
MASTER THESIS

Coupling Media Façades and Building Automation

Submitted at the Faculty of Electrical Engineering and Information Technology,
Vienna University of Technology

in partial fulfillment of the requirements for the degree of
Master of Science

under supervision of

O. Univ. Prof. Dipl.-Ing. Dr.techn. Dietmar Dietrich
and

Ass. Dipl.-Ing. Thomas Rausch

Institute number: 384
Institute of Computer Technology

by

Bernhard Breinbauer
Student ID 0025121

Schwendt 7, 4775 Taufkirchen

Vienna 27. Nov. 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Information technology is radically changing our daily life and the world we live in. Media
façades are a remarkable good example for this, because they are literally changing the
appearance of buildings and therefore our surroundings. However media façades have not yet
tapped their full potential as they are self-contained systems and have only limited capabilities
to interact with their environment. This shortcoming may be overcome by opening media
façades to other systems.
Building automation systems gather lots of information on the state of a building. The in-
formation can be valuable for media façades. Furthermore building automation may support
media façades in showing visual effects on the façade of a building by either dampening the
background room lighting or by producing visual effects itself.
A problem caused by coupling building automation and media façades are the different se-
mantics and data structures used in each system. This master thesis attempts to solve the
problem by implementing a system which enables communication between building automa-
tion and media façades by translating information into native data structures of the respective
domain.
For transforming building automation data into a form that is usable for media façades
the Artificial Recognition System is used. The Artificial Recognition System comprises a
symbolization technology, which condensates huge amounts of sensory input data of small
informational value into a smaller number of data points with high informational value.
The data produced by the symbolization process contains more inherent information and is
therefore of more value to media façades than single building automation data points.
Furthermore the implemented system enables media façades to control aspects of the building
automation system by utilizing an interface which is native in the media façade domain. The
interface is based on pixels which are mapped to actuators (eg. sunblinds and room lighting)
of the building automation system. The pixels of a bitmap provided to the interface are
applied to the corresponding actuators and produce the according effect on the façade of the
building.
To test and demonstrate the implemented system parts of a building automation system
and parts of a media façade have been integrated into a prototype system. The prototype
comprises a representation of a building façade with windows, room lighting, sunblinds and
a media façade. The representation of the building façade is used to demonstrate the coop-
eration of building automation and media façade.

Kurzfassung

Informationstechnologie verändert stetig unsere Lebensweise und die Welt in der wir leben.
Diese Veränderung ist am Beispiel Medienfassaden sehr gut zu beobachten, da Medienfas-
saden das Aussehen von Gebäuden und damit unserer Umgebung verändern. Doch Medien-
fassaden haben ihr Potential zur Veränderung unserer Umwelt noch nicht ausgeschöpft, da sie
in sich geschlossene Systeme sind und deshalb nur eingeschränkt mit der Umwelt interagieren
und kommunizieren köennen.
Gebäudeautomation sammelt Daten über den Zustand eines Gebäudes. Diese Daten können
auch für Medienfassaden von Interesse sein. Weiters kann Gebäudeautomation die Effekte
der Medienfassade unterstützen indem entweder störende Raumbeleuchtung abgedunkelt wird
oder indem visuelle Effekte mit der Gebäudeautomation erzeugt werden.
Gebäudeautomation und Medienfassaden können nicht direkten Datenaustausch betreiben,
da die jeweiligen Datenstrukturen und Semantiken zu unterschiedlich sind. Diese Diplomar-
beit implementiert ein System, das als Vermittler zwischen Medienfassade und Gebäudeau-
tomation agiert indem es Information von einer Domäne in Datenstrukturen der anderen
übersetzt.
Für die Aufbereitung von Gebäudeautomationsdaten in eine für Medienfassaden nutzbare
Form wird das Artificial Recognition System verwendet. Das Artificial Recognition System
verfügt über eine Symbolisierung genannte Technologie, die große Mengen von Sensordaten
mit relativ wenig Informationsgehalt in eine kleinere Menge an Daten mit größerem Informa-
tionsgehalt verwandelt. Die durch Symbolisierung produzierten Ausgangsdaten beinhalten
mehr inhärente Information und sind daher für Medienfassaden von mehr Wert als einzelne
Sensordaten.
Weiters ermöglicht das implementierte System Medienfassaden auf Teile des Gebäudeautoma-
tionssystems Einfluss zu nehmen. Der Medienfassade wird dabei eine, in der Domäne von Me-
dienfassaden gebräuchliche, pixelbasierte Schnittstelle zur Verfügung gestellt. Dazu werden
Aktuatoren des Gebäudeautomationssystems Pixelkoordinaten zugeordnet. Die implemen-
tierte Schnittstelle nimmt von der Medienfassade Bitmaps entgegen. Die Werte der Bitmap-
pixel werden auf die Aktuatoren im Gebäudeautomationssystem angewendet und damit die
entsprechenden Effekte auf der Fassade des Gebäudes erzeugt.
Für Demonstrationszwecke und zum Testen der entwickelten Komponenten wurden Teile
eines Gebäudeautomationssystems und Teile eines Medienfassadensystems in einen Proto-
typen integriert. Der Prototyp enthält die Darstellung einer Gebäudefassade mit Fenster,
Raumbeleuchtung, Sonnenblenden und einer Medienfassade. Die Darstellung der Gebäude-
fassade wird zur Demonstration der Interaktionen zwischen Gebäudeautomation und Medi-
enfassade verwendet.

Acknowledgments

My studies would have never been completed without the support of many individuals.
First I would like to thank my parents, who supported me in my decision to study and backed
me up since the beginning. Also I am very grateful to my grandparents, my sisters and my
brother for the warmth and strength they shared with me.
I would like to thank my girlfriend Irmgard, who always patched me up when my motivation
and mood went down.

For support in completing this work I am very grateful to Thomas Rausch for his great
supervising and that he suggested this particular topic to me. Also I would like to thank
Wolfgang Burgstaller for the discussions while planning and building the demonstration suit-
case. Thanks also to the people involved in the Mediafacade.net project for the great and
enjoyable cooperation.

Contents

1 Introduction 1
1.1 Motivation and Background . 2

1.1.1 Building Automation . 3
1.1.2 Cognitive Systems . 3
1.1.3 Media Façades . 4

1.2 Goals . 6

2 Media Façades 9
2.1 Existing Media Façades . 9
2.2 Media Façades and Building Automation . 10

2.2.1 Usage of Building Automation Data 13
2.2.2 Technical Design of a Media Façade 13

3 Interfacing Building Automation Systems 15
3.1 Web Services . 16

3.1.1 Concept . 17
3.1.2 Open Building Information Exchange 22

3.2 Introduction to LonWorks . 25
3.2.1 Network Variables . 25
3.2.2 Functional Blocks . 26
3.2.3 Functional Profiles . 27

3.3 i.LON 100 Internet Server . 29
3.3.1 Functionality . 29
3.3.2 Data Points . 31
3.3.3 Evaluation of Data Point Types . 36

3.4 Accessing Building Automation Data . 38
3.4.1 i.LON 100 Web Service Overview . 38
3.4.2 i.LON 100 SOAP Messages . 39
3.4.3 Web Service and Building Automation Data 41

3.5 Evaluation of Web Service Frameworks . 48
3.5.1 Apache Extensible Interaction System 48
3.5.2 Java API for XML – Web Services . 49
3.5.3 Results of Web Service Framework Evaluation 50

4 Building Automation and Cognitive Science 53
4.1 Artificial Recognition System . 54

4.1.1 Artificial Recognition System – Perception 54
4.1.2 Artificial Recognition System – Psychoanalysis 57

I

4.1.3 Evaluation of the Artificial Recognition System 58
4.2 Technical Design of the Artificial Recognition System 59

4.2.1 Sources of Input Data . 59
4.2.2 Symbolization and Observing the World Representation 61
4.2.3 Smart Kitchen and the Artificial Recognition System 61
4.2.4 Exchange of Symbols . 62

5 System Design 65
5.1 Accessing Building Automation Data . 65

5.1.1 i.LON 100 Configuration . 65
5.1.2 Hiding the i.LON 100 Web Service . 66
5.1.3 Handling Data Points . 68
5.1.4 Hiding Data Points . 69
5.1.5 Beyond Data Points . 71
5.1.6 Storage for Data Points . 71
5.1.7 Summary . 72

5.2 Utilization of the Artificial Recognition System 72
5.2.1 Initial Plan . 72
5.2.2 Problems . 73
5.2.3 Solution . 74

5.3 Integrating Media Façades . 75
5.4 Demonstration Environment . 76

5.4.1 Purpose and Requirements . 76
5.4.2 Components . 78
5.4.3 Operation . 80

6 Implementation 81
6.1 i.LON 100 Configuration . 81
6.2 Building Automation Interface . 82

6.2.1 Java Representation of Data Points . 83
6.2.2 Beyond Data Points . 84
6.2.3 Storage for Data Points . 85
6.2.4 Hiding the i.LON 100 Web Service . 85

6.3 Building Automation Interface for Media Façades 86
6.3.1 Bitmaps and Building Automation . 86
6.3.2 Configuring Pixels . 87
6.3.3 Producing Visual Effects . 88

6.4 Utilization of the Artificial Recognition System 89
6.4.1 Setting up the Artificial Recognition System 90
6.4.2 Retrieving Information from the Artificial Recognition System 90

6.5 Integrating Media Façades . 91
6.6 Demonstration Suitcase . 92

6.6.1 Components and Assembling . 92
6.6.2 Operation of the Demonstration Suitcase 97

7 Conclusion and Further Work 99
7.1 Conclusion . 99
7.2 Further Work . 100

II

Abbreviations

API Application Programming Interface

ARS Artificial Recognition System

ARS-PC Artificial Recognition System – Perception

ARS-PA Artificial Recognition System – Psychoanalysis

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASN.1 Abstract Syntax Notation number One

AXIS Apache eXtensible Interaction System

DIN Deutsches Institut für Normung

GUI Graphical User Interface

ICT Institute of Computer Technology

IDL Interface Description Language

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Organization

JAX-WS Java API for XML – Web Services

HTML Hypertext Markup Language

HTTP Hyper Text Transport Protocol

HVAC Heating, Ventilation and Air Conditioning

LAN Local Area Network

LED Light Emitting Diode

LCD Liquid Crystal Display

M2M Machine-to-Machine

NTP Network Time Protocol

NV Network Variable

NVC Constant Data Point

NVE External Data Point

NVL Local Data Point

OASIS Organization for the Advancement of Structured Information Standards

III

oBIX Open Building Information Xchange

PoE Power over Ethernet

RFC Request for Comments

RPC Remote Procedure Call

SMTP Simple Mail Transfer Protocol

SNVT Standard Network Variable Types

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WSDL Web Service Description Language

XML eXtensible Markup Language

IV

Chapter 1

Introduction

Modern architecture attempts to revolutionize today’s concept of “buildings”. New building
materials [GTL94] and advances in information technology [KNS05] allow architects to design
and create the spaces, where we live, work and meet in, in ways not possible before. Amongst
other technologies, media façades fuel this architectural revolution by allowing architects and
artists to change the way buildings are perceived in the public.

In the past, changing the appearance of a building after its completion was nearly impossible
and tied to huge costs. With media façades, this got remarkably easier: the appearance
of a building can be altered very fast and with low costs after the installation of the media
façade. Most of today’s media façades are utilized on office buildings for companies to increase
their prestige in the public. This is achieved by showing, amongst other things, entertaining
projections, commercials or allowing artists to utilize the media façade.

The content displayed by the media façade is mostly created off-line, meaning that images,
videos and light patterns are designed remotely by artistically skilled people and not gener-
ated by the media façade system itself. The beforehand created content is uploaded to the
media façade control system, which will deliver the content to the façade in a system specific
sequence. Apart from some exceptional projects like project Touch1 at the Dexia Towers
in Brussels, where by-passers can influence the content of the media façade, the sequence of
the displayed content does not react to events in the environment of the media façade. The
definition of environment used here, includes the surrounding of the building, the building
itself and the inside of the building. It is desirable to provide means to allow interaction of the
media façade control system with the environment. For such interaction the media façade
has to be “aware” of events and situations in its environment. Information on situations
occurring inside of the buildings is today already available in building automation systems.

Building automation is a fast growing and evolving technical discipline which enables moni-
toring of environmental data. Based on this data, building automation operates the controls
of the environment it is responsible for, thus allowing efficient use of resources and ensuring
comfort of the occupants. As building automation is utilized in nearly every modern office
building and its functionality is constantly growing [KNS05], more and more applications
will be interested in reusing the environmental data gathered by building automation. Media
façades are such an application.

1http://www.dexia-towers.com/index_e.php?file=dtb_2006_touch

1

 http://www.dexia-towers.com/index_e.php?file=dtb_2006_touch

Chapter 1 Introduction

Interconnecting building automation and media façades is usually not possible in an easy
and straight forward way. Building automation systems are encapsulated systems which are
only recently developing interfaces to the gathered data [PSKD06]. Furthermore building
automation operates on low level data, which has not much meaning for other systems.
Also manufacturers of media façades have only limited knowledge on building automation
technology and its possibilities. Therefore an interface which allows interaction of these two
worlds is needed.

This master thesis is part of the project Mediafacade.net2, which is a consortium of compa-
nies and research facilities, which aims to develop standardized state-of-the-art technologies
for media façades. The Institute of Computer Technology (ICT) is member of the Medi-
afacade.net consortium and is responsible for researching possibilities, how integration of
building automation and media façades can be accomplished.

1.1 Motivation and Background

As described above the goal of this master thesis is to build a bridge between building
automation and media façades. The motivation for this attempt is three-fold:

1. The displayed content of media façades is predefined and the dynamic appearance of
the media façade therefore limited. This limits the usage scenarios of media façades.
By providing environmental data to the media façade the limitation can be weakened.
Furthermore the interconnection is interesting from the architectural point of view.
Buildings are designed to integrate into its surrounding (but in a interventional way –
the surrounding is also altered by buildings). After the designing phase this integration
can not be changed anymore. But by enabling environment-aware media façades inter-
action of building and surrounding is possible and anticipated. Such facilities could lead
to interesting artistic and architectural experiments regarding building-environment-
interaction.

2. Building automation is on the verge of a new era. The expected exponential growth
of data points [PP05] will lead to new services and functionality. To provide this
new services to external systems new interfaces are being developed. These interfaces
provide access to the data available in building automation systems and therefore allow
external systems to retrieve information on the status of the building. The retrieved
information allows systems to become aware of its environment.

3. The Artificial Recognition System3 (ARS) [PP05] is currently in development to aid in
managing the vast amount of data points in building automation systems, which are
expected in the near future. ARS aims to implement a technical model of the human
brain. The implemented system will be able to perceive and understand its environment
and to interact autonomously. As ARS is meant to deal with great amounts of sensory
input data, an “information condensing process” has been developed which transforms
huge amounts of data with small informational value into high value information. The
information condensing technology is the reason why ARS is relevant for this thesis.

2http://www.mediafacade.net/
3http://ars.ict.tuwien.ac.at/

2

http://www.mediafacade.net/
 http://ars.ict.tuwien.ac.at/

Chapter 1 Introduction

While building automation operates on low value data, media façades control systems
are not interested in such data, but they are interested in data which describe situations
in the surrounding. Therefore a “translation system” is required which helps in the
communication between building automation and media façades and ARS may be used
as such a system.

The following sections provide some background information on each of the three main topics
(building automation, cognitive systems and media façades) of this master thesis.

1.1.1 Building Automation

Smart dust, as described in [HSW+00], advances in reduced power consumption [MGH05]
and wireless networks [Cal03] in combination with advances in building automation technol-
ogy [PM03] are some of the reasons, why the growth of the number of nodes in building
automation systems is expected to be exponential. New approaches to ensure functional,
manageable and economical building automation systems are required and developed [PP05].

The growth of nodes – especially sensor nodes – will allow to retrieve much more information
about the environment than today and will allow to build a much more comprehensive view
of the environment the building automation system is operating in. In the future applications
outside the building automation domain will get interested in this comprehensive view of the
environment. In recent years this interest in building automation data already led to the
production of “gateway nodes”, which allow communication between building automation
systems and other computer systems.

In this master thesis such a gateway node will be used to implement a system, which acts
as interface between building automation and media façade. A detailed description of the
gateway node and its utilization can be found in Chapter 3.

1.1.2 Cognitive Systems

Project ARS attempts to implement models of the human brain developed by scientific disci-
plines like neuroscience and psychoanalysis into a technical system [Pra06]. The domains of
these two disciplines – while working on the same “material” – are rather different. Neuro-
science deals with the low level components of the brain and in which ways they interact to
eventually accumulate to intelligent beings. Psychoanalysis on the other hand tries to under-
stand the human mind as whole. Drives, desires, emotions and decision making is amongst
other things the domain of psychoanalysis. ARS adopts the two views of neuroscience and
psychoanalysis by following a two-sided approach:

� ARS-PC (Perception) is a bottom up approach to perception. It transforms low level
data into high level information by means of symbolization [Rus03]. Symbolization
refers to the process of condensing data into high level information (called symbols).
For example: If the floor in a room is equipped with tactile sensors a sequence of
messages “tactile sensor number x activated” can be condensed into the information
“someone went through the room”, which contains much more inherent information
than the sequence of data.

3

Chapter 1 Introduction

� ARS-PA (PsychoAnalysis) is a top down approach that allows systems to make in-
dependent decisions, by implementing Sigmund Freud’s Ego-Superego-Id model into a
technical system. Based on emotions and drives it allows systems to evaluate situations
and work autonomously towards specific goals.

In this thesis ARS will be evaluated if it is applicable for the envisioned task: It should
act as the “translation system” described above, to provide situation describing, high value
information to the media façade control system. In Chapter 4 the utilization of ARS in this
master thesis is discussed.

1.1.3 Media Façades

Media façades are light installations on publicly viewable façades of buildings. They use LED
technology to show patterns, images or even short movies to the viewers. Popular examples
for already deployed media façades are the Kunsthaus4 in Graz and the Uniqa Tower5 in
Vienna, which is shown in Figure 1.1. More examples of existing media façades can be found
on the website of the media architecture group6.

The used LEDs are able to produce multiples of colors which allows much more sophisticated
effects than approaches with monochrome LEDs. Typically the LEDs are mounted on the
façade of the building in lines. Depending on the architecture of the building this lines may
be vertical or horizontal. These “lines of light” in vertical form are visible in Figure 1.1.
The distance between the LEDs depends on architectural design of the building and aimed
resolution. From some distance the individual LEDs appear – depending on the overall
resolution – as a fairly homogeneous display and the viewer is able to recognize the displayed
images.

The content, which will be displayed on a media façade, has to be designed and prepared
beforehand by the users of media façades. Users are typically artists or media designers.
The control system of the media façade processes the content and activates the respective
LEDs. The sequence of displayed content is either statically defined when adding new content
or may be randomly chosen to generate a more dynamic appearance. The control system
has no notion of the meaning of the content nor does it have a notion of the surrounding
environment and the state the building is in. This lack of information may lead to wrong
behavior in exceptional situations. For expample, if the building is on fire and the fire brigade
tries to save people by fetching them from the windows, the still operating media façade might
dazzle the fire fighters and therefore hinder the saving of people. In normal situations the
media façade could act supportingly to the purpose of the building if it has information on
the environment, for instance on a multi-storey car park a media façade could indicate in
which levels there are still free parking lots by highlighting this levels.

As shown above providing media façades with information about the environment extends
the usage scenarios from simple, but artistic projection of images to more sophisticated
applications. But it also allows to improve the artistic usage. Media designers may assign
designated content to environment scenarios and therefore allow the media façade to appear
interacting with its environment.

4http://www.bix.at
5http://tower.uniqa.at
6http://www.mediaarchitecture.org

4

http://www.bix.at
http://tower.uniqa.at
http://www.mediaarchitecture.org

Chapter 1 Introduction

Figure 1.1: Vienna: Uniqa Tower media façade. This media façade is structured in vertical
lines, which are clearly visible in the picture.

5

Chapter 1 Introduction

Furthermore it would be possible to grant the media façade a way to control parts of the sys-
tems integrated into building automation. This would enable the media façade to emphasize
the shown effects moving the sunblinds or turning on and off the room lighting.

1.2 Goals

The goal of this master thesis is to implement a system which acts as an interface between
media façades and building automation systems. Data will be retrieved from a building
automation installation and transformed into high value information. Based on the gathered
information, the media façade will be able to decide which content it has to show. Additionally
the media façade will be granted a way to control parts of the building automation system.
Figure 1.2 shows a conceptual overview of the dataflow in the system.

Figure 1.2: Overview of the dataflow in the proposed system. Building automation data
is gathered and forwarded to the media façade. Optionally the data can be
transformed into high value information by the means of symbolization. In
the other direction the media façade control system is provided an interface to
control building automation systems.

The system collects building automation data which comprises a huge amount of low-level
information such as “light on”, “switch pressed” and “temperature 20°C”. Such low-level data
has to be transformed into high-value information. ARS will be evaluated and eventually used
for this task. The high value information is then passed to the media façade which can use it
for decision making. A dataflow channel starting at the media façade ending at the building
automation (see Figure 1.2) enables the media façade to control building automation systems.
Such a control channel can be used for emphasizing the displayed images as described above.

6

Chapter 1 Introduction

To provide valuable information to media façades some scenarios in which the data can be
utilized has to be identified and investigated. For each of these scenarios the requirements
of media façades have to be evaluated and the proposed system has to be designed to fulfill
these requirements.

The result of the work will be a prototype, which shows the interaction of media façade
systems and building automation in two ways, as shown in Figure 1.2.

1. An interface will be developed which allows media façades to control aspects of building
automation systems. This functionality will be integrated into a demonstration suit
case. The suit case will comprise a small number of building automation nodes and a
model of a media façade. The combination of building automation and media façade
into one suit case will allow to present the interaction of media façade and building
automation at trade shows.

2. Ways to utilize ARS for extracting information from building automation data will be
evaluated. If ARS proofs to be capable of this task, a system will be developed which
passes building automation data to ARS and provides the aggregated information to
the media façade system.

7

Chapter 2

Media Façades

The term media façade refers to building façades which are in some way able to show content
on its surface. Usually the term is used to refer to light installations and projections of images,
but is not constricted to this sort of façades. For example mechanical systems mounted on the
surface of a building are also referred to as media façades. An example for such a mechanical
system is the Aegis Hyposurface1.

However this master thesis will focus on light installations as they are more widely used than
other systems and because the partners in the Mediafacade.net2 project have experience with
LED (Light Emitting Diode) based media façades.

2.1 Existing Media Façades

Before discussing the desired cooperation of media façades and building automation some
existing media façade installations are introduced and some characteristics of media façades
are described. One of the first media façade installations done in Austria is BIX 3 at the
Kunsthaus Graz. The outer hull of the Kunsthaus consists of acrylic glass4. On the east side
of the Kunsthaus 930 fluorescent lamps with a ringlike form are mounted behind the outer
hull. The fluorescent lamps produce only white light, therefore the display is monochrome.
The brightness of the lamps can be varied continuously. The façade is able to show images
and even animations and movies with a frame rate of 20 frames per second.

BIX is a rather untypical example for a media façade because it uses fluorescent lamps to
produce visual effects. In the recent future LED technology has become the most used tech-
nology for media façades, because of ever decreasing prices of semiconductor technologies, the
possibility to tightly pack LEDs in packages and the ability to produce bright and multicolor
light. An example for a media façade with LED technology is the Uniqa Tower5 in Vienna,
which has already been shown in Figure 1.1.

1http://www.sial.rmit.edu.au/Projects/Aegis_Hyposurface.php
2http://www.mediafacade.net/
3http://www.bix.at/
4Better known as Plexiglas
5http://tower.uniqa.at

9

 http://www.sial.rmit.edu.au/Projects/Aegis_Hyposurface.php
http://www.mediafacade.net/
http://www.bix.at/
http://tower.uniqa.at

Chapter 2 Media Façades

The hull of the Uniqa Tower consists of two layers of glass. Between the layers LED modules
are mounted. The LED modules are about four square centimeters of size and contain four
multicolor LEDs. 40.000 LED modules are mounted on the whole façade of the tower, which
is about 7.000 square meters of size. The used LEDs are not bright enough to run at daylight,
therefore the façade is activated every day at dusk. The resolution of the Uniqa Tower media
façade is rather low, therefore it is mostly used to show animations on it. Very rarely videos
and images have been shown on the façade.

The above mentioned media façades BIX and Uniqa Tower are encapsulated systems which
comprise only management interfaces to define the projected content but no interface for
data input about the environment. As stated in Chapter 1, architects and media designers
are interested in media façades which are “interacting” with the environment. Experiments
and implementation of such interaction scenarios already exist, one of them will be described
below.

From December 2006 to January 2007 the group LAb[au]6 used the Dexia Towers7 in Brussels
to experiment with possible interaction scenarios between people and buildings. For the
project, named Touch8, a computer station was placed at the plaza at the bottom of the
tower. The computer station comprised a touch screen, which was able to react on multiple
events at once and which was big enough to be operated by more than one user at once.
By-passers were able and allowed to use the touch screen. The actions done on the touch
screen by the users influenced the media façade of the Dexia Tower.

As can be seen by the example of the Dexia Tower there is interest to use new technologies
like media façades to alter the public appearance of buildings. The Touch project does not
really interact with its environment but with users of the touchscreen. But also interaction
scenarios which are directly connected to the environment are of interest for architects and
media façades. Information on the environment can be gathered and utilized to produce a
more interactive appearance of the media façade. As source for environmental data build-
ing automation can be used because building automation systems do gather data on the
building to control the building automation related systems inside the building. The next
section discusses the benefits of information exchange between media façades and building
automation.

2.2 Media Façades and Building Automation

Today building automation systems and media façades are separated systems, even though
they could benefit from information exchange. As described above architects are interested
in changing the public appearance of buildings depending on situations in the environment.
But not only interaction also communication of the building with the outside is desired. A
repeatedly used slogan for such a communication is “to communicate the inside of a building
to the outside”. Doubtlessly that statement is rather imprecise and fuzzy. Luckily the goal
of this master thesis is not to do communication between inside and outside of buildings, but
to provide a technical foundation for architects and media designers to experiment, work on

6http://www.lab-au.com/
7http://www.dexia-towers.com/
8http://www.dexia-towers.com/index_e.php?file=dtb_2006_touch

10

 http://www.lab-au.com/
 http://www.dexia-towers.com/
 http://www.dexia-towers.com/index_e.php?file=dtb_2006_touch

Chapter 2 Media Façades

and implement their visions. Therefore the main focus is finding and implementing ways how
media façades can exchange information and therefore interact with each other.

Building automation gathers information on the current conditions in the inside of build-
ings. The information is used to control actuators of the incorporated systems like heating,
air conditioning and room lighting. Ever since the beginnings of building automation the
deployed sensors have become more and more sophisticated. For example in the last years
sensors which can detect if rooms are occupied are deployed regularly in modern buildings.
Sophisticated sensor systems will be used more and more and the number of applied sensors
will grow drastically in the near future [PP05].

Therefore building automation is a quite capable candidate to act as source of environmental
data. Chapter 3 discusses how data can be retrieved from building automation systems,
while Chapter 4 introduces concepts how building automation data can be transformed into
a format suitable for media façades. This section will continue with some scenarios where
information exchange between building automation systems and media façades would be
beneficial.

One example for benefits if building automation and media façade would be able to exchange
data has already been presented in Chapter 1. In critical situations like fire alarm and
building evacuation the media façade should be deactivated automatically. The media façade
could even deactivate itself if it would be notified about such critical situations.

Media designers are also interested in cooperation of media façades and building automation
systems. An example where cooperation would be beneficial for media façades is shown in
Figure 2.1. It shows the Uniqa Tower with activated media façade. But because the room
lighting is switched on the effects of the media façade are barely visible.

Turning off the room lighting in the whole building is no option, because the building should
still be inhabitable, even if the media façade is activated. A solution to prevent interfering
room lighting would be to allow the media façade some control over sunblinds, which may
be mounted at the windows. If the media façade is activated, the sunblinds of the windows
where the room lighting is turned on, can be lowered. Therefore the room lighting is no
longer visible from the outside and interference of the room lighting with the effects of the
media façades is prevented.

Another possibility to utilize building automation for supporting the effects produced by
a media façade is to use the systems incorporated into the building automation system to
produce effects. For example the room lighting could be used to produce visual effects.
Something similar has been done for the project Blinkenlights9. The windows of a vacant
building were used as public display. While for project Blinkenlights the inside of the building
have been heavily modified, modern building automation systems would allow similar effects
with the already deployed technology. In a similar way building automation can be used
to emphasize the effects of the media façade. For example room lighting or sunblinds can
be used to produce a “wave effect” by altering the lights/sunblind positions sequentially in
specific pattern.

