements. In this section, we present several optimisations,
which are crucial to achieve good performance in practice. The line numbers below refer to
Algorithm 4.1. However, in Algorithm 4.2, we will ultimately also give the pseudo-code for the
enhanced algorithm where all the optimisations mentioned below are included.

Extension of the base case. The recursive function Decomp starts (on lines 12 – 15) with
some simple checks that immediately give a “true” answer. In contrast, a “false” answer is only
obtained in case of unsuccessful execution of the entire procedure. We could add the following
negative case to the top of the procedure: if 𝐻 ′.𝐸 = ∅, then |𝐻 ′.S𝑝 | ≤ 1 must hold. The rationale
of this condition is that, if there are no more edges in𝐻 ′.𝐸, then we would have to use only “old”
edges (i.e., edges covered already at some node further up in the HD) in the 𝜆-label to separate
the remaining special edges. However, a 𝜆-label consisting of “old” edges only is not allowed,
since this would violate the second condition of the normal form in Definition 4.5 (i.e., "some
progress has to be made").
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Root of the HD-fragment. In the current form of procedure Decomp, we always “guess” a
pair (𝑝, 𝑐) of nodes, such that 𝑝 is the parent of 𝑐 . This also covers the case that 𝑐 is the root
node of the HD-fragment for the current connection subhypergraph. In this case, the parent
node 𝑝 would actually be the node immediately above this HD-fragment (in other words, 𝑝 was
the node from which the current call of Decomp happened). However, it would be more efficient
to consider the case of “guessing” the root node of this HD-fragment explicitly. More precisely,
we would thus first check for the label 𝜆𝑝 guessed in Decomp on line 16 (which, in the current
version of the algorithm, is automatically treated as the “parent”) if all [𝜆𝑝]-components have
at most half the size of the current connection subhypergraph.
If this is the case, then we may use this node as the root of the HD-fragment to cover the current
connection subhypergraph. This makes sense since it corresponds precisely to the “search” for
a balanced separator in the proof of Lemma 4.10. That is, if the root of the HD gives rise to
components which are all at most half the size, then the root is the desired balanced separator.
If this is not the case, then we simply proceed with procedure Decomp in its present form, i.e.:
there exists exactly one [𝜆𝑝]-component whose size is bigger than half. So we take the guessed
node as the parent and search for a balanced separator as a child of 𝑝 in the direction of this
oversized [𝜆𝑝]-component.

Allowed edges. The main task of procedure Decomp is to compute labels (i.e., edge sets) 𝜆𝑝
and 𝜆𝑐 of nodes 𝑝, 𝑐 , which will ultimately be in a parent-child relationship in the HD. For these
labels, Algorithm 4.1 imposes no restriction. That is, in principle, we would try all possible sets
of ≤ 𝑘 edges for these labels. However, not all edges actually make sense. We should thus add
one more parameter to procedure Decomp indicating the edges that are allowed in a 𝜆-label of
the HD-fragment for this connection subhypergraph.
More specifically, in our search for the 𝜆-label of some node 𝑢, we may exclude from the HD of
the connection subhypergraph 𝑐𝑜𝑚𝑝u𝑝 (i.e., in the recursive call of function Decomp on line 37)
all edges which are part of some component “below” 𝑢. The rationale of this restriction is that,
by the special condition, using a “new” edge in a 𝜆-label forces us to add all its vertices to the
𝜒-label, i.e.: it is fully covered in such a node. But then it cannot be part of a component whose
edges are covered for the first time further down in the tree.
Note that we can yet further restrict the search for the label 𝜆𝑐 by requiring that at least one
edge must be from 𝐻 ′.𝐸, since choosing only “old” edges would violate the second condition
of the normal form. As far as the label 𝜆𝑝 is concerned, the same kind of restriction can be
applied if we first implement the previous optimisation of handling the root node of the current
HD-fragment separately. If we indeed have to guess the labels 𝜆𝑝 and 𝜆𝑐 of two nodes 𝑝 and 𝑐
(i.e., the label 𝜆𝑝 guessed first was not a balanced separator), then both nodes 𝑝 and 𝑐 are inside
the current HD-fragment. Hence, also the label 𝜆𝑝 must contain at least one “new” edge.

No special treatment of the root of the HD. In the current form of the algorithm, we start
in the main program by “guessing” the label 𝜆𝑟 of the root of the HD on line 3 and then branch
into calls of procedure Decomp for each [𝜆𝑟 ]-component. Of course, there is no guarantee that
this 𝜆-label is a balanced separator. Consequently, there is no guarantee that the size of all
HD-fragments to be constructed in these calls of procedure Decomp is significantly smaller than
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the entire HD.
In order to start with a balanced separator right from the beginning, we may instead call
procedure Decomp straight away with parameters 𝐻 ′.𝐸 = 𝐻 , 𝐻 ′.S𝑝 = ∅, and C𝑜𝑛𝑛 = ∅. We thus
treat the search for the very first 𝜆-label in the desired HD in exactly the same way as for any
other HD-fragment. As far as the above mentioned optimisation of restricting the allowed edges
is concerned, of course all edges of 𝐻 would be initially allowed.

Searching for child nodes first. In Algorithm 4.1, we first look for 𝜆-labels of potential
parent nodes, and consider afterwards the 𝜆-labels of potential child nodes. Only then do we
check if the 𝜒-label of the child is a balanced separator of the current subcomponent. We have
observed that in many hypergraphs of HyperBench, balanced separators are rare, in the sense
that only a small part of the search space will ever fulfil the properties required. Therefore we
should first look for a potential child s.t. its 𝜆-label is a balanced separator, and only afterwards
try to find a fitting parent. While this may seem slightly unintuitive, it allows us to quickly
detect cases where no balanced separator can be found at all.
Note that we can determine the precise bag 𝜒𝑐 for a child 𝑐 only when we know the 𝜆-label of
its parent. Nevertheless, even if we only have 𝜆𝑐 , we can over-approximate the 𝜒𝑐-label as

�
𝜆𝑐 .

Hence, if
�

𝜆𝑐 is not a balanced separator, then we may clearly conclude that neither is 𝜒𝑐 .
Finally, note that by searching for the child node first, we get the above described optimisation
of treating the “Root of the HD-fragment” separately almost for free. Indeed, when computing
𝜆𝑐 , we can immediately check if 𝐶𝑜𝑛𝑛 ⊆ �

𝜆𝑐 holds. Recall that 𝐶𝑜𝑛𝑛 constitutes the interface
to the HD-fragment above the current one. Hence, if

�
𝜆𝑐 fully covers this interface, 𝑐 is in fact

the root node of the current HD-fragment.

Speeding up the search for parent 𝜆-labels. The previous optimisation means that, after
having found a 𝜆-label 𝜆𝑐 for the child which is a balanced separator of the current subcomponent,
we need to find a suitable 𝜆-label of the parent. By “suitable” wemean that wemay limit ourselves
to edges which have a non-empty intersection width

�
𝜆𝑐 . A very high-level explanation why

we may exclude edges 𝑒 with 𝑒 ∩ �
𝜆𝑐 = ∅ from the search space of 𝜆𝑝 is that the control

flow of function Decomp is mainly determined by the edges and special edges covered by
�

𝜆𝑐
and the [𝜆𝑐]-components below 𝑐 . By the connectedness condition, if 𝑒 is covered above 𝑐 and
has empty intersection width

�
𝜆𝑐 , then excluding or including 𝑒 in 𝜆𝑝 has no effect on the

[𝜆𝑐]-components below 𝑐 . In our experimental evaluation, we found that this restriction indeed
significantly reduces the time it takes to either find a suitable 𝜆𝑝 , or detect that no such 𝜆-label
exists. Of course, this restriction of the search space cannot destroy soundness. We will show
below that also the completeness of the algorithm is preserved.

Theorem 4.12. The optimised log-𝑘-decomp algorithm for checking if a hypergraph 𝐻 has
h𝑤 (𝐻 ) ≤ 𝑘 given in Algorithm 4.2 is sound and complete. More specifically, for given hypergraph
𝐻 and integer 𝑘 ≥ 1, the algorithm returns “true” if and only if there exists an HD of 𝐻 of width
≤ 𝑘 . Moreover, by materialising the decompositions implicitly constructed in the recursive calls of
the Decomp function, an HD of 𝐻 of width ≤ 𝑘 can be constructed in polynomial time in case of a
successful computation (i.e., return-value “true”).
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Proof. The soundness and completeness of Algorithm 4.2 follow almost immediately from the
soundness and completeness of Algorithm 4.1 together with the above explanations of the
various optimisations. Likewise, the polynomial-time upper bound on the time needed to
construct an HD in case of a successful computation can again be easily shown as part of the
soundness proof. The only non-trivial part is that the last optimisation (i.e., the restriction of
the search space for 𝜆(𝑝)) does not destroy the completeness of the algorithm. The remainder
of the proof will concentrate on this aspect.

Assume that hypergraph 𝐻 has an HD of width ≤ 𝑘 . Then the optimised log-𝑘-decomp
algorithm without the restriction on the search space for label 𝜆𝑝 (on line 22) returns the overall
result true. This is due to the fact that, as was argued in Section 4.5, the other optimisations
mentioned there do not affect the completeness of the algorithm. Now consider a recursive call
of function Decomp and suppose that it returns true if the restriction on the search space for
label 𝜆𝑝 is dropped. Of course, if the value true is returned in one of the base cases (lines 6 or
8) or if 𝜆𝑐 turns out to be the 𝜆-label of the root node of the current HD-fragment (and true is
returned on line 21), then the restriction of the search space for 𝜆𝑝 has no effect at all. Hence,
the only interesting case to consider is that the parent loop (lines 22 – 43) is indeed executed.

Let 𝜆𝑝 be the 𝜆-label chosen on line 22 if no restriction is imposed on the search space. We claim
that we may remove from 𝜆𝑝 all edges that have an empty intersection width

�
𝜆𝑐 without

altering the control flow of this particular execution of function Decomp. Actually, it suffices to
show that we may remove one edge 𝑒 with an empty intersection width

�
𝜆𝑐 from 𝜆𝑝 without

altering the control flow of this particular execution of function Decomp. Then the claim follows
by an easy induction argument. f

So suppose that 𝜆𝑝 contains at least one edge 𝑒 such that 𝑒 ∩�
𝜆𝑐 = ∅ and let 𝜆′𝑝 = 𝜆𝑝 \ {𝑒}. An

inspection of the code of the parent loop reveals that it suffices to show that this elimination
of edge 𝑒 from 𝜆𝑝 leaves 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 unchanged. Indeed, if 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 is still a [𝜆′𝑝]-component,
say the 𝑖-th [𝜆′𝑝]-component, then the if-condition on line 24 is true. Of course, there can be
only one [𝜆′𝑝]-component satisfying the condition 𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] | > |𝐻 ′ |

2 . Hence, on line 25, for this
particular 𝑖 , exactly the same value is assigned to 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 for 𝜆′𝑝 as for 𝜆𝑝 . But then also 𝜒𝑐 on
line 28 gets the same value as without the restriction on the search space of 𝜆𝑝 . Consequently,
also the [𝜒𝑐]-components computed on line 33 and the parameters supplied to the recursive
calls of function Decomp (on lines 36 and 41) remain the same as without the restriction on the
search space. Hence, function Decomp will ultimately return the value true also if we choose 𝜆′𝑝
on line 22.

It remains to show that 𝜆𝑝 and 𝜆′𝑝 indeed give rise to the same component 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 . To
avoid confusion, let us write 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 to denote a [𝜆𝑝]-component and 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 to denote
a [𝜆′𝑝]-component. Let 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 be the unique [𝜆𝑝]-component that satisfies the condition
|𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] | > |𝐻 ′|

2 on line 24. We have 𝜆′𝑝 ⊆ 𝜆𝑝 . Decreasing a set can only increase the
corresponding components. Hence, there exists a [𝜆′𝑝]-component, call it 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 with
𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 ⊆ 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 . We have to show that 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 = 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 holds.

The set 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 consists of the edges and special edges of the [𝜒𝑐]-components contained in
𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 (denoted as 𝑐𝑜𝑚𝑝𝑠𝑐 in the algorithm), and the edges and special edges covered by 𝜒𝑐 .

90



4.6. Implementation and Evaluation

Let us refer to these [𝜒𝑐]-components as 𝐶1, . . . ,𝐶ℓ . By Corollary 4.8, these [𝜒 (𝑐)]-components
are at the same time the [𝜆𝑐]components contained in 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 . And the edges and special
edges covered by 𝜒𝑐 are of course also covered by

�
𝜆𝑐 . Likewise, 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 consists of the

(special) edges of the [𝜆𝑐]components contained in 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 plus the (special) edges covered
by 𝜆𝑐 .

