
Vol:.(1234567890)

Journal of Membrane Computing (2020) 2:14–25
https://doi.org/10.1007/s41965-019-00028-9

1 3

REGULAR PAPER

How derivation modes and halting conditions may influence
the computational power of P systems

Rudolf Freund1

Received: 2 August 2019 / Accepted: 11 November 2019 / Published online: 9 December 2019
© The Author(s) 2019

Abstract
In the area of P systems, besides the standard maximally parallel derivation mode, many other derivation modes have been
investigated, too. In this overview paper, many variants of hierarchical P systems using different derivation modes are
considered and the effects of using different derivation modes, especially the maximally parallel derivation modes and the
maximally parallel set derivation modes, on the generative and accepting power are illustrated. Moreover, an overview on
some control mechanisms used for P systems is given. Furthermore, besides the standard total halting, we also consider
different halting conditions such as unconditional halting and partial halting and explain how the use of different halting
conditions may considerably change the computing power of P systems.

Keywords Derivation modes · Halting conditions · P systems

1 Introduction

The basic model of P systems as introduced in [21] can be
considered as a distributed multiset rewriting system, where
all objects—if possible—evolve in parallel in the membrane
regions and may be communicated through the membranes.
But also P systems operating on more complex objects (e.g.,
strings, arrays) are often considered, too, for instance, see
[10].

Besides the maximally parallel derivation mode, many
other derivation modes have been investigated during the
last two decades. Hence, in this paper, the definitions of the
standard derivation modes used for P systems are recalled.
Various interpretations of derivation modes known from the
P systems area are illustrated and well-known results are
presented in a different manner.

Moreover, we consider not only the standard total halt-
ing, but also other halting conditions such as unconditional
halting, see [7], and partial halting, see [14]. We explain and
give some examples how the use of different halting modes
may considerably change the computing power of P systems.

Overviews on the field of P systems can be found in the
monograph [22] and the Handbook of Membrane Comput-
ing [23]; for actual news and results we refer to the P systems
webpage [26] as well as to the Bulletin of the International
Membrane Computing Society. The reader is assumed to be
familiar with the basic definitions and notations of P systems
as well as of the commonly used derivation modes and halt-
ing conditions.

The rest of the paper is organized as follows: In the next
section, basic notions from formal language theory needed
in this paper are recalled. In Sect. 3, the definition of the
basic model of P systems is given and explained, including
the standard derivation modes used in many papers on P
systems, the basic types of rules, as well as the main halting
conditions found in the literature and considered in more
detail in Sect. 7. Some well-known results are summarized
in a compact form in Sect. 4; special focus is put on results
for catalytic P systems regarding the number of rules needed
for simulating (the instructions of) register machines. In
Sect. 5, important results for P systems with control mecha-
nisms are recalled, including the variant of P systems with
target selection, which is one of the very few models known

A short version of this paper especially focusing on the influence
of choosing different parallel derivation modes was presented
at CMC 20, the 20th anniversary edition of the meeting of the
membrane systems community, in Curtea de Argeş, Romania,
from August 5 to 9, 2019.

 * Rudolf Freund
 rudi@emcc.at

1 TU Wien, Institut für Logic and Computation,
Favoritenstraße 9-11, 1040 Wien, Austria

http://orcid.org/0000-0003-1255-1953
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00028-9&domain=pdf

15How derivation modes and halting conditions may influence the computational power of P systems

1 3

from the literature of P systems which takes advantage of
using a non-trivial membrane structure. An own section then
is devoted to a special derivation mode called minimal paral-
lelism and its variants. Examples and results for the halting
conditions different from the standard variant of total halt-
ing are considered in Sect. 7. A short summary concludes
the paper.

2 Prerequisites

The set of integers is denoted by ℤ , and the set of non-neg-
ative integers by ℕ . Given an alphabet V, a finite non-empty
set of abstract symbols, the free monoid generated by V
under the operation of concatenation is denoted by V∗ . The
elements of V∗ are called strings, the empty string is denoted
by � , and V∗�{�} is denoted by V+ . For an arbitrary alphabet
V = {a1,… , an} , the number of occurrences of a symbol ai
in a string x is denoted by |x|ai , while the length of a string
x is denoted by �x� = ∑

ai∈V
�x�ai . The Parikh vector associ-

ated with x with respect to a1,… , an is (|x|a1 ,… , |x|an). The
Parikh image of an arbitrary language L over {a1,… , an} is
the set of all Parikh vectors of strings in L, and is denoted
by Ps(L). For a family of languages FL, the family of Parikh
images of languages in FL is denoted by PsFL, while for
families of languages over a one-letter (d-letter) alphabet,
the corresponding sets of non-negative integers (d-vectors
with non-negative components) are denoted by NFL (NdFL).

A (f inite) multiset over a (f inite) alphabet
V = {a1,… , an} is a mapping f ∶ V → ℕ and can be
represented by ⟨af (a1)

1
,… , a

f (an)
n ⟩ or by any string x for

which (|x|a1 ,… , |x|an) = (f (a1),… , f (an)) . In the fol-
lowing we will not distinguish between a vector
(m1,… ,mn) , a multiset ⟨am1

1
,… , a

mn

n ⟩ or a string x having
(|x|a1 ,… , |x|an) = (m1,… ,mn) . Fixing the sequence of sym-
bols a1,… , an in an alphabet V in advance, the representa-
tion of the multiset ⟨am1

1
,… , a

mn

n ⟩ by the string am1

1
… a

mn

n is
unique. The set of all finite multisets over an alphabet V is
denoted by V◦.

The family of regular, context-free, and recursively enu-
merable string languages is denoted by REG, CF, and RE,
respectively. For example, PsREG = PsCF , which is the rea-
son why in the area of multiset rewriting CF plays no role at
all, and in the area of membrane computing we usually get
characterizations of PsREG and PsRE.

An extended Lindenmayer system (an E0L system for
short) is a construct G = (V , T ,P,w) , where V is an alpha-
bet, T ⊆ V is the terminal alphabet, w ∈ V∗ is the axiom,
and P is a finite set of non-cooperative rules over V of the
form a → u . In a derivation step, each symbol present in the
current sentential form is rewritten using one rule arbitrarily

chosen from P. The language generated by G, denoted by
L(G), consists of all the strings over T which can be gener-
ated in this way by starting from the initial string w. An E0L
system with T = V is called a 0L system.

For more details of formal language theory, the reader is
referred to the monographs and handbooks in this area as
[9] and [24].

2.1 Register machines

A register machine is a tuple M = (m,B, l0, lh,P) , where
m is the number of registers, B is a set of labels, l0 ∈ B is
the initial label, lh ∈ B is the final label, and P is the set of
instructions labeled by elements of B. The instructions of M
can be of the following forms:

• l1 ∶ (ADD(j), l2, l3) , with l1 ∈ B�{lh} , l2, l3 ∈ B , 1 ≤ j ≤ m.
 Increases the value of register j by one, followed by

a non-deterministic jump to instruction l2 or l3 . This
instruction is usually called increment.

