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Kurzfassung

Diese Arbeit beschreibt Forschungen im Bereich des Machinellen Lernens und deren
Anwendungen auf musikwissenschaftlichen Fragen. Es wird ein neuer Lernalgo-
rithmus namens DISTALL présentiert sowie, darauf aufbauend, ein automatisches
Lernsystem, das ein schwer fassbares Phanomen in der Musik analysieren und mod-
ellieren soll, namlich ausdrucksvolle Musikinterpretation.

Der Lernalgorithmus DISTALL ist im Bereich des relationalen ‘Instance-based
Learning’ (IBL) angesiedelt. Obwohl distanz- und instanzbasierte Lernalgorithmen
im Bereich des Maschinellen Lernens immer sehr beliebt waren — vor allem mit
propositionalen, attributbasierten Reprasentationssprachen —, ist IBL in machtigeren
relationalen (auf Pradikatenlogik basierenden) Représentationen wesentlich schwieriger
und weniger erforscht. In der Dissertation werden diese beiden Lernformalismen
diskutiert, Vorteile des relationalen Lernens aufgezeigt und die These aufgestellt,
dass der kritischste Teil eines relationalen IBL-Lernalgorithmus sein Ahnlichkeitsmaf
(zwischen Mengen von Termen) ist. Verschiedene Mengen- AhnlichkeitsmaBe wer-
den rekapituliert, und es wird der Schluss gezogen, dass ein Ahnlichkeitsmaf, das
auf optimalem Matching zwischen Mengen basiert, aus zwei wesentlichen Griinden
am vielversprechendsten ist: (1) wegen seiner intuitiv {iberzeugenden und nachvol-
lziehbaren Aspekte und (2) wegen seine klaren theoretischen Eigenschaften. Auf
einem solchen Ahnlichkeitsmafi aufbauend wird DISTALL implementiert und im
Detail beschrieben.

DISTALL wird sodann auf ein schwieriges Lernproblem aus dem Forschungsge-
biet der Musikwissenschaft angewendet: Ausgehend von einer grofien Zahl von In-
terpretationen (Aufnahmen) von Konzertpianisten soll der Computer lernen, Musik
ausdrucksvoll zu spielen. Die Aufgabe wird als Mehrebenen-Dekompositions- und
Vorhersage-Problem modelliert, und es wird gezeigt, dass dieses als relationales Lern-
problem darstellbar ist und mittels relationalem IBL bewéltigt werden kann. Ex-
perimente mit realen Daten, die aus einer beachtlichen Anzahl von Interpretationen
eines Wiener Konzertpianisten gewonnen wurden, deuten die Brauchbarkeit unserer
Methode an. Speziell wird gezeigt, dass die Vorhersagegenauigkeit von DISTALL
die eines herkommlichen propositionalen k-NN-Algorithmus iibertrifft. Direkte ex-
perimentellen Vergleiche mit RIBL, einem modernen relationalen Lernalgorithmus,
demonstrieren auch die klare Uberlegenheit von DISTALL gegeniiber RIBL bei
dieser Lernaufgabe. Verschiedene weitere Verbesserungen des Lernsystem werden
vorgestellt. Eine der Verbesserungen — die explizite Darstellung zeitlicher Beziehun-
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gen — demonstriert deutlich die Machtigkeit des relationalen Lernformalismus. In
qualitativer Hinsicht stellt sich heraus, dass unser Lernsystem zumindest zum Teil
erstaunlich gute Vorhersagen macht. Einige nach dem Lernen vom Konzertpianis-
ten von DISTALL generierte ‘Auffiihrungen’ weisen erhebliche musikalische Qualitéat
auf: eine davon gewann sogar einen Preis bei einem internationalen ‘Computer Mu-
sic Performance’-Wettbewerb.

Zwei weitere Anwendungen von DISTALL und seinem Ahnlichkeitsmaff werden
sodann in der Dissertation vorgestellt: (1) Wir versuchen festzustellen, mit welchem
Niveau an stilistischer ‘Konsistenz’ ein Wiener Konzertpianst verschiedene Mozart-
sonaten spielt. Mit Hilfe des AhnlichkeitmaBes von DISTALL kann ein Konzept
stilistischer Ubereinstimmung definiert werden, das iiber einfache Notentext- Wieder-
holungen hinausgeht, und darauf aufbauend wird ein quantitatives Maf§ von
Auffithrungs-Ubereinstimmung zwischen beliebigen Musikphrasen realisiert, das sys-
tematische quantitative Experimente zulésst. (2) Wir studieren eine der interessan-
testen Probleme, das in dieser Art von Forschung formuliert werden kann: Kann eine
Maschine ein formales, pradiktives Modell des Spielstils eines bertihmten Pianisten
lernen? Wir erkunden, inwieweit die Maschine ‘expressive Profile’ grofler Pianisten
automatisch bilden kann, nur mit Hilfe von aus Audio-CDs gewonnenen Minimalin-
formationen und des Notentextes der gespielten Musik. Es stellt sich heraus, dass
das auf DISTALL basierende Lernsystem tatséchlich in der Lage ist, ‘ausdrucksvolle’
Interpretationen neuer Musikstiicke zu generieren, die zur echten Interpretation des
‘Trainingspianisten’ deutlich ahnlicher sind als zu den Interpretationen aller an-
deren Pianisten. Eine weitere interessante Anwendung unseres Lernalgorithmus
wird schlussendlich noch besprochen: die automatische Erkennung beriihmter Pi-
anisten anhand ihres Spielstils. Wie die Experimente zeigen, sind auch bei diesem
schwierigen Problem erstaunlich gute Resultate moglich.



Abstract

This thesis reports about work in the field of machine learning and its applications
in musicology. We present a new machine learning algorithm called DISTALL and
describe an automated learning system targeting one of the most elusive phenomena
in music: to learn to play music expressively.

DISTALL is situated in the field of relational instance-based learning (IBL).
Although distance- and instance-based learning methods have always been popular
in machine learning, IBL in a richer, relational setting is more difficult and has
been less explored. We contrast IBL in a propositional setting to relational IBL,
discuss advantages of relational representations, and argue that the most critical
part of a relational IBL is its set distance measure. After different set distance
measures are discussed, we conclude that the set distance measure based on optimal
matching is the most appealing for both its intuitive properties and strong theoretical
aspects. We construct DISTALL, our new relational IBL algorithm around the
optimal matching set distance measure and discuss its algorithmic implementation
in detail.

DISTALL is applied to a difficult real-world learning task from expressive music
performance research: learning, from large numbers of complex performances by
concert pianists, to play music expressively. We model the problem as a multi-level
decomposition and prediction task. We show that this is a fundamentally relational
learning problem, and argue that relational IBL is indeed appropriate to address it.
Experiments with data derived from a substantial number of Mozart piano sonata
recordings by a skilled concert pianist demonstrate that the approach is viable.
We show that DISTALL operating on structured, relational data outperforms a
propositional k-NN algorithm. Experiments with a direct comparison to the state
of the art relational learner RIBL clearly show DISTALL’s superiority to RIBL on
this learning task. Various improvements to the learning system are proposed, one
of them — temporal representation — nicely demonstrating the power of relational
formalisms. In qualitative terms, we end up with a system which at least partly
makes surprisingly good predictions. Some of the piano performances produced by
DISTALL after learning from human artist are of substantial musical quality; one
even won a prize in an international ‘computer music performance’ contest.

Two further applications of DISTALL and its distance measure are presented: (1)
We will try to assess the level of ‘consistency’ of a Viennese concert pianist in playing
different Mozart sonatas. With the help of DISTALL’s similarity measure we are able
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to define a concept of consistency which goes beyond simple score repetitions. The
level of performer consistency will be assessed between any tho phrases, regardless of
similarity /dissimilarity of the pieces they belong to. (2) We address one of the most
interesting questions one can consider in this kind of research: Can a machine build
a formal model of the playing style of great pianists? We investigate to what extent
a machine can automatically build ‘expressive profiles’ of famous pianists using
only minimal performance information extracted from audio CD recordings by these
pianists and the printed score of the music. It turns out that the learning system
built around DISTALL is able to generate expressive performances on unseen pieces
which are substantially closer to the real performances of the ‘trainer’ pianist than
those of all others. Finally, another interesting application is discussed: recognizing
pianists from their style of playing - a difficult learning problem tackled in the recent
literature. We show that surprisingly high accuracy rates can be achieved by using
expressive performance profiles predicted by DISTALL for artist recognition.
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Chapter 1

Introduction

1.1 Artificial Intelligence and Machine Learning

Very few sciences have such a controversial name as Artificial Intelligence. 1t is not
at least due to the fact that the name comprises the term intelligence, which is on
its own very hard to define. The difficulties are reflected by the fact that many
different definitions of the field of artificial intelligence exist. In order to apply the
technical point of view, and avoiding somewhat philosophical discussion, for the
purposes of this introduction we will adopt the following nearly trivial definition:
Artificial Intelligence as a scientific field is about creating machines that perform
functions that require intelligence when performed by people [Russell and Norvig,
2003]. A nice overview of several definitions, classified along several dimensions is
given in [Russell and Norvig, 2003].

While it is difficult to say what intelligence is exactly, some aspects of being
intelligent can be identified relatively easily: ability to reason, to be creative, to
find solutions to non-trivial problems, etc. One of the central aspects of being
intelligent is the ability to learn from experience. Again, there are several definitions
of learning. According to [Langley, 1995], learning is the improvement in some
environment through the acquisition of knowledge resulting from experience in that
environment.

Machine learning is a subfield of Artificial Intelligence. Given the definition of
learning, it can be (trivially) defined as a study of how to make machines learn.
Technically, a machine learning ‘environment’ consists of a learning task and a set
of examples. In order to assess the system’s learning abilities, one also defines the
performance measure on the given learning task and then measures the improve-
ment produced by the learning ([Mitchell, 1997]). In other words, learning can be
technically defined as seeking to reduce an error (given the performance measure)
on the learning task ([Mitchell, 1997]).
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Figure 1.1:

1.2 Supervised vs. Unsupervised Learning

Machine learning methods can be divided along several dimensions. The most gen-
eral classification is into supervised and unsupervised learning.

In supervised learning setting, every learning example has a target value attached
to it. The learning program is given a set of examples together with the information
about their target values. These examples are called the training set. The task of
the system is to predict the target values of unseen examples.

E.g., consider Figure 1.1. In this example, the system is given eight performances
of four great pianists. Along with the performances, the system is given the infor-
mation which performance is produced by which pianist. After learning, the task of
the system is to classify a new, unseen performance. Throughout this text we are
mainly concerned with supervised learning.

Another important class of learning systems is unsupervised learning. In this
setting, the learner operates with examples which — in the context of the learning
task — do not have explicit classes. The task of the system is then to form ‘natural
groupings’ of the examples. Although it might at the first sight not be obvious how
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unsupervised learners can learn something meaningful at all, they are for various
reasons indeed very important for the field of machine learning. To name just a
few: Collecting and labeling a large set of training patterns can be costly. If a
learner can be designed on a small set of labeled samples and then scaled up to run
without supervision on a large unlabeled set, much time can be saved. One can
also proceed another way around ([Duda et al., 2000]): train with large amounts of
unlabeled data, and then label the groupings found. This is actually the primary
reason for importance of unsupervised learning methods and is closely related to
data mining and knowledge discovery ([Adriaans and Zantinge, 1997; Witten and
Frank, 2000]), the scientific fields that recently became very popular in both the
scientific and the industrial communities. Unsupervised methods can also be used
to find features with high ‘information gain’. These ‘right features’ can then be used
for classification. Indeed, feature selection — choosing the subset of features which
allows the best generalization performance given the limited number of training
examples — is one of the most difficult problems in machine learning, especially in
domains with very high dimensionalities (e.g. including various important tasks in
the field of bio-informatics, such as learning protein structures and functions). For
an excellent overview of unsupervised learning methods see [Duda et al., 2000].

1.3 Distance-based Learning Methods

Besides the classification into supervised /unsupervised approaches, machine learn-
ing methods can be divided along several different dimensions. E.g. there is in
principle a difference between methods which are governed by the laws of probability
calculus and those governed by the laws of logic. We also distinguish between sys-
tems operating basically on numerical vs. symbolic data representations, systems
building a model that can describe the input data (descriptive models), and those
which rather ‘skip’ directly to mapping inputs to the correct answer (discriminative
models), etc.

An important class of learning methods are those which make use of a similarity
or distance measure in some form. These learning approaches are generally called
distance-based learning methods. Distance-based learning typically relies upon two
subtasks. First, one has to define an appropriate distance measure for the learning
task. Then, on top of the distance measure the algorithm can be constructed in
such a way that it makes optimal use of the provided distance measure.

Instance-based learning is a supervised machine learning method which makes
explicit use of the defined distance function. The most basic instance-based learn-
ing algorithm is k-nearest neighbor ([Duda et al., 2000]). The basic variant of the
algorithm predicts the class of an unseen example as the (weighted) majority class
of the k£ nearest training examples. For the purposes of the research presented here,
we will use the (variants of) of the k-NN.

Yet another successful supervised instance-based learning algorithm is locally
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weighted regression (see e.g. [Mitchell, 1997]). It is a method for the problem of
approximating real-valued functions. It uses distance-weighted training examples to
form an explicit approximation to the target function over a local region surround-
ing an unseen example. The approximation in the neighborhood surrounding an
unseen example might be a linear function, a quadratic function or take some other
functional form.

Clustering is an unsupervised method which often relies upon some explicit dis-
tance measure. Although we will not use it in this work, it is a very important
technique in machine learning. The task is to partition a set of examples into clus-
ters such that examples in the same cluster are as similar as possible and examples
in different clusters are as different as possible, according to the defined distance
measure.

While distance-based method such as instance-based learning and clustering are
very popular and well-investigated in the standard attribute-value representation,
the application of these methods is more difficult and less explored for more ex-
pressive representation languages. The field of inductive logic programming (ILP)
([Nienhuys-Cheng et al., 1997; Muggleton and Raedt, 1994] is a subfield of machine
learning which is concerned with learning in a richer first-order logic (FOL) or re-
lational setting. It is related to the work presented here, since in this text we will
mainly use relational formalisms. Yet in presenting our novel learning algorithm,
we will be mainly concerned with defining a distance measure in a relational setting
and applying a straightforward k-NN algorithm for learning. As such, the work is
situated in the field of relational instance-based learning. Somewhat related is also
the field of case-based reasoning (CBR).

While the distance measure can be defined explicitly — on the space of exam-
ples, it can be also represented implicitly. Kernel methods and learning algorithms
based on them, such as e.g. support vector machines ([Cristianini and Shawe-Taylor,
2000]), are also related to distance-based learning, since they make use of distance
functions defined implicitly in a higher dimensional space. Although not directly
related to our work, we mention them for the sake of completeness.

1.4 Music Performance Research and Expressive
Music Performance

According to Seashore, a pioneer of musical performance research, music generally
relies on

‘artistic deviation from the fixed and regular: from rigid pitch, uniform
intensity, fixed rhythm, pure tone and perfect harmony’ [Seashore, 1938].

Music performance is the act of interpreting, structuring and physically realis-
ing a piece of music. The fact that it is indisputably a complex human activity
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— involving physical, acoustic, physiological, psychological, social, and artistic as-
pects [Widmer and Goebl, 2003] — is reflected by the broad range of subfields that
music performance research involves. As discussed in [Gabrielsson, 1999, 2003,
the broad range of topics covered by music performance research include (listed
in chronological order): Performance planning, sight reading, improvisation, feed-
back in performance, measurements of performance, models of music performance,
physical factors in performance, psychological and social factors, and performance
evaluation.

This text will focus on applying machine learning methods to one specific aspect
of music performance, namely, building computational models of expressive music
performance. Expressive music performance is the art of shaping a musical piece
by continuously varying important parameters like tempo, loudness, intonation, ar-
ticulation, tone envelope, timbre, etc., while playing (or singing) a piece of music.
In this work we will concentrate on piano music and two of the most important
expression parameters: tempo and loudness (dynamics). Instead of playing a piece
of music with constant tempo or loudness, (skilled) performers rather speed up at
some places, slow down at others, stress certain notes or passages etc. The way this
‘should be’ done is not specified precisely in the written score but at the same time
it is absolutely essential for the music to sound alive.

From the point of view of musicology, this thesis can be regarded as a continu-
ation of the line of research pursued by our research group in Vienna over the past
years (see e.g. [Widmer, 1995a,b, 1996, 2000, 2002; Widmer and Tobudic, 2003;
Widmer et al., 2003]). The work pursued by our research group is to be regarded as
basic research: Our intention is not to engineer computer programs that generate
music performances that sound as human-like as possible. Rather, we investigate to
what extent a machine can automatically build, via inductive learning from ‘real-
world” data, operational models of certain aspect of performance (e.g. predictive
models of tempo and dynamics in the case of this thesis). By analysing the models
induced by the machine, we hope to get new insight into fundamental principles
underlying the complex phenomenon of expressive music performance, and in this
way contribute to the growing body of scientific knowledge in this area.

1.5 Outline

This thesis has two main contributions. The first central contribution is a pro-
posal for a new distance measure which can be applied to various learning tasks
represented in relational formalisms. While distance-based learning on its own is
a very broadly explored subfield of machine learning, instance- and distance-based
learning approaches in a relational setting are more difficult and much less explored.
On top of our distance measure, any distance-based algorithm — either supervised,
such as e.g. k-nearest neighbor or unsupervised, e.g. k-means clustering — can be
constructed.
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The second contribution of the thesis is the introduction of a difficult, real-world
learning task from expressive performance music research. We aim at automati-
cally inducing expressive models of certain aspects of expressive piano performance,
namely models of expressive tempo (i.e. timing) and dynamics deviations. The start-
ing material for automatically inducing such models will be a relative large amount
of empirical ‘expressive performance’ data — precisely measured performances by
skilled musicians. We will then introduce a methodology for decomposing this rather
‘unstructured’ performance data into well-defined training examples, which are then
used as an input to our relational instance-based learner. The experimental sections
of the thesis discuss various tasks from music research for which our learning ap-
proach can be applied, involving predicting the ‘courses’ of expressive tempo and
dynamics curves on unseen pieces, examining the degree of ‘consistency’ of the same
pianist playing different musical pieces, recognizing great pianists from their style
of playing and even learning to ‘play’ a piece of music like the great pianists.

Since instance-based learning is a central learning framework used throughout
this thesis, we will review it in chapter 2. After introduction in section 2.1, we
review the basic concepts regarding k-nearest neighbor (section 2.2). We will also
discuss the notions of distance and metric in general in section 2.3. First-order
logic as a representation formalism is presented in section 2.4. This section also
contains a discussion how learning examples in FOL are most commonly represented
in practical learning systems. It turns out that sets of elements are an important
concept for representing learning examples in practical relational learning systems,
and thus distance measures between sets of elements are of central interest for our
work. In section 2.5 we give an in-depth overview of existing set distance measures,
one of them being the main part of our learning algorithm.

Chapter 3 gives detailed description of our relational instance-based learning al-
gorithm DISTALL. We introduce our motivation in designing DISTALL in section
3.1. In section 3.2 we explain the representation of the learner input. Sections
3.3 and 3.4 are concerned with the learner’s central aspects from the technical per-
spective: the mechanism for set formation given the learning input and efficient
computation of the set-based optimal matching distance. In section 3.5 we put all
pieces together and give the detailed description of our structural similarity measure
which is then built in the new relational instance-based learner DISTALL. In section
3.6 we contrast DISTALL with its ancestor RIBL, by showing via an example how
they implement different notions of structural similarity.

In Chapter 4 we introduce a learning task from expressive piano performance
research. After short introduction in section 4.1, we recapitulate the related pre-
vious work undertaken in our research group: induction of note-level performance
rules with the PLCG algorithm (section 4.2). This thesis can be considered as a
continuation of that research. In section 4.3 we then present the main learning task
which will be used for evaluation of our algorithm: Learning to play music expres-
sively. In this section we also review the concept of expressive performance curves
and present a method for converting these ‘unstructured’ curves into well-defined
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training examples, which in turn will be used as input for relational instance-based
learning. The overall learning system used for experiments is presented in section
4.4.

Chapter 5 is dedicated to the main bundle of experiments we have conducted
during evaluation of our approach. In section 5.1 we present the experiments with a
standard propositional k-NN. Besides making the reader familiar with our dataset,
training and evaluation procedures, it also gives a first impression of how difficult
the learning problem is. We also discuss various ways in which the results can be
improved, resulting in a system which even won a prize in a recent ‘computer music
performance’ contest in Tokyo. Section 5.2 shows the experimental results on the
same learning problem achieved with our new relational instance-based learning al-
gorithm and contrasts it with both standard propositional k-NN, and related learner
RIBL. Comparing our new learning algorithm with the state of the art relational
instance-based learner RIBL on the difficult real-world learning task illuminates this
section as the most interesting part of this thesis from the technical, machine learn-
ing point of view. In section 5.3 we recapitulate the most interesting results and
conclusions from our experiments.

Chapter 6 presents a further interesting application of our similarity measure:
we will try to assess the level of ‘consistency’ of a Viennese concert pianist in playing
different pieces from a corpus of Mozart’s piano sonatas from the classical period.
After introducing the problem in section 6.1, in section 6.2 we present two similarity
measures which will help us assess the level of consistency in piano performances:
score- and performance-based similarity. The data and the procedure for experi-
ments is presented in section 6.3 and results in section 6.4. Finally, we discuss the
setup and results and connect them to the ongoing work in our lab in section 6.5.

From the application point of view, Chapter 7 represent a highlight of the the-
sis in a certain sense. Here we investigate to what extent a machine — with the
methodology described earlier in the thesis — can automatically build a model of a
playing style of great pianists. For the work presented in this chapter we used only
minimal performance information derived from audio CD recordings by truly great
pianists and the printed score of the music. In section 7.1 we introduce the problems
we are interested in. Section 7.2 explains the data and methodology used for the
experiments. We then discuss the experimental evaluation of building ‘expressive
profiles’ of the pianists in section 7.3. Section 7.4 discuss another interesting task:
recognizing famous pianists from their style of playing. Finally, in section 7.5 we
shortly discuss the automatic style replication.

In Chapter 8 we conclude. Limitations of both the learning algorithm and our
overall methodology for learning expressive performance models are discussed, as
well as motivation and possible directions for further work.
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Chapter 2

Instance-based Learning in a
Relational Setting

This chapter introduces the basic concepts of instance-based learning in a relational
formalism.

The first section of this chapter gives a short overview of instance-based learning.
We then briefly discuss one particular instance-based learning algorithm, namely k-
nearest neighbor, one of the most popular techniques in the field of machine learning.
The notion of distance in general, and its most common implementation on learning
examples described in propositional languages are then discussed. We then review
the formalism of first-order logic, as generally used in ILP, and show how learning
examples in a relational setting are most commonly represented in practical learning
systems. It turns out that representation via sets of elements is one of the most
common and natural form of description. Accordingly, a distance measure operating
on sets of elements has to be the central aspect of distance-based learning algorithm
operating on relational data. In the last section we thus discuss different distance
measures defined over sets of elements, one of them being the main ‘ingredient’ of
our learning algorithm described in the next chapter.

2.1 Instance-based Learning

Instance-based learning is one of the most popular techniques in machine learning
and data mining. It is a conceptually straightforward class of methods for approx-
imating discrete- or real-valued functions. Learning in these algorithms consist of
simply storing the presented training data. When a new test instance is encoun-
tered, a set of similar instances is retrieved from memory and used to classify the
new query instance. Because of the delayed processing until a new instance must
be classified, instance-based methods are sometimes referred to as ‘lazy’ learning
([Mitchell, 1997]).

One key property of these methods is that they can construct a different approx-
imation to the target function for each distinct test instance that must be classified.
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Given:
- set Ej4in of training instances z,
along with their class label f(z)=c, ce(C
- query instance r, to be classified
k-NN for classification:

- find x1,29,...,%,, the k instances from FEj.4p
that are nearest to z,
- return
. k
f(x,) = argmaz.cc Z o(e, f(z;)) (2.1)

=1

where o(a,b) =1 if a =0 and o(a,b) =0 otherwise

Figure 2.1: k-nearest neighbor for classification ((adapted from [Mitchell, 1997]).

In fact, they construct only a local approximation to the target function that applies
in the neighborhood of the new test instance, and never construct an approxima-
tion designed to perform well over the entire instance space. This has significant
advantages when the target function is very complex, but can still be described by
a collection of less complex local approximations ([Mitchell, 1997]).

The main disadvantage of instance-based approaches is their computational com-
plexity — both in terms of space (storage of instances) and time (search). This is
due to the fact that nearly all computation takes place at classification time rather
than when the training examples are first encountered.

In this work we will use the most popular form of instance-based learning, namely
the k-nearest neighbor algorithm. It will be briefly recapitulated in the next section.

2.2 k-Nearest Neighbor Learning

The k-nearest neighbor algorithm is suitable for approximating both discrete- and
continuous-valued target functions. Its most striking feature is its conceptual sim-
plicity: When the class of a new example z, should be predicted, the algorithm first
collects the k training examples that are most similar to z,. The test instance is
then classified as the most frequent class value of the k£ nearest training examples.
Figure 2.1 shows a high level description of the algorithm (adapted from [Mitchell,
1997]).

Approximating continuous-valued target functions in the k-nearest neighbor frame-
work is straightforward: To accomplish this, the algorithm has to calculate the mean
value of the k nearest training examples rather than the most frequent class value.
In this case, the final line of the above algorithm would be:

flay = Z=2 ) (22)
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k-nearest neighbor is a highly effective learning method for many practical prob-
lems. Its algorithmic simplicity is just one of its strong aspects. Taking the (dis-
tance) weighted average of the k neighbors nearest to the test point can smooth
out the impact of noisy training examples and/or attributes. Dealing with noisy
training examples is one of the most important practical issues in machine learning.
Other strong aspects of the k-nearest neighbor are the ability to deal with discrete
as well as with continuous attributes, incrementality, and often surprisingly good
generalization performance, which has been proved on a number of different learning
tasks.