By 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 ⊆ 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 , all [𝜆𝑐]-components 𝐶1, . . . ,𝐶ℓ contained in 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 are of course
also contained in 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 . We have to show that there is no further [𝜆𝑐]-component contained
in 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 . Assume to the contrary that there exists a [𝜆𝑐]-component 𝐶′ in 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 such
that 𝐶′ is not in 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 . By definition, 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 is [𝜆𝑝]connected while 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 is [𝜆′𝑝]-
connected. Hence, there exist (possibly special) edges 𝑓 ′ ∈ 𝐶′ and 𝑓 ∈ 𝐶𝑖 for some 𝑖 ∈ {1, . . . , ℓ},
such that there is a path 𝜋 (represented as a sequence of edges) with 𝜋 = (𝑓0, 𝑓1, . . . , 𝑓𝑚), such
that 𝑓 = 𝑓0, 𝑓 ′ = 𝑓𝑚 , and (𝑓𝛼 ∩ 𝑓𝛼+1) \� 𝜆′𝑝 ≠ ∅ for every 𝛼 ∈ {0, . . . ,𝑚 − 1}. W.l.o.g., choose 𝑓 ,
𝑓 ′, and 𝜋 such that𝑚 is minimal. Since 𝑓 and 𝑓 ′ are not [𝜆𝑝]-connected, there exists 𝛼 with
𝑓𝛼 ∩ 𝑓𝛼+1 ∩ 𝑒 ≠ ∅ while (𝑓𝛼 ∩ 𝑓𝛼+1) \� 𝜆𝑝 = ∅.
Since all (special) edges in 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛 are either in some [𝜆𝑐]-component contained in 𝑐𝑜𝑚𝑝′d𝑜𝑤𝑛
or covered by

�
𝜆𝑐 , and since we are assuming that 𝜋 is of minimal length, the path 𝜋 starts

with 𝑓 in some [𝜆𝑐]-component 𝐶𝑖 , possibly goes through
�

𝜆𝑐 and ends with 𝑓 ′ in component
𝐶′. Recall that 𝑒 was chosen such that 𝑒 ∩�

𝜆𝑐 = ∅. Hence, the edges 𝑓𝛼 and 𝑓𝛼+1 cannot be
covered by

�
𝜆𝑐 . By our assumption that 𝜋 has minimal length, we can also exclude the case

that both 𝑓𝛼 and 𝑓𝛼+1 are in 𝐶′. Hence, at least one of 𝑓𝛼 and 𝑓𝛼+1 must be in 𝐶𝑖 . In other words,
𝑒 ∩𝐶𝑖 ≠ ∅. Hence, also 𝑒 ∩ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 ≠ ∅. However, by the check on line 31 in Algorithm 4.2,
we know that 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩�

𝜆𝑝 ⊆ �
𝜆𝑐 . This contradicts the assumption that 𝑒 ∈ 𝜆𝑝 and

𝑒 ∩�
𝜆𝑐 = ∅. □

4.6 Implementation and Evaluation

We report now on the empirical results obtained for our implementation of the log-𝑘-decomp
algorithm. Our experiments are based on the HyperBench benchmark from [25], which was
already used for the evaluation of previous decomposition algorithms, notably NewDetKDe-

comp [25] (an enhanced re-implementation of det-𝑘-decomp [50]) and HtdLEO [86].

Our goal was to determine the exact hypertree width of as many instances as possible. We
compare here the performance of three different decomposition methods, namely NewDetKDe-
comp [25], HtdLEO [86], and our implementation of log-𝑘-decomp. Note that while the tested
implementations include the capability to compute GHDs or FHDs, we only consider the compu-
tation of HDs in our experiments here. Our new implementation of log-𝑘-decomp is based on
the open-source code of BalancedGo, the parallel algorithm for computing GHDs we presented
in Chapter 3 of this thesis.

The full raw data of our experiments is publicly available [36], as is the source code of our
implementation1 of log-𝑘-decomp.

1See: https://github.com/cem-okulmus/log-k-decomp
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Algorithm 4.2: Optimised log-𝑘-decomp
Type: Comp=(𝐸: Edge set, S𝑝: Special Edge set)
Input: 𝐻 : Hypergraph
Parameter :𝑘 : width parameter
Output: true if hw of 𝐻 ≤ 𝑘 , else false

1 begin
2 𝐻𝑐𝑜𝑚𝑝 � Comp(𝐸: 𝐻 , S𝑝: ∅)
3 return Decomp(𝐻𝑐𝑜𝑚𝑝 , ∅, 𝐻) ⊲ initial call
4 function Decomp(𝐻 ′: Comp, 𝐶𝑜𝑛𝑛: Vertex set, 𝐴: Edge set)
5 if |𝐻 ′.𝐸 | ≤ 𝑘 and |𝐻 ′.S𝑝 | = 0 then ⊲ Base Cases
6 return true
7 else if |𝐻 ′.𝐸 | = 0 and |𝐻 ′.S𝑝 | = 1 then
8 return true
9 else if |𝐻 ′.𝐸 | = 0 and |𝐻 ′.S𝑝 | > 1 then
10 return false
11 foreach 𝜆𝑐 ⊆ 𝐴 s.t. 𝜆𝑐 ∩ 𝐻 ′ .𝐸 ≠ ∅ and 1 ≤ |𝜆𝑐 | ≤ 𝑘 do ⊲ ChildLoop
12 𝑐𝑜𝑚𝑝𝑠𝑐 � [𝜆𝑐 ]-components of 𝐻 ′

13 if ∃𝑖 s.t. |𝑐𝑜𝑚𝑝𝑠𝑐 [𝑖] | > |𝐻 ′ |
2 then

14 continue ChildLoop
15 else if 𝐶𝑜𝑛𝑛 ⊆ �

𝜆𝑐 then ⊲ check if 𝜆𝑐 is root
16 𝜒𝑐 �

�
𝜆𝑐 ∩𝑉 (𝐻 ′)

17 foreach 𝑦 ∈ 𝑐𝑜𝑚𝑝𝑠𝑐 do
18 𝐶𝑜𝑛𝑛𝑦 � 𝑉 (𝑦) ∩ 𝜒𝑐
19 if not(Decomp(𝑦, 𝐶𝑜𝑛𝑛𝑦 , 𝐴)) then
20 continue ChildLoop

21 return true ⊲ 𝑐 is root of 𝐻 ′

22 foreach 𝜆𝑝 ⊆ 𝐴 s.t. 𝜆𝑝 ∩ 𝐻 ′ .𝐸 ≠ ∅ and 1 ≤ |𝜆𝑝 | ≤ 𝑘 do ⊲ ParentLoop
23 𝑐𝑜𝑚𝑝𝑠𝑝 � [𝜆𝑝 ]-components of 𝐻 ′

24 if ∃𝑖 s.t. |𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] | > |𝐻 ′|
2 then

25 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 � 𝑐𝑜𝑚𝑝𝑠𝑝 [𝑖] ⊲ found child comp.
26 else
27 continue ParentLoop
28 𝜒𝑐 �

�
𝜆𝑐 ∩𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛)

29 if 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩𝐶𝑜𝑛𝑛 ⊈
�

𝜆𝑝 then
30 continue ParentLoop ⊲ connect. check
31 if 𝑉 (𝑐𝑜𝑚𝑝d𝑜𝑤𝑛) ∩

�
𝜆𝑝 ⊈ 𝜒𝑐 then

32 continue ParentLoop ⊲ connect. check
33 𝑛𝑒𝑤_𝑐𝑜𝑚𝑝𝑠𝑐 � [𝜒𝑐 ]-components of 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛
34 foreach 𝑥 ∈ 𝑛𝑒𝑤_𝑐𝑜𝑚𝑝𝑠𝑐 do
35 𝐶𝑜𝑛𝑛𝑥 � 𝑉 (𝑥) ∩ 𝜒𝑐
36 if not(Decomp(𝑥 , 𝐶𝑜𝑛𝑛𝑥 , 𝐴)) then
37 continue ParentLoop ⊲ reject parent

38 𝑐𝑜𝑚𝑝u𝑝 � 𝐻 ′\ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 ⊲ pointwise diff.
39 𝑐𝑜𝑚𝑝u𝑝 .S𝑝 = 𝑐𝑜𝑚𝑝u𝑝 .S𝑝 ∪ {𝜒𝑐 }
40 𝐴u𝑝 � 𝐴 \ 𝑐𝑜𝑚𝑝d𝑜𝑤𝑛 .𝐸 ⊲ reducing 𝐴
41 if not(Decomp(𝑐𝑜𝑚𝑝u𝑝 , 𝐶𝑜𝑛𝑛, 𝐴u𝑝)) then
42 continue ParentLoop ⊲ reject parent
43 return true ⊲ h𝑤 of 𝐻 ′ ≤ 𝑘

44 return false ⊲ exhausted search space
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4.6.1 Benchmark Instances and Setting

For the evaluation, we use the benchmark library HyperBench [25]. It contains 3648 hypergraphs
underlying CQs and CSPS from various sources in industry and the literature and is commonly
used to evaluate decomposition algorithms. The instances are available at http://hyperbench.
dbai.tuwien.ac.at and also in the published raw data of our experiments [36].

Hardware and Software. Our implementation is written in the programming language Go
using version 1.14 and we will refer to it as log-𝑘-decomp. We will give more details below
on how it was configured for the experiments reported in Section 4.6.2. The hardware used
for the evaluation was a cluster of 12 nodes, using Ubuntu 16.04.1 LTS, with Linux kernel
4.4.0-184-generic, GCC version 5.4.0. Each node has a 12 core Intel Xeon CPU E5-2650 v4,
clocked at 2.20 GHz and using 264 GB of RAM.

Setup of Experiments. To ensure comparability of our experiments with results published
in the literature, we employ the following test setup and restrictions: a timeout of one hour
was used and available RAM was limited to 1 GB. We note that this corresponds to limits
also used in previous experiments in this area [25] and is indeed the same as we used in the
experimental evaluation section of Chapter 3. For log-𝑘-decomp, each run needs two inputs: a
hypergraph 𝐻 and the width parameter 𝑘 ≥ 1. For these tests, we used width parameters in the
range [1, 10]. When running tests for HtdLEO, we used different memory limits. Namely, we
allowed HtdLEO to use up to 24 GB of RAM since SMT solving is significantly more memory
intensive than the other two algorithms. Note that the other two algorithms have very low
memory requirements and are not constrained in any way by the 1 GB limit and the respective
experiments are therefore still comparable with HtdLEO. Furthermore, HtdLEO needs no width
parameter since it directly tries to find an optimal solution.

We used the HTCondor system [88] to facilitate the tests, limits to memory and number of cores
accessed by running test instances.

Throughout this section we will be interested in two key metrics. First, the number of solved
instances, by which we mean instances for which an optimal (i.e., minimal width) hypertree
decomposition was found and proven optimal. Second, the computation time that was necessary
to compute the optimal width decomposition, which we will refer to as the running time or
simply runtime. Importantly, this means that average running times are taken only over the
instances that the respective algorithm is able to solve, while timed out instances are not
considered in the running time calculation.

4.6.2 Empirical Evaluation

We report here on the main results of our experiments. A number of additional experiments can
be found in Appendix 4.7, providing a variety of further details and insights. Our implementation
of log-𝑘-decomp also employs the following hybridisation strategy: as will be seen below,
NewDetKDecomp performs very well on small hypergraphs but has difficulties with even slightly
larger instances. In contrast, a particular strength of our new log-𝑘-decomp algorithm is to
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Table 4.1: Comparison of prior methods and log-𝑘-decomp: number of cases solved and
runtimes (sec.) to find optimal-width HDs.

Hypertree Decomposition Methods

Origin of Size of Instances in
Instances Instances Group

Application 75 < |𝐸 | ≤ 100 405
50 < |𝐸 | ≤ 75 514
10 < |𝐸 | ≤ 50 369

|𝐸 | ≤ 10 915

Synthetic |𝐸 | > 100 66
75 < |𝐸 | ≤ 100 422
50 < |𝐸 | ≤ 75 215
10 < |𝐸 | ≤ 50 647

|𝐸 | ≤ 10 95

Total - 3648

NewDetKDecomp [25]
#solved avg max stdev

97 21.4 3296.0 192.8
276 10.6 1906.0 104.7
253 0.0 0.0 0.0
906 0.0 0.0 0.0

18 0.2 7.0 1.0
87 77.2 3467.0 379.3
38 18.8 1593.0 141.9
290 56.0 3240.0 336.3
95 0.0 0.0 0.0

2060 20.6 3467.0 194.2

HtdLEO [86]
#solved avg max stdev

65 809.5 3156.6 735.2
448 250.0 3281.5 409.3
237 60.1 1017.9 150.3
876 56.6 1427.1 155.0

13 734.0 2507.1 711.7
312 1045.2 3591.1 1287.0
212 101.7 2560.1 246.1
303 412.2 3597.4 850.2
78 28.8 218.5 41.5

2544 280.2 3597.4 676.7

Hypertree Decomposition Methods

Origin of Size of Instances in
Instances Instances Group

Application 75 < |𝐸 | ≤ 100 405
50 < |𝐸 | ≤ 75 514
10 < |𝐸 | ≤ 50 369

|𝐸 | ≤ 10 915

Synthetic |𝐸 | > 100 66
75 < |𝐸 | ≤ 100 422
50 < |𝐸 | ≤ 75 215
10 < |𝐸 | ≤ 50 647

|𝐸 | ≤ 10 95

Total - 3648

log-𝑘-decomp Hybrid
#solved avg max stdev

261 86.5 3555.8 332.4
469 0.5 78.5 3.6
253 0.0 0.1 0.0
915 0.0 0.0 0.0

34 46.9 2528.2 209.6
235 48.9 2495.6 210.9
215 4.1 476.3 32.7
625 18.8 3526.3 174.7
95 0.0 0.0 0.0

3102 30.5 3555.8 197.8

quickly split a big hypergraph into significantly smaller connection subhypergraphs. To combine
the best of both worlds, we use log-𝑘-decomp to split the original HD computation problem
until the subproblems become small, at which point we apply our own implementation of det-
𝑘-decomp (extended to handle connection subhypergraphs correctly) to the small subproblems.
For details and an experimental evaluation of different parametrisations for our hybridisation
strategy, see Appendix 4.7.2.