Aside from producing visual effects for the outside of the building, building automation
technologies can also be used to gather information about the status of the inside of the
building. Building automation data which could be interesting for media façades and data
which is available from building automation systems is discussed in the next section.

9http://www.blinkenlights.de/

11

http://www.blinkenlights.de/

Chapter 2 Media Façades

Figure 2.1: Room lighting interfering with media façade projections. In the left picture the
effects shown by the media façade are clearly visible. In the right picture the
effects are barely visible because the room lighting of the building is interfering
heavily.

12

Chapter 2 Media Façades

2.2.1 Usage of Building Automation Data

As already discussed above media designers would like to utilize media façades for commu-
nication with the outside of the building. One example for such a communication scenario
is the Touch project, where by-passers were able to influence the projected content of the
media façade. In this master thesis ways to exchange data between media façades and build-
ing automation systems had to be found. This section introduces scenarios and building
automation data which could be valuable for media façades.

As already described above modern building automation systems often comprise sensors to
detect if a room is occupied. Inside the building automation system the occupied/unoccupied
information may be used to turn on or off the lights of a room. For media façades the
number of occupied rooms in relation to unoccupied rooms might be interesting. Along with
the occupied data, information about the location of the rooms might be valuable as media
façades could concentrate its effects around rooms which are occupied or unoccupied.

In some buildings the systems which allow and observe access to the building are integrated
into the building automation system. Some generic access information might be of interest
for media façades. For example the number of people in particular sections of the building.
Another example would be a shopping mall which comprises a system to measure the flow of
customers inside the building. The media façade might use this information in its projections.

Of practical interest for media façades may be information on the current weather conditions.
For example information on the position of the sun and how bright the sun shines – which
includes information on cloudiness – can be used to adapt the brightness of the LEDs of the
media façade. Another possibility would be to show effects only on the parts of the building
which are not directly exposed to the sun light or to alter the projected content if it starts
to rain.

As shown in the examples above there are a lot of scenarios – practical or artistical – where
data exchange between media façades and building automation is beneficial. Chapters 3 and
4 discuss possibilities how data exchange between media façades and building automation
can be implemented.

2.2.2 Technical Design of a Media Façade

This section will introduce the technical design of a media façade system at the example of
BLIP10 products. BLIP is a partner in the Mediafacade.net project.

Big media façade systems are typically hierarchically structured. Figure 2.2 shows a typical
hierarchical structure for media façades as it can be found in [BLI07]. The LEDs of the
media façade are interconnected via a bus for data transmission and wires for power supply.
Every LED node comprises a chip, which implements the transmission protocol and controls
brightness and color of the LED. A picture of such interconnected LEDs is shown in Figure 6.7.

In Figure 2.2 an Image Generator is connected to communication bus and power supply
wires. The Image Generator provides power and sends commands over the communication
bus. The Image Generator is the contolling instance on the communication bus, the LED
nodes simply react to command issued by the Image Generator.

10http://www.blipcreative.com/

13

http://www.blipcreative.com/

Chapter 2 Media Façades

Figure 2.2: Hierarchical structure of a media façade control system. The LEDs are con-
nected to Image Generators which provide power and control the LEDs. A
Display Manager can be used synchronize the actions taken by individual Im-
age Generators.

If more LEDs than one Image Generator can manage are required a Display Manager can be
used. It can be connected to various Image Generators via an Ethernet [IEE95] switch. The
Display Manager’s responsibility is to synchronize the effects generated by individual Image
Generators.

14

Chapter 3

Interfacing Building Automation
Systems

In its beginnings building automation comprised simple tasks like room temperature and
lighting control. Such simple control tasks are typically composed of three components: a
sensor, an actuator and a control unit. Figure 3.1 shows schematically a control application
with these three components. Every control task needs a reference value, on which it tries to
stabilize its working point [Wei98, pp. 9–11]. The reference value is also shown in the figure.

Figure 3.1: Control application comprising sensor, actuator and control unit. The control
unit manipulates the actuator to ensure the sensor value equals the reference
value.

An example of a simple control loop in building automation is room temperature control.
The actuator is a device at the heater which enables the control of the dissipated heat. A
temperature sensor – typically located in some distance of the heaters – enables the monitoring
of the room temperature. The control unit reads the temperature from the sensor and
manipulates the actuator to achieve constant temperature values in the room1.

Simple control tasks have to be done everywhere in a modern building. Moving the sunblinds
according to the position of the sun, switching on the light and supplying fresh, cool air. In
the past the tasks were separated from each other, every functionality was implemented by
another manufacturer, the systems were not designed to interact [Bus97].

1Usually the temperature sensor and the control unit are integrated into one device.

15

Chapter 3 Interfacing Building Automation Systems

Integration came along with the development of field buses. Field buses are specialized buses
for short distances and small amounts of data. Because of this constraints the buses and
nodes are relatively cheap and can be deployed on a large scale. Control systems started to
use field buses, firstly separated from each other. Obviously the desire to utilize only one bus
per building rose because of economical and operational advantages, such as reduced wiring
costs and reduced maintenance work when using only one common bus.

Field buses specialized for building automation requirements were developed. Examples of
this buses are: KNX [KA04], BACnet [ASH04] and LonWorks [CEA02]. Every sensor, every
actuator and every monitoring and control unit in a building are connected to the deployed
bus. The various control tasks operate on the same communication channel and therefore
can cooperate and exchange information. For instance the temperature control system can
take in account the position of the sun and adjust the heaters respectively the air condition
accordingly. This integration process of different control systems is nearly completed today.
Modern buildings utilize one dedicated bus for the building automation system.

While building automation evolved from simple, separated control tasks to an autonomous,
interconnected and complex system, other network technologies advanced at least at the same
rate. Ethernet [IEE95] evolved to the de facto standard for Local Area Networks (LAN) and
the internet grew [XP03] to an colossal accumulation of information, services and junk2.
Obviously the idea rose to allow some sort of interconnection between building automation
networks and the other information technology networks deployed in a building (typically
Ethernet). As data transmissions on the building automation network can not be simply
mapped on Ethernet data transmissions a system is required which provides an interface
to the building automation data. Most of these system use known and proven internet
technologies, like web services, to provide such an interface [Ehr04].

Nowadays nodes, which act as gateway between the building automation system and the local
PC network, are available for every building automation bus system. Most of them comprise
a web server to allow easy supervision, manipulation and management of the building au-
tomation control functions. Every PC with a web browser can be used to perform these tasks.
While this is nice for human operators it is insufficient for interaction with other technical sys-
tems. Therefore the gateway nodes provide additional interfaces which are designed for data
exchange with technical systems. Such communication is usually called Machine-to-Machine
(M2M). Most of the gateway nodes implement a web service to allow external applications
to access the data available in the building automation system. Today these web services are
technology dependent, which means they differ depending on which building automation bus
is used. But there are already standards in the works which attempts to solve this diversity.

3.1 Web Services

Web services are defined by the World Wide Web Consortium3 (W3C) as: “A Web service is
a software system designed to support interoperable Machine-to-Machine interaction over a
network. It has an interface described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its description using

2The presence of junk on the internet may be obvious, but for detailed description and an estimation of
the size of the problem see [Atk03] and [RW07].

3http://www.w3.org/

16

 http://www.w3.org/

Chapter 3 Interfacing Building Automation Systems

SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards” [W3C04].

Therefore web services are an approach to M2M communication. The services expose inter-
faces which utilize Web-related standards to provide access to underlying systems and data
in a platform independent manner. Platform independency is assured by using a XML-based
protocols.

3.1.1 Concept

Three participants are involved in the process of using – usually called consuming – a web
service. A service provider which provides an interface (web service) to the outside world.
A service consumer which attempts to consume a web service and a service broker which
comprise a registry of known web services and can therefore help the service consumer to find
the service provider. Figure 3.2 shows the three participants and the involved communication
flows.

Figure 3.2: Web service roles and communication flows. The service provider registers its
WSDL service description at the service broker. The service consumer queries
the service broker for available service providers and consumes the web services
via exchange of SOAP messages.

A typical web service invocation scenario starts with the service provider registering its
services at the service broker. If a service consumer is searching for a specific web service and
does not know where it is located, it can request that information from the service broker.
If the service broker finds the requested web service in its registry it delivers the information
to the service consumer. After receiving this information the consumer can start to use the
web service. In this scenario three technology standards are utilized:

17

Chapter 3 Interfacing Building Automation Systems

� Universal Description Discovery and Integration (UDDI) [OAS04] for service discovery.

� Web Services Description Language (WSDL) [W3C07b] for service description. 4

� Simple Object Access Protocol (SOAP) [W3C07a] for service consumption.

Revisiting the scenario above the service provider sends a machine readable description of the
interfaces of its web services to the service broker. It is important to provide a machine read-
able interface description because web services are designed for Machine-to-Machine commu-
nications. Therefore the participating systems have to “grasp” the capabilities and interfaces
of each other.

In the information technology domain Interface Definition Languages (IDL) are utilized to
describe interfaces in a machine readable format. For web services such an IDL has been
developed and is called WSDL. WSDL is XML-based and comprise the name, the location
and additional attributes of its associated web service. Most importantly the WSDL file
describes the functions of the web service and the respective parameters of the functions.
When an application consumes a web service it invokes one or more of the functions described
in the WSDL file of the web service.

As the WSDL file of a web service thoroughly describes the web service, this WSDL file is
sent by the service provider to the service broker. The service broker integrates the WSDL
in its registry. The structure of such an registry is described in the UDDI standard to ensure
compatibility between different implementations of consumers, providers and brokers.

Again revisiting the above scenario the service consumer may need to use a web service in
some point of time. It may be that the service consumer does not know where the requested
web service is located. In this case the service consumer can query the registry of the service
broker. If a matching web service is known to the service broker the associated WSDL file is
transmitted to the service consumer. From the received WSDL file the consumer can extract
the location and the exact specification of the interface of the service provider. With this
information the service consumer is able to invoke the web service functions.

A web service can be described as a bunch of functions which can be invoked from a remote
system. It therefore shows analogies to Remote Procedure Calls (RPC) [TS01, pp. 68–79].
The difference is that the exchange of data happens via XML files, so called SOAP messages.
The utilization of XML ensures loose coupling between the involved applications and platform
independency.

The process of invoking remote functions of web services, as described above, is called con-
suming a web service. Figure 3.3 shows a simple example of a web service consumption.
The service provider comprise a web service with only one function named getTime(). This
function delivers the current time as return value. Parts of the according WSDL file is shown
in Listing 3.1.

Data exchange with web services is done SOAP. The SOAP specification is a recommen-
dation [W3C07a] of the World Wide Web Consortium (W3C)5 and is a widely deployed
Machine-to-Machine communication technology.

4WSDL is usually pronounced “wiz-dull”.
5http://www.w3.org/

18

http://www.w3.org/

Chapter 3 Interfacing Building Automation Systems

<?xml version="1.0" encoding="UTF -8"?>

<wsdl:definitions name="TimeProvider"

...

<element name="getTime">

</element >

<element name="TimeResponse">

<complexType >

<sequence >

<element name="Time" type="xsd:time"/>

</sequence >

</complexType >

</element >

...

</wsdl:definitions >

Listing 3.1: Part of a simple WSDL file. The WSDL describes a web service which provides
the function getTime() to retrieve the current time. The current time is
encapsulated in a TimeResponse SOAP message.

The web service is invoked by exchanging SOAP messages. A SOAP message is a XML
document containing an envelope tag, which comprise a body section and optionally a header
section. The structure of a SOAP message is shown in Listing 3.2.

<?xml version="1.0" encoding="utf -8" ?>

<soap:Envelope >

...

<soap:Header >

...

</soap:Header >

<soap:Body >

...

</soap:Body >

</soap:Envelope >

Listing 3.2: Structure of a SOAP message. The message consists of an envelope, which
comprise a body and optionally a header. The actual data is enclosed in the
body section.

In the envelope XML namespaces can be defined which will be valid for the whole SOAP
message. The header section may provide some meta-information about type and location
of the service. The body section contains the actual user data. The process of consuming
the time web service presented above is shown in Figure 3.3. The figure also includes the
involved SOAP request and response messages.

When a client wants to invoke a webservice it constructs a SOAP message, which specifies the
function it wants to invoke and the parameters with which the function has to be invoked.
After construction of the SOAP message the client transmits the message to the service
provider. Usually HTTP (Hyper Text Transfer Protocol) [BLFF96] is used as transport
protocol but other protocols, like IP (Internet Protocol) [Pos81a], are also possible. The web
service provider receives the SOAP message, parses it and afterwards executes the associated
local function. Emphasize is on local function, because after all a web service is just a publicly
available interface to applications located on the service provider.

The return value of the local function is stored in another SOAP message and sent back to
the service consumer. The consumer parses the SOAP response message, extracts the needed

19

Chapter 3 Interfacing Building Automation Systems

Figure 3.3: Consummation of a web service. The service consumer sends a request message,
which asks for the result of the getTime() function, to the service provider.
The service provider invokes the requested function and transmits the result in
a response message back to the service consumer.

values and can continue to process the data locally. 6

Web services are designed for Machine-to-Machine interaction, therefore applications have to
be able to process and understand the interface of the web service. In web services WSDL is
used to ensure this capabilities. Furthermore the machine readability allows to create tools
which support the developers creating service providers and service consumers. These tools
can parse a WSDL file and generate source code which eases the otherwise tedious task of
creating and parsing SOAP messages. The WSDL transformation tools are typically part
of a SOAP stack distribution, see Section 3.5 for a comparison of various available SOAP
stacks.

If the WSDL transformation tool generates source code in an object oriented programming
language, the SOAP messages are usually mapped to helper classes. In the above time web
service example the request SOAP message would be mapped to a class with no member
variables, because the time function does not have any parameters. The response SOAP
message would be mapped to a class with a member variable of a type which represents a
point in time. Which type would be used depends on the used programming language and if
the language library comprise a class which can represent time (in Java the class Calendar
in package java.util could be used).

To ease the invocation of web service functions the WSDL transformation tools typically also
6Note that there are two additional styles of web service invocation: XML Remote Procedure Call (XML-

RPC) and RESTful web services. But as they are not fundamentally different and the SOAP style is used in
this work, these two styles are not further mentioned.

20

Chapter 3 Interfacing Building Automation Systems

Figure 3.4: Schematic work flow of a WSDL transformation tool. The WSDL transforma-
tion tool parses a WSDL file and generates every SOAP message described in
the WSDL file a helper class. Additionally a stub class is generated which eases
the invocation of the web service.

generate a “stub” class. The stub represents the web service as a whole and has member
functions, which map to the functions of the web service. Figure 3.4 shows the process of
generating classes in an object oriented language classes by parsing a WSDL file.

If using a WSDL transformation tool the invocation of a web service boils down to: Instan-
tiating an object of a class which represents the designated SOAP message. The members
of the object (which map to the parameters of the function) have to be altered as needed.
The actual web service function is invoked by calling a member function of the stub class.
This member function needs as parameter the previously prepared object. The return value
is again an object, whose corresponding class represents the response SOAP message. A
stripped down Java code of this procedure is shown in Listing 3.3.

TimeProvider stub = new TimeProvider ();

TimeResponse response = stub.getTime ();

System.out.println(response.time);

Listing 3.3: Consuming a web service in Java utilizing a SOAP stack. The class
TimeProvider is a stub class generated by a WSDL transformation tool. The
member functions of TimeProvider are mapped to the functions of the associ-
ated web service. Invoking a member function actually starts the consumma-
tion of the web service.

The transformation of objects into XML styled text – typically called serialization – the
transmission of the SOAP messages, receiving the response SOAP message, parsing of XML
and the conversion into objects again is handled by the generated classes and the SOAP stack
the WSDL transformation tool belongs to. The developer can use the instantiated objects
and does not have to care about XML files and other underlying technologies.

The overhead generated by web services is rather large because of serialization and pars-
ing of XML files. Nevertheless they are more and more deployed on embedded systems

21

Chapter 3 Interfacing Building Automation Systems

too [MSMV06]. Also web services are used in building automation systems on gateway nodes
to provide an interface to other information technology systems. Such an gateway node is
discussed in more detail in Section 3.5. Reasons for the adoption of web services are the plat-
form independency, the decoupling of applications and – last but not least – the hype which
happened around web services in the last years. Furthermore the utilization of XML allows
to represent characteristics of building automation like hierarchies and interaction between
nodes.

3.1.2 Open Building Information Exchange

As mentioned in the previous section web services have grown to be the favored interface
for building automation systems in the last years. Although the handling, transmission and
parsing of XML requires some amount of computing power and bandwidth, the openness and
independency of XML outweighs the disadvantages. For nearly every building automation
technology nodes exist, which provide a web service (and typically additional functionality
like a web browser interface). These web services allow to retrieve data from the nodes present
in the building automation system.

A problem with existing nodes is that the provided web services are incompatible to each
other. Some of the web services even just map the messages of the building automation bus
to XML. This approach leads to technology and platform dependent web services which con-
tradicts the purpose of web services. Example of such a web service is BACnet/WS [ASH06]
which is even an ANSI7 (American National Standards Institute) standard, but is neverthe-
less only applicable to BACnet based building automation system. A second example is the
web service provided by the i.LON 100 Internet Server8. Its web service allows to retrieve
the value of network variables (the basic means of communication in a LonWorks based net-
work), but this happens in a technology dependent way: The fields of a network variable
update message are just wrapped into XML tags.

An approach to solve this kind of diversity is to define an open standard, which is applicable
to all – and therefore independent from – building automation technologies. Such a pro-
posed standard is Open Building Information Xchange (oBIX) [OAS06]. In the specification
document oBIX is defined as: “oBIX is designed to provide access to the embedded software
systems which sense and control the world around us. Historically integrating to these sys-
tems required custom low level protocols, often custom physical network interfaces. But now
the rapid increase in ubiquitous networking and the availability of powerful microprocessors
for low cost embedded devices is weaving these systems into the very fabric of the Internet.
Generically the term M2M for Machine-to-Machine describes the transformation occurring
in this space because it opens a new chapter in the development of the Web – machines
autonomously communicating with each other. The oBIX specification lays the groundwork
building this M2M Web using standard, enterprise friendly technologies like XML, HTTP,
and URIs.”

As stated above, the purpose of oBIX is to define a common way how to describe building
automation data in XML. oBIX does not dictate a specialized interface for web services but
basic XML elements which can be combined to represent real world data. Therefore oBIX has

7http://www.ansi.org/
8Product description at: http://www.echelon.de/products/internet/ilon100.htm

22

http://www.ansi.org/
http://www.echelon.de/products/internet/ilon100.htm

Chapter 3 Interfacing Building Automation Systems

similarities to a programming language, it defines a grammar which can be used to describe
more complex problems.

oBIX attempts to hide the technology dependent parts of the underlying system by mapping
a foundation of building automation related concepts into XML. The basic concepts of oBIX
are:

� Objects are XML elements. Therefore everything in an oBIX file is an object.

� Points are objects which represent a sensor or an actuator value.

� Contracts are objects which are used to define new types of objects.

� Operations represent functions which can be invoked.

Objects can – naturally as they are just XML elements – contain any number of sub-objects.
This allows the representation of complex operations by combination of simpler sub-objects.
In Listing 3.4 a time source is represented in oBIX syntax.

<obj name="timeSource1" href="http:// firstFloor/timeSource">

<abstime name="time" val="2007 -10 -25 T10:25:53"/>

<int name="calendarWeek" val="43"/>

</obj>

Listing 3.4: oBIX representation of a time source. The time source is named timeSource1
and its location is defined by the href attribute. Two points, the actual time
and the number of the calendar week, are part of the timeSource1 object.

The time source contains two points, the absolute time and the number of the calendar
week. The types abstime and int – amongst others – are defined in the oBIX standard.
Another fundamental part of oBIX is shown in the listing: URIs (Uniform Resource Identi-
fier) [BLFM05]. An URI is a string used to identify, name and locate a resource. In oBIX
URIs are identified by the keyword href and define the location from where the associated
object can be retrieved. In Listing 3.4 the oBIX document for timeSource1 object can be
retrieved at the location specified by the URI in line one.

Contracts are objects which allow to define new types of objects. Contracts are used as
templates for objects. Listing 3.5 shows the contract of an alarm source as defined in the
oBIX standard. The alarm contract contains a ref object to reference the object from where
the alarm originated. Also a point for the point in time when the alarm occured and a point
to indicated if it is a critical alarm, which is true as default, are included.

Listing 3.5 also shows that the URIs, identified by the href attributes, do not necessarily
have to be HTTP URIs. oBIX does not dictate which protocol should be used for exchanging
documents, therefore the documents can be located in any place. The communicating parties
just have to have a way to locate and retrieve the documents via the URI.

If an object wants to implement a contract it has to reference the contract via the is statement.
Listing 3.6 shows the implementation of an alarm contract. The object implements the source
and timestamp elements and adds another element which delivers an alarm message. The
object does not define the critical element, therefore the standard value, as defined in the
contract, is used.

23

Chapter 3 Interfacing Building Automation Systems

<obj href="obix:Alarm">

<ref name=" source"/>

<abstime name=" timestamp"/>

<bool name=" critical" value="true"/>

</obj >

Listing 3.5: oBIX contract for an alarm. The alarm object contains objects to reference
the source of the alarm, to define a point in time (timestamp when the alarm
occured and to indicate if the alarm is critical.

<obj href="http :// firstFloor/alarmSource" is="obix:Alarm">

<ref name=" source" val="http :// firstFloor/alarmSource "/>

<abstime name=" timestamp" val ="2007 -10 -25 T10 :45:53"/ >

<str name=" message" val="Fire on the first floor!"/>

</obj >

Listing 3.6: oBIX object implementing the alarm contract. This object implements the
alarm contract by using the is keyword. The implementation sets values of
objects which do not have a default value in the alarm contract and adds an
object for an alarm message.

As already seen in Listing 3.6 new objects can be created by simple adding of elements and by
so called inheriting contracts. Inheritance is done via the is keyword. If an object references
a contract via is it inherits all elements of that contract. Listing 3.7 shows how to build a
contract for a alarm clock by inheriting a time source and an alarm contract.

<obj name=" timeSourceContract" href ="/ contracts/timeSource">

<abstime name="time"/>

<int name=" calendarWeek "/>

</obj >

<obj name=" alarmClockContract" href ="/ contracts/alarmClock"

is="/ contracts/timeSource obix:Alarm">

<ref name=" source"/>

<abstime name=" timestamp"/>

<str name=" message" val="Time to get up!"/>

<bool name=" critical" val="false"/>

</obj >

<obj name=" alarmClockImplementation" href ="/ firstFloor/alarmClock"

is="/ contracts/alarmClock">

<ref name=" source" val="http :// firstFloor/alarmClock "/>

<abstime name=" timestamp" val ="2007 -10 -25 T10 :55:00"/ >

</obj >

Listing 3.7: oBIX contract and implementation of an alarm clock. First a time source
contract is defined, which is inherited to create an alarm clock contract in the
second step. The last step shows an example implementation of the alarm
clock.

The last building block of oBIX is operations. In oBIX operations represent functions which
can be invoked on objects. Operations must take one object as input parameter and return
one object as result. Operations are defined by using the op keyword. Listing 3.8 shows the
definition of a snooze operation, which could be used in the alarm clock described above. The
operation takes an empty object (Nil) as input parameter and returns an integer indicating

24

Chapter 3 Interfacing Building Automation Systems

for how many minutes the alarm clock will “snooze”.

<op href="http :// operations/snooze" in="obix:Nil" out="obix:int">

Listing 3.8: Definition of an oBIX operation. An operation is defined by the op keyword
and every operation has to have an input parameter (in) and a return value
(out).

In its current form oBIX only defines a way in which building automation data can be
represented in XML elements. It does not hinder to do this in a vendor or technology
dependent way. For example by defining contract attributes which can only be provided
by nodes from one particular vendor or nodes of one particular technology. This issue is
well known and therefore the oBIX technical committee will focus its work on standardizing
contracts for commonly used nodes. Very similar to the work the LonMark Organization9

has done in standardizing types and functionality of LonWorks building automation nodes.

3.2 Introduction to LonWorks

oBIX is a relatively new standard and has not been implemented in building automation
systems yet. Therefore an available system which provides an interface to access building
automation data had to be found. The i.LON 100 (see Section 3.3) is an embedded system
which provides a web service to interface with LonWorks [CEA02] based building automation
systems. Section 3.3 describes the functionality provided by the i.LON 100, before diving
into the functionality, the following sections will give a short introduction into the concepts
of the LonWorks automation bus.

The i.LON 100 and the LonWorks building automation bus were chosen because of the avail-
ability of accompanying tools, like LonMaker10, the relative “cheapness” of LON components,
the already available knowledge and expertise on LON technology at the Institute of Com-
puter Technology (ICT) and because LON components are already deployed in the Centre of
Excellence for Fieldbus Systems11 at the ICT.

3.2.1 Network Variables

On the application layer communication in LonWorks bus systems is done by utilization of
Network Variables (NV) [Die99, pp. 180–183]. Every application on LonWorks-enabled nodes
can define a set of input and output network variables. A output network variable can be
“connected” to multiple input network variables. Also a input variable can be “connected”
to multiple output network variables. If an output variable on a node is altered (for example
by an application or a sensor value update) every connected input variable, which may or
may not be on other nodes, will be notified and updated. The applications comprising the
input variables can react to changes and process them accordingly.

Establishing a connection between network variables is called binding of network variables.
Bindings are established by system integrator tools. Such a tool is the LonMaker application

9http://www.lonmark.org/
10http://www.echelon.com/Products/networktools/lonmaker/
11http://www.ict.tuwien.ac.at/komzent/

25

 http://www.lonmark.org/
http://www.echelon.com/Products/networktools/lonmaker/
 http://www.ict.tuwien.ac.at/komzent/

Chapter 3 Interfacing Building Automation Systems

which has been used in this master thesis. LonMaker can connect to a LonWorks bus system
and present the available nodes on the bus in a schematic. Figure 3.5 shows a LonMaker
schematic with two devices, represented by the green rectangles at the bottom of the drawing,
connected to a common bus.

Figure 3.5: LonMaker schematic of a simple LonWorks bus with two nodes attached to
it. The nodes are represented by the green rectangles at the bottom of the
schematic. The turquoise rectangles with the rounded corners represent the
functional blocks of the nodes.

3.2.2 Functional Blocks

Each node on the bus provide a specific functionality, which is presented as Functional Block
in LonMaker. Two functional blocks, represented as turquoise rectangles with rounded cor-
ners, are shown in Figure 3.5. In the figure the functional blocks have been placed right above
the associated devices, but this is not necessary at all. Functional blocks and devices can be
placed anywhere in a LonMaker schematic.

Functional blocks comprise network variables. By binding output network variables to input
network variables building automation functionality can be provided. For instance in a typical
building every room comprises a thermostat node measuring the temperature in the room and
a heater control node, which can switch on and off the heaters in the room. The thermostat

26

Chapter 3 Interfacing Building Automation Systems

node probably12 comprise a binary output network variable which indicates if the room is too
cold or too hot. Likewise the heater control node probably comprise a binary input network
variable which controls if the heater is switched on or off. In the LonMaker schematic the
system integrator can bind the output network variable of the thermostat node to the input
network variable of the heater control node as shown in Figure 3.5. The binding ensures that
the heaters will be switched on if the thermostat node deems the room to be too cold and
also that the heater will be switched off if the room reaches the desired temperature again.

The binding has to be done by special tools because the nodes on the LonWorks bus have
to be informed about the binding. The system integrator tool informs the node which of its
network variables is involved in a binding and the address and network variable of the other
node which is involved in the binding. Therefore the node with the output network variable
knows to which nodes it has to send network variable updates if the network variable has
been changed. Also the node with the input network variable knows from which node it has
to expect network variable updates.

Naturally not every network variable can establish a binding to another. It would make
little sense to connect a output network variable of a thermostat node which carries the
temperature as a floating point number13 with a input network variable of a switching node,
which comprises electrical-controlled switches to turn on and off eg. lights. The application
reading the input variable on the switching node would expect a boolean value for either
setting the switch on or off and would not be able to interpret a floating point value.

3.2.3 Functional Profiles

A binding between incompatible network variable as described above may lead to failure (of
parts) of the building automation system. To avoid such failures system integrator tools only
allow bindings between network variables which are compatible to each other. To restrict
bindings to only compatible network variables, common types have to be defined. This
has led to the standardization of network variable types. The standardization of LonWorks
network variables is done by LonMark International14. It is an organization consisting of
manufacturers, distributors, system integrators and end users of LonWorks based products.
LonMark is producing a set of guidelines describing types of network variables15 and types
of functional profiles16.