The main drawback of the nearest neighbor algorithm is its computational com-
plexity. In the most naive approach the algorithm has to inspect each training ex-
ample in turn and calculate its distance to the test example, retaining the identity
only of the closest one. If we have n training examples, and each distance calcula-
tion is O(d) (where d is the dimensionality of the feature space, i.e., the number of
attributes), this search is thus O(dn?) ([Duda et al., 2000]). Since for large training
sets and/or complex distance computation, the algorithm becomes intractable, re-
ducing its search complexity has received a great deal of analysis. Generally, there
are three techniques for reducing its computational burden: computing partial dis-
tances, prestructuring, and pruning the stored prototypes (see also [Duda et al.,

2000]).

In the partial distance approach, the distance between test and training instances
is computed using some subset of the features. If the partial distance is too great, the
algorithm does not compute further. Intuitively speaking, partial distance methods
assume that what one knows about the distance in a subspace is indicative of the full
space. Prestructuring creates some form of search tree in which training instances are
selectively linked. During classification, the distance of the test instance to one (or a
few) stored ‘root’ prototype(s) is computed and only the instances linked to it (them)
are considered. Of these, only the closest to the test instance is found and recursively,
only subsequent linked prototypes are considered. If the tree is properly structured,
the total number of instances that need to be searched is reduced. The third method
for reducing the search complexity is to eliminate ‘useless’ instances during training,
a technique known as pruning. A simple method is to eliminate instances that
are surrounded by training points of the same category. This leaves the decision
boundaries (and errors) unchanged, while reducing the search complexity.

The basic assumption of the k-nearest neighbor is that the class/value of the
test instance will be similar to the classes/values of the similar training instances.
Thus, we see that the algorithm heavily relies on the distance between instances. In
the following section we discuss the notion of distance in general and describe some
basic and well understood distance functions.
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2.3 Distances

In the previous section we argued that the distance function is the most important
component of k-nearest neighbor and more generally all instance-based learning
methods. Therefore, one can improve these algorithms by improving the distance
measures they use. In this section we first formally define the more general notion
of metric. In the following we then review the best understood and most commonly
used distance functions.

2.3.1 The Notion of Metric

A distance measure is a function that yields smaller values for more similar objects
and larger values for more distant objects. While the definition of distance function
depends on the description language used to formulate the learning task, the notion
of metric is far more general. A metric D(-,-) is merely a function that gives a scalar
distance between two argument patterns and satisfies the following definition:

Definition 2.1 [Metric] Let S be a set. A function D : S x S — R is a metric
iff:

the function is positive: Vx,y € S: D(x,y) >0

the function is reflexive: Vz,y € S: D(z,y) = 0 if and only if x =y

the function is symmetric: Va,y € S: D(z,y) = D(y,x)

the function satisfies the triangle inequality:
Va,y,z € S: D(x,y) + D(y,2) > D(z, 2)

It is straightforward to intuitively interpret the above conditions: The first two
say that there should be a common minimal value for pairs of equal objects. Besides
the obvious symmetry property, the triangle inequality states that the distance
between any two objects (e.g.,  and z) should be minimal if it is calculated directly
(e.g. D(z,2)). Any indirect path (e.g. D(z,y), D(y,z)) must be either equal or
greater.

While not all distance measures commonly used in machine learning satisfy the
above conditions, these are desirable properties, since the measures that satisfy them
often produce more intuitive results and also allow many optimizations in algorithms
using the measure.

2.3.2 Distance between objects in a propositional setting

Propositional logic or attribute value language is the most commonly used description
language in machine learning and artificial intelligence in general ([Mitchell, 1997;
Russell and Norvig, 2003]). Tt is beyond the scope of this work to give a full formal
description of propositional logic (a nice overview can be found in [Russell and
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Figure 2.2: Score of the Mozart Sonata KV. 279 (C major), 1st movement, mm.
31-38. Phrase boundaries are indicated by brackets at the bottom of the figure.

Norvig, 2003] or [Nienhuys-Cheng et al., 1997]). We will use the term attribute
value setting, since in the bulk of machine learning research, learning instances are
represented as tuples of values. The values are particular quantifications of the set
of attributes which describe the instance.

More formally, the space of possible examples is the product £ = A; x Ay x...x A,
of the n domains Ay, As, ..., A, of the attributes. Hence, each example e is an n-tuple
(attri(e),attry(e), ..., attr,(e)) € E. E is generally called the ‘instance space’.

Example 2.1 Figure 2.2 shows the score of the Mozart Sonata KV. 279 (C
major), 1st movement, mm. 31-38. This part of the piece can be divided into four
phrases — segments which are considered as important building blocks of classical
music. If we want to apply a machine learning algorithm on the level of phrases, in
the attribute-value setting they would be represented as tuples
(attry(phr), attro(phr), ..., attr,(phr)), where attri(phr), attro(phr), ... are values of
the attributes that describe musical properties of the phrase, like the length of a
phrase, mean and variance of the size of melodic intervals between the melody notes
within the phrase, information about the presence of trills in the phrase etc. Some
attributes have continuous domains (e.g. such as the mean of the size of melodic
intervals between melody notes), and some are discrete (e.g., the basic informa-
tion about the presence of trills in the phrase would belong to the set of values

{true, false}).

The distance measures in attribute value setting are thoroughly investigated and
understood. Most widely used is the Euclidean distance.

Definition 2.2 [Eucledean distance] Let e; and es be arbitrary learning ex-
amples described by tuples (attr,(ey), attry(ey), ..., attr,(er)) and
(attry(es), attra(es), ..., attr,(es)), respectively. The Euclidean distance between e;
and e, is then defined as

d.(ey,e9) = \J zn: do(attr;(e1), attr;(es))? (2.3)

=1

For the attributes with discrete domains, the distance d,(a;, as) is usually defined
as
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da(al, ag) =1- (5((11, CLQ) (24)

where d(ay,az) = 1 if a; = ag, and §(ay, ag) = 0 otherwise.
For attributes with continuous domains the distance d,(ay, as) is simply

da(a1,as) = ay — as (2.5)

The Euclidean distance is a special case of the general class of distances called
Minkowski distance ([Duda et al., 2000]).

Definition 2.3 [Minkowski distance] Let e; and ey be arbitrary learning
examples described by tuples (attri(e;), attray(ey), ..., attr,(er)) and
(attry(es), attre(es), ..., attr,(es)), respectively. The Minkowski distance between e;
and e,y is then defined as

de(er,ea) = (O |da(att7’i(el),attm(eg))|k)% (2.6)
i=1
Minkowski distance is also referred to as L, norm, the Euclidean distance being
thus the Ly norm ([Duda et al., 2000]). In the further text we will also make use of
the Li norm, also called Manhattan or city block distance, which can be considered
as the shortest path between two instances e; and es, if one has to ‘travel’” along the
paths parallel to coordinate axes.

2.4 Relational Setting

The propositional setting is the most commonly used setting in machine learning,
and a large literature corpus describes learning in this setting. However, for a number
of applications, it is very problematic to represent the learning task in the attribute
value setting ([Russell and Norvig, 2003; Raedt, 1998]). For such applications, trying
to represent the learning task in attribute value form would either cause loss of
information or create huge redundancies. In order to overcome these problems,
in such cases machine learning researchers use first-order logic (FOL) or relational
setting.

The basic assumption of first-order logic is that the world consists of objects
and that relations hold between these objects (thus the name relational setting).
The formalism was initially introduced by Gottlob Frege ([Frege, 1986]), and fur-
ther developed by Alfred North Whitehead and Bertrand Russel ([Whitehead and
Russel, 1910 1913]). The semantics of first-order logic was developed by Alfred
Tarski ([Tarski, 1936, 1956]). It would be far beyond the scope of this thesis to
give complete introduction to the concepts of FOL. In the next section we will thus
formally describe just those concepts which we will use in the following text. For
a more in-depth introduction to FOL and basic learning approaches in this setting
see [Nienhuys-Cheng et al., 1997].
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2.4.1 Basic Syntactic Definitions

In the following we will specify an alphabet, i.e. the set of all symbols which can be
used in forming syntactical structures in FOL (if not stated otherwise, all definitions
in the following text are recapitulated from [Nienhuys-Cheng et al., 1997]).

Definition 2.4 [Alphabet] An alphabet of first-order logic consists of the fol-
lowing symbols:

e A set of constants: {a,b,c,...}.

e A set of variables: {U,V,W,...}.

A set of function symbols: {f,g,h,...}. Each function symbol has a natural
number (its arity) assigned to it. The arity defines the number of arguments
the function has.

e A non-empty set of predicate symbols: {P,Q, R,...}. Each predicate symbol
has a natural number (its arity) assigned to it.

e The following five connectives: =, A\, V,—, and «.

e Two quantifiers: 3 (called the existential quantifier) and V (called the universal
quantifier).

o)) ¢

e Three punctuation symbols: ‘(’, ¢)’, ‘..

With the above defined alphabet we can define terms, atoms, and literals.
Definition 2.5 [Term] Terms are defined as follows:

e A constant is a term.
e A variable is a term.

e If f is an n-ary function symbol and ¢y, t,, ..., ¢, are terms, then f(t1,ts,...,t,)
is a term.

Definition 2.6 [Atom] If P is an n-ary predicate symbol and tq,ts, ..., t, are
terms, then P(t1,1s,...,1,) is called an atom.

Definition 2.7 [Literal] If P(¢y,ts, ..., t,) is an atom, then both, P(t,t, ..., t,)
and —P(tq,1s, ..., t,) are called literals.

Informally speaking, terms (constants, variables and functions) refer to the o0b-
jects in the world. On the other hand, predicates (atoms) are used to denote prop-
erties or relations between objects.
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Example 2.2 With the terms phrIdl, phrid2, phrld3, and phrld3 we could rep-
resent four phrases from the example in Figure 2.2. Further, we could use the predi-
cate PhrLength/2 to describe the length of each phrase: e.g., PhrLength(phrldl,4)
would state that the first phrase lasts four bars. It is also possible to define
predicates which depict relations between phrases. E.g., the relational predicate
Succeed(phrldl, phrld2) would state that the second phrase follows the first.

In order to define the full first-order language, we have first to define formulas
and ground formulas.

Definition 2.8 [Formula] Formulas are defined as follows:

e An atom is a formula.

If ¢ is a formula, then —¢ is a formula.

If ¢ and 1) are formulas, then (¢ A1), (¢ V ), (¢ — ©), (¢ < 1) are formulas.

If ¢ is a formula and X is a variable, then 93X ¢ and VX ¢ are formulas.

Definition 2.9 [Ground term/formula] A ground term (respectively ground
formula) is a term (resp. formula) which does not contain any variables.

With the above defined concepts it is straightforward to define the first-order
language:

Definition 2.10 [First-order language] The first-order language given by an
alphabet is set of all formulas which can be constructed from the symbols of the
alphabet.

The above definitions do not give the complete formal description of first-order
logic. Many important concepts from FOL — such as the scope of the quantifiers
and variables in a formula, a bound occurrence of a variable in a formula, or closed
formulas — are not defined. The introduced concepts serve merely as a background
for reading the further text. Some of them will be used in the next section, where
we show how the introduced relational formalism is commonly used in practical
applications in machine learning for representation of learning examples.

2.4.2 Describing Learning Examples in a Relational Setting

In section 2.3.2 we have shown how a part of Mozart Sonata consisting of four musi-
cal phrases (Figure 2.2) could be represented in propositional logic. However, there
is one major problem with the propositional representation of this particular ex-
ample ': In classical music phrases are commonly organized hierarchically. Smaller

Tn fact, there are several problems with such a representation, but for the purposes of the
following text we focus on the presented.
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Figure 2.3: Score of the Mozart Sonata KV. 279 (C major), 1st movement, mm.
31-38. The hierarchical, three level phrase structure of the passage is indicated by
brackets at the bottom of the figure.

phrases are grouped into higher-level phrases, which are in turn grouped together,
constituting a musical context at a higher level of abstraction etc. Figure 2.3 re-
produces the same part of the Mozart Sonata given in Figure 2.2 together with the
hierarchical, three-level phrase structure indicated by three levels of brackets at the
bottom of the figure. Phrase identifiers in the figure have the form phr.LT, L denot-
ing the level of ‘musical abstraction’ to which a phrase belongs, and T its ‘temporal
order’ within a particular level (e.g. phr110 refers to the tenth phrase of the first
phrasing level).

If we want our relational learning algorithm to operate on the phrase level, we
need to represent each phrase in a relational formalism. In relational IBL this is
most commonly done by collecting all atoms from the database relevant to the ob-
ject we want to represent and grouping them in a set, which is in turn the ‘raw’
description for the particular object and its relevant context.

Example 2.3 Suppose we want to represent two second-level phrases phr21 and
phr24. Suppose further that in addition to the phrase identifier, our language con-
sists of the two predicates PhrLength/2 and Contains/2. PhrLength(Phrld, Length)
describes the length of a phrase (e.g. in bars), and Contains(Phrldl, Phrld2)
states that the higher-level phrase Phrld2 contains the lower-level phrase Phrldl.
Our goal would be to collect all predicates from the database which are ‘relevant’ to
the phrases phr21 and phr24. The formal definition of this procedure will be given
in section 3.3. For now, assume that ‘relevant predicates’ are predicates which are
‘connected’ via the same phrase identifier. After this procedure, the phrases phr21
and phr24 would be represented with the following two sets (since the lengths of
the phrases are not important for the purposes of the example, we omit the actual
numbers):

Sprro1=|[PhrLength(phr2l, -), Contains(phrll, phr2l), Contains(phrl2, phr21),
Contains(phr13, phr21), Contains(phrl4, phr21), PhrLength(phrll,-),
PhrLength(phr12,-), PhrLength(phrl3,-), PhrLength(phrl4,.),
Contains(phr21, phr3l), PhrLength(phr3l,-), Contains(phr22, phr3l),
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PhrLength(phr22,-), Contains(phrl5, phr22), Contains(phrl6, phr22),
Contains(phrl7, phr22), Contains(phrl8, phr22), PhrLength(phrl5, ),
PhrLength(phrl6, -), PhrLength(phr17,-), PhrLength(phrl8,-)].

and

Sphroa=[PhrLength(phr24, -), Contains(phrl1ll, phr24), Contains(phr112, phr24),
PhrLength(phr111,-), PhrLength(phr112,-), Contains(phr24, phr32),
PhrLength(phr32,-), Contains(phr23, phr32), PhrLength(phr23,-),
Contains(phrl19, phr23), Contains(phr110, phr23), PhrLength(phr19,-),
PhrLength(phr110,-)].

From the example discussed above, one can see the obvious advantage of us-
ing relational representation: Objects (i.e., learning instances) are described not
only by their attributes, but also by their relations to other objects. In the above
example, the phrases are represented by their attributes (like in the propositional
representation), and additionally, by relations to other phrases (upper or lower in
the hierarchy). These other phrases are also described by their attributes. In this
way, the distance between two phrases depends not only on their attributes but also
on their context. As the reader can imagine (and we will prove in the experimental
section), introduction of ‘context’ in a distance measure can be of much value for
real-world learning tasks.

Since grouping atoms into sets of elements (and structuring the sets in some
way) is one of the most commonly used techniques in describing learning examples
in practical relational systems, defining the distance measure operating on sets of
elements is obviously a crucial part of a distance-based relational algorithms. In the
following section we will introduce the most common set distance measures. We will
see that there is a trade off between the set sizes and computational feasibility of
set distance measures in practical applications.

2.5 Distances Between Sets of Elements

In this section we discuss distances between sets of elements. However, before we
introduce the most common distance measures between sets, we will define two
concepts which we will use in the subsequent chapters. The first is the weighted set
as a generalization of the set concept. The second is the size of the weighted set, as
a generalization of the notion of cardinality (adapted from [Ramon and Bruynooghe,
2001]).

Definition 2.11 [Weighted set] Let X be a set. A weighted set W is a func-
tion W[X]: X — R.

Definition 2.12 [Size under weighting function]. The size of a set X under
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a weighting function for W is defined as sy (X) = > ,cx W[X](x).

While for the most commonly used mathematical concept of a set, an element
belongs to the set or not, a weighted set can be thought of as assigning to each
element a degree to which it belongs to the set. Ordinary sets are special cases of
weighted sets: one can see a weighted function W of a set X as a function that maps
all elements x € X onto 1 and all other elements onto 0 in this special case.

In the following sections, we will assume that, given the set of all possible el-
ements U, the distance measure between individual elements of U, dy is defined.
On top of this elementary distance measure dy;, the distances between sets of ele-
ments will be defined. We will start with simpler distance measures, and end up
with a distance measure based on maximal matching, which is built in our learning
algorithm described in the next chapter.

2.5.1 Symmetric Difference Distance

A straightforward way to compare two sets is to consider which elements are in one
set and not in the other. The set of such elements is called the symmetric difference
([Eiter and Mannila, 1997]). More formally,

Definition 2.13 [Symmetric difference]. Let A and B be two sets. The
symmetric difference of A and B is defined as

AAB = (A/B) U (B/A) (2.7)

Then, the following distance measure is well known:

Definition 2.14 [Symmetric difference distance] ([Ramon and Bruynooghe,
1998]). Let A and B be two sets and W their weighting function. The symmetric
difference distance between A and B is then defined as:

Da(A, B) = sy (AAB) (2.8)

Although the symmetric difference distance satisfies all metric properties (see e.g.
[Ramon and Bruynooghe, 1998]) and it can be computed very efficiently, its applica-
bility in real tasks is very limited: The distance is basically computed as (weighted)
number of elements which are in one set and not in another, without taking into
account any elementary distances between elements of sets.
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2.5.2 Minimum Distance

The definition of the minimum distance is very straightforward: The distance be-
tween two sets is simply the minimum of all possible distances between any two
elements ([Eiter and Mannila, 1997]).

Definition 2.15 [Minimum distance]. Let A and B be two sets and dy
the distance between their individual elements. The minimum distance function
Dipin(A, B) is defined by:

Din(A, B) = mingeapepdu(a, b) (2.9)

The minimum distance can be computed efficiently: In [Toussaint and Bhat-
tacharya, 1983] it is shown that the minimum distance can be computed in time
O(mlog(m)), where m = max(#A, #B).

However, beside the fact that the minimum distance is not a metric, its major
drawback are the unintuitive results. E.g., let A = {a,b} and B = {a}. Then
Dyin(A, B) = 0 while A and B are not identical.

2.5.3 Distance Based on the Sum of Minimal Distances

A distance based on minimum distance which takes all elements in both sets into
account is the sum of minimal distances (discussed in [Eiter and Mannila, 1997]):

Definition 2.16 [Distance based on the sum of minimal distances]. Let
A and B be two sets and di the distance between their individual elements. The
distance based on the sum of minimal distances between A and B is defined by:

Dy (A,B) = (X (mimepdy(a,h) + X (minacado(a,b))  (210)

acA beB

While a distance defined in this way looks more intuitive, it is in general not a
metric. In particular, it does not satisfy the triangle inequality:

Example 2.4 Let A = {1,2}, B = {3,4}, and C = {5,6}. Let dy = |- —-|.
Then, Dy~ (A,B) =3, Dy~ (B,C) =3, and Dy~ (A,C) =7, hence
Dy~ (A,B)+Ds~  (B,C) < Dy~ (A, C) - the triangle inequality does not hold.

min

2.5.4 The Hausdorff metric

One of the most used set distances is the Hausdorff metric ([Eiter and Mannila,
1997]). It is defined as follows:
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Figure 2.4: Assuming the distance between individual set elements dy; being planar
Euclidean distance, the sets A and B are — according to the Hausdorff distance —
equally distant from C.

Definition 2.17 [Hausdorff distance]|. Let A and B be two sets and dy the
distance between their individual elements. The Hausdorfl distance is then defined
as:

Dy (A, B) = maz(mazeea(min{dy(a,b)|b € B}), maxpep(min {dy(a,b)|la € A}))
(2.11)

The Hausdorff distance has been considered in the area of computational geometry,
where the distance between geometric entities has to be computed (see, e.g. [Hutten-
locher and Kedem, 1990]). Put simply, the distance between two sets is determined
by the distance of the most distant elements of both sets to the nearest neighbor
in the other set. The advantages of the Hausdorff distance are its computability
in polynomial time and the fact that it satisfies all properties of a metric ([Eiter
and Mannila, 1997]). One of the problems with the Hausdorff distance is that it is
sensitive to extreme points in the sets. Consider the example given in Figure 2.4. If
we assume the distance between individual set elements dyy being planar Fuclidean
distance, the sets A and B are equally distant from C according to the Hausdorff
distance.

The major drawback of the Hausdorff distance is that the distance between
two sets depends just on the distance between two points in the sets. A more
sophisticated set distance measure would combine information about the elementary
distances between many elements of both sets. In the following we will discuss such
a distance, which is based on optimal matching between sets.
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2.5.5 Distance Based on Optimal Matching

It is a rather intuitive idea that a set distance measure should first find correspond-
ing elements in both sets and then use this information to compute the distance
between the sets.

Example 2.5 Suppose we want to compare two families. The first family con-
sists of a father fi, a mother m;, and a child ¢;. The second family consists of a
father fs, mother mao, a child co, a grandfather g fs, and a grandmother gms. When
comparing these two families, it would be natural to look for corresponding family
members. One would then compare both fathers f; and f5, both mothers m; and
meo, children ¢; and ¢y and finally take into account that in family 1 there are no
grandparents gm and ¢gf like in family 2.

In the following we will introduce a distance measure rooted in this idea, which
is based on optimal matching between two sets. First we review a definition of
matching and maximal matching between two sets (from [Grimaldi, 1998]).

Definition 2.18 [Matching]. Let A and B be two sets. A relation f C A x B
between two sets A and B is a matching iff

Y(a,b),(c,d) € f:(a=c< b=d) (2.12)

so each element of A is associated with at most one element of B and vice versa.

Definition 2.19 [Maximal matching]. A maximal matching f between A
and B is a matching for which there is no (a,b) € A x B such that f U {(a,b)} is a
matching between A and B.

Figure 2.5 illustrates the concepts of matching and maximal matching. Based
on these concepts, the optimal matching distance can be defined
([Ramon and Bruynooghe, 2001]):

Definition 2.20 [Optimal matching distance]. Let A and B be two sets,
m(A, B) the set of all maximal matchings between A and B, and dy the distance
between their individual elements. The optimal matching distance is then defined
as:

DOM(A, B) = (min)TEm(A’B)d(r, A, B) (213)

where
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A matching A maximal matching

Figure 2.5: Examples of a matching and maximal matching between two sets.

d(r, A, B) = Z d(x,y)

(z,y)er

and #A, #B, and #r denote cardinalities of sets A, B, and r, respectively.

+%.(#A+#B—2.#r) (2.14)

In this formula, the constant M represents the maximal possible distance between
two points in both sets. This means that one sums up the distances of the pairs
of elements which are in  and adds a penalty M /2 for each element that does not
match with an element from the other set. The optimal matching distance is then
the minimal distance of all possible maximal matching distances. Besides its strong
aspects, namely rooting in a rather intuitive idea and utilising as much information
about both sets as possible, it has been shown that for positive M it satisfies all
properties of a metric (for the proof that an optimal matching distance satisfies all
four metric conditions stated in definition 2.1, see [Ramon and Bruynooghe, 2001]).

The main problem with the optimal matching distance is its computational com-
plexity. In order to calculate the distance between two sets a naive approach would
be to calculate distances between two sets for all possible maximal matchings and
return the minimal one. Due to the combinatorial nature of such an approach, such
a computation would have exponential complexity and thus would be intractable
even for moderate numbers of set elements.

Fortunately, in the next chapter we will see that the problem of finding the
optimal matching distance can be restated in a form suitable for applying concepts
from graph theory. One tool from graph theory, namely transport networks, is shown
to be able to solve the problem of optimal matching distance in time polynomial in
the size of both sets. In the next chapter this technique is discussed. We will then
introduce our new similarity measure based on the optimal matching distance and
show how it is built into our relational instance-based learning algorithm DISTALL.



24

Chapter 2. IBL in Relational Setting



Chapter 3

DISTALL

This chapter describes our new instance-based learner DISTALL and briefly con-
trasts it with its ancestor RIBL [Emde and Wettschereck, 1996], by showing via an
example how they implement different notions of structural similarity. A large part
of the material presented here has been already published in [Tobudic and Widmer,
2003a] and [Tobudic and Widmer, 2006].

3.1 Introduction

In designing our structural distance measure we have been guided by three basic
principles:

e the new structural distance measure should be intuitive, taking into account
as much relevant information as possible

e it should have a solid theoretical background

e it should be computationally feasible for real world problems

This premises are not trivial to fulfil. We have seen in chapter 2 that learning
examples in a relational setting are commonly described as sets of ground facts.
However, a number of set distance measures are both very limited, taking into ac-
count only a small part of available information in both sets, and often do not satisfy
the properties of metric. In section 2.5 we introduced the set distance measure based
on optimal matching and argued that it has roots in an intuitive idea. Additionally,
it utilizes a lot of information about distances between elementary set elements.
Furthermore, it is a metric. On the other hand, the main drawback of the optimal
matching distance is its computational complexity. In this chapter we will show how
to effectively compute the optimal matching distance measure in time polynomial
in the size of both sets.

Having a distance measure which runs in polynomial time does not satisfy our
third guideline on its own: the computational feasibility for real world problems.

25
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Figure 3.1: Score of the Mozart Sonata KV. 279 (C major), 1st movement, mm.
31-38. The hierarchical, three level phrase structure of the passage is indicated by
brackets at the bottom of the figure.

Applying such a distance measure directly on real world examples — each containing
maybe hundreds of ground facts or more — would cause impractically high compu-
tational costs. To avoid this problem we group the ground facts into hierarchical
subsets and apply the optimal matching distance on these substantially smaller sets.
The mechanism for subset formation is described in subsequent sections. In section
3.5 we put all pieces together and describe our structural similarity measure which
is then built in our relational instance-based learner DISTALL. Finally, we contrast
it with its ancestor RIBL, the state of the art relational instance-based learner.

None of DISTALL’s basic ‘ingredients’ is new. How to effectively compute op-
timal matching distance is shown in [Ramon and Bruynooghe, 2001]. Grouping
ground facts into subsets is a well known technique in relational learning (see e.g.
[Raedt, 1992], GOLEM [Muggleton and Feng, 1990], RIBL [Emde and Wettschereck,
1996]) and a technique for computing a distance by forming hierarchical subsets is
used in RIBL [Emde and Wettschereck, 1996]. However, the novel aspect of this
work is that our structural distance measure combines these elementary techniques
in a unique way, resulting in a new relational instance-based learner. In chapter 5 we
then report about experiments assessing DISTALL’s performance and contrasting
it with its ‘ancestor’ RIBL on a difficult, real-world learning task derived from the
field of expressive music performance research.