We compare the aforementioned hybrid version of the log-𝑘-decomp algorithm with the two
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state-of-the-art implementations for finding HDs: NewDetKDecomp [25] and HtdLEO [86].

Our results are summarised in Table 4.1, distinguishing the hypergraphs in the HyperBench
benchmark by size and origin 2. We distinguish between two main categories, hypergraphs
that are derived from applications and hypergraphs that were synthetically generated. In each
group we report our results split by the number of edges |𝐸 | in the instance. Note that the group
|𝐸 | > 100 of instances with more than 100 edges is empty for the Application case and thus
omitted from the table. Instances in Group reports the number of instances in each such group.
For each algorithm and each group of instances, we list the number of solved instances (#solved)
and statistics over the running times (avg, max, stdev). Times are all in seconds and rounded to
a single digit after the comma. Results over all groups are given in the last row titled “Total”.

As mentioned above, some care is required when comparing times between algorithms. While
NewDetKDecomp has low average time overall, this is partly due to solving fewer instances. The
data therefore demonstrates that, in general, NewDetKDecomp either solves an instance quickly
or fails to find an optimal width decomposition before timing out. Overall, we see that despite
solving significantly more instances than its competitors, running times for log-𝑘-decomp
overall are comparable with NewDetKDecomp and noticeably lower than for HtdLEO.

It may be of further interest how these numbers compare to the performance of state of the
art algorithms for finding generalised hypertree decompositions. The results reported for
BalancedGo, presented in Chapter 3 of this thesis, (on the same system) show that the best
method there solves only 1730 instances optimally without timeout. In contrast log-𝑘-decomp
manages to solve 2491 of the instances tested there optimally3. Furthermore, in none of the
cases where BalancedGo finds the optimal gℎ𝑤 is it lower than the optimal h𝑤 . In other words,
in practice, the additional complexity of GHDs compared with HDs is not compensated by
achieving lower width (even if, in theory, no better upper bound on the h𝑤 than h𝑤 ≤ 3 ·gℎ𝑤 +1
is known [4]).

In our experiments, we also observe that for low widths – i.e., cases where using HDs is most
promising in practice – log-𝑘-decomp is very close to solving all instances. In particular, of the
3224 instances with width at most 6, log-𝑘-decomp solves 2930 (92%) instances. In contrast,
NewDetKDecomp and HtdLEO time out on 1206 and 766, respectively, of those instances. This
suggests that log-𝑘-decomp can be a solid foundation for the integration of HDs in practice
going forward. If we look at instances of h𝑤 ≤ 5 the situation improves even further, with
log-𝑘-decomp solving 2450 out of 2482 (98.7%) instances; compared to 80% and 86% solved by
NewDetKDecomp and HtdLEO, respectively.

The experiments reported in Table 4.1 were performed over the full set of HyperBench instances.
However, for the additional experiments reported in this section, it is more meaningful to restrict
our experiments to exclude hypergraphs that are, roughly speaking, too small or have high
width. Small instances benefit only marginally from algorithmic improvements or parallelism,

2HyperBench instances are often categorised more fine-grained in terms of their origin (cf., [25]). For our
experiments we have found the direct effect of hypergraph size to be more informative and therefore report our
results in this way instead.

3The evaluation in [47] considers only a subset of HyperBench with 3071 instances
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while very high width is of less algorithmic interest as it exponentially effects algorithms that
make use of decompositions. Hence, we propose to exclude such instances to make more
relevant observations. We therefore focus on instances with more than 50 edges and vertices
that are known to have hypertree width at most 6. There are 465 instances in HyperBench
which satisfy these conditions; we will refer to them as HB𝑙𝑎𝑟𝑔𝑒 .

We performed a second set of experiments over the instances in HB𝑙𝑎𝑟𝑔𝑒 to verify our claims
that log-𝑘-decomp is well-suited for parallelisation. For 1 ≤ 𝑛 ≤ 5, we observe the time taken
to find and verify the optimal width of an instance using 𝑛 CPU cores. We report on the times
to find these optimum widths averaged over all instances in HB𝑙𝑎𝑟𝑔𝑒 in Figure 4.2. To avoid a
decreasing number of timeouts from skewing the data we report the average only over instances
that do not timeout for any 𝑛 for a given algorithm. For reference, we also report the (single
core) performance of NewDetKDecomp for the same setting.

We observe approximately linear speedups up to 4 cores, from about 189 seconds on 1 core to
50 seconds for 4 cores for log-𝑘-decomp. This behaviour is expected since our parallelisation
strategy relies on dividing up the search space for bounded separators uniformly over the the
available cores. Since this requires no communication between threads or other overhead that
depends on the degree of parallelisation, the key task of searching for balanced separators scales
linearly in the number of cores. In instances where the search for separators dominates the
running time, such as negative instances where the full search space is explored, analysis of
our algorithm therefore predicts effectively linear scaling of performance. In the data from
Figure 4.2, we observe diminishing returns in the rate of improvement of average running time
starting from 5 cores. However, preliminary experiments on additional different systems do not
confirm this behaviour and there log-𝑘-decomp exhibits linear scaling up to much higher core
counts. Further in-depth experimentation is therefore required to obtain a clearer picture for
the scaling behaviour for a high number of cores.

Very similar scaling can be observed for our Hybrid version. Note that the reported times for
the Hybrid algorithm are slightly higher only due to solving more (harder) instances.

4.7 Additional Experimental Evaluation

We provide here a number of additional details on our implementation, such as the hybridisation
strategy employed in our implementation of log-𝑘-decomp, as well as further experiments to
highlight various properties of our contribution.

4.7.1 Parallel Implementation

For our experiments, we implemented log-𝑘-decomp including all of the optimisations pre-
sented in Section 4.5. As discussed above, a crucial aspect of our algorithm design is that the
use of balanced separators allows us to recursively split the problem into smaller subproblems.
The subproblems are independent of each other and are therefore processed in parallel by our
implementation. Furthermore, following observations we made in Chapter 3, our implementa-
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Figure 4.2: Study of log-𝑘-decomp scaling behaviour w.r.t. the number of processing cores
used.

tion also executes the search for balanced separators in parallel by partitioning the search space
effectively.

4.7.2 Hybrid Approaches

While our algorithm has desirable properties for parallelisation (as has been pointed out in
Section 4.7.1 above), this comes at the cost of some overhead when compared to simpler methods,
in particular det-𝑘-decomp. Especially on small and simple instances the restriction to balanced
separators may act as a detriment to performance that outweighs its benefits for parallelisation
and its effect on severely restricting the search space.

To balance these considerations overall in practice we therefore also consider hybrid variants
of our implementation. Intuitively, we want to use log-𝑘-decomp as long as the subproblems
are still complex, but once they become simple, we want to switch to an algorithm that is
better suited for those cases. For the simpler algorithm, det-𝑘-decomp is the natural choice as
it performs very well on small instances as was shown in [25], where an implementation of
det-𝑘-decomp is provided as part of NewDetKDecomp. To determine when the switch is made,
we implemented two simple metrics to capture the complexity of a hypergraph:

EdgeCount In EdgeCount we simply use the number of edges of the hypergraph |𝐸 (𝐻 ) | as the
measure of complexity.

WeightedCount The WeightedCount metric is characterised by the formula |𝐸 (𝐻 ) | 𝑘
avg𝑒∈𝐸 (𝐻 ) |𝑒 |

where 𝑘 is the width parameter of the algorithm. The additional factor compared to
EdgeCount is best understood as two separate additional weightings. Higher width
implies more complex structure and hence we expect more complexity per edge. On the
other hand, if edges are on average larger, then it becomes easier to find covers and we
therefore also inversely weight by the average cardinality of the edges.
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Table 4.2: Study of two Hybrid methods of log-𝑘-decomp on HB𝑙𝑎𝑟𝑔𝑒 , and a comparison with
NewDetKDecomp and HtdLEO for reference.

Method Threshold Solved Av. runtime (sec.)

WeightedCount 200 395 92.15
WeightedCount 400 411 93.53
WeightedCount 600 410 87.86
EdgeCount 20 171 130.0
EdgeCount 40 219 145.09
EdgeCount 80 292 117.33

NewDetKDecomp [25] - 174 318.93
HtdLEO [86] - 277 779.39

We investigated the effectiveness of these metrics through a series of experiments. In particular,
we ran experiments with both metrics and different thresholds for when to switch from log-

𝑘-decomp to det-𝑘-decomp. To be precise, for a metric 𝑚 and threshold 𝑇 , log-𝑘-decomp
is executed for a subproblem with hypergraph 𝐻𝑖 as long as 𝑚(𝐻𝑖) ≥ 𝑇 . If 𝑚(𝐻𝑖) < 𝑇 , we
switch to an implementation of det-𝑘-decomp written from scratch as part of the code base
of log-𝑘-decomp. A similar strategy was already proposed in this thesis in Chapter 3 when
designing the hybrid algorithm presented in that chapter.

However, in that system no metric for the complexity of a subproblem was employed, but rather
the switch to det-𝑘-decomp was always performed at a fixed recursion depth.

A significant portion of the hypergraphs in HyperBench are relatively small, so that even the
full problem would be too simple for our metrics to be above reasonable thresholds. In those
cases, the execution would be equivalent to simply running det-𝑘-decomp on the instance. We
therefore exclude small hypergraphs from these experiments to obtain more meaningful results
by considering only the HB𝑙𝑎𝑟𝑔𝑒 instances here.

Our results for the experiments on HB𝑙𝑎𝑟𝑔𝑒 are summarised in Table 4.2. Methods Weighted-
Count and EdgeCount refer to log-𝑘-decomp with the respective metric used for hybridisation.
The threshold column refers to parameter 𝑇 in the discussion above. The experiments for all
log-𝑘-decomp hybrid methods had access to 12 cores, the experiments for NewDetKDecomp and
HtdLEO used only 1 core each since they do not support parallelism.

Overall, WeightedCount clearly performs best, especially in the number of solved instances. For
thresholds 400 and 600, approximately 90% of the 465 large instances from HB𝑙𝑎𝑟𝑔𝑒 were solved.
This constitutes a significant improvement over the 37% and 60% achieved by NewDetKDecomp
and HtdLEO, respectively. Note that despite solving more instances – for which det-𝑘-decomp
and HtdLEO timed out – the running time is also at least 3 times lower for WeightedCount. This
is surprising as we do not consider timed out instances in our average running time calculations.

One surprising observation from the table is that the differences in performance between differ-
ent thresholds are much smaller for WeightedCount than for EdgeCount. Further investigation
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suggests that this is due to the WeightedCount metric decreasing much more rapidly as hy-
pergraphs become simpler. At the same time, for subproblems that fall in the range between
200-600, the performance of switching to det-𝑘-decomp immediately is roughly the same (on
average) as the performance of continuing with log-𝑘-decomp for one or two more steps.

While EdgeCount performs worse than WeightedCount, we can still see a clear improvement
over the state of the art methods NewDetKDecomp and HtdLEO. Especially the significant im-
provement over det-𝑘-decomp is important to observe as it clearly demonstrates the benefits
of our hybrid approach. Recall that when we split our problem into balanced subproblems, each
subproblem is then solved independently in parallel. In the hybrid variant we will thus eventu-
ally execute our implementation of the det-𝑘-decomp algorithm on multiple subproblems in
parallel, i.e., we can use an inherently single-threaded algorithm effectively in parallel because
we are able to create balanced subproblems.

4.7.3 HtdLEO with 10 Hour Timeout

As mentioned before, the method used in HtdLEO fundamentally differs from the search algo-
rithm here. In HtdLEO, the problem is encoded to the SAT modulo theories (SMT) setting and the
final solving step is handed off to standard SMT solvers. The encoding in HtdLEO is constructed
in such a way that no width parameter is handed to the solver, rather the encoding will always
return the optimal width as its solution. This is a significant difference to the parameterised
search implemented in log-𝑘-decomp (but also previous algorithms such as det-𝑘-decomp and
BalancedGo).

This difference makes it naturally difficult to compare running times and the number of optimal
solutions directly. To provide a fuller picture we add here Table 4.5 to provide a fuller picture. In
the table we present the results from running the same experiments with HtdLEO but with the
timeout increased to 10 hours. This increase in timeouts naturally makes the average runtimes
difficult to compare to the values in Table 4.1. However, importantly we see that the increase
in solved instances is also moderate, and overall log-𝑘-decomp still solves significantly more
instances than HtdLEO with 10 hours of maximum running time.

4.7.4 Analysis on Scaling by Size

To gain further insight into the performance of each algorithm with respect to solving instances
optimally, we investigate the size of solved and unsolved instances. To this end, Figure 4.3
provides (logarithmic) scatter plots for each of the three algorithms in our tests. In each plot,
each instance is positioned according to its number of vertices and edges. Solved instances for
each algorithm are drawn in green while unsolved instances are drawn in red.

The plots show that our intuition holds true in that solving large instances (in both axis)
significantly benefits from using log-𝑘-decomp. Most of the remaining hypergraphs are either
extremely large, containing thousands of edges and vertices, or belong to very specific CSP
classes which we know to have very high width (significantly beyond the width 10 limit used
in our experiments) through graph-theoretic arguments.
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Figure 4.3: Comparison of solved instances (green) and unsolved instances (red), relative to
their edge and vertex size.

Table 4.3: Comparison of the decomposition methods by how many instances were solved for a
specific width.

