
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Automated Feedback Generation
in Introductory Programming

Education

A Dynamic Program Analysis Approach

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Ivan Radiček, BSc. MSc.

Registration Number 1329038

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger

The dissertation has been reviewed by:

Johannes Kinder Tao Xie

Vienna, 6th February, 2020

Ivan Radiček

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Ivan Radiček, BSc. MSc.

Dresdner Straße 117

1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Februar 2020

Ivan Radiček

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

This thesis, and my whole PhD journey, would not be possible without support of
numerous people.

First of all, I would like to thank my advisor Florian Zuleger. Florian believed in my
abilities and accepted me to the PhD position when I had no experience in research or
formal methods. For the whole duration of my studies he showed great patience with
our paper submissions and writing of this thesis, while helping me to express my ideas
clearly and teaching me the importance of practical examples. Finally, I want to thank
Florian for his general friendliness and readiness to help with various issues, like finding
ways to extend my contract at the university.

I would also like to thank my unofficial co-advisor Sumit Gulwani. Sumit has introduced
me to the topic of introductory programming education. Our countless phone discussions,
and Sumit’s enthusiasm, encouragement and guidance have tremendously contributed to
my research.

Next, I would like to thank all the colleagues and members of the Forsyte group,
LogicCS program, and all the people from the 3rd floor of Favoritenstraße 9-11. The
conferences and summer schools that we have jointly attended, discussions, lunches,
dinners, board game nights, beers . . . all of these played a significant role during my time
at the university. I would also like to thank the office and system administrators of the
Forsyte group for their valuable support with the paperwork and technical issues.

Finally, I would like to thank my family, girlfriend and friends for their great moral and
emotional support and enormous patience over these past several years.

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Wer jemals Übungsaufgaben korrigiert oder bewertet hat, ist sich darüber bewusst wie
mühsam, fehleranfällig und zeitaufwändig diese Aufgabe ist. In Bezug auf Program-
mieraufgaben ist die Situation noch gravierender: aufgrund des steigenden Bedarfs an
ProgrammiererInnen gibt es Online-Kurse mit Tausenden von Studenten, was manuelles
Bewerten schlicht unmöglich macht. Demgegenüber haben gerade Studenten, welche noch
nie zuvor programmiert haben, einen hohen Bedarf an Betreuung. Diese Ausgangslage hat
zu einer Vielzahl an Forschungsansätzen geführt wie man computergestützt Feedback für
Programmieranfänger generieren kann. Viele Ansätze basieren auf der Praxis und den
Methoden des Software Engineering, des Software Testens und der Programmverifika-
tion: Code Reviews, Debugging, automatische Testfallgenerierung, Programmsynthese,
Programmreparatur, . . . Dieses Feedback ist sehr nützlich da es nachahmt wie Program-
miererInnen mit ihrem Code arbeiten und darüber nachdenken.

Dennoch verbleiben eine Vielzahl von Herausforderungen. In dieser Arbeit addressieren
wir die beiden folgenden Fragestellungen:

• Die bisherige Forschung hat vor allem die Generierung von funktionalem Feedback
behandelt, das heißt Studenten dabei zu helfen ein korrektes Programm zu schreiben,
wobei nicht-funktionale Eigenschaften wie zum Beispiel Performance ignoriert
werden.

• Existierenden Ansätzen fehlt mindestens eine der folgenden Eigenschaften: Automa-
tisierung (so wenig manueller Aufwand wie möglich), Korrektheit (die Generierung
von korrektem Feedback), Performance (die Generierung von Feedback innerhalb
weniger Sekunden), Vollständigkeit (die Generierung von Feedback für die meisten
studentische Lösungen), und Nutzen (Reduktion des Aufwands für den Betreuer
oder Erzielen von Fortschritt durch die Studenten).

Wir studieren zunächst ineffiziente (aber korrekte) studentische Lösungen um zu verstehen
welche Performanceprobleme bei Programmieranfängern auftreten. In dieser Studie stellen
wir fest, dass es zur Feedbackgenerierung erforderlich ist, die algorithmische Strategie
einer Lösung zu erkennen, aber Implementierungsdetails zu ignorieren. Zu diesem Zweck
entwickeln wir eine leichtgewichtige Spezifizierungssprache, welche es dem Lehrer erlaubt
algorithmische Strategien zu spezifizieren, und eine neue dynamische Programmanalyse,

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

welche es ermöglicht zu überprüfen ob ein studentischer Lösungsansatz eine Spezifikation
des Lehrers erfüllt.

Um Feedback für die funktionalen Korrektheit von studentischen Lösungen zu generieren,
entwickeln wir einen neuartigen voll-automatiserten Reparaturalgorithmus, welcher einem
Wisdom of the Crowd Ansatz folgt: unser Algorithmus nutzt bereits existierende kor-
rekte studentische Lösungen um syntaktische Änderungen an inkorrekten studentischen
Lösungen zu generieren. Der Reparaturalgorithmus basiert auf und erweitert unsere
dynamische Programmanlyse um zu überprüfen ob ein studentischer Lösungsansatz das
selbe Verhalten hat wie eine bereits existierende korrekte Lösung.

Wir haben beide Ansätze in praktischen Tools implementiert und an einer großen
Anzahl von studentischen Lösungen aus verschiedenen Programmierkursen ausgwertet.
Wir evaluieren beide Tools im Hinblick auf die zuvor beschriebenen wünschenswerten
Eigenschaften: Automatisierung, Korrektheit, Performance, Vollständigkeit und Nutzen.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Anyone who ever manually corrected or graded any type of student assignment is aware of
how tedious, error-prone and time-consuming this task is. In the context of programming
assignments the situation is even worse: with a rising demand for programming education
there are online courses with thousands of students, which makes manual grading
downright impossible. However, students who are learning programming, especially at
the introductory level, are in pressing need of guidance. This has motivated a lot of
research on computer-aided feedback generation in introductory programming education.
Many of these approaches are based on practices and methods employed in software
engineering, testing, and verification, such as: code reviews, debugging, automated test
generation, program synthesis, program repair, . . . This is very useful feedback as it
mimics how software engineers reason about the code.

However, there are still numerous open issues. In this thesis, we will address the following
two challenges:

• Most of the existing research focused on generating functional feedback, that is,
to help the students write any correct program, while ignoring non-functional
properties such as e.g., performance.

• Most of the existing approaches lack some of the following desirable properties:
automation (require as little manual effort as possible), correctness (generate correct
feedback), performance (generate feedback in order of seconds), exhaustiveness
(generate feedback for most student programs), and usefulness (reduce the teacher
effort or help the student to make progress).

We first study inefficient (but correct) student programs in order to understand the
performance problems faced by students in introductory programming. From the study
we observe that in order to provide feedback we need to identify the high-level algorithmic
strategy used by the student’s program, while ignoring its low-level implementation details.
To that end we propose a lightweight specification language that enables the teacher to
specify various algorithmic strategies, and a novel dynamic program analysis to determine
whether a student’s attempt matches the teacher’s specification.

To provide feedback on (functional) correctness of student programs we propose a novel
fully-automated program repair algorithm that uses the wisdom of the crowd: it leverages

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the existing correct student solutions to syntactically modify incorrect student attempts.
The repair algorithm builds on and extends our earlier dynamic program analysis in
order to determine whether a modified (repaired) program has the same behavior as a
correct solution.

We have implemented both of the proposed approaches in practical tools and performed an
experimental evaluation on a large number of student attempts from various programming
courses. We have evaluated both of our approaches on the above mentioned desirable
properties: automation, correctness, performance, exhaustiveness, and usefulness.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Feedback Generation for Introductory Programming 2
1.2 Aim of the thesis . 8
1.3 Methodology . 10
1.4 Overview of the Thesis . 11
1.5 Contributions . 19
1.6 Structure of the Thesis . 20

2 Dynamic Relational Analysis 23
2.1 Key Values . 23
2.2 Trace Embedding . 25
2.3 Generalizations of Trace Embedding 30
2.4 Conclusion . 36

3 Performance Feedback 39
3.1 Overview of the Approach . 39
3.2 Program Model . 43
3.3 Algorithms . 49
3.4 Extensions . 54
3.5 Usage Methodology . 58
3.6 Implementation . 63
3.7 Experimental Evaluation . 65
3.8 Conclusion . 71

4 Functional Correctness Feedback 73
4.1 Overview of the Approach . 73
4.2 Program Model . 78
4.3 Algorithms . 82

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4 Extensions . 90
4.5 Usage Methodology . 92
4.6 Implementation . 94
4.7 Experimental Evaluation . 95
4.8 Conclusion . 107

5 Related Work 109
5.1 Feedback in (programming) Education 109
5.2 Performance Analysis . 112
5.3 Program Repair . 113
5.4 Relational Program Analysis . 115

6 Conclusions and Future Work 117
6.1 Contributions . 117
6.2 Future Work . 120

A Problems List 123
A.1 Performance Feedback Evaluation . 123
A.2 Functional Feedback Evaluation . 126

List of Figures 129

List of Tables 131

Bibliography 133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

Providing feedback on and grading of student assignments in science, technology, en-
gineering and mathematics (STEM) fields is error-prone and time-consuming task for
a human teacher. This problem presents itself even in a classroom setting, but it is
exacerbated by the rising popularity of Massive Open Online Courses (MOOCs) [Mas11].

However, providing feedback is an integral part of any class; in addition to helping
students understand the subject material better, immediate feedback can also enable new
pedagogical benefits [Gul14], such as:

1. Allowing immediate re-submission opportunity to students who submit imperfect
solutions.

2. Providing immediate diagnosis on class performance to a teacher who can then
adapt her instructions accordingly.

This, along with rapid advances in computer science, has motivated a lot of research on
providing computer-aided feedback. These research efforts can be classified along several
dimensions:

• Subject of assignments, such as introductory programming [SGSL13; Til+13a;
Kim+16], automata theory [Alu+13], mathematical procedural problems [AGP14],
proofs [AGK13] and geometry [GKT11].

• Level of feedback automation, that is, whether the feedback is automated, semi-
automated or manual.

• Aspects on which the feedback is provided, such as functional correctness, and
non-functional properties (e.g., performance characteristics).

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

• Nature of the feedback, such as counterexamples, error localization, repair sugges-
tions, or manual human feedback.

• An underlying technology, such as static or dynamic program analysis, program
synthesis, or probabilistic methods.

In this thesis we focus on the problem of automated and semi-automated feedback
generation for introductory programming assignments. We also focus on using dynamic
program analysis 1.

1.1 Feedback Generation for Introductory Programming

We give a brief overview of this field, to better understand current research and its
challenges.

A report from 2014 2, mentioned in a recent paper about providing feedback on intro-
ductory programming [Kim+16], predicts that there will be one million more computer
programming jobs than computer science students by 2020. This results in a huge demand
for computer science education, which universities are, however, unable to meet.

In turn, this has resulted in many online platforms that provide computer science
education, such as edX 3 and Coursera 4. However, in contrast to traditional university
classrooms, these online classrooms can have thousands of students, and therefore students
cannot anymore expect personal feedback on their assignments by the human teaching
personnel.

Hence, there is a huge need to automate providing feedback, class diagnosis and grading in
introductory programming education. If full automation is not possible, semi-automated
tools that help the teachers to deal with a large number of students, are also desirable.

Setting Next, we briefly describe the usual setting in which introductory programming
classes operate to further understand the problem. This is, for example, the setting used
in an introductory programming class ESC 101 at IIT Kanpur, India, where they use
the Prutor [Das+16] web platform.

Students are assigned a programming problem, with a textual specification describing
the problem. The specification describes functional requirements, that is, what a solution
to the problem should do. The specification can also prescribe certain non-functional

1Dynamic program analysis reasons about a program by examining concrete executions of the
program, opposed to static program analysis that examines program text (or to be more precise, its
abstractions).

2“Analysis: The exploding demand for computer science education, and why America needs to keep
up” (http://www.geekwire.com/2014/
analysis-examining-computer-science-education-explosion/)

3https://www.edx.org/
4https://www.coursera.org/

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Feedback Generation for Introductory Programming

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4 foreach (Char ch in s.ToCharArray()){

5 if (
✿✿✿✿✿✿✿✿✿✿✿✿

countChars(s,
✿✿✿✿

ch)

6 !=
✿✿✿✿✿✿✿✿✿✿✿✿✿

countChars(t,
✿✿✿✿

ch)){

7 return false;

8 }

9 }

10 return true;

11 }

12 int countChars(String s, Char c){

13 int number = 0;

14 foreach (Char ch in s.ToCharArray()){

15 if (
✿✿

ch == c){

16 number++;

17 }

18 }

19 return number;

20 }

(a) An attempt to the anagram problem (C1).

1 def computeDeriv(poly):

2 new = []

3 for i in xrange(1,len(poly)):

4 new.append(

5 float(i*poly[i]))

6 if new==[]:

7 return 0.0

8 return new

(b) An attempt to the derivatives problem (I1).

Figure 1.1: Examples of student attempts.

requirements, that is, how a solution should be written. We illustrate on an example
below functional and non-functional requirements. Students submit (for example, through
an online interface) their attempts (implementations of the given specification). After
submitting an attempt, they might receive feedback, either immediately, or after some
time period. When the feedback has been provided, they might be allowed to submit a
new attempt.

We give some examples of various requirements.

Example 1.1. Examples of functional requirements are:

(F1) Given two strings s and t, determine whether they are anagrams. Two strings are
anagrams when one can be permuted (rearranged) to match the other.

(F2) Given a polynomial (encoded as a list of floating point coefficients), compute its
derivative (also encoded as a list of floating point coefficients).

(F3) Given a number, determine whether the sum of cubes of its digits is equal to the
number itself.

Examples of non-functional requirements are:

(N1) Algorithmic complexity of the solution should be in O (n).

(N2) The program should not use any external libraries (or only some libraries).

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

(N3) The program should use some good coding practices (e.g., good variable and function
names, comments).

For the discussion below we fix the anagram problem specified by the functional requirement
(F1) and the non-functional requirement (N1); and similarly the derivatives problem
specified by the functional requirement (F2).

Next, we give some examples of student attempts on the above problems and discuss
how these attempts satisfy the problems’ requirements.

Example 1.2. Figure 1.1 shows two attempts: the attempt C1 in (a) is written (in C#)
for the anagram problem, while the attempt I1 in (b) is written (in Python 5) for the
derivatives problem.