The network variables described in the LonMark guidelines are named Standard Network
Variable Types (SNVT17) [Ech99, p. 4-4]. SNVTs have been created for a great variety of
physical values and application scenarios [Die99, p. 272]. Examples are SNVT lux (used to
represent the sensor value of a light sensor), SNVT temp (used to represent a temperature)
and SNVT switch (used to represent the state of a switch, eg. ON or OFF). In addition to
network variable types also valid value ranges have been defined for SNVTs. For instance

12Note that this is a simplified example. Typical LonWorks-enabled thermostats provide much more func-
tionality than a simple on and off network variable.

13Don’t be confused. It is entirely possible and even likely that a thermostat node has (amongst oth-
ers) a binary output network variable to control heaters and a output network variable to deliver the room
temperature.

14http://www.lonmark.org/
15http://types.lonmark.org
16 http://www.lonmark.org/technical_resources/guidelines/functional_profiles.shtml
17Typically pronounced “snivets”

27

http://www.lonmark.org/
 http://types.lonmark.org
http://www.lonmark.org/technical_resources/guidelines/functional_profiles.shtml

Chapter 3 Interfacing Building Automation Systems

network variables of type SNVT switch can have the value 100.0 1 or 0.0 0, representing the
ON respectively the OFF state of the switch. As this network variables are standardized,
they can be exchanged and processed by applications located on different nodes. Therefore
ensuring the correct cooperation of applications on different and distributed LonWorks nodes.

To push the interoperability of LonWorks nodes even further functional profiles have been
defined by LonMark. Functional profiles describe the interface of common automation appli-
cations. For instance functional profiles exists for light sensors, elevator control nodes, pump
controllers, valve positioner and many more. The functional profiles specifications can be
downloaded from the LonMark website.

Each of these functional profiles describe a minimum set of network variables a node with
a specific function has to implement. The functional profiles have been designed to be in-
teroperable. For instance the switch profile18 comprise an output network variable of type
SNVT switch. The lamp actuator profile19 comprise an input network variable also of type
SNVT switch. If a binding is established between these two network variables a user can
switch on and off the light by pushing the switch. The switch and the lamp actuator func-
tional profile as specified by LonMark are shown in Figure 3.6. The figure also shows that
the node may implement more network variables than described in the associated profile.

Figure 3.6: Switch and lamp actuator functional profile. Mandatory and optional network
variables are listed with name and type.

Turning on and off a light by pushing a switch may not sound revolutionary, but some
nodes are providing much more complex applications than the switch in the scenario above.
Creating an easy way for these applications to cooperate – and this is exactly what network
variables do – may indeed revolutionize the way buildings are built, managed and perceived.

18 http://www.lonmark.org/technical_resources/guidelines/docs/profiles/3200_10.PDF
19http://www.lonmark.org/technical_resources/guidelines/docs/profiles/3040_10.PDF

28

http://www.lonmark.org/technical_resources/guidelines/docs/profiles/3200_10.PDF
 http://www.lonmark.org/technical_resources/guidelines/docs/profiles/3040_10.PDF

Chapter 3 Interfacing Building Automation Systems

3.3 i.LON 100 Internet Server

One goal of this master thesis is to develop an easy to use interface to building automation
data. To accomplish this goal a way to interact with building automation systems had
to be found. For LonWorks based building automation systems the i.LON 100 Internet
Server20 [Ech06b] provides a web service based interface, which allows to read and write
building automation data.

3.3.1 Functionality

This section will give a brief overview of some of the functionality provided by the i.LON 100.
The parts of functionality, which are used thoroughly in this work, will be explained in more
detail in the following sections.

Figure 3.7: Picture of an i.LON 100.

The i.LON 100 is an embedded system which provides observation, maintenance and manage-
ment functionality for building automation systems. Supported building automation buses
are LonWorks [CEA02], Modbus [MI06] and M-Bus [EN05]. Non-building automation in-
terfaces are an Ethernet port, an optional internal modem and the possibility to connect
an external GSM/GPRS modem [Ech06a, pp. 4–22]. The latter two interfaces allow the
i.LON 100 to initiate dial-up connections in cases where a always-online mode is not possible.

Picture 3.7 shows the forefront of an i.LON 100. On the left the power LED indicates the
status of the i.LON 100. On the right side lights indicate status and activity on the attached

20Product description at: http://www.echelon.de/products/internet/ilon100.htm

29

http://www.echelon.de/products/internet/ilon100.htm

Chapter 3 Interfacing Building Automation Systems

LAN (Local Area Network – in this case Ethernet) and LON interfaces. At the top and the
bottom of the picture the available connectors are visible.

Functionality provided by an i.LON 100 include [Ech06d, p. 3]:

� Scheduling allows the user to define tasks, which will be performed at particular date
and time.

� Clock Synchronization is possible to ensure the scheduled tasks will be performed at
the correct time. The Network Time Protocol (NTP) [Mil92] is used for clock synchro-
nization.

� Data Logging records selected values for further analysis and trend evaluation

� Alarming enables the i.LON 100 to notify other systems when a predefined alarm
condition occurs. The alarm can be signalized by either sending an E-Mail or a message
on the LonWorks bus.

� A Data Server allows access to data regardless on which building automation bus the
data is located.

� A Web Service allows to influence applications like alarming, data logging . . . and en-
ables remote applications to read and alter data available on the building automation
bus by accessing the data server.

For administration of the provided functionality the i.LON 100 provides a web browser in-
terface. The web browser interface can be used to set the IP (Internet Protocol) address, to
define NTP (Network Time Protocol) servers for clock synchronization and SMTP (Simple
Mail Transfer Protocol) [Kle01] servers for sending mail. Furthermore the management of
scheduled tasks, data logs and alarm conditions is possible. The status of the i.LON 100
and the attached building automation bus can be observed. Optionally available is a routing
functionality: Two or more i.LON 100 can use the attached Ethernet network as backbone
to allow the exchange of LonWorks messages between not interconnected LonWorks network
segments.

While the above mentioned features are mainly useful for system integrators the i.LON 100
additionally allows to upload custom web sites for the end user. These web sites enable the
user to interact with the connected building automation nodes. For example it is possible to
switch on and off the light or to change the temperature in some rooms. This enables the
caretaker of the building to supervise and influence the automation system from an ordinary
personal computer if a web browser is installed.

To make interaction between web browser and building automation system possible some
proprietary technologies are used. The web sites have to be created with the i.LON Vision21

tool, which is an extension to Macromedia Contribute22, an application for web designers.
In the web sites generated by the i.LON Vision tool proprietary HTML (Hypertext Markup
Language) tags are included which enables the i.LON 100 web server to inform building
automation nodes about relevant user interactions.

21 http://www.echelon.com/products/cis/
22http://www.adobe.com/products/contribute/

30

http://www.echelon.com/products/cis/
http://www.adobe.com/products/contribute/

Chapter 3 Interfacing Building Automation Systems

Besides a web server the i.LON 100 also provides other meanings of access. A File Transfer
Protocol (FTP) [PR85] server allows to upload and download files from the flash disk of the
i.LON 100. A Telnet server provides a command line interface to the i.LON 100. From this
command line a small set of maintenance programs can be invoked.

3.3.2 Data Points

As briefly mentioned in the last section the i.LON 100 comprise a data server which provides
means to access building automation data. The data server acts as an abstraction layer
between applications (Scheduling, Alarming, . . .) and the supported building automation
systems (LonWorks, Mod-Bus, M-Bus). Figure 3.8 shows this concept.

Figure 3.8: Data server acting as abstraction layer between applications and different data
point types.

The abstraction of automation bus specific properties is done by representing data values on
the bus by entities called data points. Applications only operate on data points regardless,
on which bus the associated data is located. Well, at least that is the way the data server
is promoted. Unfortunately the abstraction is not done thoroughly because an application
which wants to read or alter a data point has to specify which type the data point is. Even
worse for LonWorks data three data point types exist. If an application wants to access such
a LonWorks based data point it has to know the type of the data point.

The types of LonWorks based data points are local data points (NVL), external data points
(NVE) and constant data points (NVC). The difference of the data point type is how they
correspond to network variables (NV) in the LonWorks network. Figure 3.9 shows the three
different types of data points and how they correspond to network variables. Each of the
LonWorks based types is discussed in a separate section below. Beside the LonWorks based
data points there also exist M-Bus data points and Modbus data points, which are not used
in this work and therefore not described in more detail.

Data points are representations of data available on an underlying building automation bus.
Therefore every23 data point has to be assigned to a data value on a connected automation
bus. In LonWorks based systems such a data value is a network variable.

23NVC data points are the infamous exception of this rule. They are discussed in more detail in Sec-
tion 3.3.2.3.

31

Chapter 3 Interfacing Building Automation Systems

Figure 3.9: Comparison of data point types regarding the way network variables can be
assigned to them. NVC has no assigned network variable. NVE retrieves the
value of the assigned network variable by polling. NVL is a representation of a
local network variable, which can be bound to other network variables on the
LonWorks bus.

The creation of data points and the assignment to network variables has to be done by tools
which are aware of the connected building automation buses. Also the tool has to know
which nodes are located on the building automation bus and what network variable types the
nodes comprise. The i.LON 100 Configuration Utility [Ech05] is such a tool and is delivered
along side with every i.LON 100. It is a plug-in for LonMaker and can be launched by right
clicking on the i.LON 100 device in a LonMaker schematic and choosing Configure. The
Configuration Utility and the web browser interface of the i.LON 100 provide in some parts
overlapping functionality. But while the web browser interface only provide functionality to
view and configure data points, the Configuration Utility also provide means to create data
points.

The procedures to create a new data points are different for every type of data point. In the
sections below the three types (NVE, NVL, NVC) of LonWorks based data points and the
procedures to create these types of data point are discussed in more detail.

3.3.2.1 External Data Points (NVE)

NVEs are data points whose assigned network variables are on remote nodes, as shown in
Figure 3.9. These nodes have to be connected to the LonWorks bus and have to be reachable
bus by the i.LON 100. If an application queries the value of a NVE data point, the i.LON 100
data server requests the associated network variable from the remote host and delivers the
value as NVE to the application. If an application wants to change the value of a NVE
data point, the data server will send a network variable update message to the remote node.

32

Chapter 3 Interfacing Building Automation Systems

When utilizing NVE data points no binding is needed, which allows easy creation of NVE
data points, as the only information needed for creation of a NVE data point is its assigned
network variable. The network variable provides all information (type, input/output . . .) to
create the NVE. No further tasks, like binding, are needed afterwards.

The downside of the missing binding is that there is no guaranteed update of the NVE if
the assigned network variable changes. Therefore the data server has to poll the assigned
network variable in fixed time intervals. The i.LON 100 comprise two configuration properties
influencing this polling intervals.

The first property is named Poll Interval, which is a property of every data point and can
therefore be changed individually. The default value is 120 seconds. If a data point is not
read or write to in this time span, the data server will trigger a query on the LonWorks bus
to update the NVE data point to the current value of the assigned network variable. The
value of the poll interval can be changed in the web browser interface of the i.LON 100 and
in the i.LON 100 Configuration Utility.

The second property is named Data Point Life Time in the i.LON 100 Configuration Utility
and Max Age in the web browser interface of the i.LON 100. It is a global configuration
property of the i.LON 100 and applies therefore to all NVE data points. The default value is
zero, which means the configuration property has no effect. If the value is altered to a value
greater than zero the value will be interpreted as a time span in seconds by the i.LON 100.
For example if the NVE life time is set to five and an application queries the value of a
NVE data point, the data server compares the current time with a time stamp saved at the
last access of the network variable assigned to the NVE data point. If the last access of
the assigned network variable was within the last five seconds the data server will return the
currently saved value of the NVE data point and will not query the assigned network variable.
If the last access of the assigned network variable was not within the last five seconds, the
data server will query the assigned network variable and will return the new value to the
requesting application.

NVE data points can be created with the i.LON 100 Configuration Utility. For every available
network variable in the LonMaker schematic a NVE data point can be created. Applications
can use the NVE data points immediately after they have been created successfully. No
further configuration tasks are necessary.

The i.LON 100 e3 User’s Guide mentions another way [Ech06d, p. 69] to create NVE data
points by modifying the configuration file of the i.LON 100 directly. The user guide refers
to the i.LON 100 e3 Programmer’s Reference [Ech06c] for detailed instructions, but the
programmer’s reference only addresses NVL and NVC data points. It does not contain any
information regarding NVE data points, so the mentioned instructions to create NVE data
points by modifying the configuration file is missing. However while analyzing the network
traffic of the i.LON 100 Configuration Utility with a network analyzer24 it was discovered that
the Configuration Utility uses the web service of the i.LON 100 to create NVE data points.
The name of the consumed web service function is driverNVESet(), which is regrettably
not documented by Echelon. An attempt was started to use the driverNVESet() regardless
the missing documentation by analyzing the protocol used by the i.LON 100 Configuration
Utility to learn more about the correct usage of the driverNVESet() function.

24The used tool was Wireshark. It can be downloaded from http://www.wireshark.org/.

33

http://www.wireshark.org/

Chapter 3 Interfacing Building Automation Systems

In the course of analyzing the protocol it was discovered that the Configuration Utility still
uses the older version 1.1 of the i.LON 100 web service. The latest revision of the web service
is version 3.0, which is used in this master thesis. Although the driverNVESet() functions
exist in both versions their parameters are quite different. After this discovery the decision
was taken to not further work on the attempt to utilize the driverNVESet() function. The
reasons for the decision were:

� The parameters of the function driverNVESet() in version 1.0 and version 3.0 of the
i.LON 100 web service differ in structure, naming and the number of parameters. Prob-
ably it would be possible to learn about the meaning of the parameters by analyzing
the version 1.1 protocol flow, but this would be a very time consuming process.

� By analyzing the version 1.0 protocol flow it can not be determined which parameters
are mandatory, which are optional and which parameters depend on other parameters.
This knowledge could be only established by even more time consuming trial & error
procedures.

� It would be possible to switch to version 1.0 of the i.LON 100 web service. This would
have the advantage to use the same version of driverNVESet() as the Configuration
Utility. Therefore the knowledge established by analyzing the protocol could be applied
easier. But a lot of software had already been written to consume version 3.0 of the
web service. This software would have to be discarded in great parts if it would be
decided to switch to version 1.1 of the web service.

� The last and very crucial point is that the parameters of driverNVESet() comprise
some very low level information. For example the Neuron ID [Die99, p. 78] of the
node, where the assigned network variable is located, is required. Furthermore some
other numerical values like nvTypeInfo, nvIndex and nvSelector are also included
in an driverNVESet() request message. Most probably these values transport infor-
mation on the assigned network variable (this is an assumption and is not verified as
driverNVESet() has not been used in this work). The user of driverNVESet() has to
provide all this pretty low level information on the nodes and network variables. To
get this information a tool is needed which is able to extract the information from a
LonWorks network, for example LonMaker or other system integrator tools. Therefore,
if a user has to use a LonWorks-enabled tool to extract this information and provide it
to driverNVESet(), the user can just as easily use the LonWorks-enabled tool to create
NVE or NVL data points. In the end this may work out to be much more comfortable
for the user.

3.3.2.2 Local Data Points (NVL)

NVLs are data points whose assigned network variables are located on the i.LON 100 itself.
The i.LON 100 provides per default a set of network variables to interact with the provided
functionality, like alarming and scheduling. For each of these default network variables a
NVL data point exists.

Most LonWorks enabled nodes provide a specific and not changeable functionality. Therefore
the nodes also provide a fixed set of network variables. These network variables are usually
called static network variables. However some LonWorks enabled nodes support the dynamic

34

Chapter 3 Interfacing Building Automation Systems

creation [Ech00] of network variables, which are named dynamic network variables. After
creating dynamic network variables they can be used just like any other network variable. To
create dynamic network variables a LonWorks enabled tool – such as LonMaker – has to be
used as the nodes have to be notified about the network variables the user wants to create
on them.

Application scenarios for dynamic network variables are large monitoring and logging devices.
With dynamic network variables these devices are able to monitor and log any number of
network variables. For every network variable, which should be logged, a new dynamic
network variable can be created. When the node application is notified about a new dynamic
network variable, it can automatically assign its logging mechanisms to the new network
variable. This allows to log every network variable on the network which is bound to the
newly created dynamic network variable.

The i.LON 100 also supports the creation of dynamic network variables. For every created
dynamic network variable also a NVL data point will be created. The assigned network
variable of the NVL data point is the newly created dynamic network variable, as shown in
Figure 3.9. The NVL data point can be used immediately after the creation of the dynamic
network variable. But as long as the dynamic network variable is not bound to any other
network variable the NVL data point will not provide any meaningful values on read attempts
and write attempts will have no effect on other network variables. Therefore to fully integrate
NVL data points into a LonWorks based system, the assigned network variables have to be
bound to other network variables.

The necessity of binding network variables which are assigned to NVL data points requires
more work in setting up data points than in a NVE data points only scenario. However
binding eliminates the need for polling network variables as it is needed for NVE data points,
because the dynamic network variable – and therefore the NVL data point – will be updated,
when the bound network variable changes.

Similarly to NVE data points a Data Point Life Time property exists for NVL data points.
The life time property of NVL data points can be changed by utilization of the i.LON 100
Configuration Utility. The default value of the property is zero. The property indicates the
maximum time in seconds a data point value is valid after its last update. If this time passes
the value of the data point will be refreshed by querying the assigned network variable. If
the life time property is zero no such polling will happen. For NVL data points polling is not
needed as the value of NVL data points is automatically updated every time the assigned
dynamic network variable changes.

3.3.2.3 Constant Data Points (NVC)

NVCs are data points which present a (somewhat) constant value. NVC data points have no
assigned network variable (as shown in Figure 3.9), which means NVC data points do not
change if a specific network variable changes. Likewise no network variable will be changed
if a NVC data point is written to. But NVC data points are not entirely constant, because
a write attempt is able to change the value of a NVC data point.

Usually NVC data points are used as reference value. A user can define a temperature set
point and store it in a NVC data point. The control application will compare the current
temperature with the value stored in the NVC data point and can react accordingly. As the
NVC data point is not really constant the reference value can be adjusted by the user.

35

Chapter 3 Interfacing Building Automation Systems

3.3.3 Evaluation of Data Point Types

To choose a data point type for further usage in this work the types have to be compared to
each other and evaluated if their functionality suffices the requirements. These requirements
have to be defined before a comparison of data point types can happen.

One hard requirement is that the selected data point type allows reading and altering the
values of network variables, to enable interaction with other LonWorks nodes. Therefore
NVC data points are not applicable and the only remaining candidates are NVL and NVE
data points.

Further requirements are related to the management of data points related. What steps has a
user to do for creating a data point and how difficult are these steps? After all, people working
with media façades probably have no or limited knowledge of LonWorks or other building
automation systems. In this category NVE data points have a clear advantage because no
binding of network variables is required. Also the steps in LonMaker which have to be taken
to generate NVE data points are much easier than the steps involved in creating dynamic
network variables. Also interesting from the user point of view is, if it is possible to create
more than one data point in one step. This can be done for both NVE and NVL data points.

NVE data points would have a tremendous advantage if it would be possible to use the web
service function driverNVESet()25 to create NVE data points. Because this would allow
to develop applications, which can configure the i.LON 100 and its data points dynamically
according to the current usage scenario. If an application wants to switch on and off the
lights in rooms it can create the needed NVE data points. If in a later version the application
also wants to alter the position of sunblinds it just have to create the additionally needed
data points by invoking the web service function. This would immensely reduce the burden
of the user to have experience with building automation bus systems. Regrettably because
of missing documentation this is not possible.

For applications using the i.LON 100 to interface with building automation it would be also
interesting to retrieve the available data points from the i.LON 100 in an automated way.
This is possible for both NVE and NVL data point types because data points are registered
in configuration files [Ech06c, pp. 4-4–4-8] which can be retrieved from the i.LON 100 by
utilizing its FTP server. Listing 3.9 shows such an entry of a configuration file. For NVE
data points the path to the file is /config/software/dataServer/dp NVE.xml. The name of
the file for NVL data points is dp NVL.xml and can be found in the same directory. Entries
for NVL and NVE data points are identically structured. They contain UCPTindex and
UCPTpointName tags which are used as identifiers for data points and therefore have to be
unique. UCPTlocation is initially set to a string which represents the location of the data
point on the i.LON 100. The UCPTformatDescription tag describes the type of the assigned
network variable and UCPTdirection states if the assigned network variable is an input or
an output. For further information on the properties of data points and the format of the
data point files see [Ech06c, pp. 4-4–4-8]

However evaluating the config file for NVE data points is easier as no pre-installed NVE data
points exist on the i.LON 100. Therefore the application can assume that every entry in the
NVE data points file is a data point which has been created specifically for this application.
The user just have to ensure that only NVE data points exist, which should be used by the

25See Section 3.3.2.1 why it isn’t possible.

36

Chapter 3 Interfacing Building Automation Systems

<DP>

<UCPTindex >367</UCPTindex >

<UCPTpointName >NVL_outmod2_NVO08 </UCPTpointName >

<UCPTlocation >iLON100/NVL/dynamic </UCPTlocation >

<UCPTdescription/>

<UCPTformatDescription >SNVT_switch </UCPTformatDescription >

<UCPTdpSize >2</UCPTdpSize >

<UCPTbaseType >BT_STRUCT </UCPTbaseType >

<UCPTunit/>

<SCPTmaxSendTime >0.0</SCPTmaxSendTime >

<SCPTminSendTime >0.0</SCPTminSendTime >

<SCPTmaxRcvTime >0.0</SCPTmaxRcvTime >

<UCPTsettings >0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1</UCPTsettings >

<UCPTdirection >DIR_IN </UCPTdirection >

</DP>

Listing 3.9: A data point entry in an i.LON 100 configuration file is enclosed by DP tags.
NVE and NVL data point configuration entries are identically structured. The
values in the UCPTindex and UCPTpointName tags are identifiers for the data
point.

application, which is relatively easy because every NVE data point is explicitly created by
the user. On the other hand hundreds of pre-installed NVL data points – to interact with the
functionality of the i.LON 100 – exist. Applications trying to retrieve only the data points
which are useful to them, have to find a way to differentiate between pre-installed and user-
defined NVL data points. This distinction can be based on the value of the UCPTlocation tag
in Listing 3.9. For the pre-installed NVL data points the value refers to its assigned function-
ality, for instance an alarm flag, which can be set by the alarming functionality, the value is
iLON100/NVL/static/AG/AG00/AlarmFlag. For every dynamically created NVL data point
the UCPTlocation tag value equals iLON100/NVL/dynamic. Therefore the UCPTlocation tag
allows to differentiate between pre-installed and dynamically created NVL data points.

Based on above requirements a comparison shows that NVE data points have advantages in
several categories above NVL data points. NVE data points are easier to create and manage,
are easier to retrieve from the i.LON 100 and are less invasive in the existing building automa-
tion system because no binding is needed. However this comes at the price of higher latency
as NVE data points have to be polled explicitly. Therefore in the first design considerations
it was decided to utilize NVE data points but to pay special attention to keeping the system
compatible with other data point types.

Later this proved to be a wise decision. The used lamp actuator (see Chapter 6 nodes are not
responding to updates of their network variables which are assigned to NVE data points if –
and only if – the network variable is already bound. So if a network variable – for instance
one to switch on/off the light – of the lamp actuator is already bound to some other network
variable on a switch node26, a NVE data point can no longer alter the value of the assigned
network variable. If the assigned network variable is not bound, the NVE data point works
as expected. Because of this misbehavior, the utilization of NVE data points was ruled out
and it was decided to use NVL data points instead.

26This is a quite common scenario.

37

Chapter 3 Interfacing Building Automation Systems

3.4 Accessing Building Automation Data

The i.LON 100 can act as gateway between the LonWorks building automation bus and
other network technologies. This gateway functionality is implemented as a web service. The
web service allows to interface with the applications of the i.LON 100. The applications
provide the functionality described in Section 3.3.1. Amongst these applications are a data
server, a alarm generator, a data logger and a task scheduler. For each of these applica-
tions the web service provides a set of functions which can be invoked by a client. The
description of the web service can be found in the WSDL file located on the i.LON 100 at
/web/WSDL/V3.0/iLON100.wsdl.gz. For more information about WSDL see Section 3.1.

3.4.1 i.LON 100 Web Service Overview

Every application of the i.LON 100 provides at least List(), Get(), Set() and Delete() web
service functions. Some applications provide additional functions, like Read() and Write()
functions [Ech06c, pp. 3-3–3-6]. The following paragraphs provide a small introduction into
the usage and purpose of the web service functions. Some of the data server related functions
are discussed in more details in the next sections.

The response of a List function of a specific application contains a list of all elements provided
by the application. For instance invoking the function AlarmGenerator List() returns a list
of alarm generators which have been created on the i.LON 100. The response of the List()
function contains information on the available elements, needed for further processing of
the elements. The Get(), Set() and Delete() functions require as parameter a reference
on which element the function should operate. Such a reference can be given in two ways.
Either by providing an index, which is a unique integer value greater than zero, or by a name
represented as string. The response of the List() function contains both index and name of
each element.

A Get() function returns available configuration data for specific elements. The elements for
which data should be retrieved have to be addressed explicitly when invoking a Get() func-
tion. Addressing can be done by either providing the index or the name of an element. As
mentioned above the index and name of elements can be retrieved by the associated List()
function. For example the DataLogger List() function returns a list of initial information
on available data loggers. With the DataLogger Get() function additional information for
specific data loggers can be retrieved. The Get() function is similar to the List() func-
tion in that it provides information on some elements, however the Get() function provide
all available configuration information, while the List() function only provide some initial
information on elements. The DataServer Get() function is described in more detail in
Section 3.4.3.1.

The Set() function of an application can be used to alter the configuration of an element or
even to create elements. Creating elements is not possible with every Set() function, only for
those whose application allow it. For instance the function DataLogger Set() allows to create
a new data logger element on the i.LON 100 [Ech06c, p. 5-11]. However the Set() function
of the data server only allows to create NVC data points. It is not possible to create NVE
or NVL data points with the DataServer Set() function, because for creation of these data
points – as described in Section 3.3.2 – information about the underlying network variables is
needed. This would either require that the i.LON 100 has information of all available network

38

Chapter 3 Interfacing Building Automation Systems

variables in the local LonWorks network or that the user of the DataServer Set() function
provides all needed information as parameter. Both options are not really feasible as either
the i.LON 100 or the user would have to manage quite an amount of data, specifically low
level data like numeric addresses of nodes and network variables. Therefore creating NVL
and NVE data points is only possible with system integrator tools like LonMaker.

The Delete() functions allow to remove a element from a specific application. As an ex-
ample the AlarmGenerator Delete() requires the name or index of an alarm generator as
parameter. If the alarm generator with this index respectively name exists on the i.LON 100,
it will be removed. Unlike the DataServer Set() function – which only allows to create NVC
data points – the DataServer Delete() function allows to delete any kind of data point.

The data server and the alarm notifier applications additionally provide Read() and Write()
functions. These functions also require index or name of an element as parameter. The
AlarmNotifier Read() and AlarmNotifier Write() functions allow to access the log files
of alarm elements. The DataServer Read() and DataServer Write() functions allow to
retrieve respectively alter the value of a data point. They are discussed in more detail in
Section 3.4.3.2 and 3.4.3.3.

3.4.2 i.LON 100 SOAP Messages

Web services are consumed by exchanging SOAP messages. The structure of the SOAP
messages is described by the WSDL file of the web service. The i.LON 100 SOAP messages
are following some common design rules, which apply to every SOAP message exchanged
with the i.LON 100 web service. These common design rules are discussed in this section.

Every request SOAP message sent by the client has to specify which function of the web
service should be invoked. The message also has to include the necessary parameters for the
invoked function. Listing 3.10 shows the basic format of a SOAP request message.

<?xml version="1.0" encoding="utf -8" ?>

<soap:Envelope

xmlns:soap="http:// schemas.xmlsoap.org/soap/envelope/">

<soap:Body >

<FunctionName xmlns="http://wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<Parameter1 >Parameter1Value </Parameter1 >

<Parameter2 >Parameter2Value </Parameter2 >

...

</FunctionName >

</soap:Body >

</soap:Envelope >

Listing 3.10: A basic request SOAP message. The envelope contains only a body, the header
is omitted. The body specifies with FunctionName which function should be
invoked by the service provider. The parameters for the function are enclosed
by the FunctionName tag.