3.2 Representation of the Learning Input

In section 2.4 we have discussed the main concepts regarding relational formalism.
We have argued that the basic assumption of this formalism is that the world (and
the learning problem) consists of objects and that relations hold between these ob-
jects. A ‘raw’ input to our learning algorithm thus consists of a database containing
predicates which describe objects and relations which hold between them.
Consider our music example from section 2.4.2. The Figure 2.3 describing the
phrasing structure is repeated in Figure 3.1. Consider further, that our learning
problem consists of just two predicates, PhrLength/2 and Contains/2. As in the
Example 2.3, PhrLength(Phrld, Length) describes the length of a phrase Phrild



3.2. Representation of the Learning Input 27

in bars, and Contains(Phrldl, Phrld2) states that the higher-level phrase Phrld2
contains the lower-level phrase Phrldl. The starting point for our learning algo-
rithm would then be an unstructured database of facts as given in the following :

DB=[PhrLength(phr11,0.5), PhrLength(phr12,0.5), PhrLength(phr13,0.5),
PhrLength(phr14,0.5), PhrLength(phrl5,0.5), PhrLength(phr16,0.5),
PhrLength(phr17,0.5), PhrLength(phrl8,0.5), PhrLength(phr19,1.0),
PhrLength(phr110,1.0), PhrLength(phr111,0.5), PhrLength(phr112,0.5),
PhrLength(phr21,2.0), PhrLength(phr22,2.0), PhrLength(phr23,2.5),
PhrLength(phr24,1.0), PhrLength(phr31,4.0), PhrLength(phr32,3.5),
Contains(phrll, phr21), Contains(phr12, phr21), Contains(phrl3, phr21),
Contains(phrl4, phr2l), ...

Contains(phr21, phr3l), Contains(phr22, phr3l), Contains(phr23, phr32),
Contains(phr24, phr32)].

In addition to the database, predicate and type declarations are given. The pred-
icate declarations define the arity of the predicates as well as the sorts and mode
declarations of their arguments. Sorts are used to declare types of the predicate ar-
guments and mode declarations specify which arguments are input or output argu-
ments. Type definitions are used to differentiate between arguments that represent
an object in a domain (e.g., a phrase) and attribute values (e.g., the phrase length).
This information is used in the same manner as it is used in other ILP learners (e.g.,
CLINT [Raedt, 1992], GOLEM [Muggleton and Feng, 1990] and RIBL [Emde and
Wettschereck, 1996]).

To illustrate this concepts, the predicate and type declaration concerning our
example would be:

e PhrLength/2:! < phrase >, < barLength > .

e Contains/2 :! < phrase >,! < phrase > .

e type : phrase : object.
e type : barLength : number.

The first declaration states that the two arguments of the predicate PhrLength
are of sorts phrase and barLength. The ‘!” declares the first argument as predicate
input. By omitting the sign ‘!” we have implicitly declared the second argument as
predicate output. Similary, Contains consists of two arguments, both being input
arguments of the sort phrase. Type definitions state that arguments of sort phrase
should be treated as objects and arguments of sort bar Length as numerical values.

The first step of our algorithm is building sets describing learning examples
and grouping the sets into smaller groups which facilitate faster computation of set
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distances. The sets are extracted from the database and the process is guided by
predicate and type definitions. In the following section we describe it in a more
detail.

3.3 Generation of Structured Sets Describing Learn-
ing Examples

Before explaining the process of generation of structured sets which describe learning
examples, we recall some definitions from [Helft, 1989] and [Muggleton and Raedt,
1994].

Definition 3.4 [Linked clause| A clause is linked if all of its variables are
linked. A variable v is linked in a clause c if and only if v occurs in the head of ¢, or
there is a literal [ in ¢ that contains the variables v and w (v # w) and w is linked in c.

Example 3.1 Clause p(A) < r(B) is not linked, while p(A) < ¢(A, B),r(B,C),u(D, C)

1S.

Definition 3.5 [Level of term] The level [(¢) of a term ¢ in a linked clause ¢
is 0 if ¢ occurs as an argument in the head of ¢; and 14+min [(s) where s and ¢ occur
as arguments in the same literal of c.

Example 3.2 The variable F' in father(F,C) «— male(F), parent(F,C) has
level 0, the variable G in grandfather(F) < male(F), parent(F,C),parent(C, Q)
has level 2.

The set of literals describing an learning example (i.e. an object) can be gener-
ated from the database and structured into subsets according to their appropriate
linkage levels (depths) by iterating the following procedure:

Given an object (like the phrase phr21 from the example given in Figure 3.1),
we first collect all literals from the database containing the object identifier (e.g.,
phr21) as one of their arguments. These literals would make up the subset at depth
0. Then, we can determine the set of all new objects contained in the subset of
depth 0. In the following we collect all literals from the database containing the
new objects, and group them in a set at linkage level 1. This procedure can be
recursively repeated until some depth parameter is reached.

Example 3.3 Consider again our music example given in Figure 3.1 describing
the phrasing structure of part of the Mozart Sonata KV. 279 and two predicates
PhrLength(Phrld, Length) and Contains(Phrldl, Phrld2). In this example, the
set of literals describing the phrase phr21 would be divided into four subsets accord-
ing to their linkage levels:
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LinkLevelo=[Phr Length(phr21,2.0), Contains(phr1l, phr21), Contains(phr12, phr21),
Contains(phrl13, phr21), Contains(phrl4, phr21), Contains(phr21, phr3l)]

LinkLevel,=[PhrLength(phr11,0.5),Phr Length(phr12,0.5), Phr Length(phr13,0.5),
PhrLength(phr14,0.5), PhrLength(phr31,4.0), Contains(phr22, phr31)]

LinkLevelo=[Phr Length(phr22,2.0), Contains(phr15, phr22), Contains(phrl6, phr22),
Contains(phrl7, phr22), Contains(phrl8, phr22)]

LinkLevels=[PhrLength(phr15,0.5), PhrLength(phr16,0.5), PhrLength(phr17,0.5),
PhrLength(phr18,0.5)]

This process is restricted by user specified argument sorts, types, and modes.
Information of argument sorts ensures that an object referred to by an argument A
at some depth N is only ‘linked’ to the literals at depth N + 1 if these contain A
as one of their arguments and if that argument is sort compatible with the original
argument A. For example, a phrase with the object identifier 0obj21 would not be
linked to the trill identifier 0bj21. Information on argument types is also utilized to
prevent linking of non-object arguments. According to this restriction, the numerical
argument 2.0 in PhrLength(phr21,2.0) would not be linked to any argument one
level deeper. Finally, argument modes enable linkage only along input arguments.
Output arguments are considered to be determined by the input arguments of the
predicate and, therefore, offer no additional information. For more information on
sorts, types and modes see [Raedt, 1992; Muggleton and Feng, 1990; Emde and
Wettschereck, 1996]. The generated structured set for each given object is in the
ILP literature referred as starting clause. In the following we will also used this
term.

3.4 Efficiently Computing the Optimal Matching
Distance

In previous section we showed how structured sets describing learning examples can
be generated from the domain database. In section 2.5 we introduced the set distance
measure based on optimal matching. Since the distance measure represent the core
part of our learning algorithm, in the following we present a technique for efficient
computation of set distance measure based on optimal matching. It turns out that
the optimal matching distance measure can be computed in time polynomial in the
size of both sets.

The optimal matching distance between two sets of elements can be efficiently
computed via transport networks, a concept rooted in graph theory. In the following
we will review in more detail how it can be done (recapitulated from [Ramon and
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(ce,d(a;,b))) b,

(ce,0)

Figure 3.2: A distance network (see [Ramon and Bruynooghe, 2001])

Bruynooghe, 2001]), without introducing transport networks in more detail (for more
information on graph theory and the concept of transport networks see [Mehlhorn,
1984]).

In order to efficiently compute the distance based on optimal matching between
two sets of elements, one has to first construct the appropriate transport network:
The network has two groups of vertices {a;} and {b;} corresponding to the elements
of the two sets A and B; a starting and an ending vertex (source s and sink ¢); and
two additional vertices, let us call them a_ and b_. For all edges in the network,
capacities and weights are defined, where capacities represent the maximal amount
of ‘units” which can ‘flow’ through a connection and the weights are the distances
(transport costs) between particular vertices.

The distance between two sets of elements is then defined as the solution of the
maximum flow minimal weight problem: one would like to transport as much as
possible from s to ¢ with minimal costs. In other words, one wants to maximally
match elements from one set with the elements of the other and achieve the minimal
possible distance. By setting the weights of the edges between set elements and the
two additional vertices a_ and b_ to a big constant (e.g. bigger or equal than the
maximal weight in the network), a ‘penalty’ is modeled: all elements of one set
which do not match with any element of the other cause big costs. By associating
appropriate capacities with the edges in the network one can generalize the notion of
cardinality in such a way that sets of different cardinality can be scaled appropriately.
An example of a distance network is given in Figure 3.2.

More formally, given the definitions of the weighted set and the size under weight-
ing function (defined in section 2.5), the distance network can be formalized as fol-
lows [Ramon and Bruynooghe, 2001]:

Definition 3.1 [Distance network] Let X be a set, and d a metric on X. Let M
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be a constant, W be a weighting function for X and Q% = mawx scox sizey (A). Then

for all finite A, B € 2% with A = {ay,...,a,} and B = {by, ..., b, }, we define a dis-

tance network between A and B for d, M and W in X to be N[X,d,M,W,A ,B|=N(V E,cap,s,t,w)
with V.= AUBU{s,t,a_,b_} EF = ({s} x (AU{a_})) U (BU{b_}) x{t}) U
(AU{a_}) x (BUA{b_})), Ya € AVb € B : w(s,a) = w(b,t) = w(s,a_) =

w(b_,t) = w(a_,b_) = 0 A w(a,b) = d(a,b) N w(a_,b) = w(a,b_) = M/2 and

Va € ANYb € B : cap(s,a) = W[A](a) A cap(b,t) = WI[B](b) A cap(s,a_) =

QY —sizew (A)Acap(b_,t) = QW —sizew (B) Acap(a,b) = cap(a_,b) = cap(a,b_) =
cap(a—,b_) = oo (see Figure 3.2).

The distance between sets of elements is then defined as follows:

Definition 3.2 [Netflow distance] Let X be a set, d a metric on X, M a con-
stant, and W a weighting function for X. For all A, B € 2%, the netflow distance
from A to B under d, M and W in X, denoted d¥ 4 ;1 (A, B), is the weight of the
minimal weight maximal flow from s to t in N[X,d,M,W,A B].

In [Mehlhorn, 1984] it has been shown that if W has integer values, the maximal
flow minimal weight problem can be solved in time polynomial in sizey (A) and
sizew (B).

If the weights of the netflow distance are normalized (in the interval [0,1]), the
netflow distance can also be normalized:

Definition 3.3 [Normalized netflow distance| Let X be a set and d a nor-
malized metric on X. Then, the normalized netflow distance based on d is a distance
function dﬁ;gM,W(A, B) : X x X — R defined by:

e 0 if (X=0 and Y=0)

N
2><dX,d,M,W(AvB)

. . otherwise
d%,d,M,W (A,B)+(sizew (X)+sizew (Y))/2

The equivalents of this rather abstract description of transport networks for
purposes of our learning algorithm would be as in the following:

Each of the vertices {a;} and {b;} corresponds to one literal from the sets A and
B for which we want to compute the distance. Weights between individual vertices
are the distances between individual literals (see next section for description how to
compute the distance between individual literals). Capacities between vertices can
be set to scale the sets to approximately same ‘virtual cardinality’, e.g. by allowing
the literals of the smaller set to match up more than one literal of the bigger set. This
would avoid the fact that the distance of two sets with vastly different cardinalities
is expressed mainly through penalty. The set distance between sets of literals A
and B would then correspond to the solution of the maximum flow minimal weight
problem.

In the following section we describe how the individual techniques introduced so
far are put together and built in our relational instance based learner DISTALL.
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3.5 The DISTALL Algorithm

Since DISTALL algorithm incorporates some rather complex concepts (like trans-
port networks described above), we will first introduce it by explaining its precise
algorithmic description (given in Figure 3.3). We will then use the intuitive graphi-
cal description (Figure 3.4) to further clarify its most important issues. In the end of
the section we give a toy example of distance computation between two ‘instances’
from our music domain.

For each (training and test) example (i.e. object like phrase phr21), DISTALL
first generates their starting clauses as described in section 3.3. For each test instance
it then finds the k£ most similar training examples and makes prediction based on
them (lines 1-8 in Figure 3.3). The distance between a test and training example is
computed as set distance between all literals found in the test and training starting
clause at linkage level O (line 6 in Figure 3.3). In other words, we find the solution of
the maximal flow minimal weight problem (see Definition 3.2), where the transport
network vertices are literals containing terms which are directly linked to the training
and test instances. In order to find the solution of the maximal flow minimal weight
problem we need to calculate values of all edge weights in the network (line 12 in
Figure 3.3). The weights of the edges are defined as distances between individual
literals. The distance between literals is set to 1 if they have different functors
(line 16 in Figure 3.3). If the literals have the same functors, the distance between
them is computed as the average distance over all their arguments (line 25 in Figure
3.3). The distance over literals” arguments is computed as the Manhattan distance
if the arguments are numeric (line 20 in Figure 3.3)), or as a discrete distance if
the arguments are symbolic (line 21 in Figure 3.3)). However, if the arguments are
object identifiers (line 22 in Figure 3.3)), the distance between them is computed
by expanding them into a new transport network where the vertices are literals
also containing these objects, found one linkage level deeper in the starting clauses.
As a consequence of this procedure, the optimal matching distance is computed
recursively, each time on the sets at the one linkage-level ‘deeper’. That is why we
termed the algorithm DISTALL: DIstance on SeTs of Appropriate Linkage Level. At
the lowest level, the distance between objects is calculated as the distance between
discrete values (line 10 in Figure 3.3).

The basic principle of DISTALL is illustrated in Figure 3.4. In the example, the
distance between objects Ob; and Ob, is calculated as the solution of the maximal
flow minimal weight problem on the sets of literals found at LinkLevel = 0 in the
starting clauses built for Ob; and Oby. The weights d(a;,b;) of edges connecting
literals containing no object identifiers are computed directly (via Manhattan dis-
tance, see above). In the example, the literals ag; and by, as well as agy and bys
have the same functors and object identifiers as arguments. The weights of edges
between them are thus defined as distance network problems involving the literals
containing these objects, found one linkage level deeper in the starting clause. The
procedure continues recursively, until the depth of the starting clauses is reached.
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The computational cost is kept small, since the algorithm solves many hierarchically
nested transport network problems with a small number of vertices in one network.

Notice that the distances between vertices are normalized. With a normalized
distance between vertices we can apply Definition 3.3 and normalize the netflow
distance. Normalized netflow distance is in turn used in the computation of the
(normalized) distance between literals in the ‘higher-level” transport network.

Example 3.4 Suppose we want to calculate distance between two phrases from
out music example, let say phr21 and phr23 illustrated in Figure 3.5. In order to keep
our example comprehensible, we simplified the real hierarchical phrase organization
(given in Figure 3.1 and in the Example 3.3) in that there are just two additional
higher-level phrases which contain phrases phr21 and phr23, namely phrases phr31
and phr32, with no other phrases in the musical passage. Assuming there is just
one more predicate (in addition to Contains(Phrldl, Phrld2)), which describes
the length of the phrases (PhrLength(Phrld, Length)), the starting clauses of the
two phrases would be:

SC(phr21)={0:[PhrLength(phr21,2.0), Contains(phr21, phr31)],1:[phr Length(phr31,4.0] }
SC(phr23)={0:[PhrLength(phr23,2.5), Contains(phr23, phr32)],1:[phr Length(phr32, 3.5] }

Each starting clause consists of two literals at depth 0 and one literal at depth 1.
The distance between phr21 and phr23 is calculated as optimal matching distance
on sets at depth 0. These are [PhrLength(phr21,2.0), Contains(phr2l, phr3l)]
and [PhrLength(phr23,2.5), Contains(phr23, phr32)| for this example. In order
to compute the set distance, we must calculate all edge weights between the ele-
ments of the two sets. These weights are the distances between individual literals.
Distances between individual literals are 1 for literals with different functors: E.g.,
edge weight between PhrLength(phr21,2.0) and Contains(phr23, phr32) would be
set to 1. The distance between literals with the same functors is the average of
the distances between their arguments. In our example, the edge weight between
PhrLength(phr21,2.0) and PhrLength(phr23,2.5) would be the Manhattan dis-
tance between their second arguments and would be 0.5. ! Note that the distance
in this case would not be the average of the first and second argument distances,
since the object arguments for which the transport network is made (i.e. phr21 and
phr23) do not contribute to the distance between the literals. It would not make
sense to take this distance into account, since it is the distance we were interested
in the first place!

We have the similar situation in determining the distance (edge weight) between
literals C'ontains(phr21, phr3l) and Contains(phr23, phr32). The distance between
these two literals fully depends on the distance between the arguments phr31 and

In the real implementation of DISTALL we scale the distance with the total range of the
argument in the data set (see line 20 of in Figure 3.3). This scaling is irrelevant to this illustrative
example.
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phr32. Since these arguments are object identifiers, the distance between them is
calculated by expanding them into a new transport network where the vertices are
literals also containing these objects, found one linkage level deeper in the start-
ing clauses. In our example, the new transport network would contain only two
vertices, namely literals PhrLength(phr31,4.0) and PhrLength(phr32,3.5). The
optimal matching set distance for this transport network would be straightforward
to compute: we need to assign just one edge weight, namely the distance between
literals PhrLength(phr31,4.0) and PhrLength(phr32,3.5). This literal distance
would again be the Manhattan distance between their second argument.

On this example we see the intuitive idea behind DISTALL’s distance mea-
sure: Distance between phrases phr21 and phr23 is based on: 1) Their similarities
(e.g. their bar lengths — reflected in the edge weight computation between lit-
erals PhrLength(phr21,2.0) and PhrLength(phr23,2.5) in the transport network
on depth level 0). 2) The similarities between objects which are related to them
(e.g. the bar lengths of the phrases phr31l and phr32, which contain the initial
two phrases). In this way DISTALL incorporates the contertual information in its
distance measure.

Of course, this example is intended to be an instructive and not very realistic
one. The ‘direct’ similarities between phrases in real application would depend on
many phrase attributes and not just on their lengths (e.g. melodic intervals between
notes in the phrases, the harmonic development in the phrases etc.). Similarly, the
phrases would be in ‘relations’ with many more phrases, e.g., they would contain
many phrases, which would themselves contain other phrases etc. However, the
example shows the basic principles of DISTALL’s similarity measure.

3.6 DISTALL vs. RIBL

DISTALL can be regarded as a continuation of the line of research initiated in [Bis-
son, 1992], where a clustering algorithm together with its similarity measure was
presented. This work was later improved in [Emde and Wettschereck, 1996], in the
context of the relational instance-based learning algorithm RIBL. DISTALL and
RIBL share the main idea behind their similarity measures, namely that the simi-
larity between two objects should be determined by the similarity of their attributes
and the similarity of the objects related to them. The similarity of the related
objects depends in turn on their attributes and related objects.

Where DISTALL and RIBL differ is the set distance measure. DISTALL in-
corporates an intuitively elegant set distance measure based on optimal matching
which is then efficiently computed by applying the concept of transport networks
(first proposed in [Ramon and Bruynooghe, 2001]). As a consequence of its simi-
larity computation, DISTALL’s set distance strongly favors matchings that are as
complete as possible and penalizes literals left unmatched. On the other hand,
RIBL permits several literals in one set to match the same literal in the other. It
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is beyond this text to give a in-depth description of RIBL’s similarity measure (for
detailed description see [Emde and Wettschereck, 1996]). However, since DISTALL
is in some sense inspired by RIBL, we explain the main difference between RIBL’s
and DISTALL’s behavior in one constructed situation from our musical application
domain. In chapter 5 we present DISTALL’s empirical results and provide a direct
comparison with RIBL.

Consider again our music example from sections 2.4.2 and 3.3. A slightly mod-
ified situation is reproduced in Figure 3.6. In this example we want to calculate
the distance between phrases phr31l and phr32. Each of the two phrases is de-
scribed via the attributes stored in the predicate PhrCont, which describe the
musical ‘content’ of each phrase. Both phrases also contain lower-level phrases
(predicate C'ontains), which are in turn described with their phrase-content predi-
cates. RIBL would compute the similarity between phr31 and phr32 as a (weighted)
sum of the similarities between the PhrCont and Contains predicates, where for
each Contains predicate of phr32, the most similar Contains(X, phr31) predicate
is found (by finding the most similar PhrCont and Contains predicate at the lower
level). Imagine the situation where the short lower-level phrase phr23 is a prototype
of all lower-level phrases of phr32 (i.e. the sum of the distances between phr23 and
{phr24, phr25, phr26} phrases is minimal, and the other two lower-level phrases
phr21 and phr22 are completely different from all phrases {phr24, phr25, phr26}).
By matching all {phr24, phr25, phr26} phrases to phr23 RIBL would obtain a rela-
tively high similarity between phr31 and phr32. This is not what we want, as the
internal details of the whole high-level phrase phr31 are ‘responsible’ for the simi-
larity /dissimilarity and not just a small fraction. In DISTALL, on the other hand,
such a matching that leaves two of three subphrases unmatched would receive a high
penalty and thus result in a low similarity rating.
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Given:

e aset e € F of training examples
e database with background knowledge DB

e test instance ¢, number of NNs £ and starting-clause depth depth

1. DISTALL(i, E, DB, k, depth):prediction

2.  DIST = {}

3 calculate starting clause sc; for i (from DB)

4 foralle €

5. calculate starting clause sc, for e (from DB)

6 dist=TRANSPORT-NET (e,i,sc.,sc;,0,depth)

7 DIST=DIST U{< e,dist >}

8 prediction = combine predictions of £ NNs from DIST

9. TRANSPORT-NET (e, i, sc., sc;, link Level,, depth):dist
10.  IF (linkLevel > depth): dist=(e==1)
11. construct transport network T'N with literals from
sce(link Level) and sc;(link Level) containing objects e and i
12.  FIND-WEIGHTS(T'N, e, i, sce, sc;, link Level,, depth)
13. dist is solution to the maximal flow minimal weight problem on T'N

14. FIND-WEIGHTS(T' N, e, i, sc., sc;, link Level, depth)
15.  for all edges (u,v) € TN

16. IF u and v have different functors: weight(u,v)=1

17. ELSE

18. dist = {}

19. for all arguments a; in (u,v)

20. CASE a; numeric: dist;=|u; — v;|/range;

21. CASE aq; discrete: dist;=(u;==v;)

22. CASE a; object:

23. dist;=TRANSPORT-NET (u;, v;, sce, sc;, link Level + 1, depth)
24. dist = dist U dist;

25. weight(u, v)=average(dist)

Figure 3.3: The high-level algorithmic description of DISTALL
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dlstance(Obl,Ob )

LinkLeve=1

Figure 3.4: Basic principle of DISTALL’s similarity measure
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Figure 3.5: Simplified (and incomplete) version of the hierarchical phrase structure
of the Mozart Sonata KV. 279 (C major), 1st movement, mm. 31-38. For details
see Example 3.4. The purpose of the example is to show distance computation by
DISTALL, in this case between phrases phr21 and phr23.
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PhrCont(p31,Attrs...)

A PhrCont(p32,Attrs...)
Contains(p21,p31) Contains(p22,p31) Contains(p23,p31)

Contains(p24,p32)Contains(p25,p32) Contains(p26,p32)

|

|
I AL A A | I AL Y A
PhrCont(p21,Attrs...) | PhrCont(p24,Attrs..
|
|

PhrCont(p22,Attrs...) PFeront(p25,Attrs..%
PhrCont(p23,Attrs...) PhrCont(p26,Attrs...)

Figure 3.6: An example of relational learning situation: training example (left) and new
test case (right)



Chapter 4

Application of Relational IBL to
Classical Music

In the last chapter we have discussed our new relational instance-based learner
DISTALL. In the following we will introduce a difficult real-world problem from
expressive music performance research, which we will use to experimentally assess
DISTALL’s efficiency: learning, from large numbers of complex performances by
concert pianists, to play music expressively.

After defining the context in section 4.1, section 4.2 discusses some of the related
previous work undertaken in our research group: induction of note-level performance
rules with the PLCG algorithm. Although PLCG has proved to be very successful
in the context of its learning task — some rules induced by it are novel musicological
discoveries! —, in terms of building a predictable models of expressive performance
however, there is an obvious limitation of this work: local, low-level rules can not
explain all data in such a complex domain as concert-level expressive piano music.
This thesis can thus be regarded as a continuation of this work in terms that we
complement the note-level rule model with a predictive models of musical expression
at higher levels of the musical structure, namely the level of phrases. To this end
we apply our relational instance based learner described in last chapter. Section
4.3 discuss the notion of expressive music performance and its representation via
performance curves, as well as the data representation we will use for learning. We
also show (section 4.3.3) how the training examples for the learner are derived — by
decomposing complex performance curves into elementary ‘expressive shapes’ that
can be associated with musical phrases at different levels. Finally, the overall picture
of the system used for the experiments described in chapter 5 is given.

This chapter reports about research already published in [Tobudic and Widmer,
2003c,a, 2006; Widmer and Tobudic, 2003]

39
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4.1 Context: Expressive Music Performance

Expressive music performance is the art of shaping a musical piece by continuously
varying important parameters like tempo, dynamics, etc. Human musicians do not
play a piece of music mechanically, with constant tempo or loudness, exactly as writ-
ten in the printed music score. Rather, they speed up at some places, slow down
at others, stress certain notes or passages by various means, and so on. The most
important parameter dimensions available to a performer (a pianist, in particular)
are tempo and continuous tempo changes, dynamics (loudness variations), and ar-
ticulation (the way successive notes are connected). Most of this is not specified in
the written score, but at the same time it is absolutely essential for the music to be
effective and engaging. As such, expressive performance is a phenomenon of central
interest in contemporary (cognitively oriented) musicology.