• l1 ∶ (SUB(j), l2, l3) , with l1 ∈ B�{lh} , l2, l3 ∈ B , 1 ≤ j ≤ m.
 If the value of register j is zero then jump to instruction

l3 ; otherwise, the value of register j is decreased by one,
followed by a jump to instruction l2 . The two cases of this
instruction are usually called zero-test and decrement,
respectively.

• lh ∶ HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the
contents of each register and by the value of the current
label, which indicates the next instruction to be executed.
Computations start by executing the instruction l0 of P, and
terminate with reaching the HALT-instruction lh.

M is called deterministic if in all ADD-instructions
p ∶ (���(r), q, s) , it holds that q = s ; in this case we write
p ∶ (���(r), q).

Register machines provide a computationally complete
model for computations with natural numbers:

In the generating case, we start with empty registers, use
the last two registers for the necessary computations and
take as results the vectors of natural numbers

(
x1,… , xd

)

obtained as contents of the first d registers 1 to d in all possi-
ble halting computations. Without loss of generality, we may
assume that at the beginning of a computation, all registers
are empty and that during any computation of M, only the
registers d + 1 and d + 2 can be decremented.

In the accepting case, we start with the natural numbers
x1,… , xd in the first d registers (and with 0 in the regis-
ters d + 1 and d + 2) and use the two additional registers
d + 1 and d + 2 for the necessary computations; in this case,
all registers may be decremented; moreover, the register

16 R. Freund

1 3

machine can be assumed to be deterministic, i.e., we only
have ADD-instructions of the form l1 ∶

(
���(j), l2

)
 , with

l1 ∈ B⧵
{
lh
}
 , l2 ∈ B , 1 ≤ j ≤ m . The vector

(
x1,… , xd

)
 is

accepted if and only if M halts with the natural numbers
x1,… , xd having been given as input in the first d registers.

For these and other useful results on the computational
power of register machines, we refer to [20].

3 A general model for hierarchical P systems

We now recall the main definitions of the general model for
hierarchical P systems and the basic derivation modes as
defined, for example, in [18]. Moreover, we define the halt-
ing conditions discussed in this paper.

A (hierarchical) P system (with rules of type X) working
in the derivation mode � is a construct

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• � is the hierarchical membrane structure (a rooted tree

of membranes) with the membranes uniquely labeled by
the numbers from 1 to m;

• wi ∈ V∗ , 1 ≤ i ≤ m , is the initial multiset in membrane i;
• Ri , 1 ≤ i ≤ m , is a finite set of rules of type X assigned to

membrane i;
• f is the label of the membrane from which the result of

a computation has to be taken from (in the generative
case) or into which the initial multiset has to be given in
addition to wf (in the accepting case);

• ⟹� ,� is the derivation relation under the derivation
mode �.

The symbol X in “rules of type X” may stand for “evolution”,
“communication”, “membrane evolution”, etc. In this paper,
we will mainly consider non-cooperative as well as catalytic
and purely catalytic rules, see Sect. 3.2.

A configuration is a list of the contents of each membrane
region; a sequence of configurations C1,… ,Ck is called a
computation in the derivation mode � if Ci⟹� ,�Ci+1 for
1 ≤ i < k . The derivation relation ⟹� ,� is defined by the
set of rules in � and the given derivation mode which deter-
mines the multiset of rules to be applied to the multisets
contained in each membrane region.

The language generated by � is the set of all terminal
multisets which can be obtained in the output membrane
f starting from the initial configuration C1 = (w1,… ,wm)
using the derivation mode � in a halting computation, i.e.,

� =
(
V , T ,�,w1,… ,wm,R1,… ,Rm, f ,⟹� ,�

)
where

where (C(f))T◦ stands for the terminal part of the multiset
contained in the output membrane f of the configuration C;
the configuration C is halting, i.e., no further configuration
C′ can be derived from it.

The family of languages of multisets generated by P sys-
tems of type X with at most n membranes in the derivation
mode � is denoted by Psgen,�OPn(X).

We may also consider P systems as accepting mecha-
nisms: in membrane f, we add the input multiset w0 to wf
in the initial configuration C1 = (w1,… ,wm) thus obtaining
C1[w0] = (w1,… ,wfw0,… ,wm) ; the input multiset w0 is
accepted if there exists a halting computation in the deriva-
tion mode � starting from C1[w0] , i.e.,

Then, the family of languages of multisets accepted by P
systems of type X with at most n membranes in the deriva-
tion mode � is denoted by Psacc,�OPn(X).

We finally mention that P systems can also be used to
compute functions and relations, with using f both as input
and output membrane or even using two different mem-
branes for the input and the output. Yet, in this paper, we
will mainly focus on the generating case.

3.1 Derivation modes

The set of all multisets of rules applicable in a P system to a
given configuration C is denoted by Appl(� ,C) and can be
restricted by imposing specific conditions, thus yielding the
following basic derivation modes (for example, see [18] for
formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule
is applied;

• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable mul-

tiset of rules is applied;
• maximally parallel mode with maximal number of rules

(maxrules): a non-extendable multiset of rules of maximal
possible cardinality is applied;

• maximally parallel mode with maximal number of
objects (maxobjects): a non-extendable multiset of rules
affecting as many objects as possible is applied.

Lgen,�(�) =

{
(C(f))T◦ ∣ C1

∗

⟹� ,� C ∧ ¬∃C� ∶ C⟹� ,�C
�

}
,

Lacc,�(�) =

{
w0 ∈ T◦ ∣ ∃C ∶

(
C1[w0]

∗

⟹� ,� C ∧ ¬∃C� ∶ C⟹� ,�C
�

)}
.

17How derivation modes and halting conditions may influence the computational power of P systems

1 3

In [6], the set variants of these derivation modes are consid-
ered, i.e., each rule can be applied at most once. Thus, start-
ing from the set of all sets of applicable rules, we obtain the
set modes sasyn, smax, smaxrules , and smaxobjects (the sequen-
tial mode is already a set mode by definition):

• asynchronous set mode (abbreviated sasyn): at least one
rule is applied, but each rule at most once;

• maximally parallel set mode (smax): a non-extendable
set of rules is applied;

• maximally parallel set mode with maximal number of
rules (smaxrules): a non-extendable set of rules of maxi-
mal possible cardinality is applied;

• maximally parallel set mode with maximal number of
objects (smaxobjects): a non-extendable set of rules affect-
ing as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of
rules applicable in a P system � to a given configuration C
in the derivation mode � by Appl(� ,C, �) . We immediately
observe that Appl(� ,C, asyn) = Appl(� ,C).

