
DISSERTATION

Resource Management in an Integrated Time-Triggered
Architecture

ausgeführt zum Zwecke der Erlangung des
akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von

o. Univ. - Prof. Dr. Hermann Kopetz
Institut für Technische Informatik 182

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Dipl. Ing. Bernhard Huber
Matr. - Nr. 9926084

Edla 9, 3261 Steinakirchen/Forst

Wien, im Jänner 2008 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Resource Management in an Integrated
Time-Triggered Architecture

Dynamic resource management is the ability of a system to dynamically modify the allo-
cation of the system’s resources to its hosted application subsystems in order to react to
changing resource demands or resource availability. Dynamic resource management yields
better utilization of the available resources, improved dependability of the system by ex-
ploiting spare resources or degraded service modes, and the enabling of power-aware system
behavior, which has been identified as one of the grand challenges for today’s and future
embedded systems. This thesis examines the application of dynamic resource management
for an integrated time-triggered system architecture for embedded systems.

An integrated architecture is characterized by the integration of multiple application subsy-
stems within a single distributed system. In order to facilitate composability and robustness,
as well as, modular certification of the individual subsystems, a pivotal property of an inte-
grated architecture is to achieve encapsulation of the hosted subsystems and to provide me-
chanisms for fault-isolation. The Time-Triggered System-on-a-Chip (TTSoC) architecture,
which builds the foundation of this thesis, provides this encapsulation for computational
and communication resources and achieves fault-isolation by offering a protected, predicta-
ble time-triggered Network-on-a-Chip that interconnects physically separated cores, which
interact exclusively by the exchange of messages.

The key challenge addressed in this thesis is to preserve the encapsulation and fault-isolation
properties of the TTSoC architecture, despite the presence of dynamic resource allocation.
Therefore, a solution for dynamic resource management in the TTSoC architecture is presen-
ted in this thesis, which unifies those, in general conflicting, properties of an architecture. To
this end, we propose a resource management strategy that exploits a priori specified know-
ledge on the resource requirements of an application for providing its service at different
Quality-of-Service (QoS) levels. This enables an off-line analysis to determine the maximum
resource requirements that may emerge during the lifetime of the overall system. This gua-
rantees that all application systems will receive a sufficient share of the available resources
to execute their functionality (possibly at a degraded service level).

A key characteristic of the resource management solution presented in this thesis is its two-
tiered approach: We separate the computation of a resource allocation, which is performed
by the Resource Management Authority (RMA), from its verification and execution, which
is in the responsibility of the Trusted Network Authority (TNA), each of them realized in
physically separated components. This way, we facilitate the development of mixed-criticality
systems, i.e., systems hosting applications which exhibit different criticality levels. For safety-
critical applications we provide (possibly static) resources guarantees, which are protected by
the TNA, while we facilitate the efficient implementation of non safety-critical applications
using the services of the RMA.

An experimental validation using a prototype implementation of the TTSoC architecture
evaluates the resource management solution. The performed experiments confirm that the
resource protection mechanisms of the TNA preserve encapsulation and fault-isolation, even
in the presence of a failure of the RMA.

i

ii

Ressourcenverwaltung in einer
integrierten, zeitgesteuerten

Architektur

Dynamische Ressourcenverwaltung bezeichnet die Fähigkeit eines Systems, die Zutei-
lung der verfügbaren Systemressourcen dynamisch zu verändern, um auf eine sich ändernde
Verfügbarkeit von Ressourcen beziehungsweise auf sich ändernde Anforderungen an Ressour-
cen reagieren zu können. Vorteile, die sich durch dynamische Ressourcenverwaltung ergeben,
sind die Verbesserung der Ressourcenausnutzung, eine Steigerung der Systemzuverlässigkeit
durch Aktivierung von Ersatzressourcen im Fehlerfall, sowie die Ermöglichung von energie-
bewusstem Systemverhalten. Diese Arbeit untersucht den Einsatz von dynamischer Ressour-
cenverwaltung in einer integrierten, zeitgesteuerten Architektur für eingebettete Systeme.

Eine integrierte Architektur zeichnet sich durch die Realisierung unterschiedlicher Ap-
plikationssysteme innerhalb eines einzelnen verteilten Systems aus. Um eine gute Zusam-
mensetzbarkeit (composability) und Robustheit des Systems zu gewährleisten, sowie eine
modulare Zertifizierung einzelner Systemkomponenten zu ermöglichen, ist eine starke Kap-
selung der einzelnen Applikationssysteme von grundlegender Bedeutung. Die Time-Triggered
System-on-a-Chip (TTSoC) Architecture, welche die Grundlage dieser Arbeit bildet, ist eine
integrierte Architektur, die diese starke Kapselung sowohl für Kommunikationsressourcen
als auch für Rechenressourcen anbietet. Erreicht wird dies vorallem durch ein zeitgesteuer-
tes Network-on-a-Chip (NoC), welches die Verbindung von physikalisch getrennten on-chip
Komponenten (cores) herstellt, die ausschließlich durch den Austausch von Nachrichten mit-
einander interagieren können.

Die vorliegende Arbeit präsentiert eine Lösung für dynamische Ressourcenverwaltung
in der TTSoC Architecture, welche die starke Kapselung der Applikationssysteme aufrecht-
erhält. Zu diesem Zweck wird in dieser Arbeit eine Strategie für Ressourcenverwaltung vor-
geschlagen, welche eine Analyse der zu erwartenden Ressourcenzuteilung vor der Laufzeit
des Systems ermöglicht, um Garantie dafür abgegeben zu können, dass für jede Applikati-
on die notwendigen Ressourcen zur Verfügung stehen. Dafür wird eine Repräsentation der
Ressourcenanforderungen vorgeschlagen, die es ermöglicht, die benötigten Ressourcen einer
Applikation in unterschiedlichen Betriebsmodi zu erfassen.

Ein wesentliches Merkmal der vorgestellten Lösung zur Ressourcenverwaltung ist ihr
zweistufiger Ansatz: Die Berechnung der Ressourcenzuteilung, die in der Resource Ma-
nagement Authority (RMA) ausgeführt wird, ist von der Verifizierung und eigentlichen
Ausführung der Ressourcenzuteilung, welche von der Trusted Network Authority (TNA)
ausgeführt werden, getrennt. Dadurch wird die Realisierung von mixed-criticality Syste-
men, das heißt Systeme die Applikationen mit unterschiedlichen Anforderungen bezüglich
Zuverlässigkeit beherbergen, erleichtert. Einerseits bietet die TNA Hardwaremechanismen,
die statische Ressourcenzuteilungen für sicherheitskritische Anwendungen garantieren, ande-
rerseits unterstützt die RMA die effiziente Implementierung von nicht-sicherheitskritischen
Applikationen. Im Rahmen dieser Arbeit wurde eine Implementierung und Evaluierung der
dynamischen Ressourcenverwaltung durchgeführt. Anhand einer beispielhaften Anwendung
aus dem Automobilbereich wird gezeigt, dass die geforderte Kapselung der Applikationssy-
steme erhalten bleibt.

iii

iv

Danksagung

Diese Arbeit entstand im Rahmen meiner Forschungs- und Lehrtätigkeit am Institut für
Technische Informatik, Abteilung für Echtzeitsysteme, an der Technischen Universität Wien.
Besonders danken möchte ich dem Betreuer meiner Dissertation, Prof. Dr. Hermann Kopetz,
der mir die Forschungstätigkeit am Institut ermöglichte und meine Arbeit durch wertvolle
Anregungen und Diskussionen unterstützte.

Ich möchte allen Kollegen am Institut für das angenehme Arbeitsklima danken, insbesondere
Roman Obermaisser und Christian El Salloum für die unzähligen Diskussionen sowie für die
konstruktiven und kritischen Anregungen.

Zudem danke ich meinem Bruder Wolfgang Huber, Markus Bauer, Armin Wasicek, Har-
ald Paulitsch und Roman Obermaisser für das gewissenhafte Korrekturlesen und für die
wertvollen Hinweise bei der Arbeit an dieser Dissertation.

Spezieller Dank gebührt auch meinen Eltern sowie allen Freunden für ihre Unterstützung.
Ganz besonders danken möchte ich meiner Freundin Verena Katinger – für ihre Geduld, ihr
Verständnis und ihre Unterstützung während der Zeit, in der ich diese Arbeit verfasst habe.

v

vi

Contents

1 Introduction 1

1.1 Problem Definition . 2
1.2 Contribution . 3
1.3 Structure of the Thesis . 5

2 Basic Concepts and State-of-the-Art 7

2.1 Integrated Architectures for RT Systems 7
2.1.1 Paradigm Shift to Integrated Architectures 8
2.1.2 Integrated Modular Avionics 9
2.1.3 Automotive Open System Architecture 13
2.1.4 Dependable Embedded Components and Systems 18

2.2 Dynamic Resource Management . 23
2.2.1 Classic Resource Management in Real-Time Systems 24
2.2.2 Resource Management in Large Networked System 26
2.2.3 Power-Aware Systems . 29

2.3 Model-Driven Design and Development 33
2.3.1 Model-Driven Architecture . 34
2.3.2 Model-Driven Development in DECOS 37

3 The Time-Triggered SoC Architecture 43

3.1 Motivation and Aims . 43
3.2 Architectural Elements . 45

3.2.1 Micro Components . 46
3.2.2 Time-Triggered Network-on-Chip 49
3.2.3 Gateways . 52
3.2.4 Diagnostic Unit . 53
3.2.5 Architectural Elements for Resource Management 54

3.3 Application Modeling . 55

vii

4 Resource Allocation Policies 59

4.1 Exemplary Application Scenario . 59
4.1.1 Multimedia Application Subsystem 60
4.1.2 ESP Application Subsystem . 61
4.1.3 Infotainment Application Subsystem 62

4.2 Static Resource Allocation . 62
4.3 Dynamic Resource Allocation . 63

4.3.1 Restricted Dynamic Resource Allocation 65
4.4 QoS-based Resource Allocation . 66
4.5 Discussion . 67

5 Resource Management in the TTSoC Architecture 71

5.1 Requirements on Resource Management 71
5.2 Resource Management Strategy . 73

5.2.1 Specification of Applications and Modes 74
5.2.2 Interaction Pattern . 75

5.3 Manageable Resources . 79
5.3.1 Time-Triggered Network-on-Chip 79
5.3.2 Micro Component Configuration 80
5.3.3 Power . 81

5.4 Trusted Network Authority . 83
5.4.1 Resource Protection . 83
5.4.2 Micro Component Configuration 86
5.4.3 Establishment and Maintenance of the Global Time 88

5.5 Resource Management Authority . 88

6 Case Study 93

6.1 Exemplary Automotive Application . 93
6.2 SoC Component Setup . 95
6.3 TNA Implementation . 97

6.3.1 Initial TISS Configuration . 97
6.3.2 RMA–TNA Communication . 99
6.3.3 Schedule Analysis . 100
6.3.4 Resource Protection . 105
6.3.5 Micro Component Configuration 107

6.4 RMA Implementation . 107
6.4.1 Job–to–RMA Communication - Request Reception 108
6.4.2 Resource Schedule Generation 109

viii

6.4.3 RMA–to–Host Communication 112
6.4.4 Exemplary Message Schedule 113

7 Evaluation and Results 117

7.1 Preservation of Encapsulation . 117
7.1.1 Experiment Setup . 118
7.1.2 Evaluation Procedure and Results 119

7.2 Handling of Excessive Resource Requests 123
7.2.1 Experiment Setup . 123
7.2.2 Evaluation Procedure and Results 124

7.3 Validation of Resource Protection Mechanisms 127
7.3.1 Experiment Setup . 127
7.3.2 Evaluation Procedure and Results 128

8 Conclusion 131

8.1 Encapsulation of Application Subsystems 131
8.2 Support for Mixed Criticality Systems 132
8.3 Further Work . 134

A TTSoC Resource Management Interfaces 135

A.1 TISS CP Interface . 135
A.2 TNA RCLIF Interface . 137

B XML Configuration Files 141

B.1 Initial TNA Configuration . 141
B.2 Protected Resources . 143

C List of Acronyms 147

D Glossary 151

Bibliography 159

List of Publications 173

Curriculum Vitae 175

ix

x

List of Figures

2.1 IMA avionics architecture . 10

2.2 APEX avionics software structure . 13

2.3 AUTOSAR ECU software architecture 15

2.4 AUTOSAR development methodology 17

2.5 Functional structure of a DECOS system 19

2.6 Physical structure of a DECOS system 20

2.7 DECOS Integrated Architecture . 21

2.8 Abstract Model of a Resource Management System 27

2.9 Structure of a Power-Managed System 32

2.10 Different perceptions of PIM and PSM 36

2.11 MDA model transformation approaches 37

2.12 Development methodology in DECOS 38

2.13 System representation using PIM and PSM 39

2.14 DECOS Tool-Chain – tool integration 41

3.1 Architectural elements of the TTSoC architecture 46

3.2 Time format of the Time-Triggered NoC 50

3.3 Temporal alignment in control loops 51

3.4 Representation of a Pulsed Data Stream 52

3.5 Models deployed in the design process of the TTSoC architecture . . . 56

4.1 Simplified example of an Integrated System 60

5.1 Dedicated architectural elements for resource management 73

5.2 Different phases of resource management 76

5.3 Resource management message sequence diagram 78

5.4 Changing the mapping of UFIM-ports to SoC-ports 81

5.5 Data flow between RMA and TNA . 84

5.6 Protection of guaranteed resources by the TNA 85

5.7 Data flow between TNA and micro components 87

xi

5.8 Constituting parts of the RMA . 89

6.1 Structure of the exemplary automotive application 94
6.2 Setup of a DECOS SoC component . 95
6.3 Flow diagram of the TNA software . 97
6.4 XSD schema for the specification of the initial SoC configuration . . . 98
6.5 Flow diagram of RMA–to–TNA data exchange 100
6.6 Used model of communication channel and messages 101
6.7 Transformation of messages to the next smaller period 102
6.8 XSD schema for the specification of protected resources 105
6.9 Flow diagram of the RMA software . 108
6.10 Message schedule for the exemplary automotive application 113

7.1 Setup of the first evaluation experiment 118
7.2 Modification of the phase offset due to reconfiguration 121
7.3 Jitter of message reception latency during reconfiguration 122
7.4 Setup of the second evaluation experiment 124
7.5 Response of RMA and TNA to resource requests 126
7.6 Message schedule calculated by the RMA 127
7.7 Setup of the third evaluation experiment 128
7.8 TNA response to varying phase offset of rear camera job message . . . 129

A.1 Memory interface of the TISS towards the TNA 136
A.2 Memory interface of the RMA towards the TNA 138

xii

List of Tables

4.1 Available communication resources in the exemplary application . . . 60
4.2 Communication requirements of the multimedia application 61
4.3 Communication requirements of the ESP application 62
4.4 Communication requirements of the infotainment application 63
4.5 Operation modes and QoS levels for the infotainment DAS 67

6.1 Message specification for the automotive example 114

7.1 Configuration parameters for the first evaluation experiment 119
7.2 Phase offset of message 3 in different modes 121
7.3 Primary modes for the second evaluation experiment 125
7.4 Data range of configuration parameters 130

xiii

xiv

List of Listings

6.1 Pseudo-code of the algorithm AnalyzeMEDL 104
6.2 Pseudo-code of the algorithm checkConstraints 106
6.3 Pseudo-code of procedure manageResources 110
6.4 Pseudo-code of algorithm scheduleResources 111
7.1 Log file excerpt of first evaluation experiment 120
7.2 Log file excerpt of second evaluation experiment 125
B.1 XML document showing initial configuration of an SoC 142
B.2 Example of an XML resource protection file 144

xv

xvi

Chapter 1

Introduction

Embedded systems are ubiquitous in our everyday’s life. Today, the spectrum of
potential applications of embedded systems ranges from simple controllers typically
used in domestic appliances like washing machines, electric cookers, or microwave
heaters, over complex consumer electronics devices, which have to be capable to carry
out a wide variety of functions, to ultra dependable applications where enormous
costs and the safety of human lives depend on the correct operation of the embedded
system.

The amazing advancements of the processing power of embedded systems in the
last years have laid the foundation of embedded applications with breathtaking func-
tionality and complexity. This evolution in embedded systems has also influenced
the design paradigm of embedded systems: Until now, architectures for embedded
systems are typically designed according to the federated principle, which means
dedicated computer systems are used for implementing individual subsystems of an
overall system. Nowadays, there is shift towards the design of architectures for em-
bedded systems according to the integrated principle in many application domains,
in the e.g., avionics domain and the automotive domain. In integrated architectures,
multiple application subsystems share a single distributed computer system, which
promises costs savings due to the efficient utilization of the hardware, as well as,
improvements of the system’s reliability.

Linked to this development, the former strict separation of embedded systems
to ones that are deployed in non safety-critical applications and to others that are
deployed in safety-critical applications becomes more and more softened. For the
near future embedded systems are possible that act as music players, but may also
monitor vital body functions and give an alarm if safe boundaries are violated. This
integration of multiple application subsystems, possibly possessing different levels of
criticality, into a single embedded system increases the need for system architectures
that facilitate the development of integrated mixed-criticality systems.

These mixed-criticality systems have significant effects on the system design
paradigm. In general, the design of a real-time system highly depends on the targeted
application domain. For safety-critical applications, for instance, it is a mandatory

1

1.1 Problem Definition 1 Introduction

requirement that the resources provided by the system cover the worst-case load that
may emerge throughout its entire lifetime. Apparently, this often causes an oversizing
of the system compared to the resource requirements in the average case. In con-
trast, for non safety-critical applications basically economic forces drive the design
of the system to cope with the average case of resource usage or to support dynamic
resource (re)allocation in order to improve the resource utilization. Especially for
mobile devices, it is of utmost importance that system architectures enable an effi-
cient utilization of the available resources, in particular, the dynamic management
of power consumption.

1.1 Problem Definition

The above stated advancements of embedded systems open up a set of, partly con-
tradicting, challenges for future system architectures.

Non-uniform resource demands and resource availability. Many current
embedded systems are dynamic, i.e., the resource demand of the embedded system
may change over time, e.g., due to peaks in service demand. Hence, future system ar-
chitectures need to support the dynamic modification of resource allocations to indi-
vidual application systems by applying dynamic resource management. The dynamic
resource management has to take into account the actual resource demands of the
application system (e.g., communication resources, computational resources, power,
etc.), the availability of resources in the embedded system, and—for utility-driven
systems [Yeo and Buyya, 2007]—the benefit for the user arising from the service of
the respective application system. Changes in the availability of resources originate,
for instance, from the (permanent) failure of system components.

Power-aware system behavior. For mobile embedded systems, the required
effective utilization of the available power necessitates the realization of power-
aware systems. Power-aware design of a system deals with the development
of techniques and algorithms that influence the system’s behavior in order to
meet power and energy requirements under given performance constraints or
vice versa [Unsal and Koren, 2003]. Power awareness and power management are
also identified as one of the grand challenges in the SIA’s semiconductor road
map [SIA, 2005] for future embedded systems.

Fault-isolation and composability despite dynamic resource management.
For the development of complex embedded systems, it has to be ensured that
upon the incremental integration of subsystems, the prior services of the already
existing subsystems are not invalidated. This property, denoted as composabil-
ity [Kopetz and Obermaisser, 2002], as well as, fault isolation provided by the ar-
chitecture are required for the seamless integration of independently developed ap-
plication subsystems. When combining the requirement for efficient system design

2

1 Introduction 1.2 Contribution

and the support for fault-isolation and composability, two conflicting requirements
for resource management arise: On the one hand, the resource management solution
should support resource guarantees, which are designed to meet the worst-case load
of safety-critical application systems, and permit a static analysis of the resource
demands of the individual application subsystems. On the other hand, it should
provide flexibility with respect to resource allocation for being competitive in the
realization of non safety-critical application systems.

Cost-effective development of embedded systems. A recent trend for the
cost-effective development of distributed embedded systems is to decouple appli-
cation development from the implementation of the hardware platform by apply-
ing model-driven development approaches. This enables the evolution of the hard-
ware platform while minimizing the need for adaptation of the application. In
addition, model-driven development copes with the increasing complexity of to-
day’s systems by elevating the level of abstraction for system design. Model-driven
development approaches for integrated, mixed-criticality system, such as the one
devised for the European project Dependable Embedded Components and Systems
(DECOS) [Huber and Obermaisser, 2007], need to be revised in order to cope with
the new requirements imposed by dynamic resource management, e.g., evolutionary
resource demands of applications and variable resource availability.

1.2 Contribution

This thesis presents a solution for dynamic resource management in an integrated
time-triggered architecture that addresses the above mentioned challenges. The so-
lutions proposed in this thesis are especially tailored to support mixed-criticality
systems. The major contributions of this work are:

Dynamic adaptation of the time-triggered communication schedule. For
distributed real-time systems implementing safety-critical applications like steer-by-
wire and break control in the automotive domain, time-triggered systems based on
the Time-Triggered Architecture (TTA) [Kopetz and Bauer, 2003] are highly appro-
priate due to their high predictability and determinism. However, for applications
having less stringent requirements, static allocation of resources often constitutes a
too restrictive limitation. In this thesis, a dynamic resource management solution is
presented that addresses the challenges of changing load patterns of applications and
the variable resource availability by dynamically adapting the communication sched-
ule of the time-triggered communication system. This resource management solution
not only enables improved resource efficiency, but also preserves the predictability
and determinism of the time-triggered communication system.

Separation of computation and verification of dynamic resource alloca-
tion. Resource management is considered in this thesis as an integral part of an

3

1.2 Contribution 1 Introduction

architecture rather than a feature that is added later on. Consequently, we define
in this work the services and the architectural elements for dynamic resource man-
agement in an integrated time-triggered architecture. We distinguish two distinct
architectural elements dealing with resource management: the Resource Manage-
ment Authority (RMA) and the Trusted Network Authority (TNA). While the RMA
is responsible for the computation of the resource allocation, its verification and ac-
tual execution is performed by the TNA. The two-tiered design yields the following
benefits:

• Facilitation of system certification. Certification of the system plays a
cardinal role for the development of safety-critical applications. Due to the
two-tiered solution for resource management, the RMA has only to be certified
to that level of criticality that is demanded by the most critical application sys-
tem that requires dynamic resource management. Thus, for ultra-dependable
systems for which a static resource allocation is often feasible, only the TNA
has to be certified up to the highest criticality levels. In addition, by keeping
the design of the TNA less complex than the design of the RMA, this separation
into RMA and TNA reduces the required effort for certifying ultra-dependable
systems.

• Support for mixed-criticality systems. Mixed-criticality systems refer
to systems that run applications of different criticality classes on the same
hardware. This improves the resource utilization of the hardware and is one
objective for the design of the resource management solution described in this
thesis. The separation of the computation of the resource allocation from its
verification enables, on the one hand, (possibly static) resource guarantees
protected by the TNA, which are mandatory for systems up to the highest
criticality classes. On the other hand, it provides the required flexibility for
an efficient implementation of systems with lower criticality by facilitating the
dynamic re-allocation of resources by the RMA. Furthermore, the presented
resource management solution facilitates fault-isolation and composability by
using the TNA to verify and protect changing resource demands of individual
applications.

• Flexibility w.r.t. resource management strategy. The interface between
RMA and TNA cleanly decouples the computation of the resource allocation
from its verification and execution. Thus, as long as the RMA adheres to this
interface specification, it can be adapted without having any influence on the
TNA. This is a vital property of this resource management solution, since a
change within the TNA would entail a cost- and time-intensive re-certification
at a higher criticality level. For instance, by extending the functionality of
RMA and adding the overall power dissipation of the system to the optimization
goals of the resource management strategy, power-aware system behavior can
be realized.

4

1 Introduction 1.3 Structure of the Thesis

Foundation for model-driven development methodology. We present in this
thesis a model-driven approach for design and development of integrated mixed-
criticality systems that is inspired by the concepts of the Model Driven Architecture
(MDA) [OMG, 2003]. This model-driven development methodology builds the foun-
dation for cost-efficient development of embedded systems.

Experimental validation. The practical feasibility of the devised resource man-
agement solution is demonstrated by a prototype implementation. This prototype
forms a distributed system using single board computer nodes and Time-Triggered
Ethernet (TTE) [Kopetz et al., 2005] as the time-triggered communication protocol.
A case study demonstrates the on-line management of the communication resources
(i.e., on-line reconfiguration of the TTE network) in an exemplary, fictive automotive
application consisting of one control and one multimedia application subsystem. An
experimental validation of this prototype shows that despite the presence of dynamic
resource management, encapsulation of the application subsystems can be achieved.
Such an encapsulation yields a reduction of complexity of the overall system, because
the behavior of interfering subsystems is more difficult to understand than the be-
havior of cleanly encapsulated subsystems. Furthermore, it represents an important
cornerstone for supporting fault-isolation and composability.

1.3 Structure of the Thesis

This thesis is structured as follows: Chapter 2 introduces the basic terms and con-
cepts that are used throughout this thesis. Section 2.1 gives a brief introduction
on integrated architectures while Section 2.2 is devoted to resource management in
distributed systems. Thereafter, Section 2.3 explains the concepts of model-driven
design and development focusing on the development methodology that has been
devised during the European FP6 project DECOS.

Chapter 3 provides an outline of the Time-Triggered System-on-a-Chip (TTSoC)
architecture, for which the resource management solution introduced in this thesis
has been devised. Section 3.1 gives a synopsis of the architecture, whereas Sec-
tion 3.2 covers the component model of the TTSoC architecture, i.e., a description
of its constituting architectural elements. Subsequently, Section 3.3 is devoted to the
modeling of applications within the TTSoC architecture including a description of the
logical system structuring of applications and the specification of the communication
topology.

Chapter 4 is concerned with a comparison of different policies for management
and allocation of resources. Section 4.1 introduces an exemplary application scenario
on behalf of which the different policies are analyzed. This section is followed by a
discussion of different resource allocation policies, namely static resource allocation,
dynamic resource allocation, and Quality of Service (QoS)-based resource allocation.
The chapter is concluded by a comparison of these different approaches.

5

1.3 Structure of the Thesis 1 Introduction

In Chapter 5 we describe the resource management solution for the TTSoC archi-
tecture. First, the requirements of resource management in an integrated architecture
are stated in Section 5.1, while Section 5.2 explains the overall resource management
strategy for the TTSoC architecture, which has been devised during this thesis. This
is followed by a description of the resources that are subject to reconfiguration in Sec-
tion 5.3. Thereafter, the two architectural elements of the TTSoC architecture that
are devoted to resource management are introduced, namely the Trusted Network
Authority (TNA) in Section 5.4 and the Resource Management Authority (RMA) in
Section 5.5.

The design and implementation of a case study is outlined in Chapter 6. The case
study realizes an emulation of a System-on-a-Chip (SoC) component by single board
computers interconnected by a time-triggered communication system. The setup of
the case study is outlined in Section 6.2. The subsequent sections, Section 6.3 and
Section 6.4, cover the implementation of TNA and RMA, respectively.

The evaluation of the proposed resource management solution is summarized
in Chapter 7. Three validation experiments are discussed: The first experiment
described in Section 7.1 demonstrates the non-interference of the adaptation of the
communication schedule with already ongoing communication activities. Section 7.2
gives an evaluation of the ability of the RMA to handle excessive resource requests
from hosts. Section 7.3 investigates the resource protection mechanisms of the TNA.

Finally, the thesis ends with a conclusion in Chapter 8 summarizing the main
contributions of the presented work and providing an outlook to future work in this
research area.

6

Chapter 2

Basic Concepts and
State-of-the-Art

The principles used throughout this thesis span several fields of research. This chap-
ter introduces the concepts on which the work in this thesis is based. Since this the-
sis mainly focuses on dynamic resource management for integrated mixed-criticality
systems, this chapter starts with an introduction of integrated architectures tai-
lored to automotive, avionic, and industrial application domains. After elaborat-
ing on the differences between federated and integrated system architectures, repre-
sentatives of integrated architectures for the above mentioned application domains,
namely Integrated Modular Avionics (IMA), Automotive Open System Architecture
(AUTOSAR), and Dependable Embedded Components and Systems (DECOS), are
introduced. The next section is dedicated to resource management in distributed
systems. The issue of resource management is viewed from different perspectives,
namely resource management in real-time systems and large networked systems, as
well as, the possibility to exploit resource management for building power-aware sys-
tems. The chapter is concluded by an introduction of the concepts of model-driven
design. After the presentation of the general concepts of model-driven design, the
focus is directed on the Model Driven Architecture (MDA) as a prominent repre-
sentative of model-driven design methodologies and on the model-driven design and
development methodology developed within the European project DECOS.

2.1 Integrated Architectures for Real-Time Systems

At present, the majority of distributed systems are designed according to the principle
of federated architectures. In a federated system, each application subsystem (e.g., the
primary flight control in avionic systems, powertrain or multimedia subsystem in a
car) has its own dedicated computer system (possibly with internal redundancy),
which is often specially designed for a particular application [Swanson, 1998]. In
addition, federated systems have been the first choice for the realization of ultra-

7

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

dependable applications due to their natural separation of application functions,
which is beneficial with respect to fault-isolation and complexity management.

The strengths of an integrated system, on the other hand, arise from the integra-
tion of multiple application subsystems within a single distributed computer system.
Thereby, the resources of the distributed computer system can be exploited more
efficiently than in federated systems, which promise massive cost savings (e.g., due
to the reduction of the total number of required Electronic Control Units (ECUs) in
a car). In the automotive domain, this is—in conjunction with the ability to facili-
tate the implementation of innovative electronic functions—the main driver for the
development of today’s automotive electronic systems [Fennel et al., 2006].

The following section motivates the paradigm shift towards integrated archi-
tecture by a comparison of the advantages of federated and integrated systems,
which have been thoroughly analyzed by the authors of [Kopetz et al., 2004]. Af-
terwards, an introduction to state-of-the-art integrated architectures, namely IMA,
AUTOSAR, and DECOS, is given, which have impacted the conceptual design of
the Time-Triggered System-on-a-Chip (TTSoC) architecture [Kopetz, 2005].

2.1.1 Paradigm Shift to Integrated Architectures

A major advantage of federated systems is their inherent support for managing
system complexity. Since each application subsystem is deployed on its dedicated
computer system, unintended side effects—such as the impairment of the temporal
predictability of intra-subsystem communication due to message transmissions orig-
inating from outside the application subsystem—are ruled out by design. Thus, it
is sufficient to analyze each application subsystem on its own to reason about the
overall behavior. In addition, as a direct consequence of the almost complete in-
dependence of the application subsystems in federated systems, federated systems
facilitate independent development. Thus, the coordination of different subsystem
vendors is reduced to a minimum.

The superior fault containment of federated systems compared to integrated
systems is of particular importance, especially in the area of ultra-dependable
systems. For ultra-dependable systems an accepted assumption in the scien-
tific community states, that a hardware fault always affects an entire node com-
puter [Lala and Harper, 1994, Kopetz, 2003]. As a consequence, a hardware fault
hitting a node computer in a federated system will impair only a single application
subsystem, while in an integrated system all application subsystems, which share
resources of the affected node computer, might be affected.

Although these attributes of federated systems have shaped the design of dis-
tributed systems in many application domains, a paradigm shift towards integrated
systems is observable (e.g., IMA in the avionics domain or AUTOSAR in the auto-
motive domain), since they are expected to outperform federated systems mainly by
the ability to reduce hardware costs, to improve the overall system dependability by

8

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

reducing wires and connectors, and to improve the coordination between application
subsystems [Kopetz et al., 2004].

The massive deployment of independent computer systems in today’s federated
systems (e.g., the BMW 7 series cars contain up to 70 ECUs [Deicke, 2002]) is more
and more reaching its limits. Due to the increasing system complexity, the state-
of-the-art practice of deploying a vast number of ECUs, each dedicated to a single
function, becomes too costly. The potential of reducing the number of computer
systems promises massive cost savings. This is even amplified, as the majority of
innovations is expected to concern Electric/Electronic (E/E) developments. In the
automotive domain, for example, up to 90% of all innovations are attributed to
E/E [Scharnhorst et al., 2005].

In addition, the increasing number of node computers in federated systems has
also a negative effect on the system’s reliability: The increase of node comput-
ers inherently entails an increase of wires and connectors, which have been iden-
tified as a non-negligible source of electrical failures. For instance, in automotive
environments more than 30% of electrical failures are ascribed to connector prob-
lems [Swingler and McBride, 1998].

The subsequent subsections introduce three state-of-the-art integrated architec-
tures. Integrated Modular Avionics (IMA), which is addressed in the following sec-
tion, is an integrated systems approach for avionics applications. Subsequently, an
introduction to Automotive Open System Architecture (AUTOSAR) is given, which
focuses the automotive domain. We finish by describing the Dependable Embedded
Components and Systems (DECOS) architecture, which aims at spanning across mul-
tiple application domains, including the avionics, automotive, and industrial control
domain.

2.1.2 Integrated Modular Avionics

Starting in the mid 1980s, the avionics industry addresses the emerging dominance
of software used in aircrafts by devising novel design methodologies for the next
generation avionics. This revolution of the design of avionics systems results in
the ARINC Standard 651 [ARINC, 1991b], which is known as Integrated Modular
Avionics (IMA).

Before the beginning of the area of IMA, avionics systems were typically
designed as federated systems that comprise multiple Line Replaceable Units
(LRUs) [Fraboul and Martin, 1998]. An LRU is a modular software/hardware com-
ponent that implements a specific function of the overall avionics application. These
LRUs communicate with each other with point-to-point communication protocols
like ARINC 429 [ARINC, 2001]. The federated approach in combination with the
increase of software complexity in avionics systems increases the number of deployed
LRUs, the required cabling, as well as, costs and weight.

IMA addresses these deficiencies and represents an integrated system architec-
ture that focuses on: (i) the use of shared resources for reducing unwanted resource

9

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

Global Data Bus

B
a
c
k
 P

la
n
e

B
u
s

B
a
c
k
 P

la
n
e
 B

u
s

I/O

LRM

Core

LRM

Gateway

LRM

LRM

B
IU

B
IU

A

P

E

X

Function

1

Function

2

Function

n

Cabinet 1

B
a
c
k
 P

la
n
e

B
u
s

B
a
c
k
 P

la
n
e
 B

u
s

Cabinet N

Core

LRM

Core

LRM

I/O

LRM

I/O

LRM

Core

LRM

Gateway

LRM

Figure 2.1: IMA avionics architecture

duplication to a minimum for lowering the acquisition costs, weight, and volume of
avionics equipment, (ii) the support of modular interchangeable hardware compo-
nents that allow a high volume production, which will positively affect the production
costs, and (iii) the introduction of improved diagnostic techniques to improve the
scheduling of maintenance actions and reduce and eliminate the unconfirmed re-
moval of LRUs [Prisaznuk, 1992]. In the Boeing 787 Dreamliner, e.g., the use of
the IMA approach enables a weight reduction of about 900 kg compared to previous
aircrafts [Ramsey, 2007].

In the following subsections, we introduce the typical system structure of an
avionics system according to the IMA principle and further focus on the software
environment for avionics applications.

Avionics System Structure

The hardware platform of an avionics system that is designed according to the
IMA is specified in the ARINC Standard 651 [ARINC, 1991b]. As depicted in
Figure 2.1, the functionality of the avionics application is provided by multiple in-
tegrated cabinets which are interconnected by the global data bus. The function-
ality provided by one integrated cabinet is typically larger than the functionality
of a single federated LRU, but smaller than the sum of all LRUs the cabinet re-
places [Hoyme and Driscoll, 1993].

For example the Airplane Information Management System (AIMS) for the Boe-
ing 777, which is one of the first systems that implements IMA concepts, replaces
the conventional LRUs by two integrated cabinets [Driscoll and Hoyme, 1992]. The
global data bus in the AIMS is realized by the ARINC 629 multi-transmitter com-
munication bus [ARINC, 1991a]. However, systems designed according to IMA
are not restricted to particular communication networks. In the Airbus A380,
e.g., Avionics Full-Duplex Switched Ethernet (AFDX), an ARINC 664 standard
network [ARINC, 2002], is deployed for the interconnection of the integrated mod-
ules [Brajou and Ricco, 2004].

A cabinet is internally further structured into multiple Line Replaceable Modules
(LRMs), which provide the necessary computational resources for performing the

10

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

required application functionality. LRMs in an IMA platform can be classified into
three categories [Fraboul and Martin, 1998] (cf. Figure 2.1):

Core module: Core modules are responsible for the execution of the applications.
Typically, a single core module hosts multiple applications, which reside in
dedicated encapsulated partitions ensuring that the individual applications do
not interfere with each other.

I/O module: System components that are not part of the cabinet or not connected
to the global data bus are usually connected by point-to-point communication
protocols like ARINC 429 [ARINC, 2001] to the I/O modules of the cabinet.
These I/O modules provide the functionality to perform input/output opera-
tions with system components.

Gateway module: The gateway module is a specific LRM that handles the com-
munication between the individual cabinets over the global data bus.

Considering the example presented above: for providing the functionality of Boe-
ing 777’s AIMS (e.g., flight management, display control, communication manage-
ment, etc) each cabinet of the AIMS comprises 10 active LRMs and three spare
LRMs for future functionality [Morgan, 1991].

The interconnection of the LRMs within a single cabinet is established by a
backplane bus—a fault-tolerant bus using a Time Division Multiple Access (TDMA)
scheme for bus arbitration. The backplane bus is specified in the ARINC stan-
dard 659 [ARINC, 1993]. A commercial implementation of this standard is Honey-
well’s SAFEbus [Hoyme and Driscoll, 1993], which is deployed, e.g., in the AIMS of
the Boeing 777. The SAFEbus backplane bus is accessed by an LRM via a so-called
Bus Interface Unit (BIU). All transmission or reception operations of the BIU are
a priori scheduled and stored in a memory table within the LRM that is inacces-
sible by the functions of the cabinet. This way, a faulty function is prevented to
effect the timing behavior of the backplane bus by changing the LRM’s configura-
tion [Hoyme and Driscoll, 1993].

Avionics Software Environment

One fundamental aim of IMA is the integration of multiple avionics functions on a
lower number of physical resources compared to former federated system architec-
tures. The Avionics Application Software Standard Interface specified in the AR-
INC 653 standard [ARINC, 2003] defines the services of the avionics software envi-
ronment, which serve as the basis for avionics function integration. This standard
interface, which is known as APplication EXecutive (APEX), provides services for
partition management, process management, memory management, time manage-
ment, inter-partition communication, intra-partition communication, and diagnosis:

11

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

Partition Management. For the integration of multiple avionic functions on
a single LRM, partition management establishes spatial and temporal partition-
ing [Rushby, 1999] for the individual functions. Therefore, each function is executed
in a single partition. For temporal partitioning, the partition management performs
a cyclic scheduling with fixed priorities [Lee et al., 1998]. Each partition has assigned
two constant parameters—period and duration—that specify the amount of time at
which the partition has exclusive access to the LRM’s resources (e.g., processing
resources) [Audsley and Wellings, 1996].

Memory Management. For spatial partitioning, each partition has assigned a
constant (defined at design time) memory area that can be exploited by its hosted
function. Any memory access violating these boundaries is prohibited by a Memory
Management Unit (MMU).

Process Management. Each partition comprises one or more processes that im-
plement its avionic function. All processes share the resources of a single partition.
With respect to other partitions, the processes are executed concurrently. Based on
the attributes of a process (e.g., a given period for a periodic process, the process’s
deadline, and the priority of the process [Audsley and Wellings, 1996]), the process
management is responsible for scheduling the processes within a partition.

Time Management. Time management in APEX provides system calls for the
activation (release) of periodic and aperiodic processes. Aperiodic processes are
characterized by the fact, that the future instants of activation are not known a priori
(e.g., aperiodic processes could be triggered after the occurrence of a specific event
like the reception of a message). For example, LynxOS-178 [LynuxWorks, 2007], a
real-time operating system that establishes the APEX interface to its applications,
provides the system calls TIMED WAIT and PERIODIC WAIT for time management.

Communication. APEX supports inter-partition and intra-partition communi-
cation services. Inter-partition communication is realized via message passing over
physical channels and logical ports. Logical ports represent the communication end-
points within the partition. Multiple ports can be mapped onto a single physical
channel. For inter-partition communication, two variants of message passing are
defined in APEX: Using sampling ports, the arrival of a new message overwrites
the previous contents of the port, i.e., the port is realized by a single message buffer.
Queuing ports, on the other hand, provide a message queue where incoming messages
are stored in First-In/First-Out (FIFO) order. In APEX back pressure flow control is
used to handle full message queues [Audsley and Wellings, 1996]. For intra-partition
communication, standard inter-process communication mechanisms like shared mem-
ory and semaphores can be exploited.

12

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

Partition nPartition 1 Partition 2

n

Figure 2.2: APEX avionics software structure

Diagnosis. For the support of diagnosis, the ARINC standard 653 [ARINC, 2003]
defines the concept of a health monitor, which is responsible for monitoring faults
and failures of the hardware, the operating system, and the application. The purpose
of the health monitor is to help on isolating faults and preventing the propagation of
failures. The response to a fault, i.e., the measures triggered by the health monitor
after fault detection, can range from logging of the occurrence of faults, over responses
at partition level like the restart of a partition, to a response on the LRM level like
reset or shutdown of an entire LRM [Parkinson and Kinnan, 2006].

As depicted in Figure 2.2, the APEX is located between application soft-
ware and operating system [Audsley and Wellings, 1996]. The operating system
itself interfaces the underlying hardware via a standardized interface called COre
EXecutive (COEX). Together with the hardware interface system (cf. Figure 2.2),
it is the purpose of the COEX to provide a uniform interface for accessing dif-
ferent implementations of the LRM to the operating system. this facilitates
the portability of the operating system. Operating systems that establish the
APEX interface are, e.g., LynxOS 178 [LynuxWorks, 2007] or VxWorks 653 Edi-
tion [Parkinson and Kinnan, 2006].

2.1.3 Automotive Open System Architecture

The Automotive Open System Architecture (AUTOSAR) [Heinecke et al., 2004] is
an attempt to exploit the benefits of integrated system architectures in the auto-
motive domain. It is a joint initiative of several automotive, semiconductor, and
software companies. AUTOSAR was founded in 2003 and is currently in its final
phase of defining a consolidated set of specifications [Heinecke et al., 2006]. Accord-
ing to [Heinecke et al., 2004], the motivations behind this standardization initiative
in the automotive domain are:

• Management of E/E complexity associated with growth in functional scope

13

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

• Flexibility for product modification, upgrade and update

• Scalability of solutions within and across product lines

• Improved quality and reliability of E/E systems in order to provide a higher
level of abstraction

The main objective of AUTOSAR is to facilitate the reuse of AUTOSAR
Software Components (SW-Cs)—an AUTOSAR SW-C encapsulates an application
which runs on the AUTOSAR infrastructure [AUTOSAR GbR, 2006b]—between
different vehicle platforms, Original Equipment Manufacturers (OEMs), and sup-
pliers [Scharnhorst et al., 2005]. Furthermore, it is envisioned to improve software
updates and upgrades over the entire vehicle lifetime [Heinecke et al., 2004]. For
these purposes, AUTOSAR defines a standardized software architecture for each
ECU in an automotive system that provides a technology-independent, i.e., inde-
pendent from the ECU hardware and the underlying micro controller, infrastructure
for SW-Cs. On one hand, this enables the decoupling between application devel-
opment and development of the hardware platform of automotive systems. On the
other hand, this will support the decoupling between the life-cycles of hardware and
software [Scharnhorst et al., 2005]. In addition, AUTOSAR defines a development
methodology [AUTOSAR GbR, 2006a] that supports a distributed, function-driven
development process.

The following subsections introduce the ECU software architecture and the de-
velopment methodology as defined in [AUTOSAR GbR, 2006b].

AUTOSAR ECU Software Architecture

The structure of the AUTOSAR ECU architecture is schematically depicted in Fig-
ure 2.3. According to [AUTOSAR GbR, 2006b], the software architecture of an ECU
in AUTOSAR is vertically structured into Basic Software, the AUTOSAR Run Time
Environment (RTE), and AUTOSAR software.

The Basic Software is a standardized software layer in each ECU that provides
services to the SW-Cs, which are necessary to realize the actual functionality. Ex-
amples for those services are memory access, access to the communication system,
operating system functionalities, etc. Basic Software itself does not provide any
application specific services. It contains standardized, i.e., ECU-independent com-
ponents, like Basic Services and Microcontroller Abstraction, as well as, ECU specific
components like ECU Abstraction, and Complex Drivers [Heinecke et al., 2004].

Microcontroller Abstraction: The Microcontroller Abstraction decouples higher
layers of the Basic Software from micro controller internals. This layer con-
tains micro controller specific drivers like Input/Output (I/O) drivers, memory
drivers, and Analog-to-Digital Converter (ADC) drivers. It represents the low-
est layer of the AUTOSAR Basic Software.

14

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

SW-C SW-C SW-CAUTOSAR

Software

Complex
Drivers

AUTOSAR Runtime Environment

ECU Hardware Platform

Microcontroller Abstraction

ECU Abstraction

Basic Services

B
a

s
ic

 S
o

ft
w

a
re

Figure 2.3: AUTOSAR ECU software architecture

ECU Abstraction: The purpose of the ECU Abstraction layer is to hide the upper
layers from the layout of the ECU, i.e., to provide an Application Programming
Interface (API) to access the ECU’s peripherals, regardless whether they are
micro controller internal or external devices. Since it is built on top of the
Microcontroller Abstraction, the implementation of the ECU Abstraction is
micro controller independent.

Basic Services: The Basic Services represent the highest layer of Basic Software
and are used from the layers above the Basic Software to abstract from ECU
and micro controller hardware. The Basic Services include operating system
services, vehicle network communication services, memory management ser-
vices, diagnostic services, and ECU state management.

Complex Drivers: The concept of Complex Drivers is introduced to handle com-
plex sensors and actuators with strong real-time requirements or electrome-
chanical hardware requirements, which cannot be directly mapped to a single
layer of the AUTOSAR Basic Software [AUTOSAR GbR, 2006b]. The imple-
mentation of a Complex Driver is highly dependent on the micro controller and
the ECU hardware. However, to an upper layer—the AUTOSAR Run Time
Environment (RTE)—Complex Drivers provide a standardized AUTOSAR in-
terface.

Between the Basic Software and the application software resides the AUTOSAR
RTE. The purpose of the RTE is to provide a uniform environment to all SW-Cs,
i.e., to abstract from any implementation details of the Basic Software and from hard-
ware aspects [Heinecke et al., 2006]. The RTE can be seen as the runtime representa-
tion of the Virtual Function Bus (VFB) on a specific ECU [AUTOSAR GbR, 2006b].
The VFB provides standardized communication services to the application soft-
ware, which are defined independently whether the communication manifests af-

15

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

ter the integration of the system in inter-ECU or intra-ECU information ex-
change [Heinecke et al., 2004]. This way, the VFB decouples the application from
the system infrastructure [Scharnhorst et al., 2005].

An application in AUTOSAR consists of interconnected AUTOSAR SW-Cs. SW-
Cs are located in the ECU’s application layer in the AUTOSAR stack. By intro-
ducing the VFB and standardized interfaces, the implementation of such a SW-C
is independent from the ECU and the underlying micro controller. In addition, the
VFB realizes location independence for the implementation of SW-C, i.e., the imple-
mentation of a SW-C has not to be aware of its physical location and the physical
location of other SW-Cs.

An AUTOSAR SW-C is an atomic component, which means that each instan-
tiation of a SW-C is allocated to exactly one ECU and cannot be distributed over
several ECUs. In general, the implementation of an AUTOSAR SW-C is indepen-
dent from the infrastructure in terms of the type of the micro controller and the ECU
the SW-C is located on (due to the Microcontroller Abstraction layer and the ECU
Abstraction layer of the Basic Software). In addition, it is in general also indepen-
dent from the physical location of the SW-C, because of the abstraction provided
by the VFB. However, in typical automotive applications there exist SW-Cs which
are designed for a specific sensor or actuator (e.g., a car velocity sensor). By the use
of a specialized class of SW-Cs—the Sensor/Actuator Software Components—such
dependencies can be expressed within the AUTOSAR standard.

