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Abstract

The uncertainty principle introduced by Werner Heisenberg in 1927 [1] was the first scientific work
addressing the inability of measuring two non-commuting observables of a quantum system sequentially
with arbitrarily high precision. The principle was shown heuristically by the means of the so called γ-
ray microscope Gedankenexperiment. The first mathematically rigorous formulation of the uncertainty
principle was introduced by Earl Hesse Kennard only some months later, leading to the most common
formulation of uncertainty known nowadays, being σpQqσpP q ě ~

2
[2]. To describe the tradeoff relation

between the two observables, he used the standard deviation σ.
The usage of the Shannon entropy as description for uncertainty was introduced by David Deutsch in
1983 [3]. He argued, that by using entropic definitions one can achieve a tighter bound for the tradeoff
relation, meaning that the constant limiting the uncertainty becomes smaller.

This thesis deals with the experimental investigation of entropic noise-disturbance measurement uncer-
tainty relations. The definitions of noise and disturbance follow a modern characterization by means
of Shannon entropy, as introduced by Buscemi et al. in 2014 [4]. We use neutron polarimetry to show
the principle for qubit systems. The spin of the neutron is the quantum system under investigation. A
3-outcome POVM measurement is performed as proposed by Abbott and Branciard in 2016 [5]. They
argue, that this leads to a tight uncertainty relation for qubit measurements, outperforming the results
that can be achieved by projective measurements.

We were able to show that a tight noise-disturbance measurement uncertainty relation for qubits can be
achieved with a 3-output POVM using neutron polarimetry. The measurement results are significantly
tighter than previous experiments that used projective measurements [6].
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Kurzfassung

Die Unschärferelation war die erste wissenschaftliche Arbeit, welche sich mit der Unmöglichkeit der
beliebig exakten Messung zweier nicht-kommutierender Observablen eines quantenmechanischen Sys-
tems beschäftigte. Sie wurde von Werner Heisenberg im Jahre 1927 eingeführt [1]. Er verwendete das
sogenannte γ-Strahlen-Mikroskop-Gedankenexperiment, um das Prinzip heuristisch einzuführen. Die
erste mathematisch rigorose Ableitung des Prinzips folgte wenige Monate später von Earl Hesse Ken-
nard, welcher die Varianz σ einführte um die Ungleichung zu beschreiben. Dies führte zur heute wohl
bekanntesten Formulierung eines Unschärfeprinzips, σpQqσpP q ě ~

2
[2].

Die Verwendung der Shannon Entropie für eine Definition der Unschärfe wurde von David Deutsch
1983 eingeführt [3]. Er argumentierte, dass man mit Hilfe entropischer Definitionen eine kleinere Kon-
stante für das Produkt der Unschärfe der beiden Observablen erhalten würde und diese somit geringer
sei.

In dieser Diplomarbeit werden entropische Noise-Disturbance Unschärferelationen experimentell un-
tersucht. Die Definitionen von Noise und Disturbance folgen einer modernen Charakterisierung, welche
die Shannon-Entropie zur Quantifizierung verwendet. Sie wurde 2014 von Buscemi et al. eingeführt
[4]. Wir verwenden Neutronenpolarimetrie um das Prinzip für Qubit-Systeme zu zeigen. Konkret ist
der Neutronenspin das untersuchte Quantensystem. Eine POVM Messung mit drei Ausgängen wird
verwendet. Diese wurde von Abbott and Branciard 2016 vorgeschlagen [5]. Sie argumentieren, dass man
mit Hilfe dieser Messvorschrift eine optimal geringe Konstante für die Unschärferelation erhält und die
Ergebnisse gegenüber projektiven Messvorschriften verbessert werden können.

Es war möglich zu zeigen, dass mit Hilfe einer POVM Messvorschrift mit 3 Ausgängen eine dichte
Unschärferelation für Qubits unter Verwendung von Neutronenpolarimetrie erhalten werden kann. Die
Messpunkte liegen signifikant unter jenen vorhergehender Messungen, welche eine projektive Messvor-
schrift verwendet haben [6].
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CHAPTER 1

Introduction

The beginning is the most important part

of the work.

Plato

The uncertainty principle introduced by Werner Heisenberg in 1927 [1] was the first scientific work ad-
dressing the inability of measuring two non-commuting observables of a quantum system sequentially
with arbitrarily high precision. The principle was shown heuristically by the means of the so called
γ-ray microscope Gedankenexperiment. It is a direct consequence of the Matrizenmechanik which was
introduced by Born, Jordan and Heisenberg one year before in 1926 [7]. Matrices do in general not
permute. The order of several matrices is relevant in terms of multiplication. Only for the case where
the matrices have the same system of eigenvectors a change of order is irrelevant. We say, that those
matrices commute.

In his Gedankenexperiment Heisenberg argues that in order to measure the position of an electron
it must be illuminated by light. A photon interacts with the electron and is reflected back to the
observer. The more exact we want to know the position of the electron, the shorter the wavelength
of the photon has to be. The energy of the incident photon increases for smaller wavelengths. By
interaction with the photon a momentum is passed on to the electron. Mathematically this is a con-
sequence of the non-commuting observables P̂ and Q̂ which are associated with the momentum and
position of the electron, respectively. The accuracy of the measurement of the electron position q1
and the discontinuous change of the momentum p1 caused by the Compton effect can be described by
the trade-off relation q1p1 „ h. Heisenberg did not specify the indeterminacy but only suggested the
correspondance of q1 and p1 to some mean error.

The first mathematically rigorous formulation of the uncertainty principle was introduced by Earl
Hesse Kennard only some months later, leading to the most common formulation of uncertainty known
nowadays, being σpQqσpP q ě ~

2
[2]. To describe the tradeoff relation between the two observables,

he used the standard deviation σ. The inequality was soon accepted as an adequate mathematical
formulation of the principle. In fact there is a fundamental difference between those two ideas. For
the Heisenberg principle the measurement, including a force acting on the system under observation is
essential. For the Kennard formulation only a wavefunction and corresponding operators are relevant.
The formulation can be derived purely mathematically, without the need of a reference to any process
of measurement. Nowadays uncertainty relations that describe a measurement, as originally introduced
by Heisenberg, are referred to as measurement uncertainty relations. The Kennard relation describes
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Chapter 1. Introduction

the intrinsic property of quantum systems, that an exact definition of the state of the momentum and
the position cannot be aquired with exact precision. Those types of uncertainty principles are called
preparation uncertainty principles in modern literature.

In the following years the standard deviation was the means of choice for the quantification of the
uncertainty principle. Apart from other works on this topic an important milestone was the general-
ization of the Kennard principle for any non-commuting observables Â and B̂ by Robertson [8]. The
relation was later on tightened by Schrödinger [9].

The usage of the Shannon entropy as description for uncertainty was introduced by David Deutsch in
1983 [3]. He argued, that by using entropic definitions one can achieve a tighter bound for the tradeoff
relation, meaning that the constant limiting the uncertainty becomes smaller. It was also considered
a more appropriate means for the description of uncertainty. Stochastic measures always describe
the average behaviour of a system when several independent events are performed consecutively. The
assignment of concrete values for observables to single particles is therefore problematic. A detailed
review about entropic uncertainty relations and their applications is given in [10]. A review of mea-
surements concerning entropic uncertainty relations using neutron optics is given in [11].

In 2014 Buscemi et al. [4] introduced an entropic noise-disturbance measurement uncertainty relation.
An investigation of the behaviour of the uncertainty using projective measurements has been been done
by Sulyok et al. [6] in 2015. They were able to confirm the theoretical predictions that conclude from
the relation. In 2016 Abbott and Branciard proposed a 3-outcome POVM [5] as a more generalized
measurement. They argue, that this leads to a tight uncertainty relation for qubit measurements,
outperforming the results that can be achieved by projective measurements.

In this thesis, we deal with the experimental investigation of generalized measurements, using the def-
initions of noise and disturbance from Buscemi et al. and the proposed 3-outcome POVM of Abbott
and Branciard. We use neutron polarimetry to show the principle for qubit systems. The spin of the
neutron is the quantum system under investigation. The results are compared with the projective
measurements done by Sulyok et al. We were able to show that the 3-output POVM outperforms the
projective measurements with high statistical significance.

The thesis is structured as follows: At first, the theoretical backround relevant for the understanding
of the experiment is established. Second, the neutron, with focus on its spin as a quantum system,
is introduced and elements of neutron polarimetry are discussed. Finally, the setup used for our
measurements is discussed and the measurement results are presented and compared to projective
measurements.
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CHAPTER 2

Theory

It doesn’t matter how beautiful your theory

is, it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s

wrong.

Richard P. Feynman

To understand the environment in which we are experimenting, some key elements of mathematical
and physical theory need to be introduced and briefly discussed.

As the definitions for noise and disturbance used are based on information theory, an introduction to
elements of that theory that are relevant for us will be given. Information theory is linked to proba-
bility theory, therefore we need to establish a basic understanding of probabilistic key elements.

Set theory is a axiomatic theory that can be seen as the backbone of not only any probabilistic formu-
lation but also many other formalisms, as quantum formalism. Therefore a need arises to discuss its
elementals as a foundation for more complex theoretical concepts.

We are dealing with actual measurements of states of a quantum system, therefore we need to intro-
duce a basic quantum formalism that helps us understand what measuring an observable of a quantum
system actually means. Additionally, different types of measurements of quantum systems will be
discussed.

We will introduce uncertainty principles and have a detailed look at an information theoretic definition
of noise and disturbance in quantum measurements, as introduced by Buscemi et at. in 2014 [4]. This
formulation of an entropic measurement uncertainty relation is the one used to quantify noise and
disturbance in our measurements and is therefore essential.
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Chapter 2. Theory

2.1 Set Theory

The following sections will give an introduction to set theory, providing a base for Bayesian probability,
which both are elemental to most quantum mechanical formalisms.

A set S is a collection of distinct objects xi, which are called the elements of a set. If an object x is
an element of a set S, then we can write x P S. When an object y is not an element of S, we write
y R S. Sets can either be defined extensionally or intensionally.

When a set S contains a finite number of elements x1, . . . , xn | n P N we can denote it as a list of all
elements of the set in curly brackets. This is a so-called extensional definition, e.g.:

S “ tx1, . . . , xnu .

Alternatively sets can be defined by describing the properties of its elements. This notation is called
intensional definition, e.g.:

S “ tx | x P N ^ x ď 10u .

The two examples for sets above both describe finite sets and are most relevant for understanding the
theoretic background of this work.

Other examples for sets are the empty set

S “ tu :“ ∅ ,

countable infinite sets, e.g.
S “ tx | x P Nu ,

and uncountable sets, e.g.
S “ tx | x P R ^ x ě 10u .

When a set S is finite, the number of its elements is given by its cardinality†, which is written as |S|.

A set typical for the use of a qubit system is the set containing the two possible outcomes of the
measurement of the spin of a neutron relative to a quantization axis q:

S “ t|Òyq , |Óyqu (2.1)

To define operations and relations between sets we firstly introduce the so called universal set Ω which
can be defined as a set that contains all objects that are relevant in a particular context. A simple
example would be the set

Ωdie “ t , , , , , u , (2.2)

which contains all possible outcomes – and therefore all relevant objects – in the context of a die throw.

The order of the elements of the sets has not been relevant, even though they sometimes seem to
incorporate a natural order. We do not want to introduce ordered sets in this thesis due to irrelevance,
but we need to shortly introduce ordered pairs. An ordered pair is denoted in round brackets and both
elements are members of the same set S:

pa, bq P S ˆ S; a, b P S .

†In our discussion here, the original definiton of the cardinality according to Cantor, which is only defined for finite
sets, is sufficient. Actually the definition of cardinality has been generalized for infinite sets.
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2.1. Set Theory

Using Eq. (2.2), which defines a universal set for a die throw, we can illustrate a simple example for an
ordered set: We throw two dice simultaneously and want to know the single results. If we would just
write down the number of the pips for the dice, we would lose the information which die had which
number of pips on it. Therefore we use an ordered set Ωdie ˆ Ωdie :“ pa, bq and refer to a as the result
for die 1 and b for die 2. With the incorporated order of this concept we don’t lose the information
about which die had which result, as

pa, bq ‰ pb, aq ,

but
ta, bu “ tb, au .

Set Relations

The complement of a set S is always given in respect to another set, usually, if not defined differently,
the universal set Ω. It is denoted with the superscript c and contains all objects that are not in S but
Ω. We write

Sc “ tx P Ω ^ x R Su .

When every element of a set S is also an element of a set T we call S a subset of T and denote it as

S Ă T .

We can also say that T is a superset of S, denoted as

T Ą S .

In the case S Ă T ^ T Ă S the sets are called equal and we write

S “ T ðñ S Ă T ^ T Ă S .

The union of two sets S, T is defined as a set of objects that belong to S, T or both, we define

S Y T “ tx|x P S _ x P T u ,

for the union of several, up to infinite sets, we may write

N
ď

i“1

Si “ S1 Y S2 Y ¨ ¨ ¨ “ tx|x P Sn for somenu .

The intersection of two sets S, T is defined as a set of objects that belong to S and T , denoted as

S X T “ tx|x P S ^ x P T u ,

for the intersection of several, up to infinite sets, we may write

N
č

i“1

Si “ S1 X S2 X ¨ ¨ ¨ “ tx|x P Sn for allnu .

When the intersection of any number of sets is the empty set (meaning they don’t have common ele-
ments), those sets are called disjoint. Intersections and unions are symmetric, meaning SYT “ T YS

respectively S X T “ T X S.
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Chapter 2. Theory

A very interesting property of the relations of sets are the De Morgan laws, which constitute a con-
nenction between intersections and unions by the means of complementation. They are denoted as

˜

N
č

i“1

Si

¸C

”
N
ď

i“1

Sci , (2.3)

˜

N
ď

i“1

Si

¸C

”
N
č

i“1

Sci . (2.4)

Power Sets and σ-algebras

A power set PpSq of a set S is a set containing all possible subsets of S, including the empty set ∅

and S itself. Exemplarily, for S “ ta, b, cu we would get

PpSq “ t∅, tau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cuu .

For a set S with |S| “ n we get |PpSq| “ 2n.

A class of sets called σ-algebra which is fundamental for a mathematical definition of a measurement
is defined in the following manner:

Definition 2.1. σ-algebra:
Given a set S and its power set PpSq, we call Σ Ď P pSq† a σ-algebra when it has the following
properties:

1. S Ă Σ: S is in Σ; for the following properties S will be related to as the universal set S ” Ω.

2. Σ is closed under complementation: When a Ă S, so is its complement aC Ă S.

3. Σ is closed under countable unions : When a, b, c, ¨ ¨ ¨ Ă S, so is aY bY cY ¨ ¨ ¨ Ă S.

A measure on a set is a systematic way to assign a property to each relevant subset on that set. Typi-
cally, in measure theory, the property assigned is a number, often referred to as its size. A measure can
be seen as a generalization of the assignment for any property that can be represented by a real number
or `8. A typical example is the so called Lebesque measure. It assigns the size of suitable subsets of
an n–dimensional Euclidean space Rn. For n “ 1, 2, 3 it corresponds with the intuitive definitions of
size, being length, area and volume.

Definition 2.2. Measure on a set:
Given a set S and a σ-algebra Σ over S, we call a function µpΣq : x P Σ ÝÑ R Y t´8,`8u a measure,
when the following properties are fulfilled:

1. Non–negativity : µpxq ď 0 @ x P Σ

2. Null empty set : µp∅q “ 0

3. Countable additivity : µ
`
Ť8
i“1

Ei
˘

“ ř8
i“1

µpEiq for all countable collections tEiu8
i“1

of pairwise
disjoint sets in Σ.

A pair pS,Σq is called a measurable space, the members x P Σ are called measurable sets. A triple
pS,Σ, µq is called measure space.

†As not formally introduced, Ď means being a subset of or equal to.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.2. Probability Theory

2.2 Probability Theory

The probabilistic nature of quantum mechanics was not always undisputed among physicists, espe-
cially in its beginnings in the mid 1920s. The doubt about the completeness of quantum mechanical
descriptions was specified in the so called Einstein-Podolsky-Rosen-paradox (EPR-paradox) in 1935 [12].
Einstein suspected so called hidden variables behind the probabilistic predictions in quantum mechan-
ics. That approach was put into mathematical clothing by Bell in 1964 [13], nowadays known as the so
called Bell inequalities. Any violation of these equations would contradict the idea of the EPR-paradox,
that a physical theory cannot be complete when relying on probabilistic wave functions.

