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Abstract
In the area of P systems, besides the standard maximally parallel derivation mode, many other derivation modes have been 
investigated, too. In this overview paper, many variants of hierarchical P systems using different derivation modes are 
considered and the effects of using different derivation modes, especially the maximally parallel derivation modes and the 
maximally parallel set derivation modes, on the generative and accepting power are illustrated. Moreover, an overview on 
some control mechanisms used for P systems is given. Furthermore, besides the standard total halting, we also consider 
different halting conditions such as unconditional halting and partial halting and explain how the use of different halting 
conditions may considerably change the computing power of P systems.

Keywords Derivation modes · Halting conditions · P systems

1 Introduction

The basic model of P systems as introduced in [21] can be 
considered as a distributed multiset rewriting system, where 
all objects—if possible—evolve in parallel in the membrane 
regions and may be communicated through the membranes. 
But also P systems operating on more complex objects (e.g., 
strings, arrays) are often considered, too, for instance, see 
[10].

Besides the maximally parallel derivation mode, many 
other derivation modes have been investigated during the 
last two decades. Hence, in this paper, the definitions of the 
standard derivation modes used for P systems are recalled. 
Various interpretations of derivation modes known from the 
P systems area are illustrated and well-known results are 
presented in a different manner.

Moreover, we consider not only the standard total halt-
ing, but also other halting conditions such as unconditional 
halting, see [7], and partial halting, see [14]. We explain and 
give some examples how the use of different halting modes 
may considerably change the computing power of P systems.

Overviews on the field of P systems can be found in the 
monograph [22] and the Handbook of Membrane Comput-
ing [23]; for actual news and results we refer to the P systems 
webpage [26] as well as to the Bulletin of the International 
Membrane Computing Society. The reader is assumed to be 
familiar with the basic definitions and notations of P systems 
as well as of the commonly used derivation modes and halt-
ing conditions.

The rest of the paper is organized as follows: In the next 
section, basic notions from formal language theory needed 
in this paper are recalled. In Sect. 3, the definition of the 
basic model of P systems is given and explained, including 
the standard derivation modes used in many papers on P 
systems, the basic types of rules, as well as the main halting 
conditions found in the literature and considered in more 
detail in Sect. 7. Some well-known results are summarized 
in a compact form in Sect. 4; special focus is put on results 
for catalytic P systems regarding the number of rules needed 
for simulating (the instructions of) register machines. In 
Sect. 5, important results for P systems with control mecha-
nisms are recalled, including the variant of P systems with 
target selection, which is one of the very few models known 
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from the literature of P systems which takes advantage of 
using a non-trivial membrane structure. An own section then 
is devoted to a special derivation mode called minimal paral-
lelism and its variants. Examples and results for the halting 
conditions different from the standard variant of total halt-
ing are considered in Sect. 7. A short summary concludes 
the paper.

2  Prerequisites

The set of integers is denoted by ℤ , and the set of non-neg-
ative integers by ℕ . Given an alphabet V, a finite non-empty 
set of abstract symbols, the free monoid generated by V 
under the operation of concatenation is denoted by V∗ . The 
elements of V∗ are called strings, the empty string is denoted 
by � , and V∗�{�} is denoted by V+ . For an arbitrary alphabet 
V = {a1,… , an} , the number of occurrences of a symbol ai 
in a string x is denoted by |x|ai , while the length of a string 
x is denoted by �x� = ∑

ai∈V
�x�ai . The Parikh vector associ-

ated with x with respect to a1,… , an is ( |x|a1 ,… , |x|an ). The 
Parikh image of an arbitrary language L over {a1,… , an} is 
the set of all Parikh vectors of strings in L, and is denoted 
by Ps(L). For a family of languages FL, the family of Parikh 
images of languages in FL is denoted by PsFL, while for 
families of languages over a one-letter (d-letter) alphabet, 
the corresponding sets of non-negative integers (d-vectors 
with non-negative components) are denoted by NFL ( NdFL).

A (f inite) multiset over a (f inite) alphabet 
V = {a1,… , an} is a mapping f ∶ V → ℕ and can be 
represented by ⟨af (a1)

1
,… , a

f (an)
n ⟩ or by any string x for 

which (|x|a1 ,… , |x|an ) = (f (a1),… , f (an)) . In the fol-
lowing we will not distinguish between a vector 
(m1,… ,mn) , a multiset ⟨am1

1
,… , a

mn

n ⟩ or a string x having 
(|x|a1 ,… , |x|an ) = (m1,… ,mn) . Fixing the sequence of sym-
bols a1,… , an in an alphabet V in advance, the representa-
tion of the multiset ⟨am1

1
,… , a

mn

n ⟩ by the string am1

1
… a

mn

n  is 
unique. The set of all finite multisets over an alphabet V is 
denoted by V◦.

The family of regular, context-free, and recursively enu-
merable string languages is denoted by REG, CF, and RE, 
respectively. For example, PsREG = PsCF , which is the rea-
son why in the area of multiset rewriting CF plays no role at 
all, and in the area of membrane computing we usually get 
characterizations of PsREG and PsRE.

An extended Lindenmayer system (an E0L system for 
short) is a construct G = (V , T ,P,w) , where V is an alpha-
bet, T ⊆ V  is the terminal alphabet, w ∈ V∗ is the axiom, 
and P is a finite set of non-cooperative rules over V of the 
form a → u . In a derivation step, each symbol present in the 
current sentential form is rewritten using one rule arbitrarily 

chosen from P. The language generated by G, denoted by 
L(G), consists of all the strings over T which can be gener-
ated in this way by starting from the initial string w. An E0L 
system with T = V  is called a 0L system.