The work described in the following is another step in a long-term research en-
deavour that aims at building quantitative models of expressive music performance
via Artificial Intelligence and, in particular, inductive machine learning methods
[Widmer et al., 2003]. This is to be regarded as basic research. We do not in-
tend to engineer computer programs that generate music performances that sound
as human-like as possible. Rather, our goal is to investigate to what extent a ma-
chine can automatically build, via inductive learning from ‘real-world’ data (i.e., real
performances by highly skilled musicians), operational models of certain aspects of
performance (e.g., predictive models of tempo, timing, dynamics, etc.). In this way,
we hope to get new insights into fundamental principles underlying the complex
phenomenon of expressive music performance, and contribute to the growing body
of scientific knowledge about performance (see [Gabrielsson, 1999] for an excellent
overview of current knowledge in this area).

Previous research has shown that computers can indeed find interesting regu-
larities of musical performance. A new machine learning algorithm [Widmer, 2003]
succeeded in discovering a small set of simple, robust, and highly general rules that
predict a substantial part of the note-level expressive choices of a performer (e.g.,
whether she will shorten or lengthen a particular note) with surprisingly high pre-
cision (see section 4.2).

However, it became equally clear (actually, it was clear from the outset), that the
level of single notes is far from sufficient as a basis for a complete model of expres-
sive performance. Music performance is a highly complex activity, with performers
tending to shape the music at many different levels simultaneously (see below). The
goal of the work described in this text is thus to build a predictive model of musical
expression at higher levels of the musical structure, the level of musical phrases. An
instance-based learning system is described that recognizes performance patterns
at various abstraction levels and learns to apply them to new pieces (phrases) by
analogy to known performances.
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4.2 The Previous Work: Induction of Note-Level
Performance Rules with the PLCG Algorithm

The following two sections are recapitulation from [Widmer et al., 2003] and [Wid-
mer, 2003].

4.2.1 Inductive Learning of Classification Rules with the
PLCG Algorithm

The induction of classification rules is one of the most studied topics in machine
learning. The most common strategy for learning classification rules is known as
sequential covering, or separate-and-conquer (see e.g. [Fiirnkranz, 1999]). According
to this strategy, the rules are learned one at a time and, after having learned a rule,
all the examples covered by the rule are removed. Ideally, this process is repeated
until no examples are left that are not covered by any rule. However, the data of
real life problems is noisy (i.e. contains errors), meaning that the given data and
rule representation languages usually do not even permit the building of perfectly
consistent theories; so the state of the art rule learning algorithms perform some
kind of pruning to avoid overfitting.

PLCG is a meta-algorithm that relies on such a sequential covering algorithm
described above. PLCG uses a rule learning algorithm to induce several partly
redundant theories and then combines these theories into one final rule set. In
this sense, PLCG is motivated by the successful framework of ensemble methods
([Dietterich, 2000]). Basically, the construction of theories by PLCG proceeds in
several stages. It is here that the acronym PLCG can be explained. It stands for
partition + learn + cluster + generalize. In a first step, the training examples
are partitioned into several subsets. A set of classification rules is then learned
from each of them. In the clustering step, the learned rule sets are merged into
one large set, and a hierarchical clustering of the rules into a tree of rule sets is
performed, where each set contains rules that are somehow similar. Each of these
rule sets is then replaced with the least general generalization of all the rules in the
set (generalize). Finally, a heuristic algorithm selects the most promising rules from
this generalization tree and joins them into the final rule set that is then returned.

The main motivation behind this rather complex procedure is that the advan-
tage of ensemble learning — improved prediction accuracy due to the uncorrelated
errors of single classifiers — is combined with the benefit of inducing comprehensible
theories. In contrast to most common ensemble learning methods such as bagging
[Breiman, 1996], stacking [Wolpert, 1992], or boosting [Freund and Schapire, 1996],
which only combine the predictions of single classifiers in order to improve prediction
accuracy, PLCG combines theories directly and produces one final rule set that can
be interpreted. As we will see in the next section, the discovery of comprehensible
rules is especially important in the context of our musical project. A more in depth
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discussion of the algorithm is given in [Widmer, 2003].

4.2.2 Learning Note-Level Performance Rules

In previous work in our research lab, PLCG was applied to the task of learning
note-level performance rules. The term note-level reveals that the rules predict how
a musician is going to play a particular note in a piece — louder or softer than its
predecessor, slower or faster than notated in the musical score, or staccato or legato.
The training data used for experiments contained precise information of how each
individual note was performed by a pianist, recorded on a Bosendorfer SE290 — a
computer-monitored grand piano with a special mechanism that measures every key
and pedal movement with high precision and stores this information in a format
similar to MIDI.

For the experiments with PLCG, recordings of 13 complete piano sonatas by
W. A. Mozart (K.279-284, 330-333, 457, 475, and 533) performed by the Viennese
concert pianist Roland Batik were used. The resulting data set comprises more
than 106,000 performed notes (of which only melody notes were used, resulting in
an effective training set of 41,116 notes), or some 4 hours of music. Each of the
melody notes was described by 29 attributes (10 numeric, 19 discrete) that describe
both intrinsic properties (such as duration, metrical position etc.) and some aspects
of local context of the note (e.g., melodic and rhythmic properties such as the
durations of surrounding notes, and the size and direction of the intervals between
the note and its predecessor and successor notes etc.).

The following target concepts have been learned: Two tempo concepts — ritar-
dando (slowing down) and accelerando (speeding up)—, two dynamics concepts —
crescendo (if the note is played louder than its predecessor) and diminuendo (grow-
ing softer)—, and two articulation concepts — staccato (if a note was sounded for less
than 80% of its nominal duration) and legato (the note overlaps the following one).
From the training set, PLCG learned a small set of 17 simple classification rules (6
rules for tempo changes, 6 rules for local dynamics, and 5 rules for articulation) that
predict a large number of the note-level choices of the pianist. Some of the rules
represent truly novel musical discoveries (for a more in depth discussion on the rules
from the perspective of musicology see [Widmer, 2002]).

4.3 Real-World Task: Learning to Play Music Ex-
pressively

As stated above, note-level model can not be sufficient if one aims to build a com-
prehensive model of expressive music performance. Music performance is a highly
complex activity, with performers tending to shape the music at many different lev-
els simultaneously. The goal of the work presented in this thesis is thus to build
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quantitative models of musical expression at different levels of abstraction: we would
like to learn tempo and dynamics strategies at levels of hierarchically nested phrases.

In the following we show how relational IBL can be applied to learn expressive
tempo and dynamics patterns at different phrase levels. After some basic concepts
regarding expressive music performance and performance curves, we discuss how
phrases are described and represented in our learning system. We further show a
method for decomposing complex expression curves into elementary patterns that
can be associated with individual phrases (at different phrase levels). Instance-
based learning in general, and DISTALL in particular, can then predict timing
and dynamics patterns for phrases in a new piece by analogy to the most similar
phases in the training set. Generating complex expression curves on ‘unseen’ test
pieces is then a rather straightforward technique, namely the inverse of the curve
decomposition problem.

4.3.1 Expressive Music Performance Curves

In section 4.1 we argued that a (skilled) performer, in order to produce interesting
and engaging music, relies on varying different parameters, like timing, loudness,
articulation etc. In this thesis, we restrict ourselves to piano performances and
two of the most important parametric dimensions: timing (tempo variations) and
dynamics (loudness variations). The tempo and loudness variations applied by a
musician over the course of a piece (if we can measure them, which is a problem in
its own right) can be represented as tempo and loudness curves, respectively. For
instance, Figure 4.1 shows dynamics curves — the dynamics patterns produced by
three different pianists in performing the same piece. Each point represents the
relative loudness with which a particular melody note was played (relative to an
averaged ‘standard’ loudness); a purely mechanical, unexpressive rendition of the
piece would correspond to a perfectly flat horizontal line at y = 1.0. Variations in
tempo can be represented in an analogous way.

Musically trained readers will already notice certain high-level patterns or trends
in the curves in Figure 4.1 that seem to correlate with lower- and higher-level phrases
of the piece (e.g., a global up-down, crescendo-decrescendo tendency over the large
phrase that covers the first four bars). Extracting and learning to apply such high-
level expressive patterns is the goal of the work presented here.

4.3.2 Representing Musical Phrases in FOL

Phrases are segments of music heard and interpreted as coherent units; they are
important structural building blocks of music. Phrases are organized hierarchically:
smaller phrases are grouped into higher-level phrases, which are in turn grouped
together, constituting a musical context at a higher level of abstraction etc. As stated
in chapter 2, the phrases and relations between them can be naturally represented
in first-order logic.
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Figure 4.1: Dynamics curves (relating to melody notes) of performances of the same
piece (Frédéric Chopin, Etude op.10 no.3, E Major) by three different Viennese
pianists (computed from recordings on a Bosendorfer SE290 computer-monitored
grand piano).

Consider Figure 4.2. It shows the dynamics curve corresponding to a small
portion (2.5 bars) of a Mozart sonata performance, along with the piece’s under-
lying phrase structure. For all scores in our data set phrases are organized at
four hierarchical levels, based on a manual phrase structure analysis. The musi-
cal content of each phrase is encoded in the predicate phrCont. It has the form
phrCont(1d,A1,A2,...), where Id encodes the phrase identifier and A1,A42,... are
attributes that describe very basic phrase properties. The following list gives the
names, data types and descriptions of all phrase attributes used by our learning
system:

1. phraseLength [numeric]: the length of the phrase

2. relPosNumApex [numeric]: the relative position of the highest melodic
point (the ‘apex’) within a phrase

3. intFirst Apex [numeric]: the melodic interval between starting note and apex
4. intApexLast [numeric]: the melodic interval between apex and ending note
5. metrStrFirst [numeric]: metrical strength of starting note

6. metrStrLast [numeric]: metrical strength of ending note

7. metrStrApex [numeric]: metrical strength of apex

8. harmonyTriple [symbolic]: the harmonic progression between start, apex,
and end
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rel. dynamics

phrCont(p11,A1,A2,...) phrCont(p12,A1,A2,...)

< Level 1
0.5 % contains(p21,p11) phrCont(p21,A1,A2,...)contains(p21 ,p12{ <«— Level 2 1
o contains(p31,p21) phrCont(p31,A1,A2,...) <+— Level 3
1 1
1 1.5 2 25

score position (bars)

Figure 4.2: Phrase representation used by our relational instance-based learning
algorithm.

9. endsWithCumRhythm [boolean|: state whether the phrase ends with a
‘cumulative rhythm’

10. endsWithCadence [boolean|: state whether the phrase ends with a cadential
chord sequence

Relations between phrases are specified via the predicate contains(Id1,1d2), which
states that the bigger phrase Id1 contains the smaller one Id2. Note that smaller
phrases (consisting only of a few melody notes) are described in detail by the pred-
icate phrCont. For the bigger phrases — containing maybe several bars — the
high-level attributes in phrCont are not sufficient for a full description. But having
links to the lower-lever phrases through the contains predicate and their detailed
description in terms of phrCont, we can also obtain detailed insight into the contents
of bigger phrases.

In ILP terms, the description of the musical scores through the predicates phrCont
and contains defines the background knowledge of the domain. What is still needed
in order to learn are the training examples, i.e. for each phrase in the training set,
we need to know how it was played by a musician. This information is given in the
predicate phrShape(Id,Coeffs), where Coeffs encode information about the way the
phrase was played by a pianist. This is computed from the tempo and dynamics
curves, as described in the following section.

4.3.3 Deriving the Training Instances: Multilevel Decom-
position of Performance Curves

Our starting material is the scores of musical pieces plus measurements of the tempo
and dynamics variations applied by a pianist in a particular performance. These
variations are given in the form of tempo and dynamics curves and represent the
local tempo and the relative loudness of each melody note of the piece, respectively.
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Both tempo and loudness are represented as multiplicative factors, relative to the
average tempo and dynamics of the piece. For instance, a tempo indication of 1.5
for a note means that the note was played 1.5 times as fast as the average tempo of
the piece, and a loudness of 1.5 means that the note was played 50% louder than
the average loudness of all melody notes.

In addition, the system is given information about the hierarchical phrase struc-
ture of the pieces, currently at four levels of phrasing. Phrase structure analysis is
currently done by hand, as no reliable algorithms are available for this task.

Given a performance (dynamics or tempo) curve, the first problem is to extract
the training examples for phrase-level learning. Remember that we want to learn how
a performer ‘shapes’ phrases at different structural levels by tempo and dynamics
‘gestures’. To that end, the complex curve must be decomposed into basic expressive
‘gestures’ or ‘shapes’ that represent the most likely contribution of each phrase to
the overall expression curve.

As approximation functions to represent these shapes we decided to use the class
of second-degree polynomials (i.e., functions of the form y = ax? + bz + c¢), because
there is ample evidence from previous research in musicology that high-level tempo
and dynamics are well characterized by quadratic or parabolic functions [Todd, 1992;
Repp, 1992; Kronman and Sundberg, 1987]. Decomposing a given expression curve
is an iterative process, where each step deals with a specific level of the phrase
structure: for each phrase at a given level, we compute the polynomial that best
fits the part of the curve that corresponds to this phrase, and ‘subtract’ the tempo
or dynamics deviations ‘explained’ by the approximations. The curve that remains
after this ‘subtraction’ is then used in the next level of the process. We start with
the highest given level of phrasing and move to the lowest.

As by our definitions, tempo and dynamics curves are lists of multiplicative
factors, ‘subtracting’ the effects predicted by a fitted curve from an existing curve
simply means dividing the y values on the curve by the respective values of the
approximation curve.

More formally, let N, = {ni,...,n;} be the sequence of melody notes spanned
by a phrase p, O, = {onset,(n;) : n; € N,} the set (sequence) of relative note
positions of these notes within phrase p (on a normalized scale from 0 to 1), and
E, = {expr(n;) : n; € N,} the part of the expression curve (i.e., tempo or dynamics
values) associated with these notes. Fitting a second-order polynomial onto F, then
means finding a function f,(x) = a’z + bz + ¢ such that

D(fp(x), Np) = > [folonsety(n)) — expr(ni))®

7’L¢€Np

is minimal.

Given an expression curve (i.e., sequence of tempo or dynamics values) E, =
{expr(ny),...,expr(ni)} over a phrase p, and an approximation polynomial f,(z),
‘subtracting’ the shape predicted by f,(z) from E, then means computing the new
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E, = {expr(n;)/ fy(onsety(n;)) 1 i = 1.k}

To illustrate, Figure 4.3 shows the dynamics curve of the last part (mm.31-38)
of the Mozart Piano Sonata K.279 (C major), 1st movement, first section. The
four-level phrase structure our music analyst assigned to the piece is indicated by
the four levels of brackets at the bottom of each plot. The figure shows the stepwise
approximation of the expression curve by polynomials at these four phrase levels.
The red line in level (e) of the figure shows how much of the original curve is
accounted for by the four levels of approximations.

4.3.4 Combining Multi-Level Phrase Predictions

Input to the learning algorithm are the (relational) representation of the musical
scores plus the training examples (i.e. timing and dynamics polynomials), for each
phrase in the training set. Given a test piece the learner assigns the shape of the
most similar phrase from the training set to each phrase in the test piece. In order
to produce final tempo and dynamics curves, the shapes predicted for phrases at
different levels must be combined. This is simply the inverse of the curve decompo-
sition problem. Given a new piece to produce a performance for, the system starts
with an initial ‘flat” expression curve (i.e., a list of 1.0 values) and then successively
multiplies the current values by the multi-level phrase predictions.

Formally, for a given note n; that is contained in m hierarchically nested phrases
pj,J = l...m, the expression (tempo or dynamics) value exp(n;) to be applied to it
is computed as

exp(ng) = [ f,, (onsety, (n:)),

Jj=1

where f, is the approximation polynomial predicted as being best suited for the
j"-level phrase p; by the relational instance-based learner.

4.4 The Overall System

Figure 4.4 depicts the overall system used for experiments in the next chapter. Given
the scores of the training and the test pieces, our musicologist ! first analyzed their
phrase structure. Each phrase in the training and the test pieces is then represented
in FOL as discussed in section 4.3.2. The training performances (for which the
system is given expressive tempo and dynamics curves) are then decomposed into
‘elementary shapes’ as described in section 4.3.3.

!Thanks to Werner Goebl for performing the harmonic and phrase structure analysis of the
Mozart sonatas.
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Figure 4.3: [best viewed in color] Multilevel decomposition of dynamics curve of perfor-
mance of Mozart Sonata K.279:1:1, mm.31-38. Level (a): original dynamics curve plus
the second-order polynomial giving the best fit at the top phrase level (blue); levels (b—
d) each show, for successively lower phrase levels, the dynamics curve after ‘subtraction’
of the previous approximation, and the best-fitting approximations at this phrase level;
Level (e): ‘reconstruction’ (red) of the original curve by the four levels of polynomial
approximations.
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Figure 4.4: The overall system used for experiments.

For each phrase in the test piece, the most similar phrase in the ‘training
database’ is retrieved (via instance-based learning) and its expressive ‘shape’ is as-
signed to the test phrase. All phrase shapes in the test piece are then combined
as described in section 4.3.4, giving the predicted tempo and dynamics expressive
curve for the test piece.

In order to build as complete an expressive model as possible, we also complement
the output of the instance-based learning, namely predicted tempo and dynamics
expressive curves, with the rules of the note-level learning via PLCG-algorithm.
These rules will be learned from what we call the ‘residuals’, i.e. those aspects
of observed performance curves that are not explained by higher-level expressive
shapes (see also section 5.1.3 below). Combining the rules with a simple numeric
prediction scheme again based on a k-NN algorithm produces a partial model of
note-level nuances that predicts local timing and dynamics changes to be applied to
some individual notes. Tempo and dynamics deviations for those notes which are
‘covered’ by rules produced by PLCG are further ‘adjusted’ by amount suggested by
PLCG (i.e., for these notes the system multiplies the expressive values of phrase-level
predictions with the note-level expressive values predicted by PLCG). Tempo and
dynamics for those notes which are not affected by PLCG-rules will stay unchanged
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after PLCG-step, and are thus affected only by instance-based learning.
For those experiments, where the goal was to directly compare different instance-
based learning algorithms (DISTALL and RIBL in first place), the PLCG note-level

learning was switched off.



Chapter 5

Experimental Evaluation

After introducing a difficult real-world problem in the last chapter, in the following
we want to present the experimental evaluation of our approach in general, and the
results of our relational instance-based learning algorithm DISTALL in particular.
This chapter is divided into three sections.

Section 5.1 presents the empirical results achieved with a staightforward proposi-
tional k-nearest neighbor on our problem. Besides being interesting for introducing
our dataset, learning and evaluation procedure in its own right, this section also
gives the reader a flavor of how difficult the problem really is. While the results of
a first quantitative experiment turn out to be rather disappointing, we will show
various ways in methodology in which the results can be improved, finally resulting
in a system that at least partly makes surprisingly good predictions and even won
a prize in a recent ‘computer music performance’ contest. The material presented
in this section has already been published in [Widmer and Tobudic, 2002, 2003;
Tobudic and Widmer, 2003c,b].

In section 5.2 we test our relational instance-based learner DISTALL on the same
problem and show how it outperforms a simple propositional £-NN. We also present
experimental results of the direct comparison between DISTALL and its ‘ancestor’
RIBL. It turns out that DISTALL produces clearly better results than RIBL, at
least on this learning problem. We also present two ways of further improving our
prediction results, one of them nicely demonstrating the power of ILP. Finally, a
brief discussion of the musical quality of learned performances is presented. A short
summary is given in section 5.3. This section contains material already published

in [Tobudic and Widmer, 2003a, 2004, 2006].

5.1 Experiment with a Propositional k.-NN

5.1.1 The Data

The data used for the experiments was derived from performances of Mozart piano
sonatas by the Viennese concert pianist Roland Batik on a Bosendorfer SE 290

51
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Table 5.1: Mozart sonata sections used in experiments (to be read as
<sonataName>:<movement>:<section>); notes refers to ‘melody’ notes.

phrases at level

sonata section notes 1 2 3 4
kv279:1:1 fast 4/4 391 | 50 19 9 5
kv279:1:2 fast 4/4 638 | 79 36 14 5
kv280:1:1 fast 3/4 406 | 42 19 12 4
kv280:1:2 fast 3/4 | 590 | 65 34 17 6
kv280:2:1 slow 6/8 94 | 23 12 6 3
kv280:2:2 slow 6/8 154 | 37 18 8 4
kv280:3:1 fast 3/8 277 | 28 19 8 4
kv280:3:2 fast 3/8 379 | 40 29 13 5
kv282:1:1 slow 4/4 165 | 24 10 5 2
kv282:1:2 slow 4/4 213 | 29 12 3
kv282:1:3  slow 4/4 31 4 2 1 1
kv283:1:1 fast 3/4 379 | 53 23 10 5
kv283:1:2 fast 3/4 428 | 59 32 13 6
kv283:3:1 fast 3/8 326 | 53 30 12 3
c kv283:3:2  fast 3/8 558 | 79 47 19 6
kv332:2 slow 4/4 4771 49 23 12 4
Total: 5506 | 714 365 165 66

computer-controlled grand piano. The SE 290 is a full concert grand piano with a
special mechanism that measures every key and pedal movement with high precision
and stores this information in a format similar to MIDI. From these measurements,
and from a comparison with the notes in the written score, the tempo and dynamics
curves corresponding to the performances can be computed.

A manual, multi-level phrase structure analysis of some sections of these sonatas
was carried out manually by a musicologist. Phrase structure was marked at four
hierarchical levels. The resulting set of annotated pieces available for our experiment
is summarized in Table 5.1. As the reader can see, we have compiled an substantial
set of music for our evaluation experiments, consisting of 16 pieces with over 5000
melody notes and 1310 musical phrases. The 16 pieces comprise about 30 minutes
of piano music. Furthermore, the scores and performances are quite complex and
different in character; automatically learning expressive strategies from them is a
challenging task.

In the following section we will discuss our first experiment with a propositional
k-NN, where we used one nearest neighbor for prediction. In the further text we
will then show various improvements of the learning procedure, including varying
numbers of neighbors and phrase levels, making more homogeneous training sets,
and including the learning of local rules via the PLCG algorithm.
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dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COI‘I‘L
kv279:1:1| .0383 .0409 .1643 .1543 .6170| .0348 .0420 .1220 .1496 .3095
kv279:1:2| .0318 .0736 .1479 .1978 .4157| .0244 .0335 .1004 .1317 .2536
kv280:1:1| .0313 .0275 .1432 .1238 .6809| .0254 .0222 .1053 .1071 .4845
kv280:1:2| .0281 .0480 .1365 .1637 .4517| .0250 .0323 .1074 .1255 .3124
kv280:2:1| .1558 .0831 .3498 .2002 .7168| .0343 .0207 .1189 .1111 .7235
kv280:2:2| .1424 .0879 .3178 .2235 .6980| .0406 .0460 .1349 .1463 .4838
kv280:3:1| .0334 .0139 .1539 .0936 .7656| .0343 .0262 .1218 .1175 .5276
kv280:3:2| .0226 .0711 .1231 .2055 .4492| .0454 .0455 .1365 .1412 .3006
kv282:1:1| .1076 .0480 .2719 .1751 .7454| .0367 .0390 .1300 .1303 .3166
kv282:1:2| .0865 .0508 .2420 .1759 .6887| .0278 .0479 .1142 .1571 .2560
kv282:1:3| .1230 .0757 .2595 .2364 .6698| .1011 .0529 .2354 .1741 .8104
kv283:1:1| .0283 .0236 .1423 .1206 .5907| .0183 .0276 .0918 .1196 .2409
kv283:1:2| .0371 .0515 .1611 .1625 .4469| .0178 .0274 .0932 .1197 .1972
kv283:3:1| .0404 .0314 .1633 .1311 .6061| .0225 .0216 .1024 .1083 .4260
kv283:3:2| .0424 .0405 .1688 .1466 .5255| .0256 .0261 .1085 .1130 .2961
kv332:2 0919 .0824 .2554 2328 .5599| .0286 .0436 .1110 .1529 .1684
WDMean: | .0486 .0506 .1757 .1662 .5584| .0282 .0332 .1108 .1285 .3192

Table 5.2: Results of piece-wise cross-validation experiments with a propositional
kE-NN (k = 1). Measures subscripted with D refer to the ‘default’ (mechanical,
inexpressive) performance, those with L to the performance produced by the learner.
W Mean is the weighted mean (individual results weighted by the relative length
(number of notes) of the pieces.

5.1.2 Quantitative Results of A First Experiment

A systematic leave-one-piece-out cross-validation experiment was carried out. Fach
of the 16 sections was once set aside as a test piece, while the remaining 15 pieces were
used for learning. We used a propositional k-NN with £ = 1. The learned phrase-
level shapes were then applied to the test piece, and the following measures were com-
puted: the mean squared error of the learner’s predicted curve relative to the actual
performance curve produced by the pianist (M SE = Y1, (pred(n;) — expr(n;))?/n),
the mean absolute error (MAE = Y1 | |pred(n;) — expr(n;)|/n), and the correlation
between predicted and ‘true’ curve. MSE particularly punishes curves that produce
a few extreme ‘errors’. MSE and MAE were also computed for a default curve that
would correspond to a purely mechanical, unexpressive performance (i.e., an expres-
sion curve consisting of all 1’s). That allows us to judge if learning is really better
than just doing nothing. The results of the experiment are summarized in table
5.2, where each line gives the results obtained on the respective test piece when all
others were used for training. The last line (W Mean) shows the weighted mean
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performance over all pieces (individual results weighted with the relative length of
the pieces).

At a first glance, the results look rather disappointing. We are interested in cases
where the relative errors (i.e., MSEL/MSEp and MAE,/MAEp) are less than 1.0,
that is, where the curves predicted by the learner are closer to the pianist’s actual
performance than a purely mechanical rendition. In the dynamics dimension the
learner produces encouraging results, in 11 out of 16 cases for MSE and in 12 out of
16 for MAE. Tempo seems basically unpredictable: only in 5 (MSE) and 3 (MAE)
cases, respectively, did learning produce an improvement over no learning, at least
in terms of these purely quantitative, unmusical measures. Also, the correlations
vary between 0.77 (kv280:3:1, dynamics) and only 0.17 (kv332:2, tempo).