The first experiment that shows a violation of the Bell inequalities, measuring the linear polariza-
tion correlation of the photons emitted in an atomic cascade of Calcium, was done by Freedman and
Clauser [14] in 1972. Since then many additional experiments provided strong evidence for the irre-
ducibility of probabilistic descriptions in quantum mechanics, e.g., the follow-up experiments by Aspect
et al. [15, 16].
Modern experiments (2015 and later) are considered loophole free, meaning that the experiment is set
up in a way that the validity of the experimental findings may not be questioned [17, 18, 19]. Therefore
probability as optimal description of quantum systems can be considered as almost certain.

A probabilistic model is a description of a situation that can have mutual outcomes. The information
about possible outcomes (so called events) and their likelihood is described by that model.

Any probabilistic model consists of two basic elements:

• The sample space Ω which can be interpreted as a set containing all possible events.

• The probability law, that assigns a certain probability ppxq to each possible event x.

The probability law is based on the following axioms, the Kolmogorov or Probability axioms :

Definition 2.3. Probability axioms:

1. 0 ď ppxq ď 1, ppxq P R: The probability of any event x P Ω has to be a non-negative real number.

2.
ř

i ppxiq :“ 1: The probability that any event happens has to be 1 (also denoted as ppΩq “ 1).

3. p
´

ŤN
i“1

xi

¯

“ řN
i“1

ppxiq: Any countable sequence of disjoint sets (defining mutually exclusive

events) x1, x2, . . . have additive probability.

In the following, examples for probabilistic models will be given:

Example 2.1. Coin toss:
A coin with two different faces, lets call them heads and tails, is tossed. The sample space containing
all possible outcomes can therefore be defined as

Ωcoin “ theads, tailsu .

The corresponding probability law assumes that both outcomes are equally probable, meaning

ppheadsq “ pptailsq “ 1

2
.

This results in a total probability of ppΩcoinq “ 1.
♦
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Chapter 2. Theory

This example can be considered as the simplest form of a Laplace experiment, in which the probability
of all possible results is equal and therefore ppxq “ 1{n for |Ω| “ n. We call that type of distribution
a uniform distribution. Therefore the probability law can be written as the Laplace function

ppxiq “ # of results that produce event xi

# of possible results
“ |xi|

|Ω| . (2.5)

Note the distinction between result and event, which is relevant for more complex situations and will
be explained exemplarily in the next example:

Example 2.2. Two dice thrown simultaneously:
Two typical dice a, b P Ωdie “ t , , , , , u , are thrown simultaneously, defining a sample space
with 36 possible results (36 possible ordered pairs of pips):

ΩdiceSim “ tpa, bq|a, b P Ωdieu

We now want to calculate the possibility for the event x “ a` b “ 9 using Eq. (2.5):

ppxq “ |x|
|Ω| “ 4

36
“ 1

9

The possible results, denoted as ordered pairs, whose sums are equal to 9 are p , q, p , q, p , q, p , q.
♦

For the simple case of a single die throw the distinction of result and event is not necessary, as they
are directly related.

Probability Mass Functions

In the examples we got to know so far the probabilities are describable with the help of the Laplace
function (Eq. (2.5)) and therefore a probability function that is always static and member of the ra-
tional number space: ppAiq P Q. More generally we talk about a so called probability mass function
when we want to describe the probability of a discrete random variable, meaning, that the outcome of
our experiment always has a discrete result (the sample space Ω is a countable set). Now we want to
properly define a probability mass function:

Definition 2.4. Probability mass function
A function f : x P Ω ÝÑ r0, 1s assigns a real number in the interval r0, 1s to a member x of the sample
space Ω. When the function is normalized in a way that all assigned values add up to 1 we call it a
probability mass function:

ÿ

x PΩ

fpxq “ 1 ñ ppxq :“ fpxq @ x P Ω . (2.6)

We will now take a look at an example for the usage of probability mass functions: the measurement
of the spin of a qubit.
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2.2. Probability Theory

Figure 2.1: Plot of the probability mass function introduced in Example 2.3

Example 2.3. Spin measurement of a neutron
The spin of a neutron can be interpreted as a Qubit with two possible outcomes. As introduced in
Eq. (2.1) we can denote the sample space as

Ωspin “ t|Òyz , |Óyzu

when we choose z as a quantization axis. For simplicity it is common not to write down the quantization
axis every single time, meaning |Òy ” |Òyz , |Óy ” |Óyz. Let us now assume that due to a preparation
procedure of the spin we can define the following probability mass function for measuring |Òy:

p|Òypθq “ 1

2
¨ p1 ` sin θq , θ P

”

0,
π

2

ı

.

As we are using a probability mass function we can directly calculate the probability for the only other
outcome |Óy with

ÿ

x PΩ

ppxq “ p|Òy ` p|Óy “ 1 ñ p|Óy “ 1 ´ p|Òy “ 1

2
¨ p1 ´ sin θq .

The probability mass functions for all elements of Ωspin are shown in Fig. 2.1.
♦

Probability Density Functions

When continuous random variables are a possible outcome of the experiment (e.g., the measurement
of an ohmic resistance in an electric circuit) we make use of a so called probability density function to
describe the probability of events in intervals. This means, that the sample space is an uncountable
set, e.g., Ω “ R.
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Chapter 2. Theory

We now want to properly define a probability density function:

Definition 2.5. Probability density function
A function f : x P Ω ÝÑ r0, 1s assigns a real number in the interval r0, 1s to a continuous random
variable x of the sample space Ω. When the function is normalized in a way that all assigned values
add up to 1 we call it a probability density function:

ż

Ω

fpxq dx “ 1 ñ ppxq :“ fpxq @ x P Ω . (2.7)

Even though it is mathematically possible to assign a probability for a certain value x, it only makes
sense to define the probability for x to be in an interval ra, bs, even though that interval might be
infinitesimal. We say that the probability function vanishes for exact values x “ c, we define

ż

Ω

fpxqδpx´ cq dx :“ 0 . (2.8)

We will now look at an example for the usage of a probability density function, the measurement of
the capacity of a capacitor:

Example 2.4. Deviation from the Standard Value of a Capacitor
We buy a capacitor with the standard value of (10 ˘ 1) µF, provided by the manufacturer. We assume,
that the actual value of the capacitor can be described with the help of the normal distribution. The
normal distribution for an expectation value µ and a standard deviation σ is given by

ppxq “ 1?
2πσ2

e
´ px´µq2

2σ2 . (2.9)

We now want to know how likely it is, that the capacitor we bought has a value of 13 µF or more. We
set µ “ 10 and σ “ 1 and receive for the probability

ppx ě 13q “
ż 8

13

ppxq dx “ 0.682689 « 68.3% . (2.10)

The probability that the actual value is within 10 ˘ 1 is given by

ppµ´ σ ă x ă µ` σq “
ż µ`σ

µ´σ
ppxq dx “ 0.0013499 « 0.13% . (2.11)

♦

Properties of Probability Laws

Various properties of probability laws can be derived from the probability axioms which were defined
in Definition 2.3. They are necessary for further understanding and investigation in the case of more
complex probabilistic descriptions. For the following definitions we define a probability law p and
events x1, x2, x3:

1. x1 Ă x2 ùñ ppx1q ď ppx2q

2. ppx1 Y x2q “ ppx1q ` ppx2q ´ ppx1 X x2q

3. ppx1 Y x2q ď ppx1q ` ppx2q

4. ppx1 Y x2 Y x3q “ ppx1q ` ppxC1 X x2qppxC1 X xC2 X x3q
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2.3. Information Theory

Conditional and Joint Probabilities

When we discussed Example 2.2 we unknowingly already got in touch with so called joint probabilities.
Reformulated we could ask for the probability of die 1 being and die 2 being instead of looking
for ordered pairs as we did before. Thereby we asked for the joint probability of two single events x1, x2
that occur at the same time. The joint probability is denoted as ppx1 X x2q ” ppx1, x2q. We will use
the second notation from now on.

Conditional probability is a measure for the probability of an event x1, assuming that an event x2
has already occured. The conditional probability of x1 under the condition x2 is denoted as ppx1|x2q.
When ppx1|x2q “ ppx1q the events x1, x2 are called statistically independent.

According to Kolmogorov the relation between the conditional and joint probability can be defined as

ppx1|x2q “ ppx1, x2q
ppx2q for ppx2q ą 0 . (2.12)

Equation (2.12) can also be reformulated for ppx2|x1q by simply exchanging the arguments x1 ÐÑ x2

to ppx2|x1q “ ppx2,x1q
ppx1q . Using the symmetry of the intersection x1 X x2 “ x2 X x1 “ px1, x2q “ px2, x1q†

we can deduce the so called Bayes’ theorem:

ppx1|x2q “ ppx2|x1qppx1q
ppx2q for ppx2q ą 0 . (2.13)

2.3 Information Theory

Information theory is based on probability theory and statistical means and was introduced by Claude
Shannon in 1948 in his paper A Mathematical Theory of Communication [20]. It assigns a value of
the information content Ipxq obtained by the occurrence of an event x with the probability ppxq. The
information value of an event that is very likely to happen is considered low, as a highly frequent
event and its incorporated information may be observed more likely. Opposing, the information value
associated with a very improbable event is considered high.
Putting those thoughts into mathematical rigor we can define basic axioms for the information content:

1. Ipxq ě 0: The information should be non-negative.

2. ppxq ÝÑ 1 ùñ Ipxq ÝÑ 0: Approaching a certain event the information gained vanishes.

3. ppxq ÝÑ 0 ùñ Ipxq increasing: The information should increase when the probability of the
associated event approaches zero.

4. ppx1q ă ppx2q ùñ Ipx2q ă Ipx1q forx1 ‰ x2: The more unlikely an event, the more informative it
should be.

5. ppx1, x2q “ ppx1qppx2q ùñ Ipx1, x2q “ Ipx1q ` Ipx2q: The total informational value of two
statistically independent events x1, x2 should be additive.

†Obviously we are not talking about ordered pairs here, even though the notation is the same.
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Chapter 2. Theory

Figure 2.2: The information content Ipxq of an event x given by its probability ppxq as defined in
Eq. (2.14). One can see the 2´n–dependency of ppxq from Ipxq that can be derived from
its definition.

Information Content

From the above defined axioms we now derive an expression for Ipxq, which is called information
content, self-information or surprisal of a random variable x.
We are looking for a continuous function of the probability to describe the information content:

Ipxq “ fpppxqq .

With the additivity of the information content of two statistically independent events we have to
demand

fpppx1, x2qq “ fpppx1qppx2qq “ Ipx1, x2q “ Ipx1q ` Ipx2q “ fpppx1qq ` fpppx2qq ,

which is granted by usage of the logarithmic function, as logx a ¨ b “ logx a` logx b.
The base b of the logarithm can be chosen arbitrarily, we will further on use the most common base of
b “ 2, defining the unit of self information as shannon[1 Sh], more commonly known as bit [1 bit]. With
the demand of the information content being a non-negative number we have to negate the logarithm,
as ppxq ď 1 ùñ logb ppxq ď 0 but ´ logb ppxq “ logb

1

ppxq ě 0.

Finally, we can define the information content of an event x as

Ipxq “ log2
1

ppxq “ ´ log2 ppxq . (2.14)

A plot of Eq. (2.14) is given in Fig. 2.2.
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2.3. Information Theory

Figure 2.3: The binary entropy function Hbppq, defined in Eq. (2.16). The maximal entropy is given at
p “ 1{2 “ 1{n. It is symmetric around p “ 1{2.

Shannon Entropy

If we now want to know the average amount of information obtained by a stochastic process ppxiq
defined on a sample space Ω “ tx1, x2, . . . , xnu we have to find the average of the information content
weighted by the probability of its occurrence. We receive the information entropy or Shannon entropy

HpΩq “
ÿ

i

ppxiqIpxiq “ ´
ÿ

i

ppxiq log2 ppxiq . (2.15)

In other words we can say that the Shannon entropy gives us a measure for the expected information
content acquired by a measurement on a sample space Ω. It is maximized when all events are equally
probable, representing a Laplace experiment and therefore a uniform distribution. In this case it is
also strictly monotonically increasing along with an increasing cardinality of the sample space |Ω|.

The second property can be shown very easily, as H “ log2 n for an uniform distribution with |Ω| “ n

and log2 n ă log2 n ` 1. We will prove the first one but heuristically, as a mathematical proof would
be a little more work: The probability mass function with maximal Shannon entropy seems to be the
uniform distribution, as in that case we have the least amount of knowledge about the system we are
observing and therefore gain the most amount of information for every measurement.

For the special case of a sample space with only two possible outcomes (mostly referred to as binary
sample space or Bernoulli experiment) Ω “ ta, bu and known probability pa “ p and therefore pb “ 1´p
we receive the binary entropy function Hbppq by calculating the Shannon entropy of the system using
Eq. (2.15):

HpΩq “ Hbppq “ ´p log2 p´ p1 ´ pq log2p1 ´ pq . (2.16)

The binary entropy function is shown in Fig. 2.3.
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Chapter 2. Theory

Conditional and Joint Entropy

For the joint entropy HpΩa,Ωbq we can alter Eq. (2.15) by replacing the probability with the joint
probability ppa, bq of two events a P Ωa, b P Ωb. Note that we have to use a double sum as we now deal
with two sample spaces and need to sum over all possible combinations:

HpΩa,Ωbq “ ´
ÿ

aPΩa

ÿ

bPΩb

ppa, bq log2 ppa, bq . (2.17)

To define the conditional entropy HpΩa|Ωbq we need to average HpΩa|bq over all possible values of b:

HpΩa|Ωbq “
ÿ

bPΩb

ppbqHpΩa|bq “ ´
ÿ

bPΩb

ppbq
ÿ

aPΩa

ppa|bq log2 ppa|bq .

We now use Eq. (2.12) to simplify the term to

HpΩa|Ωbq “ ´
ÿ

bPΩb

ÿ

aPΩa

ppa, bq log2 ppa|bq “ ´
ÿ

bPΩb

ÿ

aPΩa

ppa, bq log2
ppa, bq
ppbq ,

and finally receive

HpΩa|Ωbq “
ÿ

bPΩb

ÿ

aPΩa

ppa, bq log2
ppbq
ppa, bq (2.18)

for the conditional entropy.

2.4 Quantum Formalism

The bra-ket-notation, introduced by Paul Dirac in 1930, is a standard for the notation of vectors in
and linear forms on a Hilbert space in quantum mechanics. A vector ψ in a Hilbert space H over the
body of complex numbers C is denoted as a ket |ψy. A linear form, also called dual vector, on |ψy is
written as a bra xψ|.

A strict definition of the mathematical concept of the Hilbert space and a derivation of its properties
will not be given. For now, the knowledge that the mathematical space in which we operate in quantum
mechanics is a Hilbert space over the complex numbers will be sufficient. All properties and concepts
that are important for us physicists will be introduced in close accordance with the original work of
Dirac, where the bra-ket-notation was introduced [21]. Please note, that there are other formalisms
and concepts of denotation in quantum mechanics. The means of the bra-ket-notation are not suffi-
cient for the notation of any problem related to quantum theory. Due to its simplicity and appropriate
description of most cases it can still be seen as a notation standard in quantum mechanics and is used
throughout most modern publications in the area.

The section on quantum measurement follows chapters 2.2.5 and 2.2.6 of the book Quantum Compu-
tation and Quantum Information [22]. Here the common types of measurements in a quantum system
are introduced and formally defined. They are especially relevant for our measurements on the neutron
spin as a qubit system.
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2.4. Quantum Formalism

2.4.1 Basics of Quantum Mechanics

Bra and Ket Vectors

For every set of vectors t|ψ1y , |ψ2y , . . . , |ψnyu it is possible to set up a second set of vectors, so called
dual vectors txψ1| , xψ2| , . . . , xψn|u that is associated to the original ones by the so called inner product
xψi|ψiy. The inner product is a scalar product, as the result of multiplying a bra- with a ket-vector is
always a scalar of the real numbers, hence

xφ|ψy “ c, c P R , (2.19)

for any vectors xφ| , |ψy. In general, the scalar product is calculated with the help of an integral function.
We receive ultimately

xφ|ψy “
ż

φ:pxiqψpxiqdxi (2.20)

for any dependency of the coordinates xi.

The scalar product of xφ| and |ψy is a linear function of |ψy and must therefore fulfill the two basic
properties of linearity, referred to as additivity and homogeneity. They are expressed symbolically by

xφ|
´

|ψ1y ` |ψ2y
¯

“ xφ|ψ1y ` xφ|ψ2y ,

xφ|
´

c |ψy
¯

“ c xφ|ψy ,
(2.21)

with c P C. The linearity also holds for the first argument of the scalar function, namely the bra-vector.