The soap:Envelope section is used to define a XML namespaces which will be valid for the
whole SOAP message. The optional SOAP Header section is omitted in the listing. The
soap:Body section contains the information needed for the web service consumption. This
includes the name of the function which should be invoked and the parameters which are
required by this function. The tag FunctionName in Listing 3.10 has to be replaced with the

39

Chapter 3 Interfacing Building Automation Systems

name of the function, which should be invoked. If the DataLogger List() function should be
invoked the string FunctionName has to be replaced with the string DataLogger List. The
tags Parameter1 and Parameter2 have to be renamed according to the required parameters
of the invoked function. Similarly the Strings Parameter1Value and Parameter2Value have
to be replaced with the actual parameter values.

A web service receiving a SOAP request message will parse the message and afterwards invoke
the local function described in the SOAP message. After the local function has finished the
return value of the local function will be transformed into a SOAP message and this SOAP
message will be sent back to the consumer. The SOAP message which is sent to the consumer
as answer to a web service consumption is called a SOAP response message. Similarly to the
request messages the response messages of the i.LON 100 web service follow some common
design rules. A basic example of an i.LON 100 web service response message is shown in
Listing 3.11.

<?xml version="1.0" encoding="utf -8" ?>

<SOAP -ENV:Envelope

SOAP -ENV:encodingStyle="http:// schemas.xmlsoap.org/

soap/encoding/"

xmlns:SOAP -ENV="http: // schemas.xmlsoap.org/soap/envelope/">

<SOAP -ENV:Header >

<p:messageProperties

xmlns:p="http://wsdl.echelon.com/web_services_ns/

ilon100/v3.0/ message/">

<p:UCPTtimeStamp >

2007 -08 -20 T09:33:29 .150+02 :00

</p:UCPTtimeStamp >

<p:UCPTuniqueId >03000012 f6e2</p:UCPTuniqueId >

<p:UCPTipAddress >192.168.1.222 </p:UCPTipAddress >

<p:UCPTport >80</p:UCPTport >

<p:UCPTlastUpdate >2007 -08 -16 T06:46:50Z </p:UCPTlastUpdate >

</p:messageProperties >

</SOAP -ENV:Header >

<SOAP -ENV:Body >

<FunctionNameResponse

xmlns="http://wsdl.echelon.com/web_services_ns/

ilon100/v3.0/ message/">

<Response1 >Response1Value </Response1 >

<Response2 >Response2Value </Response2 >

</FunctionNameResponse

</SOAP -ENV:Body >

</SOAP -ENV:Envelope

Listing 3.11: A basic response SOAP message of the i.LON 100. The envelope contains
a header and a body section. The header provides some optional infor-
mation. The actual response data is inside the body section. The tag
FunctionNameResponse declares the type of the response message and en-
closes the response values.

The response SOAP message of the i.LON 100 web service contains an envelope in which
a XML namespace is defined. In the envelope reside a header and a body section. In
Listing 3.11 the SOAP-ENV:Header section enlists a time stamp and some information about
the i.LON 100, like the IP address and the port on which the web service is listening. The
SOAP-ENV:Body section contains the actual response value of the invoked function. In a real
world response SOAP message the tag FunctionNameResponse would be replaced with the
name of the invoked function. If the DataLogger List() function had been invoked, the
string FunctionNameResponse in the response SOAP message would be replaced with the

40

Chapter 3 Interfacing Building Automation Systems

string DataLogger ListResponse. The tags Response1 and Response2 would have been
renamed according the type of the return value of the invoked function. Similarly the strings
Response1Value and Response2Value would have been replaced with the actual response
values.

The software developed in this master thesis utilizes only the the data server related functions
of the i.LON 100 web service, which will be discussed in the next section.

3.4.3 Web Service and Building Automation Data

The i.LON 100 can be used as a gateway to the attached building automation bus. This
gateway functionality is provided by the web service of the i.LON 100. As described in the
last sections, the web service of the i.LON 100 allows to interact with the applications of the
i.LON 100. One of the applications is a Data Server which acts as abstraction layer for the
attached building automation bus (see Section 3.3.1).

The parts of the web service which are used to interact with the data server of the i.LON 100
are utilized in this master thesis to implement an interface to building automation data. The
functions of the web service related to the data server are:

� DataServer List()

� DataServer Get()

� DataServer Set()

� DataServer Read()

� DataServer Write()

� DataServer ResetPriority()

� DataServer Delete()

These functions are documented in [Ech06c, pp. 4-8–4-31]. For the implementation of an
interface to the building automation data only the DataServer Get(), DataServer Read()
and DataServer Write() functions were needed in this work. Therefore these three functions
are described in more detail in the following sections.

3.4.3.1 DataServer Get

The DataServer Get() [Ech06c, pp .4-12–4-17] function of the i.LON 100 web service can
be used to query information about existing data points. The information only contains
information needed for operating on data points. There is no information available to which
network variable the data point is assigned or where the assigned network variable is located.

Listing 3.12 shows a SOAP message requesting information about a data point. By adding
more <DP>...</DP> entries to the request message, it is possible to query more than one
data point at once. The data point in the listing is addressed via its name, it would also be
possible to query it by its unique index by replacing the UCPTpointName tags with UCPTindex

41

Chapter 3 Interfacing Building Automation Systems

<?xml version="1.0" ?>

<S:Envelope

xmlns:S="http:// schemas.xmlsoap.org/soap/envelope/">

<S:Body >

<DataServer_Get xmlns="http://wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<DPType >

<UCPTname >NVL</UCPTname >

<DP>

<UCPTpointName >

NVL_outmod2_NVI13

</UCPTpointName >

</DP>

</DPType >

</iLONDataServer >

</DataServer_Get >

</S:Body >

</S:Envelope >

Listing 3.12: A DataServer Get() request SOAP message. The envelope omits the header
section and contains only a body. In the body the DataServer Get tag spec-
ifies the requested function and encloses as parameter a NVL data point
identified by its name.

tags and replacing the name with an integer. For instance: <UCPTindex>311</UCPTindex>.
Listing 3.12 also shows that the data server’s abstraction technology does not hide the under-
lying data point types, as already described in Section 3.3.2. The request message contains
the data point type which should be queried. The data point type is defined by the UCPTname
tags in the DPType element. In this example the queried data point is a NVL data point type.

Listing 3.13 shows the header of a real world response SOAP message to the request message
in Listing 3.12. The body section of the response message is shown in Listing 3.14. The
SOAP header of the i.LON 100 web service contains a time stamp (UCPTtimeStamp) and a
unique identification number (UCPTuniqueId) for the SOAP message and some additional
information about the i.LON 100 web service.

The actual response is located in the SOAP-ENV:Body section shown in Listing 3.14. Enclosed
in the body section is the DPType section, which provides global information on – in this case
– NVL data points. For example the life time property of NVL data point types, as described
in Section 3.3.2.2, is represented in the SOAP response message by the value between the
UCPTlifeTime tags.

Enclosed in the DP section resides the information on the queried data point. The section
contains name (UCPTpointName) and index (UCPTindex) of the data point, the type of the
underlying network variable (UCPTformatDescription), and the direction (UCPTdirection)
of the data point – respectively if the data point is assigned to an input or an output network
variable.

Additionally presets can be defined for every data point. These presets are described in
Listing 3.14 via the ValueDef tags. A preset is a shortcut for an explicit value of a data
point. The network variable assigned to the data point in the listing is of type SNVT switch.
The only applicable values for such a network variable are 100.0 1 and 0.0 0 – representing
the switched on respectively the switched off state. The presets can be used instead of this
explicit values when altering the value of a data point. For example if an application wanted

42

Chapter 3 Interfacing Building Automation Systems

<?xml version="1.0" encoding="utf -8" ?>

<SOAP -ENV:Envelope SOAP -ENV:encodingStyle=

"http:// schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP -ENV="http: // schemas.xmlsoap.org/soap/envelope/">

<SOAP -ENV:Header >

<p:messageProperties xmlns:p="http: //wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<p:UCPTtimeStamp >

2007 -08 -20 T09:33:29 .150+02 :00

</p:UCPTtimeStamp >

<p:UCPTuniqueId >03000012 f6e2</p:UCPTuniqueId >

<p:UCPTipAddress >192.168.1.222 </p:UCPTipAddress >

<p:UCPTport >80</p:UCPTport >

<p:UCPTlastUpdate >2007 -08 -16 T06:46:50Z </p:UCPTlastUpdate >

</p:messageProperties >

</SOAP -ENV:Header >

Listing 3.13: SOAP header of a DataServer Get() response message. The header is an
optional part of a SOAP message, the i.LON 100 web service uses the header
to provide additional information, such as a time stamp and configuration
values.

to change the value of the data point in Listing 3.14, the application could use the string
ON as value when writing to a data point. The data server would translate this string into
100.0 1 because this preset has been defined for this data point. For more information on
writing to data points see Section 3.4.3.3.

3.4.3.2 DataServer Read

The DataServer Read() [Ech06c, pp .4-20–4-25] function of the i.LON 100 web service can
be used to retrieve the current value and status information of specific data points. The
data points can be addressed either by name or by index. Additionally it is possible to
only query data points which have changed in a specified time frame. Listing 3.15 shows a
DataServer Read() request SOAP message which addresses a NVL data point via its index,
because that is the common usage of this function in this work.

The DataServer Read() response SOAP message to above request is shown in Listing 3.16.
As in every response message the i.LON 100 web service provides a SOAP header section in
its response message. The actual response data resides in the SOAP body section.

For every retrieved data point a DP section exist. It contains some information which is also
available in the response of the DataServer Get() function, for example: UCPTpointName,
UCPTindex and UCPTformatDescription. The actual value of the data point is enclosed by
the UCPTvalue tags. The UCPTvalueDef tags enclose the name of the preset assigned to the
current value. The DP section also contains a UCPTpointUpdateTime tag, which contains the
point in time the value of the data point was updated to the value of the assigned network
variable.

Compared to the DataServer Get() response the DataServer Read() response message in-
cludes a UCPTfaultCount tag, which states the number of data points on which an error
occurred while reading the values. If the fault count is zero as in this example all data point
values have been retrieved successfully. If an error occurred while retrieving the current value
of a data point, UCPTfaultCount would be greater zero and the DP sections representing the

43

Chapter 3 Interfacing Building Automation Systems

<SOAP -ENV:Body >

<DataServer_GetResponse xmlns="http://wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<DPType >

<UCPTlastUpdate >2007 -08 -16 T06:46:49Z </UCPTlastUpdate >

<UCPTlifeTime >0</UCPTlifeTime >

<UCPTindex >34491</UCPTindex >

<UCPTname >NVL</UCPTname >

<DP>

<UCPTindex >339</UCPTindex >

<UCPTpointName >NVL_outmod2_NVI13 </UCPTpointName >

<UCPTlocation >iLON100/NVL/dynamic </UCPTlocation >

<UCPTdescription ></UCPTdescription >

<UCPTformatDescription >

SNVT_switch

</UCPTformatDescription >

<UCPTdpSize >2</UCPTdpSize >

<UCPTbaseType >BT_STRUCT </UCPTbaseType >

<UCPTunit ></UCPTunit >

<SCPTmaxSendTime >0.0</SCPTmaxSendTime >

<SCPTminSendTime >0.0</SCPTminSendTime >

<SCPTmaxRcvTime >0.0</SCPTmaxRcvTime >

<UCPTsettings >

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1

</UCPTsettings >

<UCPTdirection >DIR_OUT </UCPTdirection >

<ValueDef >

<UCPTindex >0</UCPTindex >

<UCPTname >OFF</UCPTname >

<UCPTvalue >0.0 0</UCPTvalue >

</ValueDef >

<ValueDef >

<UCPTindex >1</UCPTindex >

<UCPTname >ON</UCPTname >

<UCPTvalue >100.0 1</UCPTvalue >

</ValueDef >

</DP>

</DPType >

</iLONDataServer >

</DataServer_GetResponse >

</SOAP -ENV:Body >

</SOAP -ENV:Envelope >

Listing 3.14: SOAP body of a DataServer Get() response message. The type of the mes-
sage is defined by the DataServer GetResponse tag. The DP tag contains
data on the requested data point.

44

Chapter 3 Interfacing Building Automation Systems

<?xml version="1.0" ?>

<S:Envelope xmlns:S="http:// schemas.xmlsoap.org/soap/envelope/">

<S:Body >

<DataServer_Read xmlns="http: //wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<DPType >

<UCPTname >NVL</UCPTname >

<DP>

<UCPTindex >311</UCPTindex >

</DP>

</DPType >

</iLONDataServer >

</DataServer_Read >

</S:Body >

</S:Envelope >

Listing 3.15: A DataServer Read() request SOAP message. The envelope omits the
header section and contains only a body. In the body the DataServer Read
tag specifies the requested function and encloses as parameter a NVL data
point identified by its index.

faulty data points would contain faultcode and faultstring elements. These two elements
state the type of the error [Ech06c, pp. 2-6–2-8]. If in the case of an error a value is provided
in the Read() response message, it is not ensured that this value is valid.

3.4.3.3 DataServer Write

The DataServer Write() [Ech06c, pp. 4-26–4.29] function of the i.LON 100 web service can
be used to alter the value of data points. The data points which should be changed have to
be addressed either by specifying their name or their index. Also the type of the data point
has to be provided in the DPType section.

As the purpose of the DataServer Write() function is to alter the value of a data point,
the value to which the data point should be updated to, has to be provided for every data
point. Listing 3.17 shows a DataServer Write() request message which addresses one data
point by index and wants to set the value of this data point to 100.0 1. Instead of using
the UCPTvalue tag and providing an explicit value also the UCPTvalueDef tag with a preset
value could have been used.

Listing 3.18 shows the DataServer Write() response SOAP message for the above request
message. Similarly to the other response messages the i.LON 100 includes a SOAP header
section in the DataServer Write() response message. The actual response data resides in
the SOAP body section. The response contains the name and number of every data point
written to.

As in the DataServer Read() response message a UCPTfaultCount is included in response
message shown in Listing 3.18. The fault count value states the number of data points on
which an error occured while altering its value. In the listed response message the fault count
is zero, therefore all data points have been updated to the new value. If an error would have
occur ed the DP section representing the faulty data point would contain a faultcode and a
faultstring tag, which would state the type of the error [Ech06c, p. 2-6–2-8]. The value of
the data point and the assigned network variable are undefined if the DataServer Write()
function fails.

45

Chapter 3 Interfacing Building Automation Systems

<?xml version="1.0" encoding="utf -8" ?>

<SOAP -ENV:Envelope SOAP -ENV:encodingStyle=

"http:// schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP -ENV="http: // schemas.xmlsoap.org/soap/envelope/">

<SOAP -ENV:Header >

<p:messageProperties xmlns:p="http: //wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<p:UCPTtimeStamp >

2007 -08 -21 T09:40:54 .920+02 :00

</p:UCPTtimeStamp >

<p:UCPTuniqueId >03000012 f6e2</p:UCPTuniqueId >

<p:UCPTipAddress >192.168.1.222 </p:UCPTipAddress >

<p:UCPTport >80</p:UCPTport >

<p:UCPTlastUpdate >2007 -08 -21 T07:39:00Z </p:UCPTlastUpdate >

</p:messageProperties >

</SOAP -ENV:Header >

<SOAP -ENV:Body >

<DataServer_ReadResponse xmlns="http://wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<UCPTfaultCount >0</UCPTfaultCount >

<DPType >

<UCPTindex >34491</UCPTindex >

<UCPTname >NVL</UCPTname >

<DP>

<UCPTindex >311</UCPTindex >

<UCPTpointName >NVL_outmod1_NVI01 </UCPTpointName >

<UCPTpointUpdateTime >

2007 -08 -21 T09:38:59 .260+02 :00

</UCPTpointUpdateTime >

<UCPTformatDescription >

SNVT_switch

</UCPTformatDescription >

<UCPTvalue >0.0 0</UCPTvalue >

<UCPTvalueDef >OFF</UCPTvalueDef >

<UCPTunit ></UCPTunit >

<UCPTpointStatus >AL_NUL </UCPTpointStatus >

<UCPTpriority >255</UCPTpriority >

</DP>

</DPType >

</iLONDataServer >

</DataServer_ReadResponse >

</SOAP -ENV:Body >

</SOAP -ENV:Envelope >

Listing 3.16: A DataServer Read() response SOAP message containing a header section
with information on the i.LON 100 status and a body section, which con-
tains the actual response data. The type of the message is defined by the
DataServer ReadResponse tag. The DP tag contains some basic information
on the requested data point and the current value (UCPTvalue).

46

Chapter 3 Interfacing Building Automation Systems

<?xml version="1.0" ?>

<S:Envelope xmlns:S="http:// schemas.xmlsoap.org/soap/envelope/">

<S:Body >

<DataServer_Write xmlns="http: //wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<DPType >

<UCPTname >NVL</UCPTname >

<DP>

<UCPTindex >310</UCPTindex >

<UCPTvalue >100.0 1</UCPTvalue >

</DP>

</DPType >

</iLONDataServer >

</DataServer_Write >

</S:Body >

</S:Envelope >

Listing 3.17: A DataServer Write() request SOAP message. The envelope omits the
header section and contains only a body. In the body the DataServer Write
tag specifies the requested function and encloses as parameter a NVL data
point identified by its index.

<?xml version="1.0" encoding="utf -8" ?>

<SOAP -ENV:Envelope SOAP -ENV:encodingStyle=

"http:// schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP -ENV="http: // schemas.xmlsoap.org/soap/envelope/">

<SOAP -ENV:Header >

<p:messageProperties xmlns:p="http: //wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<p:UCPTtimeStamp >

2007 -08 -20 T09:33:29 .490+02 :00

</p:UCPTtimeStamp >

<p:UCPTuniqueId >03000012 f6e2</p:UCPTuniqueId >

<p:UCPTipAddress >192.168.1.222 </p:UCPTipAddress >

<p:UCPTport >80</p:UCPTport >

<p:UCPTlastUpdate >2007 -08 -16 T06:46:50Z </p:UCPTlastUpdate >

</p:messageProperties >

</SOAP -ENV:Header >

<SOAP -ENV:Body >

<DataServer_WriteResponse xmlns="http://wsdl.echelon.com/

web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<UCPTfaultCount >0</UCPTfaultCount >

<DPType >

<UCPTindex >34491</UCPTindex >

<UCPTname >NVL</UCPTname >

<DP>

<UCPTindex >310</UCPTindex >

<UCPTpointName >NVL_outmod1_NVI00 </UCPTpointName >

</DP>

</DPType >

</iLONDataServer >

</DataServer_WriteResponse >

</SOAP -ENV:Body >

</SOAP -ENV:Envelope >

Listing 3.18: A DataServer Write() response SOAP message containing a header section
with information on the i.LON 100 status and a body section, which con-
tains the actual response data. The type of the message is defined by the
DataServer WriteResponse tag. The DP tag contains only basic information
on the requested data point. If writing to the data point had failed, tags
notifying about the error would be present.

47

Chapter 3 Interfacing Building Automation Systems

3.5 Evaluation of Web Service Frameworks

The last section described the utilization of SOAP (Simple Object Access Protocol) and
therefore XML files to communicate with the i.LON 100 web service. For every web service
consumption attempt XML files have to be created and transmitted via HTTP. Then the
response XML files have to be received via HTTP and parsed afterwards. All these steps have
to be repeated for every web service consumption. To reduce the burden of the developers
working on web services and web service clients, specialized frameworks exist.

For SOAP based web services exist a great number of frameworks27, which are sometimes
called SOAP stacks. For this master thesis some SOAP stacks have been evaluated to choose
one for utilization in the building automation interfacing system.

As programming language Java28 has been chosen for this work, because most of the available
SOAP stacks are developed for Java and because its relative29 platform independency ensures
that the produced application will be usable on the platform the media façade producers and
users are using.

The next sections will discuss some SOAP stacks available for the Java programming lan-
guage. Their features, the provided tools and the ways to utilize the stacks will be described
and evaluated.

3.5.1 Apache Extensible Interaction System

The Apache eXtensible Interaction System (Axis) is a SOAP stack developed within the
Apache30 project. It is a well-known and widely deployed web service framework because it
is freely available since 2001 already. Actually there exist two totally different version of the
Axis framework: Axis131, which was the first attempt of the Apache project to develop a
web service framework and Axis232 which is a complete rewrite of Axis1. In this work only
version 2 was tested.

The Axis2 framework provides functionality for building web service providers and for build-
ing web service clients. In the evaluation only the part relevant for clients was considered.
For the implementation of clients the tools delivered with the stack are a very important part
of the provided functionality, as mentioned in Section 3.1.1. Most SOAP stacks provide a
tool, which is able to transfrom the description of a web service – provided in a WSDL file
– to source code. The produced source code supports the developers in building a client for
the web service described in the WSDL file. The relevant tool in Axis2 is called wsdl2java.

When wsdl2java is invoked it parses the provided WSDL file and essentially produces a
Java class for every element included in a SOAP request message or in a SOAP response
message. A DataServer Read request message is shown in Listing 3.16. The SOAP body
of the request message contains the elements DataServer Read, iLONDataServer, DPType,
UCPTname, DP and UCPTindex. For every of this elements a Java class is generated. The name

27For a not exhaustive list look at: http://en.wikipedia.org/wiki/List_of_Web_service_Frameworks
28The used version was Java Standard Edition 6, available at http://java.sun.com/javase/6/
29Java is not fully platform independent because not for every platform exists a Java Virtual Machine.
30http://www.apache.org/
31http://ws.apache.org/axis/
32http://ws.apache.org/axis2/

48

http://en.wikipedia.org/wiki/List_of_Web_service_Frameworks
http://java.sun.com/javase/6/
http://www.apache.org/
http://ws.apache.org/axis/
http://ws.apache.org/axis2/

Chapter 3 Interfacing Building Automation Systems

of the generated Java class is similar to the corresponding element in the SOAP message.
To invoke a DataServer Read() function of the web service the relevant classes have to be
instantiated and nested similar to the SOAP request message. This is shown in Listing 3.19.

DS_Read dsread = new DS_Read ();

DPType_type55 dpt = new DPType_type55 ();

dpt.setUCPTname("NVL");

DP_type54 dp = new DP_type54 ();

dp.setUCPTindex (311);

// nesting classes inside the other classes according to SOAP message

dpt.addDP(dp);

dsread.addDPType(dpt);

// invoking the web service function

DataServer_ReadResponse resp = stub.DataServer_Read(dsread);

Listing 3.19: Utilizing classes created by Axis2 to consume the web service function
DataServer Read(). The code requests the current value of a NVL data
point, identified by the index 311. The response is stored in the class
DataServer ReadResponse.

Code to consume the i.LON 100 web service function DataServer Read() with Axis2 gen-
erated classes is shown in Listing 3.19. Execution of this code produces the request SOAP
message in Listing 3.15. The class DS Read corresponds to the DataServer Read tag in the
SOAP request message. The classes DPType type55 and DP type54 correspond to the DPType
and DP tags in the request message and define the type of the data point respectively identify
a specific data point. The last line in Listing 3.19 actually starts the consumption of the web
service, the DataServer ReadResponse tag in the response SOAP message in Listing 3.16
corresponds to the DataServer ReadResponse class in Listing 3.19.

By using the classes generated by wsdl2java no handling of XML files is required. The
postfixes typeXX of DPType and DP in Listing 3.19 are added by wsdl2java because the
DPType and DP appear more than once in the WSDL file.

3.5.2 Java API for XML – Web Services

Java API 33 for XML – Web Services34 (JAX-WS) is a web service framework for implemen-
tation of web service clients. Support for developing web service providers is not included.
JAX-WS has been considered for usage in this work because it is included in the Java 6
distribution and is therefore easy to retrieve and install. However JAX-WS already existed
before inclusion into the standard Java distribution. The version of JAX-WS included in
Java 6 is 2.0.

The tool included in JAX-WS for transforming a WSDL web service description into Java
classes is called wsimport and is included in the Java 6 distribution. Similarly to the Axis2
tool wsdl2java it generates a Java class for every XML element which appears in either
a SOAP request or a SOAP response message. For example every XML element in a
DataServer Read() request message, shown in 3.15, is transformed in a Java class. The
web service function DataServer Read() can be consumed by instantiating the correspond-
ing Java classes. Listing 3.20 shows the code to consume the DataServer Read() function
of the i.LON 100 web service by utilizing the classes generated by wsimport.

33API: Application Programming Interface
34https://jax-ws.dev.java.net/

49

https://jax-ws.dev.java.net/

Chapter 3 Interfacing Building Automation Systems

DSRead dsread = new DSRead ();

DSRead.DPType dpt = new DSRead.DPType ();

dpt.setUCPTname("NVL");

DSRead.DPType.DP dp = new DSRead.DPType.DP();

dp.setUCPTindex (311);

// nesting classes inside the other classes according to SOAP message

dpt.getDP (). add(dp);

dsread.getDPType (). add(dpt);

// invoking the web service function

DSReadInfo resp = stub.dataServerRead(dsread);

Listing 3.20: Utilizing classes created by JAX-WS to consume the web service function
DataServer Read(). The code requests the current value of a NVL data
point, identified by the index 311. The response is stored in the class
DataServer ReadResponse.

The Java classes corresponding to XML elements in SOAP messages have to be nested ex-
actly like the XML elements are structured inside the SOAP messages. Listing 3.20 shows
this nesting which is done by calling add() functions. The code in this listing generates a
DataServer Read() request messages, which queries a NVL data point with the index 311.
The request message is shown in Listing 3.15. The actual consumption of the web service is
initiated with the last line in Listing 3.20. The class DSReadInfo in the last line corresponds
to the response SOAP message of DataServer Read() shown in Listing 3.16.

The code for consuming the DataServer Read() web service function with JAX-WS is very
similar to the code required for Axis2, the biggest difference is that JAX-WS defines the
classes nested according to the XML files. For example the class DPType resides in class
DSRead. Because of this nesting the class names of JAX-WS generated classes do not have
such postfixes as the classes generated by Axis2.

3.5.3 Results of Web Service Framework Evaluation

At first Axis (version 2) was chosen to build upon in this work, because it exists since
2001, which is a long period of time for Internet-related technologies. The Axis project is
well known in the web service eco-system and is recognized as proven and stable product.
However while developing the parts to consume the i.LON 100 web service a bug was discov-
ered. The elements of the DPType section in the SOAP response message of the i.LON 100
DataServer List() function are not arranged as described in the WSDL file of the i.LON 100
web service. According to the WSDL the UCPTindex and UCPTpointName elements should
be the first elements in the DP section. But in the actual SOAP response message these two
elements are at the end of the DP section35.

The incorrect sequence of XML tags in the DataServer List() response SOAP message is
shown in Listing 3.21. According to the WSDL description of the i.LON 100 web service the
tags UCPTindex and UCPTname at the end of the listing should be the first elements inside
the DPType structure. Although the sequence of the elements does not comply to the WSDL
description the content of the response is correct nevertheless, only the sequence of tags is
incorrect. But a problem arises, because Axis2 fails when parsing this wrongly sequenced

35This error is documented at http://webserv.echelon.com/default.asp?action=9&boardid=1&read=

6250&fid=13.

50

http://webserv.echelon.com/default.asp?action=9&boardid=1&read=6250&fid=13
http://webserv.echelon.com/default.asp?action=9&boardid=1&read=6250&fid=13

Chapter 3 Interfacing Building Automation Systems

<DataServer_ListResponse

xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/ message/">

<iLONDataServer >

<DPType >

<SCPTobjMajVer >3</SCPTobjMajVer >

<SCPTobjMinVer >2</SCPTobjMinVer >

<UCPTcurrentConfig >1.1</UCPTcurrentConfig >

<UCPTlastUpdate >2007 -09 -20 T07:47:41Z </UCPTlastUpdate >

<UCPTlifeTime >0</UCPTlifeTime >

<UCPTindex >24383</UCPTindex >

<UCPTname >NVE</UCPTname >

...

Listing 3.21: Incorrect sequence in DataServer List() response SOAP message. The
UCPTindex and UCPTname elements should be the first elements inside the
DPType structure.

response message. Therefore it was decided to abandon Axis2 and utilize another SOAP
stack instead.

As Axis2 could not be used because of the incorrect sequence elements in DataServer List
response messages it was decided to switch36 to another web service framework, namely JAX-
WS. It was decided to use JAX-WS because it is included in the Java 6 standard distribution.
This ensures availability and an easier install process for users of the developed software.

The version of JAX-WS included in the Java 6 distribution is 2.0. Regrettably this version
of the tool wsimport produces an error when parsing the WSDL file of the i.LON 100 web
service. Fortunately version 2.1 of JAX-WS was already available, which can be installed on
top of the version included in Java 6 37. This update resolved the issues and wsimport was
able to successfully parse the WSDL file and generate the corresponding Java classes.