AUTOSAR Methodology

The AUTOSAR standard [AUTOSAR GbR, 2006a] specifies a development method-
ology that leads from system design to implementation. The workflow of this method-
ology is schematically depicted in Figure 2.4. The entire workflow is logically struc-
tured into four phases which are explained in the following: system configuration,
ECU information extraction, ECU configuration, and executable generation.

System Configuration. The purpose of the system configuration phase is mainly
to map the SW-Cs of the application, defined in the input SW-C Description, to
the available ECUs of the hardware platform (defined in the input ECU Resource
Description) taking resources and timing requirements into account (defined in the
input System Constraints Description).

The SW-C Description specifies the logical functions of the application that are
visible to the environment independent of the available ECUs, networks, network
topology, etc. Furthermore, the representation of the SW-C within the SW-C De-
scription is decoupled of any implementation details.

The ECU Resource Description provides a detailed representation of the relevant
physical and electronic characteristics of all ECUs in the system. This includes a de-
scription of the computational resources provided by the ECU (e.g., processor type,

16

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

SW-C Description

.XML

ECU Resource

Description

.XML

System Constraints

Description

.XML

Configure

System

System Configuration

Description .XML

Extract ECU

Inform.

ECU specific

System Configuration

.XML

ECU specific

System Configuration

.XML

ECU specific

System Configuration

.XML

n ECUs

Configure

ECU

Basic Software

Module Description
.XML

SW-C Implementation

Collection
.XML

ECU Configuration

Description

.XML

Generate

Executable
ECU Executable

.EXE

performed separately for each ECU

.Obj.Obj
.Obj

.Obj
.Obj

Compiled RTE,

Basic Software,

Operating System,

etc

activity

input/output (including

description of file format)
.???

Figure 2.4: AUTOSAR development methodology

amount and type of memory), the connected peripherals (e.g., sensors and actua-
tors), as well as, hardware interfaces (e.g., communication interfaces to Controller
Area Network (CAN) [Bosch, 1991], Local Interconnect Network (LIN) [LIN, 2003],
or FlexRay [FlexRay Consortium, 2005]) and physical connectors.

The third input to the system configuration is a description of system constraints,
which comprises system wide information that have an effect on the mapping of SW-
Cs to ECUs. Examples for such constraints are attributes of deployed communication
systems (e.g., bandwidth or latency) or distribution constraints (e.g., distributing
replicated SW-Cs of a Triple Modular Redundancy (TMR) configuration to separate
ECUs).

The output of the system configuration is the System Configuration Description,
which includes a mapping of SW-Cs to ECUs, a mapping of communication activities
over the VFB to physical messages on the deployed communication bus, and finally
a description of the bus topology in form of a communication matrix.

ECU Information Extraction. The AUTOSAR RTE of the final system is
adapted for each ECU to comply to the needs of the SW-Cs the ECU hosts and
further to the resources provided by the ECU’s hardware platform. Hence, those
parts of the System Configuration Description that are relevant for the individual
ECUs are extracted and separate ECU-specific System Configurations are generated
in the ECU information extraction phase. Since no additional information is added
in this step of the development methodology, ECU information extraction can be

17

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

typically performed completely automatically. The remaining two activities have to
be carried out for each ECU individually.

ECU Configuration. During the ECU configuration the necessary information
for the final implementation is added. This is typically a non-trivial engineering
task. Besides the extracted ECU-specific System Configuration, the Basic Software
Module Description and a SW-C Implementation Collection are used as inputs for
this task. The AUTOSAR standard defines the Basic Software Module Description
as a definition of all possible configuration parameters of a Basic Software module,
which is assumed to be delivered by the vendor of the respective Basic Software
Module. The SW-C Implementation Collection is used to decide, which (possibly
alternative) implementation of a SW-C is deployed on the ECU, and to configure the
RTE according to the requirements of the chosen SW-Cs. The output of the ECU
configuration phase is called ECU Configuration Description and acts as starting
point for the generation of executables.

Executable Generation. The last step includes the generation of code for the
RTE and particular Basic Software modules, as well as, the compilation of SW-Cs
that are available as source code. This step concludes by linking all objects into an
executable.

2.1.4 Dependable Embedded Components and Systems

According to Hammett in [Hammett, 2003, p. 33], an ideal future system archi-
tecture would combine the complexity management advantages of the federated ap-
proach, but would also realize the functional integration and hardware benefits of an
integrated system. Addressing this challenge, the major aim of the DECOS archi-
tecture [Obermaisser et al., 2006] is to devise a framework for integrating multiple
application subsystems within a single, distributed computer system, while retaining
the error containment and complexity management benefits of federated systems.

DECOS is an European FP6 integrated project developing the basic enabling
technology to move from current domain-specific federated distributed architectures
to an integrated distributed architecture. Whereas IMA and AUTOSAR are focused
on a single application domain, DECOS spans across multiple application domains,
including the avionics, automotive, and industrial control domain. The key intent
of DECOS is to develop technology invariant software interfaces and encapsulated
virtual networks with predictable temporal properties such that application software
can be transferred to a new hardware and communication base with minimal effort.

The DECOS architecture offers a framework for the development of distributed
embedded real-time systems and supports the integration of multiple application
subsystems with different levels of criticality and different requirements concerning
the underlying platform. Furthermore, structuring rules guide the designer in the
decomposition of the overall system at a functional level and for the transformation

18

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

Controlled Object Interface

Job Job Job Job Job Job

E N V I R O N M E N T

Virtual Network DAS A Virtual Network DAS BGW

D
A

S
 A

D
A

S
 B

Figure 2.5: Functional structure of a DECOS system

to the physical level. In addition, the DECOS integrated architecture offers generic
architectural services to system designers, which provide a validated stable baseline
for the development of applications.

Functional System Structuring

The design principle of divide-and-conquer is well suited for sub-dividing a large
problem into smaller parts where the mental effort of understanding the individual
parts in isolation is reduced. According to this principle, in DECOS the overall sys-
tem is divided into a set of nearly-independent subsystems - denoted as Distributed
Application Subsystems (DASs) (cf. Figure 2.5). A DAS is a distributed subsystem
of a large distributed real-time system that provides a well-specified application ser-
vice [Kopetz et al., 2004]. The identification of DASs is guided by the functional
coherence and common criticality of subsystems. Examples of DASs in present day
automotive applications are comfort electronics, the power-train system, or the mul-
timedia system.

In analogy, each DAS is further decomposed into smaller units called jobs. A job
is the basic unit of work and exploits a virtual network in order to exchange messages
with other jobs to reach a common goal. A virtual network is the encapsulated com-
munication system of a DAS (see Section Architectural Services for more details). All
communication activities of a virtual network are restricted to the particular DAS,
i.e., messages are exchanged only by jobs of the same DAS, unless a message is ex-
plicitly exported or imported by a gateway. Furthermore, a virtual network exhibits
predefined temporal properties that are independent from other virtual networks.

The access point of a job to a virtual network of its DAS is denoted as port. Each
port is assigned to exactly one job. Depending on the data direction of the port,
input and output ports are distinguished in the DECOS architecture. Furthermore,
ports are classified into state ports and event ports, respectively, depending on the
information semantics of sent (in case of output ports) or received (in case of input
ports) messages.

19

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

DECOS node computer

Time-Triggered Core Communication System

Safety-Critical Non Safety-Critical

Safety-Critical

Connector Unit

Non Safety-Critical

Connector Unit

Basic Connector

Unit

Job EJob DJob CJob BJob A
Non Safety-Critical Subsystem

Safety-Critical Subsystem

Partition

Figure 2.6: Physical structure of a DECOS system

Physical System Structuring

During the development of an integrated system the functional elements, i.e., the
jobs, must be mapped onto the physical building blocks provided by the hardware
platform. As depicted in Figure 2.6, these building blocks are the time-triggered core
communication system, node computers and partitions.

A node computer is a self-contained computational element with its own hardware
(processor, memory, communication interface, and interface to the controlled object)
and software (application programs, operating system) [Kopetz and Suri, 2003]. The
node computers are part of a distributed computer system interconnected by the
time-triggered core communication system. Node computers are the target of job al-
location and provide encapsulated execution environments denoted as partitions for
the execution of jobs. Each partition prevents temporal interference (e.g., stealing
processor time) and spatial interference [Rushby, 1999, Huber et al., 2005] (e.g., over-
writing data structures) between jobs.

Since the DECOS architecture is targeted at the realization of mixed-criticality
systems, i.e., application systems with different dependability requirements share a
single integrated node computer, a DECOS node computer entails two classes of
partitions: Partitions residing in the safety-critical subsystem for jobs of safety-
critical DASs and partitions residing in the non safety-critical subsystem of the node
computer for jobs with less stringent dependability requirements.

Architectural Services

The concept of platform-based design [Sangiovanni-Vincentelli and Martin, 2001]
proposes the introduction of abstraction layers to separate the application function-
ality from the underlying platform technology in order to facilitate reuse and reduce
design complexity. The architectural services of the DECOS architecture are such an
abstraction layer. The specification of the architectural services hides the details of
the underlying platform, while providing all information required for ensuring func-
tional and meta-functional (dependability, timeliness) requirements for the design of
a safety-critical real-time application. The architectural services serve as a validated

20

2 Concepts & State-of-the-Art 2.1 Integrated Architectures for RT Systems

C1 Predictable Message
Transport

C2 Fault-Tolerant
Clock Synchronization

C3 Strong Fault Isolation
C4 Consistent Diagnosis

of Failing Nodes

Time-Triggered
Architecture

Encapsulation, Virtual

Networks, Diagnosis,...

JobJobJobJob
JobJob
JobJobJobJob

Time-Triggered

Core Architecture
Hiding of implementation details from

the application, thereby extending the
range of implementation choices

(e.g. TTP/C, Time-Triggered Ethernet)

(a) DECOS Integrated System Architecture

Safety-Crit ica l Sub-

system of a Component

Non Safety-Crit ical

Subsystem of a Component

Communicat ion Controller

Non Safety-Crit ical

Subsystem of a Component
Safety-Crit ical Sub-

system of a Component

TIME-TRIGGERED PHYSICAL NETWORK

(b) DECOS Node Computer Model

Figure 2.7: DECOS Integrated Architecture (taken from [Obermaisser et al., 2006])

stable baseline that reduces application development efforts and facilitates reuse, be-
cause applications build on an architectural service interface that can be established
on top of numerous platform technologies.

In order to maximize the number of potential platforms and applications, the
DECOS architectural service interface distinguishes a minimal set of core services
and an open-ended number of high-level services which are built on top of the
core services (depicted by the waistline in Figure 2.7(a). The core services in-
clude predictable time-triggered message transport, fault tolerant clock synchroniza-
tion, strong fault isolation, and consistent diagnosis of failing components through
a membership service. Any architecture that provides these core services can be
used as a core architecture [Rushby, 2001] for an integrated distributed architec-
ture. An example of a suitable base architecture providing those core services is the
TTA [Kopetz and Bauer, 2003].

Based on those four core services, the DECOS integrated architecture real-
izes high-level architectural services, which are specific for particular DASs and
constitute the interface for the jobs to the underlying platform. This interface
is denoted as platform interface. These high-level services include gateway ser-
vices [Obermaisser et al., 2005a] for the exchange of information across DAS bound-
aries, virtual network services [Obermaisser et al., 2005b], and encapsulation ser-
vices [Huber et al., 2005]. The virtual network service is the encapsulated commu-
nication infrastructure tailored to the needs of a particular DAS. It is built on top
of the time-triggered physical network. In one instantiation of the DECOS inte-
grated architecture, different kinds of virtual networks are established and each type
of virtual network can exhibit multiple instantiations.

The purpose of gateway services is to selectively redirect messages between vir-
tual networks of different DASs improving quality of service and eliminate resource

21

2.1 Integrated Architectures for RT Systems 2 Concepts & State-of-the-Art

duplication. In addition, the gateway service is responsible to resolve conflicts with
respect to operational properties and naming. The encapsulation services control
the visibility of exchanged messages and ensure spatial and temporal partitioning for
virtual networks and jobs in order to obtain error containment.

The DECOS Node Computer

A DECOS node computer as depicted in Figure 2.7(b) is vertically structured into
two subsystems. The safety-critical subsystem serves as an encapsulated execution
environment for ultra-dependable applications, while the non safety-critical subsys-
tem offers an environment for those applications having less stringent dependability
requirements. For the latter applications, the emphasis lies on low-cost, flexibility,
and resource efficiency instead of predictability and support for certification as it is
the case for applications within the safety-critical subsystem.

Besides vertical structuring, DECOS node computers are also horizontally struc-
tured into application computers, connector units, and the communication controller.
The purpose of the application computer is to establish encapsulated partitions for
the execution of jobs. As depicted in Figure 2.7(b) connector units interconnect the
application computers and the communication controller, which provides access to
the time-triggered core network. The connector unit ensures that each subsystem
of the node computer obtains a predefined share of the overall network resources by
controlling the application computer’s access to the state message interface provided
by the communication controller. This way, the connector unit enables each sub-
system to exchange messages with guaranteed temporal properties (e.g., maximum
latency and latency jitter of message transmissions) and data integrity and ensures
temporal and spatial partitioning of communication resources.

We distinguish between three types of connector units (cf. Figure 2.7(b)). The
Basic Connector Unit (BCU) performs the primary allocation of the physical net-
work resources, as required for the separation of safety-critical and non safety-critical
subsystems. Within the safety-critical subsystem, the Safety-Critical Connector
Unit (SCU) allocates network resources to jobs and realizes the safety-critical high-
level services (e.g., voting functionality). The Complex Connector Unit (XCU), on
the other hand, performs the allocation of network resources for the non safety-
critical subsystem. As it can be seen in Figure 2.7(b) the XCU does not directly
access the communication controller, but it is stacked on top of the BCU. This way,
the XCU is not involved in the fault isolation and error containment between the
safety-critical and non safety-critical subsystem within the node computer. Hence,
the XCU and the non safety-critical subsystems of a component need not to be certi-
fied to same criticality level as BCU and SCU. Thus, the XCU can provide increased
functionality at the cost of increased complexity.

The DECOS architecture does not restrict the choice of implementations of a
particular node computer. Although the provision of separate processors (or proces-
sor cores) for each partition has significant advantages with respect to certification, a

22

2 Concepts & State-of-the-Art 2.2 Dynamic Resource Management

solution with only one processor shared among the jobs is also an alternative choice.
However, this would require from the operating system to provide partitioning mech-
anisms that can be certified up to the required criticality class. An analysis of the
component model with respect to certifiability, encapsulation and independent de-
velopment aspects is given in [Kopetz et al., 2004].

2.2 Dynamic Resource Management

Many current and future real-time systems are dynamic, i.e., the environmental
demands on the service of the real-time system may change over time, e.g., ei-
ther due to peaks in service demand or to evolutionary changes in external con-
ditions [Bihari and Schwan, 1991]. Therefore, a real-time system that must be able
to dynamically change its configuration in order to cope with the changing environ-
ment, i.e., it has to support dynamic resource management.

In addition, dynamic resource management allows a more efficient utilization
of mutually exclusive resource demands in complex systems, e.g., when it is a pri-
ori known that the worst-case resource consumption in different subsystems cannot
occur simultaneously. In such systems, the available resources can be alternately al-
located to the different subsystems, circumventing the need for oversizing the design
of the system, i.e., to calculate with the worst case requirements of both subsys-
tems. Furthermore, if a permanent fault affects only individual computer nodes in
a distributed system, dynamic resource management can be used to relocate the
application functionality to spare nodes to preserve the specified service.

There exists no universal definition of resource management in the literature,
since the role of resource management in a system depends highly on the structure
and characteristic of the system, i.e., the resources that are managed, as well as,
the requirements of the application realizing the service of the system. A high-level
definition of resource management in the context of distributed systems is given
in [Veŕıssimo and Rodrigues, 2001, p. 517] as the issue of ensuring that distributed
systems are configured correctly in order to provide adequate service, and that they
remain correctly configured and providing adequate service throughout their life. In
the context of this definition, we understand dynamic resource management as the
distribution of the shared resources of the system among the hosted application
subsystems in such a way that each application subsystem is able to provide its
specified service.

In the following two subsections we elaborate on the concepts of resource man-
agement in two highly diverse fields of computer science, namely resource manage-
ment in (hard) real-time systems and resource management in (best effort) large
networked systems, which have inspired the resource management solution of the
TTSoC architecture. The section ends by giving an introduction of power-awareness
and dynamic power management—one of the grand challenges in future embedded
systems [SIA, 2005]—which is made possible by means of resource management tech-
niques.

23

2.2 Dynamic Resource Management 2 Concepts & State-of-the-Art

2.2.1 Classic Resource Management in Real-Time Systems

In the context of real-time systems, the authors of [Murthy and Manimaran, 2001]
identify four fundamental issues on resource management, namely task scheduling,
resource reclaiming, fault tolerance, and real-time communication.

Task Scheduling. In real-time systems a failure in meeting a task’s deadline may
result in severe consequences. The challenge of task scheduling is defined
in [Ramamritham and Stankovic, 1994] as the allocation of resources and time
to tasks in such a way that certain performance requirements are met. Schedul-
ing algorithms are typically classified into preemptive algorithms (e.g., rate-
monotonic and earliest-deadline-first scheduling [Liu and Layland, 1973]) and
non-preemptive algorithms (e.g., first in first out (FIFO) and shortest process
next (SPN) [Stallings, 1998, p. 389ff]). The latter are featured by the fact that
once a task is executed, the processor cannot be reallocated before the task has
finished. In preemptive algorithms, on the other hand, an executing task can
be disrupted by a task with higher priority and is resumed later on.

Resource Reclaiming. For many scheduling algorithms, the worst case compu-
tation time of each task forms the basis for calculating the task schedules.
Resource reclaiming deals with the problem of utilizing resources which are
left unused by a task [Shen et al., 1993]. That allocated resources are not fully
used by task may have several reasons: (i) a task executes faster than its
worst case computation time, or (ii) it is removed from the current schedule
(e.g., a backup task after the successful completion of the primary task in a
primary-backup based fault-tolerant approach [Ghosh et al., 1997]).

Fault Tolerance. In real-time systems—especially in safety-critical systems—fault-
tolerance is a vital system characteristic. Otherwise, the failure of a single
system component may lead to a failure of the entire system with the po-
tentiality of a catastrophic consequence [Kopetz, 1997]. A system is said to
behave fault-tolerant, if it incorporates additional components and abnormal
algorithms which attempt to ensure that occurrences of erroneous states do not
result in later system failures [Randell et al., 1978, p. 6]. One basic principle of
fault-tolerant design is redundancy (e.g., in the domains of time and/or space).
The allocation of sufficient resources to redundant components (e.g., in a TMR
configuration), is one important challenge of resource management in order to
facilitate fault-tolerant distributed real-time systems.

Real-Time Communication. The adherence of a distributed real-time system to
its temporal specifications can only be ensured, if the communication between
distributed tasks occurs over a dedicated real-time communication system. As
elaborated in [Kopetz, 1997] the requirements on real-time communication sys-
tems include: low protocol latency with minimal jitter, support for compos-
ability, and the need for error detection at the receiver. With respect to re-
source management, in distributed systems the challenge of task scheduling is

24

2 Concepts & State-of-the-Art 2.2 Dynamic Resource Management

extended by the problem of finding a communication schedule satisfying the
system’s temporal constraints.

Resource management for uni- or multi-processor systems is mostly concerned
with task scheduling and memory access scheduling. In distributed systems these
challenges are extended by the fact that spatial distribution of tasks and the addi-
tional complexity introduced by the requisite of a communication system has to be
tackled. The issue of scheduling in real-time systems has been extensively researched
in the past and deals according to [Ramamritham and Stankovic, 1994] with the
allocation of resources and time to tasks in such a way that certain performance re-
quirements are met. The authors of [Ramamritham and Stankovic, 1994] classify the
multitude of scheduling algorithms into the following four paradigms:

Static table-driven approaches. These approaches have been originally devel-
oped for hard real-time systems. In these systems the resources required for meeting
the deadlines of the tasks have to be preallocated and guaranteed a priori. The
static table-driven scheduling algorithms are characterized by a static schedulability
analysis that is performed off-line during the design phase of the system. The arising
schedules are stored in tables and denote the points in time when a task must start
its execution. A limitation of those approaches is that they require periodic tasks.
In addition, those approaches are highly inflexible, since changes to the task charac-
teristics (e.g., period, execution time, resource requirements, etc) may invalidate the
off-line generated schedule table.

Priority-driven preemptive approaches. The fundamental concept of priority-
driven preemptive scheduling algorithms is that a task of higher priority is able
to disrupt the execution of tasks of lower priority and takes over the shared re-
source (e.g., the processor). There exists no scheduling table as described before,
but scheduling decisions are made at runtime. The most prominent representatives
are the Rate-Monotonic (RM) and the Earliest-Deadline-First (EDF) scheduling
algorithms [Liu and Layland, 1973]. One can distinguish static (e.g., the RM algo-
rithm) and dynamic priority-driven preemptive scheduling algorithms. While in the
RM algorithm each task is assigned a static priority based on its period (shorter
period results in higher priority), a dynamic priority assignment is performed in the
EDF algorithm—the task with the closest deadline gets assigned the highest priority.

Dynamic planning-based approaches. While for the previously mentioned ap-
proaches a schedulability analysis of a given task set is performed off-line, dynamic
planning-based algorithms are characterized by performing feasibility checks dynam-
ically during run-time. A task is called guaranteed and thus accepted for execu-
tion, if a task execution plan can be generated that ensures that all guaranteed
tasks will meet their timing constraints [Ramamritham and Stankovic, 1994]. The
basis for an algorithm checking the feasibility of a task set is formed by a set of

25

2.2 Dynamic Resource Management 2 Concepts & State-of-the-Art

assumptions on the tasks itself and the system. This includes assumptions about
the tasks’ resource requirements (e.g., worst case execution time, memory access), as
well as, the nature and frequency of faults in the system. Dynamic planning-based
scheduling is used for instance in the kernel of the hard real-time operating system
Spring [Stankovic and Ramamritham, 1991].

Dynamic best effort approaches. As the name implies, in dynamic best effort
approaches no feasibility checks are performed. They accept a task for execution
and try to do the best for meeting all deadlines. Typically, best-effort approaches
are simulated using various load scenarios in order to obtain estimations on the
probability of a given task set for meeting all deadlines. Best-effort algorithms—a
typical example is CPU time sharing as it is performed by most desktop operating
systems—are usually applied to such applications where the effort for determining the
worst-case execution time is not feasible. An approach for improving the performance
of soft real-time applications on systems using best-effort scheduling is described
in [Banachowski and Brandt, 2003].

2.2.2 Resource Management in Large Networked System

Unlike most classical real-time applications (e.g., a flight controller in the avionic do-
main), which are usually closed world systems [Kopetz et al., 2005], large networked
systems such as Grid computing systems [Foster et al., 2001] are often realized as
open world systems where an (unknown) number of uncoordinated clients compete
for the services of a server [Kopetz et al., 2005]. In this section we give an outline of
the requirements on resource management in open world system by taking resource
management in Grid computing systems as an example.

The term Grid denotes a very large-scale distributed computing infrastruc-
ture which is typically used for solving advanced scientific or engineering prob-
lems like the factorization of large integers or the modeling of the earth’s cli-
mate [Bernholdt et al., 2005]. The common challenge among the different types
of Grid computer systems (e.g., computational Grids, data Grids, or service
Grids [Krauter et al., 2002])—also referred to as the Grid problem—is the flexible,
secure, coordinated resource sharing among dynamic collections of individuals, in-
stitutions, and resources [Foster et al., 2001]. Thus, resource management for Grid
computing systems is a highly active research topic.

A Grid computing system is characterized by the interconnection of a vast num-
ber of cooperating machines, which are distributed across different organizations and
administrative domains and communicate via high-speed communication links. The
constituting elements of a Grid computing system can be categorized as processing
elements (e.g., parallel computers, personal computers, personal digital assistants,
etc), network elements (e.g., routers, switches, virtual private network devices, etc),
and storage elements (e.g., network attached storage devices, automated tape li-
braries, etc) [Krauter et al., 2002]. A central function of each Grid computing sys-
tem is the Resource Management System (RMS). The main responsibility of a RMS

26

2 Concepts & State-of-the-Art 2.2 Dynamic Resource Management

Job

Job

JobJob

Discovery

Dissemination

Interpreter

Broker

Exec. ManagerScheduling

State

Estimation
Naming

Job
Monitoring

Resource
Monitoring

Job Queue

Resource

Information

Job

Status

Resource

Status

Resource Management SystemResource Management System

Figure 2.8: Abstract model of a Resource Management System (RMS) (according
to [Krauter et al., 2002])

is to accept requests for resources from machines within the Grid, match and assign
the requests to available resources, schedule the matched resources, and execute the
request, i.e., to actually grant the requesting machine access to a specific available
resource in the Grid [Krauter et al., 2002]. The term resource refers to all elements
of the Grid that are managed by the RMS. An application that utilizes resources of
the Grid is called job in the following.

The concrete characteristic of a RMS highly depends on both, the nature of
the Grid computing system (e.g., computational grid, data grid, or service grid)
and the required services. An abstract model of showing the responsibilities of a
general RMS is depicted in Figure 2.8. Widely following [Krauter et al., 2002], the
services that have to be provided by a RMS can be classified into three classes,
namely services provided to jobs, services provided to the native operating system
or hardware environments for executing resource management, and internal services.

Service Interface towards Jobs

As indicated in Figure 2.8, the service interface towards jobs includes a resource
discovery and dissemination service, a resource interpreter service, and a resource
broker service.

It is the purpose of the resource dissemination and discovery service to provide
the means by which a job is able to establish a view on the existence of resources and
their availability. The mechanism which enables a job to find resource information
(e.g., a query to a Lightweight Directory Access Protocol (LDAP) compliant direc-
tory service) is called resource discovery. The resource dissemination service is the
mechanism to make the resource information available to the jobs (e.g., replication
of the database for local access for jobs, or publishing of network addresses of the
nearest network directory).

The resource interpreter service enables jobs to initiate resource requests. Re-
source requests are described using a resource description language or protocol, which
is consistent in the entire Grid computing system (e.g., the Grid Resource Access and
Management (GRAM) protocol [Chervenak et al., 2001] in the Globus Grid architec-
ture).

27

2.2 Dynamic Resource Management 2 Concepts & State-of-the-Art

The resource broker service is used in Grid computing systems which em-
ploy market/economy-based resource management mechanisms as the one described
in [Buyya et al., 2000]. Market/economy-based resource management mechanisms
aim at encouraging resource owners to contribute their resource(s) for the construc-
tion of a Grid and compensate them based on the resource usage or value of work
done [Buyya et al., 2000]. This would enable on demand formation of cooperating
groups within the Grid computing system to solve a given problem by having their
own private mechanisms for sharing resources and calculating profits among them-
selves.

Services for Executing Resource Management

The services of the RMS provided for the actual execution of resource management
are depicted in Figure 2.8 and include the execution manager, as well as, job moni-
toring and resource monitoring services.

The execution manager service is responsible for controlling the life time of jobs
(i.e., creating, managing, and destroying jobs), as well as, for controlling the execu-
tion of the jobs on the machine (e.g., migrate an executable to a particular machine
and initiate the job execution by the use of native operating system calls).

The job monitoring service acquires the actual state of the job. This information
can be exploited by the RMS to initiate resource reclamation, which is the mech-
anism of the RMS to reclaim a resource hold by a job that has already finished.
In addition, the job monitoring service provides the basis for the realization of the
policing functionality of a RMS. Policing is the process of ensuring that a given con-
tract for resource utilization between the RMS and a particular job is not violated.
The resource monitoring service acquires the actual state of all resources in order
to enable resource accrediting within the RMS, i.e., the ability to keep track of the
usage of the individual resources [Krauter et al., 2002].

Internal Services

As the name implies, the internal services do not interact with elements of the Grid
computing system outside of the RMS. These services, which include resource nam-
ing, scheduling, and state estimation (cf. Figure 2.8), exploit the information provided
by the previously described service classes.

The purpose of the naming service is to interact with the resource dissemination
and discovery service, as well as, with the request interpreter service and to maintain
a database containing the resource information. The design of the naming service
determines the organization (e.g., flat or hierarchical) and content of this database,
which influences the performance of the resource dissemination and discovery ser-
vice [Krauter et al., 2002].

The task of the scheduling service is to allocate the available resources to request-
ing jobs. A central part of this task is admission control, i.e., to determine whether

28

2 Concepts & State-of-the-Art 2.2 Dynamic Resource Management

a resource request can be granted or has to be rejected. Therefore, the resource
scheduling service exploits the current information provided by the job monitoring
service, the resource monitoring service, and the state estimation service to make its
scheduling decisions. The state estimation service estimates the future states of re-
sources and jobs by exploiting history information on resource usage and knowledge
about the job’s resource usage characteristic (e.g., included in the resource request).

Needless to say that not all real-world Grid computing systems implement
all mentioned services. A detailed taxonomy of different RMS can be found
in [Krauter et al., 2002].

2.2.3 Power-Aware Systems

Dynamic resource management builds an important cornerstone for the realization of
power-aware systems. According to the SIA’s semiconductor road map [SIA, 2005],
power awareness and power management are identified as one of the grand challenges
for future embedded systems. In [Unsal and Koren, 2003] the authors define a power-
aware system as a system which modifies its behavior based on current power/energy
availability. Hence, power-aware design deals with the development of techniques and
algorithms that influence the system’s behavior in order to meet power and energy
goals under given performance constraints or vice versa. This is in contrast to low-
power design, where the minimization of the power consumption of single gates up
to complex SoCs, as well as, the communication among the individual cores on the
chip is the primary concern and techniques and methodologies are investigated that
optimize the design of those chips.

Sources of Power Dissipation in CMOS Technology

The power dissipation of Complementary Metal Oxide Semiconductor (CMOS) de-
vices consists of three major parts contributing to the total power dissipation of the
device, namely dynamic power dissipation, short-circuit power dissipation, and static
power dissipation. The following expression shows the constituting elements of the
total power dissipation of a CMOS device [Benini et al., 2001], which are discussed
in detail in the following:

Ptot = PDynamic + PShort−Circuit + PStatic (2.1)

Dynamic Power Dissipation. The first term in Equation 2.1 represents the
contribution of dynamic power dissipation. Dynamic power dissipation is is-
sued from charging and discharging of capacitors during switching of gates in
CMOS devices. In the literature, it is therefore often referred to as switching
power [Chandrakasan et al., 1992] or capacitive power dissipation [Pedram, 1996].

29

2.2 Dynamic Resource Management 2 Concepts & State-of-the-Art

Equation 2.2 describes the influence of supply voltage, clock frequency, and switch-
ing activity on dynamic power dissipation [Chandrakasan et al., 1992].

PDynamic = pt · (CL · V · Vdd · fclk) (2.2)

The dissipated dynamic power is influenced by the load capacitance CL, the supply
voltage Vdd, the voltage swing V (usually equal to Vdd except to some specialized logic
circuit implementations where it my be slightly less than Vdd [Yano et al., 1990]),
and the clock frequency fclk. The term pt represents the activity factor, i.e., the
probability that a power consuming switching operation occurs. In [Pedram, 1996,
Devadas and Malik, 1995, Unsal and Koren, 2003] the switching activity is described
by the average number of output transitions in 1/fclk time.

Short-Circuit Power Dissipation. The short-circuit power dissipation is caused
by the short-circuit current Isc that flows when both, the NMOS and PMOS transis-
tor, are conducting simultaneously (see Equation 2.3 [Chandrakasan et al., 1992]).

PShort−Circuit = Vdd · Isc (2.3)

An alternative representation of the short-circuit power is introduced by the authors
of [Devadas and Malik, 1995]. In this work, Isc is modeled as the product of the
quantity of charge, the number of transitions per clock cycle, and the clock frequency.
With careful design the short-circuit power dissipation can be kept less than 15 % of
the dynamic power dissipation [Kang, 2003].

Static Power Dissipation. Dynamic power dissipation was the predominant
source of power dissipation in CMOS circuits for fabrication processes of 0.8µm
and above [Benini et al., 2001]. Therefore, research in low-power and power-aware
design of integrated-circuits was mainly focused on reducing dynamic power dissipa-
tion. However, for deep-submicron processes the static power dissipation becomes
more important. The static power dissipation results mainly from leakage current
between the power supply and the ground (see Equation 2.4).

PStatic = Vdd · ILeakage (2.4)

There are three dominant components of leakage current, namely reverse-bias
p-n junction leakage, subthreshold leakage, and the gate oxide tunneling cur-
rent [Johnson et al., 1999]. The primary source of leakage current is typically reverse-
bias p-n junction leakage; however, due to ongoing miniaturization of the feature size
and reduced supply voltage, sub-threshold leakage and leakage caused by gate oxide
tunneling become more important [Keshavarzi et al., 1997]. In [Kang, 2003] vari-
ous techniques are presented to reduce the leakage current ILeakage by tackling the
subthreshold and gate leakage problem.

30

2 Concepts & State-of-the-Art 2.2 Dynamic Resource Management

Power-Aware System Design Techniques

Although for deep-submicron devices the reduction of static power dissipation gains
more importance, dynamic power dissipation still contributes a major part to the
total dissipated power of a CMOS device. Therefore, in the following we give a short
outline on the three degrees of freedom for taking influence on the dynamic power
dissipation of a system [Pedram, 1996].

Voltage: The reduction of the supply voltage offers an effective potentiality
due its quadratic impact on power. However, reducing the supply volt-
age implies a speed penalty since the delay of the circuits increases when
the supply voltage approaches the threshold voltage of the device. Fur-
thermore, increasing the size of a transistor reduces its delay. Optimal
transistor sizing [Kakumu and Kinugaw, 1990, Chandrakasan et al., 1992] is
the challenge to find the optimum between the required delay improve-
ments and the dissipated power by exploiting the slack time of the cir-
cuit [Devadas and Malik, 1995].

Capacitance: The physical capacitance seen from the individual gates in the circuit
has a linear influence on the dissipated power. Thus, reducing this capacitance
e.g., by shrinking the devices, using fewer and shorter wires, or in general using
less logic, positively influence the dynamic power dissipation [Pedram, 1996].
However, as for voltage scaling, reducing the capacitance may also impact the
performance of the circuit (e.g., increases the delay) [Pedram, 1996] and thus
results in a trade-off between reducing the physical capacitance and voltage
scaling.

Activity: As the name implies, dynamic power or switching power is only dissipated
when the device performs actions that cause switching in a circuit. The switch-
ing activity is influenced by two components, cf. Equation 2.2: The operating
frequency fclk and the activity factor pt. Slowing down the operating frequency
directly influences the performance of the device. Especially in real-time sys-
tems, this performance loss may not be tolerated. The switching activity of
a circuit depends on a multitude of effects (e.g., input-pattern, delays, path
lengths etc.) and is thus hard to estimate. An overview about techniques for
estimating the switching activity can be found in [Pedram, 1996].

There are two prominent approaches which exploit the above described degrees
of freedom for selectively controlling the execution of tasks according to required
performance constraints or available power/energy levels, namely Dynamic Power
Management (DPM) and Dynamic Voltage and Frequency Scaling (DVFS). In gen-
eral, using DPM techniques means to put a processor in a more power-efficient ex-
ecution mode whenever it is not required for the execution of tasks, while DVFS
techniques try to find an optimal trade-off between power-saving by supply-voltage
reduction and performance (due to the lowered execution frequency implied by the

31

2.2 Dynamic Resource Management 2 Concepts & State-of-the-Art

PMC

PMC PMC

Power-Managed

System

Observer

Controller

Power Manager
Observations

Control actions

Workflow

information

Figure 2.9: Structure of a Power-Managed System (PMS) [Benini et al., 2000])

reduced supply-voltage). DPM techniques are often also applied for I/O devices like
hard disks.

Dynamic Power Management

The term Dynamic Power Management (DPM) is used to describe a design methodol-
ogy of systems that perform energy-efficient computations by exploiting idle times of
system components [Benini et al., 2000, Lorch and Smith, 1998]. Thereby, it is tried
to shut-off (or reduce the performance) of system components that are currently not
in use or partially unexploited. Systems applying DPM—so-called Power-Managed
Systems (PMS) [Benini et al., 2000]—strive for providing the requested service with
minimum system power by using a minimum number of active components (or min-
imum load on such components).

For being able to apply DPM, it is mandatory that the individual Power Man-
ageable Components (PMCs)—system components that support multiple modes of
operation spanning the power-performance trade-off [Benini et al., 2000]—are sub-
ject to non-uniform workloads. In addition, it must be possible to predict, up to
a certain degree of confidentiality, this non-uniformity of the workload. A typical
example for a PMC is a hard disk. Read/write accesses to hard disks are typical
workloads with non-uniform characteristics. Furthermore, hard disks exhibiting an
idle time longer than a given threshold (e.g., 30minutes) can be put into standby,
since it is assumed that for a sufficiently long time no further accesses will occur.

As depicted in Figure 2.9, a PMS typically comprises a set of interacting PMCs
and a power manager [Benini et al., 2000]. The power manager is responsible for
controlling the mode of operation of the PMCs by applying a control strategy—often
called policy—based on observation and assumptions on the workload. The challenge
to find such a control strategy that optimally trades off power and performance is
elaborated in [Benini et al., 1999].

DPM is supported by several hardware and software vendors (e.g., Hewlett-
Packard, Intel, Microsoft, and Toshiba) which have established a standardiza-
tion initiative that is known as the Advanced Configuration and Power Interface
(ACPI) [Hewlett-Packard Corp. et al., 2006]. ACPI is an operating system indepen-
dent power management and configuration standard with the aim of providing a

32

2 Concepts & State-of-the-Art 2.3 Model-Driven Design and Development

specification for a flexible interface between power manageable devices (like hard
disks) and the power manager. However, ACPI does not provide any strategies for
optimal dynamic power management.

Dynamic Voltage and Frequency Scaling

Equation (2.2) clearly shows that lowering the operating voltage of a CMOS cir-
cuit has a high potential for reducing the power consumption of the circuit due
to the quadratic relationship of voltage and dynamic power dissipation. Even
more, by lowering the supply voltage of a CMOS circuit and at the same time
lowering the operating frequency—as it is aimed at in DVFS techniques—the
power requirement can be reduced by the third power of the relative frequency
reduction [Flynn and Hung, 2005]. Reducing the operating voltage and the fre-
quency saves substantial power; however, in the same way the execution of pro-
grams is slowed down. Therefore, DVFS heuristics usually trade off power savings
against delay [Unsal and Koren, 2003]. For example, a scheduling approach for hard
real-time tasks that aims at combining DPM and DVFS techniques is presented
in [Rong and Pedram, 2006].

Nowadays, several processor families, as for example the Intel R© XScaleTM pro-
cessor family [Intel, 2000], support the optimization of the power dissipation of a
processor for the completion of a given workload by adapting the performance per
mWatt ratio by DVFS techniques. For instance, the Intel R© XScaleTM architecture
supports on-the-fly scaling of supply voltage and clock frequency covering a per-
formance range from 40 mW/185 MIPS at 150 MHz up to 900mW/1000 MIPS at
800MHz [Intel, 2000].

2.3 Model-Driven Design and Development

The current state-of-the-art system development methodologies for distributed em-
bedded systems are heavily imposed to be reviewed, because of the requirement to
continuously improve functionality with stringent time-to-market constraints and to
cope with changing deployment platforms. In today’s development cycles of em-
bedded systems, the validation of the system usually occurs after the integration of
the software onto the chosen hardware platform. However, in this late phase of the
development process, any changes to the system would result in significant costs.

To circumvent this deficiency, a recent trend in the design and development
of distributed embedded systems is to decouple application development from the
implementation of the hardware platform and to apply model-driven development
approaches. In such approaches, the entire system is defined by models with an
adequate level of detail that facilitates the generation of the system’s implementa-
tion. This entails a change of the role of models from a descriptive characteristic to
a prescriptive characteristic in the entire development process [Gruhn et al., 2006,
p. 20].

33

2.3 Model-Driven Design and Development 2 Concepts & State-of-the-Art

The main benefits of those model-driven development approaches are the poten-
tial for reducing initial development costs and costs for maintenance, as well as, to
facilitate the evolution of the hardware platform by minimizing the need for adapta-
tion of the application by separating platform-specific and platform-independent as-
pects of applications and capture them in separate models. A platform-independent
model of an application can be used in model-driven development as input to dif-
ferent model transformations resulting in alternative realizations based on diverse
platforms [Almeida, 2006]. In addition, by using models of the software as well as
of the hardware platform a virtual system integration [Giusto et al., 2002] can be
applied, which enables the identification of design faults earlier in the development
process, thus lowering the costs induced by required changes to the system.

The following section gives an introduction to the Model Driven Architecture
(MDA) [OMG, 2003], which is a prominent representative of model-driven develop-
ment. The MDA serves as the inspiration for the model-driven development method-
ology of DECOS, which is presented in the subsequent section.

2.3.1 Model-Driven Architecture

The MDA is a software development method proposed by the Object Manage-
ment Group (OMG) that aims at the separation of the specification of the oper-
ation of a system from the details of the way that system uses the capabilities of
its platform [OMG, 2003, p. 2–2]. The motivation for model-driven approaches
is that platforms are subject to change over time. This entails that software
systems are eventually requiring to be deployed on one or more different plat-
forms [Mellor et al., 2002]. Thus, the primary goals of the MDA are portability,
interoperability, and reusability of applications achieved by architectural separation
of concerns [OMG, 2003, Gruhn et al., 2006]. Therefore, in the MDA the specifica-
tion of the operation of a system is expressed by different models at various levels of
abstraction, with each level emphasizing certain aspects or viewpoints of the system.

Besides the definition of standardized viewpoints (e.g., computation independent,
platform-independent, or platform-specific viewpoints, which will be described in the
following section), the MDA defines also a process for software development. The key
aspects of this process are the specification of a platform-independent representation
of the software and the transformation to a platform-specific representation by using
transformation rules, which are derived from the model of the platform.

MDA Models at Different Levels of Abstraction

A model of a system is a formal specification of the system and provides an ab-
straction, i.e., the model includes certain classes of information while suppressing
other ones. The selection of the classes of information to include or to suppress
depends on the purpose and the focus of the model. A particular selection of such
information classes is denoted as a viewpoint. Widely used viewpoints in model-
driven development methodologies are platform-independent and platforms-specific

34

2 Concepts & State-of-the-Art 2.3 Model-Driven Design and Development

viewpoints. The MDA proposes such viewpoints denoted as Computation Indepen-
dent Model (CIM), Platform Independent Model (PIM), Platform Model (PM), and
Platform Specific Model (PSM) [OMG, 2003].

Computation Independent Model (CIM): The CIM is a view of the system
focusing on the computation-independent viewpoint, which describes the envi-
ronment of the system and requirements for the system while abstracting from
the details of its structure. A CIM is typically a domain or business model
that provides domain specific information on the system which is independent
of the implementation [Zhao, 2005].

Platform Independent Model (PIM): The purpose of the PIM is to describe
the operation of a system while still abstracting from the details of a partic-
ular platform. The challenge of creating the PIM is to identify and model
those parts of the system that do not change from one platform to another.
The quality of platform independence of a model is always a matter of de-
gree [OMG, 2003, p. 2–5]: Considering a virtual machine that defines a set
of services (e.g., communications, scheduling, naming, etc.). The virtual ma-
chine itself is a platform. A model describing an application by the means of
the virtual machine’s services is platform-specific w.r.t. this virtual machine.
However, the same model is platform independent w.r.t. the class of differ-
ent platforms realizing this virtual machine, because the platform-independent
models are unaffected by changes of the underlying platform.

Platform Model (PM): The PM describes the technical concepts that make up
the platform and specifies the services the platform provides. In the MDA, the
concept of a platform is defined as a set of subsystems and technologies that
provide a coherent set of functionality [. . .], which any application [. . .] can use
without concern for the details of how the functionality provided by the platform
is implemented [OMG, 2003, p 2–3].

Platform Specific Model (PSM): The PSM is an extension of the PIM that in-
cludes further details on how services of a specific platform are exploited by the
system. It is constructed from the PIM by applying a model transformation,
which is the process of converting one model to another model of the same
system. The details of the model transformation in the MDA are the focus of
the next section.

The concepts introduced above are only meaningful w.r.t. a particular point of
view [Brown, 2004] on the system. In this sense, a model that is a PSM in one
development step serves as the PIM for a further refinement of the system. An
illustrative example (taken from [Brown, 2004]) is depicted in Figure 2.10: With
respect to the choice of a communication middleware, a model serves as a PIM in
the MDA, as long as the model does not dictate a particular middleware technology.
After choosing a technology (e.g., CORBA [OMG, 2004]), a transformation to a
PSM (a CORBA-specific PSM) is performed. However, with respect to the target

35

2.3 Model-Driven Design and Development 2 Concepts & State-of-the-Art

Figure 2.10: Different perceptions of PIM and PSM

operating system and the hardware, this CORBA-specific PSM may still serve as
PIM, if this is still of interest to the system development. For this purpose, after
choosing a particular operating system a transformation to a PSM, e.g., a Linux-
specific PSM, can be performed.

PIM to PSM Transformation

One of the key activities in the MDA is the transformation of the platform inde-
pendent representation of the system (contained in the PIM) into a representation
that is specific w.r.t. a particular platform—called the PSM. Figure 2.11(a) illus-
trates the generic transformation pattern for this purpose as it is defined in the
MDA [OMG, 2003, p. 2–7]. The PIM together with additional information, e.g., the
utilization of the services of a particular platform by the application, serves as the
input to a transformation process, which results in the PSM of the system. A typical
instantiation of this generic pattern is to realize the transformation process by the
use of a marked PIM as depicted in Figure 2.11(b).

After a PIM of the system is built, a platform has to be chosen that enables the
realization of the system with the desired functional and non-functional properties
(e.g., dependability). For each platform a mapping has to be provided. The mapping
specifies the rules for the transformation of a PIM into the PSM for a dedicated
platform. For this purpose, for each element in the PIM the rule to be applied has to
be identified, i.e., in which particular way this part of the PIM is transformed to the
PSM. One solution therefore is the use of marks and the creation of a marked PIM. A
mark represents a concept in the PSM and is always specific for a particular platform.
It indicates how the marked model element of the PIM has to be transformed to the
PSM.

The final step in the MDA pattern is to perform a model transformation of the
marked PIM into a PSM. The MDA defines a model transformation as the process
of converting one model to another model of the same system [OMG, 2003, p. 2–7].
This model transformation can be performed manually, with computer assistance, or
automatically. The results of the transformation are the PSM and a record of the

36

2 Concepts & State-of-the-Art 2.3 Model-Driven Design and Development

(a) Generic PIM to PSM
transformation

(b) Extended PIM to Marked PIM and Marked PIM
to PSM transformation

Figure 2.11: MDA model transformation approaches (according to [OMG, 2003])

transformation. This record enables the traceability of the transformation by com-
prising information that describes which elements of the PIM correspond to elements
of the PSM and which parts of the mapping were involved in the transformation. By
the use of the transformation record, changes to PIM or PSM could be synchronized
without the need to perform the entire transformation again.

2.3.2 Model-Driven Development in DECOS

The development methodology of DECOS follows the separation of application de-
velopment from the development of the hardware platform, as it is characteristic
for model-driven development approaches like the MDA, by distinguishing platform-
independent and platform-specific viewpoints of the system. Figure 2.12 depicts, on
a high abstraction level, the development methodology in DECOS. It is structured
into three phases, namely system design, code generation, and deployment. System
design itself is decomposed into requirement analysis, subsystem design, and the
system integration [Giusto et al., 2002].