To collect the set and multiset derivation modes, we use
the following notations:

DS = {sequ, sasyn, smax, smaxrules, smaxobjects} and
DM = {asyn,max,maxrules,maxobjects}.

3.2 Standard rule variants

Non-cooperative rules have the form a → w , where a is a
symbol and w is a multiset, catalytic rules have the form
ca → cw , where the symbol c is called the catalyst, and
cooperative rules have no restrictions on the form of the
left-hand side. These types of rules will be denoted by ncoo
(non-cooperative), pcat (purely catalytic), and coo (coopera-
tive); if both non-cooperative and catalytic rules are allowed,
we write cat (catalytic).

If the P system has more than one membrane, each sym-
bol on the right-hand side may have assigned a target where
the symbol has to be sent after the application of the rule; the
targets take into account the tree structure of the membranes:

here the symbol stays in the membrane where the rule is
applied;

out the symbol is sent to the outer membrane, i.e., the
membrane enclosing the membrane where the rule
is applied;

in the symbol is sent to an inner membrane, i.e., a mem-
brane enclosed by the membrane where the rule is
applied;

inj the symbol is sent to the inner membrane labeled by
j.

3.3 Halting conditions

Besides the standard total halting with no (multi)set of rules
being applicable any more to the current configuration, some
more variants of halting conditions have been considered in
the literature:

total halting (H) the common halting strategy
where the computation stops
with no (multi)set of rules
being applicable any more

unconditional halting (u) the result of a computation can
be taken from every configu-
ration derived from the initial
one (possibly only taking ter-
minal results)

partial halting (h) the set of rules R is parti-
tioned into disjoint subsets
R1 to Rh , and a computation
stops if there is no multiset
of rules applicable to the cur-
rent configuration which con-
tains a rule from every set Rj ,
1 ≤ j ≤ h

halting with states (s) the configuration with which
a derivation may stop must
fulfill a recursive condition
(which corresponds with a
final state)

The variant of unconditional halting was introduced in
[7]. Partial halting, for example, was investigated in [3, 4,
14], using the membranes for partitioning the rules. Formal
definitions for the halting conditions H, h, s can be found
in [18].

For � ∈ {H, h, u, s} , we add the halting condition � in the
description of the generated or accepted language, i.e., we
then write L� ,�,�(�) , � ∈ {gen, acc} . The same extension is
made for the corresponding families of languages of multi-
sets, i.e., for n ≥ 1 , we write Y� ,�,�OPn(X) . By default, � is
understood to be the total halting H and then usually omitted
in all these notations.

3.4 Flattening

As many variants of P systems can be flattened to only one
membrane, see [13], we often may assume the simplest
membrane structure of only one membrane which in effect
reduces the P system to a multiset processing mechanism,
and, observing that f = 1 , in what follows we then will use
the reduced notation

18 R. Freund

1 3

In case we use catalysts, we write

with C ⊆ (V⧵T) denoting the set of catalysts.
For a one-membrane system, the definitions for the lan-

guage generated by � and the language accepted by �
using the derivation mode � and the halting condition � can
be written in an easier way; for example, with vT◦ denoting
the terminal multiset in the multiset v, we have

The family of languages of multisets generated by one-mem-
brane P systems of type X in the derivation mode � and with
the halting condition � is denoted by Psgen,�,�OP(X).

The family of languages of multisets accepted by one-
membrane P systems of type X in the derivation mode � and
with the halting condition � is denoted by Psacc,�,�OP(X).

In the following, we will mainly focus on the generative
case, and when writing Ps�,�OP(X) we by default will mean
Psgen,�,�OP(X).

4 Some well‑known results

In this section, we recall some well-known results, which
usually are not stated in the compact form given here.

4.1 Non‑cooperative rules

Using only non-cooperative rules leaves us on the level of
semi-linear sets, as for the derivation with context-free rules
(and non-cooperative rules correspond to those), the result-
ing derivation tree does not depend on an interpretation of
a sequential or a parallel derivation of any kind. Moreover,
context-free (string or multiset) languages are closed under
projections, hence, taking (even only terminal) results out
from a specific output membrane does not make any differ-
ence. Therefore, we may state the following result:

Theorem 1 For any Y ∈ {N,Ps} and any n ≥ 1 as well as
any derivation mode � ∈ DS ∪ DM,

� =
(
V , T ,w,R,⟹� ,�

)
.

� =
(
V ,C, T ,w,R,⟹� ,�

)

Lgen,max(�) =

{
vT◦ ∣ w

∗

⟹� ,� v ∧ ¬∃z ∶ v⟹� ,�z

}
and

Lacc,max(�) =

{
w0 ∈ T◦ ∣ ∃v ∶

(
ww0

∗

⟹� ,� v ∧ ¬∃z ∶ v⟹� ,�z

)}
.

Ygen,�OPn(ncoo) = YREG.

Although P systems working in the maximally parallel
derivation mode are a parallel mechanism, we cannot go
beyond PsREG, see Theorem 1.

For example, the rule a → aa used in parallel very much
reminds us of a 0L system, i.e., a Lindenmayer system of
the simplest form, which, when starting from the axiom aa,
yields the language L1 = {a2

n

∣ n ≥ 1} . In order to also get
this language with P systems working in one of the maxi-
mally parallel derivation modes, we either need some control
mechanism (see Sect. 5) or some other special halting condi-
tion (see Sect. 7).

4.2 The importance of using catalysts

If in a one-membrane system we only have one catalyst c
and only catalytic rules assigned to c, then this corresponds
to a sequential use of non-cooperative rules, which together
with Theorem 1 yields the following result:

Theorem 2 For any Y ∈ {N,Ps} and any derivation mode
� ∈ DS ∪ DM,

Even without additional control mechanisms, only two
(three) catalysts are sufficient to obtain computational com-
pleteness for (purely) catalytic P systems using the deriva-
tion mode max, see [12]. In a more general way, the follow-
ing results were already proved there:

Theorem 3 For any d ≥ 1 and any k ≥ d + 2,

The complexity of the construction, for all these deriva-
tion modes, has been considerably reduced since the original
paper from 2005, for example, see [1, 5, 25], and [6].

Although not yet stated in [12], we mention that these
results are also valid when replacing the derivation mode
max by any other maximally parallel (set) derivation mode,
i.e., for any � in

The following theorem states the best results known so far
with respect to the number of catalysts and the number of
rules for catalytic P systems; the proof follows the one given
in [6] for the set maximally parallel derivation modes.

Ygen,�OP
(
pcat1

)
= Ygen,sequ OP

(
pcat1

)
= Ygen,sequ OP(ncoo) = YREG.