36Ironically, the DataServer List function is not used in the software at the moment, because the data
points are not retrieved from the i.LON 100 but have to be pre-defined in a configuration file (see Section 6.3).
However a switch back to Axis2 was not done, because if the requirement to consume DataServer List arises
in the future the software will be prepared for it.

37Instructions how to install JAX-WS 2.1 with Java 6 can be found at: https://jax-ws.dev.java.net/

guide/Using_JAX_WS_2_1_with_JavaSE6.html

51

https://jax-ws.dev.java.net/guide/Using_JAX_WS_2_1_with_JavaSE6.html
https://jax-ws.dev.java.net/guide/Using_JAX_WS_2_1_with_JavaSE6.html

Chapter 4

Building Automation and Cognitive
Science

The technology deployed in buildings has changed quite a lot in the last century. Fifty years
ago most buildings comprised room lighting and, depending on climate conditions, heating. In
today’s modern buildings these two tasks are still among the most important, but a lot of other
technologies have been added. Additionally to heating, ventilation and air conditioning have
grown to be so basic functionality of a building that the term HVAC (Heating, Ventilation, Air
Conditioning) has been coined to refer to this part of building technology. HVAC and room
lighting are the origins of modern building automation. Building automation today refers
to distributed and networked systems deployed in buildings and responsible for controlling
environment parameters.

With the evolving computer technology and the development of field buses the possibility
arose to build all the diverse systems deployed in a building on a common foundation [Rus03,
p. 2]. Field buses which are specifically designed for utilization in building automation systems
can act as such a foundation.

A common foundation on which systems can operate and interact also allows easier integration
of new systems and functionality. Today’s buildings provide much more than automated
room lighting and HVAC. For example the information gathered throughout the building
automation system can be used to optimize energy consumption. Access control for special
sections in a building and room management are also applications which are integrated into
building automation systems.

The number of applications in a building automation system will grow even faster in the
future [PP05]. New functionality like automatic initiation of repairs and automatic reaction
on extra-ordinary events one of the possible applications which will be seen in the near
future. As the number of applications grow the number of sensors, actuators and nodes will
grow rapidly too [Die00]. Management of the expected amount of sensors and actuators will
become very hard or even impossible with today’s approaches [PP05]. One of the goals of
the Artificial Recognition System (ARS) is to solve this scalability problem.

ARS attempts to heave building automation onto the next evolutionary level. By hiding
and abstracting the low level details of building automation and generating a more generic
and overall view on buildings. Such an overall view of a building which allows to detect
extra-ordinary events and situations may be of use for media façades too.

53

Chapter 4 Building Automation and Cognitive Science

4.1 Artificial Recognition System

The ARS project aims to develop and implement a technical model of the human brain. The
technical model described in [Pra06] and [Bur07] is based on models developed by scientific
disciplines like neuroscience and psychoanalysis. The human brain is a system which is
capable of dealing with an great number of “sensors”. The human mind is able to react
on input data and develop strategies by evaluating the input data. These two “features” of
humans are approached in two subproject within the ARS project [DLP+06].

� Artificial Recognition System – Perception (ARS-PC) is an approach to implement
the perception ability of the human brain. The chosen approach for ARS-PC is called
symbolization. Symbolization refers to a “condensing” process which transforms a huge
amount of input data into information of higher value. The pieces of information with
higher value are called symbols [Rus03].

� Artificial Recognition System – Psychoanalysis (ARS-PA) is an approach to decision
making. The goal is to implement an information-classifying-system based on emotions
as described by psychoanalytic theories. The classified information and the emotions
are utilized by an implementation of Freud’s Ego-Superego-Id model to perform the
actual decision making.

ARS-PC is designed to condense the data output of sensors into high level information, called
symbols. All aggregated symbols represent the world as it is perceived by the system. The
entirety of aggregated high level symbols is called world representation. ARS-PA operates
on a world representation and makes decisions based on the state of the perceived world.
Decisions lead to actions which are transformed into the real world via actuators. A more
detailed description of ARS-PA can be found in Section 4.1.2. The correlation between
ARS-PC, ARS-PA and the real world are shown in Figure 4.1.

4.1.1 Artificial Recognition System – Perception

As described above ARS-PC transforms sensor values into symbols, which collectively are
a world representation. The transformation process from sensors to symbols is called sym-
bolization. A symbol is defined in [Pra06, p. 31] as collections of information, which are
contained in the symbol itself and in its properties. In ARS different types of symbols exist.
The type of a symbol itself contains information. For example a symbol “chair” and a sym-
bol “movement” contain already information on the nature of the symbol, without further
investigation of the symbol properties. The properties of a symbol define further information
like the position of a chair or the velocity of a movement.

In ARS a hierarchy of symbol levels is defined. The hierarchy consists of three levels: rep-
resentation symbol level, snapshot symbol level and micro symbol level [Pra06]. Figure 4.2
shows these three levels. Symbols are, depending on their position in the hierarchy, classified
as representation symbols, snapshot symbols or micro symbols.

� Micro symbols are located at the bottom of the hierarchical symbol model of ARS.
Sensor values are represented by micro symbols. Micro symbols are generated, deleted
or changed whenever sensor values change. The number of existing micro symbols is
related to the number of existing sensors.

54

Chapter 4 Building Automation and Cognitive Science

Figure 4.1: Interaction of the Artificial Recognition System with the real world [Ric07].
Sensors measure the real world and produce sensor values. ARS-PC generates
a world representation, which is used by ARS-PA to make decisions. The
actions derived from decisions are applied to the real world via actuators.

� Snapshot symbols are symbols which represent the perceived world in a specific moment,
they represent a snapshot of the world. Snapshot symbols are missing continuity in time.

� Representation symbols are on the highest level of the symbol hierarchy. They col-
lectively form the world representation. Similar to snapshot symbols representation
symbols represent the perceived world, but in contrast to snapshot symbols represen-
tation symbols are not restricted to a specific moment, they also include the history of
world representation.

The world representation and therefore the representation symbols are created by means of
symbolization. Symbolization refers to the process of forming symbols on a specific level
in the hierarchical symbol model from symbols on the level below. Micro symbols are an
exception in this regard as they are not created from symbols but directly from sensor values.

Figure 4.2 shows the process of symbolization and the distribution of symbols among the
three levels. Symbols are represented as cuboids of different sizes. The cuboid representa-
tions of symbols in Figure 4.2 are smallest for micro symbols because the size relates to the
informational value of symbols of a specific level. The cuboid representation of representation
symbols are bigger than for other symbol types because representation symbols contain the
highest informational value.

The highest number of symbols exist on the micro symbol level. Snapshot symbols are created
from several micro symbols, resulting in a decreased number of symbols in the snapshot sym-
bol level than in the micro symbol level. But snapshot symbols have a higher informational
value than micro symbols. As an example a person moving through a room is considered.

55

Chapter 4 Building Automation and Cognitive Science

Figure 4.2: Symbol levels of ARS [Pra06]. Sensor value updates are transformed into micro
symbols. Micro symbols are aggregated into snapshot levels, which only repre-
sent one point in time. Representation symbols emerge from snapshot symbols.
The representation symbols form the world representation.

Assuming the room is accordingly equipped, movement sensors, light barriers and tactile
sensors mounted on the floor will be triggered. The change in value of these sensors leads
to creation of new micro symbols. The changes on the micro symbol level triggers creation
of snapshot symbols. For example the micro symbols can be condensed to several snapshot
symbols of type “person position”. Each of the snapshot symbols indicate only the presence
of a person at a specific position at a specific time.

On the next level, the representation symbol level, the snapshot symbols are condensed even
further. The snapshot symbols, each representing the person at a specific position, can be
merged into one “person” symbol. A representation symbol of type “person” is created when
the person enters the room and is then updated with the new position by evaluating snapshot
symbols. The person symbol can contain the previous positions of the person and several
other attributes of the person. The person symbol is persistent as long as the person stays
in the room, only the attributes of the symbol are updated. Updating existing symbols leads
to lesser symbol creation and deletion and ensures high informational value of representation
symbols.

ARS defines two more symbol types beside the already described symbol types. These sym-
bols are named scenario symbols and action symbols and are only created by applications
operating on the world representation. Scenario symbols are created by applications which
observe the world representation to detect specific scenarios. When the application detects a

56

Chapter 4 Building Automation and Cognitive Science

scenario it can create a scenario symbol add it to the world representation. Other applications
can react to such scenarios and emit action symbols. An action symbol contains instructions
how to react and influence the outer world.

4.1.2 Artificial Recognition System – Psychoanalysis

ARS-PA is a bionic approach to decision making. It is an attempt to implement psychoan-
alytical models of the human mind into a technical system. Figure 4.3 shows the basic data
flow in an ARS system. It is currently worked on integration of ARS-PC as the perception
module in Figure 4.3. Until then a simulator, the Bubble Family Game [DZL07], is used as
to provide a world representation.

Figure 4.3: Data Flow in ARS-PA [DZL07]. The perception unit build a world represen-
tation of the inner and outer world. The pre-decision unit rates the perceived
symbols based on basic emotions and drives. The decision unit contains sub-
units for fast reactions and strategic decisions. The action unit applies decision
to the real world.

In the context of ARS-PA the world representation includes not only the perceived “outer
world” but also an “inner world”. The outer world is the “real world” in which the system
operates. The inner world represents the internal state of the ARS-PA system. The world
representation contains representation symbols for both, the outer world and the inner world.
These symbols are first evaluated in the pre-decision unit. The evaluation process in the pre-
decision unit is based on basic emotions and drives in analogy to the human mind. The basic
emotions are rage, fear, panic and a seeking system [BLPV07]. For example if the emotion
panic is very high (and the system may try to escape a dangerous situation) the perception
of a barrier in its way is rated very high, while if the system were in a relaxed state a barrier
would be rated much lower. The evaluation of the perception symbols therefore allows a
filtering of important information.

57

Chapter 4 Building Automation and Cognitive Science

After evaluation in the pre-decision unit the rated representation symbols are forwarded to
the decision unit which consists of three sub-units:

� The reactive decision unit is the simplest unit and is designed for immediate reactions
on dangerous situations.

� The routine decision unit is a more sophisticated decision unit which is responsible for
execution of a sequence of actions.

� The reflexive decision unit is the most time-consuming decision unit. Complex emotions
and the ego are responsible for decision making in the reflexive decision unit. The ego
creates long-term plans and is therefore the strategic unit, the complex emotions are
similar to basic emotions used as evaluation system. For example a complex emotion
“appreciation” can be used to decide which decision among others should be chosen.

The decisions made by the decision units of ARS-PA are forwarded to the action unit. The
action unit is responsible for conflict resolution if decisions contradict each other and is
responsible for actually applying the actions in the real world.

The concepts used in ARS-PA, like emotions and drives, are not directly applicable to building
automation. The concepts has to be mapped to concepts used in building automation. As
example [DLP+06] proposes to interpret the drive “hunger” as ration between consumed and
available energy. Therefore a high “hunger” level would result in decisions which are reducing
the consumed energy.

4.1.3 Evaluation of the Artificial Recognition System

ARS was considered to act as the “translation system” described in Chapter 1. Such a
translation system is required to build a bridge between the different semantics of building
automation and media façades. One reason project ARS was started at the ICT is, that a
traditional building automation system is not able to cope with the expected growth in the
amount of data. Therefore ARS is designed to manage and cope with large amounts of data.
It was decided to evaluate ARS if it could be used as the required translation system. If ARS
can be used as translation system, ways have to be found how ARS can be incorporated in
existing building automation and media façade systems.

Building automation operates on very low level data like temperature values of sensors and
binary values of actuators. Media façades do not have any interest in such low level data. For
media façades a global view of the building automation data would be interesting. Not the
temperature of the room or which lights are turned on are of interest, but data on the general
occupancy of the building, detection of stress scenarios or social happenings like parties.

The goal of ARS-PC could be described as abstraction of specific sensor data to generate a
more global view of the environment. This is exactly what media façades could be interested
in. Therefore the natural choice was to utilize ARS-PC as translation system between building
automation and media façades. ARS-PA was also considered for utilization as translation
system. Modifications to the ARS-PA simulation environment to enable input of building
automation data was evaluated, but several problems appeared:

58

Chapter 4 Building Automation and Cognitive Science

� First, ARS-PA was not designed to operate with low level building automation data.
Maybe it would be possible to adapt ARS-PA accordingly but it is hard to estimate
the complexity of the task.

� Second, its not clear what results a ARS-PA system will deliver if it is adapted to
building automation data.

� Third, ARS-PC’s functionality matches exactly the requirements a translation system
has to fulfill.

Because of above reasons ARS-PC was chosen to be utilized as translation system. However
ARS-PA may be a valuable addition once ARS-PA uses the world representation generated
by ARS-PC, because the media façade could integrate decisions and the internal emotional
state of ARS-PA in its appearance. Therefore a future integration of ARS-PA should be
taken into account while designing the translation system.

For now it was decided to integrate ARS-PC as translation system between building automa-
tion and media façade. ARS-PC should transform the input building automation data into
representation symbols. The resulting representation symbols will be forwarded to the me-
dia façade system. The implementation of ARS-PC integration and representation symbol
forwarding is described in Section 6.4. The next section describes the technical design of
ARS-PC.

4.2 Technical Design of the Artificial Recognition System

This section gives a brief overview of the technical design of ARS-PC. The goal of the descrip-
tion is to identify possible ways to integrate ARS-PC in building automation systems and how
the generated world representation can be provided to media façades. Therefore description
is focused on the input and output aspects of ARS-PC not on internal data processing.

4.2.1 Sources of Input Data

ARS-PC has 3 different start-up configurations. They differ in what graphical user interface
(GUI) is started to show the generated symbols and what input data is used. ARS will be
used without a GUI, while acting as translation system between building automation and
media façades therefore they will be neglected in the further description of ARS-PC. The
configuration of ARS-PC are:

� The live configuration uses sensor values from the Smart Kitchen, see Section 4.2.3, as
input values.

� The database configuration retrieves sensor values from a database. The sensor values
originate from the Smart Kitchen and have been recorded for testing purposes.

� The simulation configuration also retrieves sensor values from a database. But these
sensor values originate from a simulation environment [Har07], which is able to simulate
sensor values in an occupied building.

59

Chapter 4 Building Automation and Cognitive Science

Each of the configurations implements its own start-up classes and its own micro symbol
factory (msf live, msf database and msf simulation). A micro symbol factory is a software
component which creates micro symbols. The micro symbol factories are described in more
detail in [Ric07]

As shown in Figure 4.2 micro symbols are on the lowest level of the hierarchical symbol
model of ARS. Micro symbols are generated when sensor values change. Depending on
the configuration the sensor values are retrieved from different sources. The micro symbols
are traversed through the symbolization process and the output of symbolization is a world
representation which consists of representation, scenario and action symbols. A brief overview
of the structure of ARS-PC is shown in Figure 4.4.

Figure 4.4: Data processing of ARS-PC. Input values are retrieved by a micro symbol
factory, which generates micro symbols. The source of input values depends on
the type of the micro symbol factory. The output of the symbolization process
is a world representation.

The live configuration utilizes the specially equipped kitchen, named Smart Kitchen, of the
ICT (Institute of Computer Technology) as data source. A more detailed description of the
equipment of the smart kitchen can be found in Section 4.2.3. The sensor values which are
retrieved from the Smart Kitchen are used to generate according micro symbols in the micro
symbol factory msf live. The generated micro symbols are distributed to other software
modules via a mechanism called SymbolNet, which is described in Section 4.2.4.

The database configuration uses a database as source of sensor values. The sensors in the
database originate from the Smart Kitchen, but they have been recorded while actions have
been performed in the kitchen, which ARS is capable to detect as scenarios at the moment.
The database configuration is used for test and demonstration cases. The micro symbol
factory of the database configuration is called msf database. It retrieves the sensor values
from the database and takes care of correct ordering and timing when emitting the according
micro symbols.

The simulation configuration is similar to the database configuration only the origin and
nature of sensor values differ. The sensor values which are retrieved in the simulation config-
uration originate from a simulation environment especially designed to produce testing data

60

Chapter 4 Building Automation and Cognitive Science

for (not only) ARS [Har07]. The micro symbol factory msf simulation retrieves the sensors
from the database and emits the corresponding micro symbols.

4.2.2 Symbolization and Observing the World Representation

The symbolization in ARS-PC as shown in Figure 4.4 is actually done in independent software
modules, which are called symbolization modules in this work. Between these symbolization
modules a tight mesh of connections exists, which is used for symbol exchange (see Sec-
tion 4.2.4). Each of the internal symbolization modules of ARS-PC is connected to other
modules awaiting notifications on specific symbols. If a symbolization module detects the
specific pattern it is programmed for in the received symbols, it emits itself a symbol. The
emitting of symbols if a specific pattern is detected is the core of the implementation of
the symbolization process. The symbolization modules are only connected to symbolization
modules, which are one level beneath them in the hierarchical symbol model of ARS-PC
(Figure 4.2). If a symbolization module detects a specific sequence it emits a new symbol,
which belongs to the higher hierarchical level. The new symbol may be received by another
symbolization module which again can emit new symbols if it detects a specific pattern.

The “output” of the symbolization process of ARS-PC is a world representation consisting of
symbols. These symbols can be representation symbols, scenario symbols or action symbols.
An application which wants to observe the world representation generated by ARS-PC has to
connect to the symbolization modules which emit symbols belonging to the world represen-
tations. For example if an application wants to be informed when a person enters a specific
room, the application has to connect to the symbolization module, which generates “person”
symbols.

The number of connections an application or symbolization module is allowed to have is not
limited. Therefore an application can establish a great number of connections to different
symbolization modules. Without such an limitation applications are able to receive a lot
of symbols and therefore build an comprehensive view on the environment. For example,
in Figure 4.4 an application could connect to all the representation symbols in the world
representation and would be informed if updates in the world representation occur.

4.2.3 Smart Kitchen and the Artificial Recognition System

Project ARS has its origins in the Smart Kitchen Project described in [SRT00]. The Smart
Kitchen is the kitchen of the Institute of Computer Technology (ICT), which has been adapted
to act testing ground for new technologies. The goal of the initial Smart Kitchen project was
to research and develop new applications for building automation.

The ARS project emerged from the Smart Kitchen project and is therefore still tightly bound
to the Smart Kitchen. The Smart Kitchen has been equipped with numerous sensors, so that
it can act as one of the possible data sources of the ARS-PC implementation.

The sensors in the Smart Kitchen comprise motion sensors, contact sensors at the kitchen
door and the fridge door, temperature sensors at the stove, a vibration sensor on the coffee
machine and tactile sensors mounted on the floor. The motion sensor detects motions in the
room (without locating the position). The vibration sensor on the coffee machine is activated
when the coffee machine starts grinding coffee beans and therefore provides information if

61

Chapter 4 Building Automation and Cognitive Science

the coffee machine is in use. The tactile sensors on the floor allow detection of foots and foot
steps and therefore allow to determine the location of a person. Currently it is worked on
integration of a camera into the Smart Kitchen and the ARS project. The sensors and their
installation is described in more detail in [Göt06].

The values of the sensors deployed in the Smart Kitchen are retrieved by a computer plat-
form [Göt06] developed at the ICT. The sensor values are then sent to a remote PC via a
Transmission Control Protocol [Pos81b] (TCP) connection. A running ARS implementation
in the live configuration and therefore with a micro symbol factory msf live receives sensor
values. The micro symbol factory then creates micro symbols for every received sensor value
and forwards micro symbols into the symbolization chain as shown in Figure 4.4.

4.2.4 Exchange of Symbols

Until now the connection between symbolization modules and emitting of symbols has not
been described in more detail. The mechanism used for symbol exchange is called Symbol-
Net [Hol06]. It is a software component developed at the ICT. SymbolNet was designed to
allow exchange of symbols between symbolization modules. The exchange is possible between
modules running in the same process or even between applications on remote computers over
TCP connections.

Before discussing the exchange of symbols via SymbolNet the implementation of symbols
in ARS and SymbolNet will be described. As most parts of ARS-PC and SymbolNet are
developed in the programming language Java, Symbols are implemented as Java classes.
Some of the attributes a symbol contains are listed below:

� The type of a symbol indicates on which level in the hierarchical symbol model in
Figure 4.2 belongs to.

� The class attribute of a symbol defines the semantic meaning of the symbol. A lot of
semantic types, called symbol classes, are defined in ARS. For example symbol classes
for door open, gait and person exist.

� The id is a unique number for every symbol instance and is used as identifier.

� The timestamp indicates the point in time when the symbol has been created.

� The lifetime of a symbol defines how long, starting at timestamp, a symbol is valid.

� Properties of a symbol are optional attributes. Properties contain additional informa-
tion about the symbol. For example if the symbol is of class person the properties can
contain the position or the identity of the person.

SymbolNet allows transmission of symbolic information either locally or to remote computers
via a TCP connection. The actually transmitted content are not Java classes but symbol
messages. The symbol messages are symbols represented in Abstract Syntax Notation number
One [ISO02] (ASN.1). ASN.1 allows to describe data structures in a programming language
independent way. For an in detail description of the used message format see [Hol06].

62

Chapter 4 Building Automation and Cognitive Science

The interfaces of software modules which want to transmit symbol messages are defined by two
Java Interfaces called SymbolPipeA and SymbolPipeB. A software module which is intended
to emit symbol messages has to implement interface SymbolPipeA, a software module which
has to be able to receive symbol messages has to implement interface SymbolPipeB. Software
modules are allowed to implement both interfaces and can then act as sender and receiver of
symbol messages.

SymbolNet also provides functionality to ease the implementation of receiving and trans-
mitting symbol messages by transforming them automatically back into symbol instances.
SymbolContainer is a class included in SymbolNet which automatically creates symbols
from received messages. It implements the interfaces SymbolPipeA and SymbolPipeB and
therefore can act as sender and receiver of symbol messages. A SymbolContainer instance
creates the according symbol if a symbol message is received and puts the symbol in an
internal storage. A user of SymbolNet which is not interested in the symbol messages but
only in the resulting symbols can subclass SymbolContainer and add its own code to the
available functionality. The SymbolContainer takes care of symbol creation while the user
can operate on symbols and react on creation of new symbols without caring about symbol
messages.

63

Chapter 5

System Design

In the previous chapters the various technologies involved in establishing a cooperation of
media façades and building automation have been described. This chapter discusses the
design of the system which enables the cooperation. The system consists of parts related to
building automation, media façades and the Artificial Recognition System (ARS). For every
part the chapter contains a section which describes the design of the system. The actual
implementation is discussed in the next chapter.

5.1 Accessing Building Automation Data

In Chapter 3 building automation technologies have been discussed. The i.LON 100 was
introduced as it allows to interact with building automation data via its web service. Before
the i.LON 100 can be used for interaction purposes the attached building automation system
and the i.LON 100 has to be configured accordingly. The next section describes the used
configuration of the i.LON 100.

5.1.1 i.LON 100 Configuration

Section 3.4 describes ways the i.LON 100 can be utilized to access building automation data.
The i.LON 100 web service provides an interface to a data server which allows to read and
alter building automation data. The data server operates on data points, which represent data
located in the attached building automation system. The i.LON 100 differentiates between
several types of data points. It was decided to use NVL (local data points), because they
require an established binding between local network variables and remote1 network variables.
The binding allows reading of remote data without polling and ensures that local values are
propagated to remote network variables. For an evaluation of the different data point types
see Section 3.3.3.

Data points have to be created on the i.LON 100 before the data server can operate on them.
NVL data points can be created by creating a dynamic network variable on the i.LON 100.
For every new dynamic network variable a NVL data point is created and assigned to the

1The network variables are remote from i.LON 100’s point of view.

65

Chapter 5 System Design

new dynamic network variable. Therefore altering the NVL data point directly affects the
assigned dynamic network variable.

The nodes integrated in a LonWorks based building automation system comprise network
variables. To actually interact with the building automation system these remote network
variables have to be bound to the dynamic network variables of the i.LON 100. By doing
this, changing the value of the NVL data point will change the value of the assigned dynamic
network variable, which will cause an update of the bound remote network variable. Figure 5.1
shows an example configuration where remote network variables (nvi L1 and nvi L2 on the
remote node) can be altered via bound dynamic network variables (nvi L1 and nvi L2 on
the i.LON 100) which again can be altered via its assigned NVL data points (NVL nvi L1 and
NVL nvi L2).

The remote network variables may2 also be bound to other network variables, therefore
their value may be changed by other applications too. To avoid inconsistencies among the
applications dealing with the same data point, most nodes provide feedback output network
variables, which can be used to retrieve the current value of a corresponding input network
variable. In Figure 5.1 every input network variable on the remote node (nvi L1 and nvi L2)
has a corresponding feedback output network variable (nvi L1 fb and nvi L2 fb). Another
example for feedback network variables is the lamp actuator functional profile, shown in
Figure 3.6.

Most applications utilizing an i.LON 100 for interacting with building automation systems
may require knowledge about the current value of a network variable. Therefore in this
configuration dynamic network variables are created for both, the actual remote network
variable which has been chosen to be used via the i.LON 100 web service and the corre-
sponding feedback network variable. Figure 5.1 shows some remote network variables with
their corresponding feedback network variables and how they are bound to dynamic network
variables on the i.LON 100. The dynamic network variables are assigned to NVL data points
which can be read and altered via the i.LON 100 web service.

Therefore to allow an external application to interact with the building automation system
attached to the i.LON 100, dynamic network variables have to be created for every remote
network variable which should be included in the interaction and its feedback network vari-
able. Afterwards bindings have to be established between the dynamic network variables and
the remote network variables. Both of these steps have to be done by a LonWorks-enabled
system integration tool. Section 6.1 describes the configuration of the i.LON 100 with the
LonMaker system integration tool.

5.1.2 Hiding the i.LON 100 Web Service

Section 3.4 describes the web service provided by an i.LON 100 and how it can be consumed
by a client. Consuming a web service is a quite big and tedious task. Web service frameworks
as described in Section 3.5 provide functionality to support the developer in consuming web
services. The web service framework JAX-WS (Java API for XML – Web Services) was

2Actually it is very likely, that the used remote network variables are bound to other network variables,
because they are needed to provide the day-to-day building automation functionality. One should not forget
that the building automation system was not implemented to be utilized by a media façade, but to provide
functionality which is required and expected by everyone who spends her time in the building. Therefore the
network variables of every lamp node and every sunblind node are for sure bound to a switch node.

66

Chapter 5 System Design

Figure 5.1: Relation of NVL data points, dynamic network variables and remote network
variables. The dynamic network variables on the i.LON 100 are bound to
remote network variables and therefore can be used to alter them. The current
value of a remote network variable can be retrieved via its associated feedback
network variable. The dynamic network variables can be read and altered via
its assigned NVL data point.

chosen for further utilization, because it is already included in the Java 6 distribution and
does not error-out while consuming the web service of the i.LON 100. See Section 3.5.3 for
a comparison of web service frameworks and detailed reasons why JAX-WS was chosen for
utilization.

The tool wsimport, distributed with JAX-WS, is able to transfrom the WSDL (Web Service
Description Language) description of a web service into Java classes which can be utilized to
consume the respective web service. For the i.LON 100 web service, the number of classes gen-
erated by wsimport is 317. The most interesting of them are request and response classes for
every function provided by the web service, for example the classes DSRead and DSReadInfo
for invoking the web service function DataServer Read() (Section 3.4.3.2) and retrieving
the response of the DataServer Read() web service function. Listing 3.20 shows how these
classes are utilized. Most of the other classes generated by wsimport are just representations
of sub elements in the request and response SOAP (Simple Object Access Protocol) messages
like the class DPType which is also used in Listing 3.20.

Only some of the generated classes are required for invoking a specific web service function.
But even so, quite a few different classes are required to consume a web service. Additionally,
the web service has to be consumed over and over again to alter and read values of assigned
network variables, maybe even from different software modules.

67

Chapter 5 System Design

To avoid code duplication amongst software modules, it was decided to implement an abstrac-
tion layer to hide the i.LON 100 web service consumption. An abstraction layer, which hides
the specifics of the i.LON 100 web service, also allows a possible implementation of similar
abstraction layers for other building automation gateways in the future. If the abstraction
layers provide a similar interface the abstraction layers can be exchanged easily, enabling
interaction with different building automation technologies.

The name of the Java package which contains the abstraction layer for the i.LON 100 web
service is ilonif. The name indicates that the package is a software interface (also called API
– Application Programming Interface) for the i.LON 100 web service. The ilonif abstraction
layer also hides the steps of building a request SOAP message as shown in Listing 3.20 and
the evaluation of the return value when consuming a web service function.

The classes which represent request SOAP messages have to be initialized with information
about the data point on which the web service function should be invoked. Also the classes
which represent response SOAP messages contain information about the data point on which
the web service function has been invoked. The SOAP messages of the i.LON 100 web service
are described in Section 3.4.