For more details of formal language theory, the reader is 
referred to the monographs and handbooks in this area as 
[9] and [24].

2.1  Register machines

A register machine is a tuple M = (m,B, l0, lh,P) , where 
m is the number of registers, B is a set of labels, l0 ∈ B is 
the initial label, lh ∈ B is the final label, and P is the set of 
instructions labeled by elements of B. The instructions of M 
can be of the following forms:

• l1 ∶ (ADD(j), l2, l3) , with l1 ∈ B�{lh} , l2, l3 ∈ B , 1 ≤ j ≤ m.
  Increases the value of register j by one, followed by 

a non-deterministic jump to instruction l2 or l3 . This 
instruction is usually called increment.

• l1 ∶ (SUB(j), l2, l3) , with l1 ∈ B�{lh} , l2, l3 ∈ B , 1 ≤ j ≤ m.
  If the value of register j is zero then jump to instruction 

l3 ; otherwise, the value of register j is decreased by one, 
followed by a jump to instruction l2 . The two cases of this 
instruction are usually called zero-test and decrement, 
respectively.

• lh ∶ HALT  . Stops the execution of the register machine.

A configuration of a register machine is described by the 
contents of each register and by the value of the current 
label, which indicates the next instruction to be executed. 
Computations start by executing the instruction l0 of P, and 
terminate with reaching the HALT-instruction lh.

M is called deterministic if in all ADD-instructions 
p ∶ (���(r), q, s) , it holds that q = s ; in this case we write 
p ∶ (���(r), q).

Register machines provide a computationally complete 
model for computations with natural numbers:

In the generating case, we start with empty registers, use 
the last two registers for the necessary computations and 
take as results the vectors of natural numbers 

(
x1,… , xd

)
 

obtained as contents of the first d registers 1 to d in all possi-
ble halting computations. Without loss of generality, we may 
assume that at the beginning of a computation, all registers 
are empty and that during any computation of M, only the 
registers d + 1 and d + 2 can be decremented.

In the accepting case, we start with the natural numbers 
x1,… , xd in the first d registers (and with 0 in the regis-
ters d + 1 and d + 2 ) and use the two additional registers 
d + 1 and d + 2 for the necessary computations; in this case, 
all registers may be decremented; moreover, the register 



16 R. Freund 

1 3

machine can be assumed to be deterministic, i.e., we only 
have ADD-instructions of the form l1 ∶

(
���(j), l2

)
 , with 

l1 ∈ B⧵
{
lh
}
 , l2 ∈ B , 1 ≤ j ≤ m . The vector 

(
x1,… , xd

)
 is 

accepted if and only if M halts with the natural numbers 
x1,… , xd having been given as input in the first d registers.

For these and other useful results on the computational 
power of register machines, we refer to [20].

3  A general model for hierarchical P systems

We now recall the main definitions of the general model for 
hierarchical P systems and the basic derivation modes as 
defined, for example, in [18]. Moreover, we define the halt-
ing conditions discussed in this paper.

A (hierarchical) P system (with rules of type X) working 
in the derivation mode � is a construct

• V is the alphabet of objects;
• T ⊆ V  is the alphabet of terminal objects;
• � is the hierarchical membrane structure (a rooted tree 

of membranes) with the membranes uniquely labeled by 
the numbers from 1 to m;

• wi ∈ V∗ , 1 ≤ i ≤ m , is the initial multiset in membrane i;
• Ri , 1 ≤ i ≤ m , is a finite set of rules of type X assigned to 

membrane i;
• f is the label of the membrane from which the result of 

a computation has to be taken from (in the generative 
case) or into which the initial multiset has to be given in 
addition to wf  (in the accepting case);

• ⟹� ,� is the derivation relation under the derivation 
mode �.

The symbol X in “rules of type X” may stand for “evolution”, 
“communication”, “membrane evolution”, etc. In this paper, 
we will mainly consider non-cooperative as well as catalytic 
and purely catalytic rules, see Sect. 3.2.

A configuration is a list of the contents of each membrane 
region; a sequence of configurations C1,… ,Ck is called a 
computation in the derivation mode � if Ci⟹� ,�Ci+1 for 
1 ≤ i < k . The derivation relation ⟹� ,� is defined by the 
set of rules in � and the given derivation mode which deter-
mines the multiset of rules to be applied to the multisets 
contained in each membrane region.

The language generated by � is the set of all terminal 
multisets which can be obtained in the output membrane 
f starting from the initial configuration C1 = (w1,… ,wm) 
using the derivation mode � in a halting computation, i.e.,

� =
(
V , T ,�,w1,… ,wm,R1,… ,Rm, f ,⟹� ,�

)
where

where (C(f ))T◦ stands for the terminal part of the multiset 
contained in the output membrane f of the configuration C; 
the configuration C is halting, i.e., no further configuration 
C′ can be derived from it.

The family of languages of multisets generated by P sys-
tems of type X with at most n membranes in the derivation 
mode � is denoted by Psgen,�OPn(X).

We may also consider P systems as accepting mecha-
nisms: in membrane f, we add the input multiset w0 to wf  
in the initial configuration C1 = (w1,… ,wm) thus obtaining 
C1[w0] = (w1,… ,wfw0,… ,wm) ; the input multiset w0 is 
accepted if there exists a halting computation in the deriva-
tion mode � starting from C1[w0] , i.e.,

Then, the family of languages of multisets accepted by P 
systems of type X with at most n membranes in the deriva-
tion mode � is denoted by Psacc,�OPn(X).