Psacc,maxOP
(
pcatk+1

)
= Psacc,maxOP

(
catk

)
= NdRE.

{max,maxrules,maxobjects, smax, smaxrules, smaxobjects}.

19How derivation modes and halting conditions may influence the computational power of P systems

1 3

Theorem 4 For any register machine M =
(
d,B, L0, lh,R

)
 ,

with m ≤ d being the number of decrementable registers, we
can construct a catalytic P system

which works with any of the maximally parallel (set) deriva-
tion modes, i.e., with any � in

and simulates the computations of M such that

where ���1(R) denotes the number of deterministic ADD-
instructions in R, ���2(R) denotes the number of non-deter-
ministic ADD-instructions in R, and ���(R) denotes the num-
ber of SUB-instructions in R.

Proof We simulate a register machine M =
(
d,B, l0, lh,R

)

by a catalytic P system � , with m ≤ d being the number of
decrementable registers.

For all d registers, ni copies of the symbol oi are used
to represent the value ni in register i, 1 ≤ i ≤ d . For each
of the m decrementable registers, we take a catalyst ci and
two specific symbols di, ei , 1 ≤ i ≤ m , for simulating SUB-
instructions on these registers. For every l ∈ B , we use pl ,
and also its variants p̄l, p̂l, p̃l for l ∈ B��� , where B��� denotes
the set of labels of SUB-instructions; w0 stands for the addi-
tional input present at the beginning, for example, for the
given input in case of accepting systems.

� =
(
V ,C, T ,w,R1,⟹� ,�

)

{max,maxrules,maxobjects, smax, smaxrules, smaxobjects},

|R1| ≤ ���
1(R) + 2 × ���

2(R) + 5 × ���(R) + 5 × m + 1,

𝛱 =
(
V ,C, T ,w,R1,⟹𝛱 ,𝛿

)
,

w = c1 … cmd1 … dmp1w0,

V =C ∪ D ∪ E ∪ T ∪ {#} ∪ {pl ∣ l ∈ B}

∪{p̄l, p̂l, p̃l ∣ l ∈ B𝚂𝚄𝙱},

C ={ci ∣ 1 ≤ i ≤ m},

D ={di ∣ 1 ≤ i ≤ m},

E ={ei ∣ 1 ≤ i ≤ m},

T ={oi ∣ 1 ≤ i ≤ d},

R1 ={pj → orpkDm, pj → orplDm

∣ j ∶ (𝙰𝙳𝙳(r), k, l) ∈ R}

∪{pj → p̂jerDm,r, pj → p̄jDm,r,

p̂j → p̃jD
�
m,r

, p̄j → pkDm, p̃j → pkDm

∣ j ∶ (𝚂𝚄𝙱(r), k, l) ∈ R}

∪{cror → crdr, crdr → cr, cr⊕m1
er → cr⊕m1

∣ 1 ≤ r ≤ m},

∪{dr → #, crer → cr# ∣ 1 ≤ r ≤ m}

∪{# → #}.

We define r⊕m1 ∶= r + 1 for r < m and m⊕m1 ∶= 1.
Usually, every catalyst ci , i ∈ {1,… ,m} , is kept busy with

the symbol di using the rule cidi → ci , as otherwise the sym-
bols di would have to be trapped by the rule di → # , and the
trap rule # → # then enforces an infinite non-halting com-
putation. Only during the simulation of SUB-instructions
on register r, the corresponding catalyst cr is left free for
decrementing or for zero-checking in the second step of the
simulation, and in the decrement case both cr and its “cou-
pled” catalyst cr⊕m1

 are needed to be free for specific actions
in the third step of the simulation.

For the simulation of instructions, we use the following
shortcuts:

The HALT-instruction labeled lh is simply simulated by not
introducing the corresponding state symbol plh , i.e., replac-
ing it by � , in all rules defined in R1.

Each ADD-instruction j ∶ (���(r), k, l) , for r ∈ {1,… , d} ,
can easily be simulated by the rules pj → orpkDm and
pj → orplDm ; in parallel, the rules cidi → ci , 1 ≤ i ≤ m , have
to be carried out, as otherwise the symbols di would have to
be trapped by the rules di → #.

Each SUB-instruction j ∶ (���(r), k, l) , is simulated as
shown in the table listed below (the rules in brackets [and]
are those to be carried out in case of a wrong choice):

Simulation of the SUB-instruction j ∶ (���(r), k, l) if
Register r is not empty Register r is empty
pj → p̂jerDm,r pj → p̄jDm,r

cror → crdr [crer → cr#] cr should stay idle
p̂j → p̃jD

′
m,r

p̄j → pkDm

crdr → cr [dr → #] [dr → #]

p̃j → pkDm

cr⊕m1
er → cr⊕m1

In the first step of the simulation of each instruction
(ADD-instruction, SUB-instruction, and even HALT-instruc-
tion) due to the introduction of Dm in the previous step (we
also start with that in the initial configuration), every catalyst
cr is kept busy by the corresponding symbol dr , 1 ≤ r ≤ m .
Hence, this also guarantees that the zero-check on register
r works correctly enforcing dr → # to be applied, as in the
case of a wrong choice two symbols dr are present. ◻

Exactly the same construction as elaborated above can be
used when allowing for m + 2 catalysts, with catalyst cm+1

Dm =
∏

i∈{1,…,m}

di,

Dm,r =
∏

i∈{1,…,m}⧵{r}

di,

D�
m,r

=
∏

i∈{1,…,m}⧵{r,r⊕m1}

di.

20 R. Freund

1 3

being used with the state symbols and catalyst cm+2 being used
with the trap rules.

Yet for the purely catalytic case, only one additional catalyst
cm+1 is needed to be used with all the non-cooperative rules,
but in this case a slightly more complicated simulation of SUB-
instructions is needed, see [25]), where for catalytic P systems

and for purely for catalytic P systems

is shown.
The simulation results established above hold true for regis-

ter machines and their corresponding (purely) catalytic P sys-
tems for generating and accepting systems as well as even for
systems computing functions or relations on natural numbers.

Many computational completeness results for variants of P
systems are obtained by simulating register machines, which
in fact means that a sequential machine has to be simulated by
a parallel mechanism. Exactly, this feature of breaking down
the parallelism to sequentiality is the main importance of
using catalysts: when using a maximally parallel (set) deriva-
tion mode � , for decrementing the number of a symbol or to
carry out the decrement case of a SUB-instruction of the reg-
ister machine, we cannot use the non-cooperative rule or → � ;
instead, we have to use the catalytic rule cor → c.

What happens in the case of two catalysts in purely catalytic
P systems (and one catalyst in the case of catalytic P systems),
is one of the most intriguing open problems in the area of P
systems since long time, e.g., see [17], where it is shown that
catalytic P systems with one catalyst can simulate partially
blind register machines and partially blind counter automata.