As depicted in Figure 2.12, the DECOS development methodology starts with a
requirements analysis that is followed by the modeling of the platform independent
viewpoint of the system—the DECOS PIM. In the PIM, the overall application is
structured into smaller logical elements denoted as DASs and jobs, which exchange
messages via virtual networks (see Figure 2.13(a)). For each virtual network, the PIM
provides an operational specification that denotes the syntax of exchanged messages,
the timing of the messages, and their error conditions (e.g., input and output asser-
tions). Furthermore, the PIM contains a formal specification of the dependability
and performance characteristics of the entire DAS. Within the scope of the DECOS

37

2.3 Model-Driven Design and Development 2 Concepts & State-of-the-Art

Platform Independent

Model

(+ Application Behavior)

Platform
Modeling

Application
Modeling

Platform Model

Platform Specific

Model

(+ Application Behavior)

Deployment

Allocation

Allocation

Executable Code for

Application

CodeGeneration

Code

Generation

Executable Code for

Architectural

Services

Requirements

Analysis
Subsystem Design System Integration

Code Generation Deployment

System Design

Figure 2.12: Development methodology in DECOS

project, a formal meta-model has been devised [DECOS, 2004] that enables the spec-
ification of the PIM by means of the Unified Modeling Language (UML) [OMG, 2007].

In addition to devising the logical structure, the behavior has to be formally
captured. Although it is possible to directly capture the behavior of the application
by using a specific programming language, it is recommended to elevate the level
of abstraction of the behavior specification. This can be achieved for instance by
using formalisms provided by Matlab-Simulink [Hanselman and Littlefield, 2001] or
SCADE [Esterel Technologies, 2005].

In parallel to the creation of the PIM, a Platform Model (PM) is constructed
that captures the resources of a DECOS execution platform by describing its
physical building blocks. According to the formal meta-model as specified in
[Huber et al., 2006], a DECOS execution platform constitutes clusters, node com-
puters, partitions, and (physical) networks.

Cluster: In DECOS, a cluster is a distributed computer system that consists of a
set of node computers interconnected by a network.

Node Computer: A node computer is a self-contained computational element with
its own hardware (processor, memory, communication interface, and interface
to the controlled object) and software (application programs, operating sys-
tem), which interacts with its environment by exchanging messages. A node
contains one or more partitions.

Partition: A partition is an encapsulated execution space within a node computer
with a priori assigned computational resources (e.g., processor, memory, I/O)
and network resources (e.g., network bandwidth) that can host a job. Partitions
are the target of job allocation and each job is always assigned entirely onto a
single partition, i.e., a job is never fragmented onto multiple partitions.

Physical Network: At cluster comprises at least the time-triggered core network,
which establishes the interconnection between node computers. In case a node
computer provides separate processors for establishing the safety-critical and
non safety-critical subsystems (cf. Section 2.1.4), additional physical networks
for intra-node communication are captured in the PM.

38

2 Concepts & State-of-the-Art 2.3 Model-Driven Design and Development

Job A1 Job A2 Job A3

D
A

S
 A

Virtual Network DAS A

Job B1 Job B2 Job B3

D
A

S
 B

Virtual Network DAS B

Job C1 Job C2 Job C3

D
A

S
 C

Virtual Network DAS C

Platform Independent Model

(a) Exemplary PIM of a DECOS system

Platform Specific Model

Job A1 Job B1 Job C1

Architectural Services

Basic Connector Unit

Job A2 Job B2 Job C2

Architectural Services

Basic Connector Unit

Job A3 Job B3 Job C3

Architectural Services

Basic Connector Unit

Ethernet
Virtual Network DAS C

Node Computer 0

P
a
rt

it
io

n

Node Computer 2Node Computer 1

(b) Exemplary PSM of a DECOS system

Figure 2.13: System representation using Platform Independent Models and Platform
Specific Models

After PIM and PM are formally defined, the next step is a tool-supported
transformation towards the PSM. The PSM is a refinement of the PIM (see Fig-
ure 2.13(b)), which extends the PIM with information concerning the mapping of
jobs to appropriate node computers and hardware partitions, the configuration of the
communication system, and the parametrization of the DECOS architectural services
(cf. Section 2.1.4). The transformation of the PIM to the PSM is constrained by the
following requirements:

• Dependability requirements. Replicated jobs (e.g., replicas of a TMR con-
figuration) must be assigned to partitions of independent fault-containment
regions.

• Resource constraints of nodes. The required computational resources of
jobs allocated to a node computer must not exceed the available resources of
the partitions located in this node computer.

• Resource constraints of the physical network. The resources of the
physical network constrain the number of virtual networks that are supported
simultaneously and the temporal performance of these virtual networks.

Finally, the generated source code—by using appropriate formalisms for the spec-
ification of the application behavior like Matlab-Simulink or SCADE, source code can
be automatically generated by tools—together with the PSM forms the input to a
deployment step in which the final executables for a specific instance of the DECOS
execution platform are created.

39

2.3 Model-Driven Design and Development 2 Concepts & State-of-the-Art

The DECOS Tool-Chain

Within the course of the DECOS project, an integrated, model-driven tool-chain has
been devised, which accompanies the system development process from design to
deployment. Relying on model-driven concepts, the tool-chain targets at minimizing
the risks for human coding mistakes by exploiting domain-oriented modeling, model
transformation, and code generation [Herzner et al., 2007]. The tool-chain (depicted
in Figure 2.14) comprises tools for the entire development methodology in DECOS
as defined in the previous section, that is tools for system design, code generation,
and deployment.

System Design
The central concept in the DECOS tool-chain for supporting the system design phase
is the VIATRA DECOS model store (see Figure 2.14). The model store serves as the
backbone for the integration of the individual tools involved in the system design.
The tool integration is facilitated by the specification of data interchange formats
based on Extensible Markup Language (XML) for importing and exporting data to
the model store.

The first step in the system design phase is the generation of the PIM, which is
supported in the tool-chain by two solutions: First, commercial UML tools like Ratio-
nal Rose 2003 and the Rational Software Modeler can be used for creating UML rep-
resentations of the PIM, which have to be checked for its compliance to meta-model
defined in [DECOS, 2004]. Furthermore, this representation has to be transformed
into the XML-based representation, which allows the import into the DECOS model
store. The second solution is the use of a Domain-Specific Editor (DSE). The benefit
of a domain-specific editor is that it only provides model entities, which are defined
in the underlying meta-model. Thus, compliance checks can be omitted. Such a DSE
has been implemented under Eclipse technology that directly runs inside the Visual
Automated Transformations (VIATRA) framework [Csertán et al., 2002], which also
implements the model store, thus rendering the import to the model store becomes
unnecessary.

For modeling the application behavior, SCADE [Esterel Technologies, 2005] is
chosen as the primary tool in the DECOS tool-chain. SCADE is based on the for-
mally defined data flow notation called Lustre [Halbwachs et al., 1991] and offers
strong typing, explicit time management (delays, clocks, etc), and simple expres-
sion of concurrency [Herzner et al., 2007]. SCADE offers support for modeling and
simulation of the application behavior, as well as, formal proof techniques and the
generation of qualified code using a code generator, which has been certified against
DO178B level A [RTCA, 1992].

Modeling of the hardware platform is simplified by a graphical DSE based on the
Generic Modeling Environment (GME). GME is a configurable framework for the
creation of domain-specific modeling environments [Ledeczi et al., 2001]. The ma-
jor objective of the DSE is to facilitate hierarchical composition of the PM and

40

2 Concepts & State-of-the-Art 2.3 Model-Driven Design and Development

VIATRA

Model Store

PM
PM Creation

(DSE using GME)
XML

PIM Creation

(VIATRA DSE)

PM

PIM

PIM

m
a
rk

e
d

PIM marking

(VIATRA)

SW-HW Integration

(VIATRA)
PSM

Application

Behavior Modeling

(SCADE)

Job
Code

C

Application Code

Generation

(SCADE KCG)

PIL Generation

(VIATRA)

Scheduling, OS

configuration

(TTTech tool-suite)

PIL

C

OS, MW
Config

C

Compilation
Exe-

cutable
BIN

Figure 2.14: DECOS Tool-Chain – tool integration

to reuse existing PMs or parts of existing PMs to speed up the modeling pro-
cess [Huber and Obermaisser, 2007]. The compliance of the PM to its meta-model
is automatically checked during the modeling, ensuring that only valid PMs are
imported in the model store. For performing the import, the DSE provides an auto-
mated transformation of the PM into an XML data format that is accepted by the
model store.

The concluding activity in the system design phase is the software-hardware in-
tegration yielding in the PSM of the system. This activity is the integration of
the individual application functions described in the PIM on the execution platform
described by the PM. The software-hardware integration process comprises three
major steps [Islam et al., 2006]: (i) the generation of a marked PIM which includes
extended information on jobs and their requirements (e.g., for facilitating legacy inte-
gration, a job can be marked as CAN job in order to indicate that this job depends on
an application middleware emulating a CAN environment [El Salloum et al., 2006]),
(ii) the execution of feasibility checks eliminating unachievable requirements in an
early design phase, and (iii) the allocation of jobs to dedicated partitions of the hard-
ware platform. This allocation step has to consider the functional and non-functional
constraints, which are given in the (marked) PIM. Examples for these constraints
are resource constraints (e.g., available memory and computational performance, as
well as, the availability of special purpose hardware like sensors and actuators) and
dependability constraints (e.g., according to the fault-hypothesis of the DECOS ar-
chitecture [Kopetz et al., 2004], replicated jobs forming a TMR configuration have
to be allocated to separate node computers).

41

2.3 Model-Driven Design and Development 2 Concepts & State-of-the-Art

Code Generation and Deployment
Using SCADE for modeling the application functionality, the qualified code generator
KCG from the SCADE tool-suite can be deployed for generating the code for the
individual DECOS jobs. The typical operation of an application described with
SCADE is to fetch all input variables, execute the application whereas it is assumed
that the input parameters do not change during the execution time, and finally
write the output variables. For being compliant with this execution semantic, the
generated application code is compiled together with a dedicated wrapper code that
performs the input and output operations. Both together form the code of a DECOS
job.

In addition to generating application code, the configuration code for the time-
triggered communication service and the partitions of the DECOS Encapsulated Ex-
ecution Environment (EEE) [Leiner et al., 2007] have to created. For this purpose,
the TTTech tool suite1 (e.g., TTP-Plan, TTP-Build) has been integrated into the
DECOS tool-chain. Besides the generation of a valid message schedule, an execution
schedule of the partitions established by the EEE is created. The partition schedule
determines the instant of execution of the individual jobs assigned to a dedicated
partition.

Furthermore, to realize the Platform Interface Layer (PIL), which provides to
the jobs a technology invariant interface to the DECOS architectural services, a
dedicated API in the programming language C is generated for each job. This API
fits exactly to the needs of the individual jobs, i.e., only access to those services
(e.g., time-triggered or event-triggered ports for message transmission, global time
service) is provided that are actually required by the job.

The final activity supported by the tool-chain is the deployment of the soft-
ware on the target platform. Currently, the TriCore TC1796 manufactured by Infi-
neon [Infineon, 2005] is supported by the tool-chain for the DECOS hardware plat-
form. The deployment is performed by loading a single executable into the flash
memory of the TC1796-based DECOS node computer. The executable contains the
application software, middleware modules realizing the DECOS high-level architec-
tural services (e.g., virtual networks and the EEE), as well as, configuration data of
the node computer.

1http://www.tttech.com/products/software.htm

42

http://www.tttech.com/products/software.htm

Chapter 3

The Time-Triggered SoC
Architecture

We describe in this thesis the resource management solution for a novel integrated
system architecture—the TTSoC architecture [Kopetz, 2005]—that aims at enabling
the implementation of mixed-criticality embedded systems. This chapter outlines the
concepts of this architecture and provides the conceptual background for the descrip-
tion of the resource management solution in the subsequent chapters. This chapter is
structured as follows: The next section outlines the motivation and aims for devising
the TTSoC architecture. Section 3.2 introduces the physical building blocks of the
architecture by describing the component model of a single SoC implemented accord-
ing to the TTSoC architecture, while Section 3.3 addresses the design of applications
by summarizing a model-based design as devised in [El Salloum, 2007].

3.1 Motivation and Aims

In the recent years, there are mainly two large trends in the field of embedded
systems: Firstly, aided by the enormous improvements of the functionality of semi-
conductor devices for embedded computing systems (e.g., the advent of chips with a
number of transistors that is close to a billion), which is at the same time accompanied
with a cost reduction of those devices, the complexity of embedded systems has highly
increased. According to the 2005 semiconductor industry roadmap [SIA, 2005], the
management of this increased complexity for system design is one of the key chal-
lenges for future embedded systems.

Secondly, the field of Multi-Processor System-on-a-Chips (MPSoCs) has become a
highly active research area for embedded systems. While early MPSoCs where mainly
targeted for super-computing applications and not for embedded applications, the
decreasing size of MPSoCs, as well as, the reduction of cost and power consumption
have rendered them also interesting for embedded applications [Wolf, 2004]. Further,
the inherent concurrency in many typical embedded applications (e.g., automotive

43

3.1 Motivation and Aims 3 The Time-Triggered SoC Architecture

electronics or avionics) in conjunction with the deployment of MPSoCs could be
used to circumvent Pollack’s rule, which states that the increase in performance of
a sequential computer is only about the square root of the increase in the num-
ber of devices [Gelsinger, 2001]: By partitioning an application into a set of nearly
autonomous concurrent functions, each of them assigned to a dedicated processing
element, a nearly linear performance improvement could be achieved.

With the TTSoC architecture presented in this chapter, we address these chal-
lenges by offering a component-based design methodology for managing the com-
plexity of billion-of-transistors SoCs through the consequent decoupling of the com-
putational components from the communication infrastructure. It further supports
composability [Kopetz and Obermaisser, 2002, Sifakis, 2005], i.e., the side-effect-free
composition of component services to form larger systems-of-systems. As stated
in [TT-SoC, 2007b], the contributions and key properties of the TTSoC architecture
are as follows:

Elevation of the level of design abstractions. In order to tackle the increas-
ing complexity of future embedded systems, we have to lift the design process to a
higher level of abstraction. According to [TT-SoC, 2007b], this is proposed by con-
ceptualizing components that form stable intermediate forms and exhibit aggregate
properties, which are specified solely by an adequate interface model. Thereby, it is
possible to consider the individual components as black boxes, i.e., to reason about
interactions among components and the emerging system properties without the need
to understand the internals of the component. It further enables the enhancement of
the component’s implementation without the need for redesigning the entire system
at the higher abstraction level.
In the TTSoC architecture those stable intermediate forms are realized by the con-
cept of micro components: micro components clearly separate the processing within
the micro component from the interaction among the micro components and provide
their functionality at a well-defined message-based interface [Gaudel et al., 2002].

Predictability and determinism through encapsulation. A key mechanism
for reducing the cognitive complexity of a design is identified by the authors
of [Feltovich et al., 2001] as the avoidance of system mechanisms that increase the
cognitive load for understanding the system. One such system mechanism for com-
plexity reduction is encapsulation of subsystems, because the behavior of interfering
subsystems is more difficult to understand than the behavior of cleanly encapsulated
subsystems. In addition, the effort required for test and validation of an encapsu-
lated system is smaller than that for interfering systems [Owens, 2004].
In order to achieve encapsulation, the TTSoC architecture comprises a predictable
on-chip interconnect that is based on a time-triggered communication schedule. Each
subsystem implemented on the TTSoC architecture has assigned a number of dedi-
cated, conflict-free sending slots, which are protected by hardware mechanisms. This
way, non-interference between the subsystems is ensured and composability at the
system level is facilitated.

44

3 The Time-Triggered SoC Architecture 3.2 Architectural Elements

Global time base. The major benefit of the existence of a system-wide global time
base is the possibility to temporally coordinate different actions (e.g., computations,
I/O interactions, etc) within a single SoC or even across an ensemble of intercon-
nected SoCs. Consequently, timestamps of events in different subsystems (either
within a single SoC or across SoC boundaries) can be related to each other. For
instance, this feature is utilized for performing diagnostic actions on the health state
of the SoC by correlating diagnostic information (e.g., failure indication messages
disseminated from the architectural elements of the SoC) in the time domain.
The TTSoC architecture provides such a system-wide global time base through inter-
nal clock synchronization (i.e., within the SoC) and external clock synchronization
w.r.t. an SoC-external reference time. The internal clock synchronization on a single
chip is necessary, since it cannot be assumed that a single clock signal can be pro-
vided for the entire chip. The reason for establishing multiple clock domains include
the handling of clock skew, the reduction of the operation frequency of individual
IP blocks as part of power management, or the support for heterogeneous IP blocks
with different speeds.

Integrated resource management. We understand integrated resource manage-
ment as the simultaneous management of multiple resources in order to globally
optimize the resource utilization. For this purpose, the design of the TTSoC archi-
tecture supports integrated resource management taking into account the following
requirements: communication resources (e.g., bandwidth, latency, latency jitter),
computational resources (e.g., dynamic allocation of computational resources to ap-
plication subsystems), and power.
The integrated resource management builds an important cornerstone for the re-
alization of power-aware systems [Unsal and Koren, 2003]. Furthermore, in case a
permanent fault affects only parts of the SoC (e.g., individual micro components),
dynamic reconfiguration is able to relocate the application functionality to free re-
sources (e.g., spare micro components) in order to preserve the specified service of
the SoC.

3.2 Architectural Elements

The architectural elements which form the structure of a single SoC that is built
according to the TTSoC architecture are depicted in Figure 3.1. The central element
of the TTSoC architecture is a time-triggered Network-on-a-Chip (NoC), which in-
terconnects multiple, possibly heterogeneous Intellectual Property (IP) blocks called
micro components. Any interactions between micro components occur solely by the
exchange of messages over the time-triggered NoC. These messages are specified
in both, the time and the value domain, by the interface specification of the micro
components.

A micro component is subdivided into two parts, the Trusted Interface Subsystem
(TISS) and the host. While the TISS belongs to the trusted subsystem of the SoC (the

45

3.2 Architectural Elements 3 The Time-Triggered SoC Architecture

Time-Triggered Network-on-Chip

TISS

Host

TISS

TTP

Host

TISS

Local

I/O

TTE

TISS

Host

Local I/O

TISS TISS TISS

Host

Local I/O

Host

Local I/O

Host

Local I/O

Trusted

Network

Authority

(TNA)

Resource

Management

Authority

(RMA)

µC

Host

TISS

Local

I/O

CAN

TISS

Host

Local I/O

Local

I/O

µC µC µC

µC µC µC µCµC

Application

Subsystem 0

Application

Subsystem 1

Application

Subsystem 2

micro component

(µC)

Figure 3.1: Architectural elements of the TTSoC architecture: trusted subsys-
tem (shaded) and non-trusted subsystem (hosts of micro components) (figure taken
from [Obermaisser et al., 2007])

constituting elements of the trusted subsystem are depicted as shaded components in
Figure 3.1), the host is part of the non-trusted subsystem. The trusted subsystem is
assumed to be free of design faults and ensures that a fault (e.g., a software fault or
a design fault) within the non-trusted subsystem (e.g., a host of a micro component)
cannot lead to a violation of the micro component’s temporal interface specification
and a subsequent disruption of the communication between other micro components.

The SoC architecture provides two dedicated architectural elements to support
integrated resource management, namely the Trusted Network Authority (TNA) and
the Resource Management Authority (RMA). These two architectural elements ac-
cept resource allocation requests from application subsystems and, if required, change
the configuration of the SoC, e.g., by dynamically updating the communication sched-
ule of the time-triggered NoC.

3.2.1 Micro Components

One objective of the TTSoC architecture is to provide a platform for the implemen-
tation of integrated (distributed) systems hosting multiple application subsystems
(possibly possessing different criticality levels). The computational resources for
hosting those application subsystems are provided by nearly autonomous and possi-
bly heterogeneous micro components. A micro component is a self-contained com-
puting element that is exclusively used by a particular application subsystem. An
application subsystem can be implemented on a single micro component or by using
a group of possibly heterogeneous micro components (either on one or on multiple,

46

3 The Time-Triggered SoC Architecture 3.2 Architectural Elements

interconnected SoCs).

A key mechanism of the TTSoC architecture for facilitating the implementation
of mixed criticality systems is the encapsulation of micro components, which ensures
that a failure of micro components of a non safety-critical application subsystem must
not cause the failure of application subsystems of higher criticality. Encapsulation
prevents by design temporal interference (e.g., delaying messages or computations
in another micro component) and spatial interference (e.g., overwriting a message
produced by another micro component).

For this purpose, a micro component comprises two parts: a host and a Trusted
Interface Subsystem (TISS). The host implements the application services using a
stable set of core platform services provided by the TISS, while the TISS protects the
access of the host to the time-triggered NoC. This way, the behavior of a host can
neither disrupt the computations nor the communication performed by other hosts.
The only possibility that a faulty host can affect other hosts, is by providing faulty
input values via the exchanged messages.

Trusted Interface Subsystem

To protect the access of the host to the NoC, each TISS manages a table (denoted as
Message Descriptor List (MEDL)) that stores the a priori known points in time of
all message receptions and transmissions of the respective micro component. Hard-
ware protection mechanisms ensure that this table cannot be modified by the host.
Thus, a fault within the host of a micro component cannot affect the exchange of
messages of other micro components. This ensures spatial and temporal partition-
ing [Rushby, 1999] at the level of the NoC.

The design and the structuring of a micro component including the definition of
the core platform services provided by the TISS, as well as, its interfaces has been part
of the work of Christian El Salloum in the course of his PhD thesis [El Salloum, 2007].
According to this work, the TISS provides a stable interface with a defined set of
generic services to the host for the development of application services. This interface
is denoted Uniform Network Interface (UNI). The provided generic services, denoted
as core platform services, are discussed in the following.

Communication service. The communication service establishes encapsulated
communication channels for the message exchange between micro components. An
encapsulated communication channel provides an unidirectional interface that trans-
ports messages at a priori defined points in time from a single source micro component
to one or more destination micro components. In case of multi-cast communication,
the communication service ensures that a consistent message ordering among the
different receivers of the message is preserved. The host accesses this communica-
tion service via ports. A port is a communication endpoint in the UNI from which
a message can be read or to which a message can be written. The TISS supports
two basic types of ports: State ports used for the periodic transmission of messages

47

3.2 Architectural Elements 3 The Time-Triggered SoC Architecture

with state semantics and event ports, which are used for the sporadic transmission
of messages with event semantics.

Global time service. The global time service permits to establish a temporal
relationship between events that have been timestamped by different micro compo-
nents within the SoC component, despite the existence of possibly multiple clock
domains on a single chip. If multiple SoCs are interconnected over a gateway (see
Section 3.2.3) via an appropriate external network that is synchronized with the
global time service of individual SoCs (e.g., TTE [Kopetz et al., 2005]), the times-
tamps remain meaningful even across SoC components.

Programmable timer interrupt service. The TISS implements a programmable
timer that provides two kinds of timer interrupts to the host: A one-shot timer
interrupt that is configured to occur once at a specified instant of the global time
base and a periodic timer interrupt. The recurring trigger instant of the periodic
timer interrupt is configured by specifying period and phase offset using the same
time format as for the specification of dissemination instants of messages over the
NoC (see Section 3.2.2).

Watchdog service. The TISS exploits the watchdog service for determining
whether a host is still operable or not, e.g., in case the host exhibits a fail-silent
failure. For this purpose, the host is required to periodically update a dedicated
memory location within the TISS. The update period of this life sign event, as well
as, the activation state of the watchdog is not configurable by the host, in order
to prevent that a faulty host is able to deactivate or impair the watchdog service.
The resulting information can be either forwarded to the Diagnostic Unit (DU) (see
Section 3.2.4) or can be directly exploited by the TISS to reset the host if a host
failure is detected.

Power control service. The time-triggered NoC of the TTSoC architecture is a
resources that is shared between all micro components. If a host is able to monopolize
the access to the NoC, it would directly impair the services provided by all other
hosts. This scenario is prevented by design by the introduction of a TISS for each
micro component. Similarly, power is also such a shared resource. A faulty micro
component that consumes more power than permitted can directly influence the
correct operation of the entire chip. Therefore, the TISS has physical control over
the power lines and the clock lines of the host in order to be able to turn off or
deactivate the host in case it violates its specification.

Diagnostic dissemination service. In the TTSoC architecture, diagnosis is seen
as an integral part of the architecture rather than an add-on that is implemented
later on. For this purpose, the TISS implements a diagnostic dissemination service,

48

3 The Time-Triggered SoC Architecture 3.2 Architectural Elements

which is used to send failure indication messages (e.g., a missing life sign from a host,
a queue overflow of an event port) to the DU (see Section 3.2.4).

Host

A host provides the computational resources for the execution of the application
software. The concrete realization of the host is not determined by the design of the
TTSoC architecture. A host can be realized as a general purpose processor, including
system and application software, as well as, a custom hardware unit. The only way
for the host to access the services of the architecture is via the UNI established by
the TISS.

The host itself is horizontally structured into two layers: frontend and appli-
cation computer. The main purpose of the frontend is to refine the core platform
services. The core platform services are provided by the TISS at the UNI and are
independent of any particular DAS. They separate the application functionality from
the underlying platform technology to reduce design complexity and to enable de-
sign reuse. The refinement of the core platform services enables the implementation
of higher-level services (e.g., voting in a TMR configuration), which can be reused
in different applications. This refinement is achieved by incorporating middleware
modules within the frontend. In addition, the frontend is used to provide a temporal
firewall interface [Kopetz, 1997] for the host by implementing the micro components’
Communication Network Interface (CNI). The application computer provides the
computational resources of a micro component and controls the micro component’s
local I/O interfaces. An elaboration of the benefits obtained by this separation of
frontend and application computer accompanied with a detailed interface specifica-
tion of the UNI can be found in [El Salloum, 2007].

3.2.2 Time-Triggered Network-on-Chip

The time-triggered NoC interconnects the micro components of an SoC; thus, it is
the central architectural element in the time-triggered SoC architecture. The NoC
performs clock synchronization in order to establish a global time base on the SoC,
as well as, to ensures the predictable transport of periodic and sporadic messages.

Clock Synchronization

The time-triggered NoC performs clock synchronization to provide a global time
base to all micro components despite the existence of multiple clock domains. The
resulting system-wide global time base allows the temporal coordination of actions
on the distributed micro components within an SoC and in an ensemble of different
SoCs. It is based on a 64 bit wide binary time format, which has been standardized
by the OMG in the smart transducer interface standard [OMG, 2002].

49

3.2 Architectural Elements 3 The Time-Triggered SoC Architecture

1 sec bit 32 2-32 sec bit231 sec bit

Time granularity

about 0.23ns

Time horizon

about 136 years

Figure 3.2: Time format of the Time-Triggered NoC

A digital time format is typically characterized by three parameters: granularity,
horizon and epoch. The granularity determines the minimum interval between two
adjacent ticks of a clock, i.e., the smallest interval that can be measured with this
time format. The reasonable granularity can be derived from the achieved precision of
the clock synchronization [Kopetz and Ochsenreiter, 1987]. The horizon determines
the instant when the time will wrap around. The epoch determines the earliest
representable instant.

The time format of the NoC is a binary time-format that is based on the physical
second (see Figure 3.2). Fractions of a second are represented as 32 negative powers
of two resulting in a granularity of about 230 picoseconds. Full seconds are presented
in 32 positive powers of two, which yields a horizon of about 136 years. This time
format is closely related to the time-format of the Global Positioning System (GPS)
time and takes the epoch from GPS. The representation as negative and positive
powers of two of the full second eases the synchronization with the full second signal
of GPS. In case no external synchronization is available, the epoch starts with the
power-up instant of the SoC.

Predictable Transport of Messages

Using TDMA, the available bandwidth of the NoC is divided into periodic conflict-
free sending slots. We distinguish between two utilizations of a periodic time-
triggered sending slot by a micro component. A sending slot can be used for the
periodic transmission of messages or the sporadic transmission of messages. In the
latter case, a message is only sent if the sender has to transmit a new event to the
receiver. A message exhibits predefined temporal properties, which are specified by
the period of the message, a start offset from the beginning of the period, and the
message duration, i.e., the time it takes to transmit the entire message over the
channel. The resulting exact knowledge of the transmission instant at the sender
and the reception instant at the receiver permits the temporal alignment of sender
and receiver jobs.

The temporal alignment of sender and receiver is required in applications demand-
ing a short latency between sender and receiver. This is typical for many real-time
systems. For example, consider a control loop realized by three micro components
performing sensor data acquisition (A), processing of the control algorithm (C), and
actuator operating (E) as it is schematically depicted in Figure 3.3. In this appli-
cation, temporal alignment between sensor data transmission (B) and the start of

50

3 The Time-Triggered SoC Architecture 3.2 Architectural Elements

A

B

C

D

E

A

period

1 Start of control cycle

A Observation of sensor input

2 Start of transmission of

sensor data

B Transmission of input data

3 Start of processing of

control algorithm

C Processing of control

algorithm

4 Termination of processing

D Transmission of control

value

5 Start of output to actuators

E Output operation at the

actuator

6 Termination of output

operation

1
2

3

4

5
4

3

2

6

5

Figure 3.3: Temporal alignment in control loops. In this cyclic model of time, the
perimeter represents the period of the control application.

the processing of the control algorithm (cf. instant 3 in Figure 3.3), as well as, the
alignment between the transmission of the control value (D) and the start of actuator
output (cf. instant 5) is vital to reduce the end-to-end latency of the control loop—
an important quality characteristic of many real-time systems. By specifying two
pulsed data streams corresponding to (B) and (D) in Figure 3.3, efficient temporally
aligned data transmission can be achieved.

Contrary to the on-chip interconnect of the TTSoC architecture, many ex-
isting NoCs, e.g., the Sonics SiliconBackplane uNetwork [Sonics, 2002] or Æthe-
real [Goossens et al., 2005], provide only a guaranteed bandwidth to the individual
senders without support for temporal alignment. The resulting consequences are:
(i) the short latency cannot be guaranteed, (ii) a high bandwidth has to be granted
to the sender throughout the entire period of the control cycle, although it is only
required for a short interval, or (iii) the communication system has to be periodically
reconfigured in order to free and re-allocate the non-used communication resources.

The allocation of the periodic sending slots of the time-triggered NoC to the mi-
cro components occurs by the use of a communication primitive called pulsed data
stream [Kopetz, 2006]. A pulsed data stream is a time-triggered periodic unidirec-
tional data stream that transports data in pulses with a defined length from one
sender to n a priori identified receivers at a specified phase of every cycle of a peri-
odic control system.

A pulsed data stream is specified by three parameters: pulse period, pulse phase,
and pulse duration. It is made up of periodic pulses of data, which recur with the
defined pulse period at the specified offset to the start instant of the pulse’s period,
defined by pulse phase. Our design restricts the pulse periods to 32 different periods
corresponding to negative powers of two of the second, i.e., a period can be 1 second,
1/2 second, 1/4 second, 1/8 second and so forth. This restriction is introduced in

51

3.2 Architectural Elements 3 The Time-Triggered SoC Architecture

fragment 2

pulse period

pulse duration

activity inactivity activity inactivity

pulse phase

epoch of

global time

inactivity

fragm. 1 fragment 3

TDMA slot containing a flit

of fragment 2

TDMA slot containing a flit

of fragment 3

unused TDMA slot

TDMA slot containing a flit

of fragment 1

Figure 3.4: Representation of a Pulsed Data Stream

order to reduce the complexity of the NoC and the computation of the time-triggered
schedule significantly.

A pulse of a pulsed data stream consists of at least one fragment. Each fragment
is further decomposed into a set of atomic, fix-sized flits. A flit is the smallest unit
of data that is transmitted over the time-triggered NoC and occupies one TDMA
slot. Thus, the schedule of flits on the NoC determines the allocation of TDMA slots
to the micro component that sends the pulsed data stream. Successive fragments
of one pulse are not required to be transmitted in a dense sequence on the NoC,
i.e., fragments of one pulse can be interleaved by fragments of other pulses. This way,
pulsed data streams enable the efficient transmission of large data in applications
requiring a temporal alignment of sender and receiver(s). The time between the
instant of transmission of the first and the last fragment of a pulse is denoted the
duration of the pulse (cf. Figure 3.4).

It is important to note that the decomposition of a message transmitted as pulsed
data stream into fragments and flits is not visible to the host. The TISS abstracts
from this fragmentation in order to simplify the complexity of the application de-
sign, as only the periodic/sporadic transmission/reception of entire messages are of
relevance.

3.2.3 Gateways

The TTSoC architecture supports gateways for accessing chip-external networks,
e.g., TTP [Kopetz and Grünsteidl, 1994], TTE [Kopetz et al., 2005], standard (802.3
compliant) Ethernet [IEEE, 2000], or CAN [Bosch, 1991] as depicted in Figure 3.1.
The benefits of gateways include the interoperability with public networks, such as
the Internet, and the ability to interconnect multiple SoCs to a distributed system.
The realization of a distributed system enables applications for ultra-dependable
systems based on the SoC architecture. In ultra-dependable systems, a maximum
failure rate of 10−9 critical failures per hour is demanded [Suri et al., 1995]. To-
day’s technologies do not support the manufacturing of chips with failure rates low
enough to meet these reliability requirements. Since component failure rates are
usually in the order of 10−5 to 10−6 (e.g., for ECUs this is statistically analyzed
in [Pauli et al., 1998]), ultra-dependable applications require the system as a whole

52

3 The Time-Triggered SoC Architecture 3.2 Architectural Elements

to be more reliable than any one of its components. This can only be achieved by
utilizing fault-tolerant strategies such as TMR [Lyons and Vanderkulk, 1962] that
enable the continued operation of the system in the presence of component failures.

In case a time-triggered network (e.g., TTP or TTE) is used for the chip-external
network, the TDMA scheme of the NoC can be synchronized with the TDMA scheme
of the chip-external network. The periods and phases of the relayed pulsed data
streams on the NoC can be aligned with the transmission start instants of the mes-
sages on the time-triggered chip-external network. Consequently, a message that
is sent on the chip-external network is delivered to the micro components within a
bounded delay and with minimum jitter (only depending on the granularity of the
global time base).

The alignment between pulsed data streams and messages on time-triggered net-
works ensures that replicated SoCs perceive a message at the same time, i.e., within
the same inactivity interval of the global sparse time base [Kopetz, 1992]. This prop-
erty is significant for achieving replica determinism [Poledna, 1994] as required for
active redundancy based on exact voting. Without synchronization between the NoC
and the chip-external network, a scenario could occur in which one SoC forwards the
message to the micro components in one period of the pulsed data stream, while
another SoC would forward the message in the next period.

Furthermore, the gateways provide an SoC with an externally synchronized time
base. For example, the global time base of the SoC can be synchronized to GPS
time. Consequently, a timestamp assigned to an event is also meaningful outside the
SoC. Furthermore, the global time base enables a global coordination of activities
spanning multiple SoCs, e.g., output to actuators at the same global point in time.

3.2.4 Diagnostic Unit

The support for diagnosis constitutes an integral part of the TTSoC architecture.
Therefore, all architectural elements are involved in failure detection. For instance,
the watchdog service provided by the TISS is exploited to determine whether a host
crashed. Additionally, the detection of queue overflows of event ports permits the
detection of violations of message inter-arrival and service times [Kleinrock, 1975]
in case of sporadic message transmissions. At the level of the NoC, data integrity
during message transmission is protected and verified by a checksum at the end of
each fragment. Furthermore, resource requests leading to a violation of the system
specification (e.g., exceeding predefined resource quotas of particular application sub-
systems) are detected at the TNA and might indicate a failure within the requesting
micro component.

All of these detection events result in failure detection or failure indication mes-
sages, which are disseminated to a dedicated core on the SoC for further analysis,
namely the Diagnostic Unit (DU). Each of those messages is structured into three
attributes describing the detection event. The type attribute provides information
about the type of the observed failure (e.g., crash failure of a host, illegal resource

53

3.2 Architectural Elements 3 The Time-Triggered SoC Architecture

request). A timestamp is included in each message for recording the time of de-
tection w.r.t. the system-wide global time and the location attribute identifies the
architectural element that causes the observed failure.

It is the purpose of the DU to accept those failure indication messages and per-
form additional failure detection by means of message classification. Therefore, the
DU executes assertions on the syntactic, temporal, and semantic correctness of mes-
sages according to the DSoS message classification [Gaudel et al., 2002]. The DU
correlates different failure detection messages in space and time in order to identify
the faulty architectural element. By the use of the timestamp that is part of each
message, correlation in the time domain is made possible. The location attribute of
those messages in combinations with the inherent fault-isolation of the TTSoC ar-
chitecture permits the correlation of failure detection messages in the space domain.
The identification of the faulty architectural element is a prerequisite for triggering
an appropriate corrective action such as restarting a host that suffers from a failure
caused by a transient fault or updating the software in the host to eliminate a design
fault.

3.2.5 Architectural Elements for Resource Management

The support for developing mixed-criticality systems, has significant impact on the
design of the resource management solution of the TTSoC architecture: On the one
hand, the resource allocation should be flexible and nearly optimal w.r.t. resource
utilization, in order to be competitive in the implementation of non safety-critical
applications. On the other hand, predictability, determinism, and fault isolation are
vital characteristics for resource management regarding safety-critical systems.

To this end, the architecture provides two distinct architectural elements for
resource management, namely the Trusted Network Authority (TNA) and the Re-
source Management Authority (RMA). The RMA computes new resource allocations
for the non safety-critical application systems, while the TNA verifies and actually
executes the resource reallocation and ensures that the new resource allocations have
no negative effect on the behavior of all hosted application systems (in particular the
safety-critical application systems). In the following, a short introduction of those
architectural elements is given. A detailed description of the resource management
services provided by TNA and RMA is given in Chapter 5, which is dedicated to
resource management in the TTSoC architecture.

Trusted Network Authority. The task of the TNA is to update the configuration
of the SoC (e.g., the time-triggered schedule stored within each TISS) according to
configuration proposals generated by the RMA. As depicted in Figure 3.1, in contrast
to the RMA, the TNA is part of the trusted subsystem of the SoC. Thus, the TNA
acts as a guard for computations performed by the RMA and is empowered to reject
erroneous configuration proposals. A configuration proposal is classified as erroneous,
if potential collisions in the communication schedule for the time-triggered NoC are

54

3 The Time-Triggered SoC Architecture 3.3 Application Modeling

detected or violations of resource guarantees are found. In such a case, the current
configuration remains unchanged and the RMA is notified about the reject.

Resource Management Authority. The RMA is responsible for scheduling the
available resources to allocate them among the micro components according to re-
source requests received from the individual application subsystems. For this pur-
pose, the RMA exploits application-specific knowledge (e.g., communication topol-
ogy) and system knowledge, e.g., temporal properties of the time-triggered NoC.
However, the RMA is not permitted to change the configuration of the SoC directly,
i.e., to update the affected TISSs. This is ensured by the design of the TTSoC archi-
tecture. Therefore, it has to pass on the configuration proposal to the TNA where it
is verified for its validity. The reason for this procedure is that the RMA is not part
of the trusted subsystem. Thus, it is not required for an implementation of the RMA
to pass a certification process for a level of criticality that is as high as the criticality
of the trusted subsystem. This split-up of the calculation and the authorization of
new resource schedules into two separate parts (and also two separate Fault Con-
tainment Regions (FCRs)) significantly simplifies the certification of the entire SoC,
which is in particular important for safety-related or safety-critical applications.

3.3 Application Modeling

We have introduced in Section 2.1.4 a methodology to structure a large system into
smaller parts that are manageable with less mental effort. This approach, which
entails the subdivision of the entire system into a set of nearly independent DASs,
which are further decomposed into jobs, forms the basis for modeling applications in
the TTSoC architecture. The issues of application modeling and naming have been
elaborated in [El Salloum, 2007]. This section summarizes only the concepts that
are relevant for the further understanding of the following chapters.

In the TTSoC architecture, a DAS denotes a part of the entire system that
provides a self-contained application service and is implemented on a single SoC or
on a set of interacting SoCs. A job is a constituting part of a DAS that represents a
basic unit of work within the DAS and is atomic w.r.t. distribution. This means that
a job is always implemented on a single micro component. Any interaction among
jobs occurs solely via the exchange of messages over channels. A channel defines the
communication topology of the message exchange and is associated with temporal
and dependability properties. An endpoint of a channel used by a job to access the
channel is denoted port.

For modeling a system by means of DASs executed on the TTSoC architecture,
we propose to use a model-based design methodology similar to the MDA, using
platform-independent and platform-specific representations of the system. As ex-
plained in Section 2.3.1, the perception of a model as PIM or as PSM is not static,
but changes dynamically during the modeling process depending on the current view-
point on the model. In the model-driven design approach for the TTSoC architecture,

55

3.3 Application Modeling 3 The Time-Triggered SoC Architecture

Figure 3.5: Models deployed in the design process of the TTSoC architecture

we have defined three models representing three distinct phases in the design process
(see Figure 3.5), namely the Abstract Application Model (AAM), the Fully-specified
Interface Model (FIM), and the Physical Allocation Model (PAM) [El Salloum, 2007].

The AAM is an abstract representation of the system, where the interfaces of the
individual subsystems are not fully specified. This means that some design decisions
are still left open to be solved in a subsequent step of the design process. For
instance, the selection of an adequate security protocol in order to achieve the desired
security properties of a communication channel. The reason is to provide a model
that enables the conceptualization of the problem and which provides the means
for describing its solution with a formalism at a higher-level of abstraction. Kopetz
states that: The major challenge of design is the building of a software/hardware
artifact (an embedded computer system) that provides the specified services under
given constraints and where relevant properties of this artifact can be modeled at
different levels of abstraction by models of adequate simplicity [Kopetz, 2007].

As depicted in Figure 3.5 we denote the AAM as PIM in our design process, since
it is independent w.r.t. the chosen architecture. At this high-level of abstraction,
we do not restrict the choice of the final architecture to the TTSoC architecture.
Consequently, we denote the FIM as PSM in our design process, since it is specific to
a particular architecture—the TTSoC architecture—and permits the modeling of the
application service only by means of core platform services provided at the UNI. The
transformation of the AAM to the FIM is typically a non-trivial task that cannot be
done fully automatically. During this transformation plenty of design decisions have
to be performed. For instance, the selection of appropriate means for achieving the
dependability of a channel as specified in the AAM.

The FIM captures the entire structure of a distributed system. It describes the de-
composition of the overall system into DASs, as well as, the behavior, the interaction,
and the non-functional properties (e.g., dependability properties) of their constitut-
ing jobs and channels. As described in [El Salloum, 2007] we distinguish two kinds
of representation of the FIM at two different levels of abstraction, namely the Macro
FIM (MFIM) and the Uniform FIM (UFIM). While the MFIM enables the spec-
ification of DASs by means of higher-level modeling constructs (e.g., request/reply

56

3 The Time-Triggered SoC Architecture 3.3 Application Modeling

communication channels), the UFIM restricts the specification of DASs to constructs
that represent services, which are natively provided at the UNI (e.g., unidirectional
communication channels).

In the following, we consider only the modeling constructs that are expressed
by the UFIM and their counterparts in the PAM, since they form the application
and system knowledge that is exploited by RMA and TNA to perform resource
management. In the UFIM, the communication topology is expressed by means of
UFIM-Channels and UFIM-Ports. A UFIM-Channel represents an encapsulated,
unidirectional communication channel that transports messages with defined tem-
poral properties (e.g., period, phase, and duration) from a single source job to one
or more destination jobs. A UFIM-Port is an endpoint of a UFIM-Channel and is
exploited by a job to access, i.e., read messages from or write messages to, a UFIM-
Channel. A job can access multiple UFIM-Ports, since it can be attached to multiple
UFIM-Channels.

According to [El Salloum, 2007], a UFIM-Port is uniquely identified in the entire
system by its fully-qualified UFIM-Port identifier. This is a location independent
identifier, which means that it describes the role of the port in the system, but
abstracts from the physical component (e.g., a particular micro component on an
SoC) that implements the port. The fully-qualified UFIM-Port identifier comprises
the DAS context (e.g., an avionics system or an automotive system), a unique DAS
identifier within the DAS context (e.g., a brake-by-wire system within a car), a
unique local job identifier within the scope of the DAS (e.g., a job processing the
sensor data of the left front wheel), and a unique local UFIM-Port identifier for a
particular UFIM-Port of the job (e.g., a UFIM port, which holds state messages
containing the actual revolutions per minute of the wheel).

The UFIM (as one kind of representation of the FIM) includes the full speci-
fication of the Linking Interface (LIF) of each job of a DAS, but abstracts from
the mapping of DASs to the physical resources of the platform. Thus, w.r.t. the
resource allocation it is also a platform-independent representation in our design
process (cf. Figure 3.5 where the FIM is denoted as PIM w.r.t. resource allocation).
This additional information is contained in the PAM of the system. The PAM is a
platform-specific representation adding the mapping of jobs to a particular SoC and
micro component to the FIM. In contrast to the definition of a job in the FIM, a
job’s definition in the PAM is specific to the characteristics of the micro component
on which a job should be executed. Nevertheless, a jobs’s LIF in the PAM is exactly
the same as the jobs’s LIF in the UFIM. Similar to the AAM-to-FIM transformation,
the FIM-to-PAM transformation is a non-trivial engineering task.

The PAM describes the mapping of the platform-independent structure described
by the FIM to the physical system structure of the distributed system. The physical
system structure of a distributed system comprises one or more clusters. A cluster
consists of a set of SoCs interconnected by a physical network. The interconnec-
tion of SoCs is implemented via dedicated components, denoted as gateways, and is
established via Gateway-Channels (G-Channels). A G-Channel is a unidirectional

57

3.3 Application Modeling 3 The Time-Triggered SoC Architecture

communication channel that is used for message transmission from one source SoC
to at least one destination SoC. Analogous to UFIM-Channels, the endpoint of a G-
Channel is denoted as G-Port and an SoC can be attached to multiple G-Channels;
thus requiring multiple G-Ports. Each G-Port is uniquely identified in the physical
system structure by a fully-qualified G-Port identifier that is composed of a unique
cluster identifier, a unique SoC component identifier within the cluster, and a local
G-Port identifier on a particular SoC.

Within a single SoC, the physical system structure describes the interaction of
micro components. The communication between micro components is established by
SoC-Channels. The SoC-Channels denotes an encapsulated unidirectional commu-
nication channel for message transport within a single SoC. Thus, an SoC-Channel
transports messages from one source micro component to one or more destination
micro components, but is not able to cross the SoC boundaries. SoC-Ports, which
denote the endpoints of SoC-Channels are identified by a fully-qualified SoC-Port
identifier. This identifier is formed by the composition of a micro component identi-
fier that is unique within the particular SoC, as well as, a local SoC-Port identifier
that is unique within the sender/receiver micro component.

Since SoC-Channels cannot cross the boundaries of a single SoC, the case of
two interacting jobs which are allocated to micro components located on different
SoCs has to be treated separately. Such an allocation requires an SoC-Channel from
the micro component hosting the sender job to the gateway of the respective SoC.
Additionally, a dedicated G-Channel to each SoC hosting a receiver job has to be
established. Within the SoCs of the receiver jobs, an SoC-Channel from the gateway
to the respective micro component of the receiver job is required.

It is the purpose of resource management w.r.t. communication resources, which
is the focus of the following chapters, to take the specification of UFIM-Channels as
input and to produce a mapping between those UFIM-Channels to SoC-Channels.
In addition, it generates a configuration of the SoC-Channels in such a way that
the temporal constraints of the UFIM-Channels (e.g., bandwidth, latency, or phase
alignment) are fulfilled.

58

Chapter 4

Resource Allocation Policies

An architecture that supports on-line reconfiguration and an operating system or
middleware layers that can be configured during runtime are prerequisites to enable
resource management in a distributed system. In addition, in order to coordinate dy-
namic resource management, it is required to define a policy for allocating resources
among the architectural elements of the system.

It is the purpose of this section to discuss several resource management and alloca-
tion policies. As a first step, we present a simplified, fictive example of an integrated
system from the automotive domain, which is used to elaborate on the strengths
and weaknesses of the different approaches. Subsequently, we give arguments for the
choice of the resource management policy in the TTSoC architecture.

4.1 Exemplary Application Scenario

The purpose of this section is to set the stage for an analysis of different resource
management policies. Therefore, we introduce a fictive example of an integrated sys-
tem on which we will elaborate on the various strategies for (re)allocating resources
to Distributed Application Subsystems (DASs).