Averaging over all 16 experiments shows the same behavior, dynamics seems
learnable at least to some extent (the weighted relative errors being RMSE = 1.041
and RMAE = 0.945 respectively), while tempo seems unpredictable (all relative
errors are above 1.0).

5.1.3 Improving the Results

The above results were rather disappointing. Even keeping in mind that artistic
performance of difficult music like Mozart sonatas is a complex and certainly not
entirely predictable phenomenon, we had hoped that there would be something
predictable about phrase-level tempo and dynamics that a learner could pick up.
But the above results are not the end of the story, and in the following sections
we explore ways in which they can be improved — at the end we will end up with
a system that at least partly makes surprisingly good predictions and even won a
prize in a performance contest.

More homogeneous training set

One way of improving the results is by noting that Mozart piano sonatas are highly
complex music, with a lot of diversity in character. Splitting this set of rather
different pieces into more homogeneous subsets and performing learning within these
subsets should make the task easier for the learner. For instance, it is known in
musicology that absolute tempo has quite an impact on what performance patterns
sound acceptable. And indeed, it turns out that simply separating the pieces into
fast and slow ones and learning in each of these sets separately considerably increases
the number of cases where learning produces an improvement over no learning, both
in the dynamics and the tempo domain. Table 5.3 summarizes the results in terms
of wins/losses between learning and no learning for both learning settings. The
improvement is obvious. However, the tempo domain is still a problem, with only 7
wins out of 16 cases.
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MSE/dynamics MAE/dynamics | MSE/tempo MAE /tempo
all pieces 114/5- 12+ /4- 5+/11- 3+/13-
slow / fast 144-/2- 144-/2- 7+/9- 7+/9-

Table 5.3: Summary of wins vs. losses between learning and no learning; + means
curves predicted by the learner better fit the pianist than a flat curve (i.e. relative
error < 1), - means opposite. First line: piece-level cross validation over all pieces;
second line: learning on fast and slow pieces separately

Varying numbers of neighbours and phrase levels

All the results so far were produced by a k-NN learner with k=1. We initially chose
k=1 because we could not think of a meaningful way to combine the predictions of
several neighbours — simple averaging of polynomial coefficients or curves seemed
not very sensible from a musical point of view. But in experiments it turned out
that in the absence of a more informed combination strategy, even simple averag-
ing of several neighbours’ predictions can substantially improve the quality of the
predicted curves. Table 5.4 shows the results obtained by increasing the number
k of neighbours used in the prediction. The dynamics results in particular show
substantial improvement — the RMSE (MSEL/MSEp) drops from 1.041 for k =1
to 0654 for k = 10, the RM AFE from 0.946 to 0.787, and the correlation improves.
There is also some improvement in the tempo dimension, with at least the RMSFE
dropping below 1.0. The attendant slight drop in correlation indicates that with
increasing k, the learner tends to reproduce fewer of the local tempo changes of the
pianist, while improving the overall fit at higher levels.

In further experiments, it turned out that the highest level of phrasing that was
marked by our musicologist — extended phrases that span several, sometimes many,
bars — was not well mirrored in the performances by our pianist. Ignoring the highest
phrase level and learning and predicting only at the lower three phrase levels leads
to even better result, as shown in last 5 rows in table 5.4. The results for the same
learner variants in terms of wins vs. losses between learning and no learning is given
in table 5.5. Finally, learning beats no learning even in the tempo dimension for

both, MSE and M AFE (3 phrase levels, 10NN).

Improving the musical quality by learning local rules

Trying to predict how a pianist ‘shapes’ phrases tend to reconstruct the larger trends
in a performance curve quite well, but cannot describe all the detailed local nuances
added by the pianist, e.g., the emphasis on particular notes. Local nuances will be
left over in what we call the residuals — the tempo and dynamics fluctuations left
unexplained by the phrase-level polynomials. These can be expected to represent a
mixture of noise and meaningful or intended local deviations.

In order to also learn a model of these intended deviations, we applied a rule
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dynamics tempo

Variant MSED MSEL MAED MAEL COH“L MSED MSEL MAED MAEL COI“I‘L
4 levels, INN | .0486 .0506 .1757 .1662 .5584| .0282 .0332 .1108 .1285 .3192
4 levels, 2NN | .0486 .0395 .1757 .1520 .5637| .0282 .0299 .1108 .1239 .3105
4 levels, 3NN | .0486 .0354 .1757 .1466 .5918| .0282 .0297 .1108 .1231 .2871
4 levels, 5NN | .0486 .0336 .1757 .1424 .6114| .0282 .0292 .1108 .1208 .2786
4 levels, 1I0NN| .0486 .0318 .1757 .1382 .6166| .0282 .0276 .1108 .1157 .2960
3 levels, INN | .0486 .0385 .1757 .1447 .5980| .0282 .0318 .1108 .1231 .3260
3 levels, 2NN | .0486 .0359 .1757 .1446 .5913| .0282 .0303 .1108 .1203 .2963
3 levels, 3NN | .0486 .0341 .1757 .1425 .6017| .0282 .0302 .1108 .1215 .2767
3 levels, 5NN | .0486 .0324 .1757 .1399 .6167| .0282 .0270 .1108 .1156 .3454
3 levels, I0NN| .0486 .0312 .1757 .1380 .6096| .0282 .0271 .1108 .1136 .2937

Table 5.4: Varying the numbers of neighbours and phrase levels. The table shows
weighted means over all test pieces.

learning algorithm to the residuals. The goal was to induce note-level rules that
predict when the pianist will significantly lengthen or shorten a particular note
relative to its context, or play it significantly louder or softer. The learning algorithm
used was PLCG (see section 4.2), which has been shown to be quite effective in
distinguishing between signal and noise and discovering reliable rules when only a
part of the data can be explained [Widmer, 2003]. Combining the learned rules with
a simple numeric prediction scheme again based on a k-NN algorithm produces a
partial model of note-level nuances that predicts local timing and dynamics changes
to be applied to some individual notes.

Combining these note-level predictions with the phrase-level predictions yields
an additional slight reduction in MSE and M AFE both for tempo and dynamics,
but the difference is almost negligible (though consistently in favour of the combined
learner). The interesting fact is that the correlation values improve significantly. For
instance, combining the note-level model with the 3 levels, 10 NN learner yields
(weighted mean) correlations of 0.6182 for dynamics and 0.3588 for tempo — for
tempo in particular, this is significantly higher than any of the values in table 5.4.
Obviously, the note-level model captures some important local choices of the pianist
(which also strongly contribute to the musical quality of the performance).

A fairer comparison

A final way of ‘improving’ the results is to note that the error measures we used
so far may not be quite appropriate. What was compared was the performance
(tempo or dynamics) curve produced by composing the polynomials predicted by the
learner, with the curve corresponding to the pianist’s actual performance. However,
what the k-NN learner learned from was not the actual performance curves, but
an approximation, namely, the polynomials fitted to the curve at various phrase
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Variant MSE/dynamics MAE/dynamics | MSE/tempo MAE /tempo
4 levels INN 11+/5- 124/4- 5+/11- 3+/13-
4 levels 2NN 12+ /4- 13+/3- 7+/9- 4+/12-
4 levels 3NN 12+ /4- 14-+/2- 6+/10-  2+/1=/13-
4 levels 5NN 14+ /2- 14-+/2- 8+/8- 5+/11-
4 levels 10NN 14+/2- 15+/1- 10+/6- 6+/10-
3 levels INN 12+ /4- 14+ /2- 7+/9- 6-+/10
3 levels 2NN 13+ /3- 15+/1- 6-+/10- 5+ /11-
3 levels 3NN 144-/2- 154/1- 8+/8- 5+/11-
3 levels 5NN 15+ /1- 15+/1- 9+/7- T+/9-
3 levels 10NN 15+/1- 15+/1- 114 /1=/4- 9+/7-

Table 5.5: Summary of wins vs. losses between learning and no learning for different
numbers of phrase levels and neighbours.

levels. And maybe this approximation is not very good to begin with. This is
partly confirmed by a look at table 5.6, which summarizes how well the four-level
decompositions (without the residuals) reconstruct the respective training curves.
! The dynamics curves are generally better approximated by the four levels of
polynomials than the tempo curves, and the difference is dramatic. That may
explain in particular why our tempo results were so poor.

The finding implied by table 5.6 has implication for musicology, where it has
hitherto been believed (but never systematically tested with large numbers of real
performances) that quadratic functions are a reasonable model class for expressive
timing (e.g., [Todd, 1989; Windsor and Clarke, 1997]). But it also suggests that
the above way of computing prediction error was not entirely fair. It would seem
more appropriate to compare the predicted curves not to the actual performance
curve, but to the approximation curve that is implied by the four levels of quadratic
functions that were used as training examples. ? Correctly predicting these is the
best the learner could hope to achieve. Table 5.7 shows the error figures we obtain
in this way, for the four variants of the k-NN learners described above.

As can be seen, the situation indeed now looks better for our learner (compare
this to table 5.4 above). Note the substantially higher correlations in the tempo
domain - it is obviously easier to predict approximated curves than real curves.
There is also some improvement in terms of the number of wins vs. losses against
the default. For example, with 3 levels of phrasing and 10 nearest neighbours (last
line in the table 5.7) we get win/loss rations of 15+/1- for dynamics (both for MSE
and MAE) and 114+/1=/4- (MSE) and 10+/6- (MAE) for tempo.

IThat is, we look not at the performance of the learning system, but only at the effectiveness
of approximating a given curve by four levels of quadratic functions.

2 Actually, the most direct comparison would be between the predicted ‘true’ polynomial coef-
ficients, but numeric errors and correlations at this level would be hard to interpret intuitively or
musically.
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MSEp MSEp | RMSE | MAEp MAEp | RMAE | Corrp,
dynamics .0486  .0049 .1008 1757 .0501 .2851 | 9397
tempo .0282  .0144 | .5106 .1108 .0755 .6814 | .6954

Table 5.6: Summary of fit of four-level polynomial decomposition on the training
data. Measures subscripted with D refer to the ‘default’ (mechanical, inexpres-
sive) performances (repeated from table 5.2), those with P to the fit of the curves
reconstructed by the polynomial decompositions.

dynamics tempo
Variant MSED MSEL MAED MAEL COI"I“L MSED MSEL MAED MAEL COI“I‘L
4 levels, INN | .0437 .0457 .1665 .1543 .5936| .0141 .0190 .0811 .0959 .4517
4 levels, I0NN| .0437 .0268 .1665 .1249 .6571| .0141 .0135 .0811 .0831 .4137
3 levels, INN | .0437 .0335 .1665 .1309 .6369| .0141 .0177 .0811 .0878 .4628
3 levels, 1I0NN| .0437 .0262 .1665 .1246 .6489| .0141 .0130 .0811 .0806 .4155

Table 5.7: Summary of errors resulting from comparing the learner’s predictions to
the ‘reconstructed’ training curve rather than the actual performance curve produced
by the pianist. Shown are weighted means over all training expamples.

Of course, the ‘trick’ of changing the definition of error does not change the
musical quality of the results, but it gives a more realistic picture of the capabilities
of the propositional nearest-neighbour learning in this domain.

5.1.4 Musical Results

The musical quality of the results is hard to describe in a text. Generally, the
quality varies strongly between pieces, and even within pieces — passage that are
musically sensible are sometimes followed by rather extreme errors, at least in musi-
cal terms. One incorrect shape can seriously compromise the quality of a composite
performance curve that would otherwise be perfectly musical. The qualitative mea-
sures MSE, MAE, and correlation are not necessarily indicative of the quality of the
listening experience.

Figure 5.1 gives the reader an impression of predictions of the learning system
on two examples for dynamics domain, the first section of the third movement of the
Mozart piano sonata K.283 (Figure 5.1 (a)) and the second movement of the Mozart
piano sonata K.332 (Figure 5.1 (b)). The first example is the case where prediction
worked quite well concerning both, the higher-level aspects and the local, lower-
level patterns. On the other hand, the dynamics prediction for K.332 is rather poor,
which partly can be explained by the fact that K.332 is a piece drastically different
in character than all other pieces from our dataset.

Tempo and dynamics prediction curves as shown in Figure 5.1 can be used to
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score position (bars)

Figure 5.1: Two examples of performance curves and the predictions of the learning
system for the dynamics domain: (a) Mozart Sonata K.283, third movement, first
section; (b) Mozart Sonata K.332, second movement.

‘automate’ the generation of expressive music. We used tempo and dynamics pre-
dictions by the 1-NN learning algorithm for Mozart piano sonata K.280 in F major
to produce the recording of a fully computer generated expressive performance. The
recording was submitted to an International Computer Piano Performance Render-
ing Contest > (RENCON’02) in Tokyo in September 2002, where it won Second
Prize behind a rule-based rendering system that had been carefully tuned by hand.
The rating was done by a jury of human listeners. While this result does in no way
imply that a machine will ever be able to learn to play music like a human artist,
we do consider it a nice success for a machine learning system.

3yes, there is such a thing ...
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5.2 Experimental Evaluation of DISTALL (vs. propo-
sitional £-NN and RIBL)

In the following section we present detailed empirical results achieved with DISTALL
on the same learning problem discussed so far. We also provide a direct comparison
with the results achieved with the simple propositional £-NN presented in the last
section, as well as those achieved by the DISTALL’s ‘ancestor’ RIBL. Two ways
of further improving results of our learning system are further discussed, one of
them exploring the representational power of first-order logic. This section contains
material already published in [Tobudic and Widmer, 2003a, 2004, 2006].

5.2.1 The Data

The data used for the experiments was the same as described in the last section and
presented in table 5.1. Since our experiments consistently showed that the highest
level of phrasing was not well mirrored in the performances by our pianist — as
discussed in section 5.1.3 — we ignore this level of phrasing in further experiments.
Thus, all results presented in the following sections are achieved by learning and
predicting only at the lower three phrase levels.

5.2.2 A Quantitative Evaluation of DISTALL

As in the experiments with the propositional k-NN, a systematic leave-one-piece-out
cross-validation experiment was carried out. Each of the 16 sections was once set
aside as a test piece, while the remaining 15 pieces were used for learning. DISTALL
uses one nearest neighbor for prediction, with the starting clause depth set to 2 (i.e.
just those phrases whose relationship order to the phrase in question is < 2 can
influence the distance measure. For details, see section 3.5). The expressive shapes
for each phrase in a test piece were predicted by DISTALL and then combined into
a final tempo and dynamics curve, as described in section 4.3.4.

In evaluating DISTALL’s performance, there is a single change in the definition
of error measures, compared with the first experiments with the propositional k-
NN, discussed in section 5.1.2 and presented in table 5.2. The curves predicted by
the system were compared not to the pianist’s actual performance curves, but to
the approximation curves — i.e., the curves implied by the three levels of quadratic
functions — of the actual expression curves produced by the pianist. As discussed
in section 5.1.3, the learner was given not the actual performance curves, but an
approximation, namely the polynomials fitted to the curve at various phrase levels.
Correctly predicting these is the best the learner could hope to achieve. Error
measures based on the approximation curves give in our eyes thus a more realistic
picture of the capabilities of the nearest-neighbour approach in this domain. Of
course, in comparing DISTALL’s performance with those of propositional k-NN
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dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COI‘I‘L
kv279:1:1| .0341 .0193 .1571 .0959 .7055| .0161 .0223 .0879 .0894 .3147
kv279:1:2| .0282 .0254 .1394 .1168 .6587| .0106 .0168 .0720 .0796 .4226
kv280:1:1| .0264 .0117 .1332 .0842 .7704| .0136 .0066 .0802 .0552 .7730
kv280:1:2| .0240 .0328 .1259 .1238 .5285| .0125 .0126 .0793 .0705 .5536
kv280:2:1| .1534 .1227 .3493 .2660 .5308| .0310 .0082 .1128 .0693 .8685
kv280:2:2| .1405 .0596 .3170 .1892 .7731| .0323 .0360 .1269 .1220 .5383
kv280:3:1| .0293 .0083 .1452 .0705 .8516| .0188 .0070 .0953 .0558 .7969
kv280:3:2| .0187 .0224 .1124 .1057 .5785| .0196 .0151 .1033 .0822 .6423
kv282:1:1| .0956 .0317 .2519 .1304 .8298| .0151 .0187 .0905 .0724 .4583
kv282:1:2| .0781 .0391 .2277 .1425 .7858| .0090 .0246 .0741 .0877 .3981
kv282:1:3| .1047 .0408 .2496 .1624 .7846| .0938 .0376 .2236 .1337 .8287
kv283:1:1| .0255 .0184 .1379 .0909 .7866| .0094 .0090 .0664 .0668 .4998
kv283:1:2| .0333 .0151 .1560 .0901 .7705| .0097 .0095 .0691 .0661 .5675
kv283:3:1| .0345 .0092 .1482 .0695 .8883| .0116 .0076 .0696 .0533 .6857
kv283:3:2| .0371 .0189 .1572 .0951 .7461| .0100 .0134 .0745 .0727 .4700
kv332:2 0845 .0674 .2476 .2118 .5119| .0146 .0536 .0718 .1524 .2269
WMean | .0437 .0279 .1664 .1163 .7001| .0141 .0175 .0811 .0800 .5215

Table 5.8: Results, by sonata sections, of cross-validation experiment with DISTALL
(depth=2, k=1). Measures subscripted with D refer to the ‘default’ (mechanical,
inexpressive) performance, those with L to the performance produced by the learner.
The cases where DISTALL is better than the default are printed in bold.

and RIBL later in this section, this error measure will be applied to all algorithms
equally.

The same performance measures as discussed in section 5.1.2 were computed:
the MSE (mean squared error) of the system’s prediction on the piece relative to the
approximation curve, the MAE (mean absolute error), and the correlation between
predicted and approximated curve. Again, MSE and MAE were also computed
for a default curve that would correspond to a purely mechanical, unexpressive
performance, which allows us to judge if learning is really better than just doing
nothing. The results of the experiment are summarized in table 5.8, where again
each row gives the results obtained on the respective test piece when all others were
used for training. The last row (W Mean) shows the weighted mean performance
over all pieces (individual results weighted by the relative length of the pieces).

Again, we are interested in cases where the relative errors (i.e., MSE,/MSEp
and MAE;/MAEp) are less than 1.0, that is, where the curves predicted by the
learner are closer to the approximation of the pianist’s performance than a purely
mechanical rendition. In the dynamics dimension, this is the case in 14 out of 16
cases for MSE, and in 16 out of 16 for MAE. The results for tempo are worse: in 8
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dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COITL
prop. k-NN| .0437 .0335 .1664 .1309 .6369 |.0141 .0177 .0811 .0878 .4628
RIBL .0437 .0303 .1664 .1241 .6866 | .0141 .0215 .0811 .0888 .4765
DISTALL |.0437 .0279 .1664 .1163 .7001|.0141 .0175 .0811 .0800 .5215

Table 5.9: Comparison between propositional k-NN, RIBL and DISTALL. The ta-
ble shows weighted mean errors over all test pieces. Measures subscripted with D
refer to the ‘default’ (mechanical, inexpressive) performance, those with L to the
performance produced by the learner. All learners use one nearest neighbor for pre-
diction. RIBL’s and DISTALL’s depth parameter is set to depth = 2. All attribute
and predicate weights used by the learners (and especially capacities of the distance
networks used by DISTALL) are set to 1. The results for DISTALL are repeated
from table 5.8 (last row), those from propositional k-NN are reproduced from the
third row from table 5.7. The cases where a learner is better than default are printed

in bold.

MSE/dynamics MAE/dynamics | MSE/tempo MAE/tempo
prop. k-NN 12+/4- 14+ /2- 6+/10- 7+/9-
RIBL 14+ /2- 15+/1- 7+/9- 8+/8-
DISTALL 14+ /2- 16+ /0- 8+/8- 11+/5-

Table 5.10: Summary of wins vs. losses, over all test pieces, between learning and
no learning for the propositional k&-NN, RIBL and DISTALL. All learners use one
nearest neighbor for prediction. RIBL’s and DISTALL’s depth parameter is set to
depth = 2. All attribute and predicate weights used by the learners (and especially
capacities of the distance networks used by DISTALL) are set to 1.

cases for MSE and 11 for MAE is learning better than no learning.

On some pieces DISTALL is able to predict expressive curves which are surpris-
ingly close to the approximations of the pianist’s ones — witness, e.g., the correlation
of 0.89 in kv283:3:1 for dynamics.* On the other hand, DISTALL performs poorly
on some pieces, especially on those that are rather different in character from all
other pieces in the training set (e.g. correlation of 0.23 for kv332:2, tempo).

5.2.3 DISTALL vs. RIBL and Propositional k-NIN

In order to put these results into context, we present a comparison with RIBL [Emde
and Wettschereck, 1996]. Since RIBL is not publicly available, in the experiments

4Such a high correlation between predicted and observed curves is even more surprising tak-
ing into account that kv283:3:1 is a fairly long piece with over 90 hierarchically nested phrases
containing over 320 melody notes.
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of this section we used a self-implemented version. We also compare DISTALL and
RIBL, which operate on relational data representation, with the performance of
the standard propositional k-NN discussed above. It has been shown that a richer
relational representation need not always be a guarantee for better generalization
performance [Dzeroski et al., 1998].

The experimental setup and the error measures stayed the same as described in
the previous section. All learners use one nearest neighbor for prediction. RIBL’s
and DISTALL’s depth parameter is set to depth = 2. All attribute and predicate
weights used by the learners, and especially capacities of the distance networks used
by DISTALL are set to 1. Table 5.9 shows the results in terms of weighted mean
errors over all test pieces. The equivalent results for DISTALL are repeated from
Table 5.8 (last row). A summary of wins/losses between learning and no learning
for all learners is given in Table 5.10.

Both tables provide evidence of the capabilities of ILP in our domain: Gener-
ally, both relational learners outperform the propositional £-NN, having lower errors,
higher correlations and higher numbers of wins of learning vs. no learning (the only
exception being RIBL’s MSE and MAE for tempo, which are higher than those of
the propositional k-NN). Additionally, DISTALL outperforms RIBL in terms of all
performance measures, being the only learner which has a lower mean MAE for
tempo than the mechanical performance. Since DISTALL solves the maximal flow
minimal weight problem hierarchically, expanding unknown weights into transport
network problems at a lower level (see section 3.5), the number of elements in each
network — and accordingly, the computational complexity of solving the network
distance problem — is kept low, making DISTALL’s runtimes only slightly higher
than RIBL’s (for the presented experiment involving 16 pieces containing about 1240
phrases — about 30 minutes of music — and 16-fold cross-validation, the approximate
runtimes on our system are 4h and 5h for RIBL and DISTALL, respectively). Cer-
tainly, the performance measures expressed in terms of weighted mean numbers
given in Table 5.9 do not imply that DISTALL outperforms RIBL on all pieces in
the dataset. It turns out that DISTALL-predicted curves are closer to the pianist
approximations (in terms of MSE and correlation) than those predicted by RIBL in
9 cases for dynamics and 11 cases for tempo (meaning RIBL outperforms DISTALL
on 7 pieces for dynamics and 5 for tempo).

5.2.4 Two Ways of Improving Learning Performance

Although some aspects of the above results were encouraging, e.g. in the dynam-
ics domain, the results for tempo are still rather poor. Even keeping in mind that
artistic performance of difficult music like Mozart piano sonatas is a complex and
certainly not entirely predictable phenomenon, DISTALL’s inability to learn tempo
expression curves which are closer to the performer’s in more cases than the me-
chanical performance in terms of MSE (Table 5.10) is still rather discouraging. In
the following sections we explore two ways in which the results can be improved,
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dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COITL
prop. k-NN| .0437 .0279 .1664 .1210 .6742|.0141 .0185 .0811 .0870 .4806
RIBL .0437 .0289 .1664 .1222 .6740|.0141 .0239 .0811 .0920 .5349
DISTALL |.0437 .0248 .1664 .1116 .7302|.0141 .0248 .0811 .0891 .5786

Table 5.11: Comparison between propositional k-NN, RIBL and DISTALL. All three
learners have access to the extended set of phrase features (see text). The table shows
weighted mean errors over all test pieces. The cases where a learner is better than
default are printed in bold.

MSE/dynamics MAE/dynamics | MSE/tempo MAE/tempo
prop. k-NN 15+/1- 16+/0- 6+/10- 7+/9-
RIBL 15+/1- 15+/1- 8+/8- 9+/7-
DISTALL 154/1- 15+4/1- 124 /4- 13+/3-

Table 5.12: Summary of wins vs. losses between learning and no learning for the
propositional £-NN, RIBL and DISTALL. All three learners have access to the ex-
tended set of phrase features (see text).

one of them nicely demonstrating the power of ILP.

A Richer Representation of Phrases: Statistical Features

A certain amount of improvement can be achieved by optimising the feature-based
representation of the phrases. The experiments in the previous section were based on
the simple phrase representation described in section 4.3.2. But describing phrases
with this set of features is by no means the optimal way of describing musical
phrases. Our experiments indicated that the results can be improved substantially
by adding various statistical attributes that capture some global musical character-
istics of phrases. By adding features describing global tempo, the presence of trills,
mean and variance of the durations of the melody notes within a phrase (as rough
indicators of the general ’speed’ of events and of durational variability), and mean
and variance of the sizes of the melodic intervals between the melody notes (as mea-
sures of the ’jumpiness’ of the melodic line), we constructed a more representative
feature set. The effect of this change on all 3 learners can be seen in Tables 5.11 and
5.12. As can be seen, all learners generally benefit from this richer phrase represen-
tation. Interestingly, DISTALL achieves the greatest performance gain in terms of
wins/losses in the problematic tempo domain.
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Figure 5.2: New phrase representation with the temporal succeeds/2 predicate.

The Power of FOL: Temporal Relationships

The results of predicting the performer’s tempo decisions are not satisfactory, even
with the extended set of phrase features. Actually, in terms of weighted mean errors
over all test pieces, the learning performances of both relational learners given the
full set of phrase features even degrade in the tempo domain (compare Tables 5.9 and
5.11). With the new feature set, no learner is able to produce performances which
are better on average than the mechanical one in the tempo domain. We suspect
that the main reason for that is predicting of incoherent successive phrases. That is,
in a lot of cases, for two successive phrases from the test piece, the learner suggests
two phrases from fully different pieces from the training set as being the most similar.
These incoherent successive shapes cause ‘leaps’ in the resulting expressive curves
and accordingly higher errors.