To keep it general, we used any vectors for the definition of the scalar product (Eq. (2.19)). Those vec-
tors have no connection but the existence of a scalar product between a set of a bra- and a ket-vector.
Now we want to define a correspondence between a ket-vector and a bra-vector. The operation that
ensures the desired correspondence is the conjugate transpose or Hermitian transpose |ψyH ” |ψy: of
the vector |ψy.

For the complex conjugate of a vector we perform the complex conjugation on every single entry,
meaning, that the imaginary part changes its sign (a ` i ¨ b ÐÑ a ´ i ¨ b). When the entry is real, no
modification is necessary, as a` i ¨ b “ a´ i ¨ b for b ÝÑ 0. Also we transpose the vector, meaning that
a column vector gets written as a row vector and vice versa.

We can now obtain the dual vector corresponding to any |ψy with

|ψy: :“
´

|ψy
¯

T

“ xψ| , (2.22)

with the bar representing complex conjugation and the superscripted T denoting transposition.

The complex conjugate of a bra-vector results in the corresponding ket-vector. Therefore we can state,
that the dual vector of a dual vector results in the original vector, symbolically

|ψy: “ xψ| ,
xψ|: “ |ψy .

(2.23)

For the physical interpretation of bra- and ket-vectors we define, that any state of a dynamical system
at a particular time can be specified by the direction of a bra- or ket-vector. This also implies, that
the state described by any vector |ψy is the same state described by c |ψy with c P C; the relevant
information is contained only by the direction of the vector.
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Chapter 2. Theory

Explicitly, the sign of the vector is therefore irrelevant, meaning, that c |ψy and ´c |ψy also refer to the
same state.

As it is convenient to make all relevant vectors the same size, there is a mathematical process called
normalization. To normalize a vector |ψy, we have to divide it through its length, also referred to as
norm ‖ψ‖. The norm of a vector is defined as the square root of its scalar product with its dual vector,
symbolically

‖ψ‖ :“
´

a

xψ|ψy
¯2

“ |xψ|ψy| . (2.24)

With
|ψy

|xψ|ψy| “ |ψynorm , (2.25)

we therefore receive a normalized vector |ψynorm pointing in the same direction as |ψy and ‖ψnorm‖ “ 1.

The normalization procedure has an important link to probability theory. As introduced in Defini-
tion 2.3, the total probability ppΩq of a sample space Ω has to be equal to 1. This means, that with
every measurement we must receive any result. Later on we will make measurements on the states
represented by our ket-vectors. By normalization we ensure that the total probability for all possible
outcomes of a measurement is equal to 1. Therefore, the integrand of Eq. (2.20) has a direct connection
to the probability density function, as ppxiq “ φ:pxiqψpxiq dxi.

There is another use of the scalar product that is of importance regarding its physical interpretation.
When we have two states |ψy and |φy, we call the scalar product xφ|ψy the overlap of the states |φy
and |ψy. It is interpretable as the probability amplitude for the state |ψy to collapse into the state |φy.
The overlap is 0, unless |ψy is a superposition of |φy and an arbitrary number of other states.

Linear Operators

So far we have dealt with the handling of mathematical operations of vectors and complex numbers.
Now we want to specify a linear operator α, which forms a new vector |φy by multiplication with an
initial ket |ψy. We say, that we apply the operator on our state vector, symbolically

|φy “ α |ψy . (2.26)

It is a rule, that linear operators always have to be written to the left of a state vector. Linear operators
also fulfill the properties of linearity, see Eq. (2.21). We can also deduce from Eq. (2.26) that for a
n-dimensional complex vector |ψy P Cn the operator must be in matrix form α P Cnˆn.

In general, when we apply several linear operators on a state, the order of the operators is relevant,
therefore we say, that linear operators are in general not commutative, meaning

αβ |ψy ‰ βα |ψy , (2.27)

for the application of any two linear operators α, β on any state |ψy.

For some cases, two linear operators may commute. To measure the deviation from being commutative
for two linear operators α, β, we introduce a concept called commutator rα, βs. The commutator is
defined as

rα, βs “ αβ ´ βα . (2.28)
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2.4. Quantum Formalism

When the commutator vanishes, α and β are said to be commutative. The physical interpretation
is, that the state resulting of applying α is not disturbed by the application of β and vice versa,
mathematically

rα, βs “ 0 ðñ αβ |ψy “ βα |ψy . (2.29)

A linear operator α may also be applied to a bra xφ|, here we have the rule that the operator must
always be noted on the right. The property of associativity holds for a combination of a bra, a ket and
a linear operator, mathematically

´

xφ|α
¯

|ψy “ xφ|
´

α |ψy
¯

:“ xφ|α|ψy . (2.30)

When we have a linear operator α applied on a ket |ψy and we want to find the corresponding operator
in the dual space, operating on xψ|, we need to transform α. The operation that ensures the desired
correspondence is the already introduced conjugate transpose.

For the conjugate transpose you have to transpose the operator, transforming a row vector into a
column vector and vice versa. Also, every single entry is complex conjugated.
We can now obtain the linear operator α: corresponding to any α, we write

α: :“ α . (2.31)

We now can let an operator-vector-pair transform to its corresponding dual space, mathematically
formulated as

xψ|α: dual spaceÐÝÝÝÝÝÑ α |ψy . (2.32)

At first glance, Eqs. (2.30) and (2.32) seem to contradict each other. At first we argue, that there is
no difference, whether an operator is applied to a bra or a ket, then we say, that there is a need to
transform the operator dependent on whether it is applied to a bra or ket, respectively. To resolve
that matter, we point out, that the first equation is corresponding to the mathematical properties of
linear operators in Hilbert spaces in general. On the contrary, the latter corresponds to the physical
interpretation of the application of a linear operator on a vector.

Therefore it is common procedure, that for xφ|α:|ψy we apply the operator to the left on the bra, for
xφ|α|ψy we apply it to the right on the ket.

Now we want to conclude with the assumption, that linear operators correspond to the dynamical
variables of a quantum mechanical system at a certain time. This means, that with the help of a linear
operator we can take a measurement of the variables associated with an operator.

Operators which are associated with measuring a certain dynamical variable are normally denoted
with a hat, e.g. the Hamilton operator Ĥ which corresponds to the energy of a system or the position
operator x̂, corresponding to the position of the system in the associated vector space.

Eigenvalues and Eigenvectors

We now want to have a look at the so called eigenvalue equation, where we make a measurement of
the physical observable A with the help of the linear operator Â associated with that observable:

Â |ψy “ a |ψy . (2.33)
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Chapter 2. Theory

When this equation is fulfilled (ignoring the trivial solution |ψy “ 0), we call a an eigenvalue of the
linear operator Â and |ψy an eigenvector of Â. Therefore the terms eigenvalue and eigenvector only
make sense when referring to a linear operator or the variable associated with that operator.

As a is the value of the measurement of a physical observable, it has to be a real number, mathematically
a P R. To ensure this property, the associated operator Â must be Hermitian (also referred to as self-
adjoint).
An Hermitian operator is defined via the invariance under the operation of the conjugate transpose,
symbolically Â: “ Â.

With that information we may define the measurement of an observable with the help of Eq. (2.33).
We multiply the bra xψ| on both sides of the equation and get

xψ|Â|ψy “ a xψ|ψy , (2.34)

we can now express a in terms of the state and the operator, hence

a “ xψ|Â|ψy
xψ|ψy . (2.35)

For normalized eigenstates the equation reduces to

a “ xψ|Â|ψy , (2.36)

as xψ|ψy “ 1.

It is important to note that a linear operator can have several corresponding eigenvectors and eigen-
values. We only consider the case where the eigenvalues for different eigenvectors are not degenerated,
meaning, that an ‰ am @ n,m.

When we apply the operator Â on two different eigenvectors |ψ1y , |ψ2y we get

p1q Â |ψ1y “ a1 |ψ1y ,

p2q Â |ψ2y “ a2 |ψ2y .

Now we use xψ2| on p1q and xψ1| on p2q, resulting in

p3q xψ2|Â|ψ1y “ a1 xψ2|ψ1y ,

p4q xψ1|Â|ψ2y “ a2 xψ1|ψ2y .

In the next step we conjugate p4q and use Â: “ Â and an “ an and get

p5q xψ2|Â|ψ1y “ a2 xψ2|ψ1y .

which is only fulfilled for xψ2|ψ1y “ 0, as a2 ‰ a1.

When the scalar product of two vectors vanishes, we call them orthogonal. Therefore we have shown,
that for eigenvectors of different eigenstates, the property of orthogonality holds.
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2.4. Quantum Formalism

Orthonormal Bases

Every vector |ψy in a Hilbert space can be written as a linear combination of orthogonal basis vectors
t|enyu. When we write a state as a combination of other states, we call that a superposition:

|ψy “
ÿ

n

cn |eny “
ÿ

n

xen|ψy |eny , (2.37)

with cn P C being the evolution coefficients.
Typically, the basis vectors are all normalized, with the help of the delta function δmn. An orthogonal
base with normalized vectors is called orthonormal base. We can therefore write

xem|eny “ δmn . (2.38)

The delta function is defined as being 1 for matching indexes and 0 else, mathematically

δmn “
#

1 for m “ n

0 for m ‰ n
. (2.39)

We also want to normalize the state |ψy. We form the scalar product xψ|ψy with the help of Eq. (2.37)
and demand it being equal to 1. We get

xψ|ψy “
ÿ

n

xψ|eny xen|ψy “
ÿ

n

cncn ,

and therefore
ÿ

n

|cn|
2 !“ 1 , (2.40)

as a normalization condition.

Another possibility of denoting a state which is a composition of base vectors is via the help of a
so called density matrix ρ. To properly describe a density matrix, we must first introduce so called
projection operators, which are a ket followed by a bra representing the same state, symbolically |ψyxψ|.
Typically we use projectors on the orthonormal base, because we want to see the decomposition of a
state into its base vectors and corresponding evolution coefficients. A projector on the n-th eigenstate
of our base is also denoted as Pn “ |enyxen|.

When we project any vector |ψy on |eny, we get

Pn |ψy “ |eny xen|ψy “ cn |eny . (2.41)

Projectors are idempotent, meaning, that any power m of the operator results in the same operator
again, symbolically Pmn “ Pn.

Another very important property of projectors is that we are able to express the unity operator 1 with
them by summing up over the complete base, mathematically

ÿ

n

Pn “ 1 . (2.42)

With the help of the projector we can now finally write down our density matrix ρ, which is nothing
else but a matrix representation of a state in terms of an orthonormal base.
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Chapter 2. Theory

The simplest form is denoted as
ρ “

ÿ

n

pnPn , (2.43)

with pn being the probability for the system being in a pure state |eny. Again, the probabilities need
to sum up to 1, therefore we must demand

Tr ρ “ 1 , (2.44)

with Tr ρ being the trace of the density matrix.

We call the state of a system pure, when it cannot be degenerated further, meaning that there is
no superposition of states but a certain probability for that certain state. When there is a statistical
ensemble of several states, representing superposition, we call it a mixed state.

If we now want to measure the probability for the state |eny, we have to apply the corresponding
projector on the density matrix, mathematically

ppenq “ TrPnρ . (2.45)

If this result is measured the system is now in a pure state and may be described by a new density
matrix ρ1, calculated as

ρ1 “ PnρPn

TrPnρ
. (2.46)

By dividing by TrPnρ, the resulting density matrix is renormalized.

2.4.2 Representation of Spin in Quantum Mechanics

We now want to have a closer look on how to measure the spin of a quantum system with the help of
the mathematical means introduced above. The spin 1

2
can be described by usage of a complex vector

space of dimension 2, formally C2. This model implies all necessary properties to constitute a Hilbert
space. We also define the z-axis as so called quantization axis.

Any measurement on any spin 1

2
-system is performed with the spin operator Ŝ, which is defined as

Ŝi “ ~

2
σ̂i , (2.47)

with i being the measurement axis (x, y or z) and ~ the reduced Planck constant.

The σ̂i are called Pauli matrices and are defined as follows:

σ̂1 “ σ̂x “
ˆ

0 1

1 0

˙

, (2.48)

σ̂2 “ σ̂y “
ˆ

0 ´i
i 0

˙

, (2.49)

σ̂3 “ σ̂z “
ˆ

1 0

0 ´1

˙

. (2.50)
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2.4. Quantum Formalism

When we look for the eigenvectors of the pauli matrices we get

|`x̂y “ |`y “ 1?
2

ˆ

1

1

˙

|´x̂y “ |´y “ 1?
2

ˆ

1

´1

˙

for σ̂x , (2.51)

|`ŷy “
∣

∣φ`D “ 1?
2

ˆ

1

i

˙

|´ŷy “
∣

∣φ´D “ 1?
2

ˆ

1

´i

˙

for σ̂y , (2.52)

|`ẑy “ |Òy “
ˆ

1

0

˙

|´ẑy “ |Óy “
ˆ

0

1

˙

for σ̂z , (2.53)

with eigenvalues `1 for |`y , |φ`y , |Òy and ´1 for |´y , |φ´y , |Óy.

The commutator of any Pauli spin matrices has the property

rσ̂i, σ̂js “ 2iǫijkσ̂k . (2.54)

As the Pauli matrices do not commute, we note, that the measurement of the spin in a certain direction
disturbs a consecutive measurement. The order of measuring the spin in different directions is therefore
relevant.

We used the Levi-Civita symbol ǫijk for the description of the commutator. It is also called permutation
symbol and is defined as

ǫijk “

$

’

&

’

%

`1 if pi, j, kq is an even permutation of p1, 2, 3q
´1 if pi, j, kq is an odd permutation of p1, 2, 3q
0 if any indices match

. (2.55)

Bloch Sphere

We can geometrically represent any polarization state of our spin system with the help of the so called
Bloch sphere (see Fig. 2.4). With the help of this representation we can map a unit 2-sphere to our
two-dimensional state space C2. Any normalized state |ψy can be written as a superposition of the
basis vectors |Òy and |Óy in the form

|ψy “ cos
θ

2
|Òy ` eiφ sin

θ

2
|Óy “ cos

θ

2
|Òy ` pcosφ` i sinφq sin θ

2
|Óy with 0 ď θ ď π . (2.56)

The projections of |ψy on the respective axes are given by the vector

~n “

¨

˝

sin θ cosφ

sin θ sinφ

cos θ

˛

‚ . (2.57)

As ~n is normalized (|~n| “ 1), we can measure the spin in any direction with

Ŝ “ ~

2
~n

¨

˝

σ̂1
σ̂2
σ̂3

˛

‚“ ~

2
~n~̂σ . (2.58)
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Chapter 2. Theory

|`ŷy

|`ẑy

|`x̂y

|ψy

|´ẑy

|´ŷy

φ

θ

Figure 2.4: Visual representation of the Bloch sphere.

2.5 Quantum Measurement

Quantum measurements are described by a collection tMnu of measurement operators. The index n

refers to possible outcomes of the measurement and is therefore dependent on the quantum system
we perform measurements on. As established in Section 2.4.1 we can obtain the probability for the
measurement outcome n, measuring on a state |ψy with

ppnq “ xψ|M :
nMn|ψy . (2.59)

The post-measurement state is then given by

Mn |ψy
∣

∣

∣
xψ|M :

nMn|ψy
∣

∣

∣

. (2.60)

2.5.1 Projective Measurements

Projective measurements are a special case of the general measurement. A projective measurement is
described by an observable M which can be written down as a spectral decomposition

M “
ÿ

n

nPn , (2.61)

with Pn being the projectors on the eigenvectors of M with the corresponding eigenvalues n. The
operator M is hermitian.

The probability for an outcome n therefore reduces to

ppnq “ xψ|Pn|ψy , (2.62)

and the post-measurement state is defined as

Pn |ψy
|ppnq| . (2.63)
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2.5. Quantum Measurement

Example 2.5. Projective Measurement of the Spin of a Neutron:
With the help of Eq. (2.62) we can define the observable M for a measurement in the basis t|Òy , |Óyu
of the spin:

M “
ÿ

n

nPn “ PÒ ´ PÓ “
ˆ

1 0

0 ´1

˙

“ σ̂3 . (2.64)

We have now indirectly shown that the Pauli matrix σ̂3 fulfills all demands of a projective measure-
ment. With the same argument it is trivial to show that this holds for all Pauli matrices σ̂i with respect
to their eigenbases.