Nowadays, a vehicle houses a multitude of different application subsystems
(e.g., powertrain, comfort electronics, infotainment) interconnected by diverse com-
munication networks (e.g., CAN [Bosch, 1991], Media Orientated Systems Transport
(MOST) [MOST Cooperation, 2002], or LIN [LIN, 2003]). This trend leads to an
enormous number of Electronic Control Units (ECUs) and cabling in a state-of-
the-art vehicle. For instance, the number of micro controllers inside a vehicle has
increased from 20 in the year 2000 to 40–60 in 2003 [Murray, 2003], the BMW 7
series cars even contain up to 70 ECUs [Deicke, 2002]. As a consequence, the
reduction of the number of ECUs on-board is one major goal in system design
for automotive system, which is addressed by integrated system architectures as
AUTOSAR [Heinecke et al., 2004] or DECOS [Obermaisser et al., 2006].

59

4.1 Exemplary Application Scenario 4 Resource Allocation Policies

MPEG

Decoder 1

Nav. System

Server

ESP

Controller

MPEG

Decoder 2

Video Source

Selection, PiP
Gateway

ESP

Actuator

Sensor Data

Acquisition

V
id

e
o

 S
to

ra
g

e

(e
.g

.,
 D

V
D

)

Navigation Data

(e.g., road information,

obstruction of traffic, ...)

Rearview

Camera

T
F

T
 M

o
n

it
o

r

lateral acceleration,

yaw rate

braking force external network

(e.g., TT-Ethernet)

Figure 4.1: Simplified example of an Integrated System. The dashed arrows indicate
channels with variable bandwidth.

A fictive integrated node computer, i.e., an instance of the time-triggered SoC
architecture, of a future automotive system is schematically depicted in Figure 4.1.
The SoC houses eight micro components dedicated to three diverse DASs. For sake
of simplification, the architectural elements for resource management and diagnosis
(cf. Section 3.1) are not shown in this schematic representation. In addition, in
order to keep the example and the analysis feasible, only communication resources
are considered in this chapter. Table 4.1 summarizes the communication resources
assumed to be provided by the SoC-internal and the SoC-external networks.

Name Bandwidth Comment
Internal Network 1Gbps overall bandwidth of the internal network
External Network 100Mbps overall bandwidth of the external network
Table 4.1: Available communication resources in the exemplary application

4.1.1 Multimedia Application Subsystem

The first DAS shown in Figure 4.1 is a multimedia subsystem which streams a video
stream from two different sources—either a stream from a video storage like a DVD
player or from a rear view camera that acts as a parking assistant—to a single sink,

60

4 Resource Allocation Policies 4.1 Exemplary Application Scenario

e.g., a TFT monitor connected to the video source selection job. This job is able to
select the source(s) to be displayed. There are five possible combinations:

1. No source (e.g., if the video sink is switched off)

2. DVD in full size

3. Rear view camera in full size

4. Picture-in-Picture (PiP) mode; DVD in full size and rear view camera small

5. PiP mode; rear view camera in full size and DVD small

The purpose of the micro components connected to the video sources is to decode
the video stream and transmit a raw data stream to the video sink. Depending on
the selected display mode, individual streams are transmitted in full resolution, low
resolution, or not at all. The assumptions for the requirements on communication
bandwidth for different display modes are listed in Table 4.2.

Name Sender Bandwidth* Comment
DVD full MPEG 1 ∼944Mbit/s 1280x1024 pixel @ 24 bit
DVD small MPEG 1 ∼55Mbit/s 320x240 pixel @ 24 bit
Rear view cam full MPEG 2 ∼221Mbit/s 640x480 pixel @ 24 bit
Rear view cam small MPEG 2 ∼55Mbit/s 320x240 pixel @ 24 bit

* assuming a frame rate of 30 frames/sec

Table 4.2: Communication requirements of the exemplary multimedia application

4.1.2 ESP Application Subsystem

The second DAS represents a simplified Electronic Stability Program (ESP) braking
system. It consists of one micro component responsible for the acquisition and pre-
processing of sensor data, e.g., lateral acceleration and yaw rate of a vehicle, one
micro component that executes the control job for calculating the braking force on
the wheel, and a third micro component that operates the actuator (e.g., an elec-
tronically controlled brake).

The assumed communication requirements of the ESP DAS are represented in
Table 4.3. Compared to the multimedia DAS, the communication requirements of
this DAS are very low. The sensor micro component disseminates two 32 bit values
which are sampled with a frequency of 100 Hz to the controller micro component. The
control value for the actuator is again disseminated by a single 32 bit value. Thus,
the overall bandwidth requirements of the ESP subsystem results in approximately
10 kbit/s.

Unlike the multimedia DAS, however, this subsystem realizes a part of the ve-
hicle functionality that is related to the safety of the entire system. Therefore, the

61

4.2 Static Resource Allocation 4 Resource Allocation Policies

Name Sender Bandwidth Comment
Lateral acceleration Sensor 3.2 kbit/s 32 bit value @ 100 Hz
Yaw rate Sensor 3.2 kbit/s 32 bit value @ 100 Hz
Brake force Controller 3.2 kbit/s 32 bit value @ 100 Hz

Table 4.3: Communication requirements of the exemplary ESP application

resource management system, i.e., TNA and RMA, have to ensure that under any
circumstances the communication bandwidth granted to this application subsystem
is not withdrawn.

4.1.3 Infotainment Application Subsystem

The last DAS that is hosted on the time-triggered SoC presented in Figure 4.1 is an
infotainment application subsystem. The only part of this DAS located on this SoC
is a navigation system server, which responds to route information requests. The
origin of these requests is outside the boundaries of the time-triggered SoC; thus, the
gateway is used to forward the requests to the respective micro component.

For the exchange of control messages to request route information, e.g., by a ded-
icated visualization and user interface system located on a separate SoC, a dedicated
channel with a bandwidth of 10 kbit/s is reserved for this messages. Depending on
the nature of the request, the response of the navigation system server contains the
route information solely, enhanced information regarding points of interest, or ad-
ditional graphical information that enables a 3D representation at the visualization
system. We list the required communication bandwidth for the different detail levels
of the route information in Table 4.4.

Apart from accepting route information requests, this dedicated channel is also
exploited by the navigation system server to initiate the update of the stored map
material, e.g., to refresh traffic jam information, at the navigation system storage.
In our example the download rate of this data varies in the range of 100 kbit/s and
500 kbit/s (cf. Table 4.4).

4.2 Static Resource Allocation

In an integrated system using static resource allocation without on-line resource man-
agement, the allocation of the available resources (e.g., the communication bandwidth
provided by the internal and external network in the example presented above) to the
DASs is performed off-line, e.g., during the integration of the individual DASs into a
single system. A static resource allocation strategy, however, has to assume the worst
case demand for all DASs in its offline planning phase, even for DASs with dynamic
resource usage like the multimedia application subsystem that is able to change the
QoS of the streamed video data. The result is a highly inefficient utilization of the
available communication resources.

62

4 Resource Allocation Policies 4.3 Dynamic Resource Allocation

Name Sender Bandwidth Comment
Navi control Navi/GW 10 kbit/s initiating download of up-

dated map material or the
transfer of route information

Data Update GW 100 kbit/s -
90Mbit/s

download of updated map ma-
terial/road information to the
navigation system storage

Route information Navi 100 kbit/s streaming route information
to the visualization system

Points of interest Navi 100 kbit/s enhancement of route infor-
mation with points of interest

3D data Navi 300 kbit/s enabling 3D visualization of
route information

Table 4.4: Communication requirements of the exemplary infotainment application

Considering the multimedia example mentioned before, the worst case demand of
communication bandwidth results in ∼944Mbit/s for streaming the DVD source in
full quality, plus additional ∼221Mbit/s for streaming the data of the rear view cam-
era in full quality. Although in the specification of the system, these two streams do
not occur simultaneously, bandwidth for both streams has to be reserved, since no on-
line resource management is performed: the streams are only activated or deactivated
according to the user request. Nevertheless, since no additional complexity for re-
source management is introduced to the system, this static approach is in widespread
use for resource allocation in safety-critical systems, e.g., in avionics systems using a
time-triggered communication system [Nilsson et al., 1998, Scheidler et al., 2000].

Role of the Resource Management System:
We do not need an RMS in case resource allocation is performed off-line, since all
communication requirements of every DAS are taken into account during the plan-
ning phase and appropriate bandwidth is reserved. In the example described before,
a static resource allocation would entail that the maximum bandwidth for all defined
communication channels have to be reserved. This would lead to an overall demand
for communication bandwidth of 1.256 Gbps, which could not be provided by the
internal network.

Resource Management Procedure:
The DASs, respectively the jobs, are not empowered to emit requests for resources
and all communication channels are statically configured.

4.3 Dynamic Resource Allocation

Compared to static resource allocation, a fully dynamic allocation strategy represent
the other extreme. In such a system, each job competes for the available commu-

63

4.3 Dynamic Resource Allocation 4 Resource Allocation Policies

nication resources against all other jobs hosted on the same SoC. The allocation
of resources is not calculated beforehand and therefore not static during runtime,
but each job requests for the resources it actually requires. A minimalistic imple-
mentation of such a behavior would be the use of a Carrier Sense Multiple Ac-
cess / Collision Avoidance (CSMA/CA) technique for arbitrating the access to the
communication medium at the sending micro components, as done for instance in
CAN [Bosch, 1991]. In the scope of the TTSoC architecture, this would require a
RMS that accepts resource requests from all jobs of the individual DASs and that
is empowered to alter the configuration of the time-triggered NoC according to an
on-line calculated resource allocation.

Role of the Resource Management System:
Given the individual job resource requests, the RMS allocates the available resources
in a fine-grained manner to the jobs of the individual DASs. In case resource conflicts
occur, e.g., there is not sufficient bandwidth to fulfill the communication demands of
all jobs, the RMS has to ensure a conflict-free resource allocation. For this purpose,
the RMS has to contain a detailed application knowledge of the individual subsystem:

• Priority/Utility for the overall system of the individual DAS: In case of conflicts
the RMS has to decide, whether a requested share of the resources is granted
to a job or other jobs are preferred due to their higher priority and/or utility
for the system

• Granularity of resource allocation: It is often not possible to continuously in-
crease or decrease the resources allocated to a particular job. For instance,
while the bandwidth of the data update communication channel of the info-
tainment application subsystem can be more or less continuously varied within
the given bounds (cf. Table 4.4 in Section 4.1.3), this is not possible for the
DVD video stream in the multimedia subsystem. The DVD video can ei-
ther be streamed in full-resolution (1280x1024 pixel requiring a bandwidth of
944 Mbit/s) or with a resolution of 320x240 pixel in PiP mode (requiring a
bandwidth of 55 Mbit/s). Thus, when full resolution is demanded by the user,
the bandwidth allocated to this job cannot be reduced, e.g., to 100 Mbit/s.

• Interdependencies of resource allocations: Many applications rely on pairs of
communication channels that are directly linked together, such as request/re-
ply or client/server interactions patters. For such applications it is often not
possible to reduce the bandwidth of one part of the pair without affecting the
other one.

Resource Management Procedure:
Each job requires a dedicated communication channel to the RMS to transmit its
resource requests. The RMS processes the incoming requests, either in a regular
periodic manner or immediately after the reception of the request. By exploiting
the application knowledge stored in the RMS, decisions are taken whether resource

64

4 Resource Allocation Policies 4.3 Dynamic Resource Allocation

requests are granted or not and whether these decisions entail interventions in the
resource allocation of other DASs. For instance, to enable a PiP display of the DVD
stream in full resolution and the rear view camera with small resolution, the overall
bandwidth granted to the infotainment application subsystem has to be reduced to
approximately 1 Mbit/s to ensure that sufficient resources are available on the inter-
nal network (note that the bandwidth of the ESP DAS must not be reduced). Af-
terwards, all affected application subsystems are informed of the conducted changes
and the configuration of the communication system is updated.

4.3.1 Restricted Dynamic Resource Allocation

As stated in Section 2.1, integrated system architectures aim at combining the func-
tional integration and hardware benefits of an integrated system with the error con-
tainment and complexity management advantages of the federated approach. For
this, it is of utmost importance to facilitate the composability of application subsys-
tems by the system architecture. Especially the second principle of composability,
as defined in [Kopetz and Obermaisser, 2002], the stability of prior service is not
supported by unrestricted dynamic resource allocation, since the effects on resource
allocation for the integrated system cannot be analyzed separately for each applica-
tion subsystem.

A prevention of these adverse effect on composability can be achieved by restrict-
ing the degrees of freedom of the RMS for performing resource allocation to strict
boundaries for each DAS. This means, each DAS has assigned a statically allocated
and guaranteed share of the overall available resources and the RMS is only em-
powered to grant requested resources as long as the allotted resource share of the
respective DAS is not exceeded. This way, the effects of the resource allocation per-
formed by the RMS can be analyzed for each subsystem in isolation, which facilitates
composability.

Compared to the static resource allocation approach, a better utilization of the
available resources can be achieved, since application knowledge can be exploited
for dimensioning the resource share that is statically allocated to each DAS. For
instance, instead of requiring a statically allocated bandwidth of 1.165Gbps for the
multimedia application subsystem, as it would be the case for a static resource alloca-
tion, the statically allocated share of the bandwidth for this DAS could be reduced to
999Mbit/s (944Mbit/s for the full-resolution of the DVD video stream and 55Mbit/s
for the stream of the rear view camera stream in small resolution). This is possible
since the RMS is now able to dynamically (re)allocate the communication resources
to the DVD decoder job and the decoder job of the rear view camera, respectively.
However, compared to the unrestricted resource allocation approach, a less efficient
resource utilization is achievable, since free resources cannot be exploited across DAS
boundaries.

65

4.4 QoS-based Resource Allocation 4 Resource Allocation Policies

4.4 QoS-based Resource Allocation

Similar to unrestricted dynamic resource allocation, the Quality of Service (QoS)-
based resource allocation approach shares the available resources across all DASs
hosted on the SoC. In this approach, however, the RMS is supported in its decision
on resource allocation, by having knowledge of a range of QoS levels for each DAS.
For instance, for the infotainment application subsystem it can be specified that,
depending on the available bandwidth, the navigation system server can operate with
a bandwidth of 100 kbit/s, 1 Mbit/s, 50 Mbit/s, or 90 Mbit/s for its data download
stream. In case a resource allocation conflict arises, this knowledge is exploited in
order to decide, which DAS has to be operated at a lower QoS in order to free the
required amount of resources. A representative of QoS-based resource allocation is
introduced in [Agrawal et al., 2003]. The authors describe how they exploit QoS-
based allocation of computational resources for advanced avionics systems.

Role of the Resource Management System:
The application knowledge required at the RMS is comparable to the unrestricted
dynamic resource allocation technique. However, the explicit specification of gran-
ularity and interdependencies of resource allocations is rendered unnecessary, since
this information is subsumed in the specification of the QoS levels of the individual
DAS. One possibility to provide this information to the RMS is via resource requests
themselves. For instance, a request from the navigation system server could contain
the requirement for a download channel with a bandwidth of 90Mbit/s, but includ-
ing also additional degraded QoS levels (e.g., 50 Mbit/s, or 100 kbit/s) in case the
actually available resources would be exceeded.
Another approach is to explicitly specify a finite set of operation modes for each
application subsystem, each augmented with a specification of the resource require-
ments at different QoS levels. This way, an off-line analysis can be performed, to
investigate whether the resources are sufficient to enable for each DAS the provision
of its service (at least at a degraded QoS level). An example for such a specification
for the infotainment application subsystem is presented in Table 4.5.

Resource Management Procedure:
In case a finite set of operation modes with its QoS levels is specified for each DAS,
each job can directly request one of the specified modes. The RMS is responsible for
summing up the resource demands required for operating each DAS in its requested
mode. When a resource allocation conflict occurs, the RMS is empowered to change
the QoS level of particular DASs, again according to the priority and utility of the
respective subsystem with respect to the entire system. By changing the QoS level,
a DAS is still able to provide the requested service, potentially of degraded quality.
Considering the example presented in Table 4.5, when the operating mode Update is
requested, the RMS is only empowered to change to a lower QoS level (from level 4
to 0), but not to the operating mode Route. If the DAS permits the deactivation
of a service in case of resource allocation conflicts, this has to be explicitly specified

66

4 Resource Allocation Policies 4.5 Discussion

Mode QoS Bandwidth Comment
Update 4 90Mbit/s + 10 kbit/s download of map or road information

updates with maximum download rate
3 50Mbit/s + 10 kbit/s download map or road information up-

dates with reduced download rate
2 1Mbit/s + 10 kbit/s — ” —
1 100 kbit/s + 10 kbit/s — ” —
0 10 kbit/s download deactivated

Route 3 510 kbit/s route information (100 kbit/s), infor-
mation on POIs (100 kbit/s), 3D visu-
alization data (300 kbit/s), and control
data (10 kbit/s)

2 210 kbit/s route information, information on
POIs, and control data

1 410 kbit/s route information, 3D visualization
data, and control data

Table 4.5: Exemplary operation modes and QoS levels for the infotainment DAS

(e.g., as it is the case for QoS level 0 in the example). After the resource allocation, all
affected application subsystems are informed whether the requests have been granted
or a QoS level has been changed and the configuration of the communication system
is updated.

4.5 Discussion

In this section we discuss the various advantages and disadvantages of the different
resource allocation policies.

Static Resource Allocation. The completely static approach is an approved al-
location policy, which has been successfully applied for years especially in the domain
of safety-critical embedded systems. The main benefit of the static approach is that
resource allocations can be analyzed off-line, identifying potential design failures or
eliminating resource conflicts.

However, the resource utilization achieved by this approach is inefficient compared
to the other presented policies. The system is designed to cope with the maximum
resource needs of all application subsystems—in case of the example introduced in
Section 4.1 this means the sum of the maximum bandwidth requirements of all ap-
plication subsystems. Although it can be shown that the communication resources
are sufficient for implementing the presented DASs according to their specification
(e.g., by using a QoS-based resource allocation policy), the available communica-
tion resources would be exceeded with the static resource allocation approach. The
main reason for this is that many application subsystems inherently comprise vari-
ous mutually exclusive modes of operation. To disregard this application knowledge

67

4.5 Discussion 4 Resource Allocation Policies

entails a resource allocation with lower complexity at the expense of a worse resource
utilization.

Dynamic Resource Allocation. As long as enough resources are present in the
system to fulfill the requirements of all DASs, the unrestricted dynamic allocation
approach is very flexible and provides the possibility to achieve the most fine-grained
allocation of resources to the individual micro components. In this case, it facilitates
to strive for an optimal resource utilization. For instance, as soon as a request for
communication resources is received, the RMS updates the communication schedule
accordingly and notifies the requesting job about the change. This is a straight
forward operation in case enough resources are available.

For a dynamic resource allocation policy, it is important that mechanisms are
realized that permit to free unused resources. One way to accomplish this is using
the assumption of cooperating jobs, i.e., individual jobs notify the RMS in case
resources are not used by them any longer. A further approach would be to detect
unused resources by the RMS (e.g., similar to the functionality of a garbage collector
in Java) for instance by applying a least recently used policy on resource usage.
Alternatively, an expiration time for granted resources could be defined. This way,
jobs bear the responsibility to refresh resource requests before the expiration time
elapses, otherwise the resources would be deallocated.

However, the biggest challenge for the unrestricted dynamic allocation policy
emerges in case the overall resources of the system are not sufficient for all DASs (as
it is the case in the presented example). The RMS has then to decide which DAS is
of higher importance, e.g., has more utility for the overall system, than the others in
order to determine which resource requests are granted and which are refused. For
those decisions a vast amount of application knowledge has to be stored at the RMS,
e.g., utility of the application subsystem for the overall system or granularity and in-
terdependencies of the resource allocations. To achieve an efficient and valid resource
allocation using a unrestricted dynamic allocation policy is therefore a challenging
and complex task.

Consider the case in the exemplary application of Section 4.1, in which the DVD
stream is already activated and at the same time the navigation system server re-
quests a map update with the highest download rate, i.e., 90Mbit/s. In this simple
case, the available bandwidth of the internal network would be exceeded and the
RMS has to decide which one of the following responses to the request it will choose:

1. The request is declined and the infotainment DAS is informed that requested
bandwidth for the download is not allocated to the micro component.

2. The resources are granted to the infotainment DAS and the resources allocated
to another DAS are reduced. The affected application subsystems are informed
about this change.

68

4 Resource Allocation Policies 4.5 Discussion

3. The amount of communication bandwidth requested by the infotainment ap-
plication subsystem is decreased to an amount for which sufficient resources
would be available (e.g., from 90 Mbit/s to 50Mbit/s).

Alternative (1) is unsatisfying, specifically because the still available bandwidth is
enough for enabling the download of updated data with a reduced download rate,
which would still satisfy the specification of the DAS. For alternative (2) the RMS
has to decide, for which application subsystem it is possible to reduce the allocated
resources (e.g., according to the description of the ESP application subsystem it has
to be assured that no resources are withdrawn at any circumstances). In addition,
the RMS has to determine the amount of which the resource allocation is decreased
for the selected DAS, which is also necessary for alternative (3).

This is a very complex challenge. While it is possible to reduce the commu-
nication bandwidth allocated to the data update stream more or less continuously
(cf. Table 4.4), all other messages defined for the infotainment subsystem demand
a fixed amount of bandwidth. This applies to the multimedia subsystem as well.
Furthermore, this bandwidth reduction might have severe consequences on the func-
tionality of the entire application subsystem. Consider, for instance, the reserved
bandwidth for the control channel in the infotainment DAS. If this communication
channel is removed from the internal network by means of resource management,
no route information requests can be transmitted to the navigation system server
on the one hand, and no data updates can be initiated by the navigation server
itself—resulting in a failure of the entire application subsystem.

Restricted Dynamic Resource Allocation. The main difference between the
unrestricted and the restricted dynamic resource allocation policy is that in the latter
one, the distribution of resources between DASs is calculated off-line and remains
stable during the lifetime of the system. Thus, the RMS is only empowered to
(re)allocate resources within the boundaries of a DAS, which is similar to the concept
of federated architectures where each subsystem is implemented on its own dedicated
computer system. This way, the workload of the RMS is reduced and the allocation
decisions are simplified, e.g., each application subsystem can specify an allocation
strategy that is tailored exactly to its needs.

However, the static resource distribution between DASs hinders the RMS to
exploit resources that are left unused (e.g., in case only a single video stream is
selected rather than the PiP mode). This would result in a worse resource utilization
than using the unrestricted dynamic allocation policy. For instance, with the present
example, similar to static resource allocation, it is not possible to find a static resource
distribution among application subsystems, as required for the restricted dynamic
approach, that would fulfill the requirements of all DASs.

QoS-Based Resource Allocation. The QoS-based resource allocation policy is a
trade-off between a fully flexible resource allocation as provided by the unrestricted

69

4.5 Discussion 4 Resource Allocation Policies

dynamic approach and the low complexity and low overhead induced by resource
management as in the static approach. Obviously, the introduction of modes, pos-
sibly augmented with different levels of QoS, reduce the flexibility w.r.t. resource
allocation compared to the unrestricted dynamic approach. Furthermore, the spec-
ification of modes is an efficient way to provide application knowledge to the RMS.
The specification of degraded QoS levels for individual modes of operation of DASs
empowers the RMS to resolve resource conflicts without changing the intended be-
havior of an application subsystem. For instance, by the use of degraded QoS levels
it could be specified in the infotainment subsystem that the communication require-
ments for the download of updated information is permitted to vary from 100 kbit/s,
1Mbit/s, 50 Mbit/s to 90 Mbit/s. However, in the concrete example given in Sec-
tion 4.1 changing the resolution of the rear view camera stream from 640x480 pixel
per frame to 320x240 pixel is not an allowed specification of a QoS level, since the
intended behavior would change, i.e., the full quality display of the rear view camera
stream will be reduced to a presentation of the stream with the resolution of the PiP
mode.

Furthermore, at design time the use of modes for capturing all resource require-
ments of DASs allows for a simple specification of resource allocations that must
not be changed during the systems’ lifetime. For instance, for the ESP application
subsystem only a single mode of operation without degraded QoS levels would be
specified, which captures the communication requirements of all jobs. Since no de-
graded QoS levels are specified, the RMS is only able to grant either all resources to
the application subsystem or no resources at all. This would represent a failure of
the DAS in the given example.

Since for each application subsystem a finite number of modes is specified, an
off-line analysis can be performed in order to determine the maximum resource re-
quirements that may emerge during the lifetime of the system. With such an analy-
sis, it could be guaranteed that all application subsystems, especially those requiring
statically assigned resources like the ESP subsystem, will receive a sufficient share of
the available resources to execute their functionality. In particular, w.r.t. integrated
systems the ability to evaluate the affects of adding an additional application subsys-
tem, possibly originating from a different application vendor, to an existing system,
is of high importance.

The resource management approach followed in the TTSoC architecture aspires
to combine advantages of the static resource allocation policy, as well as, the flexibil-
ity provided by the QoS-based resource allocation policy. Therefore, the RMS of the
TTSoC architecture comprises two architectural elements. A dedicated architectural
element, the Trusted Network Authority (TNA), assures that design-time allocations
and resource guarantees are always preserved, while the so called Resource Manage-
ment Authority (RMA) is concerned with processing resource requests according to
a QoS-based resource allocation policy. The details of this policy and the executed
resource management procedure are the focus of the next chapter.

70

Chapter 5

Resource Management in the
TTSoC Architecture

In the previous chapters we have introduced the TTSoC architecture and have given
an overview on different approaches to perform resource allocation. It is now the pur-
pose of this chapter to present a resource management solution for the TTSoC archi-
tecture. The chapter starts with an introduction of the requirements on the resource
management solution in Section 5.1, which is followed by a description of the devised
resource management strategy in Section 5.2. Section 5.3 elaborates on the particular
resources of the TTSoC architecture that are subject to resource management. This
is followed by an explanation of the architectural elements for resource management.
Subsequently, Section 5.4 is dedicated to the Trusted Network Authority (TNA) and
Section 5.5 describes the Resource Management Authority (RMA).

5.1 Requirements on Resource Management

The concrete design of a real-time system and its dimensioning w.r.t. the amount
of resources provided to the hosted application subsystems depend highly on the
targeted domain of the application, e.g., automotive applications, multimedia appli-
cations, control applications, etc., and its demanded functional and non-functional
(e.g., dependability) characteristics. For instance, in safety-critical applications, it is
a mandatory requirement that the resources provided by the real-time system meet
their worst-case load. In contrast, the design of non safety-critical applications, ba-
sically driven by economic forces, has typically to cope only with the average case
of the anticipated resource usage and has to support dynamic resource allocation,
respectively.

Dynamic resource management enables the system to react to changing resource
demands of application subsystems by modifying the allocation of the available re-
sources to the hosted application subsystems over time. This modification is depen-
dent on (i) the actual resource demands of the application subsystem (e.g., commu-
nication resources, computational resources, power), (ii) the availability of resources

71

5.1 Requirements on Resource Management 5 RM in the TTSoC Architecture

on the SoC, and (iii) the benefit for the user arising from the respective applica-
tion subsystem. This permits a more efficient dimensioning of the system, since it
is not necessary to consider the worst-case resource requirements of all application
subsystems.

The SoC architecture aims at being deployed in various application domains sup-
porting the integration of application subsystems (i.e., DASs) of mixed criticality.
Therefore, it arises, on the one hand, the demand for the resource management solu-
tion to support resource guarantees, which are designed for the worst-case resource
demand of safety-critical application systems. On the other hand, flexibility w.r.t. re-
source allocation becomes important, in order to be competitive in the realization of
non safety-critical application subsystems.

Besides an improved utilization of the available resources, dynamic resource man-
agement can be used to improve the dependability of the SoC in case a micro com-
ponent develops a permanent fault. Consider an SoC containing many micro com-
ponents of identical hardware where functional differentiation is solely provided by
application software. In case one of those micro components fails permanently, dy-
namic resource management can be exploited to relocate the affected function to a
spare micro component. This would relax the requirement for 100% correctness for
devices and interconnections, which may dramatically reduce the cost of manufac-
turing, verification, and test of SoCs based on the TTSoC architecture.

In order to cope with the functionality of the different targeted application do-
mains of the TTSoC architecture, the following generic requirements on dynamic
resource management have been identified:

Correctness of Resource Allocation: All DASs hosted on the SoC have to rely
on dynamically created resource allocations. Thus, it has to be guaranteed that
only correct resource allocations are generated, respectively, already correct
resource allocation are not violated.

Guaranteed Resource Shares: Since the SoC architecture aims at being deployed
for mixed criticality systems, resource management must ensure that for dedi-
cated DASs (in particular safety-critical DASs) a certain amount of the shared
resources is reserved and that this amount is protected by hardware mecha-
nisms to ensure that it is never affected by any resource (re)allocation.

Bounded Reconfiguration Time: We demand from the resource management so-
lution of the TTSoC architecture that after a (re)allocation of resources is re-
quested, e.g., due to a change in the load of an application or by a diagnostic
service that detects a permanent fault of one of the micro components, a new
assignment of resources is calculated in bounded time. This is required in or-
der to enable a discrimination between correct and defective behavior of the
resource management.

To cope with these requirements, the SoC architecture provides the Trusted Net-
work Authority (TNA) and the Resource Management Authority (RMA)—two sepa-
rated architectural elements for realizing dynamic resource management. Figure 5.1

72

5 RM in the TTSoC Architecture 5.2 Resource Management Strategy

Micro

Component 2

Micro

Component 1

RCLIF

Job A.1

RMA

RM A RM B RM N

RCLIF RCLIF RCLIF

R
C

L
IF

R
C

L
IF

Micro

Component 2

Job A.2

RCLIF RCLIF

Job B.1

Micro

Component N

RCLIF

Job N.1

CP CP CP CP

CP

Figure 5.1: Dedicated architectural elements for resource management in the TTSoC
architecture. The interfaces depicted in this figure are: Configuration and Planning Interface
(CP), and Resource Coordination Linking Interface (RCLIF)

depicts this separation between TNA and RMA and shows the information flow from
and to the individual interfaces of TNA, RMA, and each of the micro components.
The Configuration and Planning (CP) interface depicted in Figure 5.1 is used by
the TNA to assign resources to micro components, e.g., communication resources
are assigned by updating the MEDL at each TISS accordingly. The interface of a
job towards the RMA is denoted Resource Coordination Linking Interface (RCLIF).
We consider this interface as part of the LIF of the job, because knowledge of re-
configuration capabilities of a job’s service, e.g., different existing primary modes of
its provided service, are required to completely understand a job’s behavior. The
RCLIF of a job towards the RMA is used by the job to disseminate reconfiguration
requests to the RMA or to the respective Resource Manager (RM) within the RMA
(see Section 5.5 for more details). The RCLIF between RMA and TNA is used to
pass on resource allocations computed by the RMA to the TNA, which checks their
validity and responds whether they are accepted or not.

5.2 Resource Management Strategy

As a consequence of the discussion in Section 4.5, we decided in favor QoS-based
resource management policy. This approach requires capturing of application knowl-
edge, which is performed by the explicit specification of modes of operations for each
DAS hosted on the SoC. This specification is the focus of the next subsection. The
interaction of jobs and RMA, as well as, RMA and TNA are the topics that are
discussed subsequently.

73

5.2 Resource Management Strategy 5 RM in the TTSoC Architecture

5.2.1 Specification of Applications and Modes

As explained in Section 3.3, we consider a DAS as a functional part of the entire
system, e.g., body electronics or multimedia subsystem in the automotive domain,
which provides a well specified service that might change over time. In order to
facilitate the capturing of those service changes, we restrict them to occur only
within a priori known bounds, which are called primary modes of an application
subsystem.

The change between primary modes is initiated by the DAS itself (e.g., indirectly
triggered by a request from the environment) and not caused by the resource man-
agement solution of the SoC. Examples for primary modes in the previously given
automotive example are different playback modes (e.g., audio or video playback)
in the multimedia subsystem. A switch between primary modes represents always
a substantial change in the service of an application subsystem. This change may
affect temporal parameters of communication channels, the communication topol-
ogy between cooperating jobs, or (in)activates a subset of the jobs of an application
subsystem.

Additionally, for each primary mode a set of degradation levels is defined. Dif-
ferent degradation levels represent the same service of one primary mode, but with
different QoS levels. The complete deactivation of a service represents a special case
of a QoS level. Continuing the example mentioned beforehand, degradation levels
of the primary mode video playback can be considered as different frame sizes and
frame rates of the video stream in a multimedia system. Also the inactivation of
the video stream can be considered as a degraded mode. Each degradation level is
characterized by resource demands of the individual jobs realizing the application
subsystem, as well as, a penalty. The penalty indicates loss of utility for the entire
system when switching to a particular degradation level.

The specification of those modes of operation, i.e., primary modes and related
degradation levels, has to comprise all information about the resource requirements
of the entire DAS in the given mode. This information is exploited by the RMA
for generating the resource schedule. Therefore, the definition of operation modes
includes at least the following for every DAS and every mode:

Active jobs. In different primary modes a differing subset of constituting jobs of a
DAS may be active. Consider for instance the multimedia example introduced
in Section 4.1. A typical change of a primary mode would be to switch from
displaying the DVD stream to the rear camera stream at the monitor. This
entails a switch of the active jobs.

Job allocation. During the generation of the PAM (cf. Section 3.3), an allocation
of jobs to micro components is generated. This information is exploited by the
RMA to instantiate the required SoC-Channels and SoC-Ports for implement-
ing the interconnection of cooperating jobs.

74

5 RM in the TTSoC Architecture 5.2 Resource Management Strategy

Micro component configuration. As elaborated in Section 3.2.1, the TISS pro-
vides a set of core platform services via the UNI to its host. Some of those
services can be parameterized by the host itself (e.g., the programmable timer
interrupt service), others require to be configured solely by the TNA, e.g., the
watchdog service and the power control service. The actual configuration pa-
rameters of the latter services are part of the specification of every mode. For
instance, consider a job for which the watchdog service is activated. When
this job is deactivated in a particular mode, the watchdog service has to be
deactivated as well. Otherwise, misleading diagnostic information would be
generated by the respective TISS.

Communication topology. The UFIM of each DAS (cf. Section 3.3) comprises
the specification of the entire communication requirements of the DAS in a
platform-independent way. Some of the specified communication channels are
mandatory for every mode, others are not. Therefore, a list of active commu-
nication channels has to be specified for each mode of operation. Furthermore,
for each communication channel, a sender job, receiver job(s), and temporal
constraints (e.g., bandwidth, phase alignment, etc.) have to be specified.

Using this system model, the task of dynamic resource management is to obtain
that set of degradation levels for all DASs in a specific primary mode that yields
the minimum penalty and for which the sum of the demanded resources is available.
Since the specification of the primary modes and their degradation levels is done at
design time of the application subsystems, it can be verified off-line that all possibly
simultaneously occurring primary modes do not exceed the overall available resources.
Furthermore, it is important that it is not possible for the resource management
solution (i.e., the RMA in our case) to change the primary mode of a DAS, but only
its degradation level.

For facilitating the composition of independently developed DASs, it is important
that the penalty value denotes an absolute (in the meaning of system-wide) instead
of an relative (i.e., only in the context of the single DAS) loss of utility. Otherwise, a
prioritization of particular application subsystems may occur. Therefore, the penalty
has to be determined in the context of the integration of all application subsystems
to the overall system, i.e., during the transformation of the FIM to the PAM.

5.2.2 Interaction Pattern

The interactions between architectural elements of the SoC, as well as, interactions
between the jobs with the RMA can be classified into three distinct stages. The first
stage deals with the acquisition of resource requests at the RMA by interacting with
the hosted jobs. This is followed by the computation and verification stage which
is performed jointly by RMA and TNA. The final stage deals with the execution
of the computed resource (re)allocation, which includes a configuration of the micro
components by the TNA, as well as, a notification of the jobs about the conducted

75

5.2 Resource Management Strategy 5 RM in the TTSoC Architecture

Micro

Component 1

Resource

Management Authority
Trusted Network

Authority

1

2

3

4

5

6

0

Micro

Component 2

Micro

Component N

Trusted

Subsystem7

7

6

0

Figure 5.2: Different phases of resource management

changes by the RMA. Taking a closer look, these three stages can be subdivided
into eight phases (cf. Figure 5.2), which are explained in the following. Please note
that Phase 0 is executed only once at the startup or after reset of the SoC, while
the other phases (Phases 1 to Phase 7) are executed periodically for every SoC
reconfiguration.

Phase 0: The TNA writes the configuration of the TISS of each micro component
according to an initial schedule, which is statically stored in the memory of the
TNA. The purpose of this initial schedule is to pre-configure the SoC in order to
enable an initial startup and further reconfiguration activities, i.e., at least the
SoC-Channels between the RMA and all micro components that are requesting
for resources have to be established. Optionally, statically configured RMA-to-
job messages containing an initial configuration of (parts of) the jobs can be
disseminated from the RMA to the respective jobs.

Phase 1: The jobs of the individual DASs hosted on the SoC send their resource
requests to the RMA. As explained in the previous section, we decided in favor
a QoS-based resource management strategy by using explicitly defined modes
of operation for each DAS. Thus, a resource request is initiated by the job by
requesting for a particular primary mode of its DAS.

Phase 2: The RMA processes the resource requests and performs a (re)allocation
of the available resources according to the specification of the requested modes.
This phase results in an adapted resource schedule describing a proposal for a
new configuration of the SoC.

Phase 3: The newly generated resource schedule is sent from the RMA to the TNA
for further verification.

76

5 RM in the TTSoC Architecture 5.2 Resource Management Strategy

Phase 4: In this phase of the reconfiguration procedure, the TNA performs a veri-
fication of the configuration proposal received from the RMA. The TNA acts
as guard for the system configuration by checking the communication schedule
for its correctness and by ensuring that the allocation of protected resources is
not violated.

Phase 5: Based on the results of the previous phase, the RMA is informed, whether
the configuration proposal is accepted, or not.

Phase 6: In Phase 6 the results of the reconfiguration procedure are made visible
to the architectural elements of the SoC, as well as, to the hosted jobs. If the
TNA considers the configuration proposal as correct, the TISSs of all micro
components are updated accordingly and the RMA informs the respective jobs
whether their requests have yield to any changes in the resource allocation or
have any effect on the operational mode of a job. If the configuration proposal
is rejected, the currently active TISS configuration remains active and the jobs
are notified about the refusal.

Phase 7: The last phase of the reconfiguration process is concerned with the actual
reconfiguration of the TISSs and the hosts based on the inputs received from
TNA and RMA, respectively. This reconfiguration is triggered at all micro
components of the SoC at the same global point in time, denoted as recon-
figuration instant. Therefore, it has to be ensured that the static schedule of
the SoC-Channels required for executing Phase 6 guarantees a timely recep-
tion of the configuration information at each micro component, i.e., before the
reconfiguration instant.

Static Message Schedule for Resource Management

The chronology of the individual phases of resource management as defined above
in combination with the necessary message exchanges is depicted in Figure 5.3—
except for Phase 0 which is executed only once at the startup. The here depicted
sequence of the reconfiguration phases is recurred periodically with a period denoted
as reconfiguration period.

The message exchanges over the NoC, which occur at Phase 1 and Phase 6, are
realized by static SoC-Channels. Since they are mandatory for the correct function
of the resource management procedure, they are not subject to reconfiguration and
are protected by the TNA. These static SoC-Channels can be classified into three
different categories: The first category (related to Phase 1) comprises the static
channels between a selected set of micro components and the RMA. Only those
micro components which are permitted to invoke resource requests are provided with
such a channel to the RMA. The second category (related to Phase 6) comprises
static channels from the TNA to each micro component of the SoC. These channels
are used for updating the TISS configuration by the TNA. The third category (also
related to Phase 6) comprises static channels to all micro components of the SoC in

77

5.2 Resource Management Strategy 5 RM in the TTSoC Architecture

reconfiguration period

RMA Task

TNA Task

NoC Communication

2

1

3
4

5

6 6 7

Host

TISS

Host

TISS

Host
TISS

TISS

RMA

TNAreconfiguration instant

t

disabled interval

Figure 5.3: Resource management message sequence diagram

order to inform the jobs hosted at the respective micro components about potential
changes of the resource allocation, which have been either invoked by themselves or
by another job.

As depicted in Figure 5.3 it is not mandatory that the initiation of a resource
request by a job is aligned with its actual transmission over the NoC to the RMA.
The reason for this is that the information disseminated in this first phase of the
reconfiguration procedure exhibits state semantics and is sent by the use of periodic
time-triggered messages. Thus, repeated resource requests of a job within one re-
configuration period are overwritten. So, it is possible to activate the computations
at the RMA only once in each reconfiguration period, namely after the reception
instant of the last statically scheduled SoC-Channel relating to Phase 1, regardless
whether a resource request has been disseminated over this channel or not. This is
important for simplifying the computations of the RMA, since it is ensured that the
RMA has a stable view of all requested resources from the individual DASs before
starting its computations.

After the newly generated configuration information has been disseminated to
the micro components (cf. Phase 6), the actual reconfiguration of the TISSs and
the hosts can be performed. This reconfiguration is triggered at the reconfiguration
instant, which is an SoC-wide consistent global point in time, at which the new
configuration becomes active at all micro components. The reconfiguration interval
is the time required for performing the update of the affected data structures at
the TISSs and jobs. During this time interval all communication activities on the
NoC are disabled. The length of this interval is determined by the micro component
requiring most time for performing its reconfiguration. It represents an important
value for the parameterization of the timing of the resource management solution,
because when constructing a communication schedule, the RMA has to ensure that
TDMA slots during this interval remain unused.

Since the generation of the resource schedule (cf. Phase 2) and the execution of
the correctness checks (cf. Phase 4) have to be performed sequentially, the sum of the

78

5 RM in the TTSoC Architecture 5.3 Manageable Resources

times required for those two phases determines the minimal reconfiguration period
of the SoC component.

5.3 Manageable Resources in the TTSoC Architecture

Before we explain how resource management is actually performed in the TTSoC
architecture, this section identifies those resources of the SoC that are subject to
reconfiguration. These resources are the time-triggered NoC, the micro components
by altering their configuration, and the consumed power of the SoC chip.

5.3.1 Time-Triggered Network-on-Chip

The central shared resource of the TTSoC architecture is the time-triggered NoC.
Since it is shared among all micro components, a host that is able to monopolize
the access to the NoC, directly impairs the services provided by all other hosts.
Therefore, the coordination of this resource is performed via the generation of a
conflict free time-triggered schedule that is protected by the TISSs of each micro
component. In a static system the calculation of a conflict-free message schedule and
the configuration of the individual micro components could be performed off-line.
For dynamic systems, however, management of this resource means to dynamically
adapt the message schedule during runtime in order to fulfill the (possible changing)
temporal requirements, e.g., bandwidth or latency, of the messages utilized by a
particular application.

So far, we have not made any assumption on the actual implementation of the
NoC, e.g., the physical structure of the interconnect (bus, mesh, etc.). It is the
intention of the TTSoC architecture that the choice of implementation of the NoC
is not restricted as long as it permits the predictable, time-triggered transport of
periodic and sporadic messages between micro components. For the allocation of
periodic sending slots of the time-triggered NoC, we have introduced in Section 3.2.2
a communication primitive, denoted as pulsed data stream [Kopetz, 2006]. Please
note that even pulse data streams represent a highly generic communication primitive
abstracting from the concrete implementation of the NoC.

However, for actually managing the communication resources, i.e., calculating a
new time-triggered communication schedule, details regarding the physical structure
of the NoC are vital parameters. In the course of the European project DECOS,
a first implementation of the TTSoC architecture has been devised, which employs
a bus-based implementation of the NoC [DECOS, 2006]. Additionally, within the
course of the national project TT-SoC two further implementations are planned in-
cluding an improvement of the bus-based implementation founded on the work of
the DECOS project and a full-scale NoC implementation exhibiting a mesh struc-
ture [TT-SoC, 2007a]. While the full-scale NoC supports the concurrent transmission
of fragments originating from multiple pulsed data streams, only a single fragment
of one pulsed data stream is permitted to be in transit at any time in the bus-based

79

5.3 Manageable Resources 5 RM in the TTSoC Architecture

implementation. Hence, it is obvious that the generation of a conflict-free message
schedule is different for the implementation alternatives. For instance, a bus-based
implementation apparently requires that any two fragments must not be scheduled
at the same instant in order to create a conflict-free schedule.

This thesis describes in Chapter 6 a case study of the resource management
solution that is based on the DECOS implementation of the TTSoC architecture.
Hence, the algorithms for managing the communication resources presented in that
chapter are tailored to the requirements of a bus-based NoC realization.

5.3.2 Micro Component Configuration

The micro components (more precisely the hosts of the micro components) provide
the computational resources for the execution of jobs. The initial allocation of micro
components to jobs is performed offline at design time of the system, i.e., during the
generation of the Physical Allocation Model (PAM) in the model-based development
process. In particular for safety-critical application subsystems, these assignments
are typically static and not subject to change over time.

However, to react to changing requirements of the applications or on changing
availability of computational resources, the TTSoC architecture provides the capabil-
ity to reallocate particular micro components to different jobs. On an SoC containing
multiple general purpose micro components (e.g., realized by a host implemented as
a general purpose CPU), dynamic allocation of micro components to jobs can be
achieved by loading system software (e.g., a simple operating system) and applica-
tion software onto the micro components during runtime.

Besides changing the entire application that is executed on a particular micro
component, the requirements of an application regarding resource demand will also
change over time. As described beforehand, we assume that those expected changes
are specified using modes, which are defined during the design time of the system.
Such a mode change of an application subsystem could have impact on various pa-
rameters of a micro component.

Consider the simple example depicted in Figure 5.4. It depicts a simplified path
planning system for an autonomous mobile robot consisting of a planning job and
two sensor data processing jobs for providing information about the position of the
robot. While one of the sensor data processing jobs provides odometry information
to the job responsible for path planning, the other job provides GPS information. In
order to improve the energy efficiency of the system, solely the odometry information
is used at the planning job for calculating the position of the robot and the micro
component hosting the GPS job is put into standby, e.g., a primary mode denoted as
mode 0. Only for determining the initial position and for correcting the accumulated
errors of the odometric sensor data, the GPS sensor data is used (e.g., expressed by
the specification of a primary mode mode 1).

Besides updating the message schedule of the NoC, which concerns resource man-
agement w.r.t. communication resources, the management of the micro component

80

5 RM in the TTSoC Architecture 5.3 Manageable Resources

planningJob

odometryJob GPS_job

planningJob

odometryJob GPS_job

SoC-port

UFIM-port

inactive UFIM-port

mode 0 mode 1

inactive job

odometric sensor GPS sensor

micro component

Figure 5.4: Changing the mapping of UFIM-ports to SoC-ports

configuration after a change from mode 0 to mode 1 entails the following activities:
First, the micro component (more precisely the host of the micro component) has to
be activated from standby (e.g., using the power control service of TISS if supported
by the actual implementation of the micro component). In addition, the RMA has
to allocate new SoC-ports at the micro component hosting the planning job and the
micro component hosting the GPS sensor job, in order to enable the establishment
of an SoC-channel for data exchange. Finally, the newly generated ports have to be
made visible to the jobs. This is realized by configuring the mapping of UFIM-ports
to SoC-ports which is stored within each job (or within its underlying execution en-
vironment). This has to be realized for both affected jobs, the GPS job, as well as,
the planning job.

In addition, to change the allocation of jobs to micro components, respectively,
to activate or deactivate particular jobs and all corresponding channels and ports, we
assume that each host permits via its CP interface the modification of its computa-
tional resources. In its most basic realization this means that the host supports only
two modes: the entire host can be switched off or on again. In refined host realizations
various gradations of the computational resources of the host could be distinguished.
Then, it is one challenge of the RMA to select the appropriate operating mode of
the host, which is, on the one hand, sufficient to provide the computational resources
required for the timely completion of the hosted jobs and, on the other hand, is
efficient regarding the power consumption of the host.

5.3.3 Power

Similarly to the time-triggered NoC, power can also be seen as a shared resource on
the SoC: A faulty micro component that consumes more power than permitted is
able to directly influence the correct operation of the entire chip. Typically, from
two different aspects power plays an essential role in embedded systems, namely,
maximum power dissipation and energy consumption.