This is also counterintuitive from a musical point of view, since it is obvious
that the way the performer interprets a phrase strongly depends of the preceding
music. On the other hand, ‘preparation’ for the succeeding phrase also significantly
influences the ‘shaping’ of the current phrase. In other words, an essential aspect of
music is its temporal nature, which was not presented to the learners so far.

Supplying the propositional £-NN with such temporal information would be very
difficult, if possible at all. On the other hand, FOL allows us to express the temporal
relationship between successive phrases naturally. Figure 5.2 shows the new rela-
tional representation of the phrases. The predicate contains/2 is replaced with the
new temporal predicate succeeds(Id2,1d1), which simply states that the phrase /d2
succeeds the same-level phrase Id1. With the new relational predicate, the similarity
of two phrases will strongly depend on the similarities of their same-level predeces-
sors and successors, which will hopefully produce more coherent performances.

The experiments from previous sections were rerun with DISTALL and the new
relational representation. Again, DISTALL used one nearest neighbor for prediction.
The starting clause depth was set to 4, i.e. the distance measure for a phrase can
be influenced by its four predecessors and four successors. The detailed results
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dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COI‘I‘L
kv279:1:1| .0341 .0178 .1571 .0941 .7147| .0161 .0125 .0879 .0707 .5800
kv279:1:2| .0282 .0245 .1394 .1099 .6062| .0106 .0107 .0720 .0647 .5977
kv280:1:1| .0264 .0105 .1332 .0789 .7933| .0136 .0026 .0802 .0418 .8999
kv280:1:2| .0240 .0255 .1259 .1119 .5607| .0125 .0073 .0793 .0609 .7247
kv280:2:1| .1534 .0441 .3493 .1686 .8603| .0310 .0077 .1128 .0707 .8919
kv280:2:2| .1405 .0564 .3170 .1863 .8044| .0323 .0178 .1269 .0988 .7427
kv280:3:1| .0293 .0078 .1452 .0699 .8642| .0188 .0158 .0953 .0724 .7034
kv280:3:2| .0187 .0168 .1124 .0951 .6468| .0196 .0156 .1033 .0828 .6360
kv282:1:1| .0956 .0246 .2519 .1091 .8665| .0151 .0088 .0905 .0561 .6583
kv282:1:2| .0781 .0268 .2277 .1205 .8358| .0090 .0193 .0741 .0829 .4287
kv282:1:3| .1047 .0332 .2496 .1539 .8290| .0938 .0867 .2236 .2138 .3125
kv283:1:1| .0255 .0089 .1379 .0695 .8462| .0094 .0079 .0664 .0590 .5810
kv283:1:2| .0333 .0159 .1560 .0919 .7419| .0097 .0080 .0691 .0633 .5949
kv283:3:1| .0345 .0093 .1482 .0698 .8869| .0116 .0063 .0696 .0477 .7123
kv283:3:2| .0371 .0214 .1572 .1018 .6968| .0100 .0104 .0745 .0632 .5430
kv332:2 0845 .0612 .2476 .1947 .6403| .0146 .0434 .0718 .1525 .1827
WMean | .0437 .0233 .1664 .1075 .7229| .0141 .0135 .0811 .0729 .6066

Table 5.13: Results, by sonata sections, of cross-validation experiment with DIS-
TALL (depth=/, k=1) and new temporal phrase representation (see Figure 5.2).
The cases where DISTALL is better than the default are printed in bold.

are given in Table 5.13. The experiments with the new representation were also
rerun with RIBL (with the same setting, depth=4, k=1). Table 5.14 summarizes the
results, in terms of weighted mean errors over all test pieces, of the propositional
approach, DISTALL and RIBL operating on the relational representation given in
the previous section, and DISTALL and RIBL operating on the new temporal phrase
representation, denoted as DISTALL Temp and RIBL Temp, respectively. Table 5.15
summarizes the results in terms of wins/losses between learning and no learning.

It seems that the temporal predicate succeeds/2 indeed enables both relational
learners to produce accurate results in both domains. However, DISTALL outper-
forms RIBL in terms of almost all performance measures, especially in terms of
wins/losses in the tempo domain. For the first time, DISTALL is able to clearly
beat the default performances in terms of weighted MSE and MAE as well as in
terms of piecewise wins/losses in the tempo dimension. We suspect that such a
result in a complex artistic domain would not be possible without the expressive
power of FOL.
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Figure 5.3: Expressive curves for dynamics (a) and tempo (b) of the Mozart Sonata
KV.280, 1% movement, 1% section. Black curves represent approximations of the
actual expression curves produced by the pianist, implied by the three levels of
quadratic functions. DISTALL Temp’s predictions are given in red.
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dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COI‘I‘L
prop. k-NN .0437 .0279 .1664 .1210 .6742|.0141 .0185 .0811 .0870 .4806
RIBL .0437 .0289 .1664 .1222 .6740|.0141 .0239 .0811 .0920 .5349
DISTALL .0437 .0248 .1664 .1116 .7302| .0141 .0248 .0811 .0891 .5786
RIBL Temp .0437 .0268 .1664 .1177 .6686 | .0141 .0123 .0811 .0743 .5615
DISTALL Temp| .0437 .0233 .1664 .1075 .7229|.0141 .0135 .0811 .0729 .6066

Table 5.14: Summary of errors between propositional k-NN, DISTALL and RIBL
operating on the relational representation given in the previous section and DIS-
TALL and RIBL operating on the new temporal phrase representation, denoted as
DISTALL Temp and RIBL Temp, respectively. The table shows weighted mean er-
rors over all test pieces. The cases where a learner is better than default are printed
in bold.

MSE/dynamics MAE/dynamics | MSE/tempo MAE/tempo
prop. k-NN 15+/1- 16+/0- 6+/10- 7+/9-
RIBL 15+/1- 15+/1- 8+/8- 9+/17-
DISTALL 15+/1- 15+/1- 124 /4- 13+/3-
RIBL Temp 15+/1- 15+/1- 9+/7- 11+/5-
DISTALL Temp 15+/1- 16+/0- 12+/4- 14+/2-

Table 5.15: Summary of wins vs. losses between learning and no learning for the
propositional k-NN, DISTALL and RIBL operating on the relational representation
given in the previous section and DISTALL and RIBL operating on the new temporal
phrase representation, denoted as DISTALL Temp and RIBL Temp, respectively.

5.2.5 Musical Results

A look at Table 5.13 reveals that a substantial number of pieces predicted by DIS-
TALL Temp show high correlations with the expression curves produced by the pi-
anist. Even some predictions of the slow pieces exhibit astonishingly high correla-
tions in both dimensions (e.g. KV.280, 2" movement, 1* section, featuring correla-
tions of 0.86 for dynamics and 0.89 for tempo), although the data set contains only
six slow pieces.

On the other hand, high correlations and low errors are not a guarantee for good
musical quality. Sometimes, relatively small errors at musically sensitive places can
seriously compromise the musical quality of the whole piece. Nevertheless some of
the performances produced by DISTALL are of substantial musical quality. One of
them, Mozart Sonata KV.280, 15 movement, 1%¢ section is shown in Figure 5.3. For
this performance, the correlations between learner and pianist are 0.79 for dynamics
and 0.90 for tempo.
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5.3 Summary

In this chapter we discussed the experimental results of our system applied on dif-
ficult real-world learning task derived from music performance research. For our
experiments we compiled a substantial dataset containing 16 sections of Mozart pi-
ano sonatas comprising of about 30 minutes of piano music. The music is played
by the Viennese concert pianist Roland Batik on a Bosendorfer SE 290 computer-
controlled grand piano. We derived objective performance measures based on MSE;,
MAE and correlations between predicted dynamics and tempo curves and actual
dynamics and tempo curves ‘played’ by the pianist. We also compared the effect of
learning and ‘doing nothing’, i.e. purely mechanical performances.

The results of the first experiments with straightforward k-NN were rather dis-
appointing, showing how difficult the learning problem actually is. Especially the
tempo domain turned out rather unpredictable: purely mechanical performances
were closer to the pianist’s tempo curves clearly better than the tempo curves pro-
duced by the k-NN. We then showed various improvements of the system including
grouping training and test sets differently (according to the absolute tempo), varying
numbers of k in the k-NN algorithm and taking into account a subset of the differ-
ent phrase levels considered in the initial experiment. We further improved musical
quality of the performances by learning local, note-level rules with the PLCG algo-
rithm. In the end we showed a system which made surprisingly good predictions in
both domains at least on some pieces from our dataset. After learning from other
pieces, tempo and dynamics predictions for one such a piece — Mozart piano sonata
K.280 in F major — were used to produce the recording which can be considered
as the fully computer generated expressive piano performance. The recording won
second prize at the RENCON’02 in Tokyo, where the rating was done by a jury of
human listeners.

We then applied our new relational instance-based learning algorithm DISTALL
to the same problem. We showed that by applying DISTALL, a substantial progress
in the learning performance over k-NN can be made. As the main contribution of this
chapter to the field of machine learning we consider the direct comparison between
DISTALL and RIBL. It tuned out that DISTALL was indeed able to outperform
RIBL in terms of practically all performance measures we derived for our learning
problem. DISTALL has been able to improve learning performance even in tempo
domain, e.g. resulting in significantly more wins over mechanical performance in
terms of MAE for tempo (11+4/5-) than RIBL (8+/8-) (Table 5.10).

We have also shown two additional ways in further improving our results. First,
we improved the phrase representation by including more statistical features. Sec-
ond, we demonstrated the power of FOL and reformulated our relational predicate
in the way that it includes temporal relationships between phrases. Especially the
second improvement resulted in a further performance leap in terms of all error
measures. Direct comparison with RIBL revealed again the DISTALL’s superiority
on this learning problem: After applying the same phrase representation to the both



70 Chapter 5. DISTALL

learners, DISTALL’s wins/losses for tempo domain were 12+ /4- in the case of MSE
(94/7- by RIBL) and 144 /2- in the case of MAE (11+/5- by RIBL) (Table 5.15).
While further experiments need to be done in order to further evaluate strengths
and weaknesses of both learners, we consider this experimental success of DISTALL
vs. RIBL on the difficult real-world task as a small contribution to the machine
learning community.



Chapter 6

A By-product: Consistency in
Piano Performances

In the previous chapter we have presented experimental results comparing DISTALL,
RIBL and a propositional k-nearest neighbor algorithm. Beside the task of building
computational models of expressive music performance, as described above, the
similarity measure built into our relational instance-based learner can also find other
useful applications in musicology. In the following sections we will discuss one
possibility: Applying DISTALL’s similarity measure to segments of musical scores,
we will try to assess the level of ‘consistency’ of a Viennese concert pianist playing
different pieces from a corpus of Mozart piano sonatas. Although there is a work
in musicology examining the consistency of playing immediate repetitions in piano
music ([Palmer, 1989]), with the help of DISTALL’s similarity measure we are able
to define a concept of ‘consistency’ which goes beyond simple score repetitions.
Actually, we can assess the level of performer consistency between any two phrases,
regardless of similarity /dissimilarity of pieces they belong to.

The further text is organized as follows. After a short introduction to the task
we are interested in, we describe two basic ingredients in assessing the consistency
level of a performer: score- and performance based similarity measure (Section 6.2).
Section 6.3 describes the methodology. Experimental results are given in Section
6.4. Limitations and further directions are discussed in Section 6.5.

6.1 Expressive Performance and Stylistic Consis-
tency

The wealth of research on expression in music performance is represented in overview
papers by [Palmer, 1997] and [Gabrielsson, 1999, 2003]. Skilled musicians are able
to shape their performances with extremely high precision. Especially the shaping
of immediate repetitions appears to be very similar (the differences to be within a
few milliseconds, see e.g., [Palmer, 1989]). However, to our knowledge there were no
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Figure 6.1: Score of the Mozart Sonata KV. 279 (C major), 1st movement, mm.
31-38. The hierarchical, three level phrase structure of the passage is indicated by
brackets at the bottom of the figure.

studies that focused on the ‘consistency’ of particular performers in a more general
sense. We define consistency as the property to perform phrases that are similar
according to the score in a similar way (regarding timing and dynamics). In this
paper we will provide (circumstantial) evidence of consistency of a Viennese concert-
level pianist playing different pieces from a large corpus of Mozart piano sonatas. We
examine the consistency at the level of musical phrases and try to empirically prove
the hypothesis that similar phrases will be played in a similar way. Our observation
goes beyond simple repeats: we look at ‘similar’ phrases regardless of where they
are ‘located’ in our music corpus - sometimes maybe belonging to pieces which are
different in character. For the purposes of this work we need two kinds of phrase
similarity: (1) ‘objective’ similarity between two phrases according to their scores
and (2) similarity between the ways in which two phrases are performed by a pianist.
The first similarity measure can be regarded as a mathematical function of the phrase
scores (termed score-based similarity further in this text) and is assessed with the
DISTALL’s similarity measure. The second similarity measure (performance-based
similarity) is computed from the performances of a Viennese pianist recorded on a
Bosendorfer SE290 computer-monitored concert grand piano. In a further step we
show that a dependency between our ‘mathematical’, score-based similarities and
the performer’s expressive decisions exists not only for the most similar phrases: a
certain level of dependency between the two measures seems to hold even for the
whole ‘similarity scale’.

6.2 Score- vs. Performance-based Similarities

6.2.1 Phrases and score-based similarity measure

Figure 6.1 shows the score of eight bars of Mozart’s (C major) Sonata KV 279, 1st
movement. The brackets at the bottom of the figure indicate phrases - segments of
music which are heard and interpreted as coherent units.

Phrases are organized hierarchically: smaller phrases are grouped into higher-
level phrases, which are in turn also grouped together, constituting a musical context
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at a higher level of abstraction. Figure 6.1 shows phrases hierarchically nested at
three levels of abstraction. Despite a lot of recent work on musical similarity (e.g.,
[Hewlett and Selfridge-Field, 1998; Cambouropoulos, 2001; Cambouropoulos and
Widmer, 2001]), there is no known procedure in musicology which would objectively
quantify similarity between two phrases (e.g. based on their scores). Instead, we
use a technique discussed in this text so far. Motivated by a fact that phrases are
organized hierarchically we use a similarity measure designed for the domains with
distinctive structural characteristics. This similarity measure is an essential part of
our algorithm DISTALL [Tobudic and Widmer, 2006], which we discussed in chapter
3.

For the purpose of the presented work, it is not of importance how DISTALL’s
score-based similarity measure works in detail. The similarity measure can be re-
garded as a black box, which - given the scores of two phrases as input - outputs
their similarity in the range [0, 1], 1 meaning that the phrases are identical. The al-
gorithm computes phrase similarities based on their musical properties (attributes)
that are computed from the score. As discussed already in the last chapter these
are: The length of a phrase, the relative position of the highest melodic point (the
‘apex’), the melodic intervals between starting note and apex, and between apex
and ending note, metrical strengths of starting note, apex, and ending note and
the harmonic progression between start, apex, and end. Further descriptors provide
information about global tempo and presence of trills and state whether the phrase
ends with a ‘cumulative rhythm’, and whether it ends with a cadential chord se-
quence. The remaining attributes describe global characteristics of the phrases in
statistical terms: mean and variance of the durations of the melody notes within
the phrase (as rough indicators of the general ‘speed’ of events and of durational
variability), and mean and variance of the sizes of the melodic intervals between the
melody notes (as measures of the ‘jumpiness’ of the melodic line). As discussed in
the previous text, our similarity measures takes into account the sequential nature
of music. We use relational predicate succeeds(phrld2,phrld1), introduced in section
5.2.4. As stated earlier, the similarity between two phrases in this case depends also
on the preceding and succeeding music, which is from the musical point of view a
rather intuitive idea.

We will evade a lengthy and difficult discussion of whether this particular mea-
sure of score similarity makes musical sense. The very fact that our experimental
data will show significant correlations between performance similarity and phrase
similarity, as measured in this way, unequivocally shows that the score-based phrase
similarity measure does capture something meaningful in a systematic way.

6.2.2 Performance-based similarities

The starting material for deriving performance-based similarities are recordings
of music pieces performed by a Viennese concert pianist on a Bosendorfer SE290
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computer-monitored concert grand piano.! The SE290 is a full concert grand piano
with a special mechanism that measures every key and pedal movement with high
precision and stores this information in a format similar to MIDI. For a detailed
reference on recording and playback functionality of SE290 see [Palmer and Brown,
1991; Repp, 1993; Goebl, 2001].

From the Bosendorfer SE290 recordings, the tempo and dynamics curves are
extracted. These are then decomposed into elementary tempo and dynamics phrasal
‘shapes’ — we used the same procedure as for deriving the training instances for our
relational instance-based learner (as described in section 4.3.3).

After the decomposition process, for each phrase in our data set, we end up
with two triples of coefficients ag4, bgq, cqg and ay, by, ¢; for second-degree polynomials
in the dynamics and tempo domain respectively, which approximate the pianist’s
interpretation of this particular phrase in a domain. We then define performance-
based similarity between two phrases for both domains separately as the correlation
between the performer’s expressive shapes for these phrases in a domain. More
formally:

per fSim(phry, phry) = corr(y1 — 1,92 — 1)
where,
Y1 = a 2% + byx + C1, Yo = asx? + box + ¢y

and

COTT’(yl y2) _ Ealczo,stepzo.l Y1 (l’)yz (.CC)
\/Z;:O,stepzo,l y% <$) \/chczo,stepzo.l y%(l‘)

ai,bi,c1 and as, by, co are the expressive shape coefficients of the two phrases
for either dynamics or tempo. We subtract 1 from the shape functions since all
expressive values are related to an average value, either average loudness or average
tempo of the piece, which is represented as y = 1. The denominator in the last
equation ensures that the autocorrelation of any sequence is identically 1.

As a result, the performance-based similarity between two phrases for each do-
main is expressed as a number in the range [-1, 1]. Similarity values greater than 0
suggest that the general trends of both phrase shapes in a domain are similar: e.g.,
for both phrases the pianist ‘stays’ above the average loudness during the whole
phrase or starts soft and proceeds to loud toward the end of the phrase. On the
other hand, a performance-based similarity smaller than 0 reveals that the pianist’s
interpretations of the two phrases are rather opposite.

!These recordings were made prior to and independently of our study, for a CD production,
and the pianist had no idea that his recordings would ever be used in a scientific study.
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phrases at level
sonata section notes 1 2 3
kv.279:1:1  fast 4/4 391 50 19 9
kv.279:1:2  fast 4/4 638 | 79 36 14
kv.280:1:1  fast 3/4 406 | 42 19 12
kv.280:1:2  fast 3/4 590 | 65 34 17
kv.280:2:1 slow 6/8 94 | 23 12 6
kv.280:2:2 slow 6/8 154 | 37 18 8
kv.280:3:1 fast 3/8 277 28 19 8
3

5)

6

kv.280:3:2 fast 3/8 | 379 | 40 29 1
kv.282:1:1 slow 4/4 165 | 24 10
kv.282:1:2 slow 4/4 213 | 29 12
kv.282:1:3 slow 4/4 31 4 2 1
kv.283:1:1 fast 3/4 379 | 53 23 10
kv.283:1:2  fast 3/4 428 | 59 32 13
kv.283:3:1 fast3/8 | 326 | 53 30 12
kv.283:3:2  fast 3/8 558 | 79 47 19
kv.332:2  slow 4/4 4771 49 23 12
Total: 5506 | 714 365 165

Table 6.1: Mozart sonata sections used in experiments (to be read as
<sonataName>:<movement>:<section>); notes refers to ‘melody’ notes. The num-
ber of phrases at each level for a section is also shown.

6.3 Methodology

6.3.1 Data

The Mozart piano sonatas which were used for the study are given in Table 6.1.
The scores of the sonatas were coded manually into a symbolic representation, and
a multi-level phrase structure analysis of each piece was carried out by a musicologist.
For the experiments we used phrase structure marked at the three hierarchical levels.
From the scores and phrase structure information, the basic phrase features were
calculated, which were in turn used for deriving score-based similarities (see section
6.2).

The starting point for deriving performance-based phrase similarities are perfor-
mances of the above mentioned Mozart sonatas by a Viennese concert pianist on
the Bosendorfer SE290. From these recordings (and phrase structure information),
dynamics and tempo performance curves are computed and, in a further step, dy-
namics and tempo phrasal shapes. These are used for deriving performance-based
phrase similarities (see section 6.2).
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6.3.2 Procedure

The result of the score- and performance-based phrase similarity computation are
two matrices for each phrase level (1 to 3) and each dimension (dynamics and
tempo). Matrix entries are similarities (score- or performance-based) for each possi-
ble pair of phrases at the same level. Figure 6.2 shows score- and performance-based
matrices (712 x 712) for the dynamics dimension for phrases at level 1. Each unit
on the axes represents a phrase. Within a piece phrases are ordered chronologically,
and the pieces themselves are ordered according to Table 6.1. The first phrase of
each piece is indicated by a tick on the respective axis. The brightness of each pixel
in the figure corresponds to the similarity of the two corresponding phrases, white
meaning that the phrases are identical.

At this place let us refer to the main goal of this work: we try to empirically show
a dependency between an ‘objective’ similarity measure defined on music phrases
(i.e. phrase similarities suggested by our score-based algorithm) and the ways the
phrases are played by one and the same pianist. We hope to find this depen-
dency even in a large corpus of complex, diverse music like our 16 sonata sections.
Mathematically, the dependency is defined as the correlation between score- and
performance-based matrices as follows:

First, some elementary data preprocessing is undertaken. The main diagonal
and the lower triangular part of the matrices are discarded (both similarity mea-
sures satisfy reflexivity and symmetry relations). Both matrices are also normalized
to have mean 0 and standard deviation 1. Ideally, we would like to be able to
show high correlation between all pixel values in the upper triangular part of the
score-based matrix and the upper triangular part of the performance-based matrix.
However, this is unrealistic for many reasons: The score-based similarity measure is
a mathematical function of a rather limited set of phrase features computed from
the score. The performance-based matrices depend solely on the performer’s deci-
sions. High correlation between all pixels in the two matrices would mean that not
only are similar phrases played in similar ways but also ‘half-similar’ in ‘half-similar’
and dissimilar in dissimilar ways, with the whole continuous mathematical similar-
ity scale mapped ‘correctly’ to the performer-based similarity scale, which is a very
unrealistic assumption. It is also not clear if quantifying the whole similarity scale
between music phrases make sense in terms of musicology: while most musicologists
would probably agree that two phrases can be regarded as similar or dissimilar, it
would be difficult to quantify dissimilarity as e.g. ‘rather dissimilar’ (0.3) or ‘fully
dissimilar’ (0.0).

For these reasons we first limit our investigation to those phrases which are
suggested to be most similar by our score-based algorithm and show that those
phrase pairs are (mostly) played similarly by the pianist. We then systematically
repeat the same procedure, including more and more (less similar) phrase pairs, and
examine if the high correlation between score- and performance-based values still
holds. The same procedure is repeated until all phrase pairs are included in the
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Figure 6.2: Score- (a) and performance-based (b) phrase similarity matrix for the
dynamics dimension for all phrases at phrase level 1. Each unit on the axes repre-
sents a phrase. Phrases are ordered chronologically within a piece. The first phrase
of each piece is indicated by a tick on the respective axis. The brightness of each
pixel represents similarity of two corresponding phrases, white meaning the phrases
are identical.
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computation.

More formally, from the upper triangular part of the score-based similarity matrix
we choose the n most similar phrase pairs (the n brightest pixels in the upper part
of Figure 6.2). The corresponding pairs are then found in the performance-based
similarity matrix and the correlation between these two sequences is computed as:

corr(Sp, pn) = 2o SnPn
Vo 20/, P2

where the s,, are n most similar score-based similarity values, and p,, are the n
corresponding performance-based similarity values. The denominator again ensures
that the autocorrelation of any sequence is normalized to 1. The given equation
can be regarded as a measure of how consistently performance-based values ‘follow’
score-based similarities for a given set of phrase pairs. In the further steps we
systematically increase the number of phrase pairs by including more pairs from the
sorted score-based matrix and repeat the above described procedure. At the end we
get the correlation between score- and performance-based similarities for all phrase
pairs at one level: the case we discussed above where we examine if the score-based
similarity measure correlates with the pianist’s decisions on the whole similarity
scale. The above described procedure is carried out for all three phrase levels and
both domains (dynamics and tempo).

Note that even when we consider the most similar phrase pairs (as suggested
by the score-based algorithm), high correlation is only possible if these pairs are
(mostly) played in similar ways by the pianist, regardless of where they are in the
music corpus. E.g., even if a pair consists of phrases which belong to pieces very
different in character they have to be played rather similarly by the pianist in order
to achieve a high correlation.

6.4 Results

6.4.1 Correlation between score- and performance-based sim-
ilarities

The results of the correlation computation between score- and performance-based

similarities as described in the last section are given in Figure 6.3.

The line marked ‘4’ shows correlation progression between score- and performance-
based similarities for different fractions (0.1% to 100%) of the total number of phrase
pairs at each phrase level for both dimensions (levels 1, 2 and 3 have approximately
253 thousands, 66 thousands, and 13 thousands phrase pairs in total). In order to
put these results in a context we repeated the same procedure for the samples of a
normally distributed random variable (mean 0 and standard deviation 1) and the
performance-based similarities. In other words we want to examine how much better
than a random variable our score-based similarities correlate with the performer’s
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Figure 6.3: Correlation between score- and performance-based similarities ('4’-
marked) for all phrase levels (1 to 3) and both dimensions (dynamics, tempo), for
different fractions (indicated by the x-axis) of the most similar phrase pairs (as sug-
gested by the score-based similarity algorithm). The results of the same procedure
between a normally distributed random variable (mean 0, standard deviation 1) and
performance-based similarities are marked ’o’.
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decisions. These baseline correlations - which for large sample sizes converge to
zero - are marked ’o’. A first look at Figure 6.3 reveals high correlation between
score- and performance-based similarities for the 0.1% most similar phrase pairs at
all phrase levels and for both dimensions. While it might look as a small fraction,
0.1% of the total number of phrase pairs is quite a large number - e.g. more than
250 phrase pairs for phrase level 1. Correlations of about 80% in dynamics and 75%
in tempo show that the pianist indeed plays these phrase pairs rather similarly.