We can now generalize a projective measurement in any direction ~n by finding the eigensystem of Ŝ
(see Eqs. (2.57) and (2.58)). We define a new base with the eigenvectors of Ŝ:

|n`y “ 1
b

1 ` e2 Imtφucot2p θ
2
q

ˆ

e´iφ cot θ
2

1

˙

with eigenvalue ` ~

2
, (2.65)

|n´y “ 1
b

1 ` e2 Imtφutan2p θ
2
q

ˆ

´e´iφ tan θ
2

1

˙

with eigenvalue ´ ~

2
, (2.66)

and find

M “ Ŝ “ ~

2

ˆ

1 0

0 ´1

˙

, (2.67)

in its diagonal form with respect to its eigenbase. ♦

2.5.2 POVM Measurements

POVM stands for Positive Operator Valued Measure. This kind of measurement is usually performed,
when the post measurement state of the system is not of specific interest, but the measurement prob-
abilities are focused on. They can be seen as the most general formulation of a set of measurement
operators that fulfill the properties of a general measurement, as introduced above.

Again we want to perform a measurement on a quantum system in a state |ψy by the help of a set of
measurement operators tMnu. When we now define an operator

En “ M :
nMn , (2.68)

we receive the probabilities of measuring the outcome n with

ppnq “ xψ|En|ψy , (2.69)

and the post-measurement state as
Mn

a

ppnq
|ψy . (2.70)

The Mn are called Kraus operators.

We can now define any set of operators tEnu to be a POVM when the following properties are fulfilled:

1. All En are positive operators.

2. The En fulfill the completeness relation
ř

nEn “ 1.
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Chapter 2. Theory

We now want to have a look at an example of a POVM measurement which was taken from [22, p. 92]:

Example 2.6. POVM Measurement of the Spin of a Neutron:
We set up a quantum system that can be in two different states,

|ψ1y “ |Òy “
ˆ

1

0

˙

, |ψ2y “ 1?
2

p|Òy ` |Óyq “ 1?
2

ˆ

1

1

˙

.

As the two states are not orthonormal, there is no quantum measurement that can distinguish the
states with perfect reliability. With the help of a POVM measurement, it is possible to design the
measurement apparatus in a way that no misidentification of states is possible.

We consider a 3-output POVM

E1 “
?
2

1 `
?
2
PÓ “

?
2

1 `
?
2

ˆ

0 0

0 1

˙

,

E2 “
?
2

2
`

1 `
?
2
˘pPÒ ` PÓ ´ |ÒyxÓ| ´ |ÓyxÒ|q “

?
2

2
`

1 `
?
2
˘

ˆ

1 ´1

´1 1

˙

,

E3 “ 1 ´ E1 ´ E2 “
˜

1?
2

1 ´ 1?
2

1 ´ 1?
2

´2 ` 3?
2

¸

.

We now perform measurements on both states:

xψ1|E1|ψ1y “ 0 xψ2|E1|ψ2y “ 1 ´ 1?
2

xψ1|E2|ψ1y “ 1 ´ 1?
2

xψ2|E2|ψ2y “ 0

xψ1|E3|ψ1y “ 1?
2

xψ2|E3|ψ2y “ 1?
2

ÿ

“ 1 X
ÿ

“ 1 X

When a measurement is taken with the help of this POVM, we can distinguish which state was pre-
pared with absolute certainty for two of the 3 possible outcomes E1, E2, E3. If we measure E1, we can
conclude that the prepared state must be |ψ2y, as xψ1|E1|ψ1y “ 0.

For measuring E2, we know that the prepared state must be |ψ1y, as xψ2|E2|ψ2y “ 0. Only for the
measurement of E3 we can not say which state was prepared. By usage of the POVM formalism of a
measurement we are therefore able to design a measurement apparatus with which we will never fail
to identifiy the state of the system. On the other hand, here in the case of measuring E3, we will not
gain information about the state the system is in at all. ♦

2.6 Uncertainty Relations

The uncertainty principle introduced by Werner Heisenberg in 1927 was the first theoretical framework
that described the inability of exact measurements of incompatible observables in quantum mechanics
[1].

The original formulation proposed a reciprocal relation for the measurement mean error and the dis-
turbance of the successively measured observable. He used a γ-ray microscope thought experiment with
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2.6. Uncertainty Relations

the Compton effect as physical background to describe the trade-off of the accuracy of the measurement
of position and momentum of an electron.

The symbolical formulation of the principle is

p1q1 ∼ h , (2.71)

with p1 being the discontinuous change of momentum for a mean error of a position measurement q1.
The tradeoff is symbolically limited with the Planck constant h.

In the original formulation there is no rigid mathematical proof of the principle provided and the lower
limit for the uncertainty is not defined in an exact manner. A modern reference of the same principle
for two observables Q,P is given by

ǫpQqηpP q ě ~

2
, (2.72)

with ǫ being the error of the first measurement (of Q) and η being the disturbance on a second mea-
surement (of P ). The descriptions of error and disturbance are operator based. They are treated
symbolically in the Heisenberg paper and are not yet formally defined.

The Heisenberg uncertainty principle is considered the first formulation of a measurement uncertainty
principle.

The first reformulation of the Heisenberg uncertainty principle was done by Earle Hesse Kennard just
a few months afterwards [2]. He generalized the Heisenberg relation and used standard deviations
instead of abstract measurement error operators which were only heuristically motivated.

The Kennard relation is given by

σpQqσpP q ě ~

2
, (2.73)

with the standard deviation σ of any variable X being

σpXq “
b

xX2y ´ xXy2 . (2.74)

The fundamental difference to the original formulation is that the uncertainty between the two non
compatible observables of the quantum system has now become intrinsic. That means, that the uncer-
tainty is completely independent of any measurement apparatus and therefore a fundamental property
of the quantum system.

The Kennard relation is considered the first formulation of a preparation uncertainty principle. An
example of the relation is given in Fig. 2.5.

In 1929 Howard Percy Robertson developed a generalized uncertainty relation that describes the relation
between any two non-commuting observables A,B [8]. So far only the uncertainty of the measurement
of position and momentum has been discussed.

The Robertson uncertainty relation uses the expectation value of the commutator to describe the
tradeoff relation between the observables:

σpAqσpBq ě 1

2
| xψ|rA,Bs|ψy| , (2.75)
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Chapter 2. Theory

Figure 2.5: Illustration of the Kennard preparation uncertainty of two non-commuting observables
Q,P . The mean value is set to µ “ 0, σ2pQq “ 0.5 for the Gaussian distribution used(see
Eq. (2.9)).

Erwin Schrödinger tightened the Robertson relation in 1930 [9]. To tighten an uncertainty relation
means, that the lower bound that describes the minimal boundary of the uncertainty gets smaller. A
tight uncertainty relation represents the case where the smallest possible lower bound has been found.

The result is referred to as Robertson-Schrödinger uncertainty relation and is denoted as

σpAqσpBq ě | xψ|tA,Bu|ψy ´ xψ|A|ψy xψ|B|ψy|2 `
∣

∣

∣

∣

1

2i
xψ|rA,Bs|ψy

∣

∣

∣

∣

2

. (2.76)

tA,Bu “ AB `BA is called the anti-commutator of A,B and is defined as the sum of both permuta-
tions of the operators.

The uncertainty relations we discussed so far use the standard deviation or heuristically motivated
symbolic operators as means to mathematically describe the noise and disturbance of a measurement
or the intrinsic uncertainty of two observables in a quantum system. In 1983 David Deutsch published
the article Uncertainty in Quantum Measurements [3] where he introduced the Shannon entropy as a
more proper means to establish a tight uncertainty relation.

The original formulation is given by

S
Â

p|ψyq ` S
B̂

p|ψyq ě 2 ln
2

1 ` sup |xa|by| , (2.77)

with |ψy being the state of the system under observation and t|ayu, t|byu being the eigenstates of the
operators Â and B̂, respectively.

The entropies S
X̂

p|ψyq are defined as

S
X̂

p|ψyq “ ´
ÿ

x

|xx|ψy|2 ln |xx|ψy|2 . (2.78)
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2.6. Uncertainty Relations

As the |xx|ψy|2 can be interpreted as probabilites (see Eq. (2.59)) we can write Eq. (2.77) in terms of
Shannon entropies (defined in Eq. (2.15)) by dividing by ln 2:

HpÂq `HpB̂q ě 2

ˆ

1 ` ln p1 ` sup |xa|by|q
ln 2

˙

. (2.79)

Note that all uncertainty relations we discussed so far, except the original formulation from Heisenberg,
are preparation uncertainty relations. They all describe the intrinsic property of quantum systems and
their observables not to be determinable in a perfectly exact manner.

2.6.1 Information Theoretic Noise and Disturbance in Quantum Measurements

The uncertainty relation the quantification of noise and disturbance in our experiment is based on is
using information theoretic definitions, as first proposed by Deutsch (see above) and further used by
others (e.g. [23, 24]). So far these works did not deal with measurement related noise and disturbance.

In 2014 Buscemi et al. introduced an entropic measurement uncertainty relation in their paper Noise
and Disturbance in Quantum Measurements: An Information-Theoretic Approach [4]. They shown
that for any measuring apparatus M and any nondegenerate observables Â, B̂ the relation

NpM, Âq ` DpM, B̂q ě ´ log2 c , (2.80)

with
c :“ max

a,b

∣

∣

∣

A

ψa
ˇ

ˇ

ˇ
φb
E∣

∣

∣

2

, (2.81)

holds.

The |ψay ,
∣

∣φb
D

are the eigenstates of Â and B̂, respectively.

To understand the quantification of noise we will follow the thought experiment presented in the paper.
The measuring apparatus gets fed by random eigenstates of Â and provides us with two measurement
outputs: the measurement outcome M “ m and the disturbed output quantum system S1. For the
noise we do not care about S1 but only the measurement outcome m. Now we need to quantify the
correlation between the eigenvalues ξa and the outputs of the measurement apparatus M with the help
of a guessing function. The procedure is shown in Fig. 2.6.

ppψaq |ψay M
guessing
function

NpM, Âq

S

M

S1

Figure 2.6: Illustration of the definition of the noise. A quantum system S gets prepared in a state
|ψay. The measurement apparatus M is changing the state of S. We receive an altered
quantum system S1 and a measurement outcome M . A guessing function tries to find the
right eigenvalues associated with the measurement output M . The correlation of the input
state and the measurement output is quantified by the noise NpM, Âq.
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Chapter 2. Theory

We can describe the measurement of m given |ψay with the conditional probability ppm|ψaq. We obtain
the joint probability by using Eq. (2.12) and receive

ppm,ψaq “ ppψaqppm|ψaq . (2.82)

We can fix the ppψaq as we usually have access to the information on how the states are prepared. For
a uniform distribution with d possible outcomes we get

ppm,ψaq “ 1

d
ppm|ψaq . (2.83)

Now we define the noise with the help of the conditional entropy (see Eq. (2.18)) using all permutations
of ppm,ψaq and receive

NpM, Âq “ HpÂ|Mq “
ÿ

m

ÿ

ψa

ppm,ψaq log2
ppmq

ppm,ψaq . (2.84)

For the disturbance we feed the measurement apparatus M with random eigenstates
∣

∣φb
D

of the observ-
able B̂. From the measurement apparatus M we receive the measurement output M and the disturbed
quantum system S1. Now, prior to a measurement M1 of B̂ we feed both outputs of the measurement
apparatus M into a correction procedure ǫ. This correction procedure now tries to reconstruct the
original quantum system S from the output system S1 and the information m of the measurement
output M . The output of ǫ is the corrected quantum system S2 on which the measurement M1 with
output M 1 “ m1 gets performed. The measurement M1 can be of any measurement type that is suited
to measure the eigenstates of B̂, e.g. simply a projective measurement.

Now we once again use the joint probability to quantify the disturbance of the measurement apparatus
M on the quantum system S using a correction procedure ǫ and assuming a uniform distribution for
the input states:

ppm1, φbq “ ppφbqppm1|φbq “ 1

d
ppm1|φbq . (2.85)

We now define the disturbance in terms of Shannon entropy and get

DpM, B̂q “ min
ǫ
HpB̂|M 1q “

ÿ

m1

ÿ

φb

ppm1, φbq log2
ppm1q

ppm1, φbq . (2.86)

The term minǫHpB̂|M 1q means that we take the minimum of the entropy given all possible correction
functions ǫ. This ensures that the correction function is optimal and the disturbance therefore gets
minimized.

In general a correction function ǫ can be modeled by any completely positive, trace preserving map
that reconstructs S from S1 with the information provided by M . We can define the probability pe of
making a guessing error as

pe “
ÿ

φb

ÿ

φb‰m1

ppm1, φbq , (2.87)

and receive the probability of a correct guess as the complementary probability

1 ´ pe “ 1

d

ÿ

φb

F tS2pPφbq, SPφbu . (2.88)
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2.6. Uncertainty Relations

We used the fidelity F tρ, σu :“ Tr
 a?

ρ σ
?
ρ
(2 between two states ρ, σ and the projectors Pφb onto

the eigenstates
∣

∣φb
D

of the operator B̂ for the description. The fidelity is a measure that expresses the
probability that one quantum state can be rightfully identified as the other one.

ppφbq
∣

∣φb
D

M ǫ M1

DpM, B̂q

S

M

S1

S2

M 1

S3

Figure 2.7: Illustration of the definition of the disturbance. The first part is analogue to the noise
definition. A quantum system S is prepared in an eigenstate

∣

∣φb
D

. The system S gets fed
into the measurement apparatus M. The output is a quantum system S1, altered by the
measurement, and the measurement output M . They both get now fed in a correction
procedure ǫ, which tries to restore the original state S with the help of the information of
M . The result is the corrected quantum system S2. A successive measurement apparatus
M1 performs a measurement on S2. The correlation between the input state of S and the
measurement output M 1 is quantified by the disturbance DpM, B̂q.
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CHAPTER 3

Experimental Setup

I am afraid neutrons will not be of any use

to any one.

Sir James Chadwick

In this chapter the experimental setup used will be introduced. At the beginning the properties and
means of the production of free neutrons will be discussed, as the neutron is the quantum system
we are experimenting with. The energy distribution of the neutron beam port we are working on at
the TRIGA Mark II fission reactor situated at the Atominstitut will be shown. Then key elements
of neutron polarimetry used in the setup will be discussed. Typical steps in the calibration of the
components used will be explained and shown exemplarily. Then a short explanation of the experiment
by Sulyok et. al will be given, as it can be seen as a predecessor of our setup [6]. They used projective
measurements for an entropic measurement uncertainty relation. Our measurements, using a POVM,
yield in a tighter result. Concluding, the setup specifications used for our noise and disturbance
measurements are specified.

3.1 The Neutron

In 1920 Ernest Rutherford discovered that atoms consist of an electrically positive charged heavy core
and an equally negatively charged hull [25]. The proton mass was already known by that time, but an
about equal mass could not be associated with any particle already known. Rutherford proposed an
electrically neutral nucleon concluding from his research. The issue was resolved as James Chadwick
experimentally proved the existence of the neutron in 1932 [26].

The neutron is a baryon and consists of one up-quark and two down-quarks, often denoted as |uddy.
That state is not stable but can be stabilized by binding the neutron to a proton with the strong
force in the nucleus of an atom. An unbound neutron has a mean lifetime of τn “ (880.2 ˘ 1.0) s [27,
p. 1653]. This is a reasonable amount of time to perform experiments on and with the help of free
neutrons.
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Chapter 3. Experimental Setup

d d

u u

d u

ν̄e

e´

W´

n p

Figure 3.1: Feynman diagram illustrating the decay mode (1) given in Eq. (3.1). A down-quark of the
neutron decays into an up-quark, emitting an intermediary W´ gauge boson. The electron
and the electron-antineutrino are generated from that boson.

The free neutron n0 decays as a β´-emitter and has three differently probable known decay modes,
which can be denoted as

0
1n Ñ

$

’

&

’

%

1
1p` e´ ` ν̄e `Q, p – 1 p1q
1
1p` e´ ` ν̄e ` γ, p “ (9.2 ˘ 0.7) ˆ 10−3 p2q
1
1H ` ν̄e, p ă 3 ˆ 10−2 † p3q

, (3.1)

with p` being a proton, e´ an electron, ν̄e an electron antineutrino, Q the decay energy, γ a photon and
H1

1 a hydrogen atom. The probabilites p corresponding to the decay modes are taken from [27, p. 1655].