We finally mention that P systems can also be used to 
compute functions and relations, with using f both as input 
and output membrane or even using two different mem-
branes for the input and the output. Yet, in this paper, we 
will mainly focus on the generating case.

3.1  Derivation modes

The set of all multisets of rules applicable in a P system to a 
given configuration C is denoted by Appl(� ,C) and can be 
restricted by imposing specific conditions, thus yielding the 
following basic derivation modes (for example, see [18] for 
formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule 
is applied;

• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable mul-

tiset of rules is applied;
• maximally parallel mode with maximal number of rules 

( maxrules ): a non-extendable multiset of rules of maximal 
possible cardinality is applied;

• maximally parallel mode with maximal number of 
objects ( maxobjects ): a non-extendable multiset of rules 
affecting as many objects as possible is applied.

Lgen,�(�) =

{
(C(f ))T◦ ∣ C1

∗

⟹� ,� C ∧ ¬∃C� ∶ C⟹� ,�C
�

}
,

Lacc,�(�) =

{
w0 ∈ T◦ ∣ ∃C ∶

(
C1[w0]

∗

⟹� ,� C ∧ ¬∃C� ∶ C⟹� ,�C
�

)}
.
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In [6], the set variants of these derivation modes are consid-
ered, i.e., each rule can be applied at most once. Thus, start-
ing from the set of all sets of applicable rules, we obtain the 
set modes sasyn, smax, smaxrules , and smaxobjects (the sequen-
tial mode is already a set mode by definition):

• asynchronous set mode (abbreviated sasyn): at least one 
rule is applied, but each rule at most once;

• maximally parallel set mode (smax): a non-extendable 
set of rules is applied;

• maximally parallel set mode with maximal number of 
rules ( smaxrules ): a non-extendable set of rules of maxi-
mal possible cardinality is applied;

• maximally parallel set mode with maximal number of 
objects ( smaxobjects ): a non-extendable set of rules affect-
ing as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of 
rules applicable in a P system � to a given configuration C 
in the derivation mode � by Appl(� ,C, �) . We immediately 
observe that Appl(� ,C, asyn) = Appl(� ,C).

To collect the set and multiset derivation modes, we use 
the following notations:

DS = {sequ, sasyn, smax, smaxrules, smaxobjects} and
DM = {asyn,max,maxrules,maxobjects}.

3.2  Standard rule variants

Non-cooperative rules have the form a → w , where a is a 
symbol and w is a multiset, catalytic rules have the form 
ca → cw , where the symbol c is called the catalyst, and 
cooperative rules have no restrictions on the form of the 
left-hand side. These types of rules will be denoted by ncoo 
(non-cooperative), pcat (purely catalytic), and coo (coopera-
tive); if both non-cooperative and catalytic rules are allowed, 
we write cat (catalytic).

If the P system has more than one membrane, each sym-
bol on the right-hand side may have assigned a target where 
the symbol has to be sent after the application of the rule; the 
targets take into account the tree structure of the membranes: 

here  the symbol stays in the membrane where the rule is 
applied;

out  the symbol is sent to the outer membrane, i.e., the 
membrane enclosing the membrane where the rule 
is applied;

in  the symbol is sent to an inner membrane, i.e., a mem-
brane enclosed by the membrane where the rule is 
applied;

inj  the symbol is sent to the inner membrane labeled by 
j.

3.3  Halting conditions

Besides the standard total halting with no (multi)set of rules 
being applicable any more to the current configuration, some 
more variants of halting conditions have been considered in 
the literature: 

total halting (H)  the common halting strategy 
where the computation stops 
with no (multi)set of rules 
being applicable any more

unconditional halting (u)  the result of a computation can 
be taken from every configu-
ration derived from the initial 
one (possibly only taking ter-
minal results)

partial halting (h)  the set of rules R is parti-
tioned into disjoint subsets 
R1 to Rh , and a computation 
stops if there is no multiset 
of rules applicable to the cur-
rent configuration which con-
tains a rule from every set Rj , 
1 ≤ j ≤ h

halting with states (s)  the configuration with which 
a derivation may stop must 
fulfill a recursive condition 
(which corresponds with a 
final state)

The variant of unconditional halting was introduced in 
[7]. Partial halting, for example, was investigated in [3, 4, 
14], using the membranes for partitioning the rules. Formal 
definitions for the halting conditions H, h, s can be found 
in [18].

For � ∈ {H, h, u, s} , we add the halting condition � in the 
description of the generated or accepted language, i.e., we 
then write L� ,�,�(�) , � ∈ {gen, acc} . The same extension is 
made for the corresponding families of languages of multi-
sets, i.e., for n ≥ 1 , we write Y� ,�,�OPn(X) . By default, � is 
understood to be the total halting H and then usually omitted 
in all these notations.

3.4  Flattening

As many variants of P systems can be flattened to only one 
membrane, see [13], we often may assume the simplest 
membrane structure of only one membrane which in effect 
reduces the P system to a multiset processing mechanism, 
and, observing that f = 1 , in what follows we then will use 
the reduced notation
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In case we use catalysts, we write

with C ⊆ (V⧵T) denoting the set of catalysts.
For a one-membrane system, the definitions for the lan-

guage generated by � and the language accepted by � 
using the derivation mode � and the halting condition � can 
be written in an easier way; for example, with vT◦ denoting 
the terminal multiset in the multiset v, we have

The family of languages of multisets generated by one-mem-
brane P systems of type X in the derivation mode � and with 
the halting condition � is denoted by Psgen,�,�OP(X).