The abstraction layer ilonif therefore requires information on data points and returns infor-
mation on data points. To ease the exchange of parameters and return values it was decided
to implement a Java representation of data points as a Java class. The Java representation
is called DataPoint and is discussed in Section 5.1.3.

When invoking a method of ilonif which starts a web service consumption, the method
will require at least one DataPoint instance. The request SOAP message will be constructed
by using the information contained in the DataStorage instance. The information in the
response SOAP message will be stored in the same DataStorage instance. This approach
ensures that information belonging to a specific data point is not spread around at different
places.

The i.LON 100 web service comprise 44 web service functions [Ech06c, p. 3-3]. The data server
related web service functions are able to read and alter data points. But only three of the
data server related functions are required in this work. The required web service functions
are: DataServer Get(), DataServer Read() and DataServer Write(). The first one for
retrieving all available configuration data of specific data points, the other two for reading
and altering the values of data points. The three functions are discussed in Section 3.4.3.

At least for the required web service functions DataServer Get(), DataServer Read() and
DataServer Write() respective methods have to be implemented in ilonif. The implemen-
tation of the ilonif abstraction layer is described in Section 6.2.4.

5.1.3 Handling Data Points

As already mentioned in the previous section a representation of a data point as Java class
is required. The class is named DataPoint and contains all relevant information on a data
point.

Information on a data point can be retrieved from the i.LON 100 in two ways. Either by
invoking a web service function which contains information on the data point in its response
or by downloading the file dp NVL.xml. See Listing 3.9 for an excerpt of this file.

68

Chapter 5 System Design

The file dp NVL.xml contains configuration values of a data point. The same information can
also be retrieved by consuming the DataServer Get() web service function. The relevant
information which class DataPoint should contain is shown in Table 5.1.

Source XML Tag Name Description

DataServer Get()

UCPTindex Unique Index of the Data Point
UCPTpointName Name of the Data Point
UCPTdirection Designates Input or Output
UCPTformatDescription Designates the Data Point Type
UCPTunit Unit of the Value

DataServer Read()
UCPTvalue Current Value of the Data Point
UCPTvalueDef Current Value as String
UCPTpointUpdateTime Time of Value Update

DataServer Write() None No return Value on Success

All
UCPTfaultCode Fault Number
UCPTfaultString Fault Message

Table 5.1: Relevant information about data points. The source row indicates where the
information can be retrieved from. XML tag names refer to the tags in the
respective response SOAP messages. A small explanation of the tags is given in
the description row.

The class DataPoint has to contain the current value of a DataPoint. The value will be
updated whenever the method of the abstraction layer ilonif is invoked which consumes
web service function DataServer Read(). The method of ilonif will parse the response
value of DataServer Read() and write the value into a DataPoint instance.

Also the class DataPoint has to store the value which should be written to the data point.
This value is required when consuming the DataServer Write() web service function. For
every web service consumption, fault messages have to be stored in DataPoint if an error
occurs.

5.1.4 Hiding Data Points

The Java package ilonif provides functionality to ease the consumption of the i.LON 100
web service. However ilonif still uses the concept of data points, which should not be visible
for users and applications usually dealing with media façades. Artists and developers who
design the content of media façades typically have no (or very little) knowledge about building
automation in general and LonWorks in particular. An API which is familiar for people
dealing with media façades and which hides the underlying building automation technology
is therefore required.

Typically media façade control systems provide a lot of possibilities to upload content. For
example they may allow movies, images and/or may expose an API to define and provide
content. However most of them do have on some level (not necessarily publicly exposed) a
bitmap based interface. Bitmaps are raster graphic images which are typically represented in
a rectangular grid of pixels.

69

Chapter 5 System Design

Pixels have attributes like color and brightness. A bitmap can be shown on displays by
mapping the pixels of the bitmap to the pixels of the display. A simple example of a bitmap
is shown in Figure 5.2. The shown bitmap has only 16x16 pixels, but still simple images
are recognizable. A bitmap based approach can also be applied to façades of buildings. The
windows of the building are used as pixels, the whole façade acts as the display. To use the
façade of a building as bitmap based display is not an entirely new idea. Something quite
similar has been done in the project Blinkenlights3, but in this work no modification of the
building is required. The already deployed building automation system of the building is
used. Furthermore the approach allows easy – and bitmap oriented – coordination of the
content shown on the media façade and the content displayed by the windows of a building.

To provide a convenient interface to people dealing with media façades it was decided to
implement a Java package which provides a pixel oriented API to its users. The name chosen
for the Java package is pixelif.

The package pixelif should provide “drawing” functionality in a pixel based manner, which
is familiar to users of media façades. Therefore drawing methods should require a data
structure as parameter, which is similar to bitmaps. Bitmaps are usually represented as a
two-dimensional array of pixels. The same approach can be used for the “draw” methods of
pixelif. Every “draw” method of pixelif should require a two-dimensional array compris-
ing the value of pixels. The position of an array element maps to a position of a window on
the façade. The value of the array element is applied to the respective room lighting behind
the window.

Figure 5.2: A simple bitmap graphic. With only 16x16 pixels simple images are recogniz-
able. A bitmap based approach can be applied to façades of buildings. The
windows of the building are used as pixels, the whole façade acts as the display.

3http://www.blinkenlights.de/

70

http://www.blinkenlights.de/

Chapter 5 System Design

Beside altering actuators in the building automation system the package pixelif should also
be able to retrieve values of specific switches. For example if a switch is designated to turn
on and off the media façade, it would be nice if the media façade could retrieve the value
of the switch via pixelif. In Java the typical approach to handle reactions on events is to
implement the Observer Pattern [GHJV05] in the form of event listeners. This approach can
be reused for pixelif. An event listener can register itself at a pixelif instance. Every
time the observed switches change their value the registered event listener will be notified.

5.1.5 Beyond Data Points

The previous section described an approach to reuse a bitmap based API for altering data
points of a building automation system. Bitmaps consist of pixels, each pixel at a specific
position in the bitmap. Pixels therefore have coordinates. As the pixels of the bitmap are
mapped to data points in the building automation system, the concept of coordinates has to
be introduced to data points.

The class DataPoint acts as representation of data points. To add the concept of coordinates
to DataPoint it is sub-classed. The name of the sub-class is Pixel. It comprises some
information relevant for pixels, for example the coordinates. The class Pixel also contains
information on the feedback data point as described in Section 5.1.1.

In Chapter 2 the possibilities of media façade and building automation cooperation were
discussed. As a result several actuators integrated in building automation systems have been
identified as possible supporters of the effects generated by the media façade. Examples are
the room lighting and the sunblinds on a building. Therefore the class Pixel should also
contain the type of the data point it represents.

With the above mentioned information (coordinates, feedback data point and the type of the
pixel) a bitmap based API can be implemented in pixelif. The implementation of pixelif
and Pixel is described in Chapter 6.

5.1.6 Storage for Data Points

Both ilonif and pixelif require access to the available data points. As all information is
stored in the respective DataPoint objects it has to be ensured that ilonif and pixelif
operate on the same DataPoint objects. Otherwise information could get lost or inconsistent
among the various software modules.

A central place where data points are stored and where they can be retrieved from is required.
The Java package which provides this functionality is called datastorage. It is able to store
an arbitrary amount of DataPoint and Pixel objects.

The package datastorage also provides functionality to search and retrieve data from the
storage. Parameters for which a search should be possible are the coordinates of a pixel,
the name and index of data points and the type of data points (input/output) and pixels
(light/sunblind).

On queries datastorage should only return references to DataPoint objects. This ensures
that all users of datastorage operate on the same set of DataPoint objects and that infor-
mation on datapoints is stored in only one instance of DataPoint.

71

Chapter 5 System Design

5.1.7 Summary

In the previous sections three Java packages have been introduced: datastorage, ilonif
and pixelif. Figure 5.3 shows schematically how they relate to each other.

Figure 5.3: Implemented software modules and their relation. A media façade can utilize
the bitmap-based API of pixelif. Internally the package pixelif uses ilonif
as abstraction of the i.LON 100 web service and datastorage to store and
retrieve DataPoint objects.

On the right side of the figure is the i.LON 100 web service located. The purpose of package
ilonif is to deal with the consumption of the web service. The software contained in package
pixelif uses ilonif and therefore does not have to care about the specifics of the i.LON 100
web service. Both, pixelif and ilonif, utilize datastorage to store and retrieve DataPoint
objects. Ultimately the pixel-oriented API provided by pixelif is used by the media façade
system as can be seen on the left side of Figure 5.3.

5.2 Utilization of the Artificial Recognition System

In Chapter 4 the Artificial Recognition System (ARS) has been introduced. The ARS project
consists of two sub-projects: ARS-PA (Psychoanalysis) and ARS-PC (Perception). Both sys-
tems have been evaluated in Section 4.1.3 which one would be suitable to be used in this
master thesis. It was decided to utilize ARS-PC. The goal of ARS-PC is to implement
algorithms which allow “perception” of situations and scenarios. Perception is done by a
process called symbolization, which refers to condensing great amounts of data with small
informational value into data with higher informational value. Such an information condens-
ing process suits exactly the requirements for a system which is able to transform building
automation data into a format suitable for media façades.

5.2.1 Initial Plan

One of the goals of this master thesis was to provide pre-processed building automation data
to media façade systems. For the pre-processing the ARS-PC symbolization technology is

72

Chapter 5 System Design

used. The original plan was to feed data retrieved via the i.LON 100 web service into the
ARS-PC symbolization process and to forward the resulting information to the media façade
control system.

In theory ARS-PC would be able to accept any kind of input data and to transform it
into data with higher informational value called symbols. However ARS-PC is still a young
project and the symbolization concept in its current implementation is merely a proof that
symbolization is a functional approach. Therefore it was clear that the utilization of ARS-PC
in the intended way would not be straight-forward and that problems would arise.

5.2.2 Problems

One problem of the current implementation of ARS-PC is its lack of configurability. The
different available input sources (live, database and simulation as described in Section 4.2.1)
are not configured by some sort of configuration environment, but are hard-coded in their
respective start-up routines. If a user wants to use the database as input source for ARS-PC
the corresponding application has to be launched which sets up the internals for this use case.
For each existing input source a corresponding application exists.

Additionally to the separated start-up sequences of ARS-PC, for each input source a corre-
sponding micro symbol factory exists. The micro symbol factories retrieve values from their
respective input sources, transform the values into micro symbols and forward them to the
symbolization process as described in Section 4.2. Adding a new input source to ARS-PC
therefore requires the implementation of a start-up application and a micro symbol factory.

Another problem is the current number of scenarios detected by ARS-PC. [Ric07] describes
scenarios currently implemented in ARS-PC, for example “meeting” and “person makes cof-
fee”. Most of the implemented scenarios are similar to those two, as they address situation
with single persons or a small number of persons. At the moment no scenarios which detect
situations with a great number of people respectively all people in a building are implemented.
But exactly such scenarios would be of interest for media façade systems because they give
a more abstract view on situations in the building.

The currently implemented recognition of scenarios depends on knowledge of the position
of persons. This knowledge is gained via tactile sensors mounted on the floor of the Smart
Kitchen [SRT00] at the Institute of Computer Technology (ICT). Such sensors are usually not
(yet) deployed in today’s buildings. To utilize ARS-PC in today’s buildings the recognition
implementation either have to be ported to other sensors or new scenarios have to be defined
and implemented which are based on sensors available today.

An implementation of the original approach – retrieving sensor values via the i.LON 100
web service, feed the values into ARS-PC and to forward the resulting high level symbols
to the media façade system – would require a implementation of a micro symbol factory,
its corresponding start-up application and the actual symbolization to recognize scenarios
adequate for the available sensors. Especially the implementation of a micro symbol factory
and the recognition of additional scenarios are a huge amount of work and it was decided
that such an implementation would go beyond the scope of this master thesis. However the
implementation may be part of future work.

73

Chapter 5 System Design

5.2.3 Solution

Because of the above stated problems it was decided to not actually use the sensor values
available via the i.LON 100 web service. Instead another solution to provide information on
the environment to media façade systems had to be found.

It was decided to not abandon ARS-PC as its concepts are scientifically sound and further
development on ARS-PC and evolution of building automation systems may allow utilization
of ARS-PC in typical buildings in the future. Therefore ARS-PC is used in this master thesis
in its current form to show as a proof of concept how information retrieved from building
automation data can be forwarded to and utilized by media façade systems.

As input source for ARS-PC the database configuration is used, because it ensures that
data is available and symbols are generated. To enable this a launch configuration has
to be implemented, which sets up ARS-PC as required. Furthermore a filter, respectively
abstraction layer, is required which receives symbol messages from ARS-PC on the one side
and delivers notifications to the media façade system. Figure 5.4 shows this abstraction layer
named arsif – following the style of pixelif and ilonif – between ARS-PC and a media
façade system.

Figure 5.4: Role of the arsif abstraction layer. As input source of ARS-PC a database is
used. ARS-PC processes the sensor values stored in the database and generates
symbols. The symbols are received by arsif. If relevant information is found
among the received symbols the media façade is notified.

Receiving symbols generated by ARS-PC can be done by utilizing SymbolNet (see Sec-
tion 4.2.4). SymbolNet provides functionality to send, receive and manage symbols. The
specifics of SymbolNet should be hidden from media façade systems. For this reason arsif
acts as abstraction layer between ARS-PC and media façades as shown in Figure 5.4. The ab-
straction layer arsif is implemented in a Java package with the name arsif. It provides two
interfaces, one SymbolNet-based interface to receive symbol messages and a second interface
to forward information on symbol updates to the media façade.

The interface for media façade systems is similar to SwitchListener in pixelif (Sec-
tion 5.1.4) based on the Observer Pattern [GHJV05]. The usual approach to the Observer
Pattern in Java is to implement Listeners which will be notified when events occur. In the
case of arsif and media façade systems it implies that the media façade system implements
a listener which has to be registered in arsif. When arsif receives symbol updates via its

74

Chapter 5 System Design

SymbolNet-based interface it will notify the registered listener, in this case the media façade
control system.

5.3 Integrating Media Façades

The media façade is the consumer of the APIs (pixelif and arsif) introduced above. As
described in Section 2.2.2 a BLIP4 media façade control system consists of Display Managers
and Image Generators. The Image Generator provides power to the LEDs and control color
and brightness of LEDs by issuing commands over a communication bus. For big media
façade installations a Display Manager is required, which is responsible for coordination of
various Image Generators.

In this work no Display Manager will be used, as it is only required for really large media
façade installations not for such a prototype implementation as it is the goal of this master
thesis. To integrate media façade and the two above introduced software packages pixelif
and arsif two options are possible.

1. The software packages pixelif and arsif are executed on a separate computer system.
For communication between the Image Generator and the software packages additional
software is required.

2. The software packages pixelif and arsif are executed on the Image Generator. The
control software on the Image generator can consume the APIs of the software packages
locally. No – or at least less – additional software is required.

The comparison of the two option shows that option number two has the advantage of lesser
implementation effort. Also option two eliminates the need for an external computer system.
Therefore option two is favored over option one. However if option two is feasible depends
on the capabilities of the Image generator.

As the Image Generator has not been delivered by BLIP in time5, it was not possible to
implement option two. Also without an Image Generator it is not possible to actually activate
the media façade LEDs, which have been provided by BLIP. the LEDs of the media façade.

Because of the lack of an Image Generator it is not possible to activate the LEDs of the media
façade. Furthermore a consumer of the APIs of pixelif and arsif is missing. Therefore
a substitute for the functionality of the Image Generator had to be found. It was decided
to use a small application to act as replacement of the Image Generator as consumer of the
APIs of pixelif and arsif. The functionality to control the LEDs of a media façade over
a communication bus is not implemented as such an implementation would go beyond the
goals of this master thesis and because the hope that an Image Generator will be delivered
some time in the future has not yet been abandoned. The implementation of the application
which acts as the consumer of the APIs of pixelif and arsif is discussed in Section 6.5.

4http://www.blipcreative.com/
5Till now, while the finishing touches are done on this master thesis, no Image Generator has arrived.

75

http://www.blipcreative.com/

Chapter 5 System Design

5.4 Demonstration Environment

A big part of the effort in software development is testing. Testing the software components
described above is not easily arranged, because the components require a specific environment.
On one hand ARS requires its sensor database as input source. On the other hand the building
automation interface requires its associated hardware, which is at least an i.LON 100 (and a
building automation system it is integrated to, otherwise the i.LON 100 is not of much use).
Also a media façade is required to actually demonstrate the cooperation between building
automation and media façade.

For the building automation interface an i.LON 100 and a building automation system is
required. Buying an i.LON 100 is, despite its price6, an easy solution to provide the first
part of the testing environment. However a LonWorks based building automation system
is required to integrate the i.LON 100. Without an attached building automation system
the i.LON 100 is of no real use. Therefore the i.LON 100 was integrated into the available
LonWorks system in the Centre of Excellence for Fieldbus Systems7 at the ICT at first. But
using the Centre of Excellence for Fieldbus System was only a temporary solution because it
is used by other projects and in university courses and could not be allocated for the media
façade project alone. Therefore another building automation system had to be found.

To find a testing environment which includes a media façade is rather difficult to manage.
Media façades are still sparsely deployed and the owner of such media façades are quite
reluctant to allow access to it for testing purposes.

The solution to those problems was to build a small testing environment which includes at
least parts of a media façade and parts of a building automation system. Inclusion of sensors
for ARS-PC was discarded because ARS-PC requires a great amount of sensors to provide its
functionality. Including a great number of sensors would basically lead to a reimplementation
of the Smart Kitchen (or parts of it) in our testing environment, which would contradict the
idea of a small testing environment. This is one reason why the database configuration is
used for ARS-PC. If the database configuration is used the sensor values are retrieved from
a sensor database not directly from the Smart Kitchen. In the future it may be possible to
locate the sensor database on an computer system in the demonstration environment, for
example the Image generator.

For various reasons which are explained in the next section it was decided to integrate the
testing environment into a suitcase. The components of the suitcase, the way it operates and
the required software are described in the following sections.

5.4.1 Purpose and Requirements

As already outlined above the main purpose of the demonstration suitcase is to be used
as testing environment for the developed software. Especially the building automation and
media façade related software requires an environment to test the software. For the ARS-PC

6In the Echelon Product Price List, available at http://www.ebv.com/media.php/EBV/Products/Hot%

20Adverts/PDF/Lonworks%20Area/ResaleLonWorksFeb2007.pdf?dl=1 the i.LON 100 is listed with a price
of 595 US$.

7http://www.ict.tuwien.ac.at/komzent/

76

http://www.ebv.com/media.php/EBV/Products/Hot%20Adverts/PDF/Lonworks%20Area/ResaleLonWorksFeb2007.pdf?dl=1
http://www.ebv.com/media.php/EBV/Products/Hot%20Adverts/PDF/Lonworks%20Area/ResaleLonWorksFeb2007.pdf?dl=1
 http://www.ict.tuwien.ac.at/komzent/

Chapter 5 System Design

related parts the sensor database can be used. Therefore hard requirements for the testing
environment were to include (parts of) building automation and media façade technology.

The testing environment should be able to present the cooperation building automation and
media façades are capable of with the newly developed system. Options like utilizing the
existing building automation system at the ICT and to mount a small part of a real façade
somewhere at the ICT and to use these parts as representation and testing environment
were considered, but discarded as they were deemed as too expensive and would require too
invasive changes in the furnishing of the ICT. Therefore it was decided to build a portable
testing environment. The advantages of a portable solution include a lower price than a
mounted part of a real façade, an easier handling and utilization as it has to be contained
to be portable and portability itself. Portability of the testing environment allows to present
the cooperation of media façades and building automation systems at shows, at conferences
or to potential purchasers of media façades. It was decided to integrate the testing and
presentation environment into a suitcase. A suitcase was chosen as platform because its
quite common practice to present prototypes and inventions in suitcases. Figure 5.5 gives an
overview of the design and the components included in the demonstration suitcase.

Figure 5.5: Draft of the demonstration suitcase. The top cover of the suitcase represents
a façade of a building. The lights behind the windows are used to represent
building automation technology. A media façade is mounted between the win-
dows.

The top cover of the suitcase is used to represent a building façade while the base part of
the suitcase contains the required technical components. The impression of a building is
generated by applying representations of windows to the top cover of the suitcase and by
coloring the front in a building-typical way. A requirement of the testing environment is to
include a building automation system. It was decided to include a representation of room

77

Chapter 5 System Design

lighting in the demonstration suitcase. The room lighting can be simulated by turning on
and off lights behind the windows on the top cover of the suitcase.

As outlined in Chapter 2 not only influencing the room lighting is reasonable for media
façades, but also sunblinds. Sunblinds can be used to either prevent interference between
room lighting and the effects generated by the media façade or to generate effects with the
sunblinds itself. Therefore it was decided to also integrate a representation of sunblinds into
the demonstration suitcase. The room lighting and the sunblinds are integrated in a small
LonWorks-based building automation bus, in which an i.LON 100 is also integrated.

Figure 5.5 shows that a media façade is applied to the building façade represented by the
top cover of the demonstration suitcase. The media façade is aligned in “lines of light” as
described in Section 1.1.3 and the lines are located between the windows. The lights of the
media façade would be controlled by an Image Generator.

In Figure 5.5 an external “controlling computer system” is shown. As discussed in Section 5.3
if this external system is required, depends on the capabilities of the Image Generator. How-
ever as long as no Image Generator is delivered by BLIP the external system is required
for sure. The demonstration application introduced as replacement for the Image Generator
functionality in Section 5.3 is executed on the external computer system.

5.4.2 Components

The building automation system in the demonstration suitcase should provide means of simu-
lating room lighting and sunblinds. Simulating room lighting can be easily done by mounting
LEDs (Light Emitting Diodes) behind the window representations on the top cover of the
suitcase.

To simulate sunblinds several approaches were evaluated. Utilizing mechanical systems as
they are available for model building were abandoned because they may be easily damaged
on rough transports the suitcase may have to endure. Another considered approach was to
use simple, monochrome Liquid Crystal Displays (LCD) with backlights. The LCD solution
was also abandoned because no applicable LCDs could be found and because the resulting
appearance would not resemble a real façade of a building.

The solution chosen to represent sunblinds is simple but effective. In Section 2.2 it has been
shown that sunblinds may assist media façades because if the sunblinds are closed no room
lighting can interfere with the effects of the media façade. Therefore it was decided to use
bright room lighting to represent that the sunblinds are up and to lower the brightness of the
room lighting if the sunblinds are down. The reduced brightness as sunblinds simulation may
not be the most intuitive solution but with some explanation the audience will understand
the principle.

The simulation of sunblinds with different levels of brightness of room lighting allows to reuse
the LEDs used for room lighting. The LEDs in the “rooms” just have to be supplied with
different levels of electrical current for every state of a window. The four possible states of a
window are shown in Table 5.2. The states of a window have only three distinguishable visual
appearances, because with the chosen sunblinds representation the position of the sunblind
can only be shown when the light is switched on.

78

Chapter 5 System Design

Sunblinds Up Sunblinds Down
Lights On bright light in window damped light in window
Lights Off no light in window no light in window

Table 5.2: States of the windows in the demonstration suitcase. The lights can be damp-
ened by lowering the sunblinds, but the position of the sunblinds is not visible
if the lights are off.

Switching on and off the lights and the sunblinds should be done via the building automation
system, as they represent parts of a real world building automation systems. For LonWorks
the lamp actuator profile, as shown in Figure 3.6, has been designed for such purposes. A
node which implements have to be found and integrated into the suitcase. The chosen nodes
are described in Section 6.6.1.

The circuitry required to to show different brightness levels with a LED is shown in Figure 5.6.
The switches S1 and S2 are part of a node implementing the lamp actuator profile as discussed
above. Switch S1 is assigned to switching on and off the light in a room. Switch S2 is closed
per default, when it opens the light of LED D is dampened, therefore S2 represents the
sunblind functionality. For every window in the top cover of the suitcase two switches are
required to implement the desired functionality.

Figure 5.6: Circuit to show different brightness levels with one LED. Switch S2 is closed
per default. If switch S1 is closed the LED D will produce bright light. When
S2 is opened the light of LED D will be dampened.

In real world building automation systems switches are integrated to allow users to take
control of some aspects of the building automation system. For turning the light on and off
at least one push-button is required. For altering the position of sunblinds at least two push-
buttons are required, one for moving the sunblind up and one to move the sunblind down.
Three push-buttons per window, requires 48 push-buttons integrated in the demonstration
suitcase, to build an building automation system which can control every window. Such an
amount of push-buttons requires a lot of space which contradicts the idea of a small and

79

Chapter 5 System Design

portable testing environment. Therefore it was decided to integrate only push-buttons for
one window. An additional push-button is available in the demonstration suitcase, which
allows to turn on and off the cooperation of media façades and building automation system.
The functionality of this push-button demonstrates already the cooperation of media façade
and building automation. The push-button integrated into the building automation system
can influence the projected content of the media façade.

To complete the building automation related part of the demonstration suitcase an i.LON 100
and a node which implements the LonMark switch profile (Figure 3.6) have to be integrated
into the suitcase. The push-buttons described above have to be connected to the switch
profile node, which provides network variables to interact with the switches. The i.LON 100
also has to be integrated into the building automation system to allow users of its web service
to interact with building automation data. The integration of both parts, switch profile node
and i.LON 100, are discussed in Section 6.6.1.

5.4.3 Operation

The demonstration suitcase should be able to demonstrate the cooperation of building au-
tomation systems and media façades. Additionally it should provide a way to demonstrate
some aspects of building automation. The new concept of building automation and me-
dia façades cooperation has to be introduced to architects and media designers, which have
only little knowledge how building automation works. Therefore the demonstration suitcase
should be able to demonstrate basic aspects of building automation technology to them.

To demonstrate building automation technology and the cooperation between building au-
tomation and media façades the demonstration suitcase is able to operate in two modes.
In one mode, called conventional operation, the building automation system and the media
façade are operating completely independent. The media façade projects its typical content
without being influenced by the environment or the building automation system. One win-
dow’s light and sunblind can be controlled by three push-buttons integrated into the suitcase.
One push-button is for turning the light on and off, the other two are for moving up and
down the sunblind. The position of the sunblind is simulated by the brightness of the light
in the window as described in Section 5.4.2. A fourth push-button is available which can be
used to change the operational mode of the demonstration suitcase.

If the second operational mode of the demonstration suitcase, named effect operation is
activated, media façade and building automation system are cooperating to produce visual
effects on the façade of the building. For example when the media façade produces an
ascending impression by activating first the LEDs at the bottom then the LEDs above and
so on, the building automation system can support such an effect by switching on the lights
in the windows in a similar way.

80

Chapter 6

Implementation

The previous chapter described the design of the prototype system, which will be used to
demonstrate the cooperation of building automation systems and media façades. The imple-
mentation of the demonstration system and its operation is discussed in this chapter.

6.1 i.LON 100 Configuration

In Section 5.1.1 dynamic network variables and their assigned NVL data points which have to
be created on the i.LON 100 are discussed. For every remote network variable which should
be incorporated into the media façade cooperation functionality, a dynamic network variable
of same type has to be created on the i.LON 100. Between the created dynamic network
variable and the remote network variable a binding (see Section 3.2) has to be established.
Also for most of the remote network variables a designated feedback network variable exists
which should also be bound to dynamic network variables on the i.LON 100. The proposed
configuration is shown in Figure 5.1.

A functional block of the i.LON 100 has to be present in the LonMaker schematic to create
dynamic network variables in it. The virtual functional block of the i.LON 100 proved to be
the most adequate functional block of the i.LON 100 to create dynamic network variables in.
Other functional blocks were also tested, but long names of network variables were truncated
when created on these functional blocks. The truncation of names does not happen when
the virtual functional block is used. A dynamic network variable is created in LonMaker by
dragging an Input Network Variable or Output Network Variable symbol from the toolbox
onto a functional block in the LonMaker schematic. The toolbox and the symbols are shown
in Figure 3.5.

By creating the dynamic network variables also NVL data points are created. Their exis-
tence and configuration can be checked with the i.LON Configuration Utility described in
Section 3.3.2.

After creating dynamic network variables, bindings to remote network variables have to be
established. Establishing a binding between network variables can be done in two ways in
LonMaker:

81

Chapter 6 Implementation

� Dragging a Connector symbol from the toolbox onto the LonMaker schematic and
attaching the ends to the according network variables. This procedure only allows to
establish a binding between two dynamic network variables at once.

� The second way is to select the Connect. . . entry in the right-click menu of a functional
block. The following dialog allows to establish more than one connection at once.