With respect to the importance of using catalytic rules,
the set derivation modes offer new opportunities, i.e., using
specific control mechanisms they are not needed any more,
as eliminating only one symbol or to carry out the decrement
case of a SUB-instruction of a register machine now can be
done by a non-cooperative rule or → � , because due to the set
restriction, this rule is not applied more than once.

5 Control mechanisms

To reduce the number of catalysts needed for obtaining
computational completeness, specific control mecha-
nisms can be used. Some of these control mechanisms
are considered in this section. For example, label selec-
tion or control languages allow for using only one catalyst
(two catalysts) in (purely) catalytic P systems for getting

|R1| ≤ 2 × ���
1(R) + 3 × ���

2(R) + 6 × ���(R) + 5 × m + 1

|R1| ≤ 2 × ���
1(R) + 3 × ���

2(R) + 6 × ���(R) + 6 × m + 1

computational completeness, for instance, see [6, 11, 15,
16]. With target selection and maximally parallel set deri-
vation modes, catalysts can even be avoided completely,
only non-cooperative rules are needed.

For all the control mechanisms described in this sec-
tion, as a special example, we will show how the 0L lan-
guage L1 = {a2

n

∣ n ≥ 1} can be generated using the maxi-
mally parallel derivation mode.

5.1 P systems with label selection

For all the variants of P systems of type X, we may con-
sider labeling all the rules in the sets R1,… ,Rm in a one-
to-one manner by labels from a set H and taking a set
W containing subsets of H. In any derivation step of a P
system with label selection � , we first select a set of labels
U ∈ W and then, in the given derivation mode, we apply
a non-empty multiset R of rules such that all the labels of
these rules from R are in U.

Example 1 Consider the one-membrane P system

with the labeled rules r1 ∶ A → AA and r2 ∶ A → a ; only
one of these can be used according to the sets of labels in
W. Using r1 in n − 1 derivation steps and finally using r2
yields a2n , for any n ≥ 1 , i.e., we get Ngen,max(�) = L1 , where
L1 = {a2

n

∣ n ≥ 1}.

The families of sets Y� ,�(�) , Y ∈ {N,Ps} , � ∈ {gen, acc} ,
and � ∈ DM ∪ DS computed by P systems with label selec-
tion with at most m membranes and rules of type X are
denoted by Y� ,�OPm(X, ls).

Theorem 5 Y� ,�OP
(
cat1, ls

)
= Y� ,�OP

(
pcat2, ls

)
= YRE for

any Y ∈ {N,Ps} , � ∈ {gen, acc} , and any maximally parallel
(set) derivation mode �,

The proof given in [16] for the maximally parallel mode
max can be taken over for the other maximally parallel
(set) derivation modes word by word; the only difference
again is that in set derivation modes, in non-successful
computations where more than one trap symbol # has been
generated, the trap rule # → # is only applied once.

� =(V = {A, a}, T = {a},w = AA,R = {r1 ∶ A → AA, r2 ∶ A → a},

W = {{r1}, {r2}},⟹� ,max).

� ∈
{
max,maxrules,maxobjects, smax, smaxrules, smaxobjects

}
.

21How derivation modes and halting conditions may influence the computational power of P systems

1 3

5.2 Controlled P systems and time‑varying P
systems

Another method to control the application of the labeled
rules is to use control languages (see [19] and [2]).

In a controlled P system � , in addition we use a set H
of labels for the rules in � , and a string language L over 2H
(each subset of H represents an element of the alphabet for
L) from a family FL. Every successful computation in �
has to follow a control word U1 …Un ∈ L : in derivation step
i, only rules with labels in Ui are allowed to be applied (in
the underlying derivation mode, for example, max or smax),
and after the n-th derivation step, the computation halts; we
may relax this end condition, i.e., we may stop after the i-th
derivation for any i ≤ n , and then we speak of weakly con-
trolled P systems. If L =

(
U1 …Up

)∗ , � is called a (weakly)
time-varying P system: in the computation step pn + i , n ≥ 0 ,
rules from the set Ui have to be applied; p is called the period.

Example 2 Consider the one-membrane P system

with the labeled rules r1 ∶ A → AA and r2 ∶ A → a . Using
the control word r1n−1r2 means using r1 in n − 1 derivation
steps and finally using r2 , thus yielding a2n , for any n ≥ 1 ,
i.e., as in Example 1, we get Ngen,max(�) = L1.

As now we do not have to distinguish between non-ter-
minal and terminal symbols due to the use of control words,
the same result can be obtained by the much simpler system

again yielding Ngen,max(�
�) = L1.

The family of sets Y� ,�(�) , Y ∈ {N,Ps} , computed by
(weakly) controlled P systems and (weakly) time-vary-
ing P systems with period p, with at most m membranes
and rules of type X as well as control languages in FL is
denoted by Y� ,�OPm(X,C(FL)) (Y� ,�OPm(X,wC(FL))) and
Y� ,�OPm

(
X, TVp

)
 (Y� ,�OPm

(
X,wTVp

)
), respectively, for

� ∈ {gen, acc} and � ∈ DM ∪ DS.

Theorem 6 Y� ,�OP
(
cat1, �TV6

)
= Y� ,�OP

(
pcat2, �TV6

)
= YRE ,

for any � ∈ {�,w} , Y ∈ {N,Ps} , � ∈ {gen, acc} , and

The proof given in [16] for the maximally parallel mode
max again can be taken over for the other maximally parallel
(set) derivation modes word by word, e.g., see [6].

� = (V = {A, a}, T = {a},w = AA,R = {r1 ∶ A → AA, r2 ∶ A → a},

L = {r1}
∗{r2},⟹� ,max)

� � =(V = {a}, T = {a},w = aa,R = {r1 ∶ a → aa},

L = {r1}
∗,⟹� �,max)

� ∈
{
max,maxrules,maxobjects, smax, smaxrules, smaxobjects

}
.

5.3 Target selection

In P systems with target selection, all objects on the right-hand
side of a rule must have the same target, and in each deriva-
tion step, for each region a (multi)set of rules—non-empty
if possible—having the same target is chosen. In [6], it was
shown that for P systems with target selection (abbreviated ts)
in the derivation mode smax no catalyst is needed any more,
and with smaxrules , we even obtain a deterministic simulation
(indicated by the abbreviation detacc) of deterministic register
machines:

Theorem 7 For any Y ∈ {N,Ps},

Theorem 8 For any Y ∈ {N,Ps},

In contrast to all the other variants of P systems, P systems
with target selection really take advantage of the membrane
structure, no flattening is used or even reasonable. In that
sense, this variant of P systems reflects the spirit of membrane
systems with a non-trivial membrane structure in the best way.