The attempt C1 satisfies the functional requirement (F1); however, it does not satisfy the
non-functional requirement (N1), since its complexity is in O

(

n2
)

.

The attempt I1 does not satisfy the functional requirement (F2) because it returns wrong
results on inputs of length ≤ 1 - it returns the floating point 0.0, instead of the list
[0.0].

Finally, we give some examples of feedback and discuss it on the above student attempts.

Example 1.3. A possible feedback for the attempt to the anagram problem might be:

• “Your attempt is in O
(

n2
)

, while it can be in O (n).”; or

• “Calculate the number of characters in each string in a preprocessing phase, instead
of in each iteration of the main loop.”

A possible feedback for the attempt to the derivatives problem might be:

• “On the input [3.3], your attempt produces the output 0.0, while the expected
output is [0.0].”; or

• “The expression 0.0 on the line 7 of your attempt is wrong.”; or

• “The expression 0.0 on the line 7 of your attempt should be changed to [0.0]”.

These examples are an illustration of what a potential feedback might look like, that is,
there are not taken directly from some existing feedback generating system.

5We point out that the two attempts are in two different languages (C# and Python). This is
because the real students attempts are in these languages and our approaches work on these respective
languages. Further, we use these attempts throughout the thesis as running examples.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Feedback Generation for Introductory Programming

1.1.1 Connection to Software Testing and Analysis

Providing feedback in this setting is quite similar to software testing and analysis in
traditional software engineering. Software engineers, as well, write an implementation
for a certain specification, and get feedback from testing and analysis tools. However,
compared to the usual software testing and analysis, introductory programming setting
comes with certain simplifications, but also with certain additional challenges [SGSL13;
Dru+14]:

• In the introductory programming setting the complete specification is already known
in advance, while in traditional software engineering there is, at best, only a test
suite or a partial specification. Further, it is safe to assume that in the introductory
setting the course instructor has provided a reference solution; however, unlike
experienced programmers, students who learn programming, are more likely to
misunderstand the specification.

• Errors are predictable in the introductory setting, since students are solving the
same assignment, after they have, most likely, attended the same lecture. However,
again, unlike experienced programmers, beginner students will make mistakes that
are unlikely in real-world programs.

• There are a lot of correct solutions available in the introductory setting from the
students themselves. This is especially the case in courses that are repeatedly
offered each year.

• Programs in introductory setting are small, therefore one can use techniques that
are unlikely to scale on larger programs.

Next, we discuss some of the existing approaches to providing feedback and grading in
introductory programming assignments. A more detailed overview of the related work is
given in Chapter 5.

1.1.2 State of the Art

Peer-feedback A standard procedure in software engineering, when an engineer sub-
mits a unit of work (usually a commit or pull request 6) to be merged into the code
base, is to perform a code-review 7. The review is performed by one or more colleague
engineers. The review usually consists of multiple rounds, where the reviewers provide
comments (suggestions for improvement) and the engineer who wants to merge the code

6A usual workflow is as follows:

1. An engineer works on a local copy of the code.

2. When a small unit of work (usually a single new feature or a bug fix) is done, the engineer
submits her changes to be merged into the main code base.

7See https://en.wikipedia.org/wiki/Code_review.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

acts upon them by changing the code to be merged. These rounds continue until the
reviewers accept or reject the code to be merged.

This approached has been mimicked in providing feedback, in form of peer-review or
peer-feedback [SGSL13; KK12]. The idea is that students review and provide feedback
on other students’ attempts. This idea has been further developed: instead of asking
students to review code of their peers, one can also use crowdsourcing [Wel+12] for
providing feedback and grading.

However, these approaches have several drawbacks:

• Students often have to wait for a response for a long period of time.

• A second, and more severe, problem is that there are no quality guarantees on
feedback. That is, feedback might be incomplete, or even wrong; this is especially
the case when students, who are themselves yet learning the material, provide
feedback.

Failing test-cases Another standard practice in software engineering is (unit) testing:
a code unit (e.g., a function or a module) is tested to conform to some specification.
For simplicity, assume that a unit of code is a function and a specification is a set of
input-output pairs, that is, pairs of inputs and expected outputs for each input. 8 If
a function under test, for some input, produces an output that is different than the
expected output, this means that the functions fails to match the specification, and it
needs to be corrected. The benefits of such an approach are that tests are easy to run,
and it is easy to find errors. 9

Such an approach is easy to mimic in feedback generation. For a given problem (for
simplicity, assume that it asks to write a single function) the students are presented
with a failing test case. The test cases can be generated automatically [Til+13a] or
selected from a comprehensive collection of representative test cases provided by the
course instructor. 10 This is useful feedback, especially since it mimics the setting of how
software engineers debug their code. Also, currently this is the most common way of
providing feedback to students in practice.

However, this is usually not sufficient, especially for students in an introductory program-
ming class, who are looking for more guided feedback to make progress towards a correct
solution.

8In practice this can be more complicated. For example: a testing environment needs to be
initialized; instead of a single expected output, a number of assertions is written for each test; different,
possibly non-functional, side-conditions could be tested as well.

9The problem of testing in software engineering is that it is non-exhaustive, that is, it is easy to miss
or omit a test case that would reveal an error.

10Practical experience shows that it is not difficult to write a comprehensive set of test cases for
problems in introductory education, as opposed to general software engineering. We further discuss this
issue later in the thesis.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Feedback Generation for Introductory Programming

1 def computeDeriv(poly):

2 new = []

3 for i in xrange(1,len(poly)):

4 new.append(

5 float(i*poly[i]))

6 if new==[]:

7 return [0.0]

(a) An attempt to the derivatives problem
with a missing statement.

1 def computeDeriv(poly):

2 new = []

3 for i in xrange(1,len(poly)):

4 new.append(

5 float(i*poly[i]))

6 return new

7 if new==[]: return [0.0]

(b) An attempt to the derivatives problem
with some statements in a wrong order.

Figure 1.2: Examples of student attempts requiring repair beyond expression modification.

Program repair A more guided feedback can be generated using program repair.
Program repair, given a specification and a program that does not satisfy it, searches
for a (minimal) set of modifications to the program, such that the modified program
satisfies the specification. The modifications could, for example, be (we discuss them on
an example below):

• to modify a single (sub-) expression to another expression,

• to add or remove a statement (or block of statements), and

• to change the order of statements.

Example 1.4. In Example 1.3 we discussed the first type of a modification, where an
expression is replaced by another expression.

Figure 1.2 shows two (incorrect) attempts to the derivative problem 11. We discuss possible
repairs (modifications).

A possible modification in the (a) case is to add the missing return new statement,
after the statement at the lines 6-7. This is the second type of a modification where a
new statement is added to the program.

A possible modification in the (b) case is to swap the order of the two statements at the
lines 6 and 7, respectively 12. This is the third type of a modification where the order of
statements is swapped.

The idea to use program repair for feedback generation was pioneered by AutoGrader [SGSL13].
AutoGrader takes as input a reference solution and a list of potential corrections (in the
form of expression rewrite rules), both provided by a teacher, and searches for a set of

11These two attempts are not real student attempts, but manually created variations of the attempt
in Figure 1.1 used for demonstration.

12We point out that in this particular case a simple dead-code analysis would infer that the statement
at the line 7 is unreachable; however, such a modification can also be needed in cases when a simple
analysis cannot infer this.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

minimal corrections using a SAT 13-based technique. However, AutoGrader is limited in
a couple of ways:

• due to a huge search space it can generate only up to 4 modifications, beyond which
its performance degrades significantly,

• it only modifies program expressions as opposed to performing other kinds of
modifications such as inserting new statements, changing order of statements, or
handling larger conceptual errors;

• it requires a domain-expert to provide a list of potential corrections, for each
assignment separately.

The general purpose program repair techniques are also not fit for this task: the techniques
discussed in Goues et al. [Gou+15] on the IntroClass benchmark, either repair a small
number of defects (usually <50%) or take a long time (i.e., over one minute).

Performance feedback Most of research in this area has concentrated on functional
correctness of student attempts, but research on non-functional properties (especially
performance) has seen little attention. More precisely, prior to this work, there was little
understanding of the types of performance mistakes that students make in introductory
programming. We also point out the last two mentioned approaches (failing test-cases
and repairs) would hardly be of any help for performance issues in student attempts.

A way to detect performance problems would be by using a (static) bound-analysis
technique (e.g., Sinn, Zuleger, and Veith [SZV14]); these techniques compute the worst-
case asymptotic complexity of a program. However, these techniques could only detect a
problem (for example, if we new that the optimal solution is in O (n), and the student’s
attempt is in O

(

n2
)

), but not point the student towards the cause of the problem.

1.2 Aim of the thesis

The primary goal of these thesis is to develop new feedback generation techniques, both for
performance and functional aspects of student programs. We next discuss the identified
challenges towards this goal.

The first challenge that we face is:

Very little research has been done in the area of performance-related feedback and hence
it is not clear what kind of performance-related mistakes students make in introductory
programming, and consequently it is not clear how to provide feedback.

Based on the discussion in the previous section we identify essential desirable characteris-
tics of a feedback generation technique:

13SAT or Boolean satisfiability problem.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Aim of the thesis

1. Automation (or semi-automation): feedback should be generated using as little
human effort as possible.

2. Performance: feedback should be generated in order of seconds to enable interactive
learning.

3. Correctness: feedback should be generated by using sound techniques that guarantee
correctness.

4. Exhaustiveness: feedback should be generated for most of the cases in introductory
programming.

5. Usefulness: feedback should help students to understand the mistakes they make
and how to make progress on one hand, and on the other hand to help teachers
reduce the work they need to put on managing a large classroom.

We point out that every method discussed in the previous section fails on several of these
characteristics:

• The peer-feedback approach, as discussed above, fails on several characteristics:
automation, performance, correctness, and usefulness.

• The failing-tests approach is automated, fast, and exhaustive, however theoretically
it can be unsound 14, and it does not provide enough guidance for students.

• The repair-based techniques are (mostly) automated, sound, and useful 15, however,
they are, as discussed, often slow and can handle only a small portion of cases.

Hence, the second challenge we face is:

How to combine automation, speed, correctness, exhaustiveness, and usefulness in an
approach to feedback generation?

In this thesis we take an approach of dynamic program analysis, similar to testing. We
believe that dynamic analysis approach, although theoretically unsound, works well in
practice for introductory programming. In other words, we aim to show that this kind of
approach enables all of the above mentioned characteristics (with the obvious relaxation
of the correctness criterion). However, we believe that the approach, although based on
dynamic analysis, should have strong mathematical foundation.

Finally, we concretize and summarize the discussion from above:

• We aim to study and understand performance-related issues in introductory pro-
gramming.

14It can show that an incorrect program is correct if some test-cases are missing.
15Although we point out that pedagogical issues around repair-based feedback are still an area of

research.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

• We aim to develop methods for performance and functional feedback generation
in introductory programming that are automated, fast, correct, exhaustive, and
useful. To succeed in this we want the develop methods that have:

– a rigorous mathematical foundation; and

– a practical implementation with an experimental evidence showing the desired
characteristics.

1.3 Methodology

Next we discuss the research methodology used in this thesis.

The methodology, following the common practice in formal methods and programming
languages research, and guided by the above stated aims, includes the following steps:

(1) Study of existing student programs to understand the problem.

(2) Formulation of an approach to solve the problem.

(3) Development of a rigorous mathematical framework underlying the approach.

(4) Implementation of the proposed approach in a practical tool.

(5) Experimental evaluation of the proposed approach.

We describe each of the steps in more detail.

Study of existing student programs The first step is to understand the problem on
real-world examples of the problem. In our case that means studying a large number of
student programs. This step was especially important for understanding how to provide
performance-related feedback, because, as it was already mentioned, this area was not
well understood or researched.

Formulation of an approach After understanding the problem on practical examples,
next step is to come up with an idea on how to solve it. This step includes studying
existing approaches for the problem at hand and similar problems, to understand what
has been done and why existing approaches cannot solve the problem.

Development of a rigorous mathematical framework When we have an idea how
to solve the problem, we mathematically model the approach. Having a mathematical
framework is important for couple of reasons:

1. It gives certain guarantees about the soundness of the approach.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Overview of the Thesis

2. It often reveals that a problem being solved can be modeled as an already-known
problem that might have well-known solution strategies; if not for the whole problem,
then for some particular instances of interest.

3. A mathematical formulation is often simpler than the practical implementation,
due to a higher level of abstraction, which often leads to insights how to simplify
or improve both the ideas of the approach and the practical tools.

Implementation of the proposed approach This step is vital in practical research
as we cannot do experimental evaluation without it. Further, it can serve to quickly
check the viability of the approach. This step sometimes comes before mathematical
formulation.

Experimental evaluation The final step is to evaluate how the proposed approach,
that is, its implementation, performs on benchmarks of interest; e.g., by:

• Measuring how many tests in a benchmark the approach can handle.

• Measuring quantitative characteristics on each test (e.g., time required to handle a
test).

• Performing manual qualitative assessments on a subset of tests.

• Performing a user study with human participants.

If a competitive approach for the problem already exists, the goal is to show that the
proposed approach is better than the existing approach (using the above mentioned
metrics).

We point out that these steps are often intertwined and that a process is refined until
we are satisfied with the result. That is, often observations from the experimental
evaluation, especially on the cases where the tool does not perform well, enables insights
on improvements of the approach. However, one needs to be careful to avoid overfitting of
the solution for one particular benchmark. This can be done by splitting the benchmark
data into two sets (similar to practices in machine learning): one for improving the
approach, and one for the evaluation.

1.4 Overview of the Thesis

We next give a high-level overview of the thesis, explained on some examples.