After establishing bindings to all required remote network variables a user of the i.LON 100
web service is able to read and alter remote network variables. In order to avoid confusion a
inconsistency in the naming of dynamic network variables is explicitly stated. The direction
of the dynamic network variable and its bound remote network variable are reversed, because
a binding can only be established between an output network variable and an input net-
work variable. Therefore for every remote input network variable a dynamic output network
variable (respectively output NVL) has to be created and vice versa.

The naming of the created dynamic network variable can lead to confusion because when
new dynamic network variables are created LonMaker asks for an already existing network
variable as template. Typically the remote network variable to which the dynamic network
variable will be bound later is used as template. The template is needed to ensure that
the newly created dynamic network variable is of the same type as the remote network
variable. After choosing the template network variable a name similar to the name of the
template network variable is suggested and this suggested name might cause confusion. It
is a somewhat widespread convention to indicate the direction of a network variable in its
name. Therefore a lot of network variable names contain either nvi or nvo indicating input
respectively output network variables.

If the suggestion in naming the dynamic network variables is adopted the direction of the
dynamic network variables conflict with its naming. On the other hand the dynamic network
variable is similarly named as the bound remote network variable and that eases finding
assigned pairs of network variables. Because of the eased association of dynamic network
variable and remote network variable the suggested (and slightly confusing) naming of dy-
namic network variables was adopted. In Figure 6.1 such a configuration is shown. In the
figure the output network variables on the functional block of the i.LON 100 on the left have
the term nvi in their name altough they are outputs. Similar the input network variables on
the i.LON 100 have the term nvo in their name. But this inconsistency allows easier mapping
between the network variables on the i.LON 100 and the remote network variables.

6.2 Building Automation Interface

Even though the JAX-WS (Java API for XML – Web Services, see Section 3.5.2) web service
framework is used to facilitate web service consumption, programming code to invoke a web
service function is still tedious and error-prone. An abstraction layer was desperately needed
to hide the actual web service invocation, the return value evaluation and error handling. Such
an abstraction layer was developed as a Java package named ilonif. The name indicates
that the package is a software interface (also called API – Application Programming Interface)
for the i.LON 100 web service.

The package ilonif operates on DataPoint objects which are Java classes designed to repre-
sent data points of the i.LON 100. As discussed in Section 5.1.6 a central place for storing and

82

Chapter 6 Implementation

Figure 6.1: Network variable naming and binding. The functional block on the left is
the virtual functional block of the i.LON 100. It comprises dynamic network
variables which are connected to network variables on remote nodes.

retrieving information on data points is required, to avoid information to be spread to differ-
ent places. The central storage functionality is provided by the Java package datastorage.
The packages datastorage and ilonif and its associated classes are described in the next
sections.

6.2.1 Java Representation of Data Points

Data points are abstracted entities which allow interaction with the underlying building
automation system. NVL data points represent local dynamic network variable on the
i.LON 100. By establishing a binding – with a LonWorks enabled system integrator tool
– between local network variables of the i.LON 100 and remote network variables located on
nodes connected to the building automation system, it is possible to read and change the
value of the remote network variable via the i.LON 100 web service.

The web service of the i.LON 100 operates on data points. The consumer of the web service
has to specify which operation has to be performed on a set of data points and has to provide
information about the set of data points. The class DataPoint was developed to be used as
a representation of a data point and to store relevant information about data points.

Information on NVL data points located on an i.LON 100 is provided in XML files. The
information can be retrieved by either downloading the dp NVL.xml file, which is described

83

Chapter 6 Implementation

in Section 3.3.3, from the i.LON 100 or by consuming the i.LON 100 web service function
DataServer Get(). The information which is relevant and should be available for ilonif and
pixelif is shown in Table 5.1. The class DataPoint is used to store all relevant information
on data points which can be retrieved from the i.LON 100. Listing 6.1 shows the member
variables of class DataPoint.

/*** Basic information about the data point ***/

protected final int index; //Index of the data point

protected final NvType nvType; //Type of the data point

protected String name = null; //Name of the data point

/*** Information on faults while consuming the web service ***/

protected boolean fault; // Indicates if an error occurred on the last access attempt

protected String faultString; // Stores value of UCPTfaultString tag

/*** Information related to DataServer_Read () and DataServer_Write functions ***/

protected ValuePreset value = null; //Last retrieved value

protected ValuePreset valueToWrite = null; //Value to write on next write attempt

protected Date updateTime; //Last time value was updated

private boolean valueChanged = false; // Indicates if value changed on last update

/*** Information retrieved via the DataServer_Get () function ***/

protected String unit; //Unit string

protected String location; // Stores value of UCPTlocation tag

protected String description; // Stores value of UCPTdescription tag

protected String formatDescription; // Stores value of UCPTformatDescription tag

private String direction; // Stores the value of UCPTdirection tag

private boolean isOutput; //Is set according to the direction property

protected String invalidValue; // Stores the optional UCPTinvalidValue tag

protected String minValue; // Stores the optional UCPTminValue tag

protected String maxValue; //Store the optional UCPTmaxValue tag

Listing 6.1: Member variables of class DataPoint. The member variables are grouped
according to their purpose.

Most of the member variables of class DataPoint correspond to the XML elements in the
SOAP (Simple Object Access Protocol) messages of the i.LON 100 web service described in
Section 3.4.2. As example, the variable direction, which indicates if the data point is an
input or an output, corresponds to the tag UCPTdirection in a DataServer Get() response
SOAP message, as shown in Listing 3.14.

6.2.2 Beyond Data Points

Data points are used by the i.LON 100 to allow web service consumers to interact with the
attached building automation system. The class DataPoint, introduced in the last section,
is a representation of such a data point in Java and stores the relevant information about
data points. DataPoint is mainly used to store all the data ilonif needs for consuming the
i.LON 100 web service and to store the return values of web service consumption.

For media façades data points are of no (or very little) interest, because a building automation
data point is alien to media façades. In Section 5.1.4 a bitmap based approach was suggested
and decided to be implemented.

For the bitmap based approach the concept of data points has to be adapted to act as pixels.
The class DataPoint has been sub-classed to introduce properties of pixels to data points.
The name of the sub-class is Pixel.

84

Chapter 6 Implementation

The class Pixel extends DataPoint and adds attributes required for a “building automation
based pixel”. These attributes comprise coordinates of the pixel, a type and a feedback
attribute. The coordinates define the position of the pixel on the façade of the building. For
example if the data point represented by the pixel allows to control the lights of a room,
the coordinates define the position of the window of this room on the façade of the building.
If the data point controls the sunblinds of a room the coordinates define the position in a
similar way.

The type of a Pixel defines if the pixel represents a light or a sunblind1. The feedback
attribute of the class Pixel stores the unique index of the data point which is assigned to the
feedback network variable of the data point represented by the pixel. Using the configuration
in Figure 5.1 as example the instance of class Pixel representing the data point named
NVL nvi L1 would have set its feedback attribute to the index of the data point named
NVL nvi L1 fb. The feedback data point and therefore the feedback attribute are needed to
retrieve the current value of a pixel.

6.2.3 Storage for Data Points

Both ilonif and pixelif require access to the available data points. Functionality to store
and query data points is provided by the Java package datastorage. The class in package
datastorage, which implements the the storage functionality is called DataStorage. The
class DataStorage is the central place where Pixel and DataPoint objects can be stored
and retrieved. DataStorage stores an arbitrary number of DataPoint and Pixel objects
and provides methods to retrieve them via their unique index, name, coordinates (if the data
point is a pixel) or type. A DataStorage instance is filled with data points in the initialization
phase of pixelif (see Section 6.3).

The objects retrieved from a DataStorage are no copies but references to an existing instance.
Therefore operating on such an object alters an object shared by different software modules,
which is potentially hazardous when dealing with more than one thread, because the classes
DataPoint, Pixel and DataStorage are not thread-safe. On the other hand shared objects
allow easy transport of information among different methods and classes. When return values
of a DataServer Read() web service function (see Section 3.4.3.2) are written to a DataPoint
object, every other class can retrieve this DataPoint instance from the data storage and read
the updated values.

6.2.4 Hiding the i.LON 100 Web Service

In Section 5.1.2 it was decided to implement an abstraction layer to hide the specifics of the
i.LON 100 web service. The name of the Java package which contains the abstraction layer
is ilonif. Its methods solely operate on DataPoint instances. The request SOAP messages
is constructed by evaluating data from a DataPoint instance. The values in the response
SOAP message are written back into the same DataPoint instance. This way the specifics
of the i.LON 100 web service are not visible outside the package ilonif.

The package comprise the class ILon and the sub-package ilonws. The latter contains all
classes produced by wsimport, which is a tool distributed with JAX-WS (see Section 3.5.2)

1For now the types are restricted to these two options, but new types can be easily incorporated.

85

Chapter 6 Implementation

to parse the description of a web service contained in a WSDL (Web Service Description
Language) file and generate Java classes. The generated Java classes support the developer
in consuming the web service.

Most of the classes generated by wsimport represent the XML elements in SOAP messages.
For an developer implementing the consumption of the i.LON 100 web service two classes
are of special interest: ILON100 and MainSoapPort. Class ILON100 contains information on
the location of the web service and provides a function to retrieve a MainSoapPort object.
MainSoapPort is the “stub” class, as described in Section 3.1.1, which can be used to invoke
the functions provided by the web service. The class MainSoapPort comprises functions which
are named and associated to respective web service functions. By invoking such a function of
MainSoapPort actually the associated function of the webservice is consumed and the return
value of the MainSoapPort function is a representation of the response SOAP message sent
by the web service.

The main API of ilonif is implemented in the class Ilon. For every required web service
function Ilon has its own method which directly operates on DataPoints. For example the
method readDataPoint() in class Ilon requires as parameter a set of data points stored
in a java.util.Collection<DataPoint>. The information needed to invoke a web service
function on a specific data point is contained in the class DataPoint. The method extracts
the needed information, then invokes the web service function DataServer Read() (see Sec-
tion 3.4.3.2) and stores the results in the DataPoint instances again.

6.3 Building Automation Interface for Media Façades

The Java package ilonif hides the specifics of the i.LON 100 web service. But ilonif still
uses the concept of data points, which is alien in the domain of media façades. Artists and
developers who design the content of media façades usually have no (or very little) knowledge
about building automation in general and LonWorks in particular. In Section 5.1.4 it was
decided to implement an API which is familiar to people dealing with media façades and
hides the underlying building automation technology. This functionality is implemented in
the Java package pixelif.

6.3.1 Bitmaps and Building Automation

To provide a convenient interface for people dealing with media façades it was decided to
implement a pixel oriented API in pixelif. Its main class PixelIF provides an interface
which operates on bitmaps. For representation of the bitmaps two-dimensional arrays are
used. Each entry of the array contains the value of the according pixel. For showing the
bitmaps on the façade of the building PixelIF provides “draw” methods, which were in-
troduced in Section 5.1.4. The draw methods require as parameter a two-dimensional array
containing the values for the pixels. The methods request the respective Pixel instances
from the DataStorage and invoke the write function of the class Ilon which is part of the
Java package ilonif. The user of PixelIF does not have to care about the underlying
Pixel/DataPoint functionality nor about the i.LON 100 and its web service. The user has
only to provide the bitmaps representing the image he wants to be applied. For example if

86

Chapter 6 Implementation

the user wants to close all sunblinds on the building a two-dimensional array filled with the
“sunblinds down” values is all the user has to care about2.

In Section 5.1.4 it was decided that pixelif should notify the user of the API if designated
switches alter their value. To enable the notification PixelIF has to be accordingly configured
(see Section 6.3.2).

The implementation of the notification functionality follows the usual approach in Java by
implementing the Observer Pattern [GHJV05] in the form of listeners. A SwitchListener
can register itself at a PixelIF instance and will be notified every time the value of a switch
has changed. To ensure the SwitchListener will be notified as soon as possible, every
time before a bitmap is drawn the values of all known switches will be retrieved from the
i.LON 100 and checked if the value changed. For every changed switch value the registered
SwitchListener will be notified.

Typically a user will run pixelif in a separate thread to avoid timing problems and minimize
the effects of other tasks which have to be performed. Threading in Java is quite easy
to implement by utilizing the class Thread, included in the Java distribution. However a
thread once started can not be stopped from the outside in a safe and reliable manner3.
Therefore a thread has to stop itself. If the thread does not know when to stop, as it is in
the case of PixelIF the thread has to be notified that it is supposed to stop. The registered
SwitchListener is allowed to return a boolean value. When notifying the SwitchListener
its return value is checked and if it equals true an exception is thrown. Processing control
is transferred to whoever catches the exception. The code which catches the exception can
take care of clean up and quit the thread.

If a switch listener is registered, the value of switches will be retrieved and checked every
time before bitmaps are actually drawn. The retrieving of values may have substantial effect
on timing of writing data points. An user of pixelif could choose another approach if
timing is critical. The i.LON 100 web service allows multiple clients at once, therefore an
user could instantiate two PixelIF objects each in separate threads. One instance can be
used to draw bitmaps without registering a switch listener, therefore switches will not be
checked and timing issues can be avoided. The other instance of PixelIF can be solely used
to periodically check the switches (a switch listener have to be registered for that) and react
accordingly.

6.3.2 Configuring Pixels

As described above pixelif is capable of mapping the pixels of a bitmap to the data points
located on an i.LON 100. However it can not detect the position of data points automatically.
In pixelif a configuration file is used to specify coordinates for data points.

The configuration file of pixelif is plain text, has a simple structure, and is human-readable.
It contains a section for every available pixel. A section starts with the name of the section
enclosed in brackets. The name of the section can be chosen freely. A pixel section contains
the name of the associated data point on the i.LON 100, the name of the feedback data point,

2For this special case there is even a convenience method setAllSunblinds() in class PixelIF. So the user
does not even have to care about an array.

3The class Thread comprise the method stop() but the method is deprecated and declared as “inherently
unsafe”, see: http://java.sun.com/javase/6/docs/api/java/lang/Thread.html.

87

http://java.sun.com/javase/6/docs/api/java/lang/Thread.html

Chapter 6 Implementation

the type of the pixel and the location in x and y coordinates. In the initialization phase of
PixelIF the configuration file is parsed and the configuration values stored in an instance of
DataStorage. Also it is checked if the data points defined in the configuration file exist on
the i.LON 100. An excerpt of a configuration file can be found in Listing 6.2.

[Point1]

NameOut = NVL_outmod1_NVI00

NameFb = NVL_outmod1_NVO00

Type = Light

PosX = 2

PosY = 0

[Point2]

NameOut = NVL_outmod1_NVI01

NameFb = NVL_outmod1_NVO01

Type = Sunblind

PosX = 2

PosY = 0

Listing 6.2: Excerpt from the pixelif configuration file. Every section starts with the
name of the section enclosed in brackets. A section contains the name of a
data point used as pixel (NameOut) and its feedback data point (NameFb). Also
the type of the pixel (Type) and its coordinates (PosX and PoxY) are required.

As discussed in Section 6.2.2 two types (lights and sunblinds) of pixels are implemented at the
moment. The type of the pixel has to be defined in the associated section of the configuration
file. The configuration file can also be used to specify switches, which should be observed by
pixelif.

A user of pixelif has to create a configuration file and define a section for every data point,
which should be used to draw bitmaps. Writing such a configuration file is an error-prone
task because every typo leads to an invalid or incomplete configuration. To relieve the user
from creating a configuration file from scratch and to reduce the probability of errors in the
resulting configuration file, a small tool was developed to support the user in creating the
configuration file.

The developed tool downloads the file dp NVL.xml, described in Section 3.3.3, from the
i.LON 100. The dp NVL.xml file contains descriptions of all NVL data points, which exist
on the particular i.LON 100. After downloading the tool extracts the names of data points
which are assigned to dynamic network variables. The data points assigned to dynamic net-
work variables can be differentiated from other data points because the UCPTlocation tag as
described in Section 3.3.3 differ. Therefore the tool parses file dp NVL.xml and extracts the
names of data points whose UCPTlocation tag define them as assigned to dynamic network
variables. After extracting the names of the data points a template configuration file is cre-
ated. The user still has to edit the configuration file afterwards, but he has only to add the
coordinates and the type (light or sunblind) to every pixel section.

6.3.3 Producing Visual Effects

The functionality included in pixelif allows developers to create visual effects on building
façade without having to care about the underlying building automation technology. The
developer just has to invoke the “draw” methods of the class PixelIF in a timely manner

88

Chapter 6 Implementation

and the bitmaps which are required parameters of the draw methods will be applied to the
façade of the building.

To show and test the functionality of class PixelIF and to provide some initial aid for
developers starting to work with pixelif effect classes were added to the package. These
effect classes produce some specific effects on a PixelIF instance. At the moment classes to
produce wave effects and to show an effect which resembles a snake creeping over the façade
of the building are implemented. A sequence of pictures showing the snake effect is shown in
Figure 6.2.

Figure 6.2: Demonstration suitcase showing the snake effect. The lights in the windows
and the sunblinds are activated to generate the effect of snake creeping on the
façade of the building.

6.4 Utilization of the Artificial Recognition System

In Chapter 4 the functionality of the Artificial Recognition System (ARS) and how the sym-
bolization technology, implemented in a subproject called ARS-PC (Artificial Recognition
System – Perception), can be utilized in this master thesis is discussed. Symbolization refers
to a data transformation process, which condenses great amounts of input information with
relative small informational value into a smaller number of information points but with higher
informational value.

The concepts and data values used in building automation systems are of no or only small
use for media façade systems. A more holistic view on the data available in the building
automation system would be more suitable for media façades. The symbolization process can
be used to transform ordinary building automation data into information suitable for media
façades because it reduces the amount of data points and produces high level information.

89

Chapter 6 Implementation

However as discussed in Section 5.2 the current implementation of ARS-PC is not designed to
operate on arbitrary building automation data as input but is specialized on the sensory data
available at the Smart Kitchen of the Institute of Computer Technology (ICT). Therefore it
was decided to not use building automation data retrieved via the i.LON 100 web service as
input source but use one of the already implemented input sources of ARS-PC.

6.4.1 Setting up the Artificial Recognition System

As described in Section 4.2.1 the start-up process of ARS-PC is responsible for setting up
the input source called micro symbol factory. A micro symbol factory reads sensor values
from its designated source and transforms the values into symbols. At the moment three
micro symbol factories exist: live, database and simulation. The difference among the micro
symbol factories is their source of sensor values. The live micro symbol factory retrieves
sensor values from the Smart Kitchen, the database micro symbol factory from a database
where sensor values originating from the Smart Kitchen are stored and the simulation micro
symbol factory retrieves sensor values from a database where sensor values originating from
a simulation environment [Har07] are stored. In Section 5.2.3 it was decided to utilize the
database micro symbol factory in this master thesis as it is more independent from the Smart
Kitchen than the live micro symbol factory and nevertheless provides real world data values.

When launching ARS-PC also the connections between the symbolization modules have to
be set up. The connections are used to exchange symbols between modules. The imple-
mentation of connections is called SymbolNet and is discussed in Section 4.2.4. SymbolNet
allows exchange of symbol information via symbol messages and provides infrastructure to
send, receive, store and update symbols. The symbolization process is implemented in mod-
ules which evaluate incoming symbols and generate new symbols if they detect patterns they
are programmed for. Therefore establishing connections between symbolization modules is
crucial and has to be done correctly.

In this master thesis the launching and setting-up of ARS-PC is done by a class called
ArsLauncher. The class resides in a Java package named arsif. As shown in Figure 5.4
arsif acts as abstraction layer between ARS-PC and media façade systems. ArsLauncher
can be used by media façade systems to launch and set-up ARS-PC. The configuration used in
ArsLauncher is similar to the configuration used to set up the database micro symbol factory
in the current ARS-PC implementation. The symbolization process of ARS-PC is launched
in a separate thread and therefore does not block the execution of the user of ArsLauncher.

6.4.2 Retrieving Information from the Artificial Recognition System

The class ArsLauncher is used to configure and start-up the symbolization process of ARS-
PC. A part of the configuration of ARS-PC are the connections established between sym-
bolization modules. For arsif to be able to receive symbol messages it has to be connected
to other symbolization modules. For this purpose the class MFSymbolFilter has been im-
plemented. It comprises a SymbolNet interface and is therefore capable of receiving symbol
messages.

In its initialization phase the class ArsLauncher instantiates various symbolization mod-
ules and an instance of MFSymbolFilter. Then it establishes a connection between some

90

Chapter 6 Implementation

of the symbolization modules which generate symbols on the higher levels of the symbol-
ization hierarchy shown in Figure 4.2 and the MFSymbolFilter instance. This connections
ensure that the MFSymbolFilter object will receive symbol messages when the respective
scenarios are detected. Amongst others the following symbolization modules are connected
to MFSymbolFilter:

� Person makes coffee

� Meeting

� Presence of person

After ARS-PC has been configured and started up by ArsLauncher a media façade should be
able to retrieve the information which is generated by ARS-PC. By utilizing arsif software
a media façade system need not to implement a SymbolNet interface but can use another
approach.

The used approach in arsif to forward symbol information generated by ARS-PC to a
media façade system follows the Observer Pattern [GHJV05]. In Java the Observer Pattern
is usually implemented by listeners. A listener is a software interface which can be registered
at objects, if special events occur in this object the listener will be notified.

A media façade system utilizing the class ArsLauncher can register a SymbolListener. This
listener will be notified whenever the internals of arsif receive a new symbol message. The
media façade system does not have to care about the internals of arsif like MFSymbolFilter.
The only relevant class for media façade systems is ArsLauncher.

6.5 Integrating Media Façades

The software modules arsif and pixelif described above are abstraction layers and provide
APIs to hide the underlying technology. APIs itself only provide functionality, an application
which consumes the API is needed to actually show the possible cooperation of building
automation and media façades. Section 5.3 described that it would be advantageous if the
consuming application would be executed on the Image Generator (see Section 2.2.2) because
it allows easier ways to communicate with the media façade system. However as the Image
Generator was not delivered by BLIP4 another solution had to be found. It was decided to
write an demonstration application, which acts as the consumer of the APIs of arsif and
pixelif and acts therefore as replacement of the Image Generator for the time being.

The demonstration suitcase described in Section 5.4 is a prototype to demonstrate the co-
operation possibilities of building automation and media façades. As the demonstration
suitcase is for now the only system utilizing arsif and pixelif, the demonstration software
has been tailored for the use with the demonstration suitcase. Therefore it also implements
the operational modes (conventional mode and effect mode) of the suitcase as described in
Section 5.4.3.

The demonstration application is a simple Java program with a Graphical User Interface
(GUI) which consumes the APIs of pixelif and arsif. Figure 6.3 shows the GUI of the

4http://www.blipcreative.com/

91

http://www.blipcreative.com/

Chapter 6 Implementation

demonstration application. With the control elements shown in the figure the behavior of
the demonstration suitcase can be altered. If the user activates one of the control elements
the application utilizes the API of pixelif to produce the according effect with the building
automation system. The text label below the control elements is used to display information
retrieved via the API of arsif. The screenshot in Figure 6.3 shows that the last information
reported by arsif was about a person presence.

Figure 6.3: Demonstration application for the demonstration suitcase. The checkboxes at
the top of the GUI can be used for switching between the operational modes.
The buttons below allow to directly affect the building automation system. In
the text label at the bottom information delivered by ARS-PC is shown.

6.6 Demonstration Suitcase

In Section 5.4 it was decided to implement a demonstration environment in a suitcase. The
demonstration suitcase should be able to show the cooperation building automation and me-
dia façades are capable of, therefore a small building automation system and parts of a media
façade have to be integrated into the demonstration suitcase. The integrated components are
discussed in the next section.

6.6.1 Components and Assembling

In Figure 5.5 a draft of the suitcase and its main components is shown. The impression of a
building façade on the top cover is mostly produced by the presence of windows. For every
window the light in the “room” behind the windows should be controlled by an integrated
building automation system. It was decided to produce the impression of room lighting by
filling the top cover of the suitcase with polystyrene5. Rectangular holes in the polystyrene
represent the room and in the back center of the hole a LED, which emits a “natural white”
light is mounted. The polystyrene and the holes are covered with a light diffusing sheet.
Figure 6.5 shows the holes in the polystyrene fitted into the top cover of the demonstration
suitcase.

A plan of the technical components required to implement the functionality described in
Section 5.4.1 is shown in Figure 6.4. The parts related to building automation are the push

5Polystyrene is better known as Styropor in German speaking countries and as Styrofoam in English
speaking countries.

92

Chapter 6 Implementation

Figure 6.4: Components of the demonstration suitcase. The parts related to building au-
tomation are the input modules, the output modules and the i.LON 100. The
Image Generator controlls the LEDs of the media façade. The Ethernet switch
is required to enable communications between i.LON 100, Image Generator and
outside world.

93

Chapter 6 Implementation

buttons, the input module, the output modules and the i.LON 100. The output modules are
LonWorks nodes which implement the lamp actuator profile (Figure 3.6) and are responsible
for switching on and off room lighting and sunblind representations. The push buttons are
connected to the input module, which is a LonWorks node implementing the switch profile.
The i.LON 100 allows external applications to access building automation data via its web
service.

Figure 6.5: Representation of windows in the demonstration suitcase. The top cover of the
suitcase is filled with polystyrene. The holes represent rooms. At the back of
the holes LEDs are mounted to represent the room lighting.

On the part named “Resistors for LEDs” in Figure 6.4 the resistors for the LEDs, shown in
Figure 5.6 are mounted. The LEDs in the top cover of the suitcase are connected to these
resistors.

The Image Generator would be connected to the media façade in the top cover of the suit-
case. The Ethernet switch in Figure 6.4 enables communication between i.LON 100, Image
Generator and the outside world via.

For switching the lights and sunblinds representations on and off, digital switches are required.
Switching of lights and sunblinds should be done by a building automation system as that is
common practice in real buildings. Therefore a LonWorks-enabled node with a lamp actuator
profile, as shown in Figure 3.6 is required. There are a lot of nodes from different vendors
which implement the lamp actuator profile available. The LM 016R [Uni07] produced by
Unitro6 was chosen to be used as lamp actuator. The output module, as it is called in this
work and shown in Figure 6.4, comprise 16 relais-driven digital outputs and can be mounted
on a DIN rail (DIN: Deutsches Institut für Normung) which is also known as top hat rail
or mounting rail. Both of these attributes are relevant because the demonstration suitcase
comprise 16 windows. Each window requires two switches to control light and sunblind
functionality, as shown in Figure 5.6. Therefore 32 digital outputs, which can be provided
by two LM 016Rs, are required for the whole suitcase. Furthermore DIN rails have been
used to mount the components inside the demonstration suitcase, therefore it was a hard

6http://www.unitro.de/

94

http://www.unitro.de/

Chapter 6 Implementation

Figure 6.6: Picture of the components of the demonstration suitcase. At the bottom of
the picture the i.LON 100 resides on the left the Ethernet switch on the right
side. At the top on the left the LonWorks input and output modules and the
push-buttons are visible. The Image Generator would be located at the free
space in the upper right corner, but is missing in the picture.

95

Chapter 6 Implementation

requirement that the utilized output modules can be mounted on DIN rails. The output
modules are mounted on the left side of the suitcase as shown in Figure 6.6.

Output modules alone are not enough to represent a building automation system. The
lights the output modules can turn on and off should be controllable by switches. Therefore
switches and a node which implements the switch functional profile, as shown in Figure 3.6,
are integrated into the demonstration suitcase. The switches are small and visually appealing
push-buttons. The switches are connected to a LonWorks-enabled input module. The chosen
input module is the lumina T6 [Spe06] produced by Spega7. The input module and the
switches can be seen in the upper left corner in Figure 6.6. The lumina T6 was chosen
because it has already been utilized at the ICT and proved to be a reliable and well-priced
component.

The last component required for the building automation system in the demonstration suit-
case is an i.LON 100. The input module and the output modules are connected to a LonWorks
bus. The i.LON 100 is also integrated into the bus system. The i.LON 100 is configured as
described in Section 6.1 and a web service consumer can therefore alter and read the values
of the input and output modules. In Figure 6.6 all building automation related parts are
located on the left side of the picture, the i.LON 100 is located at the bottom of the left side.

The building automation part of the demonstration suitcase is complete with the above
mentioned components. The media façade related components are described below. As
shown in Figure 5.5 the media façade is mounted vertically between the windows in the top
cover of the suitcase. The media façade consists of a “LED string” shown in Figure 6.7.
This type of LED string is used in real world media façades. The LED string has been
kindly provided by BLIP. The LEDs would have been connected to the Image Generator if it
would be available. However the suitcase is prepared for integration of an Image Generator.
Figure 6.6 shows that free space in the upper right corner of the suitcase is available and
designated for an Image Generator.

Figure 6.7: LEDs used in the demonstration suitcase to represent a media façade. The
LED elements are multi-color. This type of LED string is used in real world
media façades.