81

5.3 Manageable Resources 5 RM in the TTSoC Architecture

Maximum Power Dissipation: For every silicon chip, the maximum dissipated
power is a limit arising from the physics of the chip that constrains the chip
design. In most cases, exceeding this limit entails irreparable damage of the
chip caused by heat development exceeding the critical values of the deployed
materials. Thus, being able to take influence on the dissipated power of an SoC
enables the system to react to changing environmental conditions and preserve
the SoC from damage. Roughly speaking, the total power dissipation of an
SoC chip results from the power dissipation of a single transistor on the chip
times the number of transistors a chip comprises. A detailed formulation of
the sources of power dissipation in CMOS technology is given in Section 2.2.3.

Energy Consumption: The energy consumed for the completion of a task is the
product of the dissipated power and the time that is required for the task com-
pletion. A system using a finite source of energy, e.g., a battery-operated
device, is an energy-constrained system. For such a system, the improve-
ment of the energy consumption is comparably more important than the re-
duction of the maximum power dissipation. In general, reducing the power
dissipation and improving energy consumption are two different system design
goals [Unsal and Koren, 2003]. For example, for the reduction of power dissi-
pation Dynamic Voltage and Frequency Scaling (DVFS) approaches (cf. Sec-
tion 2.2.3) can be used. However, by reducing the clock frequency it is possible
that the low performance of the SoC will increase the actual energy consump-
tion, because of the extended time required for the completion of the task.

Influencing Power/Energy Consumption:

The TTSoC architecture supports different possibilities for parameterizing the config-
uration of the SoC to have a beneficial influence on the power or energy consumption
of the chip. First, Dynamic Power Management (DPM) techniques (cf. Section 2.2.3)
can be deployed for micro components. On the one hand, unused micro components
like spare micro components that would only be exploited in case a permanent failure
of another micro component on the SoC occurs, can be put into an energy efficient
standby mode, e.g., by exploiting the power management service of the TISS. Sim-
ilarly, the idle time of hosts could be exploited. For instance, the RMA can use
knowledge about the points in time at which a particular host is idle, e.g., a host
that executes a job that is triggered only after the reception of a message. By putting
such a host into a standby mode, the overall power consumption of the micro com-
ponent could be reduced. On the other hand, more fine-grained operation modes
of individual micro components could be investigated, which support, for instance,
the deactivation of particular parts of the TISS or the host. Consider, for instance,
the functional elements within the TISS implementing the network interface towards
the NoC. When the processing of pulsed data streams of different periods is realized
by dedicated hardware, parts of the hardware can be deactivated (e.g., by means of
clock gating), if no pulsed data stream of the associated period is part of the current

82

5 RM in the TTSoC Architecture 5.4 Trusted Network Authority

message schedule. This would lead to a reduction of the dynamic power consumption
of the respective TISS.

Likewise, unused resources of the NoC can be exploited for achieving power sav-
ings. As described in [TT-SoC, 2007b, p. 29f], the full-scale NoC that is implemented
in the course of the TT-SoC project consists of so-called fragment switches, which
form the topology of the NoC. Depending on the actual schedule of pulsed data
streams and their routing, at any time a particular amount of fragment switches is
idle. By setting this idle fragment switches into a power-efficient standby mode, the
power consumption of the entire NoC can be reduced. Since the extent to which a
reduction can be achieved depends on the number of idle fragment switches and their
idle times, appropriate scheduling and routing of pulsed data streams can improve
the power consumption of the NoC.

In addition to DPM techniques, with the use of DVFS (see Section 2.2.3) further
power and energy savings could be achieved. Nowadays, several processor families,
as for example the Intel R© XScaleTM processor family [Intel, 2000], support the op-
timization of the power dissipation of a processor produced for the completion of a
given workload by adapting the performance per mWatt ratio via DVFS techniques.
This would again require in-depth application knowledge at the RMA, in order to
decide to which extent it is permitted to lower the power dissipation at the expense
of performance.

5.4 Trusted Network Authority

The TNA together with the time-triggered on-chip network and the TISSs of each
micro component form the trusted subsystem of the SoC. Since failures within these
core architectural elements are likely to cause failures of the entire SoC, a thorough
design of the TNA is of great importance. In case the SoC is deployed for building
distributed systems for applications with high dependability requirements, the TNA
has to be certified at least to the same level of criticality as required for the most
critical application subsystem hosted on the SoC. In order to ease such a certification,
the complexity of the TNA is kept as low as possible. Therefore, only a small set of
stable, application independent services are provided by the TNA:

1. Protection of the resources of privileged application subsystems

2. Configuration of the micro components via their CP interfaces

3. Establishment and maintenance of the global time

In the following subsections we address each of those services in more detail.

5.4.1 Resource Protection for Privileged Application Subsystems

The computation of the allocation of resources to individual DASs in case of a recon-
figuration of the SoC, e.g., allocation of communication resources and power among

83

5.4 Trusted Network Authority 5 RM in the TTSoC Architecture

Time-Triggered On-Chip

Communication System

TNA
TISS

R
M

A

O O

I I

I

O

State message port with information push

State message port with information pull

Sporadic time-triggered port

O

Output state message

I Input state message

RCLIF RCLIF

Figure 5.5: Data flow between RMA and TNA

DASs, as well as, the configuration of computational resources within single micro
components, is performed by the RMA. The RMA periodically disseminates the
(updated) resource allocation of the SoC to the TNA, which checks the validity of
the resource allocation. Based on this configuration information, the TNA updates
the SoC via the CP interfaces of the individual micro components.

Figure 5.5 depicts this data flow from RMA to TNA. Since the RMA is not part
of the trusted subsystem, it is realized as a dedicated micro component consisting of
a host (implementing the functionality of the RMA, denoted as RMA for short in
the following) and a TISS, which protects the on-chip interconnect.

The inner ports of the TISS towards the RMA are realized as state message ports
with information push semantics for the output ports and information pull semantics
for the input ports. This means, the point in time at which the state message that
is contained within the TISS is written or read is always in the sphere of control of
the RMA. The inner port of the Resource Coordination Linking Interface (RCLIF)
towards the TISS is also realized as a state message port (controlled by the TISS).
The outer port of the RCLIF of the RMA micro component is a time-triggered state
message port supporting sporadic time-triggered messages, i.e., the points in time at
which messages are permitted to be disseminated or received are a priori defined, but
the actual dissemination/reception depends on whether new information is available.

The outer ports of the RCLIF of the TNA are also realized as time-triggered state
message port supporting sporadic time-triggered messages. Each incoming message
replaces the state message stored in the RCLIF. The inner ports of the RCLIF
towards the TNA are realized as state message ports, i.e., it is in the sphere of
control of the TNA to decide when to read, respectively write the state messages.
Using these port characteristics, the message exchange between RMA and TNA (and
vice versa) is performed autonomously as soon as the state message ports within the
respective RCLIF are updated. In addition, the computations of TNA and RMA are
not interrupted by the reception of messages.

The configuration data is disseminated in a state message via a dedicated channel
from the RMA to the TNA. The layout of this message is illustrated in Figure A.2
and is explained in detail in the appendix in Section A.2. The message is grouped into

84

5 RM in the TTSoC Architecture 5.4 Trusted Network Authority

Assertion Selection

M
ic

ro
 C

o
m

p
o
n
e

n
t

B
lo

c
k

0xBA

0xBA XXX XX xXx

P
ro

te
c
ti
o

n

F
ie

ld

0x003Fh

Binary

Comparison

C
o

rr
e

c
tn

e
s
s

D
e
c
is

io
n

R
M

A
 –

T
N

A
C

o
n

fi
g

u
ra

ti
o
n
 M

e
s
s
a

g
e

A
s
s
e
rt

io
n
s

micro component ID

Figure 5.6: Protection of guaranteed resources by the TNA

several blocks—one for each micro component. Each block comprises the following
sequence of frames. (The detailed content of the frames is explained in Section A.2.):

1. Each micro component specific block is started by exactly one TISS/host con-
figuration frame. This frame is used to parameterize the services provided by
the TISS to the host, except the communication service.

2. Afterwards, a (possibly empty) sequence of frames follows, which holds the
description of the input ports, i.e., those parts of the micro component’s MEDL
specifying the messages to be received.

3. Each micro component configuration block is concluded by a (possibly empty)
sequence of output port description frames, which specify the send instants
of the particular micro component. The union of input port descriptions and
output port descriptions form the MEDL of the micro component.

To protect resource allocations, the TNA enables the specification of assertions,
which operate on the information contained in the state message received from the
RMA. These assertions have to be generated off-line and are either part of the
functionality of the TNA software itself or downloaded to the TNA at the startup of
the system. The concept of those assertions is depicted in Figure 5.6.

As depicted in Figure 5.6, the assertions comprise the identical structure as the
individual blocks of the configuration message, which is disseminated from the RMA
to the TNA (cf. Figure A.2 in the appendix). Thus, each assertion covers exactly the
configuration of one micro component. In addition to the data fields of the RMA–
to–TNA configuration message, each frame is extended by a resource protection field.
The resource protection field is simply a sequence of bits, where each bit is related
to exactly one field in the respective frame and indicates whether the field should
be protected by the assertion or not. In the example depicted in Figure 5.6 the

85

5.4 Trusted Network Authority 5 RM in the TTSoC Architecture

value of the protection field is 0x003F, which equals 00000000 00111111b in binary
representation, denoting that the first 6 fields of the actual frame are protected by
the assertion.

We opt for this simple realization for the specification of assertions to minimize
the computational overhead and complexity at the TNA, because for this part of
resource protection only bit streams have to be compared. The actual resource pro-
tection is performed at the TNA as follows: The configuration message received from
the RMA is analyzed until a new TISS/host configuration frame (indicated by a par-
ticular type field as the first byte of the frame) is detected. The micro component ID
contained in this frame is utilized as an index to identify the matching assertion for
the particular micro component configuration, if available. The compliance of the
actual configuration message to the selected assertion is verified by a bit-wise com-
parison of the assertion and the data contained in the message. However, only those
fields which are marked by the protection field, have to be included into the compar-
ison. An implementation of the resource protection using XML for the specification
of assertions is described in Section 6.3.4.

For ensuring the protection of guaranteed resources and the non-interference of
message transmissions of jobs belonging to different DASs, the time-triggered mes-
sage schedule has to be checked for correctness within the TNA. A correct, i.e., con-
flict free, message schedule on the time-triggered on-chip network has to ensure that
fragments of individual pulses must not interfere. A pulse fragment is disseminated
on the on-chip network in a single TDMA slot. Thus, the TNA ensures that for
any two pulsed data streams none of their fragments are disseminated at the same
TDMA slot.

In case the TNA detects a violation in the message schedule or in any of the
assertions for resource protection, the entire configuration message is discarded and
the configuration data of all micro component remains unchanged. Furthermore,
the RMA is informed that the actually disseminated configuration message has been
rejected.

5.4.2 Micro Component Configuration

As depicted in Figure 5.1, only the TNA is able to alter the configuration of a micro
component regarding component-wide global parameters like the message schedule
of the time-triggered on-chip network. Via the CP interface of the micro component
following parameters of a micro component can be configured (see Section A.1 in the
appendix for a detailed description of the layout of the CP interface):

1. Ports towards the NoC: Each port of a micro component is associated with
a single pulsed data stream. The CP interface permits the configuration of the
temporal parameter of the pulsed data stream, i.e., its period and phase offset
to the start of the period, as well as, its length (measured in the number of
fragments the pulse consists of), and the direction of the port (input or output).

86

5 RM in the TTSoC Architecture 5.4 Trusted Network Authority

Micro Component 1

I

CP

O O

Micro Component N

I

CP

Figure 5.7: Data flow between TNA and micro components

2. Service level of a micro component: We assume that each micro compo-
nent can be put into different service levels, each characterized, e.g., by the
provided performance and the demanded power dissipation. These service lev-
els are managed by the power control service of the TISS. The parameterization
of this service is performed by the TNA via the CP interface. Depending on
the implementation of the host, setting the service level of a micro component
affects, for instance, the supply voltage and operation frequency of a host or
enables/disables special hardware blocks located within the host. However, the
TISS requires at least the ability to physically power off/on the host.

3. Watchdog functionality of the TISS: In order to detect crash failures of
the host and to possibly restart a failed host, the TISS acts as a watchdog
for the host. The period by which the life sign has to be set by the host is
parameterized by the TNA (cf. the field WDP in Figure A.1).

The design of the micro component must guarantee that these configuration pa-
rameters cannot be altered by software from inside a micro component. So, it is not
possible for faulty software inside a host to interfere with a correct operation of the
on-chip network and to take unintended influence on the power dissipation of the
micro component.

Analogously to the description of the TNA–to–RMA interaction, Figure 5.7 de-
picts the internal structure of the interfaces of micro components and the TNA. The
configuration information for a single micro component is contained in a state mes-
sage, which is sent by the TNA over a dedicated channel on the on-chip network.

87

5.5 Resource Management Authority 5 RM in the TTSoC Architecture

The CP interface of each TISS comprises one outer input state message port for
holding the configuration message. This port is a time-triggered state message port
served by the TNA, which periodically disseminates the corresponding configuration
messages to each micro component.

The CP interface of the TNA comprises output state message ports for each micro
component on the SoC. The outer ports of the CP interface of the TNA are realized
as periodic time-triggered state message ports. The inner output ports are realized
as state message port with push semantics, i.e., the point in time for updating the
state messages within CP interface is in the sphere of control of the TNA.

5.4.3 Establishment and Maintenance of the Global Time

The on-chip network is realized as a time-triggered communication system, where
TDMA is used for arbitrating the communication medium. To each TISS a number
of conflict free sending slots described by period and phase are assigned. Therefore,
a global time base for all TISSs is mandatory, which is established and maintained
by the TNA.

We assume that the TISSs are free of design faults—they are part of the trusted
subsystem of the SoC—and each micro component forms a Fault Containment
Region (FCR) with respect to software faults within the host of the micro compo-
nent. However, with respect to transient hardware faults, we regard the entire SoC
component as a single FCR and thus do not assume that individual micro compo-
nents fail independently in case of transients. Therefore, fault-tolerance mechanisms,
e.g., a TMR configuration [Lyons and Vanderkulk, 1962] of multiple SoCs, have to be
utilized for building ultra-dependable systems. Within a single SoC, it is therefore
sufficient to implement a non fault-tolerant clock synchronization strategy for the
establishment of the global time. We propose to use the TNA as a central time mas-
ter that establishes the global time by periodically updating the global time values
stored in all TISSs accordingly, e.g., by the use of rate correction.

When an external time-reference is available, e.g., the SoC component is con-
nected via the gateway to an external cluster, the TNA in combination with the
gateway can perform external clock synchronization and synchronizes the SoC in-
ternal global time with the time base of the external cluster. However, due to the
technology differences of the on-chip network compared to the network of the ex-
ternal cluster, we assume that the precision of the SoC component-wide time base
is orders of magnitude better than the precision of the time base of the external
cluster.

5.5 Resource Management Authority

The resource management authority (RMA) performs the scheduling of the available
resources of the SoC. We consider communication resources (e.g., bandwidth and

88

5 RM in the TTSoC Architecture 5.5 Resource Management Authority

Resource Management Authority

RM N

Global Resource Scheduler

Global Rule Base
RMA-to-TNA configuration message

accept/reject

resource manager of particular

application subsystem

R
C

L
IF

RCLIF RCLIF RCLIF

resource coordination linking

interface towards jobs

resource coordination linking

interface towards TNA

Figure 5.8: Constituting parts of the RMA

latency of the on-chip network), computational resources (e.g., allocation of jobs
to dedicated micro components), and power (e.g., maximum power dissipation as a
worst-case boundary) as integral resources that are managed by the RMA.

In contrast to the constituents of the trusted subsystem, certification issues are
not the focus of the design of the RMA. Thus, an increased functionality at the
expense of higher complexity can be realized. Therefore, we regard the RMA as
a dedicated micro component that is realized by a TISS and a host, whereas the
TISS ensures that error propagation from the RMA to the trusted part of the SoC
is prohibited.

Figure 5.8 depicts on a high abstraction level the internal structure of the RMA.
The RMA consists of several resource manager, each responsible for a single applica-
tion subsystem, a so-called global rule base, which is instantiated during the integra-
tion of entire system and resolves resource conflicts between application subsystems,
as well as, a global resource scheduler module.

For each DAS of which a job is hosted on the SoC and which should utilize the
resource management facilities of the SoC, an application-specific resource manager
could be realized within the RMA. The purpose of those resource managers is to
receive and process resource requests of the jobs of a single DAS. We opt for an own
resource manager for each application subsystem hosted on the SoC for the following
reasons:

1. The way of efficiently raising resource requests may differ from application
subsystem to application subsystem and should not be restricted by the design
of the RMA. For instance, in the resource management strategy described in
Section 5.2, resource requests are based on an explicitly defined limited set of
operation modes. In such an approach, the resource requirements of each job
for each respective mode have to be known and defined a priori. The resource

89

5.5 Resource Management Authority 5 RM in the TTSoC Architecture

coordination between the jobs and their resource manager can be efficiently
performed by requesting the transition from one operation mode to another.
However, for other DASs it either may not be possible to define all operation
modes in advance or may be to inefficient. For those it should be possible
to explicitly request resources from the resource manager (e.g., a bandwidth
enhancement from 100 kbit/s to 250 kbit/s due to a changing environment of
the job). This flexibility could be achieved, if the RMA provides the possibility
to deploy its own resource manager to several DASs.

2. Processing of resource requests requires in-depth knowledge of the application.
Therefore, the resource manager can be seen as an outstanding job of the
DAS, which has the purpose to coordinate the required resources within the
DAS and which is qualified to communicate changes in the resource allocation
to the other jobs of its DAS. However, it is important to note that the re-
source manager within the RMA is not able to physically assign resources to
an application subsystem; this can only be done by the TNA.

Moreover, the separation of the RMA functionality into the application-specific
resource manager, the global rule base and the global scheduler module as depicted in
Figure 5.8 facilitates the integration of application specific knowledge from different
application subsystem vendors for the realization of the RMA. The constituting
parts of the RMA are outlined in the following:

Application-Specific Resource Manager

The RMA interacts with jobs via a dedicated resource manager for each application
subsystem. The protocol with which the jobs are able to request resources or are able
to free allocated resources is application specific. An example using dedicated modes
is described in the case study in the following chapter. On the one hand, the purpose
of the application-specific resource manager is to resolve resource conflicts within the
DAS it belongs to and, on the other hand, to transform the resource requests of the
jobs to a consistent format, which is supported by all application subsystems.

Consider as the common representation the specification of a finite number of
primary modes for each DAS, each of them defined by the number of active jobs
and its resource requirements, e.g., execution time on a particular micro compo-
nent, bandwidth requirements, and expected power dissipation. It is the task of an
application-specific resource manager to map received resource requests like the en-
hancement of the bandwidth that is granted to a particular job, onto those predefined
primary modes, for instance, by selecting the next mode that fulfills the requirements
of all jobs.

Global Rule Base

The actual resource allocation is performed via the interaction of the individual
application-specific resource managers and the global rule base. The global rule base

90

5 RM in the TTSoC Architecture 5.5 Resource Management Authority

has the purpose to check the acceptance of the resource allocations generated by the
application-specific resource managers and resolves SoC-wide conflicts if necessary.
Therefore, the global rule base contains for each primary mode of an application sub-
system a list of degradation levels with less resource requirements. Those degradation
levels have to be defined by the application subsystem developer, and represent re-
source requirements for all jobs that are sufficient for the DAS to provide its service
in a degraded form, i.e., at a lower QoS level.

During system integration, for each of the degraded service modes penalties are
defined. These penalties represent the importance of a particular application sub-
system for the resulting integrated system and indicate how likely the global rule
base decides to put a particular application subsystem into a degraded mode. Us-
ing this method, assigning a very large penalty, for instance the value infinite, to
safety-critical application subsystems ensures that the resources assigned to those
applications are treated by the RMA as being unchangeable.

Global Resource Scheduler

Based on the decisions made at the application-specific resource managers and the
global rule base, the task of the global resource scheduler is to generate a schedule
that meets the requirements of all jobs. The schedule is forwarded to the TNA, which
is responsible for checking the validity of the resource allocation. Depending on the
time bound defined for a single resource management activity, in case a feasible
schedule cannot be found by the global resource scheduler, either the global rule
base is invoked reiteratively or the reconfiguration request is reported to the jobs as
non-feasible.

Recall the example of an infotainment application scenario introduced in Sec-
tion 4.1: A job outside the boundaries of the SoC requests directly from the nav-
igation job the download of navigation information via the gateway. In order to
provide this service to the requester, the navigation job demands an additional com-
munication channel to the gateway. In case the navigation job explicitly requests
the change of a primary mode, the application-specific resource manager would pass
on the request to the global rule base. Otherwise, the application-specific resource
manager has to map the request onto a particular primary mode that would fulfill
the resource requirements.

If sufficient resources are already assigned to the job in the current primary
mode, the request can be autonomously granted by the application-specific resource
manager to the job. Otherwise, it has to change the primary mode of the application
subsystem and needs to forward this information, i.e., the new mode and therewith
the updated resource requirements of the infotainment application subsystem, to
the global rule base. On the basis of all actually scheduled primary modes of all
application subsystems hosted on the SoC, the global rule base decides how to handle
the request. This can lead to the following alternatives:

1. The new primary mode of the infotainment application subsystem requires

91

5.5 Resource Management Authority 5 RM in the TTSoC Architecture

less resources than already granted and all other application subsystems do
not reside in a degraded service level, i.e., the required resources are assigned
to each application subsystem. In this case, the change of the service mode
of the infotainment application subsystem would be granted and the resource
information is forwarded to the global scheduler module.

2. The new primary mode of the infotainment application subsystem requires less
resources than already granted and there is at least one application subsystem
that resides in a degraded service level. Again, the change of the primary mode
would be granted to the infotainment application subsystem. Furthermore, it
would be examined in the global resource scheduler if the released resources
can be utilized by one of the application subsystems which currently reside in
a degraded service level.

3. The new primary mode of the infotainment application subsystem requires
additional resources and there are still enough resources available. This case
would be identically handled as the one described in (1).

4. The new service mode of the infotainment application subsystem requires ad-
ditional resources and the remaining resources are not sufficient for all appli-
cation subsystems to provide their service. In this case the penalties assigned
to the degradation levels of each application subsystem would be analyzed.
The penalty of a degradation level represents the cost it would take to exe-
cute a particular application subsystem in a degraded service mode, i.e., the
importance of a particular primary mode of an application subsystem for the
entire integrated system. Thus, an optimal selection of degradation levels of
all application subsystems entails the minimization of the overall penalty.

Based on the resource information forwarded by the global rule base, the sched-
uler generates a resource schedule and a resource allocation for the entire SoC. Sub-
sequently, the new configuration data is passed on to the TNA, which verifies the
correctness of the schedule including the protection of the resources of privileged
application subsystems. The new configuration becomes only valid, after the verifi-
cation by the TNA has been successfully completed and a positive response has been
received by the RMA. Afterwards, the new resource allocation is made visible by
the application-specific resource managers to all affected jobs.

92

Chapter 6

Case Study

This chapter describes the implementation of an integrated real-time system that
serves as a case study for the presented resource management concepts. This demon-
strator has been developed in the course of the European project DECOS through
the effort of several people. It provides a first proof of concept of the TTSoC archi-
tecture by emulating the functionality of a single SoC by means of a time-triggered
distributed real-time system.

The chapter starts with an introduction of an exemplary automotive application
in Section 6.1 that defines the requirements for resource management in the case
study. Afterwards, the physical setup of the SoC emulation is explained in Sec-
tion 6.2. This is followed by a detailed description of the implementation of the
TNA functionality in Section 6.3 and the RMA functionality in Section 6.4.

6.1 Exemplary Automotive Application

Within the course of this case study we have implemented a simplified automotive
application. The structure of this application is depicted in Figure 6.1. For sake of
simplicity, the TNA is not depicted in this representation. The scope of the applica-
tion is to emulate the acquisition of environmental values, e.g., road temperature and
vehicle dynamics, via dedicated sensor jobs forming a data acquisition DAS and their
further processing in an information DAS. To this end, these sensor values are im-
ported via a gateway in the information DAS, which should enable the visualization
of sensor data and of navigation information. For the generation of the navigation
information, we assume that the navigation job exploits the data comprising the
vehicle dynamics.

Since the focus of this exemplary application is the demonstration of resource
management w.r.t. communication resources and to demonstrate the reconfiguration
capabilities of the TTSoC architecture, the application functionality of the jobs is
only emulated. This means, instead of disseminating real sensor data, the jobs
(sensor jobs, navigation job, and rear camera job) produce their output values by

93

6.1 Exemplary Automotive Application 6 Case Study

TTE

SENSOR

TEMP1

SENSOR

TEMP2

SENSOR

LATERAL

LONGITUDINAL

YAW

DIAGNOSTIC UNIT

GATEWAY

RMA

µC 4

µC 2

µC 3µC 1

µC 0

µC 5

MONITOR

GATEWAY NAVIGATION

CONTROLREAR CAMERA

µC 2

µC 1 µC 0µC 3

µC 4

RATE

MASTER

RMA

µC 5

UFIM-Port

Exclusive OR

Micro

Component

GW-Port

SoC-Port

Figure 6.1: Structure of the exemplary automotive application

computing a simple mathematical function (e.g., the temperature sensor computes a
ramp function with a value range from −30 to +50 degree centigrade).

As depicted in Figure 6.1, the exemplary automotive application is distributed
over two SoCs, denoted sensor SoC and display SoC. Both SoCs host four jobs which
are executed on their respective micro components. For the interconnection of the
SoC components a gateway, which is implemented on a dedicated micro component,
is deployed on each SoC. The chip external network is implemented by a TTE
network [Kopetz et al., 2005].

The sensor SoC hosts a job that emulates the measurement of the vehicle dy-
namics. This job disseminates values for lateral and longitudinal acceleration, as
well as, the yaw rate. Further on, this SoC hosts two replicated jobs that emulate a
temperature sensor. Related thereto, a diagnostic unit is hosted on the SoC, which
has the task to switch between the two replicated temperature sensors in order to
demonstrate the usage of stand-by micro components. This is realized by a dedicated
channel to the RMA.

The central job on the display SoC is the monitor job, which visualizes the tem-
perature value received via the gateway and, depending on the currently active mode,
either the data received from the navigation job or from the rear camera job. The
selection of the active primary mode is performed via a user interface provided by
the control job. For the (emulated) computation of the navigation information, the
navigation job utilizes the exported sensor data from the sensor SoC.

Both SoC components, as well as, the chip-external network exhibit the same
global time-base. This synchronization is performed by a dedicated rate master.
Since the SoC-external network and the SoC internal networks are implemented
as TTE networks (see the next section for details on the implementation of the
SoC component), the rate master is responsible for generating appropriate TTsync
messages [Kopetz et al., 2006, p. 35], which are disseminated in all three networks.

94

6 Case Study 6.2 SoC Component Setup

TT – Ethernet Switch

H
o

s
t

T
IS

S

H
o

s
t

T
IS

S

H
o
s
t

T
IS

S

H
o
s
t

T
IS

S

R
M

A

T
IS

S
T

N
A

Trusted Subsystem

Micro-

Component

Soekris Node 4521

Soekris Node 4801

Ethernet Interface

Time-Triggered Ethernet Interface

Figure 6.2: Setup of a DECOS SoC component

6.2 SoC Component Setup

The physical setup of the SoC components that have been realized in the course
of the DECOS project is depicted in Figure 6.2. Each SoC component comprises
four general purpose micro components, which are deployed for the execution of the
application functionality. In addition, two dedicated micro components are realized
on each SoC, which are utilized for the implementation of the gateway and the RMA.

Each micro component is implemented by two physically separated single board
computers. One is dedicated to the implementation of the host, i.e., for the execution
of the application software, while the other realizes the TISS and thereby establishes
the link to the component-internal network. The interconnection of those single
board computers is established via standard Ethernet interfaces using a point-to-
point connection. Similarly, the data exchange between RMA and TNA is performed
using a dedicated communication channel based on standard Ethernet.

The component-internal network is realized by a TTE network, which em-
ulates a bus-based on-chip interconnect. The access to this network is real-
ized by an Field Programmable Gate Array (FPGA)-based implementation of a
TTE controller [Steinhammer, 2006]. The TTE network exhibits a star topol-
ogy with the individual network segments interconnected by a dedicated TTE
switch [Steinhammer et al., 2006]. All messages disseminated on the internal TTE
network are transported to all TTE controllers connected to the switch. However,
the actual reception of a message depends on the configuration of the MEDL at the
respective TTE controller.

Host Computer.
The implementation of the host is performed on a single board compact com-

95

6.2 SoC Component Setup 6 Case Study

puter of type Soekris Engineering net4521, which incorporates a 133 MHz 468 class
ElanSC 520 processor from AMD. This compact computer provides 64 MByte
SDRAM main memory, uses a CompactFlash module for program and data stor-
age, and is equipped with two 10/100 Mbit Ethernet ports. As the operating sys-
tem we have deployed the real-time Linux variant Real-Time Application Interface
(RTAI) [Mantegazza et al., 2000]. This real-time operating system is used to mini-
mize the latency and the jitter of computational and communication activities. For
the communication with the TISS an optimized version of the standard real-time
Natsemi driver distributed by the RTnet open-source project 1 is used.

TISS.
The TISSs are implemented on similar single board compact computers, namely on
Soekris Engineering net4801 boards. In contrast to the board described above, it
incorporates a 266 MHz 586 class NSC SC1100 processor and provides 256 MByte
SDRAM main memory. In addition to its three on-board 10/100 Mbit/s Ethernet
ports, the execution platform of the TISSs is extended with PCMCIA-based imple-
mentation of the TTE controller. Like the host, the TISS uses the real-time Linux
variant RTAI as its operating system.

Time-Triggered Ethernet Switch.
The TTE switch supports the predictable transmission of time-triggered messages,
even when event-triggered and time-triggered messages are transmitted over the same
Ethernet network [Steinhammer et al., 2006]. For this purpose, time-triggered TTE
messages are identified by a dedicated type field in the message header, which trig-
gers a specific treatment of those messages within the TTE switch. Unlike standard
Ethernet frames which are buffered within the switch, TT-Ethernet frames are di-
rectly switched to their destination ports. This means, whenever a run-time conflict
between event-triggered traffic and time-triggered traffic occurs, the TTE Switch pre-
empts the processing of the event-triggered traffic and transmits the time-triggered
message with a constant transmission delay. To achieve determinism of the trans-
mission delay, it is important that each time-triggered frame takes the same route
through the switch. Therefore, the FPGA design of TTE switch was optimized
w.r.t. a symmetric layout of the data paths [Steinhammer et al., 2006]. Immediately
after the transmission of the time-triggered message, any preempted event-triggered
message is autonomously retransmitted.

TNA.
The TNA is realized on the same hardware platform as the TISSs, i.e., on Soekris
Engineering net4801 compact computers extended by a PCMCIA card implementing
a TT-Ethernet controller. Likewise, the TNA utilizes RTAI as its real-time operating
system. However, it exploits the services provided by the Linux Real-Time (LXRT)
extension of RTAI, which enables the development of real-time programs running in

1http://www.rts.uni-hannover.de/rtnet/

96

http://www.rts.uni-hannover.de/rtnet/

6 Case Study 6.3 TNA Implementation

R
e

a
l-

T
im

e

E
th

e
rn

e
t

D
ri

v
e
r

Schedule Analysis

Module

incorrect

Resource Protection

Module

correct

violated

Configuration

Module

satisfied

Time-Triggered Activation

SoC Component Configuration

Configuration of Individual

Micro Components

finished

R
e

a
l-
T

im
e

 E
th

e
rn

e
t
D

ri
v
e
r

Initialization

Module
XML

XML

R
e

s
o

u
rc

e
 M

a
n

a
g

e
m

e
n

t
A

u
th

o
ri
ty

R
e

s
o

u
rc

e
 M

a
n

a
g

e
m

e
n

t
A

u
th

o
ri
ty

Figure 6.3: Flow diagram of the TNA software

user space. Typically, application software for real-time operating systems have to
be realized as Linux kernel modules executed in the kernel space of the operating
system; thus, circumventing the memory protection mechanisms of the operating
system. This is prevented by using LXRT. The communication towards the TISSs
is realized via TTE, while the interface towards the RMA is realized via a standard
Ethernet connection using an a priori defined time-triggered communication schedule.

6.3 TNA Implementation

The services of the TNA are implemented as software modules on the above de-
scribed Soekris embedded computing platform. The constituting software modules
are depicted in Figure 6.3 (gray-shaded boxes represent individual software modules)
and are explained in detail in the following subsections.

6.3.1 Initial TISS Configuration

After the start-up of the SoC component an initial system configuration is distributed
to the TISSs of all micro components. This initial configuration is located in the local
memory of the TNA and has to be generated during the integration of the individual
DASs on the particular SoC, i.e., during the transformation of the UFIM to the PAM
in the model-driven development process. This initial system configuration is static
and requires no interaction between TNA and RMA. It comprises the following
information:

• an initial configuration for each micro component regarding the parameteriza-
tion of the core services provided by the TISS (e.g., watchdog period) and the
host operation mode (e.g., standby or active mode),

97

6.3 TNA Implementation 6 Case Study

Figure 6.4: XSD schema defining the XML document structure for the specification
of the initial SoC configuration

• an initial message schedule for those communication channels on SoC-internal
TTE network which are required at the start-up of the system (e.g., the com-
munication channels to the RMA for requesting additional resources), and

• an initial allocation of jobs to micro components, as well as, the UFIM-Port–to–
SoC-Port mapping for the communication channels required for the start-up.

XML Representation of the Configuration Data

For describing the initial configuration of an SoC component, we have created an
XML Schema Definition (XSD) document that facilitates the capturing of the in-
formation comprised in the RMA–to–TNA message. The content of this message is
described in the appendix in Section A.2. The XSD schema is depicted in Figure 6.4.
It enables the comfortable creation of XML files holding the initial system configu-
ration and supports the modification of the initial system configuration without the
need to change the implementation of the TNA. This means, the object code of
the TNA can remain unchanged, regardless of the current configuration of the SoC
component, i.e., regardless which DASs are hosted on the SoC component, as well
as, the actual allocation of jobs to micro components.

At the start-up of the TNA, respectively the start-up of the entire SoC, the Ini-
tialization Module (cf. Figure 6.3) parses the XML file containing the initial system
configuration. The name and location of the XML file is specified at the invocation
of the TNA software, otherwise default values are taken. A partial example of such
an initial system configuration file is presented in the appendix (see Section B.1 on
page 141).

98

6 Case Study 6.3 TNA Implementation

Realization of the Initialization Module

For the implementation of the Initialization Module of the TNA software, the Expat
XML Parser in version 2.0 has been deployed. Expat2 is a stream-oriented XML
parser with a simple to use application interface that sets high standards for relia-
bility, robustness, and correctness [Coope, 1999].

The operation of the Expat XML Parser is the following: The XML file is fed to
the parser. Every time it catches an XML start or end tag, a callback or handler
function that is registered to the respective event is called. The arguments passed
to the callback function contain the value of the XML element, as well as, all dis-
covered attribute/value pairs. For the implementation of the Initialization Module
a handler function for processing the start tag of an XML element is defined, which
generates a C data structure containing the entire configuration information of the
SoC component. The format of this data structure is identical to the format of the
data structure of the RMA-to-TNA message, which is described in Section A.2 in
the appendix.

To check the initial configuration for its correctness, the same mechanisms as
used for verifying the RMA–to–TNA configuration message are applied on the initial
configuration. This involves the Schedule Analysis Module and the Resource Protec-
tion Module of the TNA software, which are explained in detail in Section 6.3.3 and
Section 6.3.4.

6.3.2 RMA–TNA Communication

The SoC configuration proposal computed by the RMA is passed to the TNA via
a standard Ethernet connection. However, the dissemination of the configuration
message is periodic and strictly time-triggered. The reason for this design decision is
to ensure that the TNA is not interrupted by the RMA and that the timing behavior
of the TNA is independent of the RMA.

The communication between RMA and TNA is established using the Real-Time
Ethernet Driver Module as depicted in Figure 6.3. This part of the TNA software
is implemented as a kernel module of the Linux 2.6 kernel and directly accesses the
so-called skb data structures, which are widely used in the Linux community for the
implementation of Ethernet network drivers [Rubini and Corbet, 1998, p. 452]. In
our particular case, it is the task of the Real-Time Ethernet Driver Module to extract
the data of the received Ethernet message and build the data structure as defined for
the RMA–to–TNA message within a shared memory region that is accessible by the
Schedule Analysis Module, the Resource Protection Module, and the Configuration
Module for further processing.

2available at http://expat.sourceforge.net/

99

http://expat.sourceforge.net/

6.3 TNA Implementation 6 Case Study

R
e

a
l-

T
im

e
E

th
e

rn
e

t

Schedule
Analysis Module

Resource

Protection Module

Configuration
Module

accepted/

rejected

Figure 6.5: Flow diagram of RMA–to–TNA data exchange

RMA–TNA Data Exchange

The RMA disseminates new configuration information in a sporadic time-triggered
message. This means the points in time at which the RMA is permitted to transfer
a message to the TNA are defined a priori, but an actual transmission occurs only,
if the RMA has been triggered to compute a new configuration due to a requested
change in the resource allocation. For this prototype implementation we have defined
a period of 62,5 ms for the dissemination of the RMA–to–TNA messages.

Figure 6.5 depicts the flow diagram of a data exchange between RMA and TNA.
As soon as the TNA has finished its analysis of the configuration data, a response is
transmitted back to RMA. With this response, the TNA informs the RMA whether it
has accepted or rejected the new configuration proposal. The RMA is responsible for
forwarding this information to the jobs, respectively, the DASs that have requested
the resource reallocation or are affected by an updated configuration.

6.3.3 Schedule Analysis

As depicted in Figure 6.3, the first software module that operates on the received
configuration information is the Schedule Analysis Module. The purpose of this
module is to analyze the message schedule contained in the configuration information
for its correctness. This means it verifies that all messages disseminated over the same
communication channel (regardless of their periods) are free of collisions. For the bus-
based implementation this implies that the time spans between start of transmission
and end of transmission of any two messages must not overlap.

For the analysis algorithm we have chosen the following model for represent-
ing the temporal properties of messages and the respective communication channel
(cf. Figure 6.6). A communication channel is characterized by its communication
topology, bandwidth, and required Inter Frame Gap (IFG).

100

6 Case Study 6.3 TNA Implementation

t

Message A Message B

offset

period

transmission timeIFG

IFG …. inter frame gap

Figure 6.6: Used model of communication channel and messages

Topology: The algorithm is based on the assumption that the communication chan-
nel is realized as a single bus with broadcast topology, using Time Division
Multiple Access (TDMA) for bus arbitration. Hence, no message transmissions
are allowed to occur simultaneously.

Bandwidth: The bandwidth determines the amount of data per time unit that can
be transmitted over the channel. For the scheduling analysis algorithm we
assume a bandwidth of 100Mbit/s, which results in 80 ns for the transmission
of a single byte.

Inter Frame Gap: The IFG determines the minimal time between the transmis-
sions of two consecutive messages. The adherence of the message schedule to
this time constraint has to be evaluated by the analysis algorithm.

A message in our model is characterized by its periodic send instant described by
period and phase offset, as well as, by its required transmission time, which depends
on the message length. Since the realization of our prototype implementation de-
ploys TTE for the interconnection of the individual micro components, the minimal
message length—according to the TTE specification [Kopetz et al., 2006, p. 34f]—is
72 bytes (Ethernet header and trailer, TTE header, and minimal TTE payload).
The configuration data describes only the length of payload data, i.e., the actual
message stored in the ports of the TISS towards the on-chip network. Thus, the
analysis algorithm extends the message size with the amount of bytes required for
transmitting the Ethernet header and trailer, the TTE headers, and the difference
of the actual payload to the specified minimal payload in TTE, which are 34 bytes.

Detection of Message Collisions

The primary task of the Schedule Analysis Module is to detect whether two messages
that are specified in the configuration information collide on the shared communi-
cation medium. In a first step, the analysis algorithm checks messages of the same
period. In other words, given an ascending sorted list of messages M of the same pe-
riod P where the sorting criterion is the offset of the message, the analysis algorithm
checks whether the following two conditions hold.

101

6.3 TNA Implementation 6 Case Study

Msg A
P1

Msg A’P0 Msg A’

Msg B

(a)
(a)

Msg A
P1

P0

Msg

B

(b)
(b)

Msg A
P1

Msg A1’P0

(c)

Msg

A2’
Msg A1’

Msg

A2’

(c)

Msg A
P1

P0

(d)

Msg A2' Msg A1'

collision

(d)

Figure 6.7: Transformation of messages to the next smaller period

∀m ∈ M : mi.offset + mi.transmission time + IFG < mi+1.offset (6.1)
and 0 ≤ i ≤ |M | − 2

This condition states that for all messages of the same period the instant at which
the transmission of a new message is started has to be later than the time instant
resulting from transmission of the previous message plus the demanded idle time of
the to bus (the IFG).

∀m ∈ M : mi.offset + mi.transmission time + IFG < m0.offset + P (6.2)
and i = |M | − 1

The second condition states that the last message in the ordered list of Mes-
sages M does not interfere with the first one in the list, which is the first message
transmitted in the following period.

However, the detection of collisions of messages of the same period is only a first
step. It has also to be ensured that messages of different periods do not collide
with each other. For this, a specific property of the time format of the on-chip
network is exploited, namely that all periods are negative powers of two of one
second. Thereby, all periods are whole-number multiples of each other. This strongly
facilitates the transformation of the messages of one period to the next lower one,
which is mandatory for detecting message collisions across different periods. Four
possible outcomes of such a transformation are depicted in Figure 6.7.

The simplest case for a transformation of a message of given period P1 to the
next lower period P0 (which is exactly the half of P1) is shown in Figure 6.7(a). A
message comprising an offset lower than the length of period P0 and a transmission
duration that finishes before the end of period P0 (as it is the case for message MsgA

102

6 Case Study 6.3 TNA Implementation

in Figure 6.7(a)) is transformed directly from period P1 to period P0. This means
offset and length of the message remain unchanged, the period is changed to P0.
Please note that these message transformations are performed on temporary copies
of the message specifications, because it is obvious that the temporal characteristics
of a message are changed (e.g., the required bandwidth for a message transformed
to the next lower period is doubled).

If the offset of a message of P1 is greater than the length of period P0 (as depicted
by MsgB in Figure 6.7(a)), the offset has to be transformed. This is realized by
reducing the offset by the length of P0. After performing the transformation, there is
no difference between message MsgA and message MsgB. Thus, this is an example
which shows that by performing the transformation of messages from P1 to P0, the
number of messages that has to be analyzed could be reduced, which would speed
up the analysis process.

A further example demonstrating this reduction is presented in Figure 6.7(b).
The transformation of MsgA and MsgB from P1 to P0 would lead to two messages
(Msg ′A and Msg ′B) with different offsets and lengths. However, since Msg ′B is fully
enclosed by Msg ′A, only Msg ′A is important for the collision detection algorithm and
Msg ′B can be removed from the list. In the general case, for two messages which are
non-colliding in P1, but overlap in P0 (as it is shown in Figure 6.7(b)), only the union
of the transmission intervals of both messages is of interest for further analysis.

As shown so far, it is possible that after the message transformation several
messages of P1 are collapsed to a single message of P0. However, it is also a reasonable
case that one particular message of P1 has to be split up into two messages of P0 as
it is shown in Figure 6.7(c). This case occurs when the message in P1 has an offset
that is lower than the length of P0, but the transmission of the message exceeds the
end of period P0.

In scenarios such as the one depicted in Figure 6.7(d), the transformation directly
delivers information on message collisions. In the scenario depicted here, the length
of message MsgA is greater than the length of the entire period P0. Thus, it is not
possible to find any time slot with the periodicity of P0 (or smaller) that would not
collide with message MsgA. In other words, due to the existence of the long MsgA

it is not possible to find a conflict free schedule of messages with periods lower or
equal than P0.

A practical example for such a case is the dissemination of a full-length
(i.e., 1500 bytes) Ethernet message on a 100 Mbit/s network. The transmission time
of such a message over the network equals approximately 123 µs. Thus, all periods
exhibiting a length lower than 123 µs cannot be used for message transmission at the
presence of at least one single full-length Ethernet message. This means for TTE that
the two smallest periods, which have a duration of 122 µs and 61 µs, respectively,
cannot be used at the presence of at least one full-length Ethernet message.

103

6.3 TNA Implementation 6 Case Study

Listing 6.1: Pseudo-code of the algorithm AnalyzeMEDL

Algorithm : analyzeMEDL
Input : Con f igurat ion data s t r u c tu r e (i n c l . MEDL) from RMA
Return : Number o f message c o n f l i c t s detec ted

1 : generate so r t ed l i s t s M i o f messages (with P_min <= i <= P_max) ;
2 : for (per iod = P_max ; pe r iod >= P_min ; per iod−−) do
3 : c o n f l i c t s += checkMessageSchedule (M period) ;
4 : i f (per iod > P_min) then
5 : transformAndStoreMessages (per iod , M tmp) ;
6 : in se r tMessagesToLi s t (M tmp , per iod −1);
7 : return c o n f l i c t s ;

Analysis Algorithm

In this section we elaborate on the message schedule analysis algorithm. It exploits
both methods described in the previous section for detecting message collisions con-
tained in the configuration proposal computed by the RMA.

Listing 6.1 depicts the general outline of the algorithm. The algorithm takes
as its input the configuration data structure provided by the RMA. In this data
structure the description of the message schedule (i.e., the MEDL) is included. The
return value of this algorithm is the number of detected conflicts, which is exploited
by the TNA software to decide whether the schedule is correct or not.

The first step that is performed by the algorithm is to extract the MEDL of all
micro components out of the entire configuration data structure and to store the
messages in ascending sorted lists respective to their period (cf. line 1). For each
period a dedicated list is generated. In the prototype implementation we have 16
periods from 20 to 2−15 seconds; thus, 16 lists are generated.

In section 6.3.3 two conditions are presented that are exploited to detect collisions
between any two messages of the same period. In order to verify that also the mes-
sages of different periods are free of collisions, the lines 2–6 are executed by the algo-
rithm. Starting with the list of the largest period, all lists are consecutively checked
for message collisions. Therefore, the function checkMessageSchedule(M period) is
called. This function inspects the message specification contained in Mperiod for any
violations of the two conditions specified in Section 6.3.3. The return value of this
function denotes the number of message conflicts, i.e., message collisions within the
schedule, found in the message list of the respective period. If the currently analyzed
period is equal to Pmin, the algorithm exits the loop and returns the cumulative
number of detected message conflicts.

Otherwise, all messages are transformed to the next lower period as explained
in the previous section by the function transformAndStoreMessages(period, M tmp)
(cf. line 5). During this transformation redundant messages (e.g., like in scenarios as
depicted in Figure 6.7(a,b)) are detected and removed. The transformed messages
of the current period are stored in a temporal message list Mtmp. Afterwards, all

104

6 Case Study 6.3 TNA Implementation

Figure 6.8: XSD schema defining the XML document structure for the specification
of protected resources

messages of Mtmp are inserted into the sorted message list of the next lower period
and the collision detection is continued with this period.

As it is depicted in Figure 6.3, the outcome of the Schedule Analysis Module
is utilized to decide, whether the schedule is correct and further analysis (i.e., the
resource protection) has to be performed, or the analysis is aborted and the RMA
is informed. In case message collisions are found, the configuration data of the
individual micro components remains unchanged.

6.3.4 Resource Protection

For the SoC component implementation in the course of this case study it is possi-
ble to specify off-line dedicated sets of resources, which are statically assigned to a
given micro component and must not be reassigned during the operation of the SoC
component. This can be used, for instance for safety-critical DASs in order to stat-
ically reserve the required communication bandwidth on the SoC-internal network.
These statically assigned resources are protected by the TNA in order to avoid that a
software fault within the RMA can invalidate these allocations. The protection is re-
alized by the specification of assertions on the values of the configuration parameters
(cf. Section 5.4.1).