Width Virtual Best NewDetKDecomp HtdLEO log-𝑘-decomp

1 709 677 649 709
2 595 586 567 595
3 310 310 273 310
4 386 379 321 386
5 450 38 341 450
6 485 28 307 480
7 124 9 16 108
8 115 1 69 46
9 19 0 1 18

4.7.5 Analysis on Determining LowWidth

We want to analyse for how many instances of HyperBench, each decomposition method could
determine its width and specifically focus on how well it fares as the width increases. Note
that HtdLEO is unique in this respect since it determines the optimal width right away. Thus
if we ask for how many instances HtdLEO could determine if its width is ≤ 5, for example,
we are really just counting how many timeouts there were in general. For the parametrised
decomposition methods, however, this question does give us new insights into how its runtime
scales when looking for decompositions of larger or smaller width.

For this purpose, we first need the concept of the “Virtual Best” method. This notion simply
aggregates the results of all other methods and shows how for how many instances of Hyper-
Bench we know their h𝑤 . We can see in Table 4.3 how each of the three methods fares when
compared against this virtual best method. For widths up to 5, the Hybrid log-𝑘-decomp is
unbeaten, solving all known instances, as well as solving many of them exclusively.

To provide a more detailed analysis, we also compare for how many instances of h𝑤 up to 6,
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Table 4.4: Comparison of the decomposition methods by the upper bounds it could provide.
Note that HtdLEO is not being explicitly considered here, since it directly computes the optimal
width. Thus it would have the number 2544 — its number of solved instances – in each row.

Problem to solve Virtual Best log-𝑘-decomp (Hybrid) NewDetKDecomp log-𝑘-decomp

h𝑤 ≤ 1 3648 3648 36164 3648
h𝑤 ≤ 2 3648 3648 3631 3648
h𝑤 ≤ 3 3637 3637 3355 3567
h𝑤 ≤ 4 3623 3623 2391 3178
h𝑤 ≤ 5 3616 3611 2485 2924
h𝑤 ≤ 6 3370 3253 2897 2349

Table 4.5: Extension of Table 4.1, with running times for HtdLEO extended to 10 hours

Origin of Size of Instances in
Instances Instances Group

Application 75 < |𝐸 | ≤ 100 405
50 < |𝐸 | ≤ 75 514
10 < |𝐸 | ≤ 50 369

|𝐸 | ≤ 10 915

Synthetic |𝐸 | > 100 66
75 < |𝐸 | ≤ 100 422
50 < |𝐸 | ≤ 75 215
10 < |𝐸 | ≤ 50 647

|𝐸 | ≤ 10 95

Total - 3648

HtdLEO [86] 10 Hour Run
#solved Changes 1 hour run

94 + 29
461 + 13
237 ± 0
876 ± 0

13 ± 0
360 + 48
214 + 2
433 +130
78 ± 0

2766 +222

each method can determine whether an instance has h𝑤 of lower than the given number or
not, by finding an HD of such a width or determining that no such HD can exist. Note that this
does not require proving optimality. We can see the results in Table 4.4. We can see that both
log-𝑘-decomp and log-𝑘-decomp (Hybrid) are very good at this, with the Hybrid determining
for 3253 (or almost 90% of) instances whether they have h𝑤 ≤ 6. If we limit ourselves to h𝑤 ≤ 5,
it determines the question for 3611 or almost 99% of instances.

4We note that the reason NewDetKDecomp fails to determine acyclicity (i.e. whether h𝑤 ≤ 1) for all graphs is due
to a bug where it will output a HD of width 2 instead of one of width 1 when given certain acyclic graphs. While of
low practical interest, as determining acyclicity is a trivial problem, it is still the case that NewDetKDecomp in its
current form fails to determine all acyclic graphs of HyperBench correctly.
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4.8 Summary

In this chapter we introduced a novel algorithm log-𝑘-decomp for computing hypertree de-
compositions. Based on new theoretical insights and results on HDs, we were able to propose
an algorithm that constructs decompositions in arbitrary order (rather than, e.g., in a strict
top-downmanner) while achieving a balanced separation into subproblems. In this way, we have
obtained a logarithmic bound on the recursion depth of our algorithm, making it particularly
well suited for parallelisation. We evaluated an implementation of log-𝑘-decomp through
experimental comparison with the state of the art. On the standard benchmark for hypertree
decomposition HyperBench [25], we are able to achieve clear improvements both in the number
of solved instances and in the time required to solve them.

In combination, our theoretical results and experiments demonstrate that log-𝑘-decomp achieves
our goal of effective parallel HD computation. We believe that the performance improvements,
especially on large hypergraphs lay a strong foundation for more widespread adoption of
hypertree decompositions in practice, e.g., for complex query execution in high-performance
database applications.
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Chapter 5

A Distributed Algorithm for
Hypergraph Decompositions

For this third line of research, we focus on another class of algorithm for computing hypergraph
decomposition. Instead of a top-down algorithm, as we had seen in Chapter 3 and in Chapter 4,
we will present a method that produces hypergraph decompositions in a bottom-up fashion, as
we shall explain. We motivate this new approach via two observations. The first observation
is the presence of very challenging instances in the HyperBench dataset. To the best of our
knowledge, these large hypergraphs cannot be optimally solved by any of existing decomposition
methods in the literature. The second observation is the fact that the most powerful computer
systems today are not actually single, independent machines with a shared memory architecture.
Instead, the most powerful computer systems are clusters of computers, which introduce another
property of computation: instead of merely requiring parallelisation, which allows to effectively
use multiple cores of the same machine to solve the same problem, we need algorithms that can
be distributed over multiple shared memory machines, necessitating communication between
the parts of the algorithm that run on different machines.

The concept of candidate tree decompositions [39] (CTD) from Gottlob et al. [39] proved to be a
good fit to our aim of designing a distributed algorithm. As we will explain in this chapter, it
enables us to split the work of computing bags, the building blocks of all possible decompositions,
from the task of finding a decomposition once enough blocks have been found. We shall note
here that the application of the candidate tree framework to the distributed setting is novel
work, and not at all straightforward. The authors of the cited paper introduce CTDs as a general
tool to argue about the complexity of computing different kinds of hypergraph decomposition.

After introducing the necessary concepts, we proceed to present the distributed algorithm
we designed. It consists of three individual programs which are meant to be run on separate
machines inside the same cluster. The first program acts as a coordinator that guides the overall
search, it starts the search and will receive the final decomposition once one is found. It does
not do any computational work. The second program implements the search for new bags
which can be used to form a decomposition. The search for new bags has the property that it
can actually be run on many machines at once, allowing for multiple instantiations of it. The
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coordinator program will dynamically adjust and split the search space accordingly. The last
program of our distributed algorithm implements the actual search for a decomposition based
on the bags founds so far.

We then conclude this chapter by presenting experimental data of our prototype implementation.
We used the Google Cloud Platform (GCP) as the distributed platform to run our algorithm. The
built-in message passing system of the GCP, called PubSub [65], proved to be useful to facilitate
the communication that we need to run the various parts of our algorithm. We also present
preliminary results on a select set of challenging instances from HyperBench.

This chapter is based on ongoing work in collaboration with Mathias Lanzinger.

5.1 The Candidate Tree Decomposition Framework

The distributed approach we will introduce in this chapter is built on key ideas from Gottlob et
al. [39]. We thus present here the underlying definitions.

Vertex-set components. Beforewe can introduce the definitions, we have to first re-introduce
some key notations from Chapter 2, but with a small change to match the notation in [39].
The following framework uses a slightly different definition of component, namely components
as vertex sets. For a given hypergraph 𝐻 and a set𝑊 ⊆ 𝑉 (𝐻 ), a set of vertices 𝐶 ⊆ 𝑉 (𝐻 )
is [𝑊 ]-connected if for any two distinct vertices 𝑣, 𝑣 ′ ∈ 𝐶 there exists a sequence of vertices
𝑣1, . . . , 𝑣ℎ and a sequence of edges 𝑒0, . . . , 𝑒ℎ (ℎ ≥ 1) with 𝑣1 = 𝑣 and 𝑣ℎ = 𝑣 ′ such that 𝑣𝑖 ∈ 𝑒𝑖−1∩𝑒𝑖
and 𝑣𝑖 ∉𝑊 for each 𝑖 ∈ {1, . . . , ℎ}. A set 𝐶 ⊆ 𝑉 (𝐻 ) is a [𝑊 ]-component, if 𝐶 is maximal [𝑊 ]-
connected. For the remainder of this chapter, the definition of component shall be understood
as defined in this paragraph.

Definition 5.1 (Candidate TreeDecomposition [39]). Let𝐻 be a hypergraph andT = ⟨𝑇, (𝐵𝑢)𝑢∈𝑇 ⟩
be a TD of 𝐻 . Let the candidate bags S be a family of subsets of 𝑉 (𝐻 ). If for each 𝑢 ∈ 𝑇 there
exists an 𝑆 ∈ S such that 𝐵𝑢 = 𝑆 , then we call T a candidate tree decomposition of S. We denote
by CTD(S) the set of all candidate tree decompositions of 𝐻 .

Definition 5.2 (Component Normal Form [39]). A tree decomposition T = ⟨𝑇, (𝐵𝑢)𝑢∈𝑇 ⟩ of a
hypergraph 𝐻 is in component normal form (ComNF) if for each node 𝑟 ∈ 𝑇 , and for each child
𝑠 of 𝑟 there is exactly one [𝐵𝑟 ]-component𝐶𝑠 such that𝑉 (𝑇𝑠) = 𝐶𝑠 ∪ (𝐵𝑟 ∩ 𝐵𝑠) holds. We say𝐶𝑠

is the component associated with node 𝑠 .

Definition 5.3 ( [39]). Let 𝐻 be a hypergraph and let S be a family of subsets of 𝑉 (𝐻 ). Let
T ∈ CTD(S) be a TD in ComNF. We say T is a ComNF candidate tree decomposition of S. We
denote by ComCTD(S) the set of all ComNF candidate tree decompositions of 𝐻 .

The definitions are given for TDs. However, the algorithm presented in [39] is applicable
to output GHDs as well, since the focus in that work is only on the bags that make up a
decomposition. The search for the GHD of a given width 𝑘 of a hypergraph 𝐻 can also be
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formulated as the problem of first computing all possible bags with edge cover number 𝑘 , and
then looking for a candidate tree decomposition for this computed set.

The authors in [39] also state a dynamic programming algorithm to show that given a fixed set
S, it is polynomial (in fact even in LogCFL [91]) to find a candidate tree decomposition of S. The
algorithm that we shall design as part of this chapter will differ in one major way from this
algorithm: instead of an eager computation of all bags, we will not need to compute all bags at
once and instead lazily compute them as we encounter new subhypergraphs. Before we can
define our algorithm, we need a way to encode the idea of a subproblem and its connection to
the existence of certain kinds of candidate tree decompositions.

Definition 5.4 (Block [39]). Given a hypergraph 𝐻 , we say that a pair (𝐵,𝐶) of disjoint subsets
of 𝑉 (𝐻 ) is a block if 𝐶 is a [𝐵]-component for 𝐻 or 𝐶 = ∅. Such a block is headed by 𝐵. Let
(𝐵,𝐶) and (𝑋,𝑌 ) be two blocks. We say that (𝑋,𝑌 ) ≤ (𝐵,𝐶) if 𝑋 ∪ 𝑌 ⊆ 𝐵 ∪𝐶 and 𝑌 ⊆ 𝐶 . A
block (𝐵,𝐶) is called satisfied, if there exists a ComNF TD of 𝐻 [𝐵 ∪𝐶], where the root has bag
𝐵. Note that if 𝐶 = ∅, then the block is trivially satisfied.
Lemma 5.5 ( [39]). Let 𝐻 be a hypergraph and 𝐵 ⊆ 𝑉 (𝐻 ). If all blocks headed by 𝐵 are satisfied,
then 𝐻 has a ComNF tree decomposition where 𝐵 is the bag of the root.

In the sequel, we will refer to the two elements of a block (𝐵,𝐶) by the name head for the first
element of the pair 𝐵, and tail for the second element 𝐶 . We note that a satisfied block (𝐵,𝐶)
corresponds to the problem of finding a decomposition D for a given subhypergraph 𝐻 , where
𝑉 (𝐻 ) = 𝐶 and the bag of the root node of D is exactly 𝐵. In the algorithm log-𝑘-decomp from
Chapter 4, this is analogous to a single call of the recursive function Decompwith the connection
subhypergraph 𝐻 ′ = ⟨𝐸 (𝐻 ), ∅, 𝐵)⟩ as the input and the function returning “Accept”.
Definition 5.6 (Basis [39]). For a block (𝐵,𝐶) and vertex set 𝐵′ ⊆ 𝑉 (𝐻 ) with 𝐵′ ≠ 𝐵 and
let (𝐵′,𝐶 ′

1), . . . , (𝐵′,𝐶 ′
ℓ ) be all blocks headed by 𝐵′ such that (𝐵′,𝐶 ′

𝑖 ) ≤ (𝐵,𝐶) for all 𝑖 ∈ [1, ℓ].
We say that 𝐵′ is a basis of (𝐵,𝐶)) if the following conditions hold:
(1) 𝐶 ⊆ 𝐵′ ∪�ℓ

𝑖=1𝐶
′
𝑖 ,

(2) for each 𝑒 ∈ 𝐸 (𝐻 ) such that 𝑒 ∩𝐶 ≠ ∅, 𝑒 ⊆ 𝐵′ ∪�ℓ
𝑖=1𝐶

′
𝑖 ,

(3) and for each 𝑖 ∈ [1, ℓ], the block (𝐵′,𝐶 ′
𝑖 ) is satisfied.