Almost every neutron decays through mode p1q, with a decay energy of Q “ 0.782 343 MeV ‡. A small
fraction is through mode p2q, where a photon is emitted as an additional particle. It can be thought
of as the result of an internal bremsstrahlung based on the interaction of the electron and the proton.
Mode p3q describes the case where the electron does not gain enough kinetic energy to escape the
proton and therefore gets bound to it, forming a hydrogen atom. A Feynman diagram illustrating the
most common decay mode (1) is given in Fig. 3.1.

The name neutron comes from its electrical neutrality as it does not carry any charge. That fact is
commonly accepted. The upper limit for a hypothetical charge qn of the neutron is currently defined
as qn “ (−0.2 ˘ 0.8) ˆ 10−21 e, e being the elementary charge [27, p. 1654]. This value is consistent
with 0, given the experimental uncertainties.

The neutron is considered a spin 1

2
particle, hence it belongs to the particle class of fermions. Ac-

cording to the standard model of particle physics it carries a very small electric dipole moment. The
predicted values are a lot smaller than the current precision of experiments investigating it. It also
carries a magnetic dipole moment. This was controversial for a long time. Usually, to have a magnetic
dipole moment, a particle has to have both a spin and an electric charge. In the case of the neutron
the spin is a combination of the magnetic moments of the consistent quarks, which could be explained
with the introduction of the quark model in the 1960s.

The magnetic dipole moment for the neutron is given as µn “ g µN “ −1.913 042 73(45)µN [27,
p. 1653]. g is the so called g-factor, µN is the nuclear magneton which is defined as

µN “ e~

2mp
, (3.2)

†Please note that there is no sufficient experimental data that can give a probability with proper confidence. It is
only possible to define this lower bound, as stated in [27, p. 1655]. In general, this mode is considered the least probable.

‡The decay energy is the difference in kinetic energy before and after the decay. It can be computed via the rest
masses of the decay which is not explicitly done here.
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3.1. The Neutron

~B

~µ

ω

Figure 3.2: Larmor precession of a magnetic moment ~µ around an external magnetic field ~B with
angular frequency ω.

with e being the elementary charge, ~ the reduced Planck constant and mp the proton mass. The
magnetic dipole moment is antiparallel to the spin.

As the neutron does not carry any charge, it is not exposed to the Coulomb force. Only a very small
part of the kinetic energy of the neutron is dependent on a magnetic field interaction. It is neglectable
for the neutron energies we experiment with and gets only relevant in very small energy scales. The
spin nevertheless orients itself parallel or antiparallel to the magnetic field in an adiabatic case, mean-
ing a slowly changing external magnetic field. It is also possible to influence the direction of the spin
with the help of external magnetic fields, which are nonadiabatic according to the following principle.

The change in orientation of the magnetic moment µn in an external magnetic field ~B is described via
the so-called Larmor precession, as shown in Fig. 3.2. A torque ~τ of the magnetic moment is exerted
by the field, mathematically

~τ “ ~µˆ ~B . (3.3)

The magnetic moment precesses about the magnetic field with the Larmor frequency

ω “ ´γ
∣

∣

∣

~B
∣

∣

∣
, (3.4)

where
γ “ g

µN

~
“ g

e

2mp
, (3.5)

is the gyromagnetic ratio.

3.1.1 Neutron Sources for Research

Neutrons for research are typically produced in research fission reactors, as for example the Institut
Laue-Langevin in Grenoble, France or the TRIGA Mark II research reactor situated at the Atomin-
stitut of the Technical University Vienna, Austria, where our experiment is located. An alternative
for fission reactors are so called spallation sources, where highly energetic incident particles cause the
target material to dissolve into its constituents, releasing free neutrons. An example for a spallation
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Chapter 3. Experimental Setup

Figure 3.3: Probability density function of a Maxwell-Boltzmann velocity distribution for thermal neu-
trons at T “ 290 K (see Eq. (3.6)).

source is the Paul Scherrer Institut near Zurich in Switzerland.

The neutrons that get produced by nuclear fission have a mean kinetic energy in the area of Ēkin “
2 MeV and are called fission neutrons. They belong to the energy range of fast neutrons. The fast
neutrons lose energy by scattering at a moderator, as for example hydrogen. In general neutrons with
lower energies have a larger cross section with matter. That means that interactions with matter,
both scattering and absorption, get more probable with lower energies, which is desirable as we get
access to more means of manipulation of the neutron. The velocity of the neutrons is described with
the Maxwell-Boltzmann-distribution.

After a certain number of scattering events, the neutrons arrive at a mean energy of around Ēkin “
25 meV, which is called the thermal energy range. The velocity distribution for thermal neutrons is
shown in Fig. 3.3.

The probability density function for a Maxwell-Boltzmann velocity distribution ppvq is given as

ppvq “
c

2

π

v2

a3
e

´ v2

2a2 , (3.6)

with

a “
c

kT

m
,

m being the particle mass, k the Boltzmann constant and T the temperature.

Typically, as in our experiment, we want to have so called monochromatic neutrons. This means, that
the wavelength λ is the same for all neutrons used for our experiment. The connection between the
velocity v of the neutron and its corresponding wavelength is given via the de Broglie relation

λdeBroglie “ h

mnv
, (3.7)

with the Planck constant h. We used the rest mass of the neutron mn, as v ! c for thermal neutrons.
Therefore no relativistic considerations are necessary. The natural constant c is the speed of light.
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3.1. The Neutron

• • • • •

• • • • •

θ

θ
d

Figure 3.4: Illustration of the Bragg principle. Incoming beams (in red) interfere constructively if the
Bragg condition (Eq. (3.8)) holds. Therefore one can monochromatize, as all wavelenghts
other than the desired one do not interfere constructively and get suppressed. The intensity
of the outcoming beam decreases with higher diffraction orders.

The monochromatization is performed by a pyrolytic graphite crystal. It is a mosaic crystal, meaning
that it consists of numerous perfect crystals that are randomly misoriented to some extent. This en-
sures a higher spectral width of ∆λ{λ “ 0.015. If, e.g. we would use a perfect Si-crystal, we would
have much sharper peaks in our energy spectrum but significantly less neutron flux. In our case the
sharpness of the peak is not as important as a high monochromatic neutron flux, therefore a mosaic
crystal is the monochromator of choice.

Even though the theoretical description of a mosaic crystal is given by the so called Darwin-Hamilton
equations, a simplified description of the principle of monochromatization is given by the Bragg law

nλ “ 2d sin θ , (3.8)

where n P N is the diffraction order, d is the distance between two lattice planes and θ is the angle be-
tween the incident beam and the lattice plane. Constructive interference of the incident beam, reflected
at different lattice planes, occurs when the Bragg law is fulfilled. Therefore one can tune the desired
wavelength by choosing a crystal with the right lattice plane structure and finetune by adjusting the
incident angle. The effect is illustrated in Fig. 3.4.

The resulting velocity distribution for the incident beam of our experiment is given in Fig. 3.5.

Why we use neutrons for our research

We can now summarize the main reasons why neutrons are a good fit for us to be used as a quantum
system to experiment with:

• The detection efficiency of neutrons is close to unity (ą 0.99).

• The efficiency of the spin manipulation is very high. For a well adjusted spin flip coil it is close
to 100 %.

• The lifetime of the free neutron is high enough to perform measurements on them without time
being an issue.

• The neutron has less interaction with matter compared to e.g. photons or electrons. Therefore
more sophisticated experimenting environments, like a vacuum or special radiation shielding are
not necessary.
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Chapter 3. Experimental Setup

Figure 3.5: Old measurement of the incident beam energy spectrum with the Time-Of-Flight method.
The units are arbitrary. We see a major peak at „2 Å. The other peaks are higher orders
from the monochromator crystal.

• As the neutron does not carry a electric dipole moment but is a spin 1

2
fermion we can alter the

orientation of the spin with the help of magnetic fields without significantly changing the neutron
flight path (The kinetical energy is marginally dependent on the orientation of the magnetic dipole
moment. For thermal neutrons and the magnetic field strengths used in our setup this effect is
neglectable).

• The neutron represents a relatively easy to handle qubit system which is necessary to test our
Noise-Disturbance relations.

3.2 Elements of Neutron Polarimetry

In neutron polarimetry the modification of the spin of the neutron as well as the polarization and
detection of neutrons are key requirements to form a proper experimental setup. In the following
the main elements that help us achieve those operations are introduced and the configuration and
calibration of these elements are shown exemplarily for better understanding.

3.2.1 Neutron Supermirrors

Neutron supermirrors polarize an incoming neutron beam. The neutrons coming directly from the
monochromator have an arbitrary spin orientation. If we would measure the spin orientation of this
beam with respect to one of the cartesian axes we would expect an uniform distribution (compare
Section 2.4.2). When performing a measurement, the arbitrary spin state jumps into a well defined
post measurement state.
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3.2. Elements of Neutron Polarimetry

d1

d2

d3
d4

n1

n2

n1
n2

1?
2

p|Òy ` |Óyq

|Óy

|Òy

Figure 3.6: Principle of a neutron supermirror. Alternating layers of magnetic and nonmagnetic mate-
rials are used. The diameter of the layers is monotonously decreasing (d1 ą d2 ą d3 ą . . . ).
An incoming beam with arbitrary spin orientations gets split into two beams in a pure spin
state (ideal case). The undesired spin state (here: |Óy) gets absorbed later on by a substrate,
the other polarized beam leaves the supermirror.

This effect is called collapse of the wavefunction and is described in detail in Section 2.4.1.

The neutron passing a supermirror can be interpreted as an alteration of the incoming wavefunction,
selecting only one of the two possible spin states, |Òy, suppressing |Óy. As the wavefunction which de-
scribes the premeasurement state collapses, the postmeasurement state is then defined as being purely
in |Òy. We lose intensity but receive a polarized beam of neutrons.

Of course a real supermirror is not ideal, the quality of it is mostly expressed in terms of polarization
P . It is defined analogously to the Michelson contrast (see Eq. (4.5)) and therefore as

P “ IÒ ´ IÓ
IÒ ` IÓ

, (3.9)

where IÒ respectively IÓ are the intensities of the neutron beams with the two possible spin orientations
|Òy and |Óy. For an ideal supermirror IÓ vanishes and we receive a polarization of P “ 1. A well aligned
supermirror which selects |Òy has a polarization in the area of P Á 0.98. Note, that ´1 ď P ď `1, as
a beam can be polarized both in |Óy- and |Òy-direction and therefore we get P ă 1 for IÒ ă IÓ. This
differs from the contrast C, which is fixed as 0 ď C ď 1.

The description of the interaction of (nonrelativistic) neutrons and matter is given by the time inde-
pendent Schrödinger equation with a potential V .

The Schrödinger equation in its time independent form is given by
ˆ

~∇2 ` 2mpE ´ V p~rqq
~2

˙

Ψp~rq “
´

~∇2 ` k2
¯

Ψp~rq , (3.10)

where E is the kinetic energy and k is the wave vector of the wavefunction Ψp~rq.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 3. Experimental Setup

The potential consists of a term for the nuclei the neutrons interact with and a magnetic term. The
term for the nuclei can be described via a Fermi pseudopotential. We receive for the potential

V “ Vnuc ` Vmag “ 2π~2N

m
bc

loooomoooon

fermi potential

˘µBeff
looomooon

spin dependent

. (3.11)

The Fermi potential is dependent on the mass m of the nuclei, the nuclei density N and the scattering
length bc.

From the Schrödinger equation we can directly derive that the wave vector length k is given by

k “
c

2mpE ´ V p~rqq
~2

. (3.12)

The refractive index n of a material is given as the ratio of the wave vector k0 in absence of a potential
(V “ 0) and the wave vector with an additional potential and therefore

n “ k

k0
“
a

1 ´ V {E . (3.13)

We see, that we receive two different refractive indices for different spin orientations because of the
magnetic term in the potential. This effect is used in supermirrors, we can differentiate the incident
beam in two subbeams. By choosing a material with a specific Fermi pseudopotential V ą E we can
also get n P C, which yields in absorption or incoherent scattering.

Figure 3.7: Supermirror used in our setup. The exit window for the beam is visible on the left side of
the mirror.
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3.2. Elements of Neutron Polarimetry
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Figure 3.8: Calibration measurement of the supermirror tilt and the resulting intensities dependent on
the tilt angle θ. The actual values on the x-axis are positions of a stepper motor performing
the tilt and are therefore not relevant. The full range of the plot covers an angle of only
about 1.3°.

A neutron supermirror consists of alternating layers of magnetic and nonmagnetic materials. The
layer thickness decreases with the layers. The basic structure is shown in Fig. 3.6. There are material
combinations that have quite different refractive indices for different spin alignments. Therefore it
is technically possible to create supermirrors with high reflectivity for one spin component but high
transmittivity for the other one. For the |Òy component a refractive index of 1 ´ n „ 10−6 is usual.
The material combination used for our supermirrors is Co and T i.

In theory, we then would get an intensity at the output of the supermirror that is half of the incoming
beam, as we expect half of the neutrons of the incoming beam to be selected by the supermirror.
Practically due to material losses, and as the incident neutron beam is not a plain wave and therefore
the neutrons impact the supermirror not only from top but also sideways the total intensity further
decreases. We end up with an output intensity in the range of Iout – 1

4
Iin.

We can also use the supermirror as an analyzer of the neutron spin state. When an incoming neutron
beam is in a state |ψpθ, φqy on the Bloch sphere (see Eq. (2.56)), we expect an intensity that is propor-
tional to the overlap of the incoming state and the state |Òy, which gets transmitted, mathematically

Ipφ, θq 9 |xÒ|ψpθ, φqy|2 . (3.14)

A typical supermirror looks basically like a lengthy cuboid that has entrance respectively exit windows
for the neutron beam on the smaller faces. A picture of one of the supermirrors used in our experiment
is shown in Fig. 3.7. It should be aligned in a way that the center of the entrance window matches the
maximum of the neutron beam, as we want the highest intensity possible to enter the supermirror in
order to lose as few neutrons as practicable. This is mostly done by hand monitors or neutron detectors
fixed in front of the entrance window.
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Chapter 3. Experimental Setup

After the alignment of the entrance window we need to properly adjust the tilt of the supermirror
relative to the neutron beam. When tilting the supermirror we receive a Gaussian function alike shape
for the output intensities measured. An example for a calibration measurement is given in Fig. 3.8.
It is important to note that this measurement only gives us information about the intensity of the
outcoming neutron beam but not at all about the direction of the magnetic moment of the neutrons,
as neutron detectors are not spin sensitive.

In fact, choosing a tilt that configures the supermirror position in the area of the maximum of the
distribution is a bad choice, as the degree of polarization in the maximum is rather low. Good values
for the degree of polarization of the neutron beam are in the flanks of the distribution. Therefore there
is always a tradeoff between intensity and degree of polarization of the beam exiting a supermirror.
Dependent on the actual demands of the experiment one has to find the best setup.

3.2.2 Guidefield

The degree of polarization of a neutron beam decreases if we do not ensure a static magnetic field that
has the same direction as the magnetic dipole of the beam. This is the case, as the spin is always
prone to stray fields from the direct environment or the magnetic field of the earth. This means, that
in the areas between supermirrors it is necessary to constitute a strong magnetic guide field that has
the same direction as the magnetic field of the supermirror.

Figure 3.9: Simulation of the field caused by the rectangular Helmholtz coils used in the setup. The
plot shows the field distribution in z-direction for different x- and y-values. The 2D plot
(see Fig. 3.10) is the cut of this 3D plot at y “ 0. The magnetic field in the area where the
neutron beam is located is very homogeneous. The white areas are due to a divergence of
the integral at the source of the magnetic field. The field inside the coils is not computed.
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3.2. Elements of Neutron Polarimetry

Figure 3.10: Simulation of the magnetic field of the guidefield. The plot shows the magnetic field in
the middle of the coil setup over the full x-range. The neutron beam is most likely to
travel in the center in a well aligned setup. Therefore this simulation shows the magnetic
field the beam is most likely to be exposed to. The field strength in the middle is in the
area of Bz „10 G.

In this case the spin follows the laws of the Larmor precession, which was introduced in Eq. (3.3). For
an ideally polarized beam the magnetic moment of the neutrons and the guide field are parallel and
the torque of the spin vanishes. Therefore the degree of polarization is conserved.

When they are not parallel the magnetic moment begins to precess about the guidefield direction. The
projection relative to the axis of the guidefield is then also conserved (e.g., when a magnetic moment
precesses about a magnetic field in z-direction, the expectation value of the spin in z-direction is con-
served. This does not hold for the other directions.)