1.4.1 Study of Correct Student Solutions

We performed a manual study on a large number of correct student solutions, to under-
stand the performance problems faced by students in introductory programming classes.
We next discuss the detail of this study.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4 char[] sa = s.ToCharArray();

5 char[] ta = t.ToCharArray();

6 for (int j=0; j < sa.Length; j++) {

7 for (int i=0; i<sa.Length - 1;i++) {

8 if (sa[i]<sa[i+1]){

9 char temp=sa[i];

10 sa[i]=sa[i+1];

11
✿✿✿✿✿✿✿✿✿✿✿

sa[i+1]=temp;

12 }

13 if (ta[i]<ta[i+1]){

14 char temp=ta[i];

15 ta[i] = ta[i+1];

16 ta[i+1] = temp;

17 }

18 }

19 }

20 for (int k = 0; k < sa.Length; k++) {

21 if (sa[k] != ta[k]) return false;

22 }

23 return true;

24 }

(a) Sorting / Bubble (S1)

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4 foreach (char c in t.ToCharArray()) {

5 int index = s.IndexOf(c);

6 if (index < 0) return false;

7
✿

s
✿✿

=
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

s.Remove(index,
✿✿✿

1);

8 }

9 return true;

10 }

(b) Removing / Library (R1)

1 bool Puzzle(string s, string t) {

2 if (s.Length !=t.Length)

3 return false;

4 int [] cs=new int [256];

5 int [] ct=new int [256];

6 for(int i=0;i<s.Length;i++)

7
✿✿✿✿✿✿✿✿

cs[(int)
✿✿✿✿✿✿✿

s[i]]++;

8 for(int i=0;i<t.Length;++i)

9
✿✿✿✿✿✿✿✿

ct[(int)
✿✿✿✿✿✿✿

t[i]]++;

10 for (int i=0;i<256;i++)

11 if(cs[i] != ct[i]) return false;

12 return true;

13 }

(c) Efficient / Counting (E1)

Figure 1.3: Different algorithmic strategies for the anagram problem.

Student solutions We studied a large number of correct student solutions on the
Pex4Fun platform, where students can solve different programming problems. The
correct student solutions came from two sources: 16

• 3 programming problems that already existed on Pex4Fun. These 3 problems
were solved by various users of Pex4Fun.

• 21 programming problems that we created on Pex4Fun for our study. These 21
problems were assigned as a homework and solved by second-year undergraduate
computer science students.

We point out that in the homework problems we encouraged students to pay attention to
asymptotic worst-case complexity of their code, and gave additional points for asymptot-
ically efficient solutions. In other words, we wanted to see the real performance problems
that students in introductory programming course face, to understand how to provide
feedback.

16The problems, data and experimental setting are explained in more detail in Section 3.7.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Overview of the Thesis

Study observations The main observations from this study are:

1. There are different algorithmic strategies, with varying level of efficiency, for solving
a given problem. Algorithmic strategies capture the global high-level insight
of a solution to a programming problem, while also defining key performance
characteristics of the solution. Different strategies merit different feedback.

2. The same algorithmic strategy can be implemented in many different ways. These
differences originate from local low-level implementation choices and are not relevant
for reporting feedback on the student program.

We illustrate these points on some student solutions 17 to the anagram problem (already
described in Example 1.1 as the requirement F1).

We first give examples of different algorithmic strategies. We point out that we manually
determined these different strategies and solutions that belong to them.

Example 1.5 (Different algorithmic strategies). We have already given the student
solution C1 (in Figure 1.1); further examples of student solutions (S1, R1 and E1) that
employ different algorithmic strategies are given in Figure 1.3. The solutions C1, S1,
and R1 all employ inefficient strategies, since their complexities are in O

(

n2
)

. However,
each of these solutions merits a different feedback. The solution E1 employs an efficient
strategy, since its complexity is in O (n). Below we explain these different strategies, and
the corresponding feedback.

The solution C1 implements the counting strategy. The counting strategy is to iterate
over one of the input strings, and for each character in that string count and compare
the number of occurrences of that character in both strings. An appropriate feedback in
this case might be: “Calculate the number of characters in each string in a preprocessing
phase, instead of in each iteration of the main loop”.

The solution S1 implements the sorting strategy. The sorting strategy is to sort both
of the strings and check if they are equal after sorting. An appropriate feedback in this
case might be: “Instead of sorting the input strings, compare the number of character
occurrences in each string”.

The solution R1 implements the removing strategy. The removing strategy is to iterate
over one of the input strings, and remove the corresponding character from the other
string. An appropriate feedback in this case might be: “Use a more efficient data-structure
to remove characters”.

The solution E1 implements the efficient counting strategy. The efficient counting strategy
is to collect the number of occurrences of all characters from both strings, and then check
that each character occurs the same number of times in both strings. An appropriate
feedback in this case might be: “The code is asymptotically efficient”.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4 else

5 return s.All(c =>

6 s.Where(c2 =>
✿✿

c2 == c).
✿✿✿✿✿✿✿

Count() ==

7 t.Where(c2 =>
✿✿

c2 == c).
✿✿✿✿✿✿✿

Count()

8);

9 }

(a) Counting / Library (C2)

1 bool Puzzle(string s, string t) {

2 if(s.Length != t.Length)

3 return false;

4 foreach (var
✿✿✿✿

item in s) {

5 if(
✿✿✿✿✿✿

s.Split(item).
✿✿✿✿✿✿

Length

6 !=
✿✿✿✿✿✿

t.Split(item).
✿✿✿✿✿✿

Length)

7 return false;

8 }

9 return true;

10 }

(b) Counting / Split (C3)

Figure 1.4: Different implementations of the counting strategy.

Next, we give examples of different implementations of the above discussed algorithmic
strategies.

Example 1.6 (Implementation details). Each of the strategies discussed above can be
implemented in syntactically very different ways.

For example, Figure 1.4 shows two additional implementations of the counting strategy, C2

and C3. The implementation C1 manually implements counting function countChars

at lines 12-20, while the implementations C2 and C3 count characters using built-in
functions, at lines 6-7 and 5-6, respectively. However, the implementations C2 and C3

merit the same feedback as the implementation C1 (discussed in the previous example).

Similarly, Figure 1.5 shows two additional implementations for each of the sorting and
removing strategies. Again, the implementations S2 and S3 merit the same feedback as
the implementation S1, and the implementations R2 and R3 merit the same feedback as
the implementation R1.

Thus, the take-away from the study is: Given some strategy, all implementations of this
strategy merit the same feedback. Therefore, to provide meaningful feedback to a student,
it is important to identify what algorithmic strategy was used in the student’s program,
while ignoring the implementation details.

Key Values

Hence, to provide an appropriate feedback, we need to distinguish different algorithmic
strategies while ignoring implementation details. Our approach is based on the following
key observation: different implementations of the same strategy generate the same key
values, when executed on the same input.

We emphasize this on an example; a more detailed discussion follows in Section 2.1.

17We point out that these solutions are real student solutions from our study.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Overview of the Thesis

1 bool Puzzle(string s, string t) {

2 var sa = s.ToCharArray();

3 var ta = t.ToCharArray();

4
✿✿✿✿✿✿✿✿✿✿✿✿✿

Array.Sort(sa);

5 Array.Sort(ta);

6 return sa.SequenceEqual(ta);

7 }

(a) Sorting / Library (S2)

1 int BinarySearch(List<char> xs, char y) {

2 int low = 0, high = xs.Count;

3 while (low < high) {

4 int mid = (high - low) / 2 + low;

5 if (y < xs[mid]) high = mid;

6 else if (y > xs[mid]) low = mid + 1;

7 else return mid;

8 }

9 return low;

10 }

11 char[] Sort(string xs) {

12 var res = new List<char>();

13 foreach (var x in xs) {

14 var pos = BinarySearch(res, x);

15 res.Insert(pos, x);

16 }

17 return res.ToArray();

18 }

19 bool Puzzle(string s, string t) {

20 return
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

String.Join("",
✿✿✿✿✿✿✿✿✿

Sort(s))

21 == String.Join("", Sort(t));

22 }

(b) Sorting / Binary Insertion (S3)

1 bool Puzzle(string s, string t) {

2 return IsPermutation(s, t);

3 }

4 bool IsPermutation(String s, string t) {

5 if (s == t) return true;

6 if (s.Length != t.Length)

7 return false;

8 int index = t.IndexOf(s[0]);

9 if (index == -1) return false;

10

11 s = s.Substring(1);

12
✿

t
✿✿

=
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

t.Remove(index,
✿✿✿

1);

13

14 return IsPermutation(s, t);

15 }

(c) Removing / Recursive (R2)

1 bool Puzzle(string s, string t) {

2 char[] sc = s.ToCharArray();

3 char[] tc = t.ToCharArray();

4 Char c = ’#’;

5 if(sc.Length != tc.Length)

6 return false;

7 for(int i=0;i<sc.Length;i++) {

8 c = sc[i];

9 for(int j=0;j<tc.Length;j++) {

10 if(tc[j]==c){

11
✿✿✿✿✿✿✿✿

tc[j]=’#’;

12 break;

13 }

14 if(j==tc.Length-1) {

15 return false;

16 }

17 }

18 }

19 return true;

20 }

(d) Removing / Manual (R3)

Figure 1.5: Different implementations of the sorting and removing strategies.

Example 1.7. The implementations C1 and C2 (discussed in the previous section),
when executed on the input s="aba" and t="baa", produce the following sequence of
values on the underlined expressions:

(a, b, a, 2, b, a, a, 2, a, b, a, 1, b, a, a, 1, a, b, a, 2, b, a, a, 2)

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1 void Puzzle(string s, string t) {

2 for (int i = 0; i < s.Length; ++i) {

3 int cnt1 = 0, cnt2 = 0;

4 for (int j = 0; j < s.Length; ++j) {

5 observe
✿✿✿✿✿✿

(s[j]);

6 if (s[j] == s[i]) {

7 cnt1++;

8 }

9 }

10 observe
✿✿✿✿✿

(cnt1);

11 for (int j = 0; j < t.Length; ++j) {

12 observe
✿✿✿✿✿✿

(t[j]);

13 if (t[j] == s[i]) {

14 cnt2++;

15 }

16 }

17 observe
✿✿✿✿✿

(cnt2);

18 }

19 }

(a) Counting strategy CS

1 void Puzzle(string s, string t) {

2 char[] ca = s.ToCharArray();

3 Array.Sort(ca);

4 observe
✿✿✿

(ca);

5 }

(b) Sorting strategy SS

Figure 1.6: Examples of specifications.

Note: Underlined expressions are at lines 5, 6, and 15 in C1, and at lines 6 and 7 in
C2.

1.4.2 Performance Feedback

We next discuss our approach for providing performance feedback, based on the key-value
idea discussed above:

• The teacher specifies an algorithmic strategy by simply annotating (at the source
code level) certain key values computed by a sample program (that implements the
corresponding strategy) using a new language construct, called observe. We call
this sample program a specification.

• We determine that a student’s implementation implements some strategy if it
matches the teacher’s specification of this strategy: the implementation matches
then specification if they compute the same (key-) values, at corresponding program
locations, in the same order.

We discuss this on some examples; a detailed discussion, together with a methodology
for providing feedback in a MOOC-size class, follows in Chapter 3.

Example 1.8. Figure 1.6 gives two examples of specifications, CS and SS, for the
counting and sorting strategies, respectively.

In the specification CS, for the counting strategy, the teacher observes:

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Overview of the Thesis

1 def computeDeriv(poly):

2 result = []

3 for e in range(1, len(poly)):

4 result.append(float(poly[e]*e))

5 if result == []:

6 return [0.0]

7 else:

8 return result

(a) Correct solution D1.

1 def computeDeriv(poly):

2 deriv = []

3 for i in xrange(1,len(poly)):

4 deriv+=[float(i)*poly[i]]

5

6 if len(deriv)==0:

7 return [0.0]

8 return deriv

(b) Correct solution D2.

Figure 1.7: Examples of correct student solutions to the derivative problem.

1 def computeDeriv(poly):

2 result = []

3 for i in range(len(poly)):

4 result[i]=float((i)*poly[i])

5 return result

Figure 1.8: An additional incorrect student attempt (I2) to the derivative problem.

• The characters being iterated over by the two observe statements at the lines 5
and 12.

• The results of counting the characters by the two observe statements at the lines
10 and 17.

In the specification SS, for the sorting strategy, the teacher observes the sorted input
string by the observe statement at the line 4.

The implementations C1 and C2 match the specification CS, while the implementations
S1 and S2 match the specification SS.

Hence, these implementations are given feedback based on which specification they match,
as discussed in Example 1.5.

1.4.3 Functional Feedback

Our approach to functional feedback is based on program repair (as discussed in Sec-
tion 1.1); that is, we repair an incorrect student program to provide feedback to the
student.

The repair algorithm uses existing correct student solutions (wisdom of the crowd) to
repair incorrect student attempts.

The algorithm is based on a notion of program matching, similar to the one discussed for
the performance matching (see below): given a correct solution and an incorrect attempt,
the algorithm finds minimal set of modifications such that the repaired incorrect attempt
matches the correct solution; further, the algorithm uses expressions from the correct
solution to repair the incorrect attempt.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1. In return statement at line 7,
change 0.0 to [0.0].

(a) A repair for I1.

1. In iterator expression at line 3,
change range(len(poly)) to
range(1, len(poly)).

2. In assignment at line 4, change
result[i]=float(i*poly[i]) to
result.append(float(i*poly[i])).

3. In return statement at line 5, change
result to result or [0.0].

(b) A repair for I2.

Figure 1.9: Examples of repairs for the incorrect student attempts.

The matching notion used in the algorithm is similar to the matching notion discussed
for performance feedback: we say that two programs match if there is a bijective relation
between the variables of two programs, such that related variables take the same values,
during the execution of the programs on the same inputs. In Chapter 2 we develop a
generalized version of these matching notions.

The overall approach consists of two main steps:

(I) We first cluster the correct solutions in equivalence classes, based on the notion of
matching. This has a twofold purpose:

• It reduces the number of correct solutions that the repair algorithm needs to
consider, by grouping together equivalent solutions.

• It collects different correct expressions from solutions in the same cluster; this
is useful for diversity of repairs.

(II) Given an incorrect student attempt, the repair algorithm generates a repair for
each cluster separately, and then chooses the minimal repair among them.

We now discuss this on some examples; the detailed discussion follows in Chapter 4.

Example 1.9. Figure 1.7 shows two examples of correct student attempts to the derivative
problem, D1 and D2. These two correct solutions match because there is a bijective
variable relation, such that related variables take the same values during the execution on
the same inputs: 18

poly 7→ poly, deriv 7→ result, i 7→ e

18This variable relation includes more variables (as discussed later in Chapter 4), however, these are
sufficient to understand the example.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.5. Contributions

Hence, the clustering step determines that D1 and D2 belong to the same cluster (let us
call it C).

In Figure 1.1 (b) we have shown the incorrect attempt I1, and Figure 1.8 shows the
incorrect attempt I2 (both to the derivatives problem).

Figure 1.9 shows repairs for the attempts I1 and I2. Both of these repairs were generated
using the cluster of correct solutions C (that contains D1 and D2):

• The repair for I1 was generated using the expression return [0.0] from line 7
of the correct solution D2.