Example 3 Consider the two-membrane P system

with the rule a → aa having target here and the rule
a → (a, in) having target in; only one of these two rules can
be used in one derivation step according to the condition of
target selection. Using a → aa in n − 1 derivation steps in
the skin membrane and finally using a → (a, in) yields a2n in
the elementary membrane []2 , for any n ≥ 1 , i.e., we again
get Ngen,max(�) = L1.

6 The strangeness of minimal parallelism

There is another derivation mode known from literature,
which has two possible basic definitions, but these two
variants unfortunately do not yield the same results.

Following the definition given in [18], for the minimally
parallel derivation mode (min), we need an additional fea-
ture for the set of rules R used in the overall P system, i.e.,
we consider a partitioning � of R into disjoint subsets R1
to Rh . Usually, this partitioning of R may coincide with
a specific assignment of the rules to the membranes. We

Ygen ,smax OP(ncoo, ts) = YRE.

Ydetacc,smaxrules
OP(ncoo, ts) = YRE.

� =(V = {a}, T = {a},� = [[]2]1,w1 = aa,w2 = �,

R1 = {a → aa, a → (a, in)},R2 = �, f = 2,⟹� ,max)

22 R. Freund

1 3

observe that this partitioning � may, but need not be the
same as the partitioning � used for partial halting.

There are now several possible interpretations of this
minimally parallel derivation mode which in an informal
way can be described as applying multisets such that from
every set Rj , 1 ≤ j ≤ h , at least one rule—if possible—has
to be used (e.g., see [8]). Yet this if possible allows for two
possible interpretations:

Minimal parallelism
as a restriction of asyn As defined in [18], we start

with a multiset R′ of rules from
Appl(� ,C, asyn) and only
take it if it cannot be extended
to a multiset R′ of rules from
Appl(� ,C, asyn) by some rule
from a set Rj from which so far
no rule is in R′.

Minimal parallelism
as an extension of smax We start with a set R′ of rules

from Appl(� ,C, smax�) , where
the notion smax� indicates that
we are using smax with respect
to the partitioning of R into the
subsets R1 to Rh , and then pos-
sibly extend it to a multiset R′′
of rules from Appl(� ,C, asyn)
which contains R′ . This definition
finally was used in [23] without
using the notion smax, because
at the moment when this hand-
book was written the notion of
maximally parallel set derivation
modes had not been invented
yet. Moreover, the use of the
notion smax so far was restricted
to the discrete topology, where
every rule formed its own set Rj ;
whereas for smax� , the condition
is fulfilled if one of the rules in
the Rj is used if possible.

Example 4 Consider the one-membrane P system working
in the min-mode

with R1 = {a → bb} and R2 = {a → bbb} being the parti-
tions of R = R1 ∪ R2.

� =
(
V = {a, b}, T = {b},w = aa,R = R1 ∪ R2,⟹� ,min

)

Starting from smax, we get only one set of rules, i.e.,
R� = {a → bb, a → bbb} , whose application yields the result
b5.

In the case of starting with asyn, we may use one of the
two rules twice, thus also getting the results b4 and b6.

Hence, when two rules are competing for the same
objects, the results obtained with the two different defini-
tions may be different, where the set of results obtained
when using the first definition will always include the results
obtained by the second definition.

The condition that the sets Rj , 1 ≤ j ≤ h , have to be dis-
joint may be alleviated, for example, see [4].

6.1 The derivation mode min
1

A special variant of the minimally parallel derivation mode,
with the sets Rj , 1 ≤ j ≤ h , not being required to be disjoint,
is the mode min1 , which in fact means that we stay with
smax� . Now let �k denote a partioning � with k sets of rules.
As an interesting result, we then get the interpretation of
a purely catalytic P system using max as a P system using
min1 with the partitioning Rj , 1 ≤ j ≤ k , where Rj is the set of
non-cooperative rules a → u representing the corresponding
catalytic rules cja → cju . Using such a partitioning �k in k
sets of rules corresponding to the sets of rules associated
with the k catalysts, we obtain the following result:

Theorem 9 For any d ≥ 1 and any k ≥ d + 3,

6.2 Minimal parallelism with all applicable sets

There is an even stranger variant for minimal parallelism
already defined in [18]:

To a configuration C, we can only apply a multiset of rules
which contains at least one rule from each Rj , 1 ≤ j ≤ h , that
contains a rule applicable to C, i.e., we take all possible mul-
tisets R′ from Appl(� ,C, asyn) which also fulfill the condi-
tion that R� ∩ Rj ≠ � provided Appl(� ,C, asyn) ∩ Rj ≠ � , for
all 1 ≤ j ≤ h.

This derivation mode is abbreviated allasetmin in [18] and
used under the notion amin in [4].

Example 5 Consider the one-membrane P system from
Example 4, now working in the amin-mode,

with R1 = {a → bb} and R2 = {a → bbb}.

Psacc,min1
OP

(
ncoo, �k

)

= Psgen,min1
OP

(
ncoo, �3

)
= NdRE.

� =
(
V = {a, b}, T = {b},w = aa,R = R1 ∪ R2,⟹� ,amin

)

23How derivation modes and halting conditions may influence the computational power of P systems

1 3

As both the rule from R1 and the rule from R2 are appli-
cable, the only (multi)set of rules applicable to the configu-
ration aa is the same as that one when starting from smax,
i.e., R� = {a → bb, a → bbb} , whose application yields the
result b5.

Yet if we take w = a instead, then still both the rule from
R1 and the rule from R2 are applicable, but there are not
enough resources of symbols a for applying both rules,
hence, no derivation step is possible in this case with the
derivation mode amin. On the other hand, with the first two
variants of the minimally parallel derivation mode, in both
cases we may either apply a → bb or a → bbb , thus getting
bb and bbb, respectively.

Again, we observe that the results with different defini-
tions of the minimally parallel derivation mode may be dif-
ferent when two rules are competing for the same object(s).

7 Halting conditions

As already mentioned, P systems working in the maximally
parallel derivation mode at first sight look like (E)0L sys-
tems. Only the total halting condition completely destroys
this similarity which looks so obvious at first sight. Yet, this
connection between P systems working in the maximally
parallel derivation mode and (E)0L systems can be shown
when using unconditional halting, see [7].

Besides unconditional halting, in this section we will
also discuss some results for partial halting and halting with
states. In each case, as in Sect. 5, we will show how to obtain
the special multiset language L1 = {a2

n

∣ n ≥ 1}.

7.1 Unconditional halting

Example 6 Consider the one-membrane P system

with the single rule a → aa ; with every application of
this rule the number of symbols a is doubled, i.e., after
n − 1 derivation steps, n ≥ 1 , we get a2n , i.e., we obtain
Ngen,max,u(�) = L1.