To achieve a relatively homogeneous magnetic field in z-direction Helmholtz coils are used. Helmholtz
coils consist of a pair of two equal round coils which are aligned in parallel. The radius of the single
coils is equal to the distance of the coils. The derivatives of first, second and third order of the magnetic
field between the coils vanish. This guarantees a perfect homogeneous magnetic field between the coil
pair in the ideal case.

Due to spacing reasons we did not use round Helmholtz coils but a rectangular setup. Simulations of
the magnetic field in z-direction (parallel to the magnetic field of the supermirrors) have been done to
assess the quality of the field before manufacturing and installing the guidefield coils. The results of
the simulation are shown in Figs. 3.9 and 3.10. Our guidefields operate at Bz „14 G in the center of
the field. The values received are consistent with the simulations. The higher field strength compared
to the simulated values is given due to higher currents used in the setup compared to the simulation.
The fields were simulated with a current of I “ 5 A, the actual current used was I „ 6.5 A for both
guidefield coils.
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Chapter 3. Experimental Setup

Figure 3.11: Rectangular Helmholtz coils forming a guidefield. The adjacent supermirrors and two
spinrotator coils in the area of the guidefield are also visible. The spinrotators are fixed
on a podestal that can be moved by stepper motors to adjust the distance for a full Larmor
precession.

We apply two regions with a guidefield in our setup. They are placed between the supermirrors in use.
They are of identical construction. A picture of one of the guidefields and two spinflipper coils is given
in Fig. 3.11.

3.2.3 Spinrotator Coils

The spin of the neutrons can be tuned by external magnetic fields. After passing a supermirror the
neutron beam is in a defined spin state. In our case that is |Òy. The degree of polarization of a neutron
beam is then conserved as the neutron beam travels through a guidefield that is oriented in z-direction
and therefore parallel to the spin orientation. A spinrotator coil is placed inside the guidefield. We
want to change the spin orientation in a way that it precesses about the x-z-plane. Again we can
describe the time evolution of the spin orientation with the help of the Larmor precession, given in
Eq. (3.3). We see that for a magnetic field purely in y-direction we achieve the desired movement of
the magnetic moment.

A spinrotator coil actually consists of two rectangular coil windings that share a common frame. A
picture of a typical spinrotator coil is given in Fig. 3.12. One winding generates a magnetic field in
z-direction, antiparallel to the guidefield. The coil needs to be designed and the operating current
needs to be calibrated in a way, that the guidefield can be compensated locally inside the coil. The
resulting field if we would just use this single winding would in the ideal case therefore be ~B “ 0.
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3.2. Elements of Neutron Polarimetry

Figure 3.12: Picture of a typical spinrotator coil. The current is applied via the screw joints on top.
Coils of the same dimensions are used between the polarizer and first analyzer of our
setup.

To calibrate the z-field of the coil, we fix a current for the y-winding, typically one that represents
a π-flip. Then we sweep the current applied to the z-coil and receive a measurement curve that can
be described by a 2nd order polynomial. The ideal setting lies in the minimum of the measurement
curve. In this case we receive the minimal countrate, as our resulting state is purely |Óy. Only for an
ideally compensated z-field we receive a pure y-field and are able to perform a full π-flip. Nevertheless
we get a small number of counts due to imperfections of both the coil itself, the adjustment and the
supermirror. A typical calibration measurement for the y-field is shown in Fig. 3.13.

The second winding is physically rotated by π
2

about the first winding. This guarantees that the mag-
netic fields generated by the spinrotator coil are perpendicular to each other. The coil generates a field
in y-direction that can be tuned by the current applied. For that reason the alignment of the spin can
be changed by applying different currents. We finally receive for the magnetic field ~B “ By 9 Iy.

We expect a sinusoidal shape when we measure the counts for different y-currents. The coil needs to
be aligned respectively to the guidefield in a way that the z-fields are perfectly compensated. The
y-winding is then automatically adjusted perpendicular to the guidefield due to the design of the spin-
rotator. This alignment is very sensitive and performed via stepper motor driven goniometer stages.
For a very well adjusted spinrotator coil we can reach contrasts of up to C – 0.98 and a symmetry of
(90 ˘ 1)° for the sine fit (For 90° we would have an ideal mirror symmetry about Iy “ 0). A measure-
ment of a well adjusted spinrotator coil is given in Fig. 3.14.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 3. Experimental Setup
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Figure 3.13: Current sweep for the z-winding of a spinrotator coil. The ideal setting is found in the
minimum.

In our setup we use pairs of two spinrotator coils. With the first one a desired spin state can be
prepared, the second one turns the Bloch vector of a measurement instruction, e.g. a POVM or a
projective measurement, in |`zy direction. With a supermirror as spin state analyzer positioned after
coil two we can therefore perform a quantum mechanical measurement on any Bloch vector on the
x-z-plane.

We must not forget that after performing a rotation operation with the first coil the neutrons enter
the guidefield again and begin to precess about its direction. Therefore the distance between the
spinrotator coil pair must be fixed to a value that represents an integral multiple of full rotations
about the magnetic field. This is done by performing a π

2
flip with the first and a ´π

2
flip with the

second coil while varying the distance. For the maximal countrate of the resulting measurement plot
an ideal setting is found. An exemplary measurement is given in Fig. 3.15. An alternative approach
would be performing two consecutive π

2
flips and looking for a minimum.
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3.2. Elements of Neutron Polarimetry
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Figure 3.14: Current sweep for the y-winding of a spinrotator coil. With different currents we can alter
the spin orientation by performing different spin rotations.
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Figure 3.15: Distance measurement of a spinrotator pair. The distance representing a full Larmor
precession is given for the maximum of the countrate The distance between the coils is
varied with a stepper motor. The positions of the spinrotator coils DC3 and DC4 and the
stepper motor that varies the distance is shown in Fig. 3.11
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Chapter 3. Experimental Setup

3.2.4 Neutron Detectors

To detect neutrons, it is necessary to find neutron-nucleus reactions that have a high cross section and
are well distinguishable from a γ-background. The emitted particles must also be easily detectable.
When those two properties are fulfilled, it is possible to manufacture compact and highly effective
neutron detectors. It is also desirable that the isotopes used have a high natural occurrence withing
the element. In that case it is cost efficient to enrich the needed isotope. Nuclear reactions of other
isotopes do not disturb our detector signal significantly for highly enriched detection elements.

Two elements which have a high cross section for neutron capture in the thermal range are 3He and 10B.
The 10Bpn, αq reaction is proper to convert an incident neutron into an easily detectable α-particle.
The reaction is denoted as

10
5 B `1

0 n Ñ
#

7
3Li `4

2 α Q “ 2.792 MeV ground state
7
3Li

˚ `4
2 α Q “ 2.310 MeV excited state

. (3.15)

In both cases a charged α-particle is emitted. In most cases Li is excited and then decays relatively
fast, emitting a γ-ray. Boron trifluoride BF3 is used as a detection gas. The boron is highly enriched
with 10

5 B, which results in a higher detection efficiency.

The other nuclear reaction that is relevant for us is 3Hepn, pq, which is given as

3
2He`1

0 n Ñ3
1 H `1

1 p Q “ 0.764 MeV . (3.16)

The cross section for this reaction is even higher than the one for 10Bpn, αq and therefore is very
attractive in terms of neutron detection efficiency. As He is a noble gas we can only use gas detectors
with it. A downside is the very small natural occurrence of 3He, therefore the costs are relatively large,
as a high purity is necessary.

We use so called proportional counter tubes filled with detector gas in our setup. The main mea-
surements have been done with a BF3 detector, calibration measurements with different sizes of He
detectors. The principle of a proportional counter tube is simple. A tube is filled with detector gas. In
the center of the tube a conducting wire is positioned. A high voltage is applied between the detector
casing and the conducting wire. A neutron passes the detector casing and hits a nucleus of the detector
gas. As described above, a charged particle is emitted when the neutron gets absorbed by the nucleus.
This particle is referred to as primary ion, as it is directly caused by neutron capture. Due to its
charge, the emitted particle is drawn to the wire or the casing. On its way it interacts with the other
atoms or molecules in the detector gas, secondary ions get emitted (mostly electrons), that cause a
charge avalanche. When the ions hit the electrodes of the detector, a pulse is generated via a load
resistor.

The relative increase in ions per distance is described by the Townsend equation

dn

n
“ αdx , (3.17)

where n is the number of ions, x is the distance and α is the so called first Townsend coefficient which
is dependent on the electric field strength and therefore the tube diameter, the applied voltage and the
position where the ionization incident occurs.

For the right setting of the detector voltage it is possible to receive a pulse amplitude spectrum that is
not dependent on the position of the nuclear reaction caused by neutron absorption in the tube. We
operate in the proportional area of the detector. To find the right voltage for the detector, it is placed
in front of a neutron beam with constant intensity. For a sweep of the voltage we get different counts
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3.2. Elements of Neutron Polarimetry

500 1000 1500 2000 2500
HV[V]

2000

4000

6000

8000

Counts[1/10s]

Figure 3.16: Calibration measurement of the neutron detector used as monitor for the setup. A high
voltage (HV) is applied, the corresponding countrates are measured. The final setting
for the HV was chosen at U “ 1 kV. For this setting we are in saturation and a further
increase would not improve the detection quality.

for the same time intervals. When the curve flattens and reaches a limit, a further increase of the detec-
tor voltage is not expedient. The curve for the monitor detector used in the setup is shown in Fig. 3.16.

The raw pulses from the detector get amplified and forwarded to a discriminator. When we look at the
spectrum of an (amplified) detector signal, we also see a γ-peak and some detector specific effects that
cause pulses that do not belong to an incident neutron. The discriminator only selects a specific range
of pulse amplitudes that can be associated with a detected neutron and discriminates other pulses.
The spectrum of the neutron detector used as monitor is shown in Fig. 3.17.

Neutron detectors are available in different sizes. For example for the adjustment of the supermirror
entrance windows neutron detectors with a smaller diameter were used. They were placed directly in
front of center the entrance window with a mount. With this setup we have a high sensitivity for the
position of the maximum of the neutron beam and are able to align more sensitively. For the detector
used for the disturbance measurement on the other hand it was crucial to measure neutrons that left
the last supermirror. Due to the application of POVM weights via the supermirror tilt the position of
the neutron beam varied over several cm. A bigger detector was chosen to guarantee a high detection
rate over the full range of the horizontal motion of the supermirror. A picture with two detectors in
use for different alignment measurements is given in Fig. 3.18.
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Chapter 3. Experimental Setup

200 400 600 800 1000
Channel

1

100

10
4

10
6

Counts

Figure 3.17: Spectrum of the He detector used as a monitor in our setup, measured with a multichannel
analyzer. The domain that is associated with an incident neutron is highlighted in red.
Only in that energy range occurring pulses are considered neutrons and get counted. The
γ-peak is well recognizable on the left side of the plot.

Figure 3.18: Two differently sized He neutron detectors. Both of them were used during the calibration
of the final setup for our noise-disturbance measurements.
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3.3. Setup for Noise and Disturbance Measurements

3.3 Setup for Noise and Disturbance Measurements

3.3.1 POVM and Correction Procedure

The POVM we use for our measurements was proposed by Abbott and Branciard in 2016 [5]. They
introduced a 3-outcome POVM

M θ “ tM θ
´1,M

θ
0 ,M

θ
`1u for θ P

”

0,
π

2

ı

, (3.18)

with the elements of the POVM being denoted as

M θ
m “ pmp1 ` ~nm ~σq . (3.19)

~σ is the vector holding all Pauli matrices, mathematically

~σ “

¨

˝

σx
σy
σz

˛

‚ . (3.20)

The orientation of the measurement vectors within the Bloch sphere is given by the Bloch vector

~nm “

¨

˝

p´1qm cospmθq
0

sinpmθq

˛

‚ . (3.21)

The pm can be interpreted as probabilities that a certain outcome of the POVM is measured. They
will further be referred to as POVM weights. They are defined as

p0 “ cos θ

1 ` cos θ
, (3.22)

p´1 “ p`1 “ 1

2p1 ` cos θq . (3.23)

An illustration of M θ
m on the x-z-plane of the Bloch sphere is given in Fig. 3.19.

For the disturbance measurement a correction procedure is necessary in addition, as stated in Sec-
tion 2.6.1. Abbott and Branciard proposed a correction procedure ǫ “ tǫmum with

ǫ0pρq “ ρ , (3.24)

ǫ´1pρq “ ǫ`1pρq “ 1

2
p1 ´ σxq , (3.25)

where ρ is the density matrix of the post POVM measurement state. This resembles leaving the state
unchanged for m “ 0 and mapping ρ onto the negative x-axis for m “ ´1,`1.

The correction actually performed in our experiment uses a different correction operation for m “
0. It was proposed by Stephan Sponar [28]. Simulations have shown that the correction procedure
is equivalent to the one proposed by Abbott and Branciard and can therefore be considered as an
optimal correction. For m “ 0 we map the post POVM measurement state onto the positive x-axis,
mathematically

ǫ0pρq “ 1

2
p1 ` σxq . (3.26)
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Chapter 3. Experimental Setup

|`xy|´xy

|Òy

|Óy

M0pθ “ 0q

M`1pθ “ π{2q

M´1pθ “ π{2q

M`1pθ “ 0q
M´1pθ “ 0q

Figure 3.19: Illustration of the POVM under investigation in the experiment. M0 always points in
|`xy-direction and is shortened with increasing θ, vanishing for θ “ π{2. M`1 and M´1

are equal for θ “ 0 and point in |`xy-direction. For increasing θ the vectors begin to
move towards |Òy respectively |Óy and are elongated. Their movement is along the dashed
red lines.

Using the definition for entropic measurement uncertainties from Buscemi et al. (see Section 2.6.1,
[4]), the noise and disturbance expected for the POVM was now calculated. We receive for the noise,
preparing the state in ρ “ σz,

NpMθ, σzq “ cos θ ` hpsin θq
1 ` cos θ

, (3.27)

and for the disturbance with a prepared input state ρ “ σx,

DǫpMθ, σxq “ hpcos θq
1 ` cos θ

. (3.28)

The function hpxq is given as

hpxq “ ´1 ` x

2
log2

ˆ

1 ` x

2

˙

´ 1 ´ x

2
log2

ˆ

1 ´ x

2

˙

. (3.29)

The realization of mapping procedures with the help of the spinrotator will not be discussed in detail,
as the principle was already introduced in Section 3.2.3. Furthermore the manipulation of the spin
with the help of spinrotator coils is a common procedure for many decades.

The application of the POVM weights results in measurement vectors which are not on the surface of
the Bloch sphere but inside the volume of the sphere. They are shortened. It is therefore necessary to
reduce the intensity of the neutron beam according to the applied POVM weights. In our case that
was done with a tilt of the supermirror that is representing the POVM weights. This is a novelty in
neutron polarimetry.
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3.3. Setup for Noise and Disturbance Measurements

When a supermirror is tilted, the resulting intensity is of a Gaussian shape. That was already discussed
in Section 3.2.1. An exemplary measurement is given in Fig. 3.8. We now defined the position −500 k
as the setting where our POVM weight is pm :“ 1. This is in the range of „ 0.7 of the maximum of the
Gaussian shape. All POVM weights are applied relative to this point. They are therefore all situated
at the flank of the Gaussian. High flip ratios for all weights are expectable in this region.

A detailed measurement with the relative intensities and the corresponding positions of the stepper
motor axis is given in Fig. 3.20. Another advantage of using the Gaussian flank for the POVM weights
is that the intensity is almost linear in that area.

-450000 -400000 -350000 -300000
Pos[Steps]

0.2

0.4

0.6

0.8

1.0

rel. Intensity

Figure 3.20: Detailed measurement of the relative POVM weights and the corresponding stepper motor
positions. The intensities are normalized to the defined value of pm :“ 1 at axis position
−500 k.

3.3.2 Setup for Noise Measurement

For the noise measurement we need to prepare input states with unitary probability. A supermirror
polarizes the incident neutron beam and prepares it in state |Òy. The first spinrotator coil either per-
forms a π-flip, resulting in the state |Óy or no current is applied at all, leaving the beam in state |Òy.
The probability of a performed π-flip is ppπq “ 1

2
. We receive a unitary probability for the states |Òy

and |Óy for that behaviour of the DC1.