The family of languages of multisets accepted by one-
membrane P systems of type X in the derivation mode � and 
with the halting condition � is denoted by Psacc,�,�OP(X).

In the following, we will mainly focus on the generative 
case, and when writing Ps�,�OP(X) we by default will mean 
Psgen,�,�OP(X).

4  Some well‑known results

In this section, we recall some well-known results, which 
usually are not stated in the compact form given here.

4.1  Non‑cooperative rules

Using only non-cooperative rules leaves us on the level of 
semi-linear sets, as for the derivation with context-free rules 
(and non-cooperative rules correspond to those), the result-
ing derivation tree does not depend on an interpretation of 
a sequential or a parallel derivation of any kind. Moreover, 
context-free (string or multiset) languages are closed under 
projections, hence, taking (even only terminal) results out 
from a specific output membrane does not make any differ-
ence. Therefore, we may state the following result:

Theorem 1 For any Y ∈ {N,Ps} and any n ≥ 1 as well as 
any derivation mode � ∈ DS ∪ DM,

� =
(
V , T ,w,R,⟹� ,�

)
.

� =
(
V ,C, T ,w,R,⟹� ,�

)

Lgen,max(�) =

{
vT◦ ∣ w

∗

⟹� ,� v ∧ ¬∃z ∶ v⟹� ,�z

}
and

Lacc,max(�) =

{
w0 ∈ T◦ ∣ ∃v ∶

(
ww0

∗

⟹� ,� v ∧ ¬∃z ∶ v⟹� ,�z

)}
.

Ygen,�OPn(ncoo) = YREG.

Although P systems working in the maximally parallel 
derivation mode are a parallel mechanism, we cannot go 
beyond PsREG, see Theorem 1.

For example, the rule a → aa used in parallel very much 
reminds us of a 0L system, i.e., a Lindenmayer system of 
the simplest form, which, when starting from the axiom aa, 
yields the language L1 = {a2

n

∣ n ≥ 1} . In order to also get 
this language with P systems working in one of the maxi-
mally parallel derivation modes, we either need some control 
mechanism (see Sect. 5) or some other special halting condi-
tion (see Sect. 7).

4.2  The importance of using catalysts

If in a one-membrane system we only have one catalyst c 
and only catalytic rules assigned to c, then this corresponds 
to a sequential use of non-cooperative rules, which together 
with Theorem 1 yields the following result:

Theorem 2 For any Y ∈ {N,Ps} and any derivation mode 
� ∈ DS ∪ DM,

Even without additional control mechanisms, only two 
(three) catalysts are sufficient to obtain computational com-
pleteness for (purely) catalytic P systems using the deriva-
tion mode max, see [12]. In a more general way, the follow-
ing results were already proved there:

Theorem 3 For any d ≥ 1 and any k ≥ d + 2,

The complexity of the construction, for all these deriva-
tion modes, has been considerably reduced since the original 
paper from 2005, for example, see [1, 5, 25], and [6].

Although not yet stated in [12], we mention that these 
results are also valid when replacing the derivation mode 
max by any other maximally parallel (set) derivation mode, 
i.e., for any � in

The following theorem states the best results known so far 
with respect to the number of catalysts and the number of 
rules for catalytic P systems; the proof follows the one given 
in [6] for the set maximally parallel derivation modes.

Ygen,�OP
(
pcat1

)
= Ygen,sequ OP

(
pcat1

)
= Ygen,sequ OP(ncoo) = YREG.

Psacc,maxOP
(
pcatk+1

)
= Psacc,maxOP

(
catk

)
= NdRE.

{max,maxrules,maxobjects, smax, smaxrules, smaxobjects}.
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Theorem 4 For any register machine M =
(
d,B, L0, lh,R

)
 , 

with m ≤ d being the number of decrementable registers, we 
can construct a catalytic P system

which works with any of the maximally parallel (set) deriva-
tion modes, i.e., with any � in

and simulates the computations of M such that

where ���1(R) denotes the number of deterministic ADD-
instructions in R, ���2(R) denotes the number of non-deter-
ministic ADD-instructions in R, and ���(R) denotes the num-
ber of SUB-instructions in R.

Proof We simulate a register machine M =
(
d,B, l0, lh,R

)
 

by a catalytic P system � , with m ≤ d being the number of 
decrementable registers.

For all d registers, ni copies of the symbol oi are used 
to represent the value ni in register i, 1 ≤ i ≤ d . For each 
of the m decrementable registers, we take a catalyst ci and 
two specific symbols di, ei , 1 ≤ i ≤ m , for simulating SUB-
instructions on these registers. For every l ∈ B , we use pl , 
and also its variants p̄l, p̂l, p̃l for l ∈ B��� , where B��� denotes 
the set of labels of SUB-instructions; w0 stands for the addi-
tional input present at the beginning, for example, for the 
given input in case of accepting systems.