According to the results shown in [7], the following results
hold true, if we use extended systems (indicated by the addi-
tional symbol E) and only take results from the output mem-
brane which are terminal:

Theorem 10 For any Y ∈ {N,Ps} and any m ≥ 1,

� =(V = {a}, T = {a},w = aa,R = {a → aa},⟹� ,max,u)

Ygen ,�,uEOPm(ncoo) = YE0L,

for any maximally parallel derivation mode �,

If we do not use extended systems, i.e., V = T , we imme-
diately obtain the following:

Corollary 1 For any Y ∈ {N,Ps},

for any maximally parallel derivation mode �,

These results now show the—somehow expected—cor-
respondence between the two parallel mechanisms P systems
and Lindenmayer systems.

We finally mention that with unconditional halting, con-
sidering acceptance would not make any sense, because
according to the standard definition of accepting P systems,
in any case they would accept every input.

7.2 Partial halting

Partial halting allows us to stop a derivation as soon as some
specific symbols are not present any more:

Example 7 Consider the one-membrane P system

where R1 = {a → aa} and R2 = {s → s, s → �} are the two
partitions of the rule set R = {a → aa, s → s, s → �}.

As long as one of the rules from R2 can be applied to
the symbol s, the symbols a are doubled as usual by the
rule a → aa from R1 . Using s → s in n − 1 derivation
steps, n ≥ 1 , and finally applying s → � , we get a2n ; hence,
Ngen,max,h(�) = L1.

Some interesting results for the partial halting may be
looked up in [3, 4, 14].

7.3 Halting with states

In general, speaking of states reminds us of mechanisms like
register machines; there a computation halts when the halt
instruction lh ∶ HALT is applied. In simulations of register
machines by P systems, the computation often is made halt-
ing by applying the final rule lh → � , provided no trap rules
are still applicable. When lh disappears this means that no

� ∈
{
max,maxrules,maxobjects

}
.

Ygen ,�,uOP1(ncoo) = Y0L,

� ∈
{
max,maxrules,maxobjects

}
.

� =(V = {a, s},T = {a},w = as,R1 ∪ R2,⟹� ,max,h),

24 R. Freund

1 3

instruction label appears any more in the configuration of
the simulating P system; such a condition checking for the
absence (or presence) of specific symbols in a given con-
figuration is computable, i.e., decidable, and therefore is a
condition we can use for halting with states (which ironically
in this case means the absence of state symbols).

Example 8 Consider the one-membrane P system

which uses the same ingredients as the one considered in
Example 7, but instead of partial halting now uses the con-
dition that a computation halts if no symbol s is present
any more, which gives the same computations as for the
P system in Example 7, with the only difference that the
computations halt because of s having been deleted. Thus,
we obtain Ngen,max,s(�) = L1.

8 Conclusion

In this paper, the effects of using different derivation modes
on the computing power of many variants of hierarchical
P systems have been illustrated. Especially, some differ-
ences between the maximally parallel derivation modes
and the maximally parallel set derivation modes have been
exhibited. We have also given an overview on some control
mechanisms used for P systems. Moreover, we have dis-
cussed the effect of using different halting conditions such
as unconditional and partial halting.

Many more relations between derivation modes and halt-
ing conditions as well could have been discussed, but this
would have gone much beyond such a normal article.

Acknowledgements Open access funding provided by TU Wien
(TUW). Many of the ideas for this paper came up in the inspiring
atmosphere of the Brainstorming Week on Membrane Computing in
Sevilla 2019 and even in some previous years, and they are based on
many discussions with Artiom Alhazov, Sergiu Ivanov, and Sergey
Verlan, but also other colleagues from the P community, especially
with Gheorghe Păun. Moreover, the helpful comments of the referees
are gratefully acknowledged.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

� =(V = {a, s},T = {a},w = as,R

={a → aa, s → s, s → �},⟹� ,max,s),

References

 1. Alhazov, A., & Freund, R. (2015). Variants of small universal
P systems with catalysts. Fundamenta Informaticae, 138(1–2),
227–250. https ://doi.org/10.3233/FI-2015-1209.

 2. Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin,
Yu., & Verlan, S. (2013). Sequential P systems with regular con-
trol. In: E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salo-
maa, Gy. Vaszil (Eds.), Membrane Computing—13th International
Conference, CMC 2012, Budapest, Hungary, August 28–31, 2012,
Revised Selected Papers, Lecture Notes in Computer Science, vol.
7762 (pp. 112–127). Berlin: Springer. https ://doi.org/10.1007/978-
3-642-36751 -9_9.

 3. Alhazov, A., Freund, R., Oswald, M., & Verlan, S. (2007). Par-
tial halting in P systems using membrane rules with permitting
contexts. In: J. Durand-Lose, M. Margenstern (Eds.), Machines,
Computations, and Universality (pp. 110–121). Berlin, Heidel-
berg: Springer. https ://doi.org/10.1007/978-3-540-74593 -8_10.

 4. Alhazov, A., Freund, R., Oswald, M., & Verlan, S. (2009). Partial
halting and minimal parallelism based on arbitrary rule partitions.
Fundamenta Informaticae, 91(1), 17–34. https ://doi.org/10.3233/
FI-2009-0031.

 5. Alhazov, A., Freund, R., & Sosík, P. (2015). Small P systems with
catalysts or anti-matter simulating generalized register machines
and generalized counter automata. The Computer Science Journal
of Moldova, 23(3), 304–328. http://www.math.md/publi catio ns/
csjm/issue s/v23-n3/11980 /.

 6. Alhazov, A., Freund, R., & Verlan, S. (2017). P systems work-
ing in maximal variants of the set derivation mode. In: A. Lepo-
rati, G. Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane
Computing—17th International Conference, CMC 2016, Milan,
Italy, July 25–29, 2016, Revised Selected Papers, Lecture Notes
in Computer Science, vol. 10105 (pp. 83–102). Berlin: Springer.
https ://doi.org/10.1007/978-3-319-54072 -6_6.

 7. Beyreder, M., & Freund, R. (2009). Membrane systems using
noncooperative rules with unconditional halting. In: D.W. Corne,
P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane
Computing (pp. 129–136). Berlin, Heidelberg: Springer. https ://
doi.org/10.1007/978-3-540-95885 -7_10.

 8. Ciobanu, G., Pan, L., Păun, Gh, & Pérez-Jiménez, M. (2007). P
systems with minimal parallelism. Theoretical Computer Science,
378(1), 117–130. https ://doi.org/10.1016/j.tcs.2007.03.044.

 9. Dassow, J., & Păun, Gh. (1989). Regulated rewriting in formal
language theory. Berlin: Springer. https ://www.sprin ger.com/de/
book/97836 42749 346.

 10. Freund, R. (2005). P systems working in the sequential mode
on arrays and strings. International Journal of Foundations of
Computer Science, 16(4), 663–682. https ://doi.org/10.1142/S0129
05410 50032 24.