Lemma 5.7 ( [39]). Let (𝐵,𝐶) be a block, and 𝐵′ a basis of (𝐵,𝐶). Then (𝐵,𝐶) is satisfied.

Lemma 5.8 ( [39]). Let 𝐻 be a hypergraph and ⟨𝑇, (𝐵𝑢)𝑢∈𝑇 ⟩ be a ComNF TD of 𝐻 . Let 𝑟 ∈ 𝑇 be a
non-leaf node. For each child 𝑠 of 𝑟 , let 𝐶𝑠 be the [𝐵𝑟 ]-component associated with 𝑠 . The following
two statements are true

• (𝐵𝑠 , 𝐷) ≤ (𝐵𝑟 ,𝐶𝑠) if and only if 𝐷 is either a component associated with a child of 𝑠 , or if
𝐷 = ∅,

• 𝐵𝑠 is a basis of the block (𝐵𝑟 ,𝐶𝑠).
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Algorithm 5.1: ComNF Candidate Tree Decomposition
Input: A hypergraph 𝐻 and a set S ⊆ 2𝑉 (𝐻 ) .
Output: “Accept” if ComCTD(S) ≠ ∅, “Reject” otherwise

1 begin
2 blocks � all blocks headed by any 𝐵 ∈ S
3 Mark all blocks (𝐵,𝐶) ∈ blocks as satisfied where 𝐶 = ∅
4 repeat
5 foreach (𝐵,𝐶) ∈ blocks that is not marked as satisfied do
6 foreach 𝐵′ ∈ S \ {𝐵} do ⊲ Check if there exists a basis 𝐵′ of (𝐵,𝐶)
7 if 𝐵′ is a basis of (𝐵,𝐶) then
8 Mark (𝐵,𝐶) as satisfied

9 if For some 𝐵 ∈ S, all blocks headed by 𝐵 are marked as satisfied then
10 return Accept

11 until no new blocks marked

A basis is essentially a witness that shows us that a given block can be satisfied, i.e., there exists
a decomposition that covers the component in its tail. With these definitions, we can now
present the original CTD algorithm from [39].

Algorithm 5.1 first looks at all bags, and marks all those which are trivially satisfied. Next
it performs, bottom-up, the search for a basis for all blocks that are not yet satisfied. This is
repeated until no new marked nodes can be found. The blocks correspond to all possible bags
of nodes that may appear in a candidate tree decomposition. The algorithm starts at the leafs,
which are represented by trivial blocks, and extends them upwards. This process finds CTDs
which cover larger and larger subhypergraphs, until a CTD for the entire hypergraph is found
on line 9. This corresponds to checking whether the case defined in Lemma 5.5 is fulfilled.

Example 5.1. We shall show an example run of Algorithm 5.1. As the input hypergraph, we
fix 𝐻 to be the one visually defined in Figure 5.1. We are also given a set of blocks in the same
figure. We shall assume that we are already on line 2, and the set blocks is exactly as shown
in the table. For the sequel, we shall simply identify each block with its stated ID, as seen in
the table. On line 3, the algorithm will mark all trivial blocks as satisfied. In our example these
are the three blocks ({𝑎, 𝑏, 𝑐}, ∅), ({𝑐, 𝑑, 𝑒, 𝑓 , 𝑖}, ∅) and ({𝑓 , 𝑔, ℎ, 𝑖, 𝑗}, ∅). Then we enter the loop
which runs from line 4 to line 11. We note that the block 5 has as basis the header {𝑓 , 𝑔, ℎ, 𝑖, 𝑗}.
This is due to the trivial block 6, which covers the edges 𝑒6 and 𝑒7, which intersect with the tail
of block 5. We also note that block 4 has as basis the header {𝑎, 𝑏, 𝑐}, since edges 𝑒3, 𝑒4 and 𝑒5
are covered by the trivial block 1. We find no more unmarked blocks that have a basis, and
exit the loop. On line 9, we check if there is a single header such that all its blocks are satisfied.
Indeed, the header {𝑐, 𝑑, 𝑒, 𝑓 , 𝑖} has all its blocks satisfied after the first round of the loop. Thus
the algorithm accepts.
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𝜆 = {𝑒1, 𝑒2}
𝜒 = {𝑐, 𝑑, 𝑒, 𝑓 , 𝑗}

𝜆 = {𝑒3, 𝑒5}
𝜒 = {𝑎, 𝑏, 𝑐}

𝜆 = {𝑒6, 𝑒8}
𝜒 = {𝑓 , 𝑔, ℎ, 𝑖, 𝑗}

ID Block Conent

1 ({𝑎, 𝑏, 𝑐}, ∅)
2 ({𝑎, 𝑏, 𝑐}, {𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗})
3 ({𝑐, 𝑑, 𝑒, 𝑓 , 𝑖}, ∅)
4 ({𝑐, 𝑑, 𝑒, 𝑓 , 𝑖}, {𝑎, 𝑏})
5 ({𝑐, 𝑑, 𝑒, 𝑓 , 𝑖}, {𝑔, ℎ, 𝑖})
6 ({𝑓 , 𝑔, ℎ, 𝑖, 𝑗}, ∅)
7 ({𝑓 , 𝑔, ℎ, 𝑖, 𝑗}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒})

Figure 5.1: A hypergraph 𝐻 , a GHD of 𝐻 with width 2, and a set of blocks over 𝐻 , as used in
Example 5.1

5.2 Distributed Algorithm

After having introduced the necessary definitions and lemmas in Section 5.1, we now proceed
to introduce our distributed algorithm.

Our algorithm has three distinct parts. A coordinator which controls the entire procedure, but
does not actually do any computational work itself, the workers which perform the compu-
tationally expensive search for balanced separators and the CTD Checker, which performs
something similar to Algorithm 5.1, but adapted for our setting where we do not have access to
all possible bags right away, but instead receive them in a streaming model. The idea here is to
determine as soon as possible when the conditions for finding a decomposition of the input
hypergraph are met. This corresponds essentially to a lazy computation of the bags, whereas
the original algorithm from Section 5.1 can be seen as an eager computation of all possible bags
prior to the search for decompositions. Since it is possible that only a small number of blocks
need to be considered to find a decomposition, the lazy approach offers potential speedups of
the computation time.

The Coordinator algorithm. The pseudo-code for the coordinator is given in Algorithm 5.2.
The coordinator is the only algorithm that actually receives input when it starts, the other
parts need to be send their inputs via communication channels. These channels are being
set up on line 2. We assume here that the underlying platform allows some kind of reliable
one-to-one communication. The coordinator first waits for workers and the CTD Checker to
register themselves. This happens on lines 4 to 12. Note that, as it is written, the coordinator will
start once at least one worker and the (singular) CTD Checker have registered themselves. In
case of multiple workers, this means that all workers need to register themselves before the CTD
Checker does. Next the coordinator sets up a heap, on line 13. This heap takes subhypergraphs
as input. It is called the component heap, as these subhypergraphs will be the output from
performing various separations on the input hypergraph, thus the name. The heap is initialised
on line 14, with the input hypergraph as the first element. After this begins the main loop of the
coordinator, from lines 15 to 37. The coordinator selects the current subhypergraph on line 16.
In case current has less than 𝑘 edges, the coordinator will skip the search and directly send its
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Algorithm 5.2: Coordinator
Input: A hypergraph 𝐻
Parameter :An integer 𝑘 ≥ 1.
Output: “Accept” if there is a GHD of width 𝑘 for 𝐻 , “Reject” otherwise

1 begin
2 inputChannel, toWorker, toCTD � setting up communication channels
3 workersRegistered � false
4 repeat
5 message �← inputChannel ⊲ wait for incoming message
6 if message is from a worker then
7 workerID � numWorkers + 1
8 numWorkers � numWorkers + 1
9 toWorker ← confirm registration of Worker and send workerID and 𝐻

10 else message from CTD Checker
11 toCTD ← confirm registration of CTD Checker and send 𝐻
12 until at least one Worker and the CTD Checker registered
13 compHeap � initialise empty component heap
14 compHeap.Add ( 𝐻 ) ⊲ initialise the heap with the input hypergraph
15 repeat
16 current � compHeap.getNextElement()
17 if |current| ≤ 𝑘 then
18 toCTD � send trivial blocks to CTD Checker
19 else
20 generators � create |numWorkers|-many generators with edges from current
21 toWorkers ← generators and current ⊲ each worker gets a full copy of generators
22 allWorkersIdle � false
23 numIdle � 0
24 repeat
25 message �← inputChannel ⊲ wait for incoming message
26 if message is from worker and confirms that it’s idle then
27 numIdle � numIdle + 1
28 if |numIdle| = |numWorkers| then
29 allWorkersIdle � true
30 else if message is from worker and reports new subhypergraphs then
31 newSHGs � extract new subhypergraphs from message
32 compHeap.Add ( newSHGs ) ⊲ keep track of new found subhypergraphs
33 else if message from CTD Checker and confirms that a decomp found then
34 toWorker ← tell workers to end the search
35 return Accept

36 until allWorkersIdle
37 until compHeap is empty
38 toWorker ← tell workers to end the search
39 return Reject
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Algorithm 5.3:Worker
1 begin
2 inputChannel, toCoord, toCTD � setting up communication channels
3 toCoord ← send registration request to Coordinator
4 workerID �← inputChannel ⊲ wait for response and set worker id
5 𝐻 �← inputChannel ⊲ receive input hypergraph from coordinator
6 searchActive � true
7 repeat
8 message �← inputChannel ⊲ wait for incoming message
9 if message from Coordinator; ending the search then
10 searchActive � false
11 else if message from Coordinator; sending new generators then
12 current � extract from message
13 generator � extract from message, using workerID as index
14 foreach sep ∈ generator do
15 if sep is a balanced separator of current then
16 blocks � create all blocks (𝐵,𝐶) where 𝐵 ⊆ �

sep and 𝐶 a
[B]-component of 𝐻

17 toCTD ← blocks ⊲ sending blocks to CTD Checker
18 comps � [sep]-components of current
19 toCoord ← comps ⊲ sending new components to Coordinator

20 toCoord ← sending idle message to Coordinator
21 until not searchActive

blocks to the CTD Checker. Otherwise it generates the generators on line 20. These generators
iterate over all choices of 𝑘 edges among the subhypergraph current. The pair of generators and
current is send to all workers. Finally, the coordinator waits for a response in the following
loop, running from line 24 to 36. It waits for a message, and checks its contents. If the message
is from a worker signalling that it is idle (i.e. it has finished its slice of the search), then the
coordinator checks if all workers are idle on line 28, if so, the coordinator sets a flag and will
continue with a new subhypergraph. If a worker has produced new subhypergraphs, then the
coordinator will add these to the heap on line 32. Lastly, if the CTD Checker reports that it has
found a decomposition, the coordinator signals the workers to quit and returns “Accept”. If the
heap has been fully exhausted and no decomposition has been found, then the coordinator tells
the workers to quit on line 38 and returns “Reject”.

The Worker algorithm. Unlike the coordinator, the worker receives no input when it starts.
Instead it first sets up the required communication channels on line 2. Next it registers itself
with the coordinator. Note that this design choice means that the coordinator has to be running
first, thus inducing an order on which parts of our distributed algorithm need to be started
first. Once the worker receives the input hypergraph and its workerID from the coordinator on
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Algorithm 5.4: CTD Checker
1 begin
2 inputChannel, toCoord � setting up communication channels
3 toCoord ← send registration request to Coordinator
4 𝐻 �← inputChannel ⊲ receive input hypergraph from coordinator
5 decompFound � false
6 rootBlock � (∅,𝑉 (𝐻 ))
7 blocks � {rootBlock} ⊲ Add the root block as the starting point
8 repeat
9 message �← inputChannel ⊲ wait for incoming message
10 if message from Coordinator; ending the search then
11 break
12 else if message from Worker; delivering new blocks then
13 newBlocks � extract from message
14 blocks ← blocks ∪ newBlocks
15 foreach (𝐵,𝐶) ∈ blocks do
16 foreach (𝐵′,𝐶′) ∈ blocks where (𝐵′,𝐶′) ≠ (𝐵,𝐶) do
17 if 𝐵′ is a basis of (𝐵,𝐶) then
18 Mark (𝐵,𝐶) as satisfied

19 if rootBlock is marked as satisfied then
20 toCoordinator ← send message that decomposition was found
21 decompFound � true
22 until not decompFound

lines 4 and 5, it starts the main loop. This loop runs from lines 7 to 21. It begins by waiting for
a message. If the message is from the coordinator and signals an end to the search, then the
worker sets a flag and will subsequently terminate. Otherwise, it receives from the coordinator a
set of generators and a subhypergraph current. On line 13, the worker uses its own workerID as
the index to select its own generator from the entire set it received. The workerID only serves
the purpose of being an index for this set. Next the worker iterates over all edge combinations
produced by the generator, seen on lines 14 to 19. It checks if the current edge set is a balanced
separator for current. If so, it generates all its blocks. Note that these are based on components
generated by separating the global input hypergraph 𝐻 . These blocks are sent to the CTD
Checker on line 17. Next the worker produces the components when separating against current,
on line 18 and sends these to the coordinator on line 19. This allows the coordinator to direct
the search for all relevant blocks. Once the worker is done with its current search, it sends an
idle message to the coordinator on line 20.