� =
(
V ,C, T ,w,R1,⟹� ,�

)

{max,maxrules,maxobjects, smax, smaxrules, smaxobjects},

|R1| ≤ ���
1(R) + 2 × ���

2(R) + 5 × ���(R) + 5 × m + 1,

𝛱 =
(
V ,C, T ,w,R1,⟹𝛱 ,𝛿

)
,

w = c1 … cmd1 … dmp1w0,

V =C ∪ D ∪ E ∪ T ∪ {#} ∪ {pl ∣ l ∈ B}

∪{p̄l, p̂l, p̃l ∣ l ∈ B𝚂𝚄𝙱},

C ={ci ∣ 1 ≤ i ≤ m},

D ={di ∣ 1 ≤ i ≤ m},

E ={ei ∣ 1 ≤ i ≤ m},

T ={oi ∣ 1 ≤ i ≤ d},

R1 ={pj → orpkDm, pj → orplDm

∣ j ∶ (𝙰𝙳𝙳(r), k, l) ∈ R}

∪{pj → p̂jerDm,r, pj → p̄jDm,r,

p̂j → p̃jD
�
m,r

, p̄j → pkDm, p̃j → pkDm

∣ j ∶ (𝚂𝚄𝙱(r), k, l) ∈ R}

∪{cror → crdr, crdr → cr, cr⊕m1
er → cr⊕m1

∣ 1 ≤ r ≤ m},

∪{dr → #, crer → cr# ∣ 1 ≤ r ≤ m}

∪{# → #}.

We define r⊕m1 ∶= r + 1 for r < m and m⊕m1 ∶= 1.
Usually, every catalyst ci , i ∈ {1,… ,m} , is kept busy with 

the symbol di using the rule cidi → ci , as otherwise the sym-
bols di would have to be trapped by the rule di → # , and the 
trap rule # → # then enforces an infinite non-halting com-
putation. Only during the simulation of SUB-instructions 
on register r, the corresponding catalyst cr is left free for 
decrementing or for zero-checking in the second step of the 
simulation, and in the decrement case both cr and its “cou-
pled” catalyst cr⊕m1

 are needed to be free for specific actions 
in the third step of the simulation.

For the simulation of instructions, we use the following 
shortcuts:

The HALT-instruction labeled lh is simply simulated by not 
introducing the corresponding state symbol plh , i.e., replac-
ing it by � , in all rules defined in R1.

Each ADD-instruction j ∶ (���(r), k, l) , for r ∈ {1,… , d} , 
can easily be simulated by the rules pj → orpkDm and 
pj → orplDm ; in parallel, the rules cidi → ci , 1 ≤ i ≤ m , have 
to be carried out, as otherwise the symbols di would have to 
be trapped by the rules di → #.

Each SUB-instruction j ∶ (���(r), k, l) , is simulated as 
shown in the table listed below (the rules in brackets [ and ] 
are those to be carried out in case of a wrong choice):

Simulation of the SUB-instruction j ∶ (���(r), k, l) if
Register r is not empty Register r is empty
pj → p̂jerDm,r pj → p̄jDm,r

cror → crdr [crer → cr#] cr should stay idle
p̂j → p̃jD

′
m,r

p̄j → pkDm

crdr → cr [dr → #] [dr → #]

p̃j → pkDm

cr⊕m1
er → cr⊕m1

In the first step of the simulation of each instruction 
(ADD-instruction, SUB-instruction, and even HALT-instruc-
tion) due to the introduction of Dm in the previous step (we 
also start with that in the initial configuration), every catalyst 
cr is kept busy by the corresponding symbol dr , 1 ≤ r ≤ m . 
Hence, this also guarantees that the zero-check on register 
r works correctly enforcing dr → # to be applied, as in the 
case of a wrong choice two symbols dr are present.   ◻

Exactly the same construction as elaborated above can be 
used when allowing for m + 2 catalysts, with catalyst cm+1 

Dm =
∏

i∈{1,…,m}

di,

Dm,r =
∏

i∈{1,…,m}⧵{r}

di,

D�
m,r

=
∏

i∈{1,…,m}⧵{r,r⊕m1}

di.
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being used with the state symbols and catalyst cm+2 being used 
with the trap rules.

Yet for the purely catalytic case, only one additional catalyst 
cm+1 is needed to be used with all the non-cooperative rules, 
but in this case a slightly more complicated simulation of SUB-
instructions is needed, see [25]), where for catalytic P systems

and for purely for catalytic P systems

is shown.
The simulation results established above hold true for regis-

ter machines and their corresponding (purely) catalytic P sys-
tems for generating and accepting systems as well as even for 
systems computing functions or relations on natural numbers.

Many computational completeness results for variants of P 
systems are obtained by simulating register machines, which 
in fact means that a sequential machine has to be simulated by 
a parallel mechanism. Exactly, this feature of breaking down 
the parallelism to sequentiality is the main importance of 
using catalysts: when using a maximally parallel (set) deriva-
tion mode � , for decrementing the number of a symbol or to 
carry out the decrement case of a SUB-instruction of the reg-
ister machine, we cannot use the non-cooperative rule or → � ; 
instead, we have to use the catalytic rule cor → c.

What happens in the case of two catalysts in purely catalytic 
P systems (and one catalyst in the case of catalytic P systems), 
is one of the most intriguing open problems in the area of P 
systems since long time, e.g., see [17], where it is shown that 
catalytic P systems with one catalyst can simulate partially 
blind register machines and partially blind counter automata.

With respect to the importance of using catalytic rules, 
the set derivation modes offer new opportunities, i.e., using 
specific control mechanisms they are not needed any more, 
as eliminating only one symbol or to carry out the decrement 
case of a SUB-instruction of a register machine now can be 
done by a non-cooperative rule or → � , because due to the set 
restriction, this rule is not applied more than once.