For the case study implementation, the protection of the resources includes the
configuration of the input and output ports, as well as, the host operation mode and
the watchdog period. The following subsections elaborate on the implementation of
this resource protection functionality.

XML Representation of Protected Resources

In order to ease the specification of those assertions, an XML representation has
been devised. An overview of the XML schema that defines the document structure
for XML files comprising valid specifications for protected resources is depicted in
Figure 6.8. A partial example of such a specification is shown in the appendix in

105

6.3 TNA Implementation 6 Case Study

Listing 6.2: Pseudo-code of the algorithm checkConstraints
Algorithm : checkConst ra int s
Input : SoC Component Conf igurat ion from RMA (rma tna msg t) ,

L i s t o f Resource Protec t i on Const ra int s for Ports (r p po r t t) ,
L i s t o f Resource Protec t i on Const ra int s for Hosts (r p ho s t t)

Return : t rue i f a l l c o n s t r a i n t s are f u l f i l l e d , f a l s e o therw i se

1 : for (uC = 0 ; uC < NUMBER_OF_uC ; uC++) do
2 : i f (host r e s o u r c e p r o t e c t i o n == enabled) then
3 : i f (hos t sy smode pro tec t i on == enabled) then
4 : return checkAndReturnOnViolationHostSysMode (uC) ;
5 : i f (wd pe r i od pro t e c t i on == enabled) then
6 : return checkAndReturnOnViolationWDPeriod (uC) ;
7 : i f (i n pu t p o r t r e s o u r c e p r o t e c t i o n == enabled) then
8 : while (not e n d o f i n p u t p o r t l i s t) do
9 : return checkAndReturnOnViolationPeriod (uC, port) ;
10 : return checkAndReturnOnViolationLength (uC, port) ;
11 : i f (p h a s e o f f s e t p r o t e c t i o n == enabled) then
12 : return checkAndReturnOnViolationPhaseOffset (uC, port) ;
13 : i f (t ype p ro t e c t i on == enabled) then
14 : return checkAndReturnOnViolationType (uC, port) ;
15 : i f (channe l p ro t e c t i on == enabled) then
16 : return checkAndReturnOnViolationChannel (uC, port) ;
17 : i f (ou tpu t po r t r e s ou r c e p r o t e c t i o n == enabled) then
18 : r epeat l i n e s 8 to 16 with output por t s
19 : return t rue ;

Listing B.2. The XML file containing the specification of the resources that are to
be protected by the TNA is parsed only once, at the start-up of the TNA software.
If no file name and file location for that XML file is specified at the invocation of the
TNA, default values are taken.

Realization of the Resource Protection Module

Similar to the XML parser described in Section 6.3.1, the Resource Protection Module
deploys the Expat XML Parser in version 2.0 for extracting the information out
of the XML file. The monitoring of the constraints is performed by the Resource
Protection Module with the algorithm described in Listing 6.2. However, as depicted
in Figure 6.3 this module is only activated if no violations of the message schedule
have been detected by the Schedule Analysis Module before.

The algorithm checkConstraints takes as input the entire configuration informa-
tion of the SoC as it has been received from the RMA, as well as, the resource
protection constraints for host and port configuration, i.e., the MEDL, generated by
the Expat XML parser. The output of the algorithm is a binary value that indicates
whether all checks have been passed (return value true) or not (return value false).

For the analysis process the algorithm traverses all assertions using the micro
component identifier as index to the data structures. For each micro component it
is first evaluated whether the protection for the host configuration and respectively
the port configuration is activated. This is done by analyzing the resource protection
field (cf. Section 5.4.1) of the individual constraints within an assertion.

106

6 Case Study 6.4 RMA Implementation

The first detection of a violation of a protected resource causes the algorithm
to abort with the return value false. If the Resource Protection Module detects a
violation of any of the specified assertions, the RMA is informed that an invalid
resource configuration has been received. In this case, the actual configuration of all
micro components remains unchanged. Otherwise, the configuration data is consid-
ered to be correct and the Configuration Module is activated, which is responsible
for disseminating the new configuration to the individual micro components via the
CP interface of the TISSs.

6.3.5 Micro Component Configuration

The TNA periodically updates the configuration of the micro components by the
dissemination of periodic time-triggered messages over the internal TTE network.
The update of the configuration information is in the responsibility of the Configu-
ration Module. The Configuration Module serves two purposes: On the one hand, it
processes the data structure and separates the configuration information of the in-
dividual micro components. On the other hand, the Configuration Module updates
the respective memory regions of the TTE controller with the extracted informa-
tion, i.e., it accesses the CNI memory representing the ports of the TNA towards the
TISSs.

At the start-up of the TNA software, the CNI memory of the TTE controller,
which is physically located on the PCMCIA card realizing the TTE controller is
mapped into the main memory of the Soekris embedded node computer. The purpose
of this is to enable the Configuration Module to directly access the CNI memory of
the TTE controller. After the configuration data is updated, the TNA informs the
RMA via the Real-Time Ethernet Module that the configuration message has been
accepted and the configuration data for each micro component has been successfully
updated. The actual dissemination of the configuration data from the TNA to the
CP interface of the TISSs is done autonomously by the TTE controller based on the
(temporal) specification of the output ports of the TNA.

6.4 RMA Implementation

We demonstrate in this case study the dynamic resource management w.r.t. com-
munication resources. For this purpose the implementation of the RMA realizes the
following functions (each of them implemented as distinct software modules as de-
picted in Figure 6.9): (i) reception and processing of resource requests from jobs,
(ii) scheduling and allocation of the available resources, (iii) initiation of schedule
verification by establishing the RMA–to–TNA communication, and (iv) preparation
of configuration data structures for the affected jobs. The software modules identi-
fied in Figure 6.9 are described in more detail in the following sections (except the
module TNA communication which is realized identically to the module described
in Section 6.3.2).

107

6.4 RMA Implementation 6 Case Study

R
e
a
l-
T

im
e
 E

th
e
rn

e
t
D

ri
v
e
r

Request

Reception

Schedule Generation

R
e
a
l-
T

im
e
 E

th
e
rn

e
t
D

ri
v
e
r

T
ru

s
te

d
 N

e
tw

o
rk

 A
u

th
o

ri
ty

T
ru

s
te

d
 N

e
tw

o
rk

 A
u

th
o

ri
ty

Reconfiguration Requests

Host
Configuration

Request Received?

no request received / no change detected Calculate Resource

Schedule

yes

no feasible schedule found

Check Schedule

schedule found

XML

T
N

A

C
o
m

m
u
n

ic
a
ti
o
n

Update Host
Configuration Data

SoC Component Configuration

rejected

accepted

Host Configuration Data

Figure 6.9: Flow diagram of the RMA software

6.4.1 Job–to–RMA Communication - Request Reception

Each micro component hosting a job that is permitted to disseminate resource re-
quests to the RMA is provided with a static SoC-Channel to the RMA. The temporal
characteristics of this channel are exactly defined by the periodicity of the messages
transmitted over this channel (which is equal to the reconfiguration period introduced
in Section 5.2.2), their phase offset, and the maximum amount of data disseminated
in a single message (i.e., the message length). The static communication channels are
implemented by sending sporadic time-triggered messages, in order to ensure that
messages are only sent if an updated resource request is inserted in the respective
SoC-Port of the micro component.

The communication service provided by the TISS of the RMA is configured to
notify the RMA after the reception of a request message over one of these static
communication channels. This notification mechanism is implemented in the pro-
totype implementation via an Ethernet message that is sent from the TISS to the
RMA over the point-to-point Ethernet connection between TISS and RMA. After
the reception of the last request message, the RMA schedule generation module is
executed (cf. Figure 6.9).

In the case study, a resource request is indicated by mode request message that
is disseminated from a job to the RMA. Note, that only a dedicated set of jobs is
permitted to submit these messages, namely only those jobs that are assigned with
a static channel to the RMA. The structure of a mode request message is depicted
in the following.

struct mode req msg t {
unsigned char mode ;

} a t t r i b u t e ((packed)) ;

The mode in the mode request message refers to a dedicated primary mode of
the entire DAS. A primary mode reflects a different behavior of a DAS’s service,

108

6 Case Study 6.4 RMA Implementation

e.g., a display changing its behavior with respect to the information it has to show.
The available set of primary modes of a particular DAS have to be defined at design
time of the DAS. The specification of the modes comprises all information about
the resource requirements of the entire DAS in the given mode that is required for
generating the resource schedule in the RMA. Therefore, these specifications include
for every DAS and every primary mode:

• a list of all jobs which are part of the respective DAS,

• the allocation of the jobs to micro components,

• the parameterization data of the core services that are provided by the TISSs
(e.g., watchdog period) and the host operation mode (e.g., standby or active
mode), and

• a list of communication channels that are active in the respective mode includ-
ing the specification of the communication topology for each channel.

According to these a priori defined primary modes for each DAS, the RMA checks
the received mode requests for their validity (e.g., whether the requested mode is
defined at all) and extracts thereof the newly requested resource demands for the
individual DASs as input for the resource schedule generation.

6.4.2 Resource Schedule Generation

The central task of the RMA is the generation of a feasible resource schedule for the
requested modes of the individual DASs. The pseudo code depicted in Listing 6.3
shows a high-level view of the procedure, which is executed every reconfiguration
period for resource allocation. The procedure assumes that for every DAS that is
realized on the SoC at most one job is permitted to request mode changes from the
RMA.

After the activation of the RMA task by an interrupt message received from the
TISS, a first check is performed whether any mode changes have been requested
(cf. line 1 in Listing 6.3). If not, the current configuration is kept and the procedure
is exited. In this case, the current configuration is disseminated to all jobs at the
next dissemination instant of the RMA–to–job messages.

If at least one mode change has been requested, a backup of the current configu-
ration is generated (cf. line 2) and for each DAS for which a mode change has been
requested, the list of active UFIM-Channels is updated according to the specified
primary mode of the respective DASs (cf. lines 3 to 4). With this updated descrip-
tion of the required resources, the scheduling of resources is performed (cf. line 5).
A pseudo code representation of the scheduling heuristic is shown in Listing 6.4.

On a successful generation of the resource schedule, the new configuration is
transformed to the message format as required for the RMA–to–TNA communica-
tion (cf. Figure A.2 in the appendix) and is transmitted to the TNA for verification

109

6.4 RMA Implementation 6 Case Study

Listing 6.3: Pseudo-code of procedure manageResources

Procedure : manageResources
Input : r eques ted modes mreq ∈ Mreq , cu r r ent modes mcur ∈ Mcur ,

r equ i r ed r e s ou r c e s Rcur , cu r r ent c on f i gu r a t i on Ccur

Output : updated micro component c on f i g u r a t i on

1 : i f (6 ∃i : mreq
i 6= mcur

i for 0 ≤ i ≤ NDASs) then return ;
2 : backup (Ccur) ;
3 : for (i = 0; i ≤ NDAS ; i + +) do
4 : i f (mreq

i 6= mcur
i) then updateChannelList (i, mreq

i , Ccur) ;
5 : r e t = schedu leResources (Ccur, Ccur.Ccomm.first , P_inv , PH_inv , 0 , P_max) ;
6 : i f (r e t == SUCCESS) then
7 : msgRMA−TNA = createRMAtoTNAmessage (Ccur) ;
8 : sendRMAtoTNAmessage(msgRMA−TNA) ;
9 : tnaResponse = waitForTNAResponse () ;
10 : i f (tnaResponse == ACCEPTED) then
11 : msgRMA−job = createRMAtoJobMessage (Ccur) ;
12 : updateCNI (msgRMA−job) ;
13 : else
14 : r e s t o r e (Ccur) ;
15 : else
16 : r e s t o r e (Ccur) ;
17 : return ;

(cf. lines 7 to 9). If no feasible schedule could be found, the currently active config-
uration is restored.

In case the TNA accepts the proposed resource schedule, the RMA creates an
update of the job configuration and stores this configuration in the CNI of the TISS
connected to the RMA (cf. lines 10 to 12). Otherwise, the resource schedule is
discarded and the currently active configuration is restored.

The pseudo code depicted in Listing 6.4 represents the scheduling heuristic that
is deployed for allocating send slots of the time-triggered NoC to UFIM-Channels.
The algorithm scheduleResources is realized as recursive algorithm. First, it checks
whether the phase offset of the currently analyzed UFIM-Channel is set to the con-
stant value NOT SCHEDULED. By convention, an invalid phase offset (as for instant rep-
resented by the constant NOT SCHEDULED) in the specification of the UFIM-Channel
denotes that the UFIM-Channel should be scheduled by the RMA. A valid phase
offset on the other hand identifies a static configuration that must not be changed by
the RMA, e.g., for realizing phase aligned communication in control loops. If such a
static configuration is found, the algorithm is recursively called with the next item
in the list of UFIM-Channels Ccomm. If no further item exists, SUCCESS is returned
since all available channels have been successfully scheduled so far.

As a next step, the algorithm performs a message schedulability test (cf. lines 4
to 6) in order to discover UFIM-Channel characteristics that preclude the generation
of a correct schedule. This check is concerned with the maximum message length
that is specified for the actually analyzed communication channel. If the time to
transmit the message, plus the Inter Frame Gap (IFG), exceeds the duration of the
smallest period Pmin that has been found in the configuration so far, this message

110

6 Case Study 6.4 RMA Implementation

Listing 6.4: Pseudo-code of algorithm scheduleResources

Algorithm : s chedu leResources
Input : cu r r ent c on f i gu r a t i on Ccur (i n c l ud ing a so r t ed l i s t o f communication

channe l s Ccomm ; input i s modi f i ed by the a lgor i thm) ,
UFIM−Channel l i s t i t e r a t o r \ t e x t i t { channel } , l a s t scheduled
per iod P last , l a s t used phase PHlast , l ength o f l a r g e s t
message lmax , and sho r t e s t per iod P min

Return : SUCCESS i f a schedu le has been found , FAILED otherw i se

1 : i f (channel . phase == NOT_SCHEDULED) then
2 : i f (channel == Ccomm.end) then return SUCCESS ;
3 : else return schedu leResources (Ccur , channel . next , P_inv , PH_inv ,

lmin , P min) ;
4 : i f (channel . pe r iod < P min) then P min = channel . pe r iod ;
5 : i f (channel . msgLen > lmax) then lmax = channel . msgLen ;
6 : i f (lmax + IFG > l ength (P min)) then return FAILED ;
7 : channel . phase = getF i r s tVa l idPhase (channel . msgLen , channel . Period ,

P last , PHlast) ;
8 : c o l l i s i o n = d e t e c tCo l l i s i o n (Ccur) ;
9 : while (c o l l i s i o n) do
10 : channel . phase = getNextPoss ib lePhase (channel . phase) ;
11 : i f (channel . phase < 0) return FAILED ;
12 : else c o l l i s i o n = d e t e c tCo l l i s i o n (Ccur) ;
13 : i f (channel == Ccomm.end) then return SUCCESS ;
14 : return schedu leResources (Ccur , channel . next , channel . per iod ,

channel . phase , lmax , P min) ;

will collide in any case with every message that is disseminated with period Pmin.
Thus, the algorithm returns FAILED to its caller.

Only if both checks are passed, the actual message placement heuristic starts. It
is the strategy of the heuristic to increase the probability to find a feasible placement
for subsequent messages by generating a dense placement of messages within the same
period, which leaves free sending slots for messages with smaller periods. Therefore,
message lengths and their periods are taken into account. The available sending slots
are used in a reverse order, i.e., starting with larger phase offsets at the beginning.

The function getFirstValidPhase(. . .) returns a first guess for a feasible place-
ment of the actual message by exploiting the fact that the list of communication
channels is decreasingly sorted according to their period duration. If channel.period
equals to the period of the previously scheduled message P last, then getFirstValid-
Phase(. . .) returns the phase offset of the previously scheduled message PH last re-
duced by the amount of time required for the transmission of channel.msgLen bytes.
Otherwise, the largest phase offset that permits the transmission of the message
before the end of the period channel.period is chosen as a first guess.

The currently created message placement is evaluated by the function detectCol-
lision(. . .) (cf. line 8). This function is based on the same algorithm for detecting
schedule violations as the one realized within the TNA for the verification of the
schedule. This algorithm is described in Section 6.3.3. As long as a collision is
detected, a new placement is calculated by the function getNextPossiblePhase(. . .).
In essence, this function reduces the current phase offset by the time required for

111

6.4 RMA Implementation 6 Case Study

transmitting the message.

If the calculated phase becomes negative (which indicates an invalid value), the
scheduleResources algorithm returns FAILED, since no valid sending slot could have
been found for the actual message. If the call of detectCollision(. . .) in line 12 of the
depicted pseudo-code in Listing 6.4 detects no message collision within the current
schedule, the loop is exited. If the currently scheduled message was the last one to
be scheduled, SUCCESS is returned. Otherwise, scheduleResources(. . .) is recursively
called with the next communication channel in the list.

6.4.3 RMA–to–Host Communication

After a positive response of the TNA, the last activity that has to be performed
by the RMA is to update the host configuration data structure in the CNI of the
RMA’s TISS. The configuration data is then autonomously transmitted to the TISSs
of all other micro components according to the static RMA–to–host communication
channels (cf. phase 6 in Figure 5.3) in order to inform all jobs about the resource
reallocation that has been carried out.

As depicted in Figure 5.3, the configuration data is transferred from the RMA to
the hosts once every reconfiguration period. These periodic configuration messages
carry state information describing the host configuration. This facilitates the re-
integration of hosts, which, for instance, have been restarted by the TISS due to
the omission of an update of the local watchdog. The C structure that realizes the
interface of the RMA for the host configuration is depicted in the following listing.

struct rma host msg t {
unsigned short das id ;
unsigned short j o b i d ;
uint8 t mode id ;
uint8 t input UFIMport SoCport mapping [MAX UFIMPORTS] ;
uint8 t output UFIMport SoCport mapping [MAX UFIMPORTS] ;

} a t t r i b u t e ((packed)) ;

The data structure rma host msg t is subdivided into five member elements. The
element das id (2 bytes) stores the system-wide unique identifier of the DAS, to which
the job identified by job id (2 bytes) belongs to. In our prototype implementation,
a host executes a single job. However, due to mode change requests, the RMA can
reallocate jobs to different hosts over time. The job, which has to be executed by the
host after the next reconfiguration instant (cf. phase 7 in Figure 5.3), is determined
by those two identifiers. The third identifier mode id (1 byte) determines the mode
of operation of the job, i.e., it corresponds to a concrete degradation level for the
requested primary mode selected by the RMA.

As described in Section 3.3 data exchange between jobs is realized via so-called
UFIM-Ports. For the physical realization of those logical communication chan-
nels, the UFIM-Ports have to be mapped onto SoC-Ports, which form the con-
nection point of a micro component to the NoC. Since the mapping between

112

6 Case Study 6.4 RMA Implementation

Node 1 –
Diag. Unit

Sensor Component

t

reconfiguration period = 62,5 ms

TNA Task

RMA Task

Node 3 –

Pos. Sensor

Node 0 (2) –
Temp. Sensor

NoC – Sensor
Component

Node 4 –
Gateway

Node 5 –
RMA

Node 6 –

TNA

Inter-Component
Network

Display Component

TNA Task

RMA Task
Node 5 –

RMA

Node 6 –
TNA

Node 4 –
Gateway

Node 0 –
Control

Node 1 –

Display

Node 3 –
Rear Cam

NoC – Display
Component

Node 2 –
Navigation

Mtemp[1,2] Mpos Mdiag Mtna[0..4] Mrma[0..4]

Mgw1 Mgw2

Mtemp3 Mpos2 Mnav,Mcam Mcontrol Mtna[0..4] Mrma[0..4]

Figure 6.10: Message schedule for the exemplary automotive application

UFIM-Ports and SoC-Ports is dynamically calculated by the RMA according to the
active communication channels in the currently selected primary mode, the map-
ping of input UFIM-Ports to input SoC-Ports input UFIMport SoCport mapping
(MAX UFIMPORTSbytes) and the mapping of output UFIM-Ports to output SoC-Ports
output UFIMport SoCport mapping (MAX UFIMPORTSbytes) is also part of the host
configuration message.

The actual reconfiguration of the hosts and of the TISSs is performed by all
micro components at the same instant of the global time, the SoC-wide consistent
reconfiguration instant.

6.4.4 Exemplary Message Schedule

This section describes a message schedule for the exemplary automotive application
that has been introduced in Section 6.1. The timing diagram illustrated in Figure 6.10
depicts the schedule of all messages as it has been generated by the RMA. In the
top half of this figure, the messages transmitted over the SoC-internal network of
the Sensor Component are depicted. The bottom half represents the schedule of
the inter-component network of the Display Component. In between, Figure 6.10

113

6.4 RMA Implementation 6 Case Study

Name Sender Receiver Len Phase M Description

Mtemp1 Sensor-
Node0

Sensor-
Node4

64 198 0 Temperature value from pri-
mary temperature sensor

Mtemp2 Sensor-
Node2

Sensor-
Node4

64 198 1 Temperature value from sec-
ondary (standby) tempera-
ture sensor

Mpos Sensor-
Node3

Sensor-
Node4

64 462 0,1 Sensor values for longitudi-
nal, lateral, and yaw posi-
tion value

Mdiag Sensor-
Node1

Sensor-
Node5

64 2500 0,1 Diagnostic unit can initiate
with this message a mode
change (0 1)

Mtna[0..4] TNA Sensor-
Node[0..4],
Display-

Node[0..4]

512 3870,
3873,
3876,
3879,
3882

0,1 Configuration information
for all TISSs; for simplicity,
both SoC components use
the same schedule for those
messages

Mrma[0..4] RMA Sensor-
Node[1..4],
Display-

Node[1..4]

256 3890,
3892,
3894,
3896,
3898

0,1 Configuration information
for all hosts; for simplicity,
both SoC components use
the same schedule for those
messages

Mgw1 Sensor-
Node4

Display-
Node4

64 384 0,1 Gateway-to-gateway mes-
sage containing the temper-
ature value

Mgw2 Sensor-
Node4

Display-
Node4

64 640 0,1 Gateway-to-gateway mes-
sage containing the lateral
and longitudinal value

Mtemp3 Display-
Node4

Display-
Node1

64 330 0,1 Temperature value for-
warded to monitor node

Mpos4 Display-
Node4

Display-
Node2

64 594 0,1 Lateral and longitudinal
value forwarded to naviga-
tion node

Mnav Display-
Node2

Display-
Node1

256 726 0 Navigation information to
be displayed at the monitor
node

Mcam Display-
Node3

Display-
Node1

256 726 1 Rear cam data to be dis-
played at the monitor node

Mcontrol Display-
Node0

Display-
Node5

64 2500 0,1 Control node initiates with
this mes-sage a mode change
(0 1)

Table 6.1: Message specification for the automotive example

depicts the message exchange over the TTE network interconnecting the two SoC-
components. Please note that the generation of a schedule for those two messages is
not in the scope of the RMA. These messages have been statically defined for both
SoC components (as output messages of the gateway in the Sensor Component and
as input messages to the gateway in the Display Component) and are part of the
MEDL of the TTE controllers towards the component-external network.

A description of the individual messages required for the realization of the exem-
plary automotive application is given in Table 6.1. For each message the following

114

6 Case Study 6.4 RMA Implementation

properties are listed:

• the communication topology by specifying the sender micro component and
the list of receiver micro components,

• the temporal characteristics by specifying the message phase (the message pe-
riod of all messages is 62.5 ms) and its length in bytes,

• the primary mode for which the respective message is active, i.e., for which it
is part of the schedule, and

• a description of the purpose of the message

As it can be seen from Table 6.1, Mtemp1 and Mtemp2 use the same TDMA slot on
the component internal TTE network of SoC component realizing the Sensor Com-
ponent. However, at any primary mode only one of those messages is active. Thus,
it is not allowed that in any configuration computed by the RMA both messages are
active at the same time. A switch between those two mutual exclusive configurations
is initiated by the diagnostic unit.

A similar situation applies to the messages Mnav and Mcam in the Display Compo-
nent. While the mode change in the Sensor Component does not affect the semantics
of the message, the mode change in the Display SoC component completely changes
the semantics of the message received by the micro component hosting the monitor
job. Thus, the monitor job in the Display Component has to change its behavior at
a mode change initiated by the control job, while the gateway in the Sensor Com-
ponent, which forwards the temperature values, has not to be aware of the mode
change initiated by the diagnostic unit.

115

6.4 RMA Implementation 6 Case Study

116

Chapter 7

Evaluation and Results

In the previous chapters we have identified and specified the services for resource
management provided by the cooperation of Resource Management Authority (RMA)
and Trusted Network Authority (TNA). Furthermore, an implementation of those
services on a prototypical hardware setup for the realization of a case study has
been presented. It is now the scope of this chapter, to provide the results of an
experimental evaluation of those services.

For this purpose, we present the results of three validation experiments in this
chapter. The first experiment demonstrates the non-interference of the reconfigura-
tion of the communication schedule with already ongoing communication activities.
The second one shows the ability of the RMA to handle excessive resource requests
from jobs by rejecting resource requests in case the available resources are exceeded,
or by selecting degraded service modes if available, respectively. With the last ex-
periment we show that the resource protection mechanisms of the TNA guard the
resources of dedicated application subsystems like safety-critical application subsys-
tem, even in case of the presence of a failure of the RMA.

7.1 Preservation of Encapsulation

As elaborated in Section 3.1, one primary design driver of the TTSoC architecture is
the support for integrating multiple application systems, possibly possessing different
levels of criticality and/or originating from different vendors, into a single distributed
embedded system. Therefore, the TTSoC architecture strives for facilitating the in-
dependent development of those application subsystems by offering encapsulation
mechanisms that ensure that any unintended interference between application sub-
systems is prevented.

One key attribute of the realized resource management mechanisms is to preserve
those encapsulation characteristics of the architecture. In particular, it is the goal to
preserve the encapsulation of the communication channels, which are the subject of
resource management in this thesis, in order to prevent any unintended interference

117

7.1 Preservation of Encapsulation 7 Evaluation and Results

TISS

Control Job

µC 0

TISS

Navigation Job

µC 2

TISS

Gateway Job

µC 4

TISS

Rear Camera

Job

µC 3

Monitor Job

µC 1

TISS

RS-232

8kbit/s32kbit/s64kbit/s –

1Mbit/s
8kbit/s

RMA

Application

and System

Knowledge

Persistence Storage & Analysis

µC 5

Figure 7.1: Setup of the first evaluation experiment. The dashed arrows indicate
channels with variable bandwidth.

between application subsystems. Therefore, it is the intention of the first experiment
to demonstrate that communication channels which are not subject of reconfiguration
are not interfered by an ongoing reconfiguration activity.

7.1.1 Experiment Setup

The setup of the first experiment is based on the exemplary automotive application,
which is described in Section 6.1: For the evaluation we have exploited all five micro
components of the Display Component, as well as, RMA and TNA using the follow-
ing system configuration (cf. Figure 7.1). The monitor job on micro component 1 is
configured to receive messages via two statically configured encapsulated communi-
cation channels. Via the first channel, the gateway job, located on micro component
4, periodically disseminates a message containing 64 bytes of data to the monitor job.
The second encapsulated communication channel originates from the navigation job,
which is located on micro component 2, and permits the periodic dissemination of
a message comprising 256 byte of data to the monitor job. The exact parameters of
these communication channels can be found in Table 7.1.

In addition, a dynamically reconfigurable communication channel is established
that is used by the rear camera job located on micro component 3. In contrast to the
earlier two channels for which the allocated bandwidth remains constant throughout
the entire experiment, the bandwidth allocated to the third communication channel
is varied over time (from 64 kbit/s to 1 Mbit/s). This variation of the bandwidth is
achieved by altering the periodicity of the encapsulated communication channel (from
62.5ms down to 3.9 ms), while holding the length of the transmitted data constant at
512 byte. The bandwidth variation is initiated via respective reconfiguration requests,
which are disseminated to the RMA by the control job located on micro component 0.

Besides the message exchanges depicted in Figure 7.1, dedicated communication
channels from the RMA to all five jobs, as well as, from the TNA to all TISSs of the

118

7 Evaluation and Results 7.1 Preservation of Encapsulation

Sender Receiver Mode Period MsgLen Bandwidth Comment

Gateway Monitor 0-4 62.5 ms 64 Byte 8 kbit/s constant period
Navigation 0-4 62.5 ms 64 Byte 8 kbit/s and msg length

Navigation Monitor 0-4 62.5 ms 256 Byte 32 kbit/s constant period
and msg length

Rear cam Monitor 0 62.5 ms 512 Byte 64 kbit/s period is varied
1 31.2 ms 512 Byte 128 kbit/s during the exper-
2 15.6 ms 512 Byte 256 kbit/s iment; msg length
3 7.8ms 512 Byte 512 kbit/s is kept constant
4 3.9ms 512 Byte 1Mbit/s

Control RMA 0-4 62.5 ms 64 Byte 8 kbit/s constant period
and msg length

RMA Monitor 0-4 62.5 ms 256 Byte 32 kbit/s constant period
Navigation 0-4 62.5 ms 256 Byte 32 kbit/s and msg length
Rear cam 0-4 62.5 ms 256 Byte 32 kbit/s
Monitor 0-4 62.5 ms 256 Byte 32 kbit/s

TNA TISS0* 0-4 62.5 ms 512 Byte 64 kbit/s constant period
TISS1* 0-4 62.5 ms 512 Byte 64 kbit/s and msg length
TISS2* 0-4 62.5 ms 512 Byte 64 kbit/s
TISS3* 0-4 62.5 ms 512 Byte 64 kbit/s
TISS4* 0-4 62.5 ms 512 Byte 64 kbit/s
TISS5* 0-4 62.5 ms 512 Byte 64 kbit/s

* receiver TISSx represents the TISS of micro component x

Table 7.1: Configuration parameters of the time-triggered NoC for the first evaluation
experiment

micro components (including the TISS of the RMA) are established. An overview of
all required communication channels for this experiment is given in Table 7.1.

7.1.2 Evaluation Procedure and Results

It is the objective of this first experiment to demonstrate that communication chan-
nels, which are not subject of reconfiguration, are not interfered by an ongoing re-
configuration activity. For this purpose, two temporal attributes of the static encap-
sulated communication channels received by the monitoring job are monitored and
analyzed while reconfiguration activities take place, namely the phase offset and the
transmission latency.

The acquisition of this information is performed directly at the TISS of micro
component 1. As depicted in Figure 7.1, the TISS of this micro component is con-
nected via a RS-232 interface to an SoC-external PC. The RS-232 connection is used
to log the measurement records generated by the TISS in a persistence storage at the
PC for later analysis. Listing 7.1 depicts three typical measurement records, which
are generated on message reception by the TISS.

The first entry in the record identifies the communication channel—it represents
the local SoC-Port identifier of the channel at the TISS of micro component 1. This
is followed by a time-stamp of the measurement, which is expressed in macro ticks

119

7.1 Preservation of Encapsulation 7 Evaluation and Results

Listing 7.1: Log file excerpt of first evaluation experiment
. . .
4 46−e3012208 56 7 2265 −1 64
2 46−e3014da0 0 10 330 −1 8
3 46−e302daa8 57 10 726 −3 32
. . .

of the global time in the SoC component. The third entry represents one dedicated
byte of the message that is transmitted via the respective channel in order to check
that the data is correctly transmitted and no messages are lost.

The following two fields identify period and phase offset of the message as it is
currently configured by the TNA. This information is extracted from the configu-
ration memory of the TISS, i.e., in this implementation from the MEDL memory
of the TTE controller. During the analysis of the log file, this information is used
to determine, whether the temporal attributes of the static communication channels
are affected by an ongoing reconfiguration.

The sixth entry of each measurement record holds the TimeDiff Capture value
(see [Steinhammer, 2007, p. 124]), which denotes the difference between the expected
and the actually occurred reception instant of a particular message. This value is
automatically adjusted by the TTE controller with the transmission latency induced
by the TTE switch. This latency is a configuration parameter of the TTE controller
and is set for a system configuration comprising a single TTE switch to 9 macro ticks,
i.e., approximately 4.29µs.

The last field of each measurement record holds the length of the message dissem-
inated over the respective communication channel. According to the TTE specifica-
tion [Kopetz et al., 2006, p. 34], the message length is stored in the TTE controller
in blocks of 8 bytes. Hence, in the example presented in Listing 7.1 the value 64
denotes an actual message size of 512 bytes.

Impact on the Message Schedule

The chart depicted in Figure 7.2 presents the change of the phase offsets of the
individual messages of the experiment setup over time. The x-axis represents the
progression of real-time in terms of the number of elapsed periods with a length
of 62.5 ms since the epoch of the TTE system, i.e., the power-on instant of the
SoC component. This period length is used in the case study as the periodicity
of reconfiguration instants. Thus, the chart plots the observed phase offset of the
individual messages after every reconfiguration instant.

At particular instants, marked in the chart with dashed lines, mode changes are
requested by the control job. As shown in Figure 7.2, despite the presence of mode
changes, the phase offset of the static communication channels remain constant at
10560 macro ticks for message 0, respectively, 23232 macro ticks for message 1, while

120

7 Evaluation and Results 7.1 Preservation of Encapsulation

���������������� ����� ����� 	��� ��� 	��� ����� ��� ����� ������
���������������������������������������
���� ���� ���� ���� ���� ���� �	�� ���� � ���
� ����� ��� �������� �� ���� ������ �� ��! " #� $� % &� ���'� (�#) &� ���'�*�#+ � ,-./ $�0 12345 677458 97 :5443;5 �12345 677458 97 :5443;5 �12345 677458 97 :5443;5 �mode 0 mode 1 mode 2 mode 3 mode 4 mode 3 mode 2 mode 4 mode 1 mode 0

Figure 7.2: Modification of the phase offset due to reconfiguration

the communication channel originating from the rear camera job is rescheduled at
every reconfiguration instant.

The phase offset of the dynamic communication channels varies from 868 macro
ticks in mode 4 (with a message period of 3.9 ms) to 123744 macro ticks in mode 0
(with a message period of 62.5 ms). It is obvious that the maximum phase offset
which can be assigned to a message by the scheduling algorithm increases with the
length of the period (see Table 7.2).

Mode Period Phase max. Phase*

0 62.5ms 123744 131072
1 31.2ms 58208 65536
2 15.6ms 25440 32768
3 7.8ms 9060 16384
0 3.9ms 868 8192

* max. phase offset for the respective period
according to the TTE specification

Table 7.2: Phase offset (in macro ticks) of message 3 in different modes

Impact on Message Transmission Latency

The chart depicted in Figure 7.3(a) represents the variation of the message reception
latency of both static communication channels at micro component 1. The latency
values are acquired by taking a time-stamp of the global time at the TISS of micro
component 1, immediately before the receive interrupt for the particular message is
signaled to the host and calculating the difference to the expected reception instant
as defined in the MEDL. Thus, the latency subsumes the following time durations:

• the transmission time of the entire message over the 100 Mbit/s Ethernet con-
nection (including Ethernet header, TTE header, and the delay of one TTE
switch),

• the operating system overhead for the activation of the TISS software (realized
as RTAI Linux kernel module),

121

7.1 Preservation of Encapsulation 7 Evaluation and Results

�������������������������	��������������
���������������

��	����������
���� ���� ���� ���� ���� ���� �	�� ���� � ���
 �� �� ��� ���� ��� ���� ��

���� ������ � �!" ������ ��� ��# ����$%� &�! '()* (+,,-) .)/ 0+1 23- 4+ 54+1, 6(+7 - . 8+ (-)7, 9-: ; 2+ .*: ;)/ <=>? 4, '+ (-)7 @A - .33 BCD EF GHIJHH JK G LFMN GOP KQ INHHFRN � S�� TPMNU HN GVN EWRFMNXFP YK TZ D EF GHIJHH JK G LFMN GOP KQ INHHFRN � S��� TPMNU HN GVN EW GF[JRFM JK G YK TZ\F GVX JVM] ĤFRN KQ ENF EOFIN EF YK T
(a) Message reception latency of message 0 and message 1

���������������������������������
����������
���
���� ���� �	�� ���� ���� ���� ���� ���� � ���
 �� �� ��� ���� ��� ���� ��

���� �� ���� � �!"� ��#��� ����$�� �%�&��' �(&
�� �� $�� �� $� �!)*+, *-../+ 0+1 2-3 45/ 6- 76-3. 8*-9 / 0 :- */+9. ;/< = 4- 0,< =+1 >?@A 6.)- */+9 BC / 055 DEF GHI J GKKI LI MNI NO PQ RLI SO TRI UK HIVVOWI � XVI MJI LYWOQIZO[\U]^ _O MJZ GJQ ` RVOWI UK LIO LNOHI LO \U]

���������������������������������
����������
���
���� ���� �	�� ���� ���� ���� ���� ���� � ���
 �� �� ��� ���� ��� ���� ��

���� �� ���� � �!"� ��#��� ����$�� �%�&��' �(&
�� �� $�� �� $� �!)*+, *-../+ 0+1 2-3 45/ 6- 76-3. 8*-9 / 0 :- */+9. ;/< = 4- 0,< =+1 >?@A 6.)- */+9 BC / 055 DEF GHI J GKKI LI MNI NO PQ RLI SO TRI UK HIVVOWI � XVI MJI LY MOS GWOQ GU M \U]^ _O MJZ GJQ ` RVOWI UK LIO LNOHI LO \U]

(b) Deviation of expected and actual receive instants at micro component 1

Figure 7.3: Jitter of message reception latency during reconfiguration

• the access of the TISS software to the MEDL memory of the TTE controller,

• the preparation of the required data structures for signaling the reception to
the host, as well as,

• the deviation of the actual from the expected instant of reception of a particular
message.

The deviation between expected and actual instant of reception at a particu-
lar micro component depends on the quality of the clock synchronization of the
TTE system, which interconnects the micro components. Evaluation experiments of

122

7 Evaluation and Results 7.2 Handling of Excessive Resource Requests

Steinhammer [Steinhammer, 2006, p. 134] have shown that the maximum deviation
is below half a macro tick, which equals 2−21 s = 476.8ns (one macro tick typically
equals 25 micro ticks). The chart shown in Figure 7.3(b) depicts this deviation,
by plotting the contents of the TimeDiff Capture value (see [Steinhammer, 2007,
p. 124]) of the TTE controller measured in micro ticks.

In all three charts depicted in Figure 7.3(a) and Figure 7.3(b), the secondary
y-axis displays the bandwidth usage of the message originating from the rear camera
job. Thus, this graph denotes the instants of reconfigurations initiated by requests
from the control job (cf. Figure 7.1). As it can be seen from those charts, no sig-
nificant correlation between reconfiguration instants and the jitter of the message
reception latency, respectively, the deviation of expected and actual message receive
instant can be detected. Thus, the communication channels that are not subject
of reconfiguration are not impaired by the reconfiguration activities of the dynamic
communication channel.

7.2 Handling of Excessive Resource Requests

The purpose of the second validation experiment is to show the ability of the RMA
to react to increasing resource requests from individual jobs, resulting in bandwidth
requirements which would exceed the available resources, respectively, would fail to
be scheduled due to message collisions.

In such a case, there exist two alternatives for the RMA to react:

• Reject of the resource request and notification of the job regarding the reject

• Selection of a suitable degraded mode of operation, if defined

Nevertheless, it is the purpose of the TNA as the final authority in the entire resource
management process to detect possible collisions on the time-triggered NoC and
ensure the correct operation of protected communication channels.

7.2.1 Experiment Setup

The setup of this experiment is similar to the one described in the previous section.
As depicted in Figure 7.4, the micro components involved in the experiments, as well
as, the established communication channels are the same as in the previous experi-
ment. The acquisition of the experiment data, however, is performed at the RMA.
At the RMA, the output regarding the requested mode of operation, the actually
chosen mode after the scheduling, as well as, temporal properties of the resource
management process (e.g., the required time to generate the schedule, the response
time from the TNA, etc.) is transmitted via a serial connection to a persistent storage
on a PC.

123

7.2 Handling of Excessive Resource Requests 7 Evaluation and Results

TISS

Control Job

µC 0

TISS

Navigation Job

µC 2

TISS

Gateway Job

µC 4

TISS

Rear Camera

Job

µC 3

Monitor Job

µC 1

TISS

8kbit/s32kbit/s64kbit/s –

1Mbit/s

8kbit/s

Persistence Storage & Analysis

RS-232 RMA

Application

and System

Knowledge

µC 5

Figure 7.4: Setup of the second evaluation experiment

The configuration of the static communication channels (i.e., the communication
channels between gateway job and monitor job, navigation job and monitor job,
control job and RMA, as well as, all communication channels originating from RMA
and TNA) equals the previous experiment (see Table 7.1). For testing the behavior
of the RMA in presence of resource requests that exhaust the available resources,
six primary modes have been defined (cf. Table 7.3), which increase the bandwidth
requirement of the rear camera job.

In mode 0 the rear camera job uses a single communication channel with a pe-
riod of 1.95 ms and a message length of 512 byte, which results in a bandwidth
usage of 1Mbit/s. In each further mode, two additional communication channels are
requested for the rear camera job, resulting in a bandwidth usage of 11Mbit/s in
mode 5 and mode 6. For mode 6 we have defined a degraded mode 6a, which has
an overall bandwidth demand of 10Mbit/s. The reason to add additional commu-
nication channels instead of decreasing the periodicity of individual communication
channels is that 1.95 ms is the shortest TTE message period that is usable in our case
study implementation. This limitation is caused by the time required for the recon-
figuration of the TISS software during which no messages are allowed to be on transit
on the NoC. In our case study implementation, this time equals approximately 1 ms.

7.2.2 Evaluation Procedure and Results

The objective of this experiment is to demonstrate that the RMA detects resource
requests that exceed the available resources or fail to be scheduled due to conflicts
with other communication channels. Therefore, the input to the RMA, the time
required for generating a communication schedule, as well as, the output of the
RMA are monitored and analyzed.

As depicted in Figure 7.4, data acquisition for this experiment is performed at the
RMA via a RS-232 connection to an SoC-external PC, which logs the measurement

124

7 Evaluation and Results 7.2 Handling of Excessive Resource Requests

Mode UFIM-port Nr. Period MsgLen Bandwidth

0 rear-cam:0 1.95ms 512 1Mbit/s

1 based on configuration of mode 0 1Mbit/s
rear-cam:1 1.95ms 512 1Mbit/s
rear-cam:2 1.95ms 512 1Mbit/s

2 based on configuration of mode 1 3Mbit/s
rear-cam:3 1.95ms 512 1Mbit/s
rear-cam:4 1.95ms 512 1Mbit/s

3 based on configuration of mode 2 5Mbit/s
rear-cam:5 1.95ms 512 1Mbit/s
rear-cam:6 1.95ms 512 1Mbit/s

4 based on configuration of mode 3 7Mbit/s
rear-cam:7 1.95ms 512 1Mbit/s
rear-cam:8 1.95ms 512 1Mbit/s

5 based on configuration of mode 4 9Mbit/s
rear-cam:9 1.95ms 512 1Mbit/s
rear-cam:10 1.95ms 512 1Mbit/s

6 based on configuration of mode 4 9Mbit/s
rear-cam:9 1.95ms 512 1Mbit/s
rear-cam:10 1.95ms 512 1Mbit/s

6a degraded mode of mode 6 - based on mode 4 9Mbit/s
rear-cam:9 1.95ms 512 1Mbit/s

Table 7.3: Primary modes for the second evaluation experiment

Listing 7.2: Log file excerpt of second evaluation experiment
. . .
Mode reques ted : 2 − time : 22468310 us
Schedul ing done − time : 22473254 us
TNA accepted mode change − time : 22513308 us
Active mode : 2 − time : 22513621 us
. . .

records. Listing 7.2 depicts a typical measurement record produced by the RMA.

The first line represents the input to the RMA (i.e., the requested primary mode)
as it is received from the control job, followed by a time stamp of the local clock at
the RMA that denotes the reception instant of the resource request.

The result of the message scheduling at the RMA is stored in the second line of
the measurement record. This line holds the information, whether the scheduling was
successful (”Scheduling done”) or has failed. The time stamp represents the value
of the local clock at the RMA immediately after finishing the scheduling. Thus, the
time needed for generating the message schedule yields from the difference of the
first two time stamps.

The third line indicates whether the TNA has accepted the new SoC configuration
or not. The response and processing time of the TNA can be calculated out of the
third time stamp. The last line of the measurement record depicts the output of
the RMA again. It contains the primary mode (or degraded mode of operation)
that is actually chosen after the entire resource management procedure and that is

125

7.2 Handling of Excessive Resource Requests 7 Evaluation and Results

���� ���� ����� ����� ����� ����� ����� ����� �������	
 ����	 �	� ��� � � �� �����
��� ������ ����� !�� �"#$% ��� �"�& '(��� �"��� "� ��� ����mode 0

mode 6

mode 5

mode 4

mode 3

mode 2

mode 1

failed

successful

rejected

accepted

mode 0

mode 6

mode 5

mode 4

mode 3

mode 2

mode 1

mode 6a

re
q

u
e

s
te

d
 m

o
d

e
s

s
e

le
c
te

d
 m

o
d

e
s

)*+ ,*-.*/ 01/* -2 3*/ ,4567)*- ,4. 8 9:)*- ,4. -* 4*2.*/ 01/*
Figure 7.5: Response of RMA and TNA to resource requests

communicated to all hosts of the respective DAS. The last time stamp is taken after
the preparation of the RMA-to-Host messages, which inform the hosts about the
actual configuration, i.e., active mode, active job, as well as, UFIM-Port to SoC-Port
mapping.

For the validation of the RMA reaction on resource requests, we have used the
following test procedure: The control job located on micro component 0 requests
periodically a primary mode from the RMA. The requested mode is modifiable
via the user interface of the control job. Starting with mode 0, the bandwidth
requirements of the rear camera job are stepwise increased by successively requesting
mode 1, mode 2, and so on. The output of RMA and TNA as response to those mode
requests is depicted in Figure 7.5 (each mode request is marked by a dashed vertical
line).

As it can be seen from Figure 7.5, the RMA is able to derive a schedule for
the demanded messages for the modes 0 to 4. Figure 7.6 visualizes this computed
schedule. The selection of mode 5, respectively mode 6 would lead to an overall
bandwidth usage of the rear camera job of 11 Mbit/s (cf. Table 7.3), for which, as it
is indicated in Figure 7.6, no valid schedule can be found by the RMA. In such a
case, the RMA rejects the particular resource request and the current mode remains
active. This is depicted in Figure 7.5 at approximately 20 sec after the start of the
experiment: The control job requests mode 5, but the last successfully requested
mode, mode 4, remains active. In the current implementation of the RMA, the
scheduling algorithm is only started, if at least for one DAS a mode is requested
that differs from the actually active one. Since in this experiment the control job
periodically disseminates the currently selected mode to the RMA (the selection
is realized via the job’s user interface), the RMA is invoked every reconfiguration
period, which equals 62.5 ms in the current setup.

In contrast to mode 5, a degraded mode of operation representing a lower QoS
level is defined for mode 6, denoted as mode 6a. Since the RMA is able to construct

126

7 Evaluation and Results 7.3 Validation of Resource Protection Mechanisms

� ��� ��� ��� � �� ��� ��� �	� ����� ��� ��� ��� � �� ��� ��� �	� ����
 �� ��� �� � �� ��
 �� �� �
��
 �� ��� �� � �� ��
 �� �� �
��
 �� ��� �� � �� ��
 �� �� �
��
 �� ��� �� � �� ��
 �� �� �
��
 �� ��� �� � �� ��
 �� �� �
��

TTE Period 5 => 1.95 ms

mode 0

mode 1

mode 2

mode 3

mode 4

mode 5 & 6

mode 6a

TNA messages

RMA messages

Gateway job messages

Navigation job message

Control job message

Rear cam job messages

TISS reconfiguration time

Figure 7.6: Message schedule calculated by the RMA

a valid schedule for this degraded mode, the mode is selected by the RMA and is
communicated to all jobs of the DAS.