• The repair for I2 was generated using the expression range(1, len(poly))

from line 3 of the correct solution D1 and from correct expressions from other
correct solutions in the cluster C (not shown here).

1.5 Contributions

The main technical contributions of this thesis are published in two peer-reviewed
conference papers:

(1) “Feedback Generation for Performance Problems in Introductory Programming
Assignments” [GRZ14] - published at 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014), Hong Kong, China.

• This paper describes a novel approach for providing performance feedback on
introductory programming assignments.

(2) “Automated Clustering and Program Repair for Introductory Programming Assign-
ments” [GRZ18] - published at 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018) Philadelphia, PA, USA.

• This paper describes a novel algorithm for providing repair-based feedback on
functional correctness of introductory programming assignments.

The approaches described in both papers were implemented in the following publicly
available tools:

(1) Observer 19 - a tool for providing performance feedback on introductory program-
ming assignments.

(2) Clara 20 - a tool for providing repair-based feedback on functional correctness of
introductory programming assignments.

19http://forsyte.at/static/people/radicek/fse14/
20https://github.com/iradicek/clara

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

In this thesis we make the following contributions:

1. We study a large number of student attempts to understand the performance
mistakes made in introductory programming. The result of this study is a novel
idea of algorithmic strategies.

2. Based on the observations from the study we develop a novel dynamic relational
program analysis, which is the core of the two proposed feedback generation
approaches.

3. We propose a novel semi-automated approach for generating performance feedback
in introductory programming. The approach consists of:

(i) A new language construct, called observe, that allows the teacher to describe
algorithmic strategies.

(ii) A novel algorithm for deciding whether a student’s implementation matches a
teacher’s specification.

4. We propose a novel fully-automated approach for generating functional feedback
in introductory programming. The approach is based on a novel program repair
algorithm that utilizes already existing student solutions.

5. We perform experimental evaluations of both of the approaches on a large number
of real-world student programs and on a user study. We show that our approaches:

(i) Generate feedback in almost all cases.

(ii) Generate useful feedback and significantly reduce the required teacher effort.

(iii) Generate feedback in order of seconds, hence making them suitable for an
interactive teaching setting like MOOC.

1.6 Structure of the Thesis

The rest of this thesis is structured as follows.

In Chapter 2 we first discuss the notion of key values (Section 2.1) and define the core
version (Section 2.2) of our dynamic relational program analysis (which is inspired by the
notion of key values). Next, we describe various generalizations of the proposed dynamic
program analysis (Section 2.3). The proposed analysis is the core ingredient used for
providing both performance and functional feedback; that is, the common ideas of the
two conference papers (mentioned in the previous section) are factorized in this chapter.

In Chapter 3 we describe our approach for providing performance feedback, and in
Chapter 4 we describe our approach for providing functional (repair-based) feedback.

Both of these two chapters, describing the two approaches, follows the same structure:

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.6. Structure of the Thesis

• We first give a high-level overview of the approach, explained on examples (Sec-
tion 3.1 and Section 4.1).

• We continue by giving preliminaries and the language model, required to formally
describe our approach and the algorithms (Section 3.2 and Section 4.2). This is
followed by the formal discussion of the core algorithms (Section 3.3 and Section 4.3),
and by describing some useful extensions to the core algorithms (Section 3.4 and
Section 4.4).

• Then we describe the methodology of the approach, that is, how is the approach
used in a real classroom or MOOC setting (Section 3.5 and Section 4.5). Finally,
we discuss the implementation (Section 3.6 and Section 4.6) and the experimental
evaluation of the approach (Section 3.7 and Section 4.7).

In the rest of the thesis, we give an overview of the related work in Chapter 5, and in
Chapter 6 we discuss in more detail the contributions of the thesis and some possible
directions for future work.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Dynamic Relational Analysis

In this section we discuss a program analysis that is the core ingredient for both perfor-
mance and functional feedback generation approaches described later.

We point out that the core of this analysis is inspired by the manual code study discussed
in Section 1.4.1. Hence, we restate the main observations of this study here:

1. There are different algorithmic strategies, with varying level of efficiency, for solving
a given problem. Different strategies merit different feedback.

2. The same algorithmic strategy can be implemented in many different ways. These
differences are not relevant for reporting feedback on the student program.

This chapter starts with the discussion of the basic version of our analysis, in Section 2.1
and Section 2.2, followed by a discussion of various generalizations of it, in Section 2.3.

2.1 Key Values

Following the observations from the study, the main challenge is:
How can we identify the algorithmic strategy used in a student program, while ignoring
all the low-level implementation details that are not relevant for feedback?

Key values Our key insight is that different implementations of the same algorithmic
strategy generate the same key values during their execution on the same input.

We illustrate this on an example.

Example 2.1. The implementations C1 and C2 (Figure 1.1 and Figure 1.4), when
executed on the input s="aba" and t="baa", produce the following sequence of values

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

on the underlined expressions:

(a, b, a, 2, b, a, a, 2, a, b, a, 1, b, a, a, 1, a, b, a, 2, b, a, a, 2)

Note: Underlined expressions are at lines 5, 6, and 15 in C1, and at lines 6 and 7 in
C2.

So how can we use this insight to decide whether a program is an implementation of
some strategy? In other words:

1. How do we determine what are the key values that define a strategy (on some
input)?

2. How do we determine if a student program computes those values as well?

We defer the first question for later and for now assume that there is an oracle program
that provides key values for a strategy. We discuss this further in Chapter 3.

Hence, for the second question we assume that we are given the key values of some
strategy (for some input). However, merely observing that a program computes the same
set of values somewhere in the program will not give us very strong guarantees; we could
imagine a myriad of different programs that compute the same set of values.

Nonetheless, if we study the previous example closer we observe the following:

• The values are computed in exactly the same order.

• The matching values are computed at corresponding locations in two programs.

Hence, we want the following:

• For each key value we also associate a program location where the value is computed.

• For each program location in the key value sequence there is a corresponding
location in the implementation that produces the same values.

• The values are computed in the same order.

We discuss this on an example.

Example 2.2. Let us assume that for the counting strategy, on the input s="aba" and
t="baa", we are given the following sequence of key values with associated locations:

((ℓ1, a), (ℓ1, b), (ℓ1, a), (ℓ2, 2), (ℓ3, b), (ℓ3, a), (ℓ3, a), (ℓ4, 2), (ℓ1, a), (ℓ1, b), (ℓ1, a), (ℓ2, 1),
(ℓ3, b), (ℓ3, a), (ℓ3, a), (ℓ4, 1), (ℓ1, a), (ℓ1, b), (ℓ1, a), (ℓ2, 2), (ℓ3, b), (ℓ3, a), (ℓ3, a), (ℓ4, 2))

Where ℓ1 - ℓ4 are (abstract) program locations representing the following in the counting
strategy.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Trace Embedding

• ℓ1 is the location where the characters of the first string (s) are iterated;

• ℓ2 is the location where the number (count) of characters in s is computed;

• ℓ3 is the location where the characters of the first string (t) are iterated; and

• ℓ4 is the location where the number (count) of characters in t is computed;

The corresponding program locations in C1 and C2 are the underlined expressions (as
discussed in the previous example). 1

This analysis is inspired by the notion of a simulation relation [Mil71], adapted for a
dynamic program analysis: whereas a simulation relation establishes that a program P
produces exactly the same values as program Q at corresponding program locations for
all inputs, we are interested only in a fixed finite set of inputs. Therefore, this notion
could be seen as a dynamic simulation relation, to stress that we use dynamic program
analysis.

Later in this chapter we generalize the key-value approach discussed here in several ways.
However, the core ideas in these generalizations remain: a dynamic program analysis
and a simultaneous analysis of executions of two programs. The latter is usually called
relational program analysis, as it relates executions of two program, opposed to the
usual program analysis that reasons about executions of a single program 2. Hence, our
approach can be seen as a dynamic relational analysis.

2.2 Trace Embedding

In this section we formally define the key-value analysis described in the previous section;
we call this analysis Trace Embedding.

We start by stating some preliminary definitions.

Definition 2.3 (Program location, computation value, computation trace). Let Loc be
a set of program locations, and let Val be a set of computation values.

A computation trace γ over some set of locations Loc is a finite sequence of location-value
pairs (Loc × Val)∗. Let ΓLoc be the set of all traces over Loc.

Given some trace γ ∈ ΓLoc, and some set of locations Loc2 ⊆ Loc, let γ|Loc2
denote a

sequence obtained from γ by deleting all pairs (ℓ, val), where ℓ 6∈ Loc2.

1Note that in C1 there are only three underlined expressions, while in the key-value sequence there
are four locations. However, we consider the underlined expression at line 15 as two distinct program
locations, depending on whether the function countChars is called from line 5 or 6. These details are
further discussed in Chapter 3.

2Actually, relational program analysis reasons either about executions of two programs, or two
executions of the same program. In functional programming, where there is usually no distinction
between programs and data, these can be seen as equivalent.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

1 def subsequence(γ1, γ2):

2 n = length(γ1)

3 m = length(γ2)

4 if m < n:

5 return False

6 k1 = 1

7 for all 1 ≤ k2 ≤ m:

8 (ℓ1, val1) = γ1[k1] # kth
1

element of γ1

9 (ℓ2, val2) = γ2[k2] # kth
2

element of γ2

10 if ℓ1 = ℓ2 and val1 = val2:

11 if k1 = n:
12 return True

13 k1 = k1 + 1

14 return False

Figure 2.1: Algorithm for the subsequence problem.

We do not define what exactly program locations or computation values are, as this is
not necessary to define our analysis. In practice program locations could be assigned,
for example, to each statement or each basic block; similarly computation values could
consists of all constant values in some language. Further, we do not discuss here how a
computation trace is obtained from a program, or what a program model is. We will
define all of these more precisely in Chapter 3 and Chapter 4; as we will see these notions
should be chosen according to specific analysis needs.

For the remaining of this chapter we assume some fixed set of computation values Val.

Definition 2.4 (Subsequence). Let γ1 = (ℓ1,1, val1,1) · · · (ℓ1,n, val1,n), and γ2 = (ℓ2,1, val2,1) · · ·
(ℓ2,m, val2,m) be two computation traces over some set of locations Loc.

Then, γ1 is a subsequence of γ2, written γ1 ⊑ γ2, when:

• There are indices 1 ≤ k1 < k2 < · · · kn ≤ m, such that for all 1 ≤ i ≤ n we have
ℓ1,i = ℓ2,ki

and val1,i = val2,ki
.

Figure 2.1 gives an algorithm for deciding the subsequence relation between traces γ1

and γ2. Note that the operation performs at most m (= length of γ2) equality checks.

Definition 2.5 (Mapping function). Given two sets of locations Loc1 and Loc2, an
injective function π : Loc1 → Loc2 is called a mapping function.

Mapping function lifted to π : ΓLoc1
→ ΓLoc2

is defined by applying it to every location:

π((ℓ1, val1) · · · (ℓn, valn)) = (π(ℓ1), val1) · · · (π(ℓn), valn)

Definition 2.6 (Trace Embedding). A computation trace γ1 ∈ ΓLoc1
can be embedded in

a trace γ2 ∈ ΓLoc2
, if there exists π : Loc1 → Loc2 such that π(γ1) ⊑ γ2, written γ1 ⊑π γ2.

The mapping π is then called an embedding witness.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Trace Embedding

Executing a program on a set of inputs I results in a set of traces, one for each input
i ∈ I. A set of traces (γ1,i)i∈I can be embedded in a set of traces (γ2,i)i∈I by π if and
only if γ1,i ⊑π γ2,i for all i ∈ I.

The Trace Embedding problem consists of finding an embedding witness, between two
sets of traces.

Next, we illustrate the trace embedding problem on an example.

Example 2.7. Consider the following traces

γ1 = (ℓ1, 1) · (ℓ2, 1) · (ℓ2, 2) · (ℓ1, 2) · (ℓ2, 3)

γ2 = (ℓ3, 0)·(ℓ4, 1) · (ℓ5, 1) · (ℓ3, 3) · (ℓ5, 2) · (ℓ4, 2) · (ℓ4, 3) · (ℓ5, 3)

and let π = {ℓ1 7→ ℓ4, ℓ2 7→ ℓ5} be a mapping function.

Then we have γ1 ⊑π γ2. We point out that the notion of trace embedding allows the
location ℓ3 to be not mapped to any location of the trace γ1, and that there is the element
(ℓ4, 3) in γ2 that has no corresponding element in the trace γ1.

Complexity of Trace Embedding Assuming that equality checks can be done in
polynomial time, Trace Embedding is in NP: Given some embedding witness π it is easy
to check if γ1,i ⊑π γ2,i, for all i ∈ I. As discussed above, this can be checked in linear
number of (polynomial) equality checks. However, it turns out that Trace Embedding
is NP-complete. This holds even for a singleton input I and a singleton computation
domain Val.

Theorem 2.8 (Trace Embedding NP-completeness). The Trace Embedding problem is
NP-complete, assuming equality checks can be done in polynomial time.

Proof. In order to show NP-hardness we reduce Permutation Pattern [BBL98] to Trace
Embedding. We point out that Permutation Pattern is NP-complete.

First, we formally define Permutation Pattern. Let n, k be positive integers with k ≤ n.
Let σ be a permutation of {1, · · · , n} and let τ be a permutation of {1, · · · , k}. We say
τ occurs in σ, if there is an injective function π : {1, · · · , k} → {1, · · · , n} such that π
is monotone, i.e., for all 1 ≤ r < s ≤ k we have π(r) < π(s) and π(τ(1)) · · · π(τ(k)) is
a subsequence of σ(1) · σ(2) · · · σ(n). Permutation Pattern is the problem of deciding
whether τ occurs in σ.