The CTD Checker algorithm. The CTD Checker receives no input when it starts. On line
2, it sets up the needed communication channels. Next it sends a registration request to the
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coordinator on line 3. It receives as answer the input hypergraph𝐻 . Next it sets up the rootBlock
on line 6. This will play a role when determining whether a decomposition has been found. It
uses the empty set as the head, and the entire input hypergraph as its tail. Note that this is
using vertex sets as components, to follow the definitions. Next the set of all currently known
blocks is set up on line 7, with rootBlock as the first block. After this, the CTD Checker enters
its main loop which runs from lines 8 to line 22. It waits for a new message on line 9. If the
coordinator signals that all subhypergraphs have been searched to exhaustion, then the CTD
Checker breaks from the loop and subsequently terminates. Otherwise, it can receive a new
block from one of the workers. It adds the newly found blocks to the known set on line 14.
After this, it performs a comparison among all known blocks on lines 15 to 18, checking which
blocks are currently satisfied. After this, on line 19 the CTD Checker tries to see if rootBlock is
satisfied. If so, it reports to the Coordinator on line 20 that a decomposition has been found. It
sets a flag and subsequently terminates.

Example 5.2. We will now go through an example run of the distributed algorithm. As with
Example 5.1, we shall use the hypergraph 𝐻 from Figure 1.2 as the input. The parameter
for 𝑘 is set to be 2, and we assume an instance of the Coordinator, a number of instances of
the Worker and one instance of the CTD Checker are already running and have set up their
respective communication channels. The Coordinator begins by registering all instances of the
workers and the sole CTD Checker instances, as seen from lines 6 to 16. Next the compHeap
is initialised with the input hypergraph 𝐻 on line 18. The Coordinator proceeds to send the
current subhypergraph from the heap to the workers on lines 24 to 25, unless a trivial case is
found where the current subhypergraph has size 𝑘 or less, in which case the Coordinator skips
the workers and directly sends the trivial blocks to the CTD Checker in their stead. Assuming
the workers did receive some input, the Coordinator waits for them finish. Meanwhile, the
workers look for all balanced separators of 𝐻 . At width 2, there are 7 such balanced separators.
The reason is that the edge 𝑒2 itself is already a balanced separator, and thus every combination
of it with the remaining 7 edges is one too. For each such combinations, the workers will send
the produced components to the Coordinator, which in turn sends these back to the workers for
more balanced separators to find, until only graphs of size 2 or less remain. We will not try to
list all possible balanced separators here. Once enough blocks have reached the CTD Checker,
it will find at least one block that in turn satisfied the rootBlock. We will not go into detail here,
as the this corresponds essentially to Algorithm 5.1 and we already have an example run of it
in Example 5.1. We assume here that CTD Checker will eventually reach line 20 and tell the
Coordinator to end the search. The Coordinator in turn sends a message to the workers to end
their search on line 38 and then returns Accept on the next line.

5.2.1 Correctness of the Distributed Algorithm

Next, we will establish the correctness of the distributed algorithm. Our strategy for this will be
to show a translation of successful runs of Algorithm 5.1 into runs of our distributed algorithm,
for a specified set of bags. Before we can do this, however, we first need to establish the set
of bags of nodes which are computed during the run of the distributed algorithm for a given
hypergraph and width parameter. Our goal is to show that this set is the same set of bags as
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are considered by the Parallel Balanced Separator algorithm given in Chapter 3, defined in
Algorithm 3.1. That these two sets coincide is of course no coincidence, we specifically designed
our distributed algorithm with this property in mind. The reason we chose as our target set of
bags the ones produced by the Parallel Balanced Separator algorithm from Chapter 3 is that we
want to utilise the Balanced Separators Approach. To formally prove our claim, we first need to
define the set of bags in question.

To speak about all possible bags produced by Algorithm 3.1, we need to define the possible
subhypergraphs visited by the algorithm. We define a few helper functions to make this easier.

BalancedComp(𝐻 ′, 𝑘) = {𝑐 | ∃sep ∈ 𝐸 (𝐻 ′)𝑘 s.t. sep is a balanced separator of 𝐻 ′

∧ 𝑐 is a [sep]-component of 𝐻 ′}
ParBalSepHGs(𝐻 ′, 𝑘) = 𝐻 ′ ∪

�
𝑐∈BalancedComp(H’,k)

ParBalSepHGs(𝑐, 𝑘)

The function ParBalSepHGs(𝐻 ′, 𝑘) describes the set of subhypergraphs visited by Algorithm 3.1
from Chapter 3, when given as input the hypergraph 𝐻 ′ and using the integer 𝑘 for the width
parameter. Due to the recursive nature of the algorithm it describes, this function too is recursive.

Lemma 5.9. For a given hypergraph 𝐻 and a positive integer 𝑘 , the set of all possible values
assigned to subSep on line 11 of the Parallel Balanced Separator algorithm, given in Algorithm 3.1
in Chapter 3, is exactly

BagsGHD(𝐻,𝑘) = {𝑋 | ∃sep ∈ 𝐸 (𝐻 )𝑘 s.t. 𝑋 ⊆ sep∧
∃𝐶 ∈ ParBalSepHGs(𝐻,𝑘) s.t. sep is a balanced separator of 𝐶}

Proof of Lemma 5.9. To show this claim, we first observe that the function ParBalSepHGs(𝐻,𝑘)
captures exactly the subhypergraphs which are traversed during a run of Algorithm 3.1: Of
course 𝐻 itself is included and if there exist balanced separators of size 𝑘 for 𝐻 , then the
algorithm continues recursively by traversing any components created by separating 𝐻 against
these balanced separators. This ends until either a subhypergraph is found that permits no
balanced separators of this size, or until we encounter the trivial case where the currently
investigated subhypergraph itself has edge cover number of 𝑘 or less. Algorithm 3.1 assigns
to subSep vertex sets based based on its choice of edge cover in sep. These are the balanced
separators it is trying to find. In addition to the full set of vertices in sep, subSep can also be
assigned every possible subset of sep, as seen on line 20. Of course, this is exactly what is
expressed in the set BagsGHD(𝐻,𝑘). □

Next we establish that our distributed algorithm is designed to consider blocks with heads that
match exactly this same set.
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Lemma 5.10. For a given hypergraph 𝐻 and a positive integer 𝑘 , the union of all heads of blocks
produced by the Worker instances on line 16 of Algorithm 5.3 during a run of the distributed
algorithm is exactly the same set as BagsGHD(𝐻,𝑘).

Proof of Lemma 5.10. This claims follows from the observation that the set of all subhypergraphs
investigated by our distributed algorithm, for a given input hypergraph 𝐻 and a positive integer
𝑘 , is exactly ParBalSepHGs(𝐻,𝑘). To see that this observation holds, we look at how the
distributed algorithm chooses new subhypergraphs for the workers to investigate. This is
controlled by the Coordinator, described in Algorithm 5.2. The Coordinator uses the compHeap
to determine which subhypergraph to send to the workers next. This set is initialised by 𝐻 , as
can be seen on line 18. After this, the Coordinator waits for workers to send it new components,
as seen on lines 35 to 36. The workers, on the other hand, investigate one subhypergraph at a
time, and try to find balanced separator of size 𝑘 from the set 𝐸 (𝐻 ) such that the separator splits
the current subhypergraph into components at most half the size of the subhypergraph itself. If
no such separator exists, they do nothing. If they do find a balanced separator sep, they compute
all relevant blocks, seen on line 16 of Algorithm 5.3 and they also compute [sep]-components
of current, where current is the subhypergraph it is currently investigating. Then the workers
sends these components back to the Coordinator on line 19. We can observe that this reflects
exactly the construction of ParBalSepHGs(𝐻,𝑘). The only thing left to argue is the nature of
the specific bags created. These bags are exactly the heads of the blocks that the worker creates.
As was mentioned, this happens on line 16 of Algorithm 5.3. We see that the worker indeed
iterates over all possible subsets of the balanced separator. Thus, this corresponds exactly to
the set BagsGHD(𝐻,𝑘). □

At this point, we can already make use of the lemmas from Section 5.1 to make some observation
about the set of bags BagsGHD(𝐻,𝑘), for a given hypergraph 𝐻 and positive integer 𝑘 . By the
correctness of the Parallel Balanced Separator algorithm, given in Algorithm 3.1in Chapter 3,
we know that it accepts if and only if there is a GHD of 𝐻 with width 𝑘 or less. More strictly,
the Parallel Balanced Separator algorithm searches for GHDs which are in a normal form which
is stricter than ComNF. Thus, by Lemma 5.9, if it accepts on input 𝐻 and 𝑘 , we have that
ComCTD(BagsGHD(𝐻,𝑘)) ≠ ∅. Putting all this together, we get the following corollary.
Corollary 5.11. For a given hypergraph 𝐻 and positive integer 𝑘 , it is the case that there is a
GHD for 𝐻 of width 𝑘 or less if and only if ComCTD(BagsGHD(𝐻,𝑘)) ≠ ∅.

Now we have all we need to establish the correctness of the distributed algorithm we have
introduced in this section.

Theorem 5.12. The distributed algorithm described here consisting of three parts running con-
currently on separate machines: a single instance of the coordinator, described in Algorithm 5.2, a
single instance of the CTD Checker as described in Algorithm 5.4 and some number of instances of
the worker as described in Algorithm 5.3, will return accept at the coordinator instance when given
as input a hypergraph 𝐻 and a positive integer 𝑘 if and only if ComCTD(BagsGHD(𝐻,𝑘)) ≠ ∅.

113



5. A Distributed Algorithm for Hypergraph Decompositions

Proof of Theorem 5.12. By Lemma 5.10, we know that our distributed algorithm will eventually
produce the entire set BagsGHD(𝐻,𝑘) as blocks, which are pairs (𝐵,𝐶) where 𝐵 is an element
of BagsGHD(𝐻,𝑘) and 𝐶 is a [𝐵]-component of 𝐻 . These blocks will eventually all arrive at
the CTD Checker, as described in Algorithm 5.4. Each time a new block arrives, the CTD
Checker repeats the lines 15 to line 21. Note that the nested loops from line 15 to line 18 –
used to mark which blocks are already satisfied – is exactly the same as on lines 5 to 8 from
Algorithm 5.1. Next the CTD Checker will try to see if the root block has been satisfied on line
19 of Algorithm 5.4. Note that the only way the root block (∅,𝑉 (𝐻 )) could be satisfied, is if
there is a basis 𝐵′ s.t. all blocks headed by 𝐵′ are marked as satisfied. The reason for this is
that the tail of the root block is the entire input hypergraph, and thus a basis of it needs to
cover every edge in the input hypergraph, in every [𝐵′]-component of 𝐻 . This description
must include all possible blocks that can be headed by 𝐵′. Therefore, this is the same condition
as the check on line 9 of Algorithm 5.1. In other words, the CTD Checker – once it received
every block produced by the workers – will accept if and only if Algorithm 5.1 accepts when it
is given as input the set of bags BagsGHD(𝐻,𝑘). As was shown in [39], Algorithm 5.1 is sound
and complete, and thus so is our distributed algorithm. □

5.3 Optimising the Basis Check

In this section we will focus on a key challenge for an efficient implementation of the distributed
algorithm we introduced in Section 5.2. Since the original algorithm from [39] was not meant
to be implemented as is, it simply described the search for a basis of a block as a nested loop
search among all possible pairs of blocks, and this search is repeated until a fixpoint is reached.
This means we need at least a quadratic number of comparisons among all possible bags. If
we translate this approach to our distributed setting, where we compute the set of bags in a
lazy fashion, it means that the check for which blocks are satisfied by searching for a basis will
decrease in performance by a square function of the number of all bags found so far. While this
is not major problem for small hypergraphs and widths, we shall remind the reader that our
entire reason for this line of research was to solve instances that all other approaches failed to
optimally solve so far, and these include some of the largest instances of HyperBench with over
100 hyperedges. If we consider these large instances, then iterating through all pairs of blocks
becomes very unrealistic, even for relatively low widths such as 5. At 1005, it would already
be challenging to keep that set in memory and the quadratic time needed for the basis check
would be a major obstacle to solving such instances in reasonable time.

Thus we set out to find ways to optimise the search for a basis for a given block among a set of
already computed blocks, or the “basis check”, as we shall call it in this section. In order to find
ways to speed-up the basis check, we need to find properties which every basis needs to fulfil
and which allow us to quickly discard large parts of the search space. The definition of a basis is
given in Definition 5.6. For a given block (𝐵,𝐶), a basis 𝐵′ is a vertex set such that there exists
a set of blocks (𝐵′,𝐶′

1), . . . , (𝐵′,𝐶′
ℓ ) such that (𝐵′,𝐶𝑖) ≤ (𝐵,𝐶) for all 𝑖 ∈ [1, ℓ]. The definition

of the “≤” operator for two blocks is given in Definition 5.4. For two blocks (𝐵,𝐶), (𝑋,𝑌 ), we
have that (𝐵,𝐶) ≤ (𝑋,𝑌 ) iff 𝐵 ∪𝐶 ⊆ 𝑋 ∪ 𝑌 and 𝐶 ⊆ 𝑌 . Thus, for one block to be smaller than
another, its tail has to be a (not necessarily strict) subset of the other block’s tail. We will use
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Table 5.1: A visual example for the look-up table used to find supersets quickly.

Element Sets containing it
𝑎0 {𝑆 ′ | 𝑆 ′ ∈ S ∧ 𝑎0 ∈ 𝑆 ′}
...

...
𝑎𝑖 {𝑆 ′ | 𝑆 ′ ∈ S ∧ 𝑎𝑖 ∈ 𝑆 ′}
...