The measurement of the three POVM elements is done consecutively. The Bloch vectors corresponding
to the POVM elements are mapped on the |Òy-axis by the second spinrotator coil DC2. A second
supermirror acts as analyzer and also applies the respective POVM weights by being tilted as described
in Section 3.3.1. This results in a measurement as defined in the POVM. A neutron detector is fixed
right after the exit window of the analyzer with a mount. We measure the joint probabilites ppm, aq
with |ay being the input state and m the index of the POVM M θ

m. A scheme of the setup is given in
Fig. 3.21. A picture of the setup for the noise measurement is given in Fig. 3.22.
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Chapter 3. Experimental Setup

Polarizer

Ò

DC1

ÒÓ

DC2

~nm

Analyzer

Ò

Guidefield

~Bz

Detector

n

state preparation |ay

ppaq “ 1

2
@ a

POVM measurement

ppm, aq

pmpθq

Figure 3.21: Scheme of the setup for the noise measurement. The first supermirror and spinrotator
prepare the state with unitary probability for |Òy and |Óy The neutron beam leaves the
polarizer in the pure state |Òy. The spinrotator coil DC1 performs a π-flip, resulting in
the state |Óy or no current is applied at all, leaving the beam in state |Òy. The probability
of a performed π-flip is ppπq “ 1

2
. The second coil DC2 maps the Bloch vector of the

POVM to the |Òy axis and the second supermirror acts as analyzer and applies the POVM
weights. We measure the joint probabilites ppm, aq with a neutron detector that is directly
mounted on the analyzer and placed right after the exit window of the supermirror.

Detector and Shielding

Guidefield with DC1 & DC2

Analyzer

Stepper Motor for POVM Weights

Figure 3.22: Picture of the setup for the noise measurement. The detector is directly mounted on
the analyzer supermirror. The POVM weight tilt is performed by a stepper motor. The
spin orientation is manipulated by a coil pair inside a guidefield, that is situated between
polarizer and analyzer supermirror. The first coil prepares the desired input state |ay, the
second coil maps the POVM Bloch vectors on the |Òy-axis. The second supermirror acts
as an analyzer of the spin state. It also applies the reduction of the intensity according to
the POVM weight function pm by being tilted.
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3.3. Setup for Noise and Disturbance Measurements

3.3.3 Setup for Disturbance Measurement

For the disturbance measurement we need to prepare the input states |`y and |´y. The neutron
beam leaves the first supermirror in the state |Òy. The first spinrotator coil DC1 performs either a
`π

2
flip, resulting in the state |`y or a ´π

2
flip, resulting in |´y. The probabilities for the flips are

pp`π
2

q “ pp´π
2

q “ 1

2
. This results in a unitary probability for the input states |by.

The POVM measurement is performed exactly the same way as for the noise measurement. The mea-
surement of the three POVM elements is done consecutively. The Bloch vectors corresponding to the
POVM elements are mapped on the |Òy-axis by the second spinrotator coil DC2. A second super-
mirror acts as analyzer and also applies the respective POVM weights by being tilted as described
in Section 3.3.1. This results in a measurement as defined in the POVM. After the first analyzer
another spinrotator coil pair is situated. The first one, DC3, is performing the correction procedure
for the currently measured POVM element. For the correction of M θ

0 this means a `π
2

q rotation, for
the correction of M θ

˘1 this means a ´π
2

q rotation. The second one, DC4, consecutively maps |`y and
|´y onto the |Òy-axis. Together with the second analyzer supermirror it forms a projective measure-
ment for σx. The detector is placed after the last supermirror. We receive the joint probabilities ppb1, bq.

For a detailed look of the region with DC1 and DC2 please refer to the picture of the noise setup, given
in Fig. 3.22. The detector that can be seen in the picture is removed for the disturbance measurement.
The other elements stay exactly the same for the disturbance measurement. The region with DC3 and
DC4 is presented in detail in Fig. 3.23. A picture as an overview of the full disturbance setup is given
in Fig. 3.24. A scheme of the disturbance setup is presented in Fig. 3.25.

DC4
DC3

Analyzer 1

Analyzer 2

Figure 3.23: Detailed view of the region with DC3 and DC4. For the disturbance measurement the exit
window of the first analyzer supermirror is not covered by the detector that was mounted
directly on the supermirror for the noise measurement. The coil pair DC3 and DC4 is
placed with a distance that represents a full Larmor precession. The DC3 performs the
correction operation, the DC4 turns the projectors of the B measurement in |Òy-direction.
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Chapter 3. Experimental Setup

Figure 3.24: Overview of the full setup. All 3 supermirrors and both guidefield regions with each 2
spinrotator coils are visible. The last supermirror is a different type then the other ones.
The detector for the disturbance measurement is in the background shielding built from
bricks of borated paraffin (in white, coated with black boron carbide mats).
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3.3.
Setup

for
N

oise
and

D
isturbance

M
easurem

ents

Polarizer

Ò

DC1

Õ

DC2

~nm

Analyzer 1

Ò

Guidefield

~Bz

DC3

ǫ

DC4

P˘x

Analyzer 2

Ò

Guidefield

~Bz

Detector

n

state preparation |by

ppbq “ 1

2
@ b POVM measurement

projective measurement

ppb1, bqcorrection procedure

pmpθq

Figure 3.25: Scheme of the setup for the disturbance measurement. For the disturbance measurement we need to prepare the input states |`y and
|´y. The neutron beam leaves the first supermirror in the state |Òy. The first spinrotator coil DC1 performs either a `π

2
flip, resulting in

the state |`y or a ´π
2

flip, resulting in |´y. The probabilities for the flips are pp`π
2

q “ pp´π
2

q “ 1

2
. This results in a unitary probability

for the input states |by. The POVM measurement is performed exactly the same way as for the noise measurement. The measurement
of the three POVM elements is done consecutively. The Bloch vectors corresponding to the POVM elements are mapped on the |Òy-axis
by the second spinrotator coil DC2. A second supermirror acts as analyzer and also applies the respective POVM weights by being
tilted as described in Section 3.3.1. This results in a measurement as defined in the POVM. After the first analyzer another spinrotator
coil pair is situated. The first one, DC3, is performing the correction procedure for the currently measured POVM element. For the
correction of M θ

0 this means a `π
2

q rotation, for the correction of M θ
˘1 this means a ´π

2
q rotation. The second one, DC4, consecutively

maps |`y and |´y onto the |Òy-axis. Together with the second analyzer supermirror it forms a projective measurement for σx. The
detector is placed after the last supermirror. We receive the joint probabilities ppb1, bq.
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CHAPTER 4

Results

Someone is sitting in the shade today

because someone planted a tree a long time

ago.

Warren Buffett

4.1 Noise Measurement

4.1.1 Raw Data and Data Treatment

For our noise measurements we measured 18 equidistant settings for the parameter θ P
“

0, π
2

‰

, includ-
ing the values θ “ 0 and θ “ π

2
. For every point on the noise plot all three POVM elements must

be measured. This is done consecutively. For a full measurement set we therefore have 54 different
measurement settings. The measurement time was 400 s per measurement setting. The raw data which
we received directly from the experiment is given in Fig. 4.1.

The raw data then is decomposed with respect to the three possible outcome channels M θ
´1,M

θ
0 and

M θ
`1. Two data correction procedures are applied. First, the neutron background is subtracted. This

correction procedure can mathematically be written as

M θ
m,bgCorr “ M θ

m,raw ´ bgps ˚ tmeas , (4.1)

where tmeas “ 400 s is the measurement time and, bgps is the average background per second for the
experiment, which was measured as

bgps “ 2460

1800 s
» 1.37 s−1 . (4.2)

A second data correction was performed incorporating the POVM weights pm and the contrast of the
system C as well as the parameters currmpθq, flipcurr and apθq which all three are associated with
the spin rotation performed and are explained in detail below. The correction used was of the form

M θ
m,corr “ M θ

m,bgCorr ´ IminpCq ¨ pmpθq ¨ sin
ˆ„

currmpθq
flipcurr

` apθq


π

2

˙

(4.3)
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Chapter 4. Results

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

= = =

Figure 4.1: Raw measurement data directly received from the experiment. Three consecutive measure-
ment settings form a point for the parameter θ.

with

apθq “
#

0 for |ay “ |Òy
1 for |ay “ |Óy .

(4.4)

The parameter Imin can be computed from the contrast C of the system and the knowledge of the
maximum expected intensity Imax which can directly be obtained from the background corrected data
set M θ

m,bgCorr. For the setting θ “ π
2

we expect M´1 to have maximum intensity, if the input state
a “ |Óy was selected randomly. On the other hand, if a “ |Òy was selected, we expect M`1 to have
maximum intensity.

In our case, looking at the last two measurement settings in Fig. 4.1, we can see that a “ |Óy was
selected. With the definition of the contrast

C “ Imax ´ Imin

Imax ` Imin
, (4.5)

we can now calculate the expected count rate in the minimum. This represents the count rate we still
expect to measure when the system is purely in state |Óy, as our system is not ideal. We receive

IminpCq “ Imax
1 ´ C

1 ` C
. (4.6)

The sine term in the correction scales the correction dependent on the total rotation applied to the
spin by the spinflipper pair. The term apθq corrects the state preparation coil DC1. In the case where
|Óy is selected as input state a π-flip is performed and we therefore need to correct maximally. In
the other case we do not need to correct at all. The term currmpθq

flipcurr
corrects the DC2, which turns the

POVM Bloch vectors in |Òy-direction. Here we scale with the momentarily applied current currmpθq
relative to the current applied for a full π-flip.
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4.1. Noise Measurement

An additional scaling factor is given via the POVM weights pmpθq. As the measurement vectors of
the POVM are shortended, the intensities are therefore also reduced by that factor and we need to
apply the same scaling to the correction procedure. Typical contrasts for our system are in the range
of C “ 94 % to 98 %. It can be obtained taking the average contrast of both spinflippers calculated
from the minimum and maximum of the fitting curve of a DC sweep as shown exemplarily in Fig. 3.14.

After the decomposition and data correction procedure we receive three corrected channels representing
the POVM elements for different θ. They are presented in Fig. 4.2.

Figure 4.2: Corrected and detangled measurement data for all three POVM channels.

4.1.2 Computation of Probabilities

In a next step we obtain the joint probabilities ppm, aq by normalizing the measured intensities. The
probability for a full set of POVM channels is given with p “ 1. We can now obtain the relative
probabilities by normalizing over the sum of all counts, mathematically

ppm, aq “ M θ
m

M θ
´1

`M θ
0

`M θ
`1

. (4.7)

There are two types of errors to be considered. First, the purely statistical error, being
?
N for N

counts, as we deal with a Poissonian distribution. The second type of error is a systematic error
originating in the imperfections of the spinflippers. It is given via an average angle deviation for a
manipulation of the spin. For our system it was measured as ∆sys » 0.7°. The value is obtained from
the deviation of the ideal phase of the sinusoidal fit for our spinflipper system, as exemplarily shown in
Fig. 3.14. A comparison of the joint probabilities with and without systematic error is given in Fig. 4.3.

When we compare the theoretical predictions for the joint probabilities with the values received by
measurement we can see that for the channels M θ

´1 and M θ
`1 the initial state |ay can be inferred. The

only value for θ where a deduction is not possible is θ “ 0, where we expect maximum noise. With
increasing values of θ the distinction of the two possible input states becomes more significant, the
noise declines.

For the computation of the conditional probabilities we need full sets of ppa “ ´1,mq, ppa “ `1,mq,
meaning, that the joint probability for both input states is necessary for every M θ

m. In our measure-
ments we only obtain a joint probability for one of the input states. It is coincidence which one is
selected by the state preparation coil. We use the theoretical prediction for the sum ppa “ ˘1,mq “
ppa “ ´1,mq ` ppa “ `1,mq of the probabilities to calculate the missing value for every m “ ˘1

and θ and to receive all permutations of ppa,m “ ˘1q. The handling of M θ
0 is somehow different and

described below.

For the channel M θ
`1 the calculation of ppa “ ´1,m “ `1q and ppa “ `1,m “ `1q is shown in Fig. 4.4.
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Chapter 4. Results

N

N

N

N

N

N

(a)

(b)

Figure 4.3: Joint probabilities acquired by normalization of the intensities.
(a) Including a statistical error

?
N .

(b) Additional consideration of a systematic error ∆sys » 0.7°.

The conditional probabilities ppa “ `1|m “ `1q and ppa “ ´1|m “ `1q can be acquired using

ppa|mq “ ppa,mq
ppmq “ ppa,mq

ř

a ppa,mq . (4.8)

They are depicted together with the theoretical predictions in Fig. 4.5.

For M θ
0 it is impossible to infer which input state was sent to the measurement apparatus. The theo-

retical predictions are exactly the same for both possible inputs |ay. The identical data set is taken for
the joint probabilities. The measured values are used for both input states. The principle is plotted in
Fig. 4.6. The conditional probabilities are computed with Eq. (4.8) and give us exact equal probability
for both input states, as the joint probabilities are equal. The results are shown in Fig. 4.7.

Finally we will have a look at the last POVM channel M θ
´1. The predicted theoretical curves for

a “ `1 and a “ ´1 are swapped with those for m “ `1. The computation of the joint probabilities
for both input states follows the same principle as the one describes above for M θ

`1. The results are
shown in Fig. 4.8, the computed conditional probabilities in Fig. 4.9.
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4.1. Noise Measurement

Figure 4.4: Joint probabilities for M θ
`1.

(a) Joint probability received by the measurement data plotted over the theoretical curves
for M θ

`1. The input state is still "indefinite".
(b) Joint probabilities ppa “ `1,m “ `1q (red) and ppa “ ´1,m “ `1q (blue) consisting
of a combination of measured and computed values.

Figure 4.5: Conditional probabilities for the M θ
`1 channel. On the left it is given for the input |Òy

(red), on the right for |Óy (blue).
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Chapter 4. Results

Figure 4.6: Joint probabilities for M θ
0 .

(a) Joint probability received by the measurement data plotted over the theoretical curves
for M θ

0 . The input state is "indefinite".
(b) Joint probabilities ppa “ `1,m “ 0q (red) and ppa “ ´1,m “ 0q (blue) which are
equal for all θ.

Figure 4.7: Conditional probabilities for the M θ
0 channel. On the left it is given for the input |Òy (red),

on the right for |Óy (blue). They are p “ 1

2
for all θ. The values have a very small error,

please note the zoomed area in the plots.
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4.1. Noise Measurement

Figure 4.8: Joint probabilities for M θ
´1.

(a) Joint probability received by the measurement data plotted over the theoretical curves
for M θ

´1. The input state is "indefinite".
(b) Joint probabilities ppa “ `1,m “ ´1q (red) and ppa “ ´1,m “ ´1q (blue) consisting
of a combination of measured and computed values.

Figure 4.9: Conditional probabilities for the M θ
´1 channel. On the left it is given for the input |Òy

(red), on the right for |Óy (blue).
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Chapter 4. Results

4.1.3 Final Noise Plot

With the six conditioned probabilities ppa|mq we can calculate the noise NpMθ, σzq via its definition

NpMθ, σzq “ HpA|Mq “ ´
ÿ

m

ppmq
ÿ

a

ppa|mq log2 ppa|mq . (4.9)

The marginal probabilities for the POVM elements are given as

ppmq “ 1

d
TrrMms “ 1

2
TrrMms . (4.10)

The final results are presented in Fig. 4.10. The theoretical predictions for the noise NpMθ, σzq are
reproduced over the entire range of the POVM parameter θ.

Figure 4.10: Final plot of the noise NpMθ, σzq of the POVM M θ
m with input states as eigenstates of

σz as a function of the POVM parameter θ. The red line is the theoretical prediction.

4.2 Disturbance Measurement

4.2.1 Raw Data and Data Treatment

For our disturbance measurement we measured the same 18 equidistant POVM parameter settings
for θ P

“

0, π
2

‰

. The eigenstates |by are now uniformly distributed eigenstates of σx. The POVM mea-
surement causes a disturbance on a subsequent projective measurement. To quantify the disturbance,
for every setting of θ all permutations of the POVM measurement channels tM θ

´1,M
θ
0 ,M

θ
`1u and the

projective measurement channels t|´xyx´x| , |`xyx`x|u must be measured. This leaves us with six
measurement settings per θ. The raw data acquired through measurement is depicted in Fig. 4.11.
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4.2. Disturbance Measurement

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108

= = =

Figure 4.11: Raw data of the disturbance measurement DǫpM θ, σxq of the three output POVM M θ and
projective B “ σx measurement for 400 seconds.