We now give the reduction of Permutation Pattern to Trace Embedding. We will construct
two traces γ1 and γ2 over a singleton computation domain Val, and over the sets of
locations Loc1 = {1, . . . , k} and Loc2 = {1, . . . , n}. Because Val is singleton, we can
ignore values in the rest of the proof. We set γ1 = 1 · 2 · · · k · τ(1) · τ(2) · · · τ(k) and
γ2 = 1 · 2 · · · n · σ(1) · σ(2) · · · σ(n). We now show that τ occurs in σ iff there is an

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

1 def EMBED((γ1,i)i∈I, (γ2,i)i∈I, Loc1, Loc2):

2 G = Loc1 × Loc2

3 for all ℓ1 ∈ Loc1, ℓ2 ∈ Loc2:

4 for all i ∈ I:

5 if γ1,i |{ℓ1} 6⊑{ℓ1 7→ℓ2} γ2,i |{ℓ2}:

6 G = G \{(ℓ1, ℓ2)}
7 break

8 for all π ∈ MaximumBipartiteMatching(G):

9 found = True

10 for all i ∈ I:
11 if γ1,i 6⊑π γ2,i:

12 found = False

13 break

14 if found:

15 return True

16 return False

Figure 2.2: Algorithm for the Trace Embedding problem.

injective function π : Loc1 → Loc2 with γ1 ⊑π γ2. We establish this equivalence by two
observations: First, because every i ∈ {1, · · · , k} occurs exactly twice in γ1 and γ2 we
have 1 · 2 · · · k ⊑π 1 · 2 · · · n and τ(1) · τ(2) · · · τ(k) ⊑π σ(1) · σ(2) · · · σ(n) iff γ1 ⊑π γ2.
Second, 1 · 2 · · · k ⊑π 1 · 2 · · · n iff π : Loc1 → Loc2 is monotone.

Algorithm Figure 2.2 shows our algorithm, Embed, for the Trace Embedding problem.
A straightforward algorithmic solution for the Trace Embedding problem is to simply
test all possible mapping functions. However, there is an exponential number of such
mapping functions w.r.t. the cardinality of Loc1 and Loc2. This exponential blowup
seems unavoidable as the combinatorial search space is responsible for the NP hardness.
The core element of the algorithm is a pre-analysis that narrows down the space of
possible mapping functions effectively.

We observe that if ℓ2 = π(ℓ1) and γ1 ⊑π γ2, then there exists a trace embedding restricted
to locations ℓ1 and ℓ2; formally: γ1|{ℓ1} ⊑{ℓ1 7→ℓ2} γ2|{ℓ2}. The algorithm uses this insight
to create a (bipartite) graph G ⊆ Loc1 × Loc2 of potential mapping pairs in lines 2-7. A
pair of locations (ℓ1, ℓ2) ∈ G is a potential mapping pair iff there exists a trace embedding
restricted to locations ℓ1 and ℓ2 as described above.

The key idea in finding an embedding witness π is to construct a maximum bipartite
matching [Uno97] in G. A maximum bipartite matching has an edge connecting every
program location from Loc1 to a distinct location in Loc2 and thus gives rise to an
injective function π. However, such an injective function π does not need to be an
embedding witness, because, by observing only a single location pair at a time, it ignores
the order of locations. Thus, for each maximum bipartite matching π the algorithm
checks (in lines 8-15) if it is indeed an embedding witness.

The key strength of the algorithm is that it reduces the search space for possible embedding
witnesses π. The experimental evidence shows that this approach significantly reduces

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Trace Embedding

the number of possible matchings and enables a very efficient algorithm in practice, as
discussed in Section 3.7.

Finally, we discuss the algorithm on an example.

Example 2.9. For this example we set the computation values to natural numbers, that
is, Val = N.

Let
Loc1 = {ℓ1,1, ℓ1,2, ℓ1,3, ℓ1,4}
Loc2 = {ℓ2,1, ℓ2,2, ℓ2,3, ℓ2,4, ℓ2,5}
Loc3 = {ℓ3,1, ℓ3,2, ℓ3,3, ℓ3,4}
Loc4 = {ℓ4,1, ℓ4,2, ℓ4,3, ℓ4,4, ℓ4,5}

Consider the following traces, over the locations Loc1, Loc2, Loc3, and Loc4, respectively:

γ1 = (ℓ1,1, 5) · (ℓ1,2, 0) · (ℓ1,3, 0) · (ℓ1,3, 1) · (ℓ1,2, 1) · (ℓ1,3, 0) · (ℓ1,2, 2) · (ℓ1,3, 0)
·(ℓ1,3, 1) · (ℓ1,3, 2) · (ℓ1,4, 5)

γ2 = (ℓ2,1, 4) · (ℓ2,2, 0) · (ℓ2,3, 0) · (ℓ2,3, 1) · (ℓ2,2, 1) · (ℓ2,3, 0) · (ℓ2,3, 1) · (ℓ2,2, 2)
·(ℓ2,3, 0) · (ℓ2,3, 1) · (ℓ2,3, 2) · (ℓ2,4, 5) · (ℓ2,5, 5)

γ3 = (ℓ3,1, 4) · (ℓ3,2, 0) · (ℓ3,3, 0) · (ℓ3,3, 1) · (ℓ3,2, 1) · (ℓ3,3, 0) · (ℓ3,3, 1) · (ℓ3,2, 2)
·(ℓ3,3, 0) · (ℓ3,3, 1) · (ℓ3,3, 2) · (ℓ3,4, 5)

γ4 = (ℓ4,1, 5) · (ℓ4,2, 0) · (ℓ4,3, 0) · (ℓ4,3, 1) · (ℓ4,2, 1) · (ℓ4,3, 0) · (ℓ4,3, 1) · (ℓ4,2, 2)
·(ℓ4,3, 0) · (ℓ4,3, 1) · (ℓ4,3, 2) · (ℓ4,4, 4) · (ℓ4,5, 5)

We first check whether the trace γ1 can be embedded in the trace γ2. 3 In the first step of
the algorithm we have the following:

γ1|{ℓ1,1} ⊑{ℓ1,1 7→ℓ2,4} γ2|{ℓ2,4}

γ1|{ℓ1,1} ⊑{ℓ1,1 7→ℓ2,5} γ2|{ℓ2,5}

γ1|{ℓ1,2} ⊑{ℓ1,2 7→ℓ2,2} γ2|{ℓ2,2}

γ1|{ℓ1,2} ⊑{ℓ1,2 7→ℓ2,3} γ2|{ℓ2,3}

γ1|{ℓ1,3} ⊑{ℓ1,3 7→ℓ2,3} γ2|{ℓ2,3}

γ1|{ℓ1,4} ⊑{ℓ1,4 7→ℓ2,4} γ2|{ℓ2,4}

γ1|{ℓ1,4} ⊑{ℓ1,4 7→ℓ2,5} γ2|{ℓ2,5}

Hence, the algorithms constructs the following graph of potential mapping pairs:

G1,2 = {(ℓ1,1, ℓ2,4), (ℓ1,1, ℓ2,5), (ℓ1,2, ℓ2,2), (ℓ1,2, ℓ2,3), (ℓ1,3, ℓ2,3), (ℓ1,4, ℓ2,4), (ℓ1,4, ℓ2,5)

From G1,2 the algorithm obtains the following two maximum bipartite matchings:

π1 = {ℓ1,1 7→ ℓ2,4, ℓ1,2 7→ ℓ2,2, ℓ1,3 7→ ℓ2,3, ℓ1,4 7→ ℓ2,5}
π2 = {ℓ1,1 7→ ℓ2,5, ℓ1,2 7→ ℓ2,2, ℓ1,3 7→ ℓ2,3, ℓ1,4 7→ ℓ2,4}

3In this example we assume a single input, that is, singleton traces. This is done to make the
presentation easier to follow. Analysis of two sets of traces (each for one input) is analogous.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

However, we have γ1 6⊑π1 γ2 and γ1 6⊑π2 γ2, hence the algorithm concludes that γ1 cannot
be embedded in γ2.

Next, we check whether the trace γ1 can be embedded in the trace γ3. In the first step the
algorithm constructs the following graph of potential mapping pairs:

G1,3 = {(ℓ1,1, ℓ3,4), (ℓ1,2, ℓ3,2), (ℓ1,2, ℓ3,3), (ℓ1,3, ℓ3,3), (ℓ1,4, ℓ3,4)}

There are not maximum bipartite matchings in G1,3 because the locations ℓ1,1 and ℓ1,4

would both need to be mapped to the location ℓ3,4, and that mapping would not be injective.
Hence, the algorithm concludes that γ1 cannot be embedded in the trace γ3.

Finally, we check whether the trace γ1 can be embedded in the trace γ4. In the first step
the algorithm construct the following graph of potential mapping pairs:

G1,4 = {(ℓ1,1, ℓ4,1), (ℓ1,1, ℓ4,5), (ℓ1,2, ℓ4,2), (ℓ1,2, ℓ4,3), (ℓ1,3, ℓ4,3), (ℓ1,4, ℓ4,1), (ℓ1,4, ℓ4,5)}

From G1,4 the algorithm obtains the following two maximum bipartite matchings:

π3 = {ℓ1,1 7→ ℓ4,5, ℓ1,2 7→ ℓ4,2, ℓ1,3 7→ ℓ4,3, ℓ1,4 7→ ℓ4,1}
π4 = {ℓ1,1 7→ ℓ4,1, ℓ1,2 7→ ℓ4,2, ℓ1,3 7→ ℓ4,3, ℓ1,4 7→ ℓ4,5}

We have γ1 6⊑π3 γ4, but γ1 ⊑π4 γ4. Hence, the algorithm concludes that the trace γ1 can
be embedded in the trace γ4.

2.3 Generalizations of Trace Embedding

Next we discuss generalizations of the Trace Embedding problem discussed in the previous
section. These generalizations will be useful later in Chapter 3 and Chapter 4.

2.3.1 Trace Relations

In the previous section we defined the Trace Embedding problem using the subsequence
relation (Definition 2.4) on two traces. Now we define two additional trace relations.

Full Subsequence Relation

Consider the following example.

Example 2.10. Let

γ1 = (ℓ1, val2)· (ℓ2, val5) · (ℓ1, val6)

γ2 = (ℓ2, val1)·(ℓ1, val2) · (ℓ2, val3) · (ℓ3, val4)·(ℓ2, val5) · (ℓ1, val6)

Then we have γ1 ⊑ γ2.

We see that the subsequence relation, as defined in the previous section, allows that γ2

has more elements over the locations present in both the traces.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Generalizations of Trace Embedding

More precisely, the trace γ2 contains two additional elements ((ℓ2, val1) and (ℓ2, val3))
over the location ℓ2 than the trace γ2.4

However, we could be interested in a relation that restricts traces to have the same
number of elements over all locations present in the trace γ1, and allow extra elements in
the trace γ2 only if they are over the locations not present in the trace γ1. In fact, this
kind of subsequence will be useful for analyzing efficient student solutions in Chapter 3.

We call this subsequence full subsequence and define it formally next.

Definition 2.11 (Full subsequence). Let γ1 = (ℓ1,1, val1,1) · · · (ℓ1,n, val1,n), and γ2 =
(ℓ2,1, val2,1) · · · (ℓ2,m, val2,m) be two computation traces over some set of locations Loc.

Then, γ1 is a full subsequence of γ2, written γ1 ⊑full γ2, when:

• γ1 ⊑ γ2, and additionally

• γ1 and γ2|{ℓ1,1,...,ℓ1,n} have the same length.

This definition ensures that there are the same number of trace elements at corresponding
locations in both traces, while allowing extra locations in γ2 that are not present in γ1.

Example 2.12. For example, given (γ1 and γ2 are the same as in the previous example):

γ1 = (ℓ1, val2) · (ℓ2, val5) · (ℓ1, val6)

γ2 = (ℓ2, val1)·(ℓ1, val2) · (ℓ2, val3) · (ℓ3, val4) · (ℓ2, val5) · (ℓ1, val6)

γ3 = (ℓ1, val2) · (ℓ3, val4) · (ℓ2, val5) · (ℓ1, val6)

Then we have γ1 ⊑full γ3 (and γ1 ⊑ γ3), but γ1 6⊑full γ2 (although γ1 ⊑ γ2).

Comparison Relation

The subsequence operation considers two trace elements, or more precisely two values,
equal when they are exactly the same. However, it might be interesting to consider two
trace values equivalent even when they are not the same, but related in some way. In fact,
this will be useful when analyzing two student solutions that differ only in the low-level
data representation.

For this reason we extend the original subsequence relation by allowing arbitrary com-
parison functions, instead of the identity relation (as used in the original definition).

Definition 2.13 (Comparison subsequence). Let γ1 = (ℓ1,1, val1,1) · · · (ℓ1,n, val1,n), and
γ2 = (ℓ2,1, val2,1) · · · (ℓ2,m, val2,m) be two computation traces over some set of locations
Loc.

4The trace γ2 also contains the additional location ℓ3 with the element (ℓ3, val4).

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

Let δ : Loc → 2Val×Val be a comparison function that maps program locations to equality
relations on the value domain Val.

Then, γ1 is an comparison subsequence of γ2, written γ1 ⊑δ γ2, when:

• There are indices 1 ≤ k1 < k2 < · · · kn ≤ m, such that for all 1 ≤ i ≤ n we have
ℓ1,i = ℓ2,ki

and (val1,i, val2,ki
) ∈ δ(ℓ1,i).

We point out that with δ(ℓ) = Id (where Id is the identity relation), for all ℓ ∈ Loc, we
obtain the original subsequence definition. Note that this definition allows us to relate
different (although related by δ) elements of the trace.

We next discuss some examples of both the full and comparison subsequences.

Example 2.14. Consider the following traces:

γ1 = (ℓ1, 1) · (ℓ2, 1) · (ℓ2, 2) · (ℓ1, 2) · (ℓ2, 3)

γ2 = (ℓ3, 0)·(ℓ4, 1) · (ℓ5, 1) · (ℓ3, 3) · (ℓ5, 2) · (ℓ4, 2) · (ℓ4, 3) · (ℓ5, 3)

γ3 = (ℓ3, 0)·(ℓ4, 1) · (ℓ5, 1) · (ℓ3, 3) · (ℓ5, 2) · (ℓ4, 2) · (ℓ5, 3)

γ4 = (ℓ3, 1)·(ℓ4, 2) · (ℓ5, 2) · (ℓ3, 4) · (ℓ5, 3) · (ℓ4, 3) · (ℓ5, 4)

and let
π = {ℓ1 7→ ℓ4, ℓ2 7→ ℓ5} and δ1(ℓ1) = δ2(ℓ2) = Id

be a mapping function and an (identity) comparison function, respectively.

In the previous section we established that γ1 ⊑π γ2. However, because of the element
(ℓ4, 3) in γ2 we have that γ1 6⊑π

full γ2, that is, the trace γ1 cannot be embedded in the trace
γ2, using the full subsequence.