5  Control mechanisms

To reduce the number of catalysts needed for obtaining 
computational completeness, specific control mecha-
nisms can be used. Some of these control mechanisms 
are considered in this section. For example, label selec-
tion or control languages allow for using only one catalyst 
(two catalysts) in (purely) catalytic P systems for getting 

|R1| ≤ 2 × ���
1(R) + 3 × ���

2(R) + 6 × ���(R) + 5 × m + 1

|R1| ≤ 2 × ���
1(R) + 3 × ���

2(R) + 6 × ���(R) + 6 × m + 1

computational completeness, for instance, see [6, 11, 15, 
16]. With target selection and maximally parallel set deri-
vation modes, catalysts can even be avoided completely, 
only non-cooperative rules are needed.

For all the control mechanisms described in this sec-
tion, as a special example, we will show how the 0L lan-
guage L1 = {a2

n

∣ n ≥ 1} can be generated using the maxi-
mally parallel derivation mode.

5.1  P systems with label selection

For all the variants of P systems of type X, we may con-
sider labeling all the rules in the sets R1,… ,Rm in a one-
to-one manner by labels from a set H and taking a set 
W containing subsets of H. In any derivation step of a P 
system with label selection � , we first select a set of labels 
U ∈ W  and then, in the given derivation mode, we apply 
a non-empty multiset R of rules such that all the labels of 
these rules from R are in U.

Example 1 Consider the one-membrane P system

with the labeled rules r1 ∶ A → AA and r2 ∶ A → a ; only 
one of these can be used according to the sets of labels in 
W. Using r1 in n − 1 derivation steps and finally using r2 
yields a2n , for any n ≥ 1 , i.e., we get Ngen,max(�) = L1 , where 
L1 = {a2

n

∣ n ≥ 1}.

The families of sets Y� ,�(�) , Y ∈ {N,Ps} , � ∈ {gen, acc} , 
and � ∈ DM ∪ DS computed by P systems with label selec-
tion with at most m membranes and rules of type X are 
denoted by Y� ,�OPm(X, ls).

Theorem 5 Y� ,�OP
(
cat1, ls

)
= Y� ,�OP

(
pcat2, ls

)
= YRE for 

any Y ∈ {N,Ps} , � ∈ {gen, acc} , and any maximally parallel 
(set) derivation mode �,

The proof given in [16] for the maximally parallel mode 
max can be taken over for the other maximally parallel 
(set) derivation modes word by word; the only difference 
again is that in set derivation modes, in non-successful 
computations where more than one trap symbol # has been 
generated, the trap rule # → # is only applied once.

� =(V = {A, a}, T = {a},w = AA,R = {r1 ∶ A → AA, r2 ∶ A → a},

W = {{r1}, {r2}},⟹� ,max).

� ∈
{
max,maxrules,maxobjects, smax, smaxrules, smaxobjects

}
.
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5.2  Controlled P systems and time‑varying P 
systems

Another method to control the application of the labeled 
rules is to use control languages (see [19] and [2]).

In a controlled P system � , in addition we use a set H 
of labels for the rules in � , and a string language L over 2H 
(each subset of H represents an element of the alphabet for 
L) from a family FL. Every successful computation in � 
has to follow a control word U1 …Un ∈ L : in derivation step 
i, only rules with labels in Ui are allowed to be applied (in 
the underlying derivation mode, for example, max or smax), 
and after the n-th derivation step, the computation halts; we 
may relax this end condition, i.e., we may stop after the i-th 
derivation for any i ≤ n , and then we speak of weakly con-
trolled P systems. If L =

(
U1 …Up

)∗ , � is called a (weakly) 
time-varying P system: in the computation step pn + i , n ≥ 0 , 
rules from the set Ui have to be applied; p is called the period.

Example 2 Consider the one-membrane P system

with the labeled rules r1 ∶ A → AA and r2 ∶ A → a . Using 
the control word r1n−1r2 means using r1 in n − 1 derivation 
steps and finally using r2 , thus yielding a2n , for any n ≥ 1 , 
i.e., as in Example 1, we get Ngen,max(�) = L1.

As now we do not have to distinguish between non-ter-
minal and terminal symbols due to the use of control words, 
the same result can be obtained by the much simpler system

again yielding Ngen,max(�
�) = L1.

The family of sets Y� ,�(�) , Y ∈ {N,Ps} , computed by 
(weakly) controlled P systems and (weakly) time-vary-
ing P systems with period p, with at most m membranes 
and rules of type X as well as control languages in FL is 
denoted by Y� ,�OPm(X,C(FL)) ( Y� ,�OPm(X,wC(FL)) ) and 
Y� ,�OPm

(
X, TVp

)
 ( Y� ,�OPm

(
X,wTVp

)
 ), respectively, for 

� ∈ {gen, acc} and � ∈ DM ∪ DS.

Theorem 6 Y� ,�OP
(
cat1, �TV6

)
= Y� ,�OP

(
pcat2, �TV6

)
= YRE , 

for any � ∈ {�,w} , Y ∈ {N,Ps} , � ∈ {gen, acc} , and

The proof given in [16] for the maximally parallel mode 
max again can be taken over for the other maximally parallel 
(set) derivation modes word by word, e.g., see [6].

� = (V = {A, a}, T = {a},w = AA,R = {r1 ∶ A → AA, r2 ∶ A → a},

L = {r1}
∗{r2},⟹� ,max)

� � =(V = {a}, T = {a},w = aa,R = {r1 ∶ a → aa},

L = {r1}
∗,⟹� �,max)

� ∈
{
max,maxrules,maxobjects, smax, smaxrules, smaxobjects

}
.