The raw data is then decomposed with respect to the possible outcome channels Iθm,b1 , where m is the
index of the POVM channel and b1 the index of the projective measurement. We use b1 “ `1 for the
measurement |`xyx`x| respectively b1 “ ´1 for |´xyx´x|. The data is corrected similar to the noise
measurement. First, the background of the measurement is subtracted, mathematically written as

Iθm,b1,bgCorr “ Iθm,b1,raw ´ bgps ˚ tmeas , (4.11)

where tmeas is the measurement time and, bgps is the average background per second for the experiment,
which was measured as

bgps “ 317

1800 s
» 0.176 s−1 . (4.12)

The background is a lot lower than the one measured for the noise measurement (see Eq. (4.2)). This
is due to a more sophisticated background shielding for the detector used for the disturbance measure-
ments. For the noise measurements the detector was directly mounted on the analyzer supermirror.
The space usable to add shielding for the noise detector was very limited. It was compensated, as the
count rates for the noise measurements were higher than the ones for the disturbance measurements.
The measurements presented are measured with a measurement time of tmeas “ 400 s.
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Chapter 4. Results

The second correction is an extension of the procedure for the noise and can mathematically be written
as

Iθm,b1,corr “ Iθm,b1,bgCorr ´ IminpCq ¨ pmpθq ¨ sin
ˆ„

currmpθq
flipcurr

´ p´1qm bpθq
2

` cb1



π

2

˙

(4.13)

with

bpθq “
#

´1 for |by “ |´xy
`1 for |by “ |`xy ,

(4.14)

and

cb1 “
#

0 forI0,`1, I˘1,´1

1 forI0,´1, I˘1,`1 .
(4.15)

The usage of the minimum count rate IminpCq and the POVM weights pmpθq isthe same as for the
correction of the noise measurement. The rest of the correction is also just an extension of the correc-
tion already introduced. Every term in the sine function refers to a certain coil or coil segment.

The term
currmpθq
flipcurr

, (4.16)

is referring to the DC2 in the setup. The correctional factor is scaled with the momentarily applied
current representing the mapping of the POVM element Bloch vector onto the |Òy-axis. It is the only
term in the sinus unchanged compared to the noise correction.

The term

p´1qm bpθq
2

, (4.17)

is correcting the state preparation operation of the DC1. The absolute value of the term is always
fixed to 1

2
. This represents the rotation of ˘π

2
which maps the initial state |Òy on the |´xy respectively

|`xy axis. The p´1qm subterm guarantees that the correction direction is correct relative to the spin
rotation performed by the DC2.

The variable cb1 is referring to the DC3 and DC4 coil pair. The coil pair combination either performs
a full π-flip, leading to a maximal correction represented by cb1 “ 1 or two consecutive ˘π

2
rotations

with alternating signs, leading to no correction, represented by cb1 “ 0.

4.2.2 Computation of Probabilities

In a next step we obtain the joint probabilities ppb,m, b1q by normalizing the measured intensities. The
probability for a full set of measurement channels is given with p “ 1. We can now obtain the relative
probabilities by normalizing over the sum of all counts, given by

ppb,m, b1q “ pM θ
m, |b

1yxb1|q
ř

m,bpM θ
m, |b

1yxb1|q . (4.18)

Analogous to the noise measurement we only measure the probabilities ppb,m, b1q for one input state
|by and compute the probabilities for the other input state which was not measured. The normalized
data is presented in Fig. 4.12.
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4.2. Disturbance Measurement

Figure 4.12: Normalized data with "indefinite" input state |by “ |`xy_ |´xy split up in the two output
channels of the subsequent projective measurement for σx.
(a) Measurement channel M θ

`1.
(b) Measurement channel M θ

0 .
(c) Measurement channel M θ

´1.
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Chapter 4. Results

The theoretical prediction for the joint probability is given with

ppb, b1q “ 1

2
Tr

˜

1
ÿ

m“´1

ǫmpMmp|byxb|qq
∣

∣b1D@b1∣
∣

¸

“ 1

2
Tr

˜

1
ÿ

m“´1

pmǫmpP p~nmq |byxb|P p~nmq
∣

∣b1D@b1∣
∣

¸

“
1
ÿ

m“´1

pm

ˆ

1 ` b ~ex ¨ ~nm
2

˙

@

b1ˇ
ˇǫmpP p~nmqq

ˇ

ˇb1D .

(4.19)

Using the optimal correction

ǫmpP p~nmqq “ 1

2
p1 ` p´1qmσxq , (4.20)

we finally get

ppb, b1q “
1
ÿ

m“´1

pm
1

2

ˆ

1 ` b ~ex ¨ ~nm
2

˙

p1 ` p´1qm b1q “ 1 ´ b1 ` p1 ` b1 ` 2bb1q cos θ
4p1 ` cos θq . (4.21)

The marginal probability ppb1q used is acquired by summation

ppb1q “
ÿ

b

ppb, b1q “ 1 ´ b1 ` cos θ ` b1 cos θ
2 ` 2 cos θ

. (4.22)

From the normalized joint probabilities we can now calculate the conditional probabilities ppb, b1q by
summation, denoted as

ppb, b1q “
ÿ

m

ppb,m, b1q , (4.23)

and further the marginal probabilities with

ppb1q “
ÿ

b

ppb, b1q . (4.24)

The calculated joint probabilities ppb, b1q plotted together with the theoretical predictions are shown
in Fig. 4.13. The marginal probabilities ppb1q and their theoretical predictions are plotted in Fig. 4.14.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.2. Disturbance Measurement

Figure 4.13: The joint probabilities ppb, b1q for all four permutations of b and b1 plotted together with
the theoretical predictions.

Figure 4.14: The marginal probabilities ppb1q together with the theoretical predictions. On the left side
we see ppb1 “ `1q, on the right ppb1 “ ´1q.
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Chapter 4. Results

4.2.3 Final Disturbance Plot

Finally the disturbance operator can be calculated from the four joint probabilities ppb, b1q and the two
marginal probabilities ppb1q. The operator is given as

DǫpMθ, σxq “ HpB|B1q “ ´
ÿ

b,b1

ppb, b1q log2
ppb, b1q
ppb1q . (4.25)

The final disturbance plot is given in Fig. 4.15. We were able to reproduce the trend of the theoretical
predictions over almost the full range of the POVM parameter θ. The values observes are slightly
higher as predicted by theory. Reasons for that deviation from theory are discussed in Section 4.4.

Figure 4.15: The final disturbance plot. The first ten points (for low θ) were measured with tmeas “
800 s to reduce the statistical error. The trend of the theoretical prediction is reproduced
over almost the entire range of the POVM parameter θ. The disturbance values measured
are slightly higher as the predicitons.
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4.3. Final Noise Disturbance Plot

4.3 Final Noise Disturbance Plot

The final noise disturbance plot shows equidistant pairs of the noise (see Fig. 4.10) and the distur-
bance (see Fig. 4.15) with matching POVM parameter θ. As the main interest of the experiment was
to show that the projective measurements by Sulyok et al. [6] can be outperformed with the POVM
under investigation, both the theoretical curve as well as the measuremed points for the projective
measurements are shown together with the current measurements.

We have shown that the POVM measurements yield in a tighter noise disturbance uncertainty relation
than the projective measurements. The projective measurements were outperformed over almost the
entire range of θ. The results also showing the previous projective measurements are depicted in
Fig. 4.16.

Figure 4.16: Comparison of the measurements using a three output POVM and a formerly done projec-
tive measurement (taken from [6]). The POVM measurement leads to a tighter uncertainty
relation.
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Chapter 4. Results

4.4 Discussion of the Results

We have shown that using a POVM proposed by Abbott and Branciard [5] yields in a tighter noise-
disturbance uncertainty relation compared to projective measurements, as measured by Sulyok et al.
[6].

Our measurement clearly outperforms the values obtained for the projective measurements over almost
the entire range of the POVM parameter θ. The theoretical prediction for the noise measurement could
be reproduced over the full range of θ. The values obtained for the disturbance measurement are slightly
higher than the theoretical predictions. An explanation is given looking at the structure of the quan-
tification of the disturbance.

The disturbance is computed using

DǫpMθ, σxq “ HpB|B1q “ ´
ÿ

b,b1

ppb, b1q log2
ppb, b1q
ppb1q . (4.26)

For simplification of the argument we set ppb1q “ 1 and receive a sum over terms of the form

fppq “ ´p log2 p . (4.27)

When we look at the plot of fppq (see Fig. 4.17) we can derive that for small values of p the function
value fppq is very sensitive to the input data. Only small fluctuations ∆1 of an expected value p1 result
in relatively large differences fpp1 ´ ∆1q ! fpp1q ! fpp1 ` ∆1q. The smaller the value p is, the more
sensitive the function is to input data, as

p ÝÑ 0 ùñ f 1ppq ÝÑ 8 . (4.28)

For probabilities with expected values p Á 0.1 fppq is a lot less sensitive to fluctuations. Therefore es-
pecially the measurement of probabilities where we expect p “ 0 is critical. When measuring expected
zero count rates, we typically measure values close to zero, but never exactly zero. Due to the structure
of the quantification of entropic uncertainty relations discussed above, this results in a major change
of the outcome.

In the case of the noise measurement the measured probabilities ppa|mq were in the range of p ą 0.1 over
almost the entire range of the POVM parameter θ for all input states a and measurement channels m.
The results for the noise therefore resemble the theoretical prediction with a high statistical significance.

For of the disturbance measurement we used a summation over the joint probabilities ppb, b1q. Unfor-
tunately for ppb “ ´1, b1 “ `1q we expect a value of p “ 0. The measurement results are plotted in
Fig. 4.18.

When we now use the same measurement values as introduced in Section 4.2 for ppb, b1q to quantify
the disturbance by using Eq. (4.26) but replace the measured values of ppb “ ´1, b1 “ `1q with
ppb “ ´1, b1 “ `1q “ 0 for all θ we receive a significantly better disturbance plot which is given in
Fig. 4.19. With these values for the disturbance we would not only outperform the projective mea-
surements, but would also match the theoretical predictions for the 3-ouput POVM over almost the full
range of the POVM parameter θ. The noise-disturbance plot using the disturbance results of Fig. 4.19
is shown in Fig. 4.20.
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4.4. Discussion of the Results

Figure 4.17: Plot of the function fppq “ ´p log2 p. There is a steep increase of fppq for small values of
p.

Figure 4.18: Plot of the measurement results of the joint probability ppb “ ´1, b1 “ `1q for the
disturbance measurement.

The problem discussed here is not a topic that may be solved by further improvement of the setup, as
it is an intrinsic property of the data handling and not an issue of the setup calibration. The setup was
optimized with a lot of effort to increase the performance of the elements used. The data presented was
acquired with a setup which can already be considered close to optimal. It is not realistic to further
improve the disturbance measurement with the used 3-output POVM.

In general any measurements that aim to measure probabilities in the area of p „ 0 are problem-
atic when it comes to the interpretation of the input data. A further investigation of possible data
corrrection procedures that represent the physical reality is necessary to find a proper handling.
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Chapter 4. Results

Figure 4.19: Disturbance with ppb “ ´1, b1 “ `1q “ 0 for all θ. The results are significantly better
than the ones obtained by using the experimental data for ppb “ ´1, b1 “ `1q. The
disturbance using only experimental data is given in Fig. 4.15.
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4.4. Discussion of the Results

Figure 4.20: Noise-disturbance plot using the theoretical predictions for ppb “ ´1, b1 “ `1q instead
of the measurement results for the disturbance measurement to show the problem of
measuring probabilities p „ 0 when quantifying entropic uncertainty relations.
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CHAPTER 5

Conclusion and Outlook

Why do all good things come to an end?

Nelly Furtado

In this thesis we experimentally investigated entropic noise and disturbance relations following the
definitions from Buscemi et al. [4]. For the noise NpMθ, σzq we used a 3-outcome POVM as proposed
by Abbott and Branciard [5]. The input state was prepared as an eigenstate of σz with an uniform
distribution for both possible states. The results obtained follow the theoretical predictions over the
full range of the POVM parameter θ.

For the disturbance DǫpMθ, σxq we used the same POVM followed by a consecutive projective mea-
surement. The input state was now prepared as an eigenstate of σx with an uniform distribution for
both possible states. We were able to reproduce the trend of the theoretical predictions over the full
range of the POVM parameter θ. The results obtained from the measurement show a slightly higher
disturbance than theoretically expected. This is due to probabilities that are theoretically expected
to be p “ 0 which contribute to the disturbance quantification. For only small deviations of p Á 0

a large offset of the computed disturbance values is generated. A detailed discussion of that effect is
given in Section 4.4. How to properly deal with probabilities p „ 0 for entropic measurements is still
an unresolved issue and needs further discussion and investigation. The problem is not only given for
the measurements at hand, but for any entropic means of quantification which operates in the range of
p „ 0. This is a general problem of the data handling and not of the experimental setup or calibration.

The parametric noise-disturbance plot shows that the results using only projective measurements (Su-
lyok et al. [6]) are clearly outperformed with high statistical significance over almost the entire range
of the POVM parameter θ. The theoretical predictions could not be matched due to the non-ideal
disturbance values.

For future research two main questions arise from the results of the measurements presented in this
thesis. An unresolved issue is the handling of probabilities p „ 0 for entropic formulations of uncertainty
relations. It has shown to be critical to find alternative approaches for the data handling that are both
justifiable from a physical point of view and sufficiently resolve the issues associated with the current
approach.
The second point of interest is the investigation of using two consecutive generalized measurements for
the disturbance. So far only the first measurement apparatus used a generalized POVM measurement
followed by a successive projective measurement. It would be of interest to replace the projective
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Chapter 5. Conclusion and Outlook

measurement apparatus with a second generalized POVM measurement. So far, to the knowledge of
the author, no theoretical work dealing with that kind of further generalization has been published.
Therefore both a further theoretical examination of the usage of generalized measurements for noise-
disturbance uncertainty relations as well as an experimental realization are subject to future research.
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3.19 Illustration of the POVM under investigation in the experiment. M0 always points in
|`xy-direction and is shortened with increasing θ, vanishing for θ “ π{2. M`1 and
M´1 are equal for θ “ 0 and point in |`xy-direction. For increasing θ the vectors begin
to move towards |Òy respectively |Óy and are elongated. Their movement is along the
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3.21 Scheme of the setup for the noise measurement. The first supermirror and spinrotator
prepare the state with unitary probability for |Òy and |Óy The neutron beam leaves the
polarizer in the pure state |Òy. The spinrotator coil DC1 performs a π-flip, resulting
in the state |Óy or no current is applied at all, leaving the beam in state |Òy. The
probability of a performed π-flip is ppπq “ 1

2
. The second coil DC2 maps the Bloch

vector of the POVM to the |Òy axis and the second supermirror acts as analyzer and
applies the POVM weights. We measure the joint probabilites ppm, aq with a neutron
detector that is directly mounted on the analyzer and placed right after the exit window
of the supermirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.22 Picture of the setup for the noise measurement. The detector is directly mounted on
the analyzer supermirror. The POVM weight tilt is performed by a stepper motor.
The spin orientation is manipulated by a coil pair inside a guidefield, that is situated
between polarizer and analyzer supermirror. The first coil prepares the desired input
state |ay, the second coil maps the POVM Bloch vectors on the |Òy-axis. The second
supermirror acts as an analyzer of the spin state. It also applies the reduction of the
intensity according to the POVM weight function pm by being tilted. . . . . . . . . . . 52

3.23 Detailed view of the region with DC3 and DC4. For the disturbance measurement the
exit window of the first analyzer supermirror is not covered by the detector that was
mounted directly on the supermirror for the noise measurement. The coil pair DC3
and DC4 is placed with a distance that represents a full Larmor precession. The DC3
performs the correction operation, the DC4 turns the projectors of the B measurement
in |Òy-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.24 Overview of the full setup. All 3 supermirrors and both guidefield regions with each 2
spinrotator coils are visible. The last supermirror is a different type then the other ones.
The detector for the disturbance measurement is in the background shielding built from
bricks of borated paraffin (in white, coated with black boron carbide mats). . . . . . . 54

3.25 Scheme of the setup for the disturbance measurement. For the disturbance measurement
we need to prepare the input states |`y and |´y. The neutron beam leaves the first
supermirror in the state |Òy. The first spinrotator coil DC1 performs either a `π

2
flip,

resulting in the state |`y or a ´π
2

flip, resulting in |´y. The probabilities for the
flips are pp`π

2
q “ pp´π

2
q “ 1

2
. This results in a unitary probability for the input

states |by. The POVM measurement is performed exactly the same way as for the noise
measurement. The measurement of the three POVM elements is done consecutively.
The Bloch vectors corresponding to the POVM elements are mapped on the |Òy-axis by
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2

q
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2
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last supermirror. We receive the joint probabilities ppb1, bq. . . . . . . . . . . . . . . . . 55
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