The trace γ3 is the same as the trace γ2, but without the element (ℓ4, 3), hence we have
that γ1 ⊑π

full γ3.

Finally, the trace γ4 is the same as the trace γ3, except that every value is incremented
by one. Hence, by setting

δ2(ℓ1) = δ2(ℓ2) = {(a, b) | a + 1 = b}

that is, the comparison function δ2 (on both ℓ1 and ℓ2) considers a and b as equal if
a + 1 = b, then we have that γ1 ⊑π

δ γ4.

The Algorithm

We next comment on the algorithm for the two subsequence definitions. It is not difficult
to see that the algorithm for the Embedding Problem (defined in Figure 2.2) works also
with the ⊑full and ⊑δ relations (instead of the original ⊑ relation). Further, it would
also work for the combination of these two relations (full subsequence with comparison
function). This is the case because the algorithm only assume that a relation is preserved
when restricted to single locations, in order to construct a potential graph G.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Generalizations of Trace Embedding

Arbitrary trace relations Hence, the algorithm would work for any relation on the
traces that is closed under location-projection; we define this formally next.

Definition 2.15 (Closure under location-projection). Let Loc be some set of program
locations, and let R ⊆ ΓLoc × ΓLoc be a binary relation over traces of Loc.

R is closed under location-projection if: for all traces γ1, γ2 ∈ ΓLoc, γ1Rγ2 implies that,
for all locations ℓ ∈ Loc, γ1|{ℓ}Rγ2|{ℓ}.

By EmbedR we denote the generalized version of the Embed algorithm (Figure 2.2),
that works on some relation (closed under location-projection) R, instead of the original
relation ⊑. The original algorithm is generalized at lines 5 and 11 to check whether the
relation R, instead of the relation ⊑, holds (resp. does not hold).

2.3.2 Traces

The traces (as defined in Definition 2.3) record a single value for each program location,
and the trace embedding relation allows us to compare values at matching program
locations. However, for our repair algorithm (in Chapter 4) we will be interested in a
variation of this notion, where we want to compare multiple values at matching program
locations, instead of only a single value. We motivate this with the following example.

1 x = 1

2 y = 2

3 return f(x, y)

(a) Program A

1 a = 2

2 b = 1

3 return f(b, a)

(b) Program B

Figure 2.3: Example of two simple programs.

Example 2.16. Figure 2.3 shows two programs for which we would like to show that
they have the same behavior (traces). Let us discuss some possible ways in which we
could do this. Let us assume, for simplicity, that f(1, 2) = 3

We could, as we did for the trace embedding problem, assign to each of the values
(statements) a program location and assign the computed value to it. Then we would
obtain the following traces:

γA = (ℓ1, 1) · (ℓ2, 2) · (ℓ3, 3)
γB = (ℓ1, 2) · (ℓ2, 1) · (ℓ3, 3)

The problem is that in this way the traces capture the order in which the variables were
assigned and they are different in the two programs.

We could record (in the traces) only the resulting (return) value and thus, in the both
cases, obtain the single-element trace (ℓ1, 3). However, we would also like to capture the
values of the intermediate variables, that is, this way we loose important information.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

Finally, we could record an assigned variable, together with a value assigned to it, in
a way that abstracts over the order in which they were assigned. More precisely, we
construct the following mappings for the two programs:

{x 7→ 1, y 7→ 2, return 7→ 3}

{a 7→ 2, b 7→ 1, return 7→ 3}

Hence, we change the way traces are obtained in the following way:

• A program location is assigned to a sequence of statements (i.e., to basic-blocks),
instead of to each statement. See Section 4.2 for more details.

• For each program location we attach a mapping from program variables to computed
values, instead of a single value.

In this way we abstract over the order in which program variables are assigned (on some
program location), but still require that all matching variables in both traces are assigned
the same values.

We now define this notion formally.

Definition 2.17 (Memory Trace). Let Var be a set of program variables. A memory
σ : Var → Val is a mapping from program variables to computation values. Let ΣVar

denote the set of all memories over Var.

A memory trace γ ∈ (ΣVar)∗ is a finite sequence of memories; let Γm
Var = (ΣVar)∗ denote

the set of all memory traces over Var.

This trace definition does not directly fit the trace definition used in the previous sections
(i.e., a sequence of location-value pairs), and hence we cannot apply the trace embedding
algorithm directly to the memory traces. However, it is easy to transform memory
traces to a representation analogous to the location-value pairs, and hence use the trace
embedding algorithm on the transformed traces. We next define this formally.

Definition 2.18 (Variable trace). Let Var be a set of program variables, and let Val be
a set of computation values.

A variable trace γ ∈ (Var × Val)∗ is a finite sequence of variable-value pairs; let ΓVar

denote the set of all variable traces over Var.

Definition 2.19 (Variable trace construction). Let γ = σ1 · · · σn ∈ Γm
Var be a memory

trace over the variables Var = {v1, . . . , vn}.

We define a corresponding variable trace as a flattening of the original memory trace:

F(γ) = (v1, σ1(v1)) · · · (vn, σ1(vn)) · · · (v1, σn(v1)) · · · (vn, σn(vn))

Then we have F(γ) ∈ ΓVar .

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Generalizations of Trace Embedding

We point out that all the development in the previous sections can be applied to the
variable traces; the only difference is that here we use program variables Var , in place
of program locations Loc. With the flattening function, all the development from the
previous sections can be also applied to the memory traces. This is useful because in
Chapter 4 we will base our technical development on the notion of memory traces.

In the following, we give explicit adaptations of our earlier definitions to memory traces.

Definition 2.20 (Variable mapping and rewriting). Let Var1 and Var2 be two sets of
variables, let τ : Var1 → Var2 be an injective function, and let σ ∈ ΣVar1

be a memory
over Var1.

Then we define τ(σ) = {τ(v) 7→ σ(v) | v ∈ Var1}, and lift it to the memory traces by
setting τ(σ1 · · · σn) = τ(σ1) · · · τ(σn).

Definition 2.21 (Memory trace matching). Let Var1 and Var2 be two sets of variables,
and let γ1 ∈ Γm

Var1
and γ2 ∈ Γm

Var2
be two memory traces over Var1 and Var2, respectively.

If there exists a bijective function τ : Var1 → Var2, such that τ(γ1) = γ2 we say that γ1

and γ2 match over τ , written γ1 ∼τ γ2. We say that τ is a matching witness.

We point out that this notion of matching requires that corresponding variables (related
by τ) take the same values in the same order in both traces. Or put differently, the
matching requires that the traces are equivalent, up to the renaming of variables by τ .

Finally, we define an equivalent matching notion for the variable traces, which allows us
to use the Trace Embedding algorithm (defined in Figure 2.2 and generalized to arbitrary
relations in Section 2.3.1) for the memory trace matching.

Definition 2.22 (Variable restriction and variable trace rewriting). Given some variable
trace γ ∈ ΓVar , and a set of variables Var2 ⊆ Var, let γ|Var2

denote a sequence obtained
from γ by deleting all pairs (v, val), where v 6∈ Loc2.

Let Var1 and Var2 be two sets of variables, let τ : Var1 → Var2 be an injective function,
and let γ = (v1, val1) · · · (vn, valn) be a variable trace over Var1. Then we define:

τ(γ) = (τ(v1), val1) · · · (τ(vn), valn)

Definition 2.23 (Variable trace matching). Let Var be a set of variables. We define a re-
lation over variable traces, ∼⊆ (ΓVar ×ΓVar), which is closed under the variable-projection
as follows:

γ1 ∼ γ2 iff γ1|{v} = γ2|{v} for all v ∈ Var

Let γ1 ∈ ΓVar1
and γ2 ∈ ΓVar2

be two variable traces, over the variables Var1 and
Var2, respectively. We say that γ1 and γ2 match, if there exists a bijective function
τ : Var1 → Var2, such that τ(γ1) ∼ γ2, written γ1 ∼τ γ2.

Next, we formally state that the two notions of matching agree.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Dynamic Relational Analysis

Proposition 2.24 (Equivalence of matching). Let Var1 and Var2 be two sets of variables,
and let γ1 ∈ Γm

Var1
and γ2 ∈ Γm

Var2
be two memory traces over Var1 and Var2, respectively.

Finally, let τ : Var1 → Var2 be a bijective function.

Then we have the following:

γ1 ∼τ γ2 if and only if F(γ1) ∼τ F(γ2)

Proof. (Sketch) First, we observe that, given any two memories σ1 and σ2 over the
variables Var = {v1, . . . , vn}, we have: σ1 = σ2 if and only if σ1(v1) · · · σ1(vn) =
σ2(v1) · · · σ2(vn).

Then the theorem follows by induction on the length of the traces γ1 and γ2 (they need
to be of the same length for ∼τ to hold).

We conclude this section by illustrating the defined matching notions on an example.

Example 2.25. Let Var1 = {a, b, c} and Var2 = {x, y, z} be two sets of variables.

Next, consider the following two memory traces over the variables Var1 and Var2,
respectively:

γ1 = {a 7→ 3, b 7→ 0, c 7→ 0} · {a 7→ 3, b 7→ 1, c 7→ 3} · {a 7→ 3, b 7→ 2, c 7→ 5}
·{a 7→ 3, b 7→ 3, c 7→ 6} · {a 7→ 3, b 7→ 3, c 7→ 6}

γ2 = {x 7→ 0, y 7→ 0, z 7→ 3} · {x 7→ 3, y 7→ 1, z 7→ 3} · {x 7→ 5, y 7→ 2, z 7→ 3}
·{x 7→ 6, y 7→ 3, z 7→ 3} · {x 7→ 6, y 7→ 3, z 7→ 3}

The corresponding (flattened) variable traces are the following:

F(γ1) = (a, 3) · (b, 0) · (c, 0) · (a, 3) · (b, 1) · (c, 3) · (a, 3) · (b, 2) · (c, 5)
·(a, 3) · (b, 3) · (c, 6) · (a, 3) · (b, 3) · (c, 6)

F(γ2) = (x, 0) · (y, 0) · (z, 3) · (x, 3) · (y, 1) · (z, 3) · (x, 5) · (y, 2) · (z, 3)
·(x, 6) · (y, 3) · (z, 3) · (x, 6) · (y, 3) · (z, 3)

With the bijective function τ : Var1 → Var2, defined with τ = {a 7→ z, b 7→ y, c 7→ x} we
have γ1 ∼τ γ2 and F(γ1) ∼τ F(γ2).

2.4 Conclusion

We have presented a novel dynamic relational program analysis. The analysis is built
upon the results of the manual code study and motivated by the need to distinguish
different algorithmic strategies. The key observation behind the analysis is that the
implementations of the same strategy compute the same key-values during execution on
the same inputs.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Conclusion

We first define a basic version of the analysis, called the Trace Embedding problem, and
then iteratively generalize different parts of the analysis. The program analysis presented
in this chapter is, in its different instantiations, key building block for the feedback
generation approaches presented in the next two chapters.

The main technical contributions of this chapter are the formal description of the analysis
and the algorithm for the analysis.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Performance Feedback

In this chapter we describe our approach for providing performance feedback on correct
student solutions.

We start by discussing an overview of the approach on some examples in Section 3.1.

We then continue with the technical development of the approach: in Section 3.2 we
describe some preliminaries required to discuss the core algorithms in Section 3.3, and
some extensions to it in Section 3.4.

In Section 3.5 we describe the methodology how the approach could be used in practice,
we discuss the implementation of the approach in Section 3.6, and in Section 3.7 we
describe our experimental evaluation of the implementation and the obtained results.

3.1 Overview of the Approach

In this section we give an overview of our approach for providing performance feedback.

We first recapitulate the main observations behind our approach, discussed earlier in the
thesis:

1. To provide performance feedback on a student’s implementation (of some program-
ming problem) we first need to determine the strategy used in the implementation
(Section 1.4).

2. A strategy is specified by its key-values (for some inputs) and an implementation is
determined to use this strategy if it has the same key values when executed on the
same inputs (Section 2.1 and Section 2.2).

However, while discussing key-values, we left the following question unanswered:
How do we determine what are the key-values that define a strategy (on some input)?

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

Im
plem

entation

Specification

Specification

(1) Match

(1) Feedback

(2) N
o match

Specification

(2a) New specification

(2
b

) R
efin

e sp
ecification

Figure 3.1: High-level overview of the methodology.

Specification and matching To that end, we propose a framework that allows a
teacher to describe an algorithmic strategy by writing a sample implementation for each
strategy. We refer to a sample implementation also as a specification. A teacher can
annotate certain expressions (that produce key-values) in the specification using a special
language statement observe.

The framework decides whether a student’s implementation Pimpl matches a teacher’s
specification Pspec by comparing their execution traces on common inputs, using the
trace embedding notion (discussed in Section 2.2); as a reminder:

1. The execution trace of Pspec, generated by observe statements, is a subsequence
of the execution trace of Pimpl ; and

2. For every observed expression in Pspec there is an expression in Pimpl that generates
the same values.

A high level description of our framework is given in Figure 3.1; parts (2), (2a) and (2b)
can be ignored for now, they are explained below.

Next we discuss an example of a specification that uses the observe statement.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Overview of the Approach

Example 3.1. In Figure 1.6 (Section 1.4) we give the specification CS, for the implemen-
tations C1 and C2 (Figure 1.1 and Figure 1.4). The expressions that produce key-values
(discussed in the previous example) are annotated with the observe statements:

• At lines 5 and 12 the observe statements annotate the iterated characters.

• At lines 10 and 17 the observe statements annotate the character count.

It is not difficult to see that when executed on the input s="aba" and t="baa", the
annotated expressions produce the following sequence of values:

(a, b, a, 2, b, a, a, 2, a, b, a, 1, b, a, a, 1, a, b, a, 2, b, a, a, 2)

Note that this is the same trace produced by the underlined expressions of C1 and C2 on
the same input. That is, the trace of the specification is a subsequence of the traces of
C1 and C2.

Further, for each observe statement in the specification there is an expression in C1

and C2 that generates the same values. Hence, we say that implementations C1 and C2

match the specification.

Methodology Next, we briefly describe how the specification mechanism is used to
provide feedback to student solutions (this is described in more detail in Section 3.5).
The high-level idea is also given in Figure 3.1.

The teacher is maintaining a list of specifications, and each specification has attached a
textual feedback. When a student submits an implementation, one of two scenarios can
happen:

1. The implementation matches some specification, and the student is presented with
the feedback attached to the specification.