5.3  Target selection

In P systems with target selection, all objects on the right-hand 
side of a rule must have the same target, and in each deriva-
tion step, for each region a (multi)set of rules—non-empty 
if possible—having the same target is chosen. In [6], it was 
shown that for P systems with target selection (abbreviated ts) 
in the derivation mode smax no catalyst is needed any more, 
and with smaxrules , we even obtain a deterministic simulation 
(indicated by the abbreviation detacc) of deterministic register 
machines:

Theorem 7 For any Y ∈ {N,Ps},

Theorem 8 For any Y ∈ {N,Ps},

In contrast to all the other variants of P systems, P systems 
with target selection really take advantage of the membrane 
structure, no flattening is used or even reasonable. In that 
sense, this variant of P systems reflects the spirit of membrane 
systems with a non-trivial membrane structure in the best way.

Example 3 Consider the two-membrane P system

with the rule a → aa having target here and the rule 
a → (a, in) having target in; only one of these two rules can 
be used in one derivation step according to the condition of 
target selection. Using a → aa in n − 1 derivation steps in 
the skin membrane and finally using a → (a, in) yields a2n in 
the elementary membrane [ ]2 , for any n ≥ 1 , i.e., we again 
get Ngen,max(�) = L1.

6  The strangeness of minimal parallelism

There is another derivation mode known from literature, 
which has two possible basic definitions, but these two 
variants unfortunately do not yield the same results.

Following the definition given in [18], for the minimally 
parallel derivation mode (min), we need an additional fea-
ture for the set of rules R used in the overall P system, i.e., 
we consider a partitioning � of R into disjoint subsets R1 
to Rh . Usually, this partitioning of R may coincide with 
a specific assignment of the rules to the membranes. We 

Ygen ,smax OP(ncoo, ts) = YRE.

Ydetacc,smaxrules
OP(ncoo, ts) = YRE.

� =(V = {a}, T = {a},� = [ [ ]2 ]1,w1 = aa,w2 = �,

R1 = {a → aa, a → (a, in)},R2 = �, f = 2,⟹� ,max)
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observe that this partitioning � may, but need not be the 
same as the partitioning � used for partial halting.

There are now several possible interpretations of this 
minimally parallel derivation mode which in an informal 
way can be described as applying multisets such that from 
every set Rj , 1 ≤ j ≤ h , at least one rule—if possible—has 
to be used (e.g., see [8]). Yet this if possible allows for two 
possible interpretations: 

Minimal parallelism  
as a restriction of asyn  As defined in [18], we start 

with a multiset R′ of rules from 
Appl(� ,C, asyn) and only 
take it if it cannot be extended 
to a multiset R′ of rules from 
Appl(� ,C, asyn) by some rule 
from a set Rj from which so far 
no rule is in R′.

Minimal parallelism  
as an extension of smax  We start with a set R′ of rules 

from Appl(� ,C, smax�) , where 
the notion smax� indicates that 
we are using smax with respect 
to the partitioning of R into the 
subsets R1 to Rh , and then pos-
sibly extend it to a multiset R′′ 
of rules from Appl(� ,C, asyn) 
which contains R′ . This definition 
finally was used in [23] without 
using the notion smax, because 
at the moment when this hand-
book was written the notion of 
maximally parallel set derivation 
modes had not been invented 
yet. Moreover, the use of the 
notion smax so far was restricted 
to the discrete topology, where 
every rule formed its own set Rj ; 
whereas for smax� , the condition 
is fulfilled if one of the rules in 
the Rj is used if possible.

Example 4 Consider the one-membrane P system working 
in the min-mode

with R1 = {a → bb} and R2 = {a → bbb} being the parti-
tions of R = R1 ∪ R2.

� =
(
V = {a, b}, T = {b},w = aa,R = R1 ∪ R2,⟹� ,min

)

Starting from smax, we get only one set of rules, i.e., 
R� = {a → bb, a → bbb} , whose application yields the result 
b5.

In the case of starting with asyn, we may use one of the 
two rules twice, thus also getting the results b4 and b6.

Hence, when two rules are competing for the same 
objects, the results obtained with the two different defini-
tions may be different, where the set of results obtained 
when using the first definition will always include the results 
obtained by the second definition.

The condition that the sets Rj , 1 ≤ j ≤ h , have to be dis-
joint may be alleviated, for example, see [4].

6.1  The derivation mode min
1

A special variant of the minimally parallel derivation mode, 
with the sets Rj , 1 ≤ j ≤ h , not being required to be disjoint, 
is the mode min1 , which in fact means that we stay with 
smax� . Now let �k denote a partioning � with k sets of rules. 
As an interesting result, we then get the interpretation of 
a purely catalytic P system using max as a P system using 
min1 with the partitioning Rj , 1 ≤ j ≤ k , where Rj is the set of 
non-cooperative rules a → u representing the corresponding 
catalytic rules cja → cju . Using such a partitioning �k in k 
sets of rules corresponding to the sets of rules associated 
with the k catalysts, we obtain the following result:

Theorem 9 For any d ≥ 1 and any k ≥ d + 3,

6.2  Minimal parallelism with all applicable sets

There is an even stranger variant for minimal parallelism 
already defined in [18]:

To a configuration C, we can only apply a multiset of rules 
which contains at least one rule from each Rj , 1 ≤ j ≤ h , that 
contains a rule applicable to C, i.e., we take all possible mul-
tisets R′ from Appl(� ,C, asyn) which also fulfill the condi-
tion that R� ∩ Rj ≠ � provided Appl(� ,C, asyn) ∩ Rj ≠ � , for 
all 1 ≤ j ≤ h.