For the visualization of the schedule in Figure 7.6, only a single period with
a periodicity of 1.95 ms is presented. In order to visualize potential collisions with
messages exhibiting larger periods (e.g., originating from the communication between
gateway job and monitor job, navigation job and monitor job, etc.), the phase offsets
of those messages are transformed to their correspondents in the chosen period of
1.95ms. The process of message transformation is explained in Section 6.3.3. The
interval denoted as TISS reconfiguration time represents the time required for the
reconfiguration of the TISS software during which no messages are allowed to be on
transit on the NoC. As explained before, this limits us to use TTE period 5, which
equals 1.95ms, as the shortest period for our experiments.

7.3 Validation of Resource Protection Mechanisms

As stated in Section 3.2.5, the main purpose of the TNA is to act as a guard for
reconfiguration activities performed by the RMA. Therefore, the TNA is enabled
to detect potential collisions on the time-triggered NoC or violations on resource
protections, e.g., a differing phase of a protected communication channel. In such a
case, the TNA rejects the new configuration and the current one remains unchanged.

The objective of this validation experiment is to supply a first evidence that
the resource protection mechanisms of the TNA preserve the temporal properties of
the protected communication channels (phase offset, bandwidth reservation) even in
presence of a failure of the RMA.

7.3.1 Experiment Setup

The architectural elements of the TTSoC architecture involved in this experiment
are solely RMA and TNA. As depicted in Figure 7.7, a static configuration of

127

7.3 Validation of Resource Protection Mechanisms 7 Evaluation and Results

Persistence Storage &

Analysis

RS-232 TNA

Resource

Protection

Information

TISS configuration messages

RMA

Application

and System

Knowledge

SW fault injection

Figure 7.7: Setup of the third evaluation experiment

the communication schedule is stored at the RMA, which is disseminated to the
TNA to be checked for correctness, i.e., for the lack of collisions, as well as, for
the correct configuration of protected resources. The static configuration used for
this experiment equals to the configuration of mode 0 used in the first experiment
(see Table 7.1), except for the rear camera job. Unlike as described in Table 7.1, a
periodicity of 1.95 ms is specified for the outgoing message of the rear camera job.

The protected resources are specified by an XML file as defined in Section 6.3.4.
The protection file used for this experiment includes the following single entry:

<uC id="0">

<Port period="PERIOD_P10" phase="2500" length="64"

direction="DIR_OUTPUT" type="TYPE_PERIODIC"/>

</uC>

This entry specifies that the parameters of an outgoing message from micro compo-
nent 0 (used by the control job) have to be protected by the TNA. The concrete
parameters that are fixed for this experiment are period, phase offset, message length,
message direction, and message type. Please note that it is also possible to specify
only a subset of those parameters, which would decrease the level of protection by
the TNA.

The acquisition of the experiment data is done at the TNA, where the output
stating whether a configuration from the RMA is accepted or not, is transmitted via
a serial connection to a persistent storage on a PC.

7.3.2 Evaluation Procedure and Results

In order to analyze the protection mechanisms of the TNA, two different tests using
software fault-injection are performed. While the first one inspects the ability of
the TNA to detect collisions on the NoC, the second one examines the protection of
the temporal configuration parameters period and phase offset of the communication
channel originating from the control job.

In the first test, the phase offset of a single message is altered after the schedule
generation has been performed by the RMA. This simulates a failure of the RMA,
which may result in a conflicting schedule. This is realized by successively assigning

128

7 Evaluation and Results 7.3 Validation of Resource Protection Mechanisms

� ��� ��� ��� � �� ��� ��� �	� ����
TNA messages

RMA messages

Gateway job messages

Navigation job message

Control job message

Rear cam job messages

TISS reconfiguration time

TTE Period 5 => 1.95 ms

TNA reject

TNA accept

TNA reject

TNA accept

message length 512

message length 256

Figure 7.8: TNA response to varying phase offset of rear camera job message

all possible values of the phase offset, i.e., 0x000 to 0x3FF since the phase offset of
a message with period 5 in TTE is made up of 10 bits, to the respective data field
in the configuration data structure. Afterwards, the modified configuration data is
disseminated to the TNA and the response of the TNA is recorded.

Figure 7.8 depicts the output of the TNA, i.e., either accept or reject, depending
on the phase offset of the outgoing message of the rear camera job. The first test run
is performed with a message length of 512 bytes, for a second test run the length is
reduced to 256 bytes. As it can be seen from this figure, any time a collision with
the other messages would occur, the TNA rejects the configuration.

The main difference between the two configurations with differing message lengths
arises at a phase offset of 384: While the message with a length of 512 bytes is too
long to be sent during the time between the transmission of TNA and RMA messages,
a collision-free transmission of the 256 byte long message during this time is possible.
At a phase offset of 390, the TNA rejects the configuration again, due to a detected
collision.

For the second test, exhaustive software fault-injection has been performed for all
protected parameters of the message originating from the control job. For this reason,
all possible values for the parameters message period, phase, length, direction, and
type have been successively assigned to the respective fields in the configuration data
structure. Table 7.4 represents the theoretical range of the individual parameters, as
well as, their valid range according to design restrictions. For instance, for the TTE
periods 15 to 7, 12 bits are available for the specification of the phase of the message.
For each TTE period shorter than period 7, the number of bits is reduced by one
resulting in five bits for the shortest TTE period that is used for these experiments.

The results of this second test have shown that any deviation of a configuration
parameter of a protected communication channel is detected by the TNA, which
results in a reject of the proposed configuration. Thus, a fault within the RMA that
affects the contents of the configuration data cannot affect the correct operation of
protected communication channels.

129

7.3 Validation of Resource Protection Mechanisms 7 Evaluation and Results

Name Width Min. Max. Restriction

period 4 bit 0x0 0xF no restriction: 16 periods are defined in TTE

phase 12 bit 0x000 0xFFF 12 bits for period 10 to period 7; number of bits
is reduced by one for each following period

length 8 bit 0x00 0xFF length is specified in 8 byte blocks; the theoret-
ical max. length of 2048 bytes, is restricted by
Ethernet specification (max. 1500 bytes allowed)

direction 1 bit 0 1 no restriction: direction either input or output

type 2 bit 0 4 we support only periodic (type = 0) and sporadic
(type = 1) messages

Table 7.4: Data range of configuration parameters

130

Chapter 8

Conclusion

The main contribution of this thesis is the design and development of a resource man-
agement solution for the TTSoC architecture. One major design goal is to preserve
the encapsulation and fault-isolation properties of the TTSoC architecture despite
the introduction of dynamic resource management. Additionally, we aim at an easier
development of integrated systems that host applications with different dependability
requirements. Due to the advancements of computational power and hardware costs
in the area of embedded systems, these mixed-criticality systems become attractive
for many application domains (e.g., aerospace domain or automotive domain).

8.1 Encapsulation of Application Subsystems

In the recent past, in various application domains (e.g., in the aerospace domain or
the automotive domain) a number of efforts have been made to realize a paradigm
shift from federated system architectures towards integrated architectures. In a fed-
erated system, each application system has its own dedicated computer system which
is often tailored to a particular application. In contrast, an integrated architecture
is characterized by the integration of multiple application systems within a single
distributed computer system. The paradigm shift taking place is mainly caused by
the massive increase of functionality of embedded applications, which results in a
continuous escalation of the number of interacting physical components. The con-
sequences of this development are twofold: first, the costs for system development
and for hardware increase, and secondly, the inherent system complexity also rises.
Choosing integrated architectures reduces these issues.

For this purpose it is important for an integrated architecture to facilitate com-
posability, robustness, and modular certification. Therefore, it is a pivotal property
of an integrated architecture to achieve encapsulation of the individual hosted ap-
plications. The TTSoC architecture provides this encapsulation by offering a pre-
dictable on-chip interconnect that is free of interference. Each computational ele-
ment, denoted a micro component, is assigned dedicated slots in a time-triggered

131

8.2 Support for Mixed Criticality Systems 8 Conclusion

communication schedule, which are protected from other micro components through
the communication system. In addition, this encapsulation results in a complexity
reduction, because the behavior of interfering subsystems is more difficult to under-
stand and to reason about than the behavior of cleanly encapsulated subsystems.

In this thesis we presented a resource management solution for the TTSoC archi-
tecture that is able to preserve this encapsulation despite the presence of dynamic
reconfiguration. This is achieved by combining the advantages of static resource
allocations with the flexibility that is provided by a QoS-based resource allocation.
Therefore, all possible system operation modes, together with their corresponding
resource requirements need to be specified a priori for each application subsystem.
This is realized by defining the primary modes for each application subsystem. In
addition, we propose to specify different degradation levels for each primary mode,
which represent the operational mode of the application subsystem with a lower QoS
level, and related therewith, with changed resource requirements. On the one hand,
this strategy enables the dynamic reallocation of resources to application subsystems
even across application subsystem borders in order to react to changing resource de-
mands. On the other hand, it also permits a static analysis of the allotment of
resources to application subsystems, hence it becomes possible to verify that in all
possible operation modes a feasible allocation can be found four all applications.

In addition to the possibility of this static analysis, we preserve the encapsu-
lation of the application subsystems by enabling the off-line specification of static
resource allocations. To this end, we provide architectural protection mechanisms to
ensure that these static allocations are not affected by any system reconfiguration.
We experimentally evaluated and approved these protection mechanisms while per-
forming software fault-injection experiments in our prototypical implementation of
the TTSoC architecture.

8.2 Support for Mixed Criticality Systems

Encapsulation is also of particular importance for the implementation of mixed-
criticality systems for the above mentioned application domains. For instance, a
future automotive system will incorporate applications ranging from a safety-critical
drive-by-wire application subsystem to a non safety-critical comfort application sub-
system. In such a mixed criticality system, a failure of micro components of a non
safety-critical application subsystem must not cause the failure of application sub-
systems of higher criticality.

Additionally, mixed-criticality systems have significant effect on the system design
paradigm. In general, safety-critical and non safety-critical applications systems will
involve fundamentally different design paradigms. The focus of safety-critical appli-
cations lies on simplicity and determinism in order to facilitate thorough verification
and validation. In contrast, non safety-critical applications can provide more com-
plex application services, e.g., they need to deal with insufficient a priori knowledge
about the environment, and require dynamic behavior to handle the challenges of

132

8 Conclusion 8.2 Support for Mixed Criticality Systems

evolving application scenarios and changing environments. Likewise, the support for
mixed criticality systems had a significant impact on the design and development of
the resource management solution: On the one hand, the resource allocation should
be flexible and nearly optimal w.r.t. resource utilization to be competitive in the im-
plementation of non safety-critical applications. On the other hand, predictability,
determinism, and fault isolation are vital characteristics for resource management
regarding safety-critical systems.

The resource management solution presented in this thesis follows this distinction
of application systems and provides two distinct architectural elements for enabling
integrated resource management, the Trusted Network Authority (TNA) and the Re-
source Management Authority (RMA). The RMA computes new resource allocations
for the non safety-critical application systems, while the TNA verifies and actually
executes the resource reallocation and ensures that the new resource allocations have
no negative effect on the behavior of all hosted application systems (in particular the
safety-critical application systems).

For this purpose, the TNA is responsible (i) for verifying that the resource sched-
ule computed by the RMA is free of collisions, (ii) for verifying that protected re-
sources, i.e., resources that are statically assigned to a dedicated application system,
comply to their off-line specification, and (iii) for updating the configuration of the
micro components without interfering with the service of the hosted applications.
This is achieved, e.g., by periodically disseminating configuration messages at an
a priori known instant—the reconfiguration instant.

For the development of safety-critical applications, the certification of the system
is of utmost importance. We address this issue by splitting the responsibilities of
resource management into two parts, one solved by the RMA the other by the TNA.
However, only the TNA is part of the trusted subsystem of the TTSoC architecture,
but not the RMA. This way, we simplify the certification of the SoC significantly,
since the TNA provides only a small stable set of generic services. These services
need not to be changed for the realization of different application services. Thus, once
an implementation of the TNA is certified, it can be reused for different applications.
For ultra-dependable systems for which a static resource allocation is often feasible,
only the TNA has to be certified up to the highest criticality level. In contrast,
the RMA, which has to perform the quite complex task of computing the resource
allocation, has only to be certified to that level of criticality that is required by the
most critical application system that demands dynamic resource management.

The validation experiment of the resource protection mechanisms provided by
the TNA confirms that they preserve the temporal properties of protected commu-
nication channels (e.g., phase offset, bandwidth reservation) also in the presence of
a failure of the RMA.

133

8.3 Further Work 8 Conclusion

8.3 Further Work

This thesis presents the design and first implementation of a resource management
solution for the TTSoC architecture. The implementation has been realized in the
course of the European research project DECOS. At present, in the scope of the
national research project TT-SoC an implementation of the TTSoC architecture on
an FPGA-based hardware platform is ongoing, which opens up a lot of interesting
fields of research. Among these are:

Handling of concurrent message transmissions. As part of this FPGA-based
implementation of the TTSoC architecture, the resource management solution
is realized on an updated hardware platform. The realization of the RMA is
of particular interest, since the (re)implementation of the time-triggered NoC
will permit the concurrent transmission of messages via parallel communication
channels.

Integration in model-driven design. By integrating resource management into
a model-driven design methodology, the data structures for parameterizing the
architecture w.r.t. resource management can be automatically derived from the
models. This dramatically reduces the manual workload for system designers.

Power awareness. The resource management solution presented in this thesis lays
the foundation for realizing power-aware behavior of the TTSoC architecture.
In particular, the utilization of DVFS and DPM techniques for managing the
power dissipation of individual micro components represents a promising ap-
proach for further research.

The theoretical and practical findings that have been elaborated in this thesis
provide a basis for further research on resource management in integrated time-
triggered real-time systems.

134

Appendix A

TTSoC Resource Management
Interfaces

This chapter describes in detail the realization of the interfaces for resource manage-
ment for the particular implementation of the TTSoC architecture presented in this
thesis.

A.1 TISS CP Interface

The Configuration and Planning (CP) interface of the TISS is accessed by the TNA
via the memory interface depicted in Figure A.1. The layout of this memory interface
is identical at each micro component. However, its size differs from micro component
to micro component depending on the number of input or output ports provided by
the TISS. The content and layout of this memory interface towards the TNA is
described in the following.

Global Time Register (32 bit): Each TISS possesses a 32 bit register holding the
actual instant of the global time. The global time is established at each TISS by
synchronizing its local global time register to dedicated synchronization mes-
sages (TTsync messages of the TTE protocol), which originate from a dedicated
rate master. The rate master is realized by the TNA.

Service Level (16 bit): This data field represents the designated service level of
the host at which it should operate. The service level of a host can be used
for instance to perform DPM by deactivation the host whenever the particular
service of the hosted job is not required. The supported gradations of the
service level may differ from host to host. However, at least two levels have to be
supported by every host implementation: full-operational mode and shutdown
mode (the shutdown can be physical enforced by the TISS using the power
control service).

135

A.1 TISS CP Interface A TTSoC Resource Management Interfaces

Global Time Register

32 bit

Service Level res. WDP RCP

Reconfiguration Phase

Start Pointer P31 Start Pointer P30

Start Pointer P29 Start Pointer P28

Start Pointer P3 Start Pointer P2

Start Pointer P1

fixed start address for each TISS

18 words

either within each TISS or one global

register for all TISSs

Phase

DPulse Length

reserved Next Pointer

Phase

Pulse Length

reserved Next Pointer

fixed start address for first MEDL entry

in each TISS

(N * 3) words MEDL size

RCP Reconfiguration Period

WDP Watchdog Period

FP

FP
FP Fragment Period

Start Pointer P0

res
D Direction

resT

D T

T Type

Figure A.1: Memory interface of the TISS towards the TNA. The figure represents a
design alternative in which the global time is updated within each TISS by the TNA

Watchdog Period (5 bit): As described in Section 3.2.1 each TISS provides a
watchdog service for its host in order detect and recover from crash failures
of hosts. The watchdog period (WDP) data field specifies the frequency with
which the host has to send its life sign to the TISS. With the five bit-wide
field, up to 32 different watchdog periods can be distinguished.

Reconfiguration Period (5 bit): The reconfiguration period (RCP) field contains
the periodicity of the reconfiguration actions performed by the TNA. The five
bits of the field reconfiguration period permit the specification of up to 32
different reconfiguration periods.

Reconfiguration Phase (32 bit): The reconfiguration phase denotes the 32 bit
phase offset from the start of the reconfiguration period. Together with the
reconfiguration period, it denotes the global point in time at which all TISSs
and all hosts switch from the old configuration to the new one. This permits
the synchronization of the reconfiguration of all micro components on the SoC.

Start Pointer (P0-P31, each 16 bit): The configuration data of the communica-
tion ports, i.e., the description of the pulsed data stream realizing the message
transfer over a particular port, is organized as linked list in the memory of each
TISS. The memory address of the configuration data for the first pulsed data
stream of a particular period (i.e., pulsed data stream with the lowest phase
offset) is stored in the respective start pointer field.
If no configuration data for a particular period exists, the value of the start

136

A TTSoC Resource Management Interfaces A.2 TNA RCLIF Interface

pointer is set to the invalid address 0xFFFF.

Besides this information regarding the general configuration of the TISS and the
host of the micro component, each micro component possesses a memory region of
fixed size (but with different size for the individual TISSs) for holding the port con-
figuration data. The configuration of a single port requires the following information
(cf. the lower part of Figure A.1).

Phase (32 bit): A pulsed data stream can be uniquely identified by the period
and the phase offset of the pulse (since there exist no parallel communication
channels). Since the period of the pulse is implicitly known for each port
configuration entry (either the start pointer of a particular period or the next
pointer of a port configuration entry of the same period points to this memory
location), only the phase offset of the pulse is stored.

Fragment Period (5 bit): The fragment period denotes the dissemination period
of the individual fragments a pulse consists of. Due to its five bit representation,
32 different fragment periods can be distinguished. However, for pulsed data
streams comprising more than one fragment, the fragment period has to be
lower than the period of the pulsed data stream itself. For example, for a
pulsed data stream comprising 8 fragments, the fragment period has to be at
least 8 times lower than the period of the pulsed data stream (e.g., period 2−4

for the pulsed data stream requires at least a period lower or equal than 2−7).

Pulse Length (22 bit): The number of fragments a pulsed data stream consists of
is represented by the pulse length field. Due to the field length of 22 bit, the
design of the TTSoC architecture permits a maximum number of 222 = 4194304
fragments for a single pulse. Considering, e.g., , a fragment size of 128 bit, this
leads to a maximum pulse length of more than 67MByte.

Direction (1 bit): The direction bit defines whether the port is an output port
(0b1) or an input port (0b0).

Type (1 bit): The type bit defines whether the message is realized as periodic time-
triggered (0b1) or sporadic time-triggered (0b0) message.

Next Pointer (16 bit): The next pointer points to memory region containing the
next pulsed data stream configuration of the same period. If the actual port
configuration data is the last for a particular period, the next pointer is set to
the constant value 0xFFFF.

A.2 TNA RCLIF Interface

The RCLIF interface of the TNA is accessed by the RMA via a memory interface.
The layout of this interface is illustrated in Figure A.2 (the layout of the interface

137

A.2 TNA RCLIF Interface A TTSoC Resource Management Interfaces

a) TISS/Host Configuration Frame

b) Port Description Frame

Frame

Type (8)
Reconfiguration Phase (32)

Micro Component ID

(16)

Host Service Level

(16)

WDP

(5)
Reserved (46)

RCP

(5)

Pulse Phase (32)
PPD

(5)

reserved

(7)

FP

(5)

Frame

Type (8)
Fragment Length (22) T Logical Port Name (48)

WDP Watchdog Period

RCP Reconfiguration Period

FP Fragment Period
T Type (periodic/sporadic)

Figure A.2: Memory interface of the RMA towards the TNA

is identically structured as the RMA-to-TNA configuration message). The interface
is grouped into several blocks, one for each micro component. Each block has the
following layout of frames (the content of the frames is also depicted in Figure A.2):

1. Each block starts with exactly one TISS/host configuration frame. (see frame
a) in Figure A.2)

2. The first frame is followed by one or more input port description frames (see
frame b) in Figure A.2), which define the input ports of the TISS towards the
NoC.

3. The micro component configuration block is concluded by one or more output
port description frames (see frame b) in Figure A.2). Input and output port
description frames are only distinguished by their frame type field.

The structure of the entire memory layout is composed out of three different types
of frames, each made up of 16 bytes. The first byte of each frame always identifies
the type of the frame. We distinguish TISS/host configuration frames, as well as,
input and output port description frames.

TISS/host configuration frame

The TISS/host configuration frame denotes the beginning of a micro component
configuration block within the memory layout of the RCLIF at the TNA, as well as,
of the configuration message disseminated from RMA to TNA.

Frame Type (8 bit): The first byte identifies the type of the frame by the use of
a unique identifier. In case of the TISS/host configuration frame the type field
is identified by the value 0x78.

Micro Component ID (16 bit): The micro component ID establishes the map-
ping of the micro component configuration block to the corresponding micro
component.

Host Service Level (16 bit): This data field represents the service level of the host
at which it should operate. At least two service levels have to be supported by

138

A TTSoC Resource Management Interfaces A.2 TNA RCLIF Interface

every host implementation: full-operational mode (0xFFFFh) and shutdown
mode (0x0000h). The implementation has to ensure that shutdown can be
physically enforced by the TISS.

Watchdog Period (5 bit): The watchdog period data field specifies the frequency
with which the host has to send its life sign (e.g. updating particular bits in a
watchdog register) to the TISS. With the watchdog period data field, up to 32
periods can be distinguished.

Reconfiguration Period (5 bit): The micro components are periodically recon-
figured by the TNA. The reconfiguration period in combination with the re-
configuration phase determines the the periodic global point in time at which
the micro component has to to switch to the new configuration.

Reconfiguration Phase (32 bit): The reconfiguration phase denotes the phase
offset of the start of the reconfiguration period and thus represents the periodic
instant, at which the new configuration becomes valid.

Port description frame

The contents of the port description frame denote the configuration of the outer
ports of the TISS towards the on-chip network. We distinguish two types of port
descriptions frames: one for the description of input ports and one for output ports.
Both types are syntactically identical and only discriminated by their frame type.

Frame Type (8 bit): The port description frame for input ports is identified by the
constant value 0x8B in its type field. The port description frame for output
ports by the constant value 0x49.

Pulse Period (5 bit): The pulse period field permits the differentiation 32 periods
(from the longest period with duration 20 seconds to the shortest one with a
duration of 2−31 seconds.

Pulse Phase (32 bit): The pulse phase field denotes the phase offset of the pulse
from the start of the period defined in pulse period.

Fragment Period (5 bit): The fragment period denotes the dissemination period
of the individual fragments a pulse consists of. The fragment period has always
to be lower than the period of the pulsed data stream itself.

Pulse Length (22 bit): The field represents the length of the pulse by specifying
the number of fragments the entire pulse comprises. The maximum number of
fragments that can be specified for a single pulse is 222 = 4194304 fragments.

Type (1 bit) : The type bit defines whether the message transmission is realized as
a periodic time-triggered (0b1) or sporadic time-triggered (0b0) message.

139

A.2 TNA RCLIF Interface A TTSoC Resource Management Interfaces

UFIM Port Name (48 bit): The UFIM port name is used to specify a port iden-
tifier that is unique for the entire SoC. The UFIM port name is composed
out of a DAS identifier (unique identifier of the DAS), a job identifier (unique
name of a job within a DAS), and a port identifier (unique identifier in the
name space of a single job).

140

Appendix B

XML Configuration Files

This chapter demonstrates the use of XML documents for the specification of initial
parameters for the system configuration. For this purpose, an exemplary configura-
tion file for the TNA, as well as, an exemplary specification for protected resources
is shown in the following.

B.1 Initial TNA Configuration Example

The XML document excerpt depicted in Listing B.1) presents a partial example of
an initial TNA configuration, which is compliant to the XSD schema described in
section 6.3.1 on page 98. As defined by the XSD schema, the root element of the
XML file is called RMA TNA Msg. The root element is followed by a sequence of (at
least one) uC elements. For the support of version management of the XML files, the
RMA TNA Msg element comprises a mandatory element version, as well as, an optional
attribute author.

Each uC element encloses the entire configuration of a micro component. The
configuration block of a particular micro component is identified by the attribute
id. The id of a micro component is represented by a 16 bit value; thus, up to 216

different micro components can be distinguished on one single SoC component.

A valid XML document – valid according to the described XSD schema - continues
with the following sequence of XML elements: exactly one Config Frame element,
one or more Inport Frame elements, one or more Outport Frame elements, exactly
one MW Config Frame element, and one or more Job Config elements.

The Config Frame element comprises five mandatory attributes. The first at-
tribute (type) is a constant value always containing ”FT RMA TNA CONFIG”.
This is replaced by the Initialization Module of the TNA software (cf. Section 6.3.1
on page 6.3.1) with the numerical constant representing this frame type (the type
of the Config Frame is identified by 0x78h). The host sysmode attribute is a 16 bit
value that is used to describe the initial operating mode of the host of the micro

141

B.1 Initial TNA Configuration B XML Configuration Files

Listing B.1: XML document showing initial configuration of an SoC

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<RMATNAMsg xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ”>
<!−− ∗∗∗ −−>
<uC id=”0”>

<Config Frame status_slot=”40960” wd_period=”PERIOD P8” update_po=”38128”
host_sysmode=”1” type=”FT RMA TNA CONFIG”/>

<OutPort Frame type=”FT RMA TNA OUTPORT”>
<Port slotID=”41020” channelID=”0” length=”64” type=”TYPE PERIODIC” />
<Port slotID=”41010” channelID=”0” length=”256” type=”TYPE PERIODIC” />
<Port slotID=”41000” channelID=”0” length=”512” type=”TYPE PERIODIC” />

</OutPort Frame>
<MW Config Frame update_po=”38128” type=”FT RMA TNA MW”/>

<Job Config>
<Job Frame scheduling=”0” DAS_ID=”0” type=”FT RMA TNA JOB” jobID=”0”/>
<DECOS Port Frame portType=”0” slotID=”0” portID=”0” portDir=”0”

type=”FT RMA TNA DECOS PORT” qLen=”0” update_time=”0”/>
</Job Config>

</uC>
<!−− ∗∗∗ −−>
<uC id=”1”>

<InPort Frame type=”FT RMA TNA INPORT”>
<Port slotID=”41020” channelID=”0” length=”64” type=”TYPE PERIODIC” />

</InPort Frame>
[. . .]

</uC>
<!−− ∗∗∗ −−>
<uC id=”2”>

<InPort Frame type=”FT RMA TNA INPORT”>
<Port slotID=”41010” channelID=”0” length=”256” type=”TYPE PERIODIC” />

</InPort Frame>
[. . .]

</uC>
<!−− ∗∗∗ −−>
<uC id=”3”>

<InPort Frame type=”FT RMA TNA INPORT”>
<Port slotID=”41000” channelID=”0” length=”512” type=”TYPE PERIODIC” />

</InPort Frame>
[. . .]

</uC>
[. . .]
</RMATNAMsg>

component. With the attribute wd period the frequency is defined, with which the
host has to update its life-sign in order to prevent to be classified as failed. The
valid values for the watchdog period are defined by an enumeration representing the
periods defined for TTE (i.e., ”PERIOD P0” up to ”PERIOD P16”). The attributes
update po and status slot define the periodic instants at which a new micro compo-
nent configuration becomes valid and at which the TISS is permitted to disseminate
diagnostic information, respectively.

The XML elements Inport Frame and Outport Frame are identical except to
their type attribute, both are derived from the complex XML, type Port Frame.
The value of the type attribute of Inport Frame is constant and comprises the
string ”FT RMA TNA INPORT” whereas the type of Outport Frame equals to the

142

B XML Configuration Files B.2 Protected Resources

constant value ”FT RMA TNA OUTPORT”. Both XML elements comprise four
attributes. The 16 bit value slotID defines the instant (i.e., period and phase offset)
at which a message is received or sent on the TTE network. The valid values for
the type attribute of the complex XML type Port Frame are defined by an enumer-
ation and restricted to ”TYPE PERIODIC” and ”TYPE SPORADIC”. The length
attribute defines the length of the message received/sent via the actual port. The
length is defined in number of bytes of the message and restricted to the maximum
length of a TTE message, which is 1488 Bytes.

The XML element MW Config Frame contains two attributes. The type attribute
has the constant value ”FT RMA TNA MW”, the update po attribute holds a 16 bit
value denoting the instant at which the configuration information contained in the
XML element Job Config becomes valid (update po usually equals the reconfigu-
ration period). The XML element Job Config is composed of two XML elements.
Job Frame stores information about a particular job assigned to a micro compo-
nent. It therefore comprises the attributes type (which equals the constant value
”FT RMA TNA JOB”), two 16 bit values that uniquely identify a job, as well as, a
64 bit long field, which can be exploited to derive scheduling constraints (e.g., activa-
tion time and deadline) of the job. The second XML element contained in Job Config
is DECOS Port Frame, which is used to establish the mapping between UFIM-Ports
and concrete send/receive slot on the TTE network (i.e., SoC-Ports). Therefore, a
logical 16 bit identifier portID can be specified which is assigned to a slotID. Further
attributes of the element DECOS Port Frame are portType (event-triggered or time-
triggered), portDir (input or output), qLen (length of an eventual message queue),
and update time (can be used for implicit synchronization of the host access to the
port).

B.2 XML Representation of Protected Resources

A partial example of a valid resource protection document is depicted in Listing B.2.
As defined in the XSD schema, the root element of a resource protection file is formed
by the XML element RP Configuration. For this XML element two attributes are
defined. The mandatory attribute version of type xs:string holds information of
the current version of the resource protection specification and can be exploited for
tracking changes on the XML file. The second one is the optional string attribute au-
thor. For each micro component for which particular resources should be protected,
an element uC has to be created. The individual XML elements uC are related to
the physical micro components of the SoC component by the mandatory numeri-
cal attribute id. The resource protection specification of a single micro component
continues with an optional sequence of Port specifications and/or an optional XML
element Host for specifying protection information on the host configuration.

The XML element Port comprises six attributes. The attribute direction speci-
fies whether the port is an input (DIR INPUT) or an output (DIR OUTPUT) port.
The attributes period and offset are used to specify the time instant at which a

143

B.2 Protected Resources B XML Configuration Files

Listing B.2: Example of an XML resource protection file

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<RP Configuration xmlns : x s i=http ://www.w3 . org /2001/XMLSchema−i n s t anc e

version=” 0 .1 ”>
<!−− ∗∗∗ −−>
<!−− Resource p ro t e c t i on c on s t r a i n t s f o r micro component X −−>
<!−− ∗∗∗ −−>
<uC id=”0”> <!−− mandatory a t t r i b u t e denot ing the uC id ;

<!−− ∗∗∗ −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗ Optional c on s t r a i n t s r egard ing the por t s ∗∗∗∗∗∗∗∗∗∗ −−>
<!−− ∗∗∗ −−>
<!−− per iod : mandatory ; one o f [PERIOD P0 | . . . | PERIOD P10] −−>
<!−− l ength : mandatory ; i n t va lue with maximum length 1488 −−>
<!−− d i r e c t i o n : mandatory ; one o f [DIR OUTPUT | DIR INPUT] −−>
<!−− phase : op t i ona l ; p o s i t i v e i n t va lue with −−>
<!−− maximum value 0xFFFFFF (in dec format) −−>
<!−− type : op t i ona l ; one o f [TYPE PERIODIC | TYPE SPORADIC] −−>
<!−− channel op t i ona l ; p o s i t i v e i n t va lue with max . va lue 127 −−>
<Port period=”PERIOD P10” length=”64” direction=”DIR OUTPUT”

phase=”60” type=”TYPE PERIODIC” channel=”0”/>
<Port length=”256” direction=”DIR OUTPUT” period=”PERIOD P10”

channel=”0”/>
<Port length=”512” direction=”DIR OUTPUT” period=”PERIOD P10”

phase=”40”/>
<!−− ∗∗∗ −−>
<!−− ∗∗∗∗∗∗∗∗∗∗ Optional c on s t r a i n t s r egard ing the host ∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− ∗∗∗ −−>
<!−− sysMode : op t i ona l ; p o s i t i v e i n t va lue with −−>
<!−− max . va lue 0xFFFF (in dec format) −−>
<!−− watchdogPeriod : op t i ona l ; [PERIOD P0 | . . . | PERIOD P10] −−>
<Host sysMode=”1” watchdogPeriod=”PERIOD P8”/>

</uC>
<!−− ∗∗∗ −−>
<!−− Resource p ro t e c t i on c on s t r a i n t s f o r micro component Y −−>
<!−− ∗∗∗ −−>
<uC id=”1”>

[]
</uC>

</RP Configuration>

message is either sent or received via the shared TTE network. The length attribute
allows the specification of the message length in bytes (up to 1488 bytes are permit-
ted, which is in conformance to the maximum size of a standard Ethernet messages
reduced by the size of the additional TTE header information). By the use of the
attribute type one can specify whether the message should be handled as a periodic
time-triggered message (TYPE PERIODIC) or as a sporadic time-triggered message
(TYPE SPORADIC). While period, length, and direction are mandatory attributes
of a Port element, the remaining ones are optional. Thereby, it is possible to spec-
ify the required bandwidth for a particular input or output port by specifying the
period and the length of the message related to that port without restricting the
concrete dissemination instant. The phase offset is not specified and is dynamically
determined by the RMA.

The XML element Host comprises two attributes. The optional attribute sysMode

144

B XML Configuration Files B.2 Protected Resources

specifies the operational system mode at which the host has to reside over the entire
time of operation of the SoC component. By specifying a value for the optional
attribute watchdogPeriod the frequency with which the host has to send its life sign
to the TISS is protected and cannot be changed during runtime.

145

B.2 Protected Resources B XML Configuration Files

146

Appendix C

List of Acronyms

AAM Abstract Application Model

ACPI Advanced Configuration and Power Interface

ADC Analog-to-Digital Converter

AFDX Avionics Full-Duplex Switched Ethernet

AIMS Airplane Information Management System

APEX APplication EXecutive

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BCU Basic Connector Unit

BIU Bus Interface Unit

CAN Controller Area Network

CIM Computation Independent Model

CMOS Complementary Metal Oxide Semiconductor

CNI Communication Network Interface

COEX COre EXecutive

CP Configuration and Planning

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

DAS Distributed Application Subsystem

DECOS Dependable Embedded Components and Systems

147

C List of Acronyms

DPM Dynamic Power Management

DSE Domain-Specific Editor

DU Diagnostic Unit

DVFS Dynamic Voltage and Frequency Scaling

ECU Electronic Control Unit

E/E Electric/Electronic

EEE Encapsulated Execution Environment

ESP Electronic Stability Program

FIM Fully-specified Interface Model

FCR Fault Containment Region

FIFO First-In/First-Out

FPGA Field Programmable Gate Array

GME Generic Modeling Environment

GPS Global Positioning System

GRAM Grid Resource Access and Management

IFG Inter Frame Gap

IMA Integrated Modular Avionics

I/O Input/Output

IP Intellectual Property

LDAP Lightweight Directory Access Protocol

LIF Linking Interface

LIN Local Interconnect Network

LRM Line Replaceable Module

LRU Line Replaceable Unit

LXRT Linux Real-Time

MEDL Message Descriptor List

MDA Model Driven Architecture

148

C List of Acronyms

MFIM Macro FIM

MMU Memory Management Unit

MOST Media Orientated Systems Transport

MPSoC Multi-Processor System-on-a-Chip

NBW Non-Blocking Write Protocol

NoC Network-on-a-Chip

OEM Original Equipment Manufacturer

OMG Object Management Group

ONA Out-of-Norm Assertion

PAM Physical Allocation Model

PCMCIA Personal Computer Memory Card International Association

PIL Platform Interface Layer

PIM Platform Independent Model

PiP Picture-in-Picture

PM Platform Model

PMC Power Manageable Component

PMS Power-Managed Systems

PSM Platform Specific Model

QoS Quality of Service

RCLIF Resource Coordination Linking Interface

RM Resource Manager

RMA Resource Management Authority

RMS Resource Management System

RTAI Real-Time Application Interface

RTE Run Time Environment

SCU Safety-Critical Connector Unit

SoC System-on-a-Chip

149

C List of Acronyms

SW-C Software Component

TDMA Time Division Multiple Access

TISS Trusted Interface Subsystem

TMR Triple Modular Redundancy

TNA Trusted Network Authority

TTA Time-Triggered Architecture

TTE Time-Triggered Ethernet

TTSoC Time-Triggered System-on-a-Chip

UFIM Uniform FIM

UML Unified Modeling Language

UNI Uniform Network Interface

VFB Virtual Function Bus

VIATRA Visual Automated Transformations

XCU Complex Connector Unit

XML Extensible Markup Language

XSD XML Schema Definition

150

Appendix D

Glossary

Abstract Application Model (AAM) The Abstract Application Model is an
abstract representation of the system or a subsystem, where the interfaces
of the individual subsystems are not fully specified, and thus, some design
decisions are still left open (e.g., the selection of an adequate encryption method
to achieve the desired security properties of a communication channel). In a
subsequent step in the design process, the AAMs of all subsystems have to be
transformed into a FIM, which includes the full specification of the LIF of each
job of the system.

Application Computer The application computer is part of the micro compo-
nent ’s host. It provides the computational resources of the micro component
and controls the micro component’s local I/O interfaces (e.g., for sensors or
actuators). It can be realized as a general-purpose microcontroller or FPGA
or as a specialized hardware IP block (e.g., an MPEG encoder).

Application Service The application service is the intended sequence of messages
that is produced by a job via output ports at the LIF and the controlled object
interface in response to the progression of time, inputs (via input ports at the
LIF and the controlled object interface), and state.

Architecture A technical system architecture (or architecture for short) is a frame-
work for the construction of a system for a chosen application domain. It pro-
vides core platform services and imposes an architectural style for constraining
an implementation in such a way that the ensuing system is understandable,
maintainable, and extensible and can be built cost-effectively. (see also → fed-
erated architecture, → integrated architecture)

Architectural Style The architectural style consists of rules and guidelines for the
partitioning of a system into subsystems and for the design of the interactions
among subsystems. The subsystems must comply with the architectural style
to avoid a property mismatch at the interfaces between subsystems.

151

D Glossary

Behavior The behavior of a subsystem is the sequence of messages (i.e., intended
and unintended) that is produced by the subsystem at its LIF.

Cluster A cluster is a physically distributed computer system that consists of a set
of nodes interconnected by a physical network. If the cluster supports a single
DAS only, we speak of a federated cluster. In this case, the DAS is physically
separated from the clusters of other DASs. Since the jobs belong to the same
DAS, they possess a common level of criticality.
An integrated cluster, on the other hand, supports more than one DASs. Each
of these DASs receives a share of the communication and component resources
of the integrated cluster.

Controlled Object The controlled object is the industrial plant, the process, or
the device that is to be controlled by the computer system.

Core Platform Services The core platform services (e.g., predictable transport
of messages, global time service, watchdog service) are provided via the UNI
and are independent of any particular DAS. They facilitate the development
of distributed real-time applications and separate the application functionality
from the underlying platform technology to reduce design complexity and to
enable design reuse.
The core platform services can be adapted, refined, and extended by a frontend,
which is a hardware element that translates the UNI to the interface of the
attached application computer.

Declared State The declared state is the state of a subsystem, which is considered
as relevant by the system designer for future behavior of the subsystem (forward
view).

Diagnostic Unit (DU) The Diagnostic Unit is a dedicated micro component for
the purpose of diagnosis. It performs failure detection at the LIF of the jobs
by executing assertions on the syntactic, temporal, and semantic correctness
of messages according to the DSoS message classification [Gaudel et al., 2002].
Furthermore, the DU receives failure indication messages generated by other
architectural elements of the SoC (e.g., hosts, TISSs, the TNA, or the RMA).
A failure indication message includes information concerning the type of the
occurred failure (e.g., crash failure of a host), the time of detection w.r.t. to the
global time base, and the location within the SoC (i.e., the micro component).
Based on the gathered failure information, the DU establishes a holistic system
view and executes Out-of-Norm Assertions (ONAs) to correlate the different
failure indication messages in space and time.

Distributed Application Subsystem (DAS) A Distributed Application
Subsystem is a nearly independent distributed subsystem of a large distributed
real-time system that provides a well-specified application service. Examples of
DASs in a present day automotive application are body electronics, the power-
train system, and the multimedia system. Examples of DASs in a present day

152

D Glossary

avionic application are the cabin pressurization system, the fly-by-wire system,
and the in-flight entertainment system. DASs are often developed by different
organizational entities (e.g., by different vendors) and maintained by different
specialists. Since DASs may be of different criticality (e.g., vehicle dynamics
control vs. multimedia system), the probability of error propagation across
DAS boundaries must be sufficiently low to meet the dependability require-
ments. A DAS is further decomposed into smaller units called jobs.

Event Message An event message is a message that contains event observations.
An event observation contains the difference between the “old state” (the last
observed state) and the “new state”. The time of the event observation denotes
the point in time of the state change. In order to maintain state synchroniza-
tion, the handling of event messages requires exactly-once semantics. The
arrival of an event message usually gives rise to a control signal, which triggers
subsequent computational and communication activities.

Error Containment Although a fault containment region can demarcate the
immediate impact of a fault, fault effects manifested as erroneous data can
propagate across the boundaries of fault containment regions. For this reason
the system must also provide error containment for avoiding error propagation
by the flow of erroneous messages (→ Error Containment Region).

Error Containment Region The set of fault containment regions that performs
error containment is denoted as an error containment region. An error contain-
ment region must consist of at least two independent fault containment regions.
The error-detection mechanisms must be part of a different fault containment
region than the message sender, otherwise the error detection service can be
affected by the same fault that caused the message failure.

Fault Containment Region (FCR) A Fault Containment Region is a collection
of components that operates correctly regardless of any arbitrary logical or
electrical fault outside the region [Lala and Harper, 1994].

Fault Hypothesis The fault hypothesis is the specification of the faults that must
be tolerated without any impact on the essential system services. The fault
hypothesis states the assumptions about units of failure (→ fault containment
region), failure modes, failure frequencies, failure detection, and state recovery.

Fault-Tolerant Unit (FTU) A unit consisting of a number of replica determinate
micro components that provides the specified service even if some of its micro
components fail.

Federated Architecture In a federated architecture, each DAS is implemented
on a dedicated distributed computer system, consisting of nodes dedicated to
jobs (in the automotive industry called Electronic Control Units - ECUs) and
a physical network (e.g., a CAN network) among the nodes. In a federated
architecture, each DAS is physically separated from other DASs, which leads
to clear boundaries for responsibility and error propagation.

153

D Glossary

Frontend The frontend is part of the micro component ’s host. It adapts, refines,
or extends the core platform services, provided by the UNI, according to the
requirements of the attached application computer. In its simplest version, the
frontend is realized as a dual-ported memory providing a temporal firewall in-
terface [Kopetz, 1997] to the application computer. If required, the frontend
can provide higher-level services, which are tailored to the needs of specific
application domains. Examples are a fault tolerance service which performs
majority voting of replicated inputs for failure masking by TMR, or an en-
cryption and decryption service to facilitate secure communication with chip
external entities.

Fully-Specified Interface Model (FIM) The Fully-specified Interface Model
describes the functionality and the interaction patterns of the individual jobs of
a system by a behavioral specification, including temporal constraints. It does
not include any information about the micro components on which the jobs
will be executed and abstracts from micro component specific implementation
details of the jobs (e.g., a micro component can be realized as a special purpose
microcontroller, as an FPGA or as a special purpose hardware IP block).
The TTSoC architecture defines two different types of FIMs to describe a sys-
tem at two different levels of abstraction, the UFIM and the MFIM.

Gateway Channel (G-channel) A Gateway Channel is an unidirectional com-
munication channel that transports messages from a single source SoC to one
or more destination SoCs (i.e., a channel between gateways of different SoCs).

Gateway Port (G-port) A Gateway Port is an endpoint of a G-channel.

Host The host performs the computations that are required to deliver the intended
service of a micro component. It is structured into two architectural elements,
the application computer and the frontend.

Integrated Architecture An integrated architecture is characterized by the in-
tegration of multiple DASs within a single distributed computer system. An
integrated architecture possesses a single physical network that is exploited
for the construction of multiple virtual networks. In the TTSoC architecture,
architectural services are employed to encapsulate DASs and restore the com-
plexity management advantages and natural error containment between DASs
of a federated architecture.

Interface State The interface state contains the history of the component that is
relevant for the future behavior of the component as seen from this interface.
Interface state is defined between the intervals of activity on the sparse time
base. Interface state is a subset of the state of the component and should be
accessible from the interface.

Job A job is a subsystem of a DAS and the basic unit of distribution (i.e., a single
job cannot be distributed on multiple micro components). It is the object of

154

D Glossary

temporal and spatial partitioning and interacts with other jobs solely by the
exchange of messages through its LIF.
An example for a job in a safety-critical brake-by-wire DAS of a car would
be the software, which fits into a single micro component, for computing the
brake force based on the actual wheel slip. For fault-tolerance reasons, multiple
instances of the job will be executed redundantly at different components,
e.g., three instances in a triple-modular redundancy configuration.

Linking Interface (LIF) A job provides its real-time services, and accesses the
real-time services of other jobs by the exchange of messages across its Link-
ing Interface. These messages have to be fully specified in a LIF specifica-
tion which consists of an operational specification and a meta-level specifica-
tion [Kopetz and Suri, 2003]. While the operational specification deals with
the syntactic and temporal aspects of the messages exchanged across the LIF,
the meta-level specification describes the meaning of the information contained
in these messages.

Macro FIM The Macro FIM is a high-level representation of the FIM. It facili-
tates the modeling of DASs at a higher level of abstraction than the UFIM, by
providing macros that translate high-level constructs into constructs supported
in the UFIM. Thus, the interface specification of the jobs in the MFIM can
rely on higher-level domain-specific services like voted channels for fault toler-
ance, encrypted channels for security, or bidirectional channels for request/re-
ply transactions. The MFIM meta model (→ meta model) can exist in multiple
variations supporting different sets of domain-specific services. For each MFIM
meta model, a set of transformation rules has to be specified that define the
transformation of a MFIM to an equivalent UFIM.

Message Descriptor List (MEDL) The Message Descriptor List is a data
structure within each TISS that determines when a message must be sent
on, or received from, the NoC.

Micro Component A micro component is a self-contained computational unit
that provides its functionality over a well defined message-based interface. It
is composed out of two structural elements, the TISS and the host. While the
host performs the computations, which are required to deliver the intended
service of the micro component, the TISS provides a stable set of core platform
services to the host. Furthermore, the TISS acts as a guardian for the NoC
by ensuring that a fault within the host of a micro component cannot lead to
a violation of the micro component’s temporal interface specification in a way
that the communication between other micro components would be disrupted.

MFIM-channel MFIM channels are used to describe the communication between
jobs in the MFIM. Contrary to the UFIM-channels in the UFIM, MFIM chan-
nels are not restricted to be unidirectional. Their characteristics are determined
by the chosen MFIM meta model (→ meta model).

155

D Glossary

MFIM-port An MFIM port is an endpoint of an MFIM-channel. A job in the
MFIM can have multiple MFIM-ports since it can be attached to multiple
MFIM-channels.

Non-Blocking Write Protocol (NBW) The Non-Blocking Write Protocol is a
synchronization protocol between a single writer and many readers. It achieves
data consistency without blocking the writer [Kopetz, 1997].

Out-of-Norm Assertion (ONA) An Out-of-Norm Assertion detects anomalous
component behavior that cannot be judged as correct or faulty at the time of
occurrence. Out-of-norm assertions operate on the output messages and the
interface state and encode fault patterns on the consistent distributed state
induced by a sparse time base and are specified in the dimensions of value,
time and space.

Meta Model A meta model defines the rules and constructs according to which
a model is created.

Physical Allocation Model (PAM) The Physical Allocation Model is a more
concrete system representation than the FIM. It describes the mapping of the
FIM (to be more precise, the UFIM) to the physical system structure. Contrary
to the UFIM, the PAM is tailored to the specific characteristics of the micro
component on which a job should be executed. Nevertheless, the semantic and
syntactic properties of a job’s LIF in the PAM are exactly the same as in the
UFIM. The temporal properties of a job’s LIF in the PAM are fully specified
and satisfy the temporal constraints defined in the UFIM.