2. The implementation does not match any specification and the teacher is notified
that there is an unmatched implementation.

In the (2.) scenario there are two sub-scenarios:

a. The student has written an implementation of a new algorithmic strategy for which
there is no specification yet. In this case the teacher writes a new specification for
this strategy.

b. The student has written an implementation of an algorithmic strategy for which
there is a specification, but the implementation does not match this specification.
In this case the teacher refines the existing specification to also match the new
implementation.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

1 void Puzzle(string s, string t) {

2 if (
✿✿

nd1)

3 s = s.ToUpperInvariant();

4 char[] ca = s.ToCharArray();

5 Array.Sort(ca);

6 if (
✿✿

nd2) Array.Reverse(ca);

7
✿✿✿✿✿✿✿✿

observe (ca);

8 }

Figure 3.2: A specification for the sorting strategy using non-deterministic variables
(SS’).

Example 3.2. Imagine that the a teacher has already written the specification CS in
Figure 1.6 (discussed above).

When a student submits the implementations C1 or C2, the implementation is going to
match the specification and the students are going to be given the appropriate feedback;
as mentioned in Section 1.4, this might be: “Calculate the number of characters in each
string in a preprocessing phase, instead of each iteration of the main loop”. This is
scenario (1.) from the above.

When a student submits an implementation of any other strategy, for example S2 (dis-
cussed in Section 1.4, and given in Figure 1.5, the teacher will be notified of the new
implementation, examine it, and determine that there is a need for a new specification
(for the sorting strategy). This is scenario (2a.) from the above.

When a student submits the implementation C3 (discussed in Section 1.4, and given
in Figure 1.4), the teacher will be notified of the new implementation, examine it, and
determine that the counting specification needs to be refined to match C3. This is scenario
(2b.) from the above.

We are not going to describe the refinement process in more detail here here (see
Section 3.5 for a detailed discussion). However, we are going to discuss one important
refinement mechanism available to the teacher.

Non-deterministic choice Different implementations of the same strategy can have
minor differences in key-values. Hence, the implementations will produce different,
although related, traces on the same inputs. Without an additional help a teacher would
need to write multiple specifications for the same strategy. To address variations in
implementation details, the framework allows a teacher to use non-deterministic Boolean
variables in the specification language. However, the non-determinism is fixed before
the execution, and thus such a choice is merely a syntactic sugar to succinctly represent
multiple similar specifications. A specification with n different non-deterministic variables
corresponds to 2n different specifications.

We discuss this on an example.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Program Model

Example 3.3. In Figure 1.6 (b) (Section 1.4) we give the specification SS, for the
sorting strategy. This specification observes the first input sorted. However, we have also
seen examples where student’ implementations additionally convert the input strings to
the upper case and sort the strings backwards.

To specify these variations the teacher would need to write 4 different specifications for
the sorting strategy:

• Original (lower case) and sorted in the original direction;

• Original (lower case) and sorted backwards;

• Upper case and sorted in the original direction; and

• Upper case and sorted backwards.

By using non-deterministic variables the teacher can represent that succinctly, as shown
in the specification SS’ in Figure 3.2. The teacher uses the following non-deterministic
variables:

• nd1 at line 2 to convert the first input string to the upper case; and

• nd2 at line 6 to reverse the sorted first input.

For the input string s="aba", depending on the values of the non-deterministic variables,
the teacher observes (at line 7) the following:

nd1 nd2 The observed value

false false aab

false true AAB

true false baa

true true BAA

In Section 3.3 we discuss how we match an implementation to a specification with
non-deterministic variables.

3.2 Program Model

In this section we formally present an imperative language that supports standard
constructs for writing implementations, and additional constructs for writing specifications.
We then define how are execution traces obtained from implementations and specifications.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

Expressions e ::= d | v | v1 opbin v2 | opun v | v1[v2]
Statements s ::= v := e | v1[v2] := e | v := f(v1, . . . , vn) | s1; s2 | skip

| while v do s | if v then s1 else s2

| observe (v) | observeFun (f(v1, . . . , vn))

Figure 3.3: The syntax for implementations and specifications.

3.2.1 The Language

Definition 3.4 (Data domain and library functions). A data value d ∈ D is a value
from some data domain set D. D also contains a special value ∗ that represents any data
value, and comes equipped with some equality relation =D⊆ D × D.

Let F be a (finite) set of library functions.

The data domain D, the corresponding equality relation =D, and the set of library
functions F , are defined by a concrete language. For example, for C#, D contains all
integers, characters, arrays, hash-sets, . . . , and (d1, d2) ∈ =D iff d1 and d2 are of the
same type, and comparison by the Equals method returns true. Similarly, for C#, F
contains the standard set of library functions.

Definition 3.5 (Expressions). Let variable v ∈ Var belong to a (finite) set of variables
Var.

The set of expressions E is defined in BNF notation in Figure 3.3, where opbin ranges
over a set of binary operators (e.g., +, ·, ≤), and opun ranges over a set of unary
operators (e.g., −, ¬).

An expression is a either a data value d, a variable v, a binary operator applied to
variables v1 and v2, a unary operator applied to a variable v, or an array access v1[v2].

Definition 3.6 (Value domain, equality relation). Given a data domain D, and a set of
library functions F , we define Val = D ∪ (F × D∗) as the value domain.

Further, let E = 2Val×Val be the set of all (binary) relations over Val. The default equality
relation ξdef ∈ E is defined as follows:

• (x, y) ∈ ξdef if and only if x = ∗ or y = ∗, or (x, y) ∈ =D.

• (f(x1, . . . , xn), g(y, . . . , yn)) ∈ ξdef if and only if f = g and (xi, yi) ∈ ξdef , for all
1 ≤ i ≤ n.

The definition of the (default) equality relation is important for trace comparison, i.e.,
for deciding whether two trace elements are equal. Later (see Section 3.4) we also allow
user-specified equality relations.

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Program Model

Definition 3.7 (Statements). The syntax of statements is defined in BNF notation in
Figure 3.3.

Let Loc be a set of program locations, then each statement s in a program is assigned a
unique location ℓ ∈ Loc, denoted with ℓ : s.

The statements of the language are the standard ones, and consist of: assignments to
variables and array elements, skip statement, looping and branching constructs. There
are also two special observe statements, which are available only to the teacher, and not
to the student. We discuss the observe statements in more detail in Section 3.2.3 below.

Note that the syntax of the language ensures that the programs are in the three-address
code. That is, operators can only be applied to variables, but not to arbitrary expressions.
The three address code enables observing any expression in the program by observing only
variables. However, any expression can be automatically translated into three address
code by assigning each sub-expression to a new variable, and this is done automatically
in the framework implementation, that is, teachers and students write normal C# code.

Example 3.8. If we have an assignment v1 := v2 + f(v3 + v4 ∗ v5, v6), it can be auto-
matically transformed into a sequence of assignments in three-address code:

• v7 := v4 ∗ v5,

• v8 := v3 + v7,

• v9 := f(v8, v6), and

• v1 := v2 + v9.

Semantics We assume a standard imperative semantics for programs written in the
given language. For example, for C#, we assume the standard semantics of C#. The
two observe statements have the same semantic meaning as the skip statement.

Definition 3.9 (Computation trace). A computation trace γ over some set of locations
Loc is a finite sequence of location-value pairs (Loc × Val)∗. Let ΓLoc be the set of all
traces over Loc.

Given some trace γ ∈ ΓLoc, and some set of locations Loc2 ⊆ Loc, let γ|Loc2
denote the

sequence obtained from γ by deleting all pairs (ℓ, val), where ℓ 6∈ Loc2.

Example 3.10. If we have

Loc = {ℓ1, ℓ2, ℓ3, ℓ4}
Loc2 = {ℓ2, ℓ3}

γ = (ℓ1, val1), (ℓ3, val2), (ℓ3, val3), (ℓ1, val4), (ℓ2, val5), (ℓ3, val6)
then

γ|Loc2
= (ℓ3, val2), (ℓ3, val3), (ℓ2, val5), (ℓ3, val6)

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

Functions We defined our program model without functions for ease of exposition.
However, this represents no restriction and it is straightforward to extend to programs
with functions (also recursive). However, we point out that in case of non-recursive
function we treat them as if they were inlined. This has the benefit that locations inside
a function are considered different based on the location where the function was called
from; in other words we get context-sensitivity inside functions. We illustrate this on an
example.

Example 3.11. Consider the implementation C1 (from Figure 1.1, discussed in Sec-
tion 1.1).

Without context-sensitivity the underlined expression at line 15 would be considered the
same location, when the function countChars is called from line 5 or 6. However, we
want to distinguish whether the expression at line 15 is computed by calling countChars
from line 5 or from line 6.

Definition 3.12 (Memory). Given some set of variables Var, we define the memory
σ : Var → D to be a mapping from program variables to data values. Let ΣVar denote all
memories over variables Var.

We illustrate the defined program model and the semantics below, after we define how a
trace is constructed for implementations and specifications.

3.2.2 Student Implementation

Now we describe how a computation trace γ is constructed for a student implementation
Pimpl , during execution on some input σinput . Note that a student cannot use any of the
observe statements.

Before Pimpl is executed, the computation trace is initialized to the empty sequence γ = ǫ.
Then Pimpl is executed on the input σinput , according to the semantics of the language.
During the execution, we append location-value pairs to γ after the following statements
are executed:

• For an assignments. ℓ : v1 := e or ℓ : v1[v2] := e, we append (ℓ, σ(v1)) to γ.

• For a library function call, ℓ : v := f(v1, . . . , vn), we append (ℓ, (f , σ(v), σ(v1), . . . , σ(vn)))
to γ.

Here, σ(v) denotes a current value of a variable v. Note that for the assignment to some
array v1, we append the complete array σ(v1) to the trace. The trace constructed by the
described process is denoted by γ =JPimplK(σinput).

Next we show on an example how a trace is obtained from a student implementation.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Program Model

1 bool Puzzle(s, t) {

2 i = 0;

3 n = | s |;
4 while (i < n) {

5 c =
✿✿✿✿

s[i];

6 ss =
✿✿✿✿✿✿✿

Split(s,
✿✿✿

c);

7 cnt1 =
✿✿✿

| ss |;

8 st =
✿✿✿✿✿✿✿

Split(t,
✿✿✿

c);

9 cnt2 =
✿✿✿

| st |;

10 i = i + 1;

11 }

12 }

Figure 3.4: Representation (simplified) of the program C3 in our program model.

Example 3.13. Figure 3.4 shows a simplified (after conversion to three-address-code
and code slicing for simplicity) model of the implementation C3 (from Figure 1.4 in
Section 1.4).

Note that every assignment is on its own line; therefore, we denote line i by location
ℓC3,i.

If we run the program on s="aab" and t="aba" we obtain the following trace:

γC3 = (ℓC3,2, 0) · (ℓC3,3, 3) · (ℓC3,5, a) · (ℓC3,6, (Split, [, , b], aab, a)) · (ℓC3,7, 3)
·(ℓC3,8, (Split, [, b,], aba, a)) · (ℓC3,9, 3) · (ℓC3,10, 1) · (ℓC3,5, a) · · ·

3.2.3 Teacher Specification

Now we describe how a computation trace γ is constructed for the specification of the
teacher Pspec, during execution on some input σinput . The teacher uses observe (·) and
observeFun (·) statements to specify the key values she wants to observe during the
execution of the specification Pspec.

Before Pspec is executed, the computation trace is initialized to the empty sequence γ = ǫ.
Then Pspec is executed on the input σinput , according to the semantics of the language.
During the execution, we append location-value pairs to trace γ only when the observe
statements are executed:

• For a regular observe statement ℓ : observe (v), we append (ℓ, σ(v)) to γ.

• For a library function observe statement ℓ : observeFun (f(v1, . . . , vn)), we append
(ℓ, (f , σ(v1), . . . , σ(vn))) to γ.

The trace constructed by the described process is denoted by γ =JPspecK(σinput).

Non-deterministic variables We have already motivated non-deterministic variables
in Section 3.1: they are useful for specifying variations of different implementations of
the same strategy.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

1 void Puzzle(string s, string t) {

2 for (int i = 0; i < s.Length; ++i) {

3 int cnt1 = 0, cnt2 = 0;

4
✿✿✿✿✿✿✿✿✿✿✿✿✿

observe (s[i]);

5 for (int j = 0; j < s.Length; ++j) {

6 if (
✿✿

nd1)
✿✿✿✿✿✿✿✿✿✿✿✿✿

observe (s[j]);

7 if (s[j] == s[i]) {

8 cnt1++;

9 }

10 }

11 if (!
✿✿

nd1)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observeFun (Split(*,
✿✿✿
*,

✿✿✿✿
*));

12
✿✿✿✿✿✿✿✿✿✿✿

observe (nd1
✿✿

?
✿✿✿✿✿✿

cnt1
✿✿

:
✿✿✿✿✿

cnt1
✿✿

+
✿✿✿

1);

13 for (int j = 0; j < t.Length; ++j) {

14 if (
✿✿

nd1)
✿✿✿✿✿✿✿✿✿✿✿✿✿

observe (t[j]);

15 if (t[j] == s[i]) {

16 cnt2++;

17 }

18 }

19 if (!
✿✿

nd1)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observeFun (Split(*,
✿✿✿
*,

✿✿✿✿
*));

20
✿✿✿✿✿✿✿✿✿✿✿

observe (nd1
✿✿

?
✿✿✿✿✿✿

cnt2
✿✿

:
✿✿✿✿✿

cnt2
✿✿

+
✿✿✿

1);

21 }

22 }

1 Puzzle(s, t) {

2 i = 0;

3 n = | s |;
4 cnt1 = cnt2 = 0;

5 while (i < n) {

6 c = s[i];

7 observe (
✿

c);

8 j = 0;

9 m = | s |;
10 while (j < m) {

11 c2 = s[j];

12 if (
✿✿

nd1)
✿✿✿✿✿✿✿✿✿✿✿

observe (c2);

13 if (c1 == c2) cnt1++;

14 j = j + 1;

15 }

16 if (!
✿✿

nd1)

17
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observeFun (Split(*,
✿✿✿
*,

✿✿✿✿
*));

18
✿✿✿✿✿✿✿✿✿✿✿

observe (nd1
✿✿

?
✿✿✿✿✿✿

cnt1
✿✿

:
✿✿✿✿✿✿✿✿

cnt1+1);

19 j = 0;

20 m = | t |;
21 while (j < m) {

22 c2 = t[j];

23 if (
✿✿

nd1)
✿✿✿✿✿✿✿✿✿✿✿

observe (c2);

24 if (c1 == c2) cnt2++;

25 j = j + 1;

26 }

27 if (!
✿✿

nd1)

28
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observeFun (Split(*,
✿✿✿
*,

✿✿✿✿
*));

29
✿✿✿✿✿✿✿✿✿✿✿

observe (nd1
✿✿

?
✿✿✿✿✿✿

cnt2
✿✿

:
✿✿✿✿✿✿✿✿

cnt2+1);

30 i = i + 1;

31 }

32 }

Figure 3.5: The specification CS’ and its (simplified) representation in our program
model.