 11. Freund, R. (2013). Purely catalytic P systems: Two catalysts can
be sufficient for computational completeness. In: A. Alhazov,
S. Cojocaru, M. Gheorghe, Yu. Rogozhin (Eds.), CMC14 Pro-
ceedings—the 14th international conference on membrane com-
puting, Chişinău, August 20–23, 2013 (pp. 153–166). Institute
of Mathematics and Computer Science, Academy of Sciences of
Moldova. http://www.math.md/cmc14 /CMC14 _Proce eding s.pdf.

 12. Freund, R., Kari, L., Oswald, M., & Sosík, P. (2005). Computa-
tionally universal P systems without priorities: Two catalysts are
sufficient. Theoretical Computer Science, 330(2), 251–266. https
://doi.org/10.1016/j.tcs.2004.06.029.

 13. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S.,
& Zandron, C. (2014). Flattening in (tissue) P systems. In:
A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin, G. Rozen-
berg, A. Salomaa (Eds.), Membrane Computing, Lecture Notes

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3233/FI-2015-1209
https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/978-3-540-74593-8_10
https://doi.org/10.3233/FI-2009-0031
https://doi.org/10.3233/FI-2009-0031
http://www.math.md/publications/csjm/issues/v23-n3/11980/
http://www.math.md/publications/csjm/issues/v23-n3/11980/
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.1007/978-3-540-95885-7_10
https://doi.org/10.1007/978-3-540-95885-7_10
https://doi.org/10.1016/j.tcs.2007.03.044
https://www.springer.com/de/book/9783642749346
https://www.springer.com/de/book/9783642749346
https://doi.org/10.1142/S0129054105003224
https://doi.org/10.1142/S0129054105003224
http://www.math.md/cmc14/CMC14_Proceedings.pdf
https://doi.org/10.1016/j.tcs.2004.06.029
https://doi.org/10.1016/j.tcs.2004.06.029

25How derivation modes and halting conditions may influence the computational power of P systems

1 3

in Computer Science, vol. 8340 (pp. 173–188). Berlin: Springer.
https ://doi.org/10.1007/978-3-642-54239 -8_13.

 14. Freund, R., & Oswald, M. (2007). Partial halting in P systems.
International Journal of Foundations of Computer Science, 18(6),
1215–1225. https ://doi.org/10.1142/S0129 05410 70052 61.

 15. Freund, R., & Oswald, M. (2013). Catalytic and purely catalytic P
automata: control mechanisms for obtaining computational com-
pleteness. In: S. Bensch, F. Drewes, R. Freund, F. Otto (Eds.),
Fifth Workshop on Non-Classical Models for Automata and Appli-
cations—NCMA 2013, Umeå, Sweden, August 13–August 14,
2013, Proceedings, http://books@ocg.at, vol. 294 (pp. 133–150).
Wien: Österreichische Computer Gesellschaft.

 16. Freund, R., & Păun, Gh. (2013). How to obtain computational
completeness in P systems with one catalyst. In: T. Neary,
M. Cook (Eds.), Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September
9–11, 2013, EPTCS, vol. 128 (pp. 47–61). https ://doi.org/10.4204/
EPTCS .128.13

 17. Freund, R., & Sosík, P. (2015). On the power of catalytic P sys-
tems with one catalyst. In: G. Rozenberg, A. Salomaa, J.M. Sem-
pere, C. Zandron (Eds.), Membrane Computing—16th Interna-
tional Conference, CMC 2015, Valencia, Spain, August 17–21,
2015, Revised Selected Papers, Lecture Notes in Computer
Science, vol. 9504 (pp. 137–152). Berlin: Springer. https ://doi.
org/10.1007/978-3-319-28475 -0_10.

 18. Freund, R., & Verlan, S. (2007). A formal framework for static
(tissue) P systems. In: G. Eleftherakis, P. Kefalas, Gh. Păun,
G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, Lec-
ture Notes in Computer Science, vol. 4860 (pp. 271–284). Berlin:
Springer. https ://doi.org/10.1007/978-3-540-77312 -2_17.

 19. Krithivasan, K., Păun, Gh, & Ramanujan, A. (2014). On con-
trolled P systems. Fundamenta Informaticae, 131(3–4), 451–464.
https ://doi.org/10.3233/FI-2014-1025.

 20. Minsky, M. L. (1967). Computation, finite and infinite machines.
Englewood Cliffs, NJ: Prentice Hall.

 21. Păun, Gh. (2000). Computing with membranes. Journal of
Computer and System Sciences, 61(1), 108–143. https ://doi.
org/10.1006/jcss.1999.1693.

 22. Păun, Gh. (2002). Membrane computing: An introduction. Berlin:
Springer. https ://doi.org/10.1007/978-3-642-56196 -2.

 23. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford Handbook of Membrane Computing. Oxford: Oxford
University Press.

 24. Rozenberg, G., Salomaa, A. (Eds.), (1997). Handbook of Formal
Languages. Berlin: Springer. https ://doi.org/10.1007/978-3-642-
59136 -5.

 25. Sosík, P., & Langer, M. (2016). Small (purely) catalytic P systems
simulating register machines. Theoretical Computer Science, 623,
65–74. https ://doi.org/10.1016/j.tcs.2015.09.020.

 26. The P Systems Website. http://ppage .psyst ems.eu/.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Rudolf Freund works at the Insti-
tute for Logic and Computation,
TU Wien, Austria. His research
interests include Theory of Com-
putation, Computing in Mathe-
matics, Natural Science, Engi-
neering and Medicine, and
Artificial Intelligence. Currently
he especially works in the area of
Membrane Computing.

https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.1142/S0129054107005261
https://doi.org/10.4204/EPTCS.128.13
https://doi.org/10.4204/EPTCS.128.13
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.3233/FI-2014-1025
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1016/j.tcs.2015.09.020
http://ppage.psystems.eu/

	How derivation modes and halting conditions may influence the computational power of P systems
	Abstract
	1 Introduction
	2 Prerequisites
	2.1 Register machines

	3 A general model for hierarchical P systems
	3.1 Derivation modes
	3.2 Standard rule variants
	3.3 Halting conditions
	3.4 Flattening

	4 Some well-known results
	4.1 Non-cooperative rules
	4.2 The importance of using catalysts

	5 Control mechanisms
	5.1 P systems with label selection
	5.2 Controlled P systems and time-varying P systems
	5.3 Target selection

	6 The strangeness of minimal parallelism
	6.1 The derivation mode
	6.2 Minimal parallelism with all applicable sets

	7 Halting conditions
	7.1 Unconditional halting
	7.2 Partial halting
	7.3 Halting with states

	8 Conclusion
	Acknowledgements
	References