The very high correlations at the 0.1% mark for the phrase level 3 in both
dimensions (almost 100% and 80% for dynamics and tempo respectively) should
not be misinterpreted. They are a result of the smaller total number of phrases at
this level and not due to the fact that the score-based suggestions correlate with the
pianist’s decisions better at the higher phrase levels (0.1% for level 3 corresponds
to only 13 phrase pairs). Rather, the opposite is the case. Correlations between
score- and performance-based similarities decrease at higher phrase levels if one
considers absolute numbers of phrase pairs: E.g. a sequence of about 2500 phrase
pairs corresponds to fractions of about 1% and 18% for levels 1 and 3 respectively -
consider the correlation drop for these fraction values between levels 1 and 3 for both
dimensions. The initial upward trend in the tempo domain for levels 2 and 3 can
also be explained by the relatively small number of phrase pairs: a few uncorrelated
similarities in a sequence of 0.1% of all phrase pairs at level 3 (13 pairs in total) can
degrade the overall correlation, which is then improved given more pairs.

Figure 6.3 also reveals that the correlation between score- and performance-
based similarity values is generally higher in the dynamics domain. This can partly
be explained by the fact that quadratic functions which we use to model performer
decisions (and performance-based similarities accordingly, see section 6.2) may not
be as reasonable a model class for expressive timing as it has been believed in
musicology (see also [Widmer and Tobudic, 2003]), the fact we already discussed in
the last chapter.

As expected, the base line correlation between samples of a random variable
and performance-based similarities oscillates around 0 since the two variables are
independent (the ‘most similar’ phrase pairs are in this case chosen randomly). The
deviations from 0 for the baseline correlation can be explained by higher variance
for smaller sample sizes (this is the case for the lower fractions and/or for the higher
phrase levels). Finally, Figure 6.3 also offers an answer to the question of how well
the score-based similarity measure ‘matches’ performer decisions on the whole simi-
larity scale. As can be seen from the right most points in the diagrams in Figure 6.3,
there is a positive correlation between the score- and the performance-based similar-
ities for the sequences of all phrase pairs for the smallest phrases at the level 1 (the
phenomenon is less distinctive for larger phrases at levels 2 and 3). Although the
correlations are rather small (about 4.5% and 5.5% for level 1 dynamics and tempo,
respectively), it is still remarkable that any ‘non-performance’ similarity measure
correlates above baseline with the performer decisions for all combinations of phrase
pairs (253 thousands in total) in a rich music corpus as given in Table 6.1.
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6.4.2 The most similar phrase pairs

The black pixels in Figure 6.4 (a), (b), and (c) show the distribution of the 1%
most similar phrase pairs — as suggested by the score-based similarity measure — for
phrase levels 1 to 3 respectively, among different pieces from our music corpus.

For each of these diagrams, the subset of the phrase pairs which are performed
similarly by the pianist is plotted in Figure 6.4 (d), (e), and (f). A phrase pair is
regarded as having been performed similarly if the correlation between the expressive
shapes of the two phrases is above 0 for both domains, dynamics and tempo. As
expected, most of the phrase pairs given in Figures 6.4 (a), (b), and (c) consist either
of phrases which come from the same pieces (pixels around the main diagonal), or
generally sections belonging to the same sonata movements (pixels belonging to the
neighboring pieces, e.g. the crossing of kv.280:1:1 and kv.280:1:2 or kv.283:3:1 and
kv.283:3:2). Figures 6.4 (d), (e), and (f) suggests that quite a number of them are
also performed in a similar way.

On the other hand, some of the phrase pairs regarded as very similar by the
score-based similarity measure consist of phrases which belong to pieces which are
quite different in character, e.g. the pairs in the last column in the diagrams where
one of the phrases from a pair belongs to kv.332:2 and the other one to some other
piece. E.g. consider four phrase pairs (four black pixels) in the last column of Figure
6.4 (c), where one of the phrases from a pair belongs to the kv.332:2 and the other
one either to kv.282:1:2 or kv.282:1:3. Three of the four pairs are also performed
similarly by the pianist (they reappear in Figure 6.4 (f)), although our listening
tests revealed that kv.332:2 is rather different in character than both kv.282:1:2
or kv.282:1:3. Actually it turns out that 50%, 46%, and 74% (for levels 1 to 3
respectively) of the phrase pairs which are regarded as the most similar by the
score-based similarity algorithm are also performed in a similar way by the pianist.
The baseline probability for a pair to have a correlation of expressive shapes above
0 for both, dynamics and tempo domain is 25% (50% for either domain).

6.5 Discussion

An empirical investigation of the dependency between similar phrases and the way
they are played by the same pianist is presented. It turned out that in many cases
our pianist performed phrases suggested to be similar by our score-based similarity
measure in rather similar ways, sometimes regardless of the character of the pieces to
which the phrases belong. The high correlations between score-based similarities and
performer expressions for the most similar phrase pairs can be regarded as indication
of stylistic consistency of the performer. On the other hand, it can be considered
as a reliability proof of our score-based similarity measure. We have also shown
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Figure 6.4: Black pixel

(e) and (f) show the subsets of the phrase pairs given in (a), (b), and (c¢) which are

corpus given in Table 6.1 for the phrase levels 1 (a), 2 (b), and 3 (c¢). Figures (d),
performed similarly by the pianist.
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that a certain level of dependency between score- and performance-based similarity
measures holds not only for the most similar phrases: it turns out that the two
‘variables’ are not statistically independent even if all combinations of phrase pairs
in our data corpus are considered (about 253 thousands in total).

The experiments described above are related to another work carried out in our
research lab ([Madsen and Widmer, 2006]). The starting point of the work described
in [Madsen and Widmer, 2006] was 12 recordings of a Schubert piano piece, played
by great pianists. The goal was to assess both the artists intra-piece consistency
and potential similarities between their playing styles. Beside the different starting
material (one piece played by different performers in [Madsen and Widmer, 2006] vs.
one performer playing different pieces in our work), the work described in [Madsen
and Widmer, 2006] pursued the investigation in the reverse order: We have started
from the score-based similarities and tried to answer the question if the most similar
phrases (as suggested by the score) are played in similar ways. In [Madsen and
Widmer, 2006] the first step was finding the sequences of greatest similarities in the
performances and comparing the music behind.

The presented work has a serious limitation: in spite of their diversity, every piece
used in the experiments is written in the same musical style, a piano sonata from
the classical period. It would be interesting to examine whether the same level of
dependency holds if the pieces belong to different styles, e.g. classical and romantic.
On the other hand, we could investigate if the consistency level shown for the pianist
used in our experiments holds for different playing skill levels, e.g. novices/hobby
players/educated players. And of course, the most interesting observation would
be if we could show the same high level of dependency between the ‘mathematical
variable’ and the performer decisions for the case of great pianists. This would give
us at least a (very) limited insight into the 'mystery’ of their playing. Despite the
difficulties of data acquisition for the case of great pianists, it will be our next step.



84

Chapter 6. A By-product: Consistency in Piano Performances



Chapter 7

Learning to Play Like the Great
Pianists

In Chapter 5 we have discussed the application of instance-based learning in general,
and our new relational instance-based learner in particular, for building predictive
models of expressive piano performance. Probably the most interesting question
one can consider in such kind of research is whether our technique can be applied
to truly great pianists. Can a machine build a formal model of the playing style of
great pianists? Can it learn to distinguish great pianists from each other? Or even,
can it learn to replicate the style of, say, Arthur Rubinstein? Such questions are
discussed in this chapter.

In particular, we use DISTALL to operate on data extracted from music CDs of
great pianists. We investigate to what extent it can automatically build ‘expressive
profiles’ of famous pianists using only minimal performance information derived from
audio CD recordings by pianists and the printed score of the played music. It will
turn out that the machine-generated expressive performances on unseen pieces are
substantially closer to the real performances of the ‘trainer’ pianist than those of all
others. We also discuss two order interesting applications of the work: recognizing
pianists from their style of playing, and automatic style replication.

The rest of the text is laid out as follows. After a short introduction (section
7.1), section 7.2 describes the data and methods used in the further text. Exper-
imental results and discussion of our first experiment, namely learning predictive
performance models, are given in section 7.3. The other interesting question one
can pose in this kind of research — can machine learn to recognize great pianists
from their style of playing — is discussed in section 7.4. Finally, in section 7.5 we
shortly discuss the automatic style replication.

This chapter reports research already published at the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI'05) [Tobudic and Widmer, 2005].
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7.1 Introduction

The method of data acquisition used for the experiments presented so far in this
text is unsuitable for studying great pianists: Our starting material was very precise
measurements of when, how long and how loud each individual note was played by
a pianist and how these measurements deviated from the nominal values prescribed
in the written musical score. The main source of information was the Bosendorfer
SE290, a special piano that precisely records each action by performer. As discussed
already in the chapter 5, the SE290 is equipped with a special mechanism that mea-
sures every key and pedal movement with high precision and stores this information
in a format similar to MIDI. From these measurements, and by comparing them
to the notes as specified in the written score, every expressive nuance applied by a
pianist can be computed.

Unfortunately, the SE290 is rather useless for studying truly great pianists (we
cannot very well invite them all to Vienna to perform on the Bosendorfer SE290
piano). With great pianists, the only source of data is audio recordings (records
and music CDs). However, it is impossible, with current signal-processing meth-
ods, to extract precise performance information about each individual note directly
from audio data. Instead, for studying the great pianists we will use rather crude
information which can be extracted from their audio CDs, namely the tempo and
loudness information at the beat level. We will explore the question, if our system
presented so far and operating with this very limited information, can learn models
that are ‘personal’ enough to capture some aspects of the playing styles of six famous
pianists?

Experiments show that the system indeed captures some aspect of the pianists’
playing style: the machine’s performances of unseen pieces are substantially closer
to the real performances of the ‘training’ pianist than those of all other pianists
in our data set. We also demonstrate an interesting by-product of the pianists’
‘expressive models’: the automatic identification of pianists based on their style of
playing. And finally, the question of automatic style replication is briefly discussed.

7.2 Data and Methodology

The data used in this work was obtained from commercial recordings of famous
concert, pianists. We analyzed the performances of 6 pianists across 15 different sec-
tions of piano sonatas by W.A.Mozart. The pieces selected for analysis are complex,
different in character, and represent different tempi and time signatures. Tables 7.1
and 7.2 summarize the pieces, pianists and recordings selected for analysis.

For learning tempo and dynamics models of the pianists in our data set, it
would be ideal to have precise information about each note in the pianist’s audio
recording (start and end times, loudness, and so on). Unfortunately, it is impossible,
with current signal-processing methods, to extract precise performance information
about each individual note directly from audio data.
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Section ID | Tempo descr. | #phrases
kv279:1:1 fast 4/4 460
kv279:1:2 fast 4/4 753
kv280:1:1 fast 3/4 467
kv280:1:2 fast 3/4 689
kv280:2:1 slow 6/8 129
kv280:2:2 slow 6/8 209
kv280:3:1 fast 3/8 324
kv280:3:2 fast 3/8 448
kv282:1:1 slow 4/4 199
kv282:1:2 slow 4/4 254
kv283:1:1 fast 3/4 455
kv283:1:2 fast 3/4 519
kv283:3:1 fast 3/8 408
kv283:3:2 fast 3/8 683
kv332:2 slow 4/4 549

Table 7.1: Mozart sonata sections selected for analysis. Section ID should be read
as <sonataName> : <movement> : <section>. The total numbers of phrases are
also shown.

1D Pianist name Recording

DB | Daniel Barenboim | EMI Classics CDZ 7 67295 2, 1984
RB Roland Batik Gramola 98701-705, 1990

GG Glenn Gould Sony Classical SM4K 52627, 1967
MP | Maria Joao Pires DGG 431 761-2, 1991

AS Andrés Schiff ADD (Decca) 443 720-2, 1980
MU | Mitsuko Uchida Philips Classics 464 856-2, 1987

Table 7.2: Pianists and recordings used for experiments.

Instead, we extract time points from the audio recordings that correspond to
beat locations. Finding beat locations in audio file is an extremely difficult task
and open research problem?, that forced our research group to develop a novel beat
tracking algorithm called BEATROOT [Dixon, 2001a; Dixon and Cambouropoulos,
2000]. Experimental evaluations showed that the BEATROOT algorithm is one of
the best beat tracking methods currently available [Dixon, 2001b].

From the (varying) time intervals between beat points, the beat-level tempo
and its changes can be computed. Beat-level dynamics is computed from the audio
signal as the overall loudness of the signal at the beat times as a very crude rep-

1Beat tracking, in a sense, is what human listeners do when they listen to a piece and tap their
foot in time with music. As with many other perception and cognition tasks, what seems easy and
natural for a human turns out to be extremely difficult for a machine.
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Daniel Barenboim n N Maria Jodo Pires Andras Schiff Mitsuko Uchida
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Figure 7.1: Dynamics curves of performances of five famous pianists for Mozart
Sonata K.280, 1% mvt., mm. 31-48. Each point represents the relative loudness at
the beat level (relative to the average loudness of the piece by the same performer).

resentation of the dynamics applied by the pianists. After extracting beat points
and calculating beat-level tempo and dynamics, computing pianists’ dynamics and
tempo performance curves, as discussed so far in this text, is rather straightforward.
These curves, together with the musical score and the underlying phrase structure
of the pieces is again the starting material for our experiments.

7.3 Learning Predictive Performance Models

Figure 7.1 shows the dynamics of Mozart Sonata K.280, 1% movement, as played
by five famous pianists. As with other examples discussed so far in this text, the
musically informed reader can reveal certain trends common for all pianists. These
trends often reflect the underlying phrase structure of the piece, which is indicated
by three levels of brackets at the bottom of the figure. Despite the commonalities
between the pianists, the curves are however not identical. There is also a significant
difference between individual performers in shaping the phrases, which can be partly
attributed to the performers’ styles. In this section we will present experiments
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which try to catch something from these deviations (and thus from the performer’s
styles), by exploiting the intra-pianist difference in shaping the phrases of Mozart
music. We use DISTALL to identify ‘characteristic’ expressive phrase shapes for
each individual pianist and apply them to a new piece. The phrase shapes are
then combined into tempo and dynamics curves. Since DISTALL learns from each
pianist separately, we get the learned tempo and dynamics curves for each ‘training’
pianist. If the learned curves are then closer to the actual curves of the trainer than
to all other pianists, we could say that DISTALL has build a (very) limited pianist’s
‘expressive model’.

For each pianist, we conducted a systematic leave-one-piece-out cross-validation
experiment: each of 15 pieces was once left aside as a test piece while the remaining
14 performances (by the same pianist) were used for learning. DISTALL’s parameter
for the number of nearest neighbors was set to 1. We used the temporal predicate
succeeds/?2 (section 5.2.4). The parameter for the depth of starting clauses (section
3.5) is set to 4 (meaning that the distance between two phrases can be influenced
by at most 4 preceding and 4 succeeding phrases).

The expressive shapes for each phrase in a test piece are predicted by DISTALL
and then combined into a final tempo and dynamics curve, as described in section
4.3.3. The resulting curves are then compared to the real performance curves of
all pianists (for the same test piece). As stated above, if the curve learned from
the performances of one pianist is more similar to the real performance curve of
the ‘teacher’ pianist than to those of all other pianists, we could conclude that the
learner succeeded in capturing something of the pianist’s specific playing style. The
described procedure is repeated for all pieces and all pianists in our data set.

Correlation is chosen as a measure of how well the predicted curve ‘follows’ the
real one. The curves are first normalized so that their autocorrelations are identically
1, giving a correlation estimate between curves as a number in the range [-1,1]. The
results of the cross-validation experiment averaged over all pieces (weighted by the
relative length of the pieces) are given in Table 7.3.

Interestingly, the system succeeded in learning curves that are substantially closer
to the ‘trainer’ than all others, for all pianists. Some of the pianists are better
‘predictable’ than others, e.g. Daniel Barenboim and Mitsuko Uchida, which might
indicate that they play Mozart in a more ‘consistent’ way. While at first sight
the correlations may not seem impressive, one should keep in mind that artistic
performance is far from predictable. Some pieces in our dataset are also quite
different in character from the majority (notably, kv332:2). Predicting performance
curves for such pieces is thus an extremely difficult task. One should also have in
mind, that the numbers in Table 7.3 are averages over all pieces in our dataset.
For instance, the system predicts Barenboim’s expressive curves with an average
correlation of .44 for both dynamics and tempo for all pieces in our data set, which
is about half an hour of concert-level piano music.

Moreover, the correlation estimates in Table 7.3 are somewhat unfair, since we
compare the performance curve produced by composing the polynomials predicted
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compared with

learned from | DB | RB | GG | MP | AS | MU
DB 44 | .21 | .26 | .34 | .38 | .28
44 | 27 | 26 | .32 | .31 | .31

RB 21 1.32| .09 | .19 | .19 | .17
28 | .42 | 20 | .22 | .30 | .27

GG 25 1.09 | .36 | .19 | .21 | .22
25| .18 | .32 | .23 | .29 | .28

MP 331 .19 | .19 | .39 | .33 | .28
31 .23 | .27 | .38 | .28 | .34

AS .36 | .17 | .20 | .31 | .40 | .26
321 .29 | 28 | .25 | .41 | .32

MU 27 | 18 | .21 | .28 | .26 | .38
34 (.30 | .32 | .36 | .37 | .50

Table 7.3: Results of piecewise cross-validation experiment. The table cells list cor-
relations between learned and real curves, where rows indicate the ‘training pianist’,
and columns the pianist whose real performance curves are used for comparison.
The correlations are averaged over all pieces, weighted by the relative length of the
piece. Each cell is further divided into two rows corresponding to dynamics and
tempo correlations, respectively. The highest correlations in each row are printed in
bold.

by the learner, with the curve corresponding to the pianists’ actual performances.
However, what DISTALL learned from was not the actual performance curves, but
an approxrimation curve which is implied by the three levels of quadratic functions
that were used as training examples. Correctly predicting these is the best the
learner could hope to achieve.

Tables 7.4 - 7.9 show a more detailed, piecewise picture of the cross-validation
experiments. In each of the 6 tables, the training pianist was one of the 6 pianists
and the learned dynamics and tempo curves for each piece are compared to the
actual curves from all 6 pianists for that piece. It turns out that DISTALL is indeed
able to learn something from pianists’ playing styles:

E.g., in 11 out of 15 cases for both domains the learner produces dynamics
and tempo curves which are closer to Barenboim’s playing than to any other pianist
(Table 7.4). The system achieved surprisingly good results also for Uchida. Learning
from Uchida results in curves which are closer to Uchida’s playing than to any other
pianist in 9 and 13 cases for dynamics and tempo respectively (Table 7.9). Some of
the predicted curves exhibit high correlations of .7 and better with the Uchida’s real
performance curves (e.g., correlation of 0.78 in dynamics domain for kv283:3:1 and
0.78 for kv280:1:1 in tempo domain). The results are even more interesting if we
recall that the learner is given a very crude, beat-level representation of the tempo
and dynamics applied by the pianist, without any details about e.g. individual
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voices or timing details below the level of beat.

On the other hand, the piecewise results revealed that some of the pianists seem
to be less ‘predictable’ than Uchida or Barenboim with our approach. E.g., having
Pires or Schiff as trainer makes the learning task apparantly more difficult: In 8
and 9 cases for dynamics and tempo respectively, the learner succeeds in producing
dynamics and tempo curves closer to the respective teacher than any other pianist
for both, Pires and Schiff (see Tables 7.7 and 7.8). The results for Glenn Gould
being a teacher are mixed. He seems to be much more predictable in dynamics
domain: In 14 our of 15 cases are learned curves closer to dynamics of Gould than
to any other pianist. It is indeed the best piecewise result for all 6 teachers and
both domains. On the other hand, the same learning goal succeeds in just 4 out of
15 pieces for tempo (Table 7.6). This is again the worst result for all 6 teachers,
suggesting that Glenn Gould is much more ‘consistent’ in dynamics than in tempo
domain.

Figure 7.2 shows an example of successful performance style learning. We see
a passage from a Mozart piano sonata as ‘played’ by the computer after learning
from recordings of other pieces by Daniel Barenboim (top) and Mitsuko Uchida
(bottom), respectively. Also shown are the performance curves corresponding to
these two pianists’ actual performances of the test piece. In this case it is quite
clearly visible that the curves predicted by the computer on the test piece are much
more similar to the curves by the respective ‘teacher’ than to those by the other
pianist.

Admittedly, this is a carefully selected example, one of the clearest cases of style
replication we could find in our data. The purpose of this example is more to give an
indication of the complexity of the curve prediction task and the difference between
different artists’ interpretations than to suggest that a machine will always be able
to achieve this level of prediction performance.

7.4 Identification of Great Pianists

The primary goal of our work is learning predictive models of pianists’ expressive
performances.? But the models can also be used in a straightforward way for rec-
ognizing pianists. The problem of identifying famous pianists from information
obtained from audio recordings of their playing has been addressed in the recent lit-
erature [Saunders et al., 2004; Stamatatos and Widmer, 2002; Widmer and Zanon,
2004]. In [Widmer and Zanon, 2004], a number of low-level scalar features related
to expressive timing and dynamics are extracted from the audio CD recordings, and
various machine learning algorithms are applied to these. In [Saunders et al., 2004],

2Note that learned tempo and dynamics curves as produced by our system can be used to build
truly machine generated expressive performances: using the predicted tempo and dynamics curves
(i.e. relative tempo and dynamics for each beat in the piece), it is straightforward to calculate
tempo and dynamics for each note in the piece (e.g. by interpolation).
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Piece DB | RB | GG | MP | AS | MU
kv279:1:1 | .21 | .23 | .21 | .25 | .35 | .11
48 | 28 | .22 | 23 | .21 | .29
kv279:1:2 | .22 | .11 | .04 | .27 | .16 | .18
43 | 30 | .27 | 32 | 31 | .33
kv280:1:1 | .70 | .54 | .04 | .54 | .56 | .30
.64 | 28 | 31 | 46 | 42 | 54
kv280:1:2 | .38 | .24 | .19 | .30 | .26 | .22
34 27 | 16 | 21 | 23 | .21
kv280:2:1 | .48 | 40 | .20 | .47 | 43 | 44
B9 39 | B9 | b4 | B9 | .56
kv280:2:2 | .42 | 41 | .05 | .42 | .28 | .31
B0 | 21 | 32 | 28 | 45 | 45
kv280:3:1 | .80 | .67 | .34 | .57 | .62 | .50
79| 4 ) 72 | 86 | T4 | 81
kv280:3:2 | .72 | 64 | 41 | .61 | .61 | .64
41 | 44 | 34 | 41 | 42 | 42
kv282:1:1 | .52 | .35 | .35 | .40 | .34 | .29
.61 | 26 | b1 | .50 | .06 | .40
kv282:1:2 | .47 | 38 | .18 | .31 | .14 | .17
45 | 22 | 32 | 40 | .23 | .29
kv283:1:1 | .28 | -.08 | .31 | .32 | .38 | .23
20 | .11 | -01 | .25 | .24 | .26
kv283:1:2 | .22 | .12 | .10 | .15 | .16 | .16
A3 .04 | 12 | .23 | 13 | 17
kv283:3:1 | .86 | -.19 | .70 | .48 | .68 | .36
78149 | 33 | 34 | .89 | 18
kv283:3:2 | .67 | .03 | .62 | .44 | .61 | .40
48 | .17 | 32 | .20 | .30 | .09
kv332:2 | .10 | .02 | .19 | .01 | .16 | .11
22 .13 ) .02 | .13 | .07 | .19

Total 44 1 21 | .26 | .34 | .38 | .28
44 | 27 | 26 | 32 | 31 | .31

Table 7.4: Detailed results of the cross-validation experiment with Daniel Baren-
boim was the ‘training’ pianist. For each piece, the correlations between predicted
and actual curves from all pianists are given. Each cell is divided into two rows
corresponding to dynamics and tempo correlations, respectively. The highest corre-
lations in each row are printed in bold. The average over all pieces is given in the
last two rows (reproduced from the Table 7.3)
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Piece DB | RB | GG | MP | AS | MU
kv279:1:1 | 35 | .39 | .19 | .41 | .35 | .24
32 | 46 | 26 | .30 | .26 | .40

kv279:1:2 | .02 | .28 | .06 | .15 | .05 | .07
30 | 43 ] 18 | 34 | .28 | .36

kv280:1:1 | 49 | .58 | .03 | .42 | .38 | .26
A1 | .70 | -.08 | .35 | 45 | 40

kv280:1:2 | .37 | .35 | .06 | .32 | .35 | .27
A2 1 .49 16 | .07 | .17 | .10

kv280:2:1 | 41 | .53 | .18 | .42 | 42 | .46
22 | b6 | 34 | 33 | 48 | .16

kv280:2:2 | .31 | .43 | -.01 | .24 | .29 | .29
40 | b4 | 34 | 31 | Bl | 34

kv280:3:1 | .69 | .79 | 43 | .63 | .61 | .57
.80 | .90 | 80 | .72 | .74 | .76

kv280:3:2 | .55 | .62 | 42 | b1 | .B3 | .56
28 | .37 23 | .18 | .27 | .29

kv282:1:1 | .47 | 43 | 32 | 31 | .35 | .24
33 | .66 | .27 | 38 | 49 | .57

kv282:1:2 | .37 | .30 | .06 | .23 | .17 | .12
29 | 45 30 | 31 | .B3 | 45

kv283:1:1 | .04 | .04 | -.06 | -.06 | .03 | .03
.03 .00 | .06 |-03| .16 | .17

kv283:1:2 | -.16 | .18 | -.22 | -.18 | -.09 | -.24
-011( .02 .17 | .02 | .07 | .05

kv283:3:1 | .07 | .04 | .00 | -.07 | .03 | -.08
43 | .78 1 .23 | .29 | 49 | .20

kv283:3:2 | -.14 | .14 | .00 | -.05 | -.16 | .11
32 | .45 17 | .11 | 24 | .08

kv332:2 .07 | .13 .15 | .05 | .19 | .17
.29 | .10 | .06 | .08 | .11 | .25

Total 21 .32 .09 | .19 | 19 | A7
28 | 42| 20 | .22 | 30 | .27

93

Table 7.5: Detailed results of the cross-validation experiment with Roland Batik was
the ‘training’ pianist. For each piece, the correlations between predicted and actual
curves from all pianists are given. Each cell is divided into two rows corresponding
to dynamics and tempo correlations, respectively. The highest correlations in each
row are printed in bold. The average over all pieces is given in the last two rows
(reproduced from the Table 7.3)
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Piece DB | RB | GG | MP | AS | MU
kv279:1:1 | .19 | .38 | .40 | .22 | .27 | .24
26 | 12 | 23 | 17 | .30 | .36
kv279:1:2 | .05 | .03 | -.18 | -.01 | -.04 | .00
A8 | 17 | 17 | .09 | 42 | 22
kv280:1:1 | .04 | .00 | .29 | -.10 | -.10 | -.08
35 | .22 | b2 | 47 | 31 | .55
kv280:1:2 | .14 | .10 | .24 | .06 | .04 | .11
27 .17 | .38 | 30 | 24 | .24
kv280:2:1 | .07 | -.04 | .34 | .15 | .04 | .04
331 .39 | .60 | B0 | B4 | .50
kv280:2:2 | .19 | .15 | .34 | .11 | .13 | .10
B34 | .24 | 41 | 23 | 44 | .27
kv280:3:1 | .44 | .51 | .61 | .42 | 44 | .55
.61 | .B7 | b2 | .67 | bS5 | .65
kv280:3:2 | .34 | .36 | .50 | .31 | .27 | .43
35 | .50 | .25 | .28 | 43 | .30
kv282:1:1 | .28 | .16 | .55 | .22 | .26 | .21
44 | 32 | 49 | 41 | 28 | .54
kv282:1:2 | .24 | .14 | .33 | .17 | .04 | .07
.08 .02 | .15 | .16 | .00 | .11
kv283:1:1 | .35 | -.12 | .56 | .41 | .34 | .38
A6 | .23 | .25 | .05 | .34 | .27
kv283:1:2 | .26 | .09 | .51 | .31 | .28 | .36
.00 [-.03| .12 | .10 | .11 | .14
kv283:3:1 | .74 | -18 | .77 | 42 | .59 | .40
b0 | 23 | .68 | 30 | 42 | .26
kv283:3:2 | 48 | -.08 | .49 | .27 | 45 | .30
A9 | .03 | B2 | 24 | 29 | .13
kv332:2 | .10 | .03 | .28 | .10 | .14 | .20
A3 | .02 | .01 | .04 | .01 | .09