...
𝑎𝑛 {𝑆 ′ | 𝑆 ′ ∈ S ∧ 𝑎𝑛 ∈ 𝑆 ′}

this property to pre-filter the blocks which need to be considered for the basis check: Given a
set of blocks B and a particular block (𝐵,𝐶) ∈ B, we want to quickly determine the following
sets:

SubsetBlocks(B, (𝐵,𝐶)) = {(𝐵′,𝐶′) | (𝐵′,𝐶′) ∈ B ∧𝐶′ ⊆ 𝐶}
SupersetBlocks(B, (𝐵,𝐶)) = {(𝐵′,𝐶′) | (𝐵′,𝐶′) ∈ B ∧𝐶 ⊆ 𝐶′}

The reason we need both the subsets and superset blocks is that we want to avoid having to
run the entire nested search every time a new block arrives. Instead, the goal is to determine
two minimal sets of “relevant” blocks: those blocks which might be part of a basis of the newly
added block, and vice-versa, those blocks for whom the new block itself might act as (part of) a
potential basis. By using the knowledge that only these sets need to be considered, we avoid
the need to look at al possible pairs of blocks every time a new block arrives.

In order to find these sets efficiently, we have implemented a custom data structure for the
superset check. As we will explain, this same data structure can actually be used to look for
subsets as well, though for this translation of the search for subsets to the search for supersets
we will need to fix the domain or “universe” among the family of sets we get as inputs. This
universe is simply the set 𝑉 (𝐻 ) for the given input hypergraph 𝐻 .
We will also introduce a look-up table, which for any given element in the universe 𝑣 ∈ U,
and a family of subsets S = {𝑆0, . . . , 𝑆𝑛} where 𝑆𝑖 ⊆ U for each 𝑖 ∈ [0, 𝑛], will produce the set
{𝑆 ′ | 𝑆 ′ ∈ S ∧ 𝑣 ∈ 𝑆 ′}. The table is internally implemented as an associated array, or map, and
allows constant time access to these sets. The table itself can be generated in a preprocessing
step in linear time: simply traverse each element in a set, and indicate for each element in the
table which additional index needs to be added to its value list.

We now proceed to introduce the two data structures. For each, we have two methods. One for
indexing a new set, updating the internal look-up table and another method which takes as
input an arbitrary set and outputs all index sets which are subsets (resp. supersets) of the input
set. We assume in the given pseudo-code that each set has a unique identifier by which it can
be referred to, and thus it is not necessary to always copy the entire set. This identifier could be
as simple as an index in a global list of all unique sets encountered so far.
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Algorithm 5.5: Superset Search data structure
Type: LookUp = a mapping from 𝑉 (𝐻 ) to 2𝐸 (𝐻 )
Type: allSets = list of all sets indexed so far

1 Method AddSet(inputSet)
2 foreach 𝑣 ∈ inputSet do
3 currentSets � LookUp[𝑣] ⊲ Check current mappings for 𝑣
4 currentSets = currentSets ∪ inputSet
5 LookUp[𝑣] = currentSets ⊲ Adding inputSet to value list
6 allSets = allSets ∪ inputSet

7 Method GetSuperset(inputSet)
8 if inputSet = ∅ then
9 return allSets ⊲ Special case to handle ∅

10 hashTable ≔ initialise a hash table
11 foreach 𝑣 ∈ inputSet do
12 currentSets � LookUp[𝑣] ⊲ Check current mappings for 𝑣
13 foreach 𝑠 ∈ currentSets do
14 if mapping hashTable[𝑠] does not exist then
15 hashTable[𝑠] = 1 ⊲ first time this indexed set was encountered
16 else
17 hashTable[𝑠] = hashTable[𝑠] + 1 ⊲ increment the value

18 output � ∅
19 foreach key value 𝑠 ∈ hashTable do
20 if hashTable[𝑠] = | inputSet | then
21 output = output ∪ 𝑠

22 return output
23 Method GetAllSets()

24 return allSets

Superset data structure. The superset data structure is detailed in Algorithm 5.5. The way
this should be read is that there is a single object, which has two methods by which it can be
accessed. The first is AddSet, which takes as input a subset of 𝑉 (𝐻 ) for some hypergraph 𝐻
(in fact, there is no need to explicitly provide the entire set 𝑉 (𝐻 )). AddSet iterates over all
vertices of this input set and updates the look-up table to know which vertices occur in which
indexed set. The other method GetSupersets also takes an inputSet as argument and then
does the following. The goal is to look at all sets that share some element of the input set,
and to compute the intersection of them. In order to do this efficiently, we need slightly more
complicated construction, however. We use a hash table, defined on line 10. This will map each
set to a count of vertices of the input set which it contains. So for each vertex of the input set,
we use the look-up table to get the indexed sets which share this vertex. Then we go over this
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Algorithm 5.6: Subset Search data structure
Type: superSet = superset data structure; detailed in Algorithm 5.5

1 Method AddSet(inputSet, universe)
2 diffSet � universe \ inputSet
3 superSet.AddSet(diffSet)
4 Method GetSubset(inputSet, universe)
5 diffSet � universe \ inputSet
6 if diffSet = ∅ then
7 temp � superSet.GetAllSets() ⊲ Special case
8 output � ∅
9 foreach 𝑠 ∈ temp do
10 s = universe \ s
11 output = output ∪ 𝑠

12 return output
13 superSetsDiffs � superSet.GetSuperset(diffSet)
14 output � ∅
15 foreach 𝑠 ∈ superSetsDiffs do
16 s = universe \ s
17 output = output ∪ 𝑠

18 return output

set of indexed sets, and increment the corresponding value in the hash table, or initialise it to
1 if it is the first time we encounter this set. Intuitively, the hash table just tells us how large
the intersection with the input set is, for a given indexed set. Clearly, for any superset, this
intersection must be the size of inputSet itself. Thus, on lines 19 to 21, we traverse the hash table,
and only output the index sets which meet this condition. Note that the empty set requires
special treatment in GetSuperset, for this purpose we keep a separate list of all indexed sets
and return it when we get as input the empty set.

Subset data structure. The subset data structure is detailed in Algorithm 5.6. The basic
observation here is this: given a universeU and subsets 𝑆1, 𝑆2 ⊆ U, then we have that 𝑆1 ⊆ 𝑆2
if and only ifU \ 𝑆2 ⊆ U \ 𝑆1. Thus, if we fix the universe against which to perform the set
difference, we can express the subset relation via the superset relation of the inverse sets, where
inverse is understood as the set difference against the universe. As can be seen in the algorithm,
the two methods AddSet and GetSubsets require the universe as an additional argument, in
addition to an input set. Each method call then translates the input to the inverse against the
universe and calls the superset data structure defined above. As before, there is a need for
a special case. For the subset data structure, we need to consider the case that the input set
is exactly the universe. In this case we return all sets from the superset data structure, after
inverting them again.

117



5. A Distributed Algorithm for Hypergraph Decompositions

5.4 Implementation and Preliminary Experimental Evaluation

In this section, we want to present experimental data on the current prototype that we have
developed as part of our ongoing work. We stress that this is our first working version, and
essentially still a proof of concept. As such there is still ample room for improvement. We have
implemented the distributed algorithm we described in Section 5.2. Our implementation already
incorporates the optimisation to the base check we detailed in Section 5.3. In this section, we
also report on some preliminary results of our prototype. We have already some very promising
results and show in select cases clear improvements over our previous decomposition methods.

5.4.1 Prototype Implementation

We have chosen the Google Cloud Platform (GCP) as the platform for our prototype. We stress
that the algorithmwe presented in this chapter is not limited to the GCP and can be implemented
on any distributed system. The only requirement is that some form of rudimentary message
passing between individual machines needs to be supported, which is a requirement that – to
our knowledge – is met by every commercial cloud platform. One reason for choosing GCP
was its good integration with the Go programming language, with many of its APIs being
implemented as Go libraries. We chose the Go programming language in order to quickly build
on the shared code base between BalancedGo and log-𝑘-decomp. We wanted to use the same
idea of communication channels from Go in the distributed setting as well. Thus we decided
to make use of Google PubSub, a messaging middleware. In PubSub, messages are sent to
“topics” and can be read via individual subscriptions to these topics, where each subscription
gets distinct copies of each message sent to a topic. For our implementation, we need only three
such topics: “to_worker”, “to_coordinator” and “to_CTDCheck”. For the workers, this means
that in principle all workers get the same messages. Using their unique ID, they can then extract
the part of the message block unique to them. As there is only one unique coordinator and one
CTDChecker instance active during any run, the recipient in those two cases is always clear.

5.4.2 Methodology

For our experiments, we used a VM on the GCP, running on the following software and hardware.
The VM was running the Linux distribution Debian 10, using kernel version 4.10.020. The
underlying CPU was the AMD EPYC 7B13, running 112 logical cores, clocked at 2.5 GHz and
the available RAM was 224 GB. For these experiments, we ran all instances of the distributed
algorithm on one machine. This restriction allowed us to better compare our distributed
algorithm against existing methods, as we can simply run them on the exact same hardware.
We do note, however, that the distributed algorithm is designed to run on an arbitrary amount
of machines. We proceed to detail how we ran our experiments.

The Need for Testing on a Small Sample. As the underlying benchmark, we will once again
use HyperBench [25]. We are not interested on running experiments on all of HyperBench,
however. Instead, we want to show how effective our prototype is at solving what we call “hard
instances”. There are two reasons for this. The first is of practical interest. Each test run on
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Table 5.2: Groups of instances from HyperBench which could not be solved by log-𝑘-decomp,
as presented in Chapter 4. The groups are based on instances with the same origin, as defined
in [25].

Group names Number of instances

S 16
Kakuro 43
Nonogram 159
Pi 58
aim 20
cnf 24
reg 100
rand 106
Other 20

Total 546
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Figure 5.2: Experiment showing the runtime with different number of worker processes involved
for a single instance from hardInstances. A timeout of 60 minutes was used, as indicated.

the Google Cloud Platform over our chosen benchmark instances will generate a certain cost.
This is contrast to our experiments in Chapter 3 and Chapter 4, where we had access to our
own local test servers without per-use costs associated. Since the course of our experiments
will require multiple iterations, to ensure the quality and validity of our produced data, this
becomes prohibitive in terms of costs if we chose the entirety of HyperBench, or even a very
large subset of it. Thus we need to find a small subset, which still allows us to draw meaningful
conclusions. The second reason why one would want to restrict the experiments to a subset
of HyperBench in the first place is related to the aim of this line of research. Let us recall our
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Table 5.3: Overview over elements of hardInstances. Pairs of Instances of same origin are
grouped together.

Name # Hyperedges # Vertices Unsolved width

s5378.hg 2958 2993 3
s1494.hg 653 661 3
s820.hg 294 312 4
s832.hg 292 310 4
reg-s20-p03-c20-d10-n10-l5-71.xml.hg 100 130 6
reg-s20-p03-c20-d10-n10-l5-06.xml.hg 100 130 6
reg-s20-p03-c20-d10-n10-l5-85.xml.hg 100 130 6
reg-s20-p03-c20-d10-n10-l5-24.xml.hg 100 130 6
rand_q0349.hg 43 92 8
rand-3-28-28-93-632-18.xml.hg 93 28 6
rand-3-28-28-93-632-22.xml.hg 93 28 6
rand_q0472.hg 42 99 10
cnf-3-80-0100-735542.xml.hg 100 79 6
cnf-2-40-0100-730625.xml.hg 96 40 6
cnf-3-40-0100-730621.xml.hg 99 40 6
cnf-3-40-0100-730630.xml.hg 97 40 6
aim-50-2-0-unsat-4.xml.hg 95 50 6
aim-50-1-6-sat-2.xml.hg 76 50 7
aim-50-1-6-sat-4.xml.hg 77 50 7
aim-50-1-6-unsat-2.xml.hg 77 50 7
Pi-40-10-07948-40-71.xml.hg 98 40 6
Pi-40-10-07948-40-18.xml.hg 98 40 6
Pi-40-10-07948-40-12.xml.hg 98 40 6
Pi-40-10-07948-40-90.xml.hg 98 40 6
Nonogram-169-table.xml.hg 48 576 7
Nonogram-009-table.xml.hg 64 1015 6
Nonogram-020-table.xml.hg 64 1024 7
Nonogram-085-table.xml.hg 48 576 8
Kakuro-medium-153-ext.xml.hg 98 169 6
Kakuro-hard-113-ext.xml.hg 90 153 6
Kakuro-easy-103-ext.xml.hg 96 162 6
Kakuro-easy-113-ext.xml.hg 90 153 6
grid2d_50.hg 1250 1250 3
pigeonsPlus-11-05.xml.hg 77 66 5
2bitcomp_5.hg 310 95 4
flat30-99.hg 300 90 5

motivation for this line of research: solving those remaining cases where all prior methods
fail to produce optimal decompositions. Hence, we are not primarily interested in providing
methods that are good with small or intermediate instances, as this is, at this point, essentially
a solved problem. Looking at the detailed raw data from our two previous experiments in
Chapter 3 and Chapter 4 [36, 48], we have identified just over 500 instances which could not
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Table 5.4: Overview over experiments over hardInstances, with a one hour timeout and using
80 workers for the distributed algorithm.