Platform-Independent Model (PIM) A Platform Independent Model is a
model of a system that is independent of the specific technological platform
used to implement it.

Platform-Specific Model (PSM) A Platform Specific Model is a model of sys-
tem that is linked to a specific technological platform.

Replica Determinism Replica determinism is a desired property between repli-
cated subsystems. A set of replicated subsystems is replica determinate if
all subsystems in this set produce exactly the same output messages that are
at most an interval of d time units apart, as seen by an omniscient outside
observer. In a time-triggered system, the subsystems are considered to be
replica-deterministic if they produce the same output messages at the same
global ticks of their local clock [Kopetz, 1997].

Resource Management Authority (RMA) The Resource Management
Authority is, besides the TNA, one of the two dedicated architectural elements
for resource management. It accepts resource request messages from the jobs
and generates, according to internal rules, a resource allocation mapping for
the entire SoC.

156

D Glossary

SoC-Channel The term SoC-Channel denotes an encapsulated unidirectional
communication channel in the physical system structure that transports mes-
sages at predefined points in time from a single source micro component to one
or more destination micro components within the same SoC (SoC-Channels
cannot cross the boundaries of a single SoC).

SoC-Port An SoC-port is an endpoint of an SoC-channel. A micro component
can have multiple SoC-Ports since it can be attached to multiple SoC-channels.

Sparse Time Base If the time base of the global time in a distributed system is
dense (i.e., the events are allowed to occur at any instant of the time line), then
it is in general not possible to generate a consistent temporal order of events
on the basis of the time-stamps. Due to the impossibility of synchronizing
clocks perfectly and the denseness property of real time, there is always the
possibility that a single event is time-stamped by two clocks with a difference
of one tick. By introducing the concept of a sparse time base [Kopetz, 1992]
this problem can be solved. In the sparse time model the continuum of time is
partitioned into an infinite sequence of alternating durations of activity (π) and
silence (∆). Thereby, the occurrence of significant events is restricted to the
activity intervals of a globally synchronized action lattice. In this time model,
the costly execution of agreement protocols can be avoided, since every action
is delayed until the next lattice point of the action lattice.

State The state enables the determination of a future output solely on the basis of
the future input and the state the system is in. In other word, the state enables
a “decoupling” of the past from the present and future. The state embodies all
past history of the given system. Apparently, for this role to be meaningful, the
notion of the past and future must be relevant for the system considered (taken
from [Mesarovic and Takahara, 1989, p. 45]) (→ declared state, → interface
state).

State Message A state message is a periodic message that contains state obser-
vations. An observation is a state observation, if the value of the observation
contains the state of a real-time entity. The time of a state observation denotes
the point in time when the real-time entity was sampled. The handling of state
messages occurs through an update in place and non-consuming read.

State Recovery State recovery is the action of (re)establishing a valid state in a
subsystem after a failure of that subsystem.

Subsystem A subsystem is a part of a system that represents a closure with
respect to a given property.

Trusted Interface Subsystem (TISS) The Trusted Interface Subsystem is part
of the micro component and provides a stable set of core platform services via
the UNI. Furthermore, it acts as a guardian for the NoC by ensuring that
a fault within the host of a micro component (e.g., a software fault) cannot

157

D Glossary

lead to a violation of the micro component’s temporal interface specification
in a way that the communication between other micro components would be
disrupted.

Trusted Network Authority (TNA) The Trusted Network Authority is, be-
sides the RMA, one of the two dedicated architectural elements for resource
management and is responsible for the (re)configuration of the TISSs and the
NoC. It checks the resource allocation proposal, provided by the RMA, against
a set of predefined constraints (e.g., conflict-freeness of the message schedule or
availability of statically assigned resources for safety-critical application sub-
systems). If the mapping is valid, the TNA (re)configures the NoC and the
TISSs accordingly.

Trusted Subsystem (TSS) The Trusted Subsystem consists of the TNA, the
time-triggered NoC, and the TISSs. The TSS is assumed to be free of design
faults and has to be certified according the criticality level of the most critical
micro component in the SoC.

Uniform Network Interface (UNI) The Uniform Network Interface is the basic
architectural interface of the TTSoC architecture. It is located between the
TISS and the host. The UNI provides a set of core platform services which
facilitate the development of distributed real-time applications and separate
the application functionality from the underlying platform technology to reduce
design complexity and to enable design reuse.

Uniform FIM (UFIM) The Uniform FIM is an uniform representation of the
FIM. It describes the system at the level of the UNI. This means that, with re-
spect to the interface specification of the jobs, the UFIM meta model (→ meta
model) defines exclusively constructs that refer to the communication services
that are natively provided by the UNI (e.g., unidirectional communication
channels). The specification of a job in the UFIM serves as a contract between
the system integrator and the job developer and can be used for conformance
testing.

UFIM-channel UFIM-channels are used to describe the communication between
jobs in the UFIM. The term UFIM-channel denotes an encapsulated unidi-
rectional communication channel that transports messages under predefined
temporal constraints (e.g., latency, period, absolute phase offset to the start of
the period, or relative phase offset to another channel) from a single source job
to one or more destination jobs.

UFIM-port A UFIM-port is an endpoint of a UFIM-channel. A job can have
multiple UFIM-ports since it can be attached to multiple UFIM-channels.

158

Bibliography

[Agrawal et al., 2003] Agrawal, M., Cofer, D., and Samad, T. (2003). Real-time
adaptive resource management for advanced avionics. IEEE Control Systems Mag-
azine, 23(1):76–86.

[Almeida, 2006] Almeida, J. P. A. (2006). Model-driven design of distributed appli-
cations. PhD thesis, University of Twente, Enschede.

[ARINC, 1991a] ARINC (1991a). ARINC Specification 629: Multi-Transmitter Data
Bus – Part 1: Technical Description. Aeronautical Radio, Inc., 2551 Riva Road,
Annapolis, Maryland 21401.

[ARINC, 1991b] ARINC (1991b). ARINC Specification 651: Design Guide for In-
tegrated Modular Avionics. Aeronautical Radio, Inc., 2551 Riva Road, Annapolis,
Maryland 21401.

[ARINC, 1993] ARINC (1993). ARINC Specification 659: Backplane Data Bus.
Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, Maryland 21401.

[ARINC, 2001] ARINC (2001). ARINC Specification 429: Digital Information
Transfer System. Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, Mary-
land 21401.

[ARINC, 2002] ARINC (2002). ARINC Specification 664: Aircraft Data Network
Part 1 – Systems Concepts and Overview. Aeronautical Radio, Inc., 2551 Riva
Road, Annapolis, Maryland 21401.

[ARINC, 2003] ARINC (2003). ARINC Specification 653-1 (Draft 3): Avionics Ap-
plication Software Standard Interface. Aeronautical Radio, Inc., 2551 Riva Road,
Annapolis, Maryland 21401.

[Audsley and Wellings, 1996] Audsley, N. and Wellings, A. (1996). Analysing APEX
applications. In Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS ’96), pages 39–44, Washington, DC, USA. IEEE Computer Society.

[AUTOSAR GbR, 2006a] AUTOSAR GbR (2006a). Methodology, Vers. 1.0.1.

[AUTOSAR GbR, 2006b] AUTOSAR GbR (2006b). Technical Overview, Vers. 2.01.

159

BIBLIOGRAPHY

[Banachowski and Brandt, 2003] Banachowski, S. A. and Brandt, S. A. (2003). Bet-
ter real-time response for time-share scheduling. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Processing, page 124.2, Washington,
DC, USA. IEEE Computer Society.

[Benini et al., 2000] Benini, L., Bogliolo, A., and Micheli, G. D. (2000). A survey of
design techniques for system-level dynamic powermanagement. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 8(3):299–316.

[Benini et al., 1999] Benini, L., Bogliolo., A., Paleologo, G. A., and Micheli, G. D.
(1999). Policy optimization for dynamic power management. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 18(6):813–833.

[Benini et al., 2001] Benini, L., Micheli, G. D., and Macii, E. (2001). Designing low-
power circuits: practical recipes. IEEE Circuits and Systems Magazine, 1(1):6–25.

[Bernholdt et al., 2005] Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen,
M., Chervenak, A., Cinquini, L., Drach, B., Foster, I., Fox, P., Garcia, J., Kessel-
man, C., Markel, R., Middleton, D., Nefedova, V., Pouchard, L., Shoshani, A.,
Sim, A., Strand, G., and Williams, D. (2005). The Earth system grid: support-
ing the next generation of climate modeling research. Proceedings of the IEEE,
93(3):485–495.

[Bihari and Schwan, 1991] Bihari, T. E. and Schwan, K. (1991). Dynamic adaptation
of real-time software. ACM Transactions on Computer Systems, 9(2):143–174.

[Bosch, 1991] Bosch (1991). CAN Specification, Version 2.0. Robert Bosch Gmbh,
Stuttgart, Germany.

[Brajou and Ricco, 2004] Brajou, F. and Ricco, P. (2004). The airbus A380 – an
AFDX-based flight test computer concept. In Proceedings of the IEEE Autotestcon,
pages 460–463, San Antonio, TX.

[Brown, 2004] Brown, A. (2004). An introduction to model driven architecture.
Part I: MDA and today’s systems. Available at: http://www.ibm.com/developerworks/

rational/library/3100.html.

[Buyya et al., 2000] Buyya, R., Abramson, D., and Giddy, J. (2000). An Evalua-
tion of Economy-based Resource Trading and Scheduling on Computational Power
Grids for Parameter Sweep Applications. Proceedings of the 2nd International
Workshop on Active Middleware Services (AMS 2000), pages 221–230.

[Chandrakasan et al., 1992] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W.
(1992). Low-power CMOS digital design. IEEE Journal of Solid-State Circuits,
27(4):473–484.

[Chervenak et al., 2001] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and
Tuecke, S. (2001). The Data Grid: Towards an Architecture for the Distributed

160

http://www.ibm.com/developerworks/rational/library/3100.html
http://www.ibm.com/developerworks/rational/library/3100.html

BIBLIOGRAPHY

Management and Analysis of Large Scientific Datasets. Journal of Network and
Computer Applications.

[Coope, 1999] Coope, C. (1999). Using expat. Online available at: http://www.xml.

com/pub/a/1999/09/expat/index.html.

[Csertán et al., 2002] Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., and
Varró, D. (2002). VIATRA: Visual automated transformations for formal verifica-
tion and validation of UML models. In Proceedings of the 17th IEEE International
Conference on Automated Software Engineering (ASE’02), pages 267–270.

[DECOS, 2004] DECOS (2004). Report about decision on meta model and tools
for PIM specification. DECOS project deliverable D1.1.1, Budapest University of
Technology and Economics.

[DECOS, 2006] DECOS (2006). Report about DECOS System-on-a-Chip compo-
nent prototype. DECOS project deliverable D2.2.5, Vienna University of Technol-
ogy.

[Deicke, 2002] Deicke, A. (2002). The electrical/electronic diagnostic concept of the
new 7 series. In Convergence International Congress & Exposition On Transporta-
tion Electronics, Detroit, MI, USA. SAE.

[Devadas and Malik, 1995] Devadas, S. and Malik, S. (1995). A survey of opti-
mization techniques targeting low power VLSI circuits. In Proceedings of 32nd
ACM/IEEE Design Automation Conference, pages 242–247.

[Driscoll and Hoyme, 1992] Driscoll, K. R. and Hoyme, K. P. (1992). The airplane in-
formation management system: an integrated real-time flight-deck control system.
In Proceedings of the Real-Time Systems Symposium, volume 1, pages 267–270.

[El Salloum, 2007] El Salloum, C. (2007). Interface Design in the Time-Triggered
SoC Architecture. PhD thesis, Vienna University of Technology, Institute of Com-
puter Engineering, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[El Salloum et al., 2006] El Salloum, C., Obermaisser, R., Huber, B., Kopetz, H.,
and Suri, N. (2006). Supporting heterogeneous applications in the DECOS in-
tegrated architecture. In Proceedings of International DECOS Workshop at the
Mikroelektroniktagung 2006, pages 183–193, Vienna, Austria.

[Esterel Technologies, 2005] Esterel Technologies (2005). SCADE Suite Technical
and User Manuals, Version 5.0.1.

[Feltovich et al., 2001] Feltovich, P. J., Coulson, R. L., and Spiro, R. J. (2001).
Learners’ (mis)understanding of important and difficult concepts: a challenge to
smart machines in education. In Smart machines in education: the coming rev-
olution in educational technology, pages 349–375. MIT Press, Cambridge, MA,
USA.

161

http://www.xml.com/pub/a/1999/09/expat/index.html
http://www.xml.com/pub/a/1999/09/expat/index.html

BIBLIOGRAPHY

[Fennel et al., 2006] Fennel, H., Bunzel, S., Harald Heinecke, J. B., Fürst, S.,
Schnelle, K.-P., Grote, W., Maldener, N., Weber, T., Wohlgemuth, F., Ruh, J.,
Lundh, L., Sandén, T., Heitkämper, P., Rimkus, R., Leflour, J., Gilberg, A., Vir-
nich, U., Voget, S., anf Kazuhiro Kajio, K. N., Lange, K., Scharnhorst, T., and
Kunkel, B. (2006). Achievements and exploitation of the AUTOSAR development
partnership. Convergence 2006. SAE 2006-21-0019.

[FlexRay Consortium, 2005] FlexRay Consortium (2005). FlexRay Communications
System Protocol Specification Version 2.1. BMW AG, DaimlerChrysler AG, Gen-
eral Motors Corporation, Freescale GmbH, Philips GmbH, Robert Bosch GmbH,
and Volkswagen AG.

[Flynn and Hung, 2005] Flynn, M. J. and Hung, P. (2005). Microprocessor design
issues: thoughts on the road ahead. IEEE Micro, 25(3):16–31.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The Anatomy
of the Grid: Enabling Scalable Virtual Organizations. International Journal of
High Performance Computing Applications, 15(3):200.

[Fraboul and Martin, 1998] Fraboul, C. and Martin, F. (1998). Modeling and sim-
ulation of integrated modular avionics. In Proceedings of the Sixth Euromicro
Workshop on Parallel and Distributed Processing (PDB’98), pages 102–110.

[Gaudel et al., 2002] Gaudel, M.-C., Issarny, V., Jones, C., Kopetz, H., Marsden, E.,
Moffat, N., Paulitsch, M., Powell, D., Randell, B., Romanovsky, A., Stroud, R.,
and Taiani, F. (2002). Final version of the DSoS conceptual model. DSoS Project
(IST-1999-11585) Deliverable CSDA1. Available as Research Report 54/2002 at
http://www.vmars.tuwien.ac.at.

[Gelsinger, 2001] Gelsinger, P. P. (2001). Microprocessors for the new millenium,
challenges, opportunities, and new frontiers. In Proceedings of the IEEE Solid
State Circuit Conference (ISSCC’01), pages 22–25. IEEE Press.

[Ghosh et al., 1997] Ghosh, S., Melhem, R., and Mossé, D. (1997). Fault-tolerance
through scheduling of aperiodic tasks in hard real-time multiprocessor systems.
IEEE Transactions on Parallel and Distributed Systems, 8(3):272–284.

[Giusto et al., 2002] Giusto, P., Ferrari, A., Lavagno, L., Brunel, J.-Y., Fourgeau, E.,
and Sangiovanni-Vincentelli, A. (2002). Automotive virtual integration platforms:
why’s, what’s, and how’s. In Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computers and Processors, pages 370–378.

[Goossens et al., 2005] Goossens, K., Dielissen, J., and Radulescu, A. (2005). The
Æthereal network on chip: Concepts, architectures, and implementations. IEEE
Design and Test of Computers, 22(5):414–421.

[Gruhn et al., 2006] Gruhn, V., Pieper, D., and Röttgers, C. (2006). MDA. Effek-
tives Software-Engineering mit UML 2 und Eclipse. Springer Berlin/Heidelberg.

162

http://www.vmars.tuwien.ac.at

BIBLIOGRAPHY

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D.
(1991). The synchronous dataflow programming language Lustre. Proceedings
of the IEEE, 79:1305–1320.

[Hammett, 2003] Hammett, R. (2003). Flight-critical distributed systems – design
considerations. IEEE Aerospace and Electronic Systems Magazine, 18(6):30–36.

[Hanselman and Littlefield, 2001] Hanselman, D. C. and Littlefield, B. (2001). Mas-
tering MATLAB 6: a comprehensive tutorial and reference. ”Prentice-Hall”, ”Up-
per Saddle River, NJ 07458, USA”.

[Heinecke et al., 2006] Heinecke, H., Bielefeld, J., Schnelle, K.-P., Maldener, N., Fen-
nel, H., Weis, O., Weber, T., Ruh, J., Lundh, L., Sandeén, T., Heitkämper, P.,
Rimkus, R., Leflour, J., Gilberg, A., Virnich, U., Voget, S., Nishikawa, K., Ka-
jio, K., Scharnhorst, T., and Kunkel, B. (2006). AUTOSAR-Current results and
preparations for exploitation. 7th EUROFORUM conference” Software in the ve-
hicle”.

[Heinecke et al., 2004] Heinecke, H., Schnelle, K.-P., Fennel, H., Bortolazzi, J.,
Lundh, L., Leflour, J., Maté, J.-L., Nishikawa, K., and Scharnhorst, T. (2004).
AUTomotive Open System ARchitecture—An Industry-Wide Initiative to Man-
age the Complexity of Emerging Automotive E/E Architectures. Convergence
2004, Proceedings of the 2004 International Congress on Transportation Electron-
ics, SAE/P-387, pages 325–332. SAE-2004-21-0042.

[Herzner et al., 2007] Herzner, W., Schlick, R., Schlager, M., Leiner, B., Huber, B.,
Balogh, A., Csertán, G., LeGuennec, A., LeSergent, T., Suri, N., and Islam,
S. (2007). Model-based development of distributed embedded real-time systems
with the DECOS tool-chain. In Proceedings of the 2007 AeroTech Exhibition and
Congress, Los Angeles, CA, USA.

[Hewlett-Packard Corp. et al., 2006] Hewlett-Packard Corp., Intel Corp., Microsoft
Corp., Phoenix Technologies Ltd., and Toshiba Corp. (2006). Advanced Configu-
ration and Power Interface Specification. Revision 3.0b.

[Hoyme and Driscoll, 1993] Hoyme, K. P. and Driscoll, K. R. (1993). SAFEbus.
IEEE Aerospace and Electronic Systems Magazine, 8:34–39.

[Huber and Obermaisser, 2007] Huber, B. and Obermaisser, R. (2007). Model-based
development of integrated computer systems: Modeling the execution platform.
In Proceedings of the 5th Workshop on Intelligent Solutions in Embedded Systems
(WISES’07), Madrid, Spain.

[Huber et al., 2006] Huber, B., Obermaisser, R., and Peti, P. (2006). MDA-Based
development in the DECOS integrated architecture - modeling the hardware plat-
form. In Proceedings of the 9th IEEE International Symposium on Object and
Component-Oriented Real-time Distributed Computing (ISORC’06), pages 43–52,
Gyeongju, Korea.

163

BIBLIOGRAPHY

[Huber et al., 2005] Huber, B., Peti, P., Obermaisser, R., and Salloum, C. E. (2005).
Using RTAI/LXRT for partitioning in a prototype implementation of the DECOS
architecture. In Proceedings of the 3rd Workshop on Intelligent Solutions in Em-
bedded Systems (WISES’05), Hamburg, Germany.

[IEEE, 2000] IEEE (2000). IEEE Standard 802.3, 2000 Edition. Carrier Sense Mul-
tiple Access with Collision Detect on (CSMA/CD) Access Method and Physical
Layer Specifications. IEEE.

[Infineon, 2005] Infineon (2005). TC1796, 32-Bit Single-Chip Microcontroller, Tri-
Core. Datasheet Vers. 0.3. Available at ftp://ftp.efo.ru/pub/infineon/TC179_5Fds_

5Fv03.pdf.

[Intel, 2000] Intel (2000). Intel XScale Microarchitecture, Technical Summary. Avail-
able at http://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf.

[Islam et al., 2006] Islam, S., Csertá, G., Herzner, W., LeSergent, T., Pataricza,
A., and Suri, N. (2006). A SW-HW integration process for the generation of
platform specific models. In Proceedings of International DECOS Workshop at
the Mikroelektroniktagung 2006, pages 194–203, Vienna, Austria.

[Johnson et al., 1999] Johnson, M. C., Somasekhar, D., and Roy, K. (1999). Models
and algorithms for bounds on leakage in CMOS circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(6):714–725.

[Kakumu and Kinugaw, 1990] Kakumu, M. and Kinugaw, M. (1990). Power-supply
voltage impact on circuit performance for half andlower submicrometer CMOS
LSI. IEEE Transactions on Electron Devices, 37(8):1902–1908.

[Kang, 2003] Kang, S.-M. S. (2003). Elements of low power design for integrated
systems. In Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED ’03), pages 205–210.

[Keshavarzi et al., 1997] Keshavarzi, A., Roy, K., and Hawkins, C. F. (1997). Intrin-
sic leakage in low power deep submicron CMOS ICs. In In Proceedings of IEEE
International Test Conference, pages 146–155.

[Kleinrock, 1975] Kleinrock, L. (1975). Queuing Systems Volume I: Theory. John
Wiley and Sons, New York.

[Kopetz, 1992] Kopetz, H. (1992). Sparse time versus dense time in distributed
real-time systems. In Proceedings of 12th International Conference on Distributed
Computing Systems, Japan.

[Kopetz, 1997] Kopetz, H. (1997). Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers, Norwell, MA, USA.

164

ftp://ftp.efo.ru/pub/infineon/TC179_5Fds_5Fv03.pdf
ftp://ftp.efo.ru/pub/infineon/TC179_5Fds_5Fv03.pdf
http://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf

BIBLIOGRAPHY

[Kopetz, 2003] Kopetz, H. (2003). Fault containment and error detection in the
Time-Triggered Architecture. In Proceedings of the The Sixth International Sym-
posium on Autonomous Decentralized Systems (ISADS’03), pages 139–146, Wash-
ington, DC, USA. IEEE Computer Society.

[Kopetz, 2005] Kopetz, H. (2005). A time-triggered SoC-platform for distributed
embedded application. Technical Report 34, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[Kopetz, 2006] Kopetz, H. (2006). Pulsed data streams. In IFIP TC 10 Working
Conference on Distributed and Parallel Embedded Systems (DIPES 2006), pages
105–124, Braga, Portugal. Springer.

[Kopetz, 2007] Kopetz, H. (2007). The complexity challenge in embedded system
design. Research Report 55/2007, Technische Universität Wien, Institut für Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[Kopetz et al., 2005] Kopetz, H., Ademaj, A., Grillinger, P., and Steinhammer, K.
(2005). The Time-Triggered Ethernet (TTE) design. In Proceedings of the 8th
IEEE International Symposium on Object-oriented Real-time distributed Comput-
ing (ISORC’05), Seattle, USA.

[Kopetz et al., 2006] Kopetz, H., Ademaj, A., Grillinger, P., and Steinhammer, K.
(2006). Time-Triggered Ethernet Protocol Specification. Version 0.91. Vienna
University of Technology, Institute of Computer Engineering, Treitlstr. 1-3/182-1,
1040 Vienna, Austria.

[Kopetz and Bauer, 2003] Kopetz, H. and Bauer, G. (2003). The Time-Triggered
Architecture. Proceedings of the IEEE, 91(1):112 – 126.

[Kopetz and Grünsteidl, 1994] Kopetz, H. and Grünsteidl, G. (1994). TTP – a pro-
tocol for fault-tolerant real-time systems. Computer, 27(1):14–23.

[Kopetz and Obermaisser, 2002] Kopetz, H. and Obermaisser, R. (2002). Temporal
composability. Computing & Control Engineering Journal, 13:156–162.

[Kopetz et al., 2004] Kopetz, H., Obermaisser, R., Peti, P., and Suri, N. (2004).
From a federated to an integrated architecture for dependable embedded real-
time systems. Technical Report 22, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[Kopetz and Ochsenreiter, 1987] Kopetz, H. and Ochsenreiter, W. (1987). Clock
synchronization in distributed real-time systems. IEEE Transactions on Comput-
ers, 36(8):933–940.

[Kopetz and Suri, 2003] Kopetz, H. and Suri, N. (2003). Compositional design of
RT systems: A conceptual basis for specification of linking interfaces. In Proceed-
ings of the Sixth IEEE Int. Symposium on Object-Oriented Real-Time Distributed
Computing, pages 51–60. IEEE.

165

BIBLIOGRAPHY

[Krauter et al., 2002] Krauter, K., Buyya, R., and Maheswaran, M. (2002). A taxon-
omy and survey of grid resource management systems for distributed computing.
Software Practice and Experience, 32(2):135–164.

[Lala and Harper, 1994] Lala, J. H. and Harper, R. E. (1994). Architectural princi-
ples for safety-critical real-time applications. Proceedings of the IEEE, 82:25–40.

[Ledeczi et al., 2001] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., Nordstrom, G., Sprinkle, J., and Volgyesi, P. (2001). The Generic
Modeling Environment. In Workshop on Intelligent Signal Processing, Budapest,
Hungary, volume 17.

[Lee et al., 1998] Lee, Y.-H., Kim, D., Younis, M., and Zhou, J. (1998). Partition
scheduling in APEX runtime environment for embedded avionics software. In
Proceedings of the 5th International Conference on Real-Time Computing Sys-
tems and Applications (RTCSA’98), pages 103–109, Washington, DC, USA. IEEE
Computer Society.

[Leiner et al., 2007] Leiner, B., Schlager, M., Obermaisser, R., and Huber, B. (2007).
A comparison of partitioning operating systems for integrated systems. In Pro-
ceedings of the 26th International Conference on Computer Safety, Reliability and
Security (SAFECOMP’07), Nuremberg, Germany.

[LIN, 2003] LIN (2003). LIN Specification Package Revision 2.0. LIN Consortium.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms
for multiprogramming in a hard-real-time environment. Journal of the ACM,
20(1):46–61.

[Lorch and Smith, 1998] Lorch, J. R. and Smith, A. J. (1998). Software strategies for
portable computer energy management. IEEE Personal Communications, 5(3):60–
73.

[LynuxWorks, 2007] LynuxWorks (2007). LynxOS-178 2.0. Certifiable OS for safety-
critical computing. LynuxWorks Inc., 855 Embedded Way, San Jose, California.

[Lyons and Vanderkulk, 1962] Lyons, R. E. and Vanderkulk, W. (1962). The use
of triple-modular redundancy to improve computer reliability. IBM Journal of
Research and Development, 6(2):200–209.

[Mantegazza et al., 2000] Mantegazza, P., Bianchi, E., Dozio, L., Papacharalam-
bous, S., Hughes, S., and Beal, D. (2000). RTAI: Real-Time Application Interface.
Linux Journal. Available at: http://www.linuxjournal.com/article/3838.

[Mellor et al., 2002] Mellor, S. J., Scott, K., Uhl, A., and Weise, D. (2002). Model-
driven architecture. In Proceedings of the Advances in Object-Oriented Informa-
tion Systems Workshop (OOIS’02), pages 233–239, Montpellier, France. Springer
Berlin / Heidelberg.

166

http://www.linuxjournal.com/article/3838

BIBLIOGRAPHY

[Mesarovic and Takahara, 1989] Mesarovic, M. D. and Takahara, Y. (1989). Abstract
systems theory. Springer.

[Morgan, 1991] Morgan, M. J. (1991). Integrated modular avionics for next gener-
ation commercial airplanes. IEEE Aerospace and Electronic Systems Magazine,
6:9–12.

[MOST Cooperation, 2002] MOST Cooperation (2002). MOST Specification Ver-
sion 2.2. MOST Cooperation, Karlsruhe, Germany.

[Murray, 2003] Murray, C. J. (2003). Auto group seeks universal software. EE Times.
Available at http://www.eetimes.com/showArticle.jhtml?articleID=18309903.

[Murthy and Manimaran, 2001] Murthy, C. S. R. and Manimaran, G. (2001). Re-
source Management in Real-Time Systems and Networks. MIT Press, Cambridge,
MA, USA.

[Nilsson et al., 1998] Nilsson, U., Streiffert, S., and Torne, A. (1998). Detailed design
of avionics control software. In Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS’98), pages 82–91, Madrid, Spain.

[Obermaisser et al., 2007] Obermaisser, R., Kopetz, H., Salloum, C. E., and Hu-
ber, B. (2007). Error containment in the time-triggered system-on-a-chip architec-
ture. In Proceedings of the International Embedded Systems Symposium (IESS’07),
Irvine, CA, USA.

[Obermaisser et al., 2006] Obermaisser, R., Peti, P., Huber, B., and Salloum, C. E.
(2006). DECOS: An integrated time-triggered architecture. e&i journal (journal
of the Austrian professional institution for electrical and information engineering),
3:83–95.

[Obermaisser et al., 2005a] Obermaisser, R., Peti, P., and Kopetz, H. (2005a). Vir-
tual gateways in the DECOS integrated architecture. In Proceedings of the Work-
shop on Parallel and Distributed Real-Time Systems 2005 (WPDRTS). IEEE.

[Obermaisser et al., 2005b] Obermaisser, R., Peti, P., and Kopetz, H. (2005b). Vir-
tual networks in an integrated time-triggered architecture. In Proceedings of
the 10th IEEE Int. Workshop on Object-oriented Real-time Dependable Systems
(WORDS2005), pages 241–253, Sedona, Arizona.

[OMG, 2002] OMG (2002). Smart Transducers Interface. Specification ptc/2002-05-
01, Object Management Group. Available at http://www.omg.org/.

[OMG, 2003] OMG (2003). MDA Guide Version 1.0.1. Technical Report document
number omg/2003-06-01, Object Management Group. Available at: http://www.

omg.org/docs/omg/03-06-01.pdf.

[OMG, 2004] OMG (2004). Common Object Request Broker Architecture: Core
Specification. Version 3.0.3. Technical Report formal/04-03-12, Object Manage-
ment Group. Available at: http://www.omg.org/docs/formal/04-03-12.pdf.

167

http://www.eetimes.com/showArticle.jhtml?articleID=18309903
http://www.omg.org/
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/formal/04-03-12.pdf

BIBLIOGRAPHY

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure. ver-
sion 2.1.1. Technical Report formal/2007-02-05, Object Management Group.
Available at: http://www.omg.org/docs/formal/07-02-05.pdf.

[Owens, 2004] Owens, J. (2004). GPUs: Engines for future high-performance com-
puting. Technical report, Lincoln Labs, Boston.

[Parkinson and Kinnan, 2006] Parkinson, P. and Kinnan, L. (2006). Safety-Critical
Software Development for Integrated Modular Avionics. Wind River Systems Inc.,
Alameda, California.

[Pauli et al., 1998] Pauli, B., Meyna, A., and Heitmann, P. (1998). Reliability of
electronic components and control units in motor vehicle applications. In VDI
Berichte 1415, Electronic Systems for Vehicles, pages 1009–1024. Verein Deutscher
Ingenieure.

[Pedram, 1996] Pedram, M. (1996). Power minimization in IC design: principles and
applications. ACM Transactions on Design Automation of Electronic Systems,
1(1):3–56.

[Poledna, 1994] Poledna, S. (1994). Replica determinism in distributed real-time
systems: A brief survey. Real-Time Systems, 6:289–316.

[Prisaznuk, 1992] Prisaznuk, P. J. (1992). Integrated modular avionics. In Pro-
ceedings of the IEEE 1992 National Aerospace and Electronics Conference (NAE-
CON’92), volume 1, pages 39–45.

[Ramamritham and Stankovic, 1994] Ramamritham, K. and Stankovic, J. A. (1994).
Scheduling algorithms and operating systems support for real-time systems. Pro-
ceedings of the IEEE, 82(1):55–67.

[Ramsey, 2007] Ramsey, J. W. (2007). Integrated Modular Avionics: Less is
More. Avionics Magazine. Available at http://www.aviationtoday.com/av/categories/

commercial/8420.html.

[Randell et al., 1978] Randell, B., Lee, P. A., and Treleaven, P. C. (1978). Reliability
issues in computing system design. ACM Computing Surveys, 10(2):123–165.

[Rong and Pedram, 2006] Rong, P. and Pedram, M. (2006). Power-aware scheduling
and dynamic voltage setting for tasks running on a hard real-time system. Pro-
ceedings of the 2006 conference on Asia South Pacific design automation, pages
473–478.

[RTCA, 1992] RTCA (1992). DO-178B: Software Considerations in Airborne Sys-
tems and Equipment Certification. Radio Technical Commission for Aeronautics,
Inc. (RTCA), Washington, DC.

[Rubini and Corbet, 1998] Rubini, A. and Corbet, J. (1998). Linux Device Drivers
(Nutshell Handbook). O’Reilly.

168

http://www.omg.org/docs/formal/07-02-05.pdf
http://www.aviationtoday.com/av/categories/commercial/8420.html
http://www.aviationtoday.com/av/categories/commercial/8420.html

BIBLIOGRAPHY

[Rushby, 1999] Rushby, J. (1999). Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center. Also to be issued by the FAA.

[Rushby, 2001] Rushby, J. (2001). Bus architectures for safety-critical embedded sys-
tems. In Henzinger, T. and Kirsch, C., editors, Proceedings of the First Workshop
on Embedded Software (EMSOFT’01), volume 2211 of Lecture Notes in Computer
Science, pages 306–323, Lake Tahoe, CA, USA. Springer-Verlag.

[Sangiovanni-Vincentelli and Martin, 2001] Sangiovanni-Vincentelli, A. and Martin,
G. (2001). Platform-based design and software design methodology for embedded
systems. IEEE Design and Test of Computers, 18(6):23–33.

[Scharnhorst et al., 2005] Scharnhorst, T., Heinecke, H., Schnelle, K.-P., Fennel, H.,
Bortolazzi, J., Lundh, L., Heitkämper, P., Leflour, J., Maté, J.-L., and Nishikawa,
K. (2005). AUTOSAR-Challenges and Achievements 2005. VDI BERICHTE,
1907:395.

[Scheidler et al., 2000] Scheidler, C., Puschner, P., Boutin, S., Fuchs, E., Grünsteidl,
G., Papadopoulos, Y., Pisecky, M., Rennhack, J., and Virnich, U. (2000). Systems
engineering of timetriggered architectures – the SETTA approach. In Proceedings
of the 16th IFAC Workshop on Distributed Computer Control Systems (DCCS’00),
pages 55–60.

[Shen et al., 1993] Shen, C., Ramamritham, K., and Stankovic, J. A. (1993). Re-
source reclaiming in multiprocessor real-time systems. IEEE Transactions of Par-
allel Distributed Systems, 4(4):382–397.

[SIA, 2005] SIA (2005). International technology roadmap for semiconductors - ex-
ecutive summary. Technical report, Semiconductor Industry Association (SIA).

[Sifakis, 2005] Sifakis, J. (2005). A framework for component-based construction. In
Proceedings of 3rd IEEE International Conference on Software Engineering and
Formal Methods (SEFM’05), pages 293–300.

[Sonics, 2002] Sonics (2002). Sonics uNetwork technical overview. Available at:
http://www.sonicsinc.com/.

[Stallings, 1998] Stallings, W. (1998). Operating systems (3rd ed.): Internals and
Design Principles. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Stankovic and Ramamritham, 1991] Stankovic, J. A. and Ramamritham, K. (1991).
The spring kernel: A new paradigm for real-time systems. IEEE Software, 8(3):62–
72.

[Steinhammer, 2006] Steinhammer, K. (2006). Design of an FPGA-based Time-
Triggered Ethernet System. PhD thesis, Vienna University of Technology, Institute
of Computer Engineering, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

169

http://www.sonicsinc.com/

BIBLIOGRAPHY

[Steinhammer, 2007] Steinhammer, K. (2007). TT Ethernet Communication Con-
troller IP. Preliminary Draft. Vienna University of Technology, Institute of Com-
puter Engineering, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[Steinhammer et al., 2006] Steinhammer, K., Grillinger, P., Ademaj, A., and
Kopetz, H. (2006). A time-triggered Ethernet (TTE) switch. In Proceedings of
2006th Conference on Design, Automation and Test in Europe (DATE’06), Mu-
nich, Germany.

[Suri et al., 1995] Suri, N., Walter, C. J., and Hugue, M. M. (1995). Advances In
Ultra-Dependable Distributed Systems, chapter 1. IEEE Computer Society Press,
10662 Los Vaqueros Circle, P.O. Box 3014, Los Alamitos, CA 90720-1264.

[Swanson, 1998] Swanson, D. L. (1998). Evolving avionics systems from federated
to distributed architectures. In Proceedings of the 17th AIAA/IEEE/SAE Digital
Avionics Systems Conference, volume 1, pages D26/1–D26/8, Bellevue, WA,USA.

[Swingler and McBride, 1998] Swingler, J. and McBride, J. W. (1998). The syner-
gistic relationship of stresses in the automotive connector. In Proceedings of the
19th International Conference on Electric Contact Phenomena, pages 141–145.

[TT-SoC, 2007a] TT-SoC (2007a). Design of the NoC-FPGA. Project Deliverable
D2.2, Vienna University of Technology, Institute of Computer Engineering, Vi-
enna, Austria.

[TT-SoC, 2007b] TT-SoC (2007b). Requirements and overall system architecture.
Project Deliverable D1.1, Vienna University of Technology, Institute of Computer
Engineering, Vienna, Austria.

[Unsal and Koren, 2003] Unsal, O. S. and Koren, I. (2003). System-level power-
aware design techniques in real-time systems. Proceedings of the IEEE, 91(7):1055–
1069.

[Veŕıssimo and Rodrigues, 2001] Veŕıssimo, P. and Rodrigues, L. (2001). Distributed
Systems for System Architects. Kluwer Academic Publishers, Norwell, MA, USA.

[Wolf, 2004] Wolf, W. (2004). The future of multiprocessor systems-on-chips. In
Proceedings of the 41st annual conference on Design automation (DAC ’04), pages
681–685, New York, NY, USA. ACM Press.

[Yano et al., 1990] Yano, K., Yamanaka, T., Nishida, T., Saito, M., Shimohigashi,
K., and Shimizu, A. (1990). A 3.8-ns CMOS 16×16-b multiplier using complemen-
tary pass-transistor logic. IEEE Journal of Solid-State Circuits, 25(2):388–395.

[Yeo and Buyya, 2007] Yeo, C. S. and Buyya, R. (2007). Pricing for utility-driven
resource management and allocation in clusters. International Journal of High
Performance Computing Applications.

170

BIBLIOGRAPHY

[Zhao, 2005] Zhao, L. (2005). Designing application domain models with roles. In
Aßmann, U. and Aksit, M., editors, Model Driven Architecture, volume 3599/2005
of Lecture Notes in Computer Science, pages 1–16. Springer Berlin/Heidelberg.

171

BIBLIOGRAPHY

172

List of Publications

[1] Bernhard Huber and Wilfried Elmenreich. Wireless time-triggered real-time
communication. In Proceedings of the 2nd Workshop on Intelligent Solutions in
Embedded Systems (WISES’04), Graz, Austria, June 2004.

[2] Bernhard Huber and Wilfried Elmenreich. Wireless time-triggered real-time
communication. Telematik Magazin, 10(3/4):44–50, December 2004.

[3] Bernhard Huber, Philipp Peti, Roman Obermaisser, and Christian El Salloum.
Using RTAI/LXRT for partitioning in a prototype implementation of the DE-
COS architecture. In Proceedings of the 3rd Workshop on Intelligent Solutions
in Embedded Systems (WISES’05), Hamburg, Germany, May 2005.

[4] Ingomar Wenzel, Raimund Kirner, Martin Schlager, Bernhard Rieder, and Bern-
hard Huber. Impact of dependable software development guidelines on timing
analysis. In Proceedings of the International Conference on Computer as a Tool
(EUROCON), volume 1, pages 575–578, 2005.

[5] Bernhard Huber, Roman Obermaisser, and Philipp Peti. MDA-Based devel-
opment in the DECOS integrated architecture - modeling the hardware plat-
form. In Proceedings of the 9th IEEE International Symposium on Object and
Component-Oriented Real-time Distributed Computing (ISORC’06), pages 43–
52, Gyeongju, Korea, April 2006.

[6] Christian El Salloum, Roman Obermaisser, Bernhard Huber, Hermann Kopetz,
and Neeraj Suri. Supporting heterogeneous applications in the DECOS inte-
grated architecture. In Proceedings of the International DECOS Workshop at
the Mikroelektroniktagung 2006, pages 183–193, Vienna, Austria, October 2006.

[7] Wolfgang Herzner, Martin Schlager, Thierry Le Sergent, Bernhard Huber, Shar-
iful Islam, Neeraj Suri, and András Balogh. From model-based design to deploy-
ment of integrated, embedded, real-time systems: The DECOS tool-chain. In
Proceedings of the International DECOS Workshop at the Mikroelektroniktagung
2006, pages 204–213, Vienna, Austria, October 2006.

[8] Roman Obermaisser and Bernhard Huber. Model-based design of the communi-
cation system in an integrated architecture. In Proceedings of the International

173

LIST OF PUBLICATIONS

Conference on Parallel and Distributed Computing and Systems (PDCS 2006),
Dallas, USA, October 2006.

[9] Roman Obermaisser, Philipp Peti, Bernhard Huber, and Christian El Salloum.
DECOS: An integrated time-triggered architecture. e&i journal (journal of
the Austrian professional institution for electrical and information engineering),
3:83–95, March 2006.

[10] Wolfgang Herzner, Bernhard Huber, György Csertan, and András Balogh. The
DECOS tool-chain: Model-based development of distributed embedded safety-
critical real-time systems. ERCIM News, 67:22–24, October 2006.

[11] Christian El Salloum, Roman Obermaisser, Bernhard Huber, Harald Paulitsch,
and Hermann Kopetz. A time-triggered system-on-a-chip architecture with in-
tegrated support for diagnosis. In Proceedings of the Design, Automation and
Test in Europe (DATE’07), Nice, France, April 2007.

[12] Hermann Kopetz, Christian El Salloum, Bernhard Huber, and Roman Ober-
maisser. Periodic finite-state machines. In Proceedings of the 10th IEEE Inter-
national Symposium on Object and Component-Oriented Real-time Distributed
Computing (ISORC’07), Santorini, Greece, May 2007.

[13] Hermann Kopetz, Roman Obermaisser, Christian El Salloum, and Bernhard
Huber. Automotive software development for a multi-core system-on-a-chip. In
Proceedings of the 4th International ICSE Workshop on Software Engineering
for Automotive Systems (SEAS’07), Minneapolis, USA, May 2007.

[14] Roman Obermaisser, Hermann Kopetz, Christian El Salloum, and Bernhard
Huber. Error containment in the time-triggered system-on-a-chip architecture.
In Proceedings of the International Embedded Systems Symposium (IESS’07),
Irvine, CA, USA, May 2007.

[15] Bernhard Huber and Roman Obermaisser. Model-based development of inte-
grated computer systems: Modeling the execution platform. In Proceedings of
the 5th Workshop on Intelligent Solutions in Embedded Systems (WISES’07),
Madrid, Spain, June 2007.

[16] Wolfgang Herzner, Rupert Schlick, Martin Schlager, Bernhard Leiner, Bernhard
Huber, András Balogh, György Csertan, Alain LeGuennec, Thierry LeSergent,
Neeraj Suri, and Shariful Islam. Model-based development of distributed embed-
ded real-time systems with the DECOS tool-chain. In Proceedings of the 2007
AeroTech Exhibition and Congress, Los Angeles, CA, USA, September 2007.

[17] Bernhard Leiner, Martin Schlager, Roman Obermaisser, and Bernhard Huber.
A comparison of partitioning operating systems for integrated systems. In Pro-
ceedings of the 26th International Conference on Computer Safety, Reliability
and Security (SAFECOMP’07), Nuremberg, Germany, September 2007.

174

Curriculum Vitae

Dipl.-Ing. Bernhard Huber

Edla 9
3261 Steinakirchen/Forst

phone: +43 699 11748949
email: mail.huberb@gmx.at

date of birth: 1980-02-21

EDUCATION

2004/10 – ongoing Vienna University of Technology – Institute of Computer Engineering

Real-Time Systems Group

PhD thesis: “Resource Management in an Integrated Time-Triggered
Architecture”.

1999/10 – 2004/10 Vienna University of Technology

Studies of computer science.
Master thesis: “Wireless Real-Time Communication for Smart Transducer
Networks”.
Graduation with distinction.

1994/09 – 1999/06 Engineering School for Communications Engineering and Computer

Science in St. Pölten

PROFESSIONAL & PRACTICAL EXPERIENCE

2004/09 – ongoing Vienna University of Technology – Institute of Computer Engineering

Real-Time Systems Group

Research and Teaching Assistant (fulltime)
- Working on the European FP7 project GENESYS (Generic

Embedded Systems Platform)
- Working on the national FIT-IT project TT-SoC (Time-Triggered

System-on-a-Chip)
- Working on the European FP6 project DECOS (Dependable

Embedded Components and Systems)

2002/10 – 2004/07 Vienna University of Technology – Institute of Computer Engineering

Embedded Computing Systems Group & Real-Time Systems Group

Study Assistant for
- Embedded Systems Engineering
- Electrical Engineering for Computer Engineering

2002/02 – 2002/09 IS4O – Integrated Services for Organizations

- Server maintenance (Windows NT 4.0 Server, Microsoft Exchange)
- Mail backend solutions (Free-BSD)

2001/08 – 2001/09 Siemens Austria

Internship
- Port of telecommunications software using object-oriented

programming techniques

2000/02 – 2001/02 Rotes Kreuz Österreich – Dienststelle St. Pölten

Civil service

175

	Introduction
	Problem Definition
	Contribution
	Structure of the Thesis

	Basic Concepts and State-of-the-Art
	Integrated Architectures for RT Systems
	Paradigm Shift to Integrated Architectures
	Integrated Modular Avionics
	Automotive Open System Architecture
	Dependable Embedded Components and Systems

	Dynamic Resource Management
	Classic Resource Management in Real-Time Systems
	Resource Management in Large Networked System
	Power-Aware Systems

	Model-Driven Design and Development
	Model-Driven Architecture
	Model-Driven Development in DECOS

	The Time-Triggered SoC Architecture
	Motivation and Aims
	Architectural Elements
	Micro Components
	Time-Triggered Network-on-Chip
	Gateways
	Diagnostic Unit
	Architectural Elements for Resource Management

	Application Modeling

	Resource Allocation Policies
	Exemplary Application Scenario
	Multimedia Application Subsystem
	ESP Application Subsystem
	Infotainment Application Subsystem

	Static Resource Allocation
	Dynamic Resource Allocation
	Restricted Dynamic Resource Allocation

	QoS-based Resource Allocation
	Discussion

	Resource Management in the TTSoC Architecture
	Requirements on Resource Management
	Resource Management Strategy
	Specification of Applications and Modes
	Interaction Pattern

	Manageable Resources
	Time-Triggered Network-on-Chip
	Micro Component Configuration
	Power

	Trusted Network Authority
	Resource Protection
	Micro Component Configuration
	Establishment and Maintenance of the Global Time

	Resource Management Authority

	Case Study
	Exemplary Automotive Application
	SoC Component Setup
	TNA Implementation
	Initial TISS Configuration
	RMA--TNA Communication
	Schedule Analysis
	Resource Protection
	Micro Component Configuration

	RMA Implementation
	Job--to--RMA Communication - Request Reception
	Resource Schedule Generation
	RMA--to--Host Communication
	Exemplary Message Schedule

	Evaluation and Results
	Preservation of Encapsulation
	Experiment Setup
	Evaluation Procedure and Results

	Handling of Excessive Resource Requests
	Experiment Setup
	Evaluation Procedure and Results

	Validation of Resource Protection Mechanisms
	Experiment Setup
	Evaluation Procedure and Results

	Conclusion
	Encapsulation of Application Subsystems
	Support for Mixed Criticality Systems
	Further Work

	TTSoC Resource Management Interfaces
	TISS CP Interface
	TNA RCLIF Interface

	XML Configuration Files
	Initial TNA Configuration
	Protected Resources

	List of Acronyms
	Glossary
	Bibliography
	List of Publications
	Curriculum Vitae