This derivation mode is abbreviated allasetmin in [18] and 
used under the notion amin in [4].

Example 5 Consider the one-membrane P system from 
Example 4, now working in the amin-mode,

with R1 = {a → bb} and R2 = {a → bbb}.

Psacc,min1
OP

(
ncoo, �k

)

= Psgen,min1
OP

(
ncoo, �3

)
= NdRE.

� =
(
V = {a, b}, T = {b},w = aa,R = R1 ∪ R2,⟹� ,amin

)
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As both the rule from R1 and the rule from R2 are appli-
cable, the only (multi)set of rules applicable to the configu-
ration aa is the same as that one when starting from smax, 
i.e., R� = {a → bb, a → bbb} , whose application yields the 
result b5.

Yet if we take w = a instead, then still both the rule from 
R1 and the rule from R2 are applicable, but there are not 
enough resources of symbols a for applying both rules, 
hence, no derivation step is possible in this case with the 
derivation mode amin. On the other hand, with the first two 
variants of the minimally parallel derivation mode, in both 
cases we may either apply a → bb or a → bbb , thus getting 
bb and bbb, respectively.

Again, we observe that the results with different defini-
tions of the minimally parallel derivation mode may be dif-
ferent when two rules are competing for the same object(s).

7  Halting conditions

As already mentioned, P systems working in the maximally 
parallel derivation mode at first sight look like (E)0L sys-
tems. Only the total halting condition completely destroys 
this similarity which looks so obvious at first sight. Yet, this 
connection between P systems working in the maximally 
parallel derivation mode and (E)0L systems can be shown 
when using unconditional halting, see [7].

Besides unconditional halting, in this section we will 
also discuss some results for partial halting and halting with 
states. In each case, as in Sect. 5, we will show how to obtain 
the special multiset language L1 = {a2

n

∣ n ≥ 1}.

7.1  Unconditional halting

Example 6 Consider the one-membrane P system

with the single rule a → aa ; with every application of 
this rule the number of symbols a is doubled, i.e., after 
n − 1 derivation steps, n ≥ 1 , we get a2n , i.e., we obtain 
Ngen,max,u(�) = L1.

According to the results shown in [7], the following results 
hold true, if we use extended systems (indicated by the addi-
tional symbol E) and only take results from the output mem-
brane which are terminal:

Theorem 10 For any Y ∈ {N,Ps} and any m ≥ 1,

� =(V = {a}, T = {a},w = aa,R = {a → aa},⟹� ,max,u)

Ygen ,�,uEOPm(ncoo) = YE0L,

for any maximally parallel derivation mode �,

If we do not use extended systems, i.e., V = T  , we imme-
diately obtain the following:

Corollary 1 For any Y ∈ {N,Ps},

for any maximally parallel derivation mode �,

These results now show the—somehow expected—cor-
respondence between the two parallel mechanisms P systems 
and Lindenmayer systems.

We finally mention that with unconditional halting, con-
sidering acceptance would not make any sense, because 
according to the standard definition of accepting P systems, 
in any case they would accept every input.

7.2  Partial halting

Partial halting allows us to stop a derivation as soon as some 
specific symbols are not present any more:

Example 7 Consider the one-membrane P system

where R1 = {a → aa} and R2 = {s → s, s → �} are the two 
partitions of the rule set R = {a → aa, s → s, s → �}.

As long as one of the rules from R2 can be applied to 
the symbol s, the symbols a are doubled as usual by the 
rule a → aa from R1 . Using s → s in n − 1 derivation 
steps, n ≥ 1 , and finally applying s → � , we get a2n ; hence, 
Ngen,max,h(�) = L1.

Some interesting results for the partial halting may be 
looked up in [3, 4, 14].

7.3  Halting with states

In general, speaking of states reminds us of mechanisms like 
register machines; there a computation halts when the halt 
instruction lh ∶ HALT  is applied. In simulations of register 
machines by P systems, the computation often is made halt-
ing by applying the final rule lh → � , provided no trap rules 
are still applicable. When lh disappears this means that no 

� ∈
{
max,maxrules,maxobjects

}
.

Ygen ,�,uOP1(ncoo) = Y0L,

� ∈
{
max,maxrules,maxobjects

}
.

� =(V = {a, s},T = {a},w = as,R1 ∪ R2,⟹� ,max,h),
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instruction label appears any more in the configuration of 
the simulating P system; such a condition checking for the 
absence (or presence) of specific symbols in a given con-
figuration is computable, i.e., decidable, and therefore is a 
condition we can use for halting with states (which ironically 
in this case means the absence of state symbols).

Example 8 Consider the one-membrane P system

which uses the same ingredients as the one considered in 
Example 7, but instead of partial halting now uses the con-
dition that a computation halts if no symbol s is present 
any more, which gives the same computations as for the 
P system in Example 7, with the only difference that the 
computations halt because of s having been deleted. Thus, 
we obtain Ngen,max,s(�) = L1.

8  Conclusion

In this paper, the effects of using different derivation modes 
on the computing power of many variants of hierarchical 
P systems have been illustrated. Especially, some differ-
ences between the maximally parallel derivation modes 
and the maximally parallel set derivation modes have been 
exhibited. We have also given an overview on some control 
mechanisms used for P systems. Moreover, we have dis-
cussed the effect of using different halting conditions such 
as unconditional and partial halting.

Many more relations between derivation modes and halt-
ing conditions as well could have been discussed, but this 
would have gone much beyond such a normal article.
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