Instance Distributed BalancedGo [49] log-𝑘-decomp [37]

s5378.hg timeout timeout timeout
s1494.hg 6m 56s timeout timeout
s820.hg 23m 50s timeout timeout
s832.hg 23m 13s timeout timeout
reg-s20-p03-c20-d10-n10-l5-71.xml.hg 27m 47s timeout timeout
reg-s20-p03-c20-d10-n10-l5-06.xml.hg 27m 37s timeout timeout
reg-s20-p03-c20-d10-n10-l5-85.xml.hg 33m 17s timeout timeout
reg-s20-p03-c20-d10-n10-l5-24.xml.hg 33m 53s timeout timeout
rand_q0349.hg timeout timeout timeout
rand-3-28-28-93-632-18.xml.hg timeout timeout timeout
rand-3-28-28-93-632-22.xml.hg timeout timeout timeout
rand_q0472.hg timeout timeout timeout
cnf-3-80-0100-735542.xml.hg 22m 27s timeout timeout
cnf-2-40-0100-730625.xml.hg timeout timeout timeout
cnf-3-40-0100-730621.xml.hg 20m 55s timeout timeout
cnf-3-40-0100-730630.xml.hg 18m 35s timeout timeout
aim-50-2-0-unsat-4.xml.hg 13m 56s timeout timeout
aim-50-1-6-sat-2.xml.hg timeout timeout timeout
aim-50-1-6-sat-4.xml.hg 41m 35s timeout timeout
aim-50-1-6-unsat-2.xml.hg timeout timeout timeout
Pi-40-10-07948-40-71.xml.hg 13m 55s timeout timeout
Pi-40-10-07948-40-18.xml.hg 14m 07s timeout timeout
Pi-40-10-07948-40-12.xml.hg timeout timeout timeout
Pi-40-10-07948-40-90.xml.hg timeout timeout timeout
Nonogram-169-table.xml.hg 6m 19s timeout timeout
Nonogram-009-table.xml.hg 11m 22s timeout timeout
Nonogram-020-table.xml.hg timeout timeout timeout
Nonogram-085-table.xml.hg 40m 11s timeout timeout
Kakuro-medium-153-ext.xml.hg 25m 21s timeout timeout
Kakuro-hard-113-ext.xml.hg timeout timeout timeout
Kakuro-easy-103-ext.xml.hg timeout timeout timeout
Kakuro-easy-113-ext.xml.hg timeout timeout timeout
grid2d_50.hg timeout timeout timeout
pigeonsPlus-11-05.xml.hg timeout timeout timeout
2bitcomp_5.hg 19m 27s timeout timeout
flat30-99.hg timeout timeout timeout

be optimally solved by either log-𝑘-decomp or BalancedGo. We give an overview over these
challenging instances in Table 5.2. Thus we want to choose a representative sample among
these. Simply taking random elements of this set would not be a good idea, however. As we can
see in Table 5.2, these challenging instances fall into 8 groups, of the same origin, with only 20
instances in the remaining “Other” group. For more details on the breakdown of the origins of
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hypergraphs from HyperBench, we refer to [25]. In our observation, instances of the same origin
tend to share strong structural similarities. A truly representative sample should pick equally
among each of these groups. We have therefore randomly chosen 4 instances among these 8+1
groups, leading to 36 hypergraphs which we shall identify by the name hardInstances. For
each element of hardInstances we have also identified the smallest positive integer 𝑘 such
that the CheckGHD (resp. CheckHD) in BalancedGo (resp. log-𝑘-decomp) failed to terminate.
The names of the sample instances as well as information on the number of hyperedges and
number of vertices can be seen in Table 5.3. The pair of elements of hardInstances and this 𝑘
will make up our set of experiments, where we try to answer the CheckGHD problem using
our distributed algorithm.

We set a one hour timeout for all the experiments we will report in this section.

5.4.3 Experimental Results

We see the results of our experiments over the instance set hardInstances in Table 5.4. For
each instance, we list the observed run times for three methods. The first is our prototype imple-
mentation of the distributed algorithm we presented in this chapter, called simply Distributed.
Next we have the run times of BalancedGo, the decomposition method introduced in Chapter 3
and the final decomposition method we compare is log-𝑘-decomp. This implementation was
introduced in Chapter 4.

As we claimed, we can see that the twomethods BalancedGo and log-𝑘-decomp fail to terminate
for any instance under the one hour timeout, whereas our distributed algorithm managed to
terminate and answer the CheckGHD problem in 19 out of 36 cases. We note here that all
three methods ran on the same machine here, as detailed in Section 5.4.2. Thus, our distributed
prototype is able to far better utilise the same hardware, and the other parallel algorithms
seem to be unable to truly scale to use the 112 cores well. What makes this result particularly
surprising, is the observation that even in cases where there is not a single balanced separator of
the sought after size, such as in two of the four Nonogram cases, the non-distributed algorithm
still fail to terminate, whereas the distributed algorithm finishes in up to 6 minutes or just over
11 minutes. As there is large amount of shared code between all three implementations here,
particularly in regards to how the search space is split among the number of workers, the key
difference must lie in the inherent overhead that comes with having to run a large number of
goroutines, which the distributed algorithm avoids by relying on completely separate processes.

In order to investigate how well the prototype scales with an increasing number of workers
involved, we report another set of experiments. We took one instance from hardInstances

and we wanted to see how the runtime is affected by using more and more worker instances.
We can see the results in Figure 5.2. For a single worker, the run did not terminate under one
hour. From 10 workers onward, we can see fairly good improvements up to 80 workers. We
also observe, however, that the scaling is not quite linear, but that is to be expected as we reach
running times in the single-digit minutes. The distributed algorithm requires the coordination
of a large number of instances, and has an inherent communication delay. In addition to this, it
also needs some time to fully start up and to terminate all running instances when it reached
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the end. Of course, this is still a strong improvement over the existing methods, which fail to
solve this particular instance in one hour.

5.5 Summary

We have designed a novel distributed algorithm for computing hypergraph decompositions and
shown its correctness for solving the CheckGHD problem. While the exact version introduced
here is for computing GHDs, it would only require a different definition of the Worker instance,
producing a different set of bags, to compute other forms of decompositions. One possible
extension would be to explore a design that instead produces all sets with a certain fractional
cover number, thus allowing for fractional hypertree decompositions [53] to be computed.

In addition to this, we also provided some first optimisations for the basis check, which forms an
important part of our design and an efficient implementation of the basis check is crucial for any
effective implementation of our distributed algorithm. In order to see if our design is suitable to
tackling difficult real-world instances, we also presented a prototype implementation written
in the Go programming language, and we showed that it is already capable of solving many
difficult instances that existing approach struggle with, even when running on the exact same
machine. This shows the promise of the distributed algorithm for solving some of the hardest
remaining instances of HyperBench, which have so far eluded any state of the art method.
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Chapter 6

Conclusion

This last chapter will provide an overall summary of the main contributions of this thesis and
explain how these contributions are advancing the field. We end this chapter on a discussion
about future work and further lines of research in this area.

In Chapter 3 we began by first considering general improvements to algorithms computing
GHDs. We provided a number of simplification rules which can reduce the search space and do
not affect the correctness of the CheckGHD problem, thus improving the running times of all
decomposition methods. As a next step, we designed a novel parallel algorithm for computing
GHDs, based on a sequential algorithm from Fischl et al. [25]. We ended this chapter by
demonstrating the practical applicability of our new algorithm by presenting an implementation
of it, called BalancedGo and which is publicly available. We conducted a detailed experimental
evaluation in which we compared our implementation against the state of the art in computing
GHDs, and showed marked improvements in the number of instances which could be optimally
solved in feasible time on the standard benchmark dataset HyperBench.

In Chapter 4, our investigation focused on the question of whether the Balanced Separator
Approach we utilised in the previous chapter could be used for computing a different type
of decomposition, namely HDs. As we have highlighted in Section 1.4, there are numerous
challenges which make it impossible to use the exact same ideas as in our previous GHD
algorithm. Instead, we introduce a novel normal form for HDs in Section 4.1 and based on this,
we designed a method of computing an HD in such a way that we can split the problem of
computing the HD into smaller parts while retaining the information on where these parts will
occur in the final HD we want to construct. This required guessing the edge covers of two nodes
at once, allowing us to exactly compute the bag of one of them. Through this idea, we managed
to translate the Balanced Separator Approach to the setting of HDs and we presented our novel
design for a parallel algorithm for computing HDs. As in the previous chapter, we provide a
publicly available implementation of our algorithm, called log-𝑘-decomp and we again showed
in an experimental evaluation its strength relative to the state of the art in computing HDs.

We believe the advancements in these two chapters have already helped to make a strong
argument for more in-depth exploration of the use of hypergraph decompositions in practical

125



6. Conclusion

systems, such as query engines and constraint solvers. In fact, there is already initial research
that shows the use of decompositions for these systems. Combined with the ability to quickly
determine if a given CQ or CSP has low width and is thus of particular interest for exploiting
its limited acyclicity, we hope that our work can help to provide significant improvements in
solving CSPs and evaluating CQs in the real-world.

The last line of research investigated in this thesis is detailed in Chapter 5. We investigate the
use of large scale distributed systems for the computation of hypergraph decompositions. We
motivate this research by the presence of very challenging instances in the HyperBench dataset,
which no existing decomposition method in the literature could solve optimally, including
the two new methods we proposed in the earlier chapters. The shift to a new computation
model required us to consider an entirely different approach, as the existing algorithms were
designed with single shared-memory machines in mind. We found an interesting solution in
the Candidate Tree Decomposition framework, presented by Gottlob et al. [39]. We adapted
the algorithm presented there to our setting and presented in this chapter our design for a
distributed algorithm for computing GHDs. We conclude the chapter by presenting a prototype
implementation of this distributed algorithm, running on the Google Cloud Platform and we
show some first promising results, by solving a number of challenging instances, which our
two prior methods failed to solve, even when running on the same hardware.

This final line of research highlights the potential for exploring other computing platforms for
finding decompositions, and in doing so it also opens up the question whether other problems,
such also evaluating CQs and solving CSPs might be done effectively on the cloud as well.

6.1 Outlook

For future work, we envisage several lines of research: first, we want to further speed up
the search for a first balanced separator. There is promising work on this from Schild and
Sommer [87]. In addition to this we also want to speed up the search for a next balanced
separator in case the first one does not lead to a successful decomposition. What makes these
two goals challenging, is the fact that finding balanced separators has been shown to be a
W[1]-hard problem by Marx [71] when parametrised by the size of the balanced separator.
Note that for computing any 𝜆-label of a node in a GHD of width ≤ 𝑘 , in principle, 𝑂 (𝑛𝑘+1)
combinations of edges have to be investigated for |𝐸 (𝐻 ) | = 𝑛. However, only a small fraction of
these combinations is actually a balanced separator, leaving a lot of potential for speeding up
the search for balanced separators. Apart from this important practical aspect, it would also be
an interesting theoretical challenge to prove some useful upper bound on the ratio of balanced
separators compared with the total number of possible combinations of up to 𝑘 edges.

Our experiments in Section 4.7 suggest that there is significant potential in the study of metrics
for hybrid approaches. In particular, how can we decide effectively when to switch from
the balanced separation of log-𝑘-decomp to the greedy heuristic guided method underlying
det-𝑘-decomp. This motivates a more in-depth study of hybridisation metrics in the future.
In this work, we focused on using the size of subhypergraphs as the determining factor for
when to switch. This is a rather crude measure, as even very large subhypergraphs might still
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be effectively decomposed by det-𝑘-decomp. One possibility here would be to consider the
treewidth of subhypergraphs as an initial heuristic for making this choice.

As part of this thesis, we have presented algorithmswhich use balanced separators for computing
HDs and GHDs. As a next step, it would be interesting to explore whether balanced separators
might also be used to effectively compute fractional hypertree decompositions (FHD) in parallel.
There has been recent work which identified tractable cases for the computation of FHDs [38,39],
which might be a useful starting point for such a line of research.

With HD computation for large and complex hypergraphs becoming practically feasible, one
of the key challenges that block the use of HDs is quickly becoming less problematic. We
therefore consider full integration of hypertree decompositions into existing database systems
and constraint solvers to be a natural next step in this line of research. This would require
implementing the Yannakakis algorithm on modern query engines. Initial work on this in the
setting of incremental view updates for acyclic CQs provides evidence that the Yannakakis
algorithm does help to reduce running times [58]. There has been initial work on this topic
by Ghionna, Granata, Greco and Scarcello [29, 30], integrating the use of HDs into RDBMSs.
Another research question is whether hypergraph decomposition (such as HDs or GHDs) can
help to speed up existing CSP solvers. Initial work on this question by Amroun, Habbas and
Singer and Amroun, Habbas and Aggoune-Mtalaa [7, 56] shows that a naive implementation of
the algorithm by Gottlob, Scarcello and Leone [40] leads to inefficient methods, but the auhors
also show the practical potential of more complex techniques which are still based on GHDs.

A related line of reseach in the use of hypergraph decompositions for practical applications
is the question of finding optimal weighted decompositions. To give a brief explanation of this
setting, we are given a hypergraph and some weight or cost function, which assigns to a given
HD some numerical value, and optimality is understood as finding an HD of a given width
which also has minimal cost, i.e. there does not exist any other HD of strictly lower cost. To
motivate this setting, one could consider the cost function to reflect the estimated running time
when using a given decomposition to evaluate a CQ. Initial work on this topic was done by
Scarcello, Greco and Leone [84]. Given the new algorithms we have designed and presented
in this thesis, the next question would be whether they could be extended to the setting of
efficiently computing optimal weighted decompositions. This would also be of interest for the
above question of using hypergraph decompositions in practice as well.
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