7http://www.spega.com/

96

http://www.spega.com/

Chapter 6 Implementation

The image generator can be supplied with power via a Power over Ethernet [IEE03] (PoE)
connector. An Ethernet switch which provides PoE functionality was integrated into the
demonstration suitcase. The Ethernet switch is shown in Figure 6.6 at the bottom of the
right side of the picture.

6.6.2 Operation of the Demonstration Suitcase

The fully assembled demonstration suitcase is shown in Figure 6.8. The picture shows the
room lighting turned on. The LEDs of the media façade are not activated because of the
missing Image Generator. As discussed in Chapter 5 the demonstration suitcase has two
operational modes. One mode for demonstrating aspects of building automation functionality
(conventional operation) and one mode for demonstrating the cooperation between media
façades and building automation (effect operation).

The operational mode of the demonstration suitcase can be switched by either the most-left
push-button or via the demonstration application described in Section 6.5. The application
is executed on a notebook, which is connected to the Ethernet switch integrated into the
demonstration suitcase.

Figure 6.3 shows the GUI of the demonstration application. If the suitcase is in conventional
operation mode the building automation system is not altered by the application, but the
value of the push-button, which is designated to change the operational mode, is periodically
read. If the push-button is pressed or a user changes the mode in the GUI of the application
the effect mode is entered. In the effect mode the application would coordinate the behavior
of the media façade and the building automation system to produce enhanced effects on the
representation of a building façade, if an Image Generator would be available. As it is missing
only room lighting is used for effects at the moment.

97

Chapter 6 Implementation

Figure 6.8: Picture of the demonstration suitcase. The lights in the windows are turned
on. The LEDs of the media façade are not activated in the picture, because
the Image Generator which controls the LEDs is not available. Nevertheless
the placement of LEDs can be seen by the small holes between the windows.

98

Chapter 7

Conclusion and Further Work

In the course of this work a system has been implemented which allows media façades to
cooperate and communicate with building automation systems. However some obstacles
have been encountered which have to be solved in future work.

7.1 Conclusion

The system implemented in this master thesis enables media façades to communicate with
building automation systems. In Chapter 2 media façade systems and how they can benefit of
cooperation with building automation systems has been discussed. Cooperation is enabled by
a system which acts as “translator” system as shown in Figure 1.2. Communication between
building automation system and media façade is possible in two ways. One data channel
originating at the building automation system and ending at the media façade system. The
second data channel allows communication in the opposite direction.

For communication between building automation system and the translator system a gateway
node as shown in Figure 1.2 is used. The gateway node is an i.LON 100 which provides a
web service to allow access to data located in the building automation system. Both, the
i.LON 100 and its web service are discussed in Chapter 3.

The translator system mentioned above is implemented in several software modules which are
described in Chapter 5 and Chapter 6. The software module pixelif allows media façades
to control aspects of a building automation systems. For example the media façade may be
allowed to lower the sunblinds of rooms where the lights are turned on, so that room lighting
is not interfering with the visual effects produced by the media façade. Furthermore the
media façade may be allowed to utilize room lighting and sunblinds for visual effects.

To hide the specifics of building automation systems from media façade systems the software
module pixelif provides a pixel based interface. The windows of a building façade are
considered as pixels of a display and coordinates are assigned to them. The user of pixelif
can supply bitmap images which are applied to the façade of the building by pixelif. For
this to work, coordinates have to be assigned to actuators which control room lighting and
sunblinds. Coordinates are defined in a configuration file.

The second aspect of communication between media façades and building automation deals
with informing media façades about its environment. Building automation gathers a lot

99

Chapter 7 Conclusion and Further Work

of information about the state the building is in. However this information can not be
directly used by media façades because building automation data and building automation
data structures are alien in the media façade domain.

The information gathered by building automation typically consists of a huge number of
sensor values with only small informational value. Examples for data gathered by building
automation are the state of a switch or the temperature in a room. Such data does not have
much value for media façade systems and therefore has to be pre-processed to be useful for
media façades.

In this master thesis ARS-PC (Artificial Recognition System – Perception, see Chapter 4)
has been used to pre-process building automation data. ARS-PC implements a functionality
called symbolization which transforms great amounts of input data (specifically sensor values)
into lesser data points with higher informational value. These data points typically describe
scenarios like “person makes coffee” and are therefore more useful for media façades.

Unfortunately it was not possible to use the data retrieved via the i.LON 100 as input data
for the symbolization process of ARS-PC. Instead an already existing input data source of
ARS-PC, which retrieves sensor values from a database, has been used in this work. The
software module which delivers information gathered by ARS-PC is called arsif.

To test and present the functionality of cooperation between building automation and media
façades a prototype system has been built. The prototype is integrated in a suitcase as
described in Chapter 5 and Chapter 6. The suitcase comprise a representation of a building
façade in the top cover. The representation consists of windows which are able to show
the state of room lighting and sunblinds. LEDs (Light Emitting Diodes) of a media façade
are mounted between the windows. A picture of the demonstration suitcase is shown in
Figure 6.8.

The demonstration suitcase is intended to be used as test platform of the implemented soft-
ware modules and as demonstration of the cooperation between building automation and
media façades at trade shows and similar events. However the suitcase has not been com-
pleted because the Image Generator, which actually controls the LEDs of the media façade,
has not been delivered by our Mediafacade.net1 project partner BLIP2.

As a temporary replacement for the Image Generator a small application has been developed.
At the moment the application utilizes the software modules pixelif and arsif to produce
effects on the representation of a building façade on the top cover of the suitcase respectively
to retrieve information from ARS-PC. The media façade LEDs can not be activated because
the Image Generator is missing.

7.2 Further Work

While the basics for cooperation of media façades and building automation have been laid
out in this master thesis, there is still some work left to do. One of the most pressing jobs
left to be done is the integration of the Image Generator into the demonstration suitcase.
The first steps in integration would be to add to the application, which is currently used as

1http://www.mediafacade.net/
2http://www.blipcreative.com/

100

http://www.mediafacade.net/
http://www.blipcreative.com/

Chapter 7 Conclusion and Further Work

replacement for the Image Generator, means to communicate with the Image Generator. The
replacement application would have to be stripped of its GUI (Graphical User Interface) and
act as “translator” system as shown in Figure 1.2.

The next step of integration would be to get rid of the external computer system where the
replacement application is executed. Instead of the external computer system the Image Gen-
erator could be used. Moving all software modules to the Image Generator would make the
demonstration suitcase much more attractive, because it would allow autonomous operation
of the suitcase.

A requirement to port the software modules implemented in this master thesis to the Image
Generator is the availability of a Java runtime environment for the Image Generator platform.
Supposedly the Image Generator CPU has a MIPS architecture, for which only a few Java
runtime environments are available. The web service framework JAX-WS (Java API for
XML – Web Services) used in this master thesis requires at least Java Version 5. Sun3

does not provide an official Java runtime environment for the MIPS architecture, but with
the recent open sourcing4 of Java and with advances made by the GNU Classpath5 project
there might already be a runtime environment which works with JAX-WS. Future work is
required to find out which runtime environment is capable of running the software modules
implemented in this master thesis and which steps are necessary to port the software modules
to the Image Generator platform.

For real world applications new scenarios which can be detected by ARS-PC have to be
defined and implemented. These scenarios should be detectable by evaluation of sensors
which are already deployed in modern building automation systems or at least only require
very simple and cheap sensors. As recent work has introduced image recognition functionality
to ARS-PC another possibility is to use video cameras as input sources.

Scenarios based on the above mentioned sensors have to be defined and implemented in
ARS-PC. The software module arsif does not have to be altered, the new scenarios are
automatically forwarded to arsif’s user — the media façade.

3http://www.sun.com/
4http://www.sun.com/software/opensource/java/
5http://www.gnu.org/software/classpath/

101

http://www.sun.com/
http://www.sun.com/software/opensource/java/
 http://www.gnu.org/software/classpath/

List of Figures

1.1 Vienna: Uniqa Tower Media Façade . 5

1.2 Overview of the Dataflow in the proposed System 6

2.1 Room Lighting interfering with Media Façade Projections 12

2.2 Hierarchical Structure of a Media Façade Control System 14

3.1 Control Application comprising Sensor, Actuator and Control Unit 15

3.2 Web Service Roles and Communication Flows 17

3.3 Consummation of a Web Service . 20

3.4 Schematic Work Flow of a WSDL Transformation Tool 21

3.5 LonMaker Schematic . 26

3.6 Switch and Lamp Actuator Functional Profile. 28

3.7 Picture of an i.LON 100. 29

3.8 Data Server as Abstraction Layer . 31

3.9 Comparison of Data Point Types . 32

4.1 Interaction of the Artificial Recognition System with the Real World 55

4.2 Symbol Levels of ARS. 56

4.3 Data Flow in ARS-PA . 57

4.4 Data Processing of ARS-PC . 60

5.1 NVL Data Points, Dynamic Network Variables and Remote Network Variables 67

5.2 Simple Bitmap Graphic . 70

5.3 Implemented Software Modules and their Relation 72

5.4 Role of the arsif Abstraction Layer . 74

5.5 Draft of the Demonstration Suitcase . 77

5.6 Circuit two show different Brightness Levels with one LED 79

103

6.1 Network Variable Naming and Binding . 83

6.2 Demonstration Suitcase showing the Snake Effect 89

6.3 Demonstration Application for the Demonstration Suitcase 92

6.4 Components of the Demonstration Suitcase 93

6.5 Representation of Windows in the Demonstration Suitcase 94

6.6 Picture of the Components of the Demonstration Suitcase 95

6.7 LEDs used as Media Façade in the Demonstration Suitcase 96

6.8 Picture of the Demonstration Suitcase . 98

104

List of Tables

5.1 Relevant Information about Data Points . 69

5.2 States of the Windows in the Demonstration Suitcase 79

105

Listings

3.1 Part of a simple WSDL File . 19

3.2 Structure of a SOAP Message . 19

3.3 Consuming a Web Service in Java utilizing a SOAP Stack 21

3.4 oBIX Representation of a Time Source . 23

3.5 oBIX Contract for an Alarm . 24

3.6 oBIX Object implementing the Alarm Contract 24

3.7 oBIX Contract and Implementation of an Alarm Clock 24

3.8 Definition of an oBIX Operation . 25

3.9 Data Point Entry in an i.LON 100 Configuration File 37

3.10 Basic Request SOAP Message . 39

3.11 Basic Response SOAP Message . 40

3.12 DataServer Get() Request SOAP Message 42

3.13 SOAP Header of a DataServer Get() Response Message 43

3.14 SOAP Body of a DataServer Get() Response Message 44

3.15 DataServer Read() Request SOAP Message 45

3.16 DataServer Read() Response SOAP Message 46

3.17 DataServer Write() Request SOAP Message 47

3.18 DataServer Write() Response SOAP Message 47

3.19 Utilizing Classes created by Axis2 to consume a Web Service 49

3.20 Utilizing Classes created by JAX-WS to consume a Web Service 50

3.21 Incorrect Sequence in DataServer List() Response SOAP Message 51

6.1 Member Variables of Class DataPoint . 84

6.2 Excerpt from the pixelif Configuration File 88

107

Bibliography

[ASH04] ASHRAE: BACnet – A Data Communication Protocol for Building Automation
and Control Networks. ANSI/ASHRAE Standard 135-2004, 2004 16

[ASH06] ASHRAE: BACnet – A Data Communication Protocol for Building Automation
and Control Networks. Addendum c to ANSI/ASHRAE Standard 135-2004, 2006
22

[Atk03] Atkins, S.: Size and cost of the problem. IETF Meeting. http://www3.ietf.
org/proceedings/03mar/slides/asrg-1/index.html. Version: March 2003 16

[BLFF96] Berners-Lee, T. ; Fielding, R. ; Frystyk, H.: Hypertext Transfer Protocol
– HTTP/1.0. RFC 1945 (Informational). http://www.ietf.org/rfc/rfc1945.
txt. Version: Mai 1996 (Request for Comments) 19

[BLFM05] Berners-Lee, T. ; Fielding, R. ; Masinter, L.: Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard). http://www.ietf.org/rfc/
rfc3986.txt. Version: Januar 2005 (Request for Comments) 23

[BLI07] BLIP (Hrsg.): BLIP Display Manager. Unit 19A, Perseverance Works,
38 Kingsland Road, UK: BLIP, 2007. http://www.blipcreative.com/pdf/
displaymanager0307.pdf 13

[BLPV07] Burgstaller, W. ; Lang, R. ; Pörscht, P. ; Velik, R.: Technical Model
for Basic and Complex Emotions. In: 5th IEEE International Conference on
Industrial Informatics (INDIN) Bd. 2, 2007, S. 1033–1038 57

[Bur07] Burgstaller, W.: Interpretation of Situations in Buildings. Vienna, Technical
University of Vienna, Ph.D., 2007. – to be published 54

[Bus97] Bushby, Steven T.: BACnet: a standard communication infrastructure for
intelligent buildings. In: Automation in Construction 6 (1997), S. 529–540 15

[Cal03] Callaway, Edgar H.: Wireless Sensor Networks: Architectures and Protocols.
CRC Press Inc., 2003. – ISBN 0849318238 3

[CEA02] CEA: Control Network Protocol Specification. ANSI/EIA/CEA Std. 709.1 Rev.
B, 2002 16, 25, 29

[Die99] Dietrich, D.: LON-Technologie : verteilte Systeme in der Anwendung. 2.
berarb. Aufl. Hthig, 1999. – ISBN 3–7785–2770–3 25, 27, 34

109

http://www3.ietf.org/proceedings/03mar/slides/asrg-1/index.html
http://www3.ietf.org/proceedings/03mar/slides/asrg-1/index.html
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.blipcreative.com/pdf/displaymanager0307.pdf
http://www.blipcreative.com/pdf/displaymanager0307.pdf

[Die00] Dietrich, D.: Evolution potentials for fieldbus systems. In: Factory Communi-
cation Systems, 2000. Proceedings. 2000 IEEE International Workshop on, 2000,
S. 145–146 53

[DLP+06] Deutsch, T. ; Lang, R. ; Pratl, G. ; Brainin, E. ; Teicher, S.: Applying
Psychoanalytic and Neuroscientific Models to Automation. In: 2nd IET Inter-
national Conference on Intelligent Environments Bd. 1, 2006, S. 111–118 54,
58

[DZL07] Deutsch, T. ; Zeilinger, H. ; Lang, R.: Simulation Results for the ARS-
PA Model. In: 5th IEEE International Conference on Industrial Informatics
(INDIN) Bd. 2, 2007, S. 1021–1026 57

[Ech99] Echelon Corporation (Hrsg.): Introduction to the LONWORKS Plat-
form. 550 Meridian Ave., San Jose, CA 95126, USA: Echelon Corporation,
1999. http://www.echelon.com/support/documentation/manuals/general/
078-0183-01A.pdf 27

[Ech00] Echelon Corporation (Hrsg.): Implementing Dynamic Network Vari-
ables. 550 Meridian Ave., San Jose, CA 95126, USA: Echelon Corpora-
tion, August 2000. http://www.echelon.com/support/documentation/docs/
ImplementingDynamicNetworkVariables.pdf 35

[Ech05] Echelon Corporation (Hrsg.): i.LON 100 e3 Plug-in Supplement. 550 Merid-
ian Ave., San Jose, CA 95126, USA: Echelon Corporation, 2005. http://www.
echelon.com/support/documentation/manuals/cis/078-0315-01A.pdf 32

[Ech06a] Echelon Corporation (Hrsg.): i.LON 100 e3 Hardware Guide. 550 Merid-
ian Ave., San Jose, CA 95126, USA: Echelon Corporation, 2006. http://www.
echelon.com/support/documentation/manuals/cis/078-0311-01A.pdf 29

[Ech06b] Echelon Corporation (Hrsg.): i.LON 100 e3 Internet Server. 550 Merid-
ian Ave., San Jose, CA 95126, USA: Echelon Corporation, 2006. http://www.
echelon.com/products/cis/presentations/i.LON100e3_overview.pdf 29

[Ech06c] Echelon Corporation (Hrsg.): i.LON 100 e3 Programmer’s Refer-
ence. 550 Meridian Ave., San Jose, CA 95126, USA: Echelon Corpora-
tion, 2006. http://www.echelon.com/Support/documentation/manuals/cis/
078-0250-01E.pdf 33, 36, 38, 41, 43, 45, 68

[Ech06d] Echelon Corporation (Hrsg.): i.LON 100 e3 User’s Guide. 550 Merid-
ian Ave., San Jose, CA 95126, USA: Echelon Corporation, 2006. http://www.
echelon.com/support/documentation/manuals/cis/078-0310-01B.pdf 30,
33

[Ehr04] Ehrlich, P.: The Future of Facility Management. In: HPAC (Heating, Piping,
Air Conditioning) Engineering (2004), May 16

[EN05] EN: DIN EN 13757 Communication systems for and remote reading of meters.
Feb 2005 29

110

http://www.echelon.com/support/documentation/manuals/general/078-0183-01A.pdf
http://www.echelon.com/support/documentation/manuals/general/078-0183-01A.pdf
http://www.echelon.com/support/documentation/docs/Implementing DynamicNetworkVariables.pdf
http://www.echelon.com/support/documentation/docs/Implementing DynamicNetworkVariables.pdf
http://www.echelon.com/support/documentation/manuals/cis/078-0315-01A.pdf
http://www.echelon.com/support/documentation/manuals/cis/078-0315-01A.pdf
http://www.echelon.com/support/documentation/manuals/cis/078-0311-01A.pdf
http://www.echelon.com/support/documentation/manuals/cis/078-0311-01A.pdf
http://www.echelon.com/products/cis/presentations/i.LON100e3_overview.pdf
http://www.echelon.com/products/cis/presentations/i.LON100e3_overview.pdf
http://www.echelon.com/Support/documentation/manuals/cis/078-0250-01E.pdf
http://www.echelon.com/Support/documentation/manuals/cis/078-0250-01E.pdf
http://www.echelon.com/support/documentation/manuals/cis/078-0310-01B.pdf
http://www.echelon.com/support/documentation/manuals/cis/078-0310-01B.pdf

[GHJV05] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design
patterns : Elements of Reusable Object-Oriented Software. 32. print. Boston :
Addison-Wesley, 2005 (Addison Wesley Professional Computing Series). – ISBN
0–201–63361–2 71, 74, 87, 91

[Göt06] Götzinger, S.: Scenario Recognition based on a Bionic Model for Multi-Level
Symbolization, Vienna University of Technology, Faculty of Electrical Engineering
and Information Technology, Master Thesis, 2006 62

[GTL94] Garas, F. K. ; T., Armer G. S. ; L., Clarke J.: Building the Future : Innovation
in Design, Materials and Construction. London : Spon Press, 1994. – ISBN
0–419–18380–9 1

[Har07] Hareter, H.: Worst Case Szenarien Simulator für die Gebäudeautomation.
Vienna, Technical University of Vienna, Ph.D., 2007. – to be published 59, 61,
90

[Hol06] Holleis, E.: SymbolNet – Ein Application Framework für symbolische Kommu-
nikation. June 2006 62

[HSW+00] Hill, J. ; Szewczyk, R. ; Woo, A. ; Hollar, S. ; Culler, D. ; Pister, K.:
System architecture directions for network sensors. In: Proceedings of the 9th
International Conference on Architectural Support for Programming Languages
and Operating Systems, 2000, S. 93–104 3

[IEE95] IEEE: IEEE standards for local and metropolitan area networks : supplement to
carrier sense multiple access with collision detection (CSMA/CD) access method
and physical layer specifications : media access control (MAC) parameters, phys-
ical layer, medium attachment units, and repeater for 100 Mb/s operation, type
100BASE-T (Clauses 21-30). http://ieeexplore.ieee.org/servlet/opac?
punumber=9535. Version: 1995 14, 16

[IEE03] IEEE: Part 3: Carrier Sense Multiple Access with Collision Detection (CS-
MA/CD) Access Method and Physical Layer Specifications, Amendment: Data
Terminal Equipment (DTE), Power via Media Dependent Interface (MDI). http:
//ieeexplore.ieee.org/servlet/opac?punumber=8612. Version: 2003 97

[ISO02] ISO: Abstract Syntax Notation One (ASN.1): Specification of Basic Notation
(ISO/IEC 8824–1:2002). Geneva, Switzerland, 2002 62

[KA04] Konnex-Association: KNX Specifications, Version 1.1. 2004 16

[Kle01] Klensin, J.: Simple Mail Transfer Protocol. RFC 2821 (Proposed Stan-
dard). http://www.ietf.org/rfc/rfc2821.txt. Version: April 2001 (Request
for Comments) 30

[KNS05] Kastner, W. ; Neugschwandtner, G. ; Soucek, St.: Communication Sys-
tems for Building Automation and Control, 2005, S. 1178–1203 1

[MGH05] Mahlknecht, S. ; Glaser, J. ; Herndl, T.: PAWiS: towards a power aware
system architecture for a soc/sip wireless sensor and actor node implementation.
In: Proceedings of the 6th IFAC International Conference on Fieldbus Systems
and their Applications, 2005, S. 129–134 3

111

http://ieeexplore.ieee.org/servlet/opac?punumber=9535
http://ieeexplore.ieee.org/servlet/opac?punumber=9535
http://ieeexplore.ieee.org/servlet/opac?punumber=8612
http://ieeexplore.ieee.org/servlet/opac?punumber=8612
http://www.ietf.org/rfc/rfc2821.txt

[MI06] Modbus-IDA: Modbus Application Protocol Specification v1.1b. Dec 2006 29

[Mil92] Mills, D.: Network Time Protocol (Version 3) Specification, Implementation and
Analysis. RFC 1305 (Draft Standard). http://www.ietf.org/rfc/rfc1305.
txt. Version: März 1992 (Request for Comments) 30

[MSMV06] Machado, Guilherme B. ; Siqueira, Frank ; Mittmann, Robinson ; Vieira,
Carlos Augusto V.: Embedded Systems Integration Using Web Services. In:
ICNICONSMCL ’06: Proceedings of the International Conference on Networking,
International Conference on Systems and International Conference on Mobile
Communications and Learning Technologies, 2006, S. 18 22

[OAS04] OASIS: UDDI Version 3.0.2. Committee Draft, Oct 2004 18

[OAS06] OASIS: oBIX 1.0. Committee Specification, Dec 2006 22

[PM03] Palensky, P. ; Mahlknecht, S.: Latest Trends in Building Automation. In:
Proceedings of the IGW (Intelligente Gebäude und Wohnungen), 2003, S. 9–18 3

[Pos81a] Postel, J.: Internet Protocol. RFC 791 (Standard). http://www.ietf.org/
rfc/rfc791.txt. Version: September 1981 (Request for Comments) 19

[Pos81b] Postel, J.: Transmission Control Protocol. RFC 793 (Standard). http://www.
ietf.org/rfc/rfc793.txt. Version: September 1981 (Request for Comments)
62

[PP05] Pratl, G. ; Palensky, P.: Project ARS – The next Step towards an Intelligent
Environment. In: The IEEE International Workshop on Intelligent Environ-
ments, 2005, S. 55–62 2, 3, 11, 53

[PR85] Postel, J. ; Reynolds, J.: File Transfer Protocol. RFC 959 (Standard).
http://www.ietf.org/rfc/rfc959.txt. Version: Oktober 1985 (Request for
Comments) 31

[Pra06] Pratl, G.: Processing and Symbolization of Ambient Sensor Data, Vienna Uni-
versity of Technology, Ph.D., 2006 3, 54, 56

[PSKD06] Palensky, P. ; Soucek, S. ; Klot, S. von ; Dietrich, D.: Netzwerke und
Gebäude. In: e&i (Elektrotechnik und Informationstechnik) (2006), Nr. 6 2

[Ric07] Richtsfeld, A.: Szenarienerkennung durch symbolische Datenverarbeitung mit
Fuzzy-Logic, Vienna University of Technology, Faculty of Electrical Engineering
and Information Technology, Master Thesis, 2007 55, 60, 73

[Rus03] Russ, G.: Situation-dependent Behavior in Building Automation. Vienna, Tech-
nical University of Vienna, Ph.D., 2003 3, 53, 54

[RW07] Ramzan, Z. ; Wüest, C.: Phishing Attacks: Analyzing Trends in 2006. In:
CEAS (Conference on E-Mail and Anti-Spam) (2007), August 16

[Spe06] Spega (Hrsg.): lumina T6 Binary input. bismarckstr.142a, 47057 Duisburg,
Germany: Spega, 2006. http://www.spega.de/downloads/datasheets/EN/
211006_EN_TD.pdf 96

112

http://www.ietf.org/rfc/rfc1305.txt
http://www.ietf.org/rfc/rfc1305.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.spega.de/downloads/datasheets/EN/211006_EN_TD.pdf
http://www.spega.de/downloads/datasheets/EN/211006_EN_TD.pdf

[SRT00] Soucek, S. ; Russ, G. ; Tamarit, C.: The Smart Kitchen Project – An Ap-
plication of Fieldbus Technology to Domotics. In: Proceedings of the 2nd IEEE
International Workshop on Networked Appliances (IWNA), 2000 61, 73

[TS01] Tanenbaum, Andrew S. ; Steen, Maarten V.: Distributed Systems: Principles
and Paradigms. Prentice Hall PTR, 2001. – ISBN 0130888931 18

[Uni07] Unitron-Fleischmann (Hrsg.): LM 0/16R digital 16 Kanal Ausgangsmodul
(Relais). Gaildorfer Str. 15, 71522 Backnang, Germany: Unitron-Fleischmann,
2007. http://www.unitro.de/Daten/PDF/LM_016R.pdf 94

[W3C04] W3C: Web Services Glossary. http://www.w3.org/TR/ws-gloss/. Version: Feb
2004 17

[W3C07a] W3C: SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation,
Apr 2007 18

[W3C07b] W3C: Web Services Description Language (WSDL) Version 2.0. W3C Recom-
mendation, Jun 2007 18

[Wei98] Weinmann, A.: Regelungen I. Analyse und technischer Entwurf. 3. berarb. Aufl.
Springer, 1998. – ISBN 3211825568 15

[XP03] Xing, S. ; Paris, B. P.: Mapping the growth of the Internet. In: Proceedings
of the 12th ICCCN International Conference on Computer Communications and
Networks, 2003, S. 199–204 16

113

http://www.unitro.de/Daten/PDF/LM_016R.pdf
http://www.w3.org/TR/ws-gloss/

	Titlepage
	Introduction
	Motivation and Background
	Building Automation
	Cognitive Systems
	Media Façades

	Goals

	Media Façades
	Existing Media Façades
	Media Façades and Building Automation
	Usage of Building Automation Data
	Technical Design of a Media Façade

	Interfacing Building Automation Systems
	Web Services
	Concept
	Open Building Information Exchange

	Introduction to LonWorks
	Network Variables
	Functional Blocks
	Functional Profiles

	i.LON 100 Internet Server
	Functionality
	Data Points
	Evaluation of Data Point Types

	Accessing Building Automation Data
	i.LON 100 Web Service Overview
	i.LON 100 SOAP Messages
	Web Service and Building Automation Data

	Evaluation of Web Service Frameworks
	Apache Extensible Interaction System
	Java API for XML -- Web Services
	Results of Web Service Framework Evaluation

	Building Automation and Cognitive Science
	Artificial Recognition System
	Artificial Recognition System -- Perception
	Artificial Recognition System -- Psychoanalysis
	Evaluation of the Artificial Recognition System

	Technical Design of the Artificial Recognition System
	Sources of Input Data
	Symbolization and Observing the World Representation
	Smart Kitchen and the Artificial Recognition System
	Exchange of Symbols

	System Design
	Accessing Building Automation Data
	i.LON 100 Configuration
	Hiding the i.LON 100 Web Service
	Handling Data Points
	Hiding Data Points
	Beyond Data Points
	Storage for Data Points
	Summary

	Utilization of the Artificial Recognition System
	Initial Plan
	Problems
	Solution

	Integrating Media Façades
	Demonstration Environment
	Purpose and Requirements
	Components
	Operation

	Implementation
	i.LON 100 Configuration
	Building Automation Interface
	Java Representation of Data Points
	Beyond Data Points
	Storage for Data Points
	Hiding the i.LON 100 Web Service

	Building Automation Interface for Media Façades
	Bitmaps and Building Automation
	Configuring Pixels
	Producing Visual Effects

	Utilization of the Artificial Recognition System
	Setting up the Artificial Recognition System
	Retrieving Information from the Artificial Recognition System

	Integrating Media Façades
	Demonstration Suitcase
	Components and Assembling
	Operation of the Demonstration Suitcase

	Conclusion and Further Work
	Conclusion
	Further Work