Total 25 .09 | .36 | .19 | .21 | .22
25 | 18 | .32 | 23 | .29 | .28

Table 7.6: Detailed results of the cross-validation experiment with Glenn Gould was
the ‘training’ pianist. For each piece, the correlations between predicted and actual
curves from all pianists are given. Each cell is divided into two rows corresponding
to dynamics and tempo correlations, respectively. The highest correlations in each
row are printed in bold. The average over all pieces is given in the last two rows
(reproduced from the Table 7.3)
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Piece DB | RB | GG | MP | AS | MU
kv279:1:1 | .35 | .25 | .05 | .44 | 37 | .22
B4 .29 | 26 | 29 | 18 | 31

kv279:1:2 | .09 | .19 | .07 | .31 | .19 | .23
25 .25 | .23 | .33 | .30 | .30

kv280:1:1 | .53 | .44 | -.02 | .68 | 45 | .27
A1 | .32 | 41 | .67 | .38 | .57

kv280:1:2 | .26 | .19 | -.03 | .35 | .23 | .18
37 32 30 | 46 | 34 | 3T

kv280:2:1 | 46 | .35 | .21 | .61 | 48 | .42
A1 | 33 | .56 | .60 | 48 | .56

kv280:2:2 | .37 | 33 | .13 | .41 | 31 | .34
45 | 31 | 45 | .B1 | 46 | .51

kv280:3:1 | .67 | .69 | 41 | .66 | .64 | .56
.70 | 61 | B3 | .81 | .66 | .75

kv280:3:2 | 47 | .50 | .33 | .55 | 42 | 45
46 | .36 | .39 | 47 | 41 | .49

kv282:1:1 | .51 | .32 | .33 | .39 | .30 | .33
45 | 32 | b2 | .B4 | .16 | B3

kv282:1:2 | .33 | .16 | .13 | .23 | .22 | .14
36 1 .29 | 33 | 48 | .23 | 40

kv283:1:1 | .24 | -.05| .35 | .30 | .24 | .28
29 (.10 | .09 | .28 | .17 | .23

kv283:1:2 | .28 | .15 | .16 | .18 | .23 | .26
.07 (.01 | .09 | .20 .09 | .11

kv283:3:1 | .56 | -.06 | .48 | .65 | .51 | .38
B340 .19 | .29 | 39 | 41 ] .29

kv283:3:2 | .41 | -.04 | .40 | .48 | .49 | .38
A9 ) 12 | .24 | 23 | .21 | .20

kv332:2 | .01 | -.04 | .16 | -.04 | .15 | .11
.09 | .02 | .03 | .06 .06 |.17

Total B3 .19 | 19 | .39 | 33| .28
Bl .23 | 27 | 38 | 28 | .34
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Table 7.7: Detailed results of the cross-validation experiment with Joao Pires was
the ‘training’ pianist. For each piece, the correlations between predicted and actual
curves from all pianists are given. Each cell is divided into two rows corresponding
to dynamics and tempo correlations, respectively. The highest correlations in each
row are printed in bold. The average over all pieces is given in the last two rows
(reproduced from the Table 7.3)
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Piece DB | RB | GG | MP | AS | MU
kv279:1:1 | .33 | .14 | .05 | .40 | .48 | .16
370026 | 32 | 16 | .34 | .25
kv279:1:2 | .18 | .07 | -.03 | .19 | .17 | .16
25 .20 | .24 | 19 | .45 | .28
kv280:1:1 | 48 | 42 | .12 | 44 | .53 | .30
44 | 44 | 24 | b1 | B | .64
kv280:1:2 | .27 | .15 | .06 | .20 | .27 | .16
31 .38 | .26 | .17 | .30 | .27
kv280:2:1 | .45 | .45 | .20 | .52 | 46 | .42
A7 | b2 | .67 | B0 | .73 | .56
kv280:2:2 | 40 | .39 | .04 | .43 | 38 | .33
A7 | 49 | 43 | 35 | .66 | 45
kv280:3:1 | .74 | 64 | .35 | b4 | .T4 | .59
76 73| 73| .80 | .85 | .72
kv280:3:2 | .50 | .56 | .39 | .54 | B4 | .55
31 31 | 30 | .28 | .42 | .37
kv282:1:1 | .33 | .25 | .18 | .40 | .28 | .17
23| .83 | .16 | .31 | .60 | .65
kv282:1:2 | .42 | 32 | .21 | .25 | .30 | .27
06 | .28 | .19 | .18 | .41 | .37
kv283:1:1 | .28 | -.04 | .34 | .32 | .38 | .27
05| .00 | .02 | .04 |.24 ) .10
kv283:1:2 | .14 | .21 | .05 | .03 | .14 | .06
.04 .00 | .18 | .10 | .16 | .10
kv283:3:1 | .70 | -.31 | .60 | .49 | .74 | .32
BS540 .39 | B0 | 38 | .72 | 34
kv283:3:2 | .51 | .00 | .47 | .36 | .61 | .28
B39 | 25 | 35| 22 | .39 | .13
kv332:2 | .12 | -.01 | .16 | .08 | .25 | .18
38 | 17 | 14 | 14 | 11 | .28

Total 36 | .17 | .20 | .31 | .40 | .26
320 .29 | 28 | 25 | 41| .32

Table 7.8: Detailed results of the cross-validation experiment with Andras Schiff was
the ‘training’ pianist. For each piece, the correlations between predicted and actual
curves from all pianists are given. Each cell is divided into two rows corresponding
to dynamics and tempo correlations, respectively. The highest correlations in each
row are printed in bold. The average over all pieces is given in the last two rows
(reproduced from the Table 7.3)
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Piece DB | RB | GG | MP | AS | MU
kv279:1:1 | 27 | .17 | .18 | .35 | .37 | .26
36 | 31 | .22 | .36 | .29 | .50

kv279:1:2 | -.10 | .10 | -.02 | .11 | -.04 | .13
31| 35 | 35 | .28 | .34 | .47

kv280:1:1 | 43 | .36 | .06 | .36 | .34 | .58
40 | 25 | .26 | B | 42 | .78

kv280:1:2 | .23 | .13 | .07 | .14 | .17 | .36
A2 | 37 | 42 | 37 | 47 | .54

kv280:2:1 | 41 | 40 | .18 | .50 | 42 | 44
b3 | 34 | b2 | B8 | .59 | .69

kv280:2:2 | .37 | .43 | .04 | 36 | .34 | .32
A4 1 13 | 39 | 42 | .50 | .58

kv280:3:1 | .65 | .65 | .39 | .b4 | .63 | .67
.72 | 66 | .62 | .82 | .68 | .77

kv280:3:2 | .37 | .38 | 31 | .33 | 45 | .56
bl | B2 | 44 | 49 | 43 | 51

kv282:1:1 | .35 | .22 | .21 | .27 | .27 | .28
38 | 45 | 36 | 44 | 44 | 72

kv282:1:2 | .35 | 22 | .17 | .33 | .18 | .24
23 | 36 | 33 | 42 | 46 | .52

kv283:1:1 | .27 | -.07 | .38 | .35 | .28 | .29
21 .10 | 12 | 16 | 22 | .31

kv283:1:2 | .16 | .16 | .15 | .17 | .13 | .23
A7 18 | 21 | 23 | .22 | .32

kv283:3:1 | .55 | .22 | .58 | .Bb8 | .41 | .78
30 | 28 | 42 | 42 | 42 | .52

kv283:3:2 | .31 | -.05| .39 | .30 | .29 | .46
A9 | 15 ) 29 | .21 | 32 | .36

kv332:2 A2 1 .05 | .21 | 12 | .23 | .25
32 ) A7 .14 ) 22 | 16 | .35

Total 27 | 18 | 21 | 28 | .26 | .38
B34 1 .30 | 32 | .36 | .37 | .50
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Table 7.9: Detailed results of the cross-validation experiment with Mitsuko Uchida
was the ‘training’ pianist. For each piece, the correlations between predicted and
actual curves from all pianists are given. Each cell is divided into two rows corre-
sponding to dynamics and tempo correlations, respectively. The highest correlations
in each row are printed in bold. The average over all pieces is given in the last two
rows (reproduced from the Table 7.3)
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Figure 7.2: Dynamics and tempo curves produced by DISTALL on test piece (Sonata
K.283, 3" mvt., 2"¢ section, mm.120-160) after learning from Daniel Barenboim
(top) and Mitsuko Uchida (bottom), compared to the artists’ real curves as measured
from the recordings.
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the sequential nature of music is addressed by representing performances as strings
and using string kernels in conjunction with kernel partial least squares and support
vector machines. The string kernel approach is shown to achieve better performance
than the best results obtained in [Widmer and Zanon, 2004]. A clear result from
both works is that identification of pianists from their recordings is an extremely

difficult task.

The pianists studied in the present paper are identical to those in [Widmer
and Zanon, 2004] and [Saunders et al., 2004]; unfortunately, the sets of recordings
differ considerably (because manual phrase structure analyses, which are needed
in our approach, were available only for certain pieces), so a direct comparison of
the results is impossible. Still, to illustrate what can be achieved with a relational
representation and learning algorithm, we briefly describe a classification experiment
with DISTALL.

Each of the 15 pieces is set aside once. The 6 performances of that piece (one
by each pianist) are used as test instances. A model of each pianist is built from
his/her performances of the remaining 14 pieces. The result is two predicted curves
per pianist for the test piece (for tempo and dynamics), which we call model curves.
The final classification of a pianist, represented by his/her tempo and dynamics
curves t; and t; on the test piece, is then determined as

corr(ty, my) + corr(tq, mpq)
2

)

c(t, ta) = argmazpep(

where P is set of all pianists and m,; and m,, are the pianists’ model tempo and
dynamics curves. In other words, the performance is classified as belonging to the
pianist whose model curves exhibit the highest correlation (averaged over tempo and
dynamics) with the test curves. For each pianist, DISTALL is tested on the 15 test
pieces, which gives a total number of 90 test performances. The baseline accuracy
— the success rate of pure guessing — is 15, or 16.67%. The confusion matrix of the
experiment is given in Table 7.10.

Again, it turns out that the artists are identifiable to varying degrees, but the
recognition accuracies are all clearly above the baseline. In particular, note that the
system correctly identifies performances by Uchida in all but one case. Obviously,
the learner succeeds in reproducing something of the artists’ styles in its model
curves. While these figures seem to compare very favourably to the accuracies
reported in [Widmer and Zanon, 2004] and [Saunders et al., 2004], they cannot be
compared directly, because different recordings were used and, more importantly,
the level of granularity of the training and test examples are different (movements
in [Widmer and Zanon, 2004; Saunders et al., 2004] vs. sections in this paper),
which probably makes our learning task easier.



100 Chapter 7 Learning to Play Like the Great Pianists

prediction

pianist | DB | RB | GG | MP | AS | MU | Acc.[%]
DB 11 0 0 2 2 0 73.3
RB 1 12 1 0 0 1 80.0
GG 1 1 10 0 0 3 66.7
MP 0 0 1 12 0 2 80.0
AS 1 0 2 0 10 2 66.7
MU 0 0 1 0 0 14 93.3

Total | - | - | - | - [ -] - | 767 |

Table 7.10: Confusion matrix of the pianist classification experiment. Rows corre-
spond to the test performances of each pianist (15 per row), columns to the classifi-
cations made by the system. The rightmost column gives the accuracy achieved for

all performances of the respective. The baseline accuracy in this 6-class problem is
16.67%.

7.5 Replicating Great Pianists?

Looking at Figure 7.2, one might be tempted to consider the possibility of automatic
style replication: wouldn’t it be interesting to supply the computer with the score of
a new piece and have it perform it ‘in the style of’, say, Vladimir Horowitz or Arthur
Rubinstein? This question is invariably asked when we present this kind of research
to the public. Unfortunately (?7), the answer is: while it might be interesting, it is
not currently feasible.

For one thing, despite the huge effort we invested in measuring expressive tim-
ing and dynamics in recordings, the amount of available training data is still vastly
insufficient vis-a-vis the enormous complexity of the behaviour to be learned. And
secondly, the sort of crude beat-level variations in tempo and general loudness cap-
ture only a very small part of what makes an expressive interpretation; essential
details like articulation (e.g., staccato vs. legato), pedalling, the shaping of individ-
ual voices, etc. are missing (and will be very hard to measure from audio recordings
at all). A computer performance based only on applying these beat-level tempo
and loudness changes will not sound anything like a human performance, as can be
readily verified experimentally. Thus we have to admit that the title we chose for
this chapter is a bit pretentious: the computer cannot be expected to play like the
great pianists — at least not given the current methods and available training data.
It can, however, extract aspects of personal style from recordings by great pianists,
as has been shown in our experiments.
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Conclusion

The work presented in this thesis is situated on the crossroads between machine
learning and musicology. On the machine learning side, we have introduced a new
machine learning algorithm DISTALL. DISTALL belongs to the family of distance-
based learning algorithms, and more precisely, relational instance-based learners.
On the application side, we have presented the difficult real-world learning task
rooted in the expressive music performance research. We have investigated to what
extent a machine can automatically build expressive models of certain aspects of ex-
pressive piano performances. The focus was on the two most important dimensions
of expressive performances, namely tempo and dynamics. Various interesting ap-
plications of our algorithm ranging from automated generation of expressive music
performances to identifying great pianists were presented and discussed.

In Chapter 2 we discussed the basic framework for our algorithm — instance and
distance based learning. We also introduced the relational formalism and discussed
why distance based learning is more difficult in this representation than in the
‘mainstream’, propositional language. We discussed advantages and drawbacks of
various set distance measures which potentially could be implemented in relational
instance-based learner and argued that the set distance measure based on optimal
matching have very strong theoretical properties: It is a metric, it takes advantage of
all ‘elementary’ distances between set elements, and it is intuitive. At the same time
it can be implemented in the way that the combinatorial explosion with increasing
set sizes is avoided. Indeed, exponential increase in complexity with the growing set
sizes is one of the main problems with the set distance measures in general.

Chapter 3 is where we presented our new learning algorithm. We have dis-
cussed our guiding principles for DISTALL and gave in-depth discussion of its main
technical aspects: representation of the learning input, mechanisms for structuring
the learning input and efficient computation of the optimal set matching distance.
We than put all pieces together and gave the detailed algorithmic description of
DISTALL’s working principles.

The testbed for assessing DISTALL’s learning capabilities is introduced in Chap-
ter 4. The task is rooted in the expressive performance research and is a small step
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in a research endeavour pursued in our lab that aims at building quantitative models
of expressive music performance via inductive machine learning methods. The task
is posed in the way that an instance-based learner can be applied to learn expressive
tempo and dynamic shapes at a rather high level of the musical structure, namely
the level of musical phrases. One of the main contribution of the Chapter 4 is that
we have shown how rather unstructured expressive tempo and dynamics curves can
be structured in a hierarchical way, resulting in training examples which in turn can
be used by DISTALL (and by any other instance-based learner) to operate upon
it. Indeed, one of the main difficulties in any real world machine learning task is to
(meaningful) prepare the data in such a way that the learner can ‘understand’ and
operate on. Additionally, a proposal of a complementary learning system constitut-
ing of instance-based phrase-level learner and PLCG note-level learner was made
(and empirically tested later on).

Experimental evaluation of DISTALL and our learning system in general was pre-
sented in Chapter 5. After rather disappointing first experiments with the proposi-
tional k-nearest neighbor (where the reader could also get impression of the difficulty
of the learning task), we have shown various incremental improvements in learning
procedure resulting in the system which at least on some pieces have reached surpris-
ingly good performance. Applying DISTALL to the same learning setting resulted in
turn in performance leap regarding all objective error measures we have proposed.
DISTALL also achieved a significantly better performance than the current state
of the art relational instance-based learner RIBL. Further improvements were also
presented, including richer phrase representation and, more importantly, exploiting
the power of FOL by introducing temporal context information. It is the latter
setting which made further significant performance leap for both relational learners.
However, DISTALL has been able to better exploit the temporal information and
has again clearly outperformed RIBL. The experiments with DISTALL in this last
setting resulted in the system which has shown high level of predictive performances
for both domains (tempo and dynamics), and almost all pieces from our dataset
(e.g., see Figure 5.3 and Table 5.15).

Different further applications of our distance measure are presented in chapters
6 and 7. In Chapter 6 we have tried — with the help of the DISTALL’s similarity
measure — to assess the level of ‘consistency’ at the phrase level of a concert pianist
playing different pieces of Mozart. The consistency is assessed via the level of correla-
tion between ‘objective’, score-based similarity measure and the performance-based
similarity measure (implied by the level of correlation between pianist interpretation
of two different phrases). We have shown that the rather high level of correlation
hold between these two measures, at least for the subset of the most similar phrase
pairs (as indicated by the score-based similarity measure). While in a certain sense it
can be considered as a reliability proof of our score-based similarity measure, it can
on the other site be regarded as indication of stylistic consistency of the performer.

In Chapter 7 we have applied DISTALL for analyzing famous pianists. Inter-
estingly, even with crude, beat-level performance representation extracted in semi-
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automated manner from audio CDs, DISTALL was able to catch certain aspects of
playing styles of great pianists. The technique of building expressive performance
models is than applied in a straightforward manner for recognizing the pianists. As
expected, some pianists were recognizable to the better degree than the others, but
the overall results were surprisingly good and compare very favourably to the results
published recently.

From the technical point of view, introducing a new learning algorithm is of
course the most interesting part of the thesis. Moreover, presented experimental
success of DISTALL regarding comparison to RIBL can be considered significant
for at least three reasons: (1) the difficulty of the learning task at hand, (2) sub-
stantial volume of the dataset (containing more than 5500 melody notes and more
than 1200 phrases, comprising half an hour of piano music), (3) consequent superior
results in the direct comparison through all three experiment groups (initial rep-
resentation, enriched phrase-level attributes and introduction of temporal context).
Of course, the better results should be attributed to the optimal matching set dis-
tance measure, which has some compelling attributes, as we have argued in the text.
On the other site, it is virtually the only difference between RIBL and DISTALL
since the other aspects are rather similar. Especially the (sub)set formation, second
main building block of both algorithms, works through the same hierarchical, recur-
sive procedure. However, different set distance measures have a profound effect on
the overall distance measures in such a hierarchical configuration, since the distance
computed at one level forms the foundation for, and has the crucial influence on the
distance which has to be computed on the higher level. It is thus clear that in the
case of a hierarchical distance measure in general, special care should be taken in
designing the distance measure at one level of hierarchy.

However, hierarchy is a key for efficient implementation of DISTALL, since it nar-
rows the set sizes on which the optimal matching distance has to be applied. Without
grouping the literals in an appropriate way, it would be intractable — with current
computational resources — to apply the optimal matching set distance to nontrivial,
real world problems. Hierarchy has been proven to be en efficient way in reducing
complexity of the problems in many different technical systems. Recently, there is
even increasing evidence from neuroscience that the hierarchical representations are
utilized in some parts of biological neuronal systems, most notably mammalian (and
human) neocortex ([Reisenhuber and Poggio, 1999; Wallis and Rolls, 1996]). It is
speculated that the hierarchical representations are maintained in neocortex for sim-
ilar reasons as we have argued above for the case of DISTALL, namely reduction of
computational and memory complexity ([Reisenhuber and Poggio, 1999]). While, of
course, we do not intend to imply that the representational formalism and working
principles used by DISTALL bear any similarity with the representations maintained
in the biological neural systems, we do believe that the hierarchical representation
is indeed an efficient way for scaling up and dealing with complexity in general.

Of course, better learning performance on one learning task does not necessarily
generalize to other learning tasks. Application of optimal matching set distance
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on relatively small, hierarchical subsets allows for efficient implementation of DIS-
TALL, which in turn allows DISTALL to be applied and tested for many complex,
real-world problems. E.g., RIBL has been shown to produce superior generalization
performance compared to other ILP algorithms for the problem of diterpene struc-
ture elucidation from *C' NMR spectra (see [Dzeroski et al., 1996]). Diterpenes are
organic compounds of low molecular weight that are based on a skeleton of 20 carbon
atoms. They are of significant chemical and commercial interest because of their use
as lead compounds in the search for new pharmaceutical effectors. The structure
elucidation of diterpenes based on ¥C' NMR spectra is usually done manually by
human experts with specialized background knowledge. In [Dzeroski et al., 1996] it
has been shown that RIBL’s accuracy on this task is significantly higher than the
accuracies achieved with all other relational (and propositional) algorithms and is
in the range of the accuracy of human experts. It can be a topic of future work to
examine, if performance gain achieved with DISTALL (as compared to RIBL) on
our music task also translates to this other interesting task. Indeed, there are many
domains and problems with structural representations, where the introduction of
relational language (and algorithms) has been proven successful (e.g. see [King et
al., 2004] for the latest successes). It would be interesting to see if DISTALL can
achieve any additional benefits at least on some of them.

Regarding musicology and, more precisely, expressive performance research, this
thesis is to our knowledge the quantitatively largest attempt to model and generate
expressive performances on the phrase level. There have been experiments with
case-based learning for generating expressive phrases of good musical quality in
jazz ballads ([Arcos and de Mantaras, 2001; de Mantaras and Arcos, 2002]). In
addition to somewhat different assumptions (the system described in [de Mantaras
and Arcos, 2002] made use of musical background knowledge), the work presented
here was conducted on much larger data corpus. One interesting implication of
our phrase-level decomposition procedure (section 4.3.3) regarding musicology is
the experimental finding that quadratic functions are much less a reasonable model
class for timing as it has been believed (but never systematically tested on such a
large corpus of real performances) in musicology ([Todd, 1989; Windsor and Clarke,
1997]). While our decomposition process with quadratic functions worked very well
in dynamics domain, it proved much less suited for timing (see Table 5.6). It would
be interesting to address this issue in future work. Discovering a model class which
better approximate real expressive performance curves for timing in a process akin
to ours would certainly be interesting for musicology.

Further improvements regarding prediction ability of our expressive models in
general could be achieved with introduction of additional phrase-level features, cou-
pled with standard feature selection methods. We have shown in section 5.2.4 that
given additional, richer phrase representation, a clear gain in learning performance is
achieved. Currently, the phrase-level features are ‘selected’ in a rather ad hoc man-
ner, based on opinions of our colleagues with background in musicology. We believe
that with additional features and automated feature selection, the subset with best
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generalization ability on our (limited) dataset could be found, which would improve
the overall quality of the system. It would be also interesting to see if the prediction
quality of the system transfers to other periods of music (other than Mozart sonatas
from classical period).

The same could be said for the experiments reported in Chapter 7 regarding great
pianists. Would the system be able to (learn to) recognize great pianists playing
pieces from e.g., romantic period? Although we consider recognition accuracy of
on average 76.7% on this difficult 6-class classification task surprisingly high (also
compared with recent results reported in [Widmer and Zanon, 2004] and [Saunders
et al., 2004]), it should be noted that it is seriously compromised: Our data set is
divided according to sections, rather than movements as done in [Widmer and Zanon,
2004; Saunders et al., 2004]. Due to repetitions in different sections, our setting can
clearly be considered easier to learn. On the other hand, all results reported in
[Widmer and Zanon, 2004] and [Saunders et al., 2004] refer to pairwise performer
classifications, i.e., the results are assessed via many 2-class learning problems with
50% baseline accuracy. A direct, 6-class learning problem is unarguable much more
difficult, and we are to our knowledge first who defined the learning task in this way.
Unfortuantelly, we could not have used the same data as in [Widmer and Zanon,
2004] and [Saunders et al., 2004], since the phrase analysis — which is needed for our
system — has not been available for all pieces by the time of experiments. Further
data gathering and experiments are thus needed in order to clearify, if our algorithm
and learning method favourably compares with other machine learning methods on
this interesting task, which — not at least due to efforts in our research group —
recently became popular in machine learnig community.
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