The teacher can use in specifications some finite set of Boolean non-deterministic variables
B = {nd1, . . . , ndn} ⊆ Var . Non-deterministic variables are similar to the input variables,
in the sense that are assigned before the program is executed (we discuss this further
in Section 3.3 when we discuss the matching algorithm). Note that this results in 2n

different program behaviors for a given input.

Next we discuss on an example how a trace is obtained from a teacher specification with
a non-deterministic variable.

Example 3.14. Figure 3.5 shows the specification CS’ (for the counting strategy) and its
simplified (after conversion to three-address-code and code slicing for simplicity) represen-
tation in our model. This specification uses the constructs observe and observeFun,
and the non-deterministic variable nd1.

Same as in the previous example, every assignment and observe statement is on its
own line; therefore, we denote line i by location ℓCS’,i.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Algorithms

If we run the program on s="aab" and t="aba" we obtain the following two traces,
depending on the choice for the non-deterministic variable nd1:

γCS’,true = (ℓCS’,7, a)·
(ℓCS’,12, a) · (ℓCS’,12, a) · (ℓCS’,12, b) · (ℓCS’,18, 2)·
(ℓCS’,23, a) · (ℓCS’,23, b) · (ℓCS’,23, a) · (ℓCS’,29, 2)·
(ℓCS’,7, a)·
(ℓCS’,12, a) · (ℓCS’,12, a) · (ℓCS’,12, b) · (ℓCS’,18, 2)·
(ℓCS’,23, a) · (ℓCS’,23, b) · (ℓCS’,23, a) · (ℓCS’,29, 2)·
(ℓCS’,7, b)·
(ℓCS’,12, a) · (ℓCS’,12, a) · (ℓCS’,12, b) · (ℓCS’,18, 1)·
(ℓCS’,23, a) · (ℓCS’,23, b) · (ℓCS’,23, a) · (ℓCS’,29, 1)

γCS’,false = (ℓCS’,7, a)·
(ℓCS’,17, (Split, ∗, ∗, ∗)) · (ℓCS’,18, 3) · (ℓCS’,28, (Split, ∗, ∗, ∗)) · (ℓCS’,29, 3)
(ℓCS’,7, a)·
(ℓCS’,17, (Split, ∗, ∗, ∗)) · (ℓCS’,18, 3) · (ℓCS’,28, (Split, ∗, ∗, ∗)) · (ℓCS’,29, 3)
(ℓCS’,7, b)·
(ℓCS’,17, (Split, ∗, ∗, ∗)) · (ℓCS’,18, 2) · (ℓCS’,28, (Split, ∗, ∗, ∗)) · (ℓCS’,29, 2)

3.3 Algorithms

In this section we formally discuss the notion of matching between an implementation
and a specification, and the corresponding algorithms. The notion of matching builds on
top of the Trace Embedding, defined and discussed in Chapter 2.

Partial and full matching We distinguish two types of matching: partial and full.
The partial marching is used to define inefficient specifications and to match inefficient
implementations, while the full matching is used to define efficient specifications and to
match efficient implementations. A teacher has to specify which of the two matching
criterion is to be used in a specific case, that is, if a specification is efficient or inefficient.

Intuitively, when an implementation matches an inefficient specification (using partial
matching), this means that the implementation is at least as inefficient as the specification.
When an implementation matches an efficient specification (using full matching), this
means that the implementation is as efficient as the specification. This is further discussed
later in the section when we discuss each of the matching types.

One might wonder why do we need efficient specifications at all; that is, if the student
already wrote an efficient implementation, there is no need for feedback. However, we
need to distinguish the cases when there is no feedback because an implementation
did not match any specification (we remind the reader about the discussion about the
methodology in Section 3.1), and when the student wrote an efficient implementation.
We discuss this further in Section 3.5, when we discuss the methodology in more detail.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

1 def MATCHES(Specification Pspec, Implementation Pimpl, Inputs I):
2 Loc1 = observed locations in Pspec

3 Loc2 = assignment locations of Pimpl

4 for all σ ∈ I:

5 γ2,σ =
q

Pimpl

y
(σ)

6 BPspec
= non-deterministic variables in Pspec

7 for all assignments σnd to BPspec
:

8 for all σ ∈ I:
9 γ1,σ = JPspecK(σ ∪ σnd)

10 if EMBED⊑((γ1,σ)σ∈I, (γ2,σ)σ∈I, Loc1, Loc2):

11 return True

12 return False

Figure 3.6: Algorithm for the matching problem.

3.3.1 Partial Matching

We now define the notion of partial matching (also referred to simply as matching), which
is used to check whether an implementation involves (at least) those inefficiency issues
that underlie a given inefficient specification.

Definition 3.15 (Partial Matching). Let Pspec be a specification with observed locations
Loc1, and let Pimpl be an implementation whose assignment statements are labeled by
Loc2.

Then, implementation Pimpl (partially) matches specification Pspec, on a set of inputs I,
if and only if there exists a mapping function π : Loc1 → Loc2, and an assignment to
non-deterministic variables σnd , such that γ1,σ ⊑π γ2,σ, for all input valuations σ ∈ I,
where γ1,σ =JPspecK(σ ∪ σnd), γ2,σ =JPimplK(σ).

We recall that we defined the ⊑ relation in Definition 2.6 (Section 2.2).

Figure 3.6 shows our algorithm, Matches, for testing if an implementation Pimpl

(partially) matches a given specification Pspec over a given set of inputs valuations I. In
lines 4-5, the implementation Pimpl is executed on all input valuations σ ∈ I. In line 7,
the algorithm iterates through all assignments σnd to the non-deterministic variables
BPspec of the specification Pspec. In lines 8-9, the specification Pspec is executed on all
input valuations σ ∈ I. With both sets of traces, (γ1,σ)σ∈I and (γ2,σ)σ∈I , available, line
10 calls the algorithm Embed⊑ which returns True if there exists a trace embedding.

We remind the reader that we have given the Embed 1 algorithm in Figure 2.2 and
discussed it in Section 2.2 and Section 2.3. Next, we discuss the Matches algorithm on
an example.

Example 3.16. In Section 3.2 we have discussed the implementation C3 (Example 3.13)
and the specification CS’ (Example 3.14).

1We omit the subscript ⊑ when it is clear from the context.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Algorithms

In those examples we have given the traces for the implementation and the specification
when executed on the input s="aab" and t="aba". We point out that the matching
algorithm works on a set of the inputs, but to make the presentation easier to follow we
discuss the algorithm on this single input. This results in a single trace, instead of a set
of traces.

We obtained the trace γC3 from the implementation, and the traces γCS’,true and γCS’,false

from the specification, depending on the value of the non-deterministic variable nd1.

In this case the algorithm first calls the algorithm Embed with the traces γC3 and γCS’,true.
There is no embedding between those two traces, hence Embed returns False, and the
algorithm continues execution.

Next, the algorithm calls Embed with the traces γC3 and γCS’,false. There is an embed-
ding between these two traces, hence Embed returns True, and therefore the matching
algorithm also returns True.

3.3.2 Full Matching

Next we define the notion of full matching, which is used to match implementations against
efficient specifications. To ensure that an implementation has at most the complexity of
the efficient implementation, we put some additional constraints on the matching: we
require that for every loop and every library function call in the implementation there is
a corresponding loop and library function call in the specification. We start by defining
these notions formally.

Definition 3.17 (Loop Iterations). We extend the construction of the implementation
trace (defined in Section 3.2.2): for each statement ℓ : while v do s, we additionally
append element (ℓ, ⊥) to the trace whenever the loop body s is entered. We call (ℓ, ⊥) a
loop iteration.

Definition 3.18 (Observed Loop Iterations and Library Function Calls). We extend the
relation ⊑full defined in Definition 2.11.

Let γ1 = (ℓ1,1, val1,1) · · · (ℓ1,n, val1,n), and γ2 = (ℓ2,1, val2,1) · · · (ℓ2,m, val2,m) be two traces
(over some set of locations Loc). Next, let γ1 ⊑full γ2; hence there is an injective function
ρ : {1, . . . , n} → {1, . . . , m} that maps matched elements of γ1 to the elements of γ2.

We say that all loops are observed (in γ2) if and only if: for each pair (ℓ2,i1
, ⊥) ∈ γ2 and

(ℓ2,i2
, ⊥) ∈ γ2 where i1 < i2 and ℓ2,i1

= ℓ2,i2
, there is 1 ≤ j ≤ n, such that i1 < ρ(j) < i2.

We say that all library calls are observed (in γ2) if and only if: for each (ℓ2,i, f(val1, . . . , valk)) ∈
γ2, there is 1 ≤ j ≤ n, such that ρ(j) = i.

We set γ1 ⊑fullObserve γ2 if and only if:

• γ1 ⊑full γ2, and

• all loops and library calls are observed in γ2 (as defined above).

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

In other words, we require that between any two iterations of the same loop in the
implementation there exists some observed location in the specification, and that each
function call in the implementation is also observed in the specification.

We point out that ⊑fullObserve is closed under location-projection (as defined in Defini-
tion 2.15), and hence we can use the Embed⊑fullObserve

algorithm.

Definition 3.19 (Full Matching). Let Pspec be a specification with observed locations
Loc1, and let Pimpl be an implementation whose assignment statements are labeled by
Loc2.

Then, implementation Pimpl fully matches specification Pspec, on a set of inputs I, if
and only if there exists a mapping function π : Loc1 → Loc2, and an assignment to
non-deterministic variables σnd , such that γ1,σ ⊑π

fullObserve γ2,σ, for all input valuations
σ ∈ I, where γ1,σ =JPspecK(σ ∪ σnd), γ2,σ =JPimplK(σ).

However, it might be quite tedious for a teacher to exactly specify all possible loop
iterations and all library function calls that might be used in different efficient imple-
mentations. Therefore, we equip the defined language with two additional constructs to
simplify the specification task.

Definition 3.20 (Cover Statements). We extend the language defined in Figure 3.3
with two additional cover statements: ℓ : cover (v) and ℓ : cover (f(v1, . . . , vn)) (that are
available only in the specifications).

The first statement allows the ⊑fullObserve relation to relate ℓ (in the specification) to a
location in the implementation that appears at most σ(v) times for each appearance of ℓ,
where σ(v) is the current value of the variable v.

The second statement is the same as the statement ℓ : observeFun (f(v1, . . . , vn)), except
that we allow the ⊑fullObserve relation to not relate ℓ to any location in the implementation.

This enables the teacher to:

1. Cover any loop with up to σ(v) iterations, with the first cover statement, and

2. Specify that the function f(v1, . . . , vn) may or may not appear in the implementation,
with the second cover statement.

We point out that it is easy to extend the ⊑fullObserve relation to respect the definition of
the cover statements. Next, we discussed the defined notions on an example.

Example 3.21. We already mentioned an efficient implementation E1 for the Anagram
problem in Figure 1.3 (c). Figure 3.7 (a) shows another efficient implementation E2

for the Anagram problem. The implementation E2 is similar to the implementation E1,
but instead of using two arrays to count the character occurrences for each of the input

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Algorithms

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4

5 char[] cs = s.ToCharArray();

6 char[] ct = t.ToCharArray();

7

8 int[] hash = new int[256];

9

10 for (int i=0; i<255; ++i) {

11 hash[i] = 0;

12 }

13 foreach (char ch in cs) {

14
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

hash[(int)ch]++;

15 }

16 foreach (char ch in ct) {

17
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

hash[(int)ch]--;

18 }

19 for (int i=0; i<255; ++i) {

20 if (hash[i] < 0)

21 return false;

22 }

23 return true;

24 }

(a) Efficient / Difference (E2).

1 void Puzzle(string s, string t) {

2 if (
✿✿

nd1){

3 string tt = t;

4 t = s;

5 s = tt;

6 }

7 int[] cs = new int[256];

8 int ct = new int[256];

9

10
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cover (ToCharArray());

11
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cover (ToCharArray());

12
✿✿✿✿✿✿✿✿✿✿

cover (255);

13

14 for (int i = 0; i < s.Length; ++i) {

15 cs[(int)s[i]]++;

16
✿✿✿✿✿✿✿✿✿✿✿

observe (cs);

17 }

18 for (int i = 0; i < t.Length; ++i) {

19 if (
✿✿

nd2) {

20 cs[(int)t[i]]--;

21
✿✿✿✿✿✿✿✿✿✿✿

observe (cs);

22 } else {

23 ct[(int)t[i]]++;

24
✿✿✿✿✿✿✿✿✿✿✿

observe (ct);

25 }

26 }

27
✿✿✿✿✿✿✿✿✿✿

cover (255);

28 }

(b) Efficient specification (ES).

Figure 3.7: Examples for the efficient implementation and specification.

strings, it uses one array to count the character occurrences of the first input string, and
subtracts the count of the character occurrences of the second input string.

Figure 3.7 (b) shows a specification ES for an efficient strategy, inspired by the imple-
mentations E1 and E2, for the Anagram problem.

The teacher observes computed values (arrays with the count of character occurrences) at
lines 16, 21 and 24. Further the teacher uses two non-deterministic variables:

• nd1 at line 2 to swap the input strings, and

• nd2 at line 19 to choose whether implementations count the number of characters
in each string (inspired by E1), or substract one number from another (inspired by
E2).

Finally, the teacher uses cover statements to:

• At lines 10 and 11 to allow for up to two ToCharArray library function calls, and

• At lines 12 and 27 to allow for up to two loops with at most 255 iterations.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

1 bool Puzzle(string s, string t) {

2 if(s.Length != t.Length)

3 return false;

4 Char[] taux = t.ToCharArray();

5 for(int i = 0; i < s.Length; i++) {

6 Char sc = s[i];

7 Boolean exists = false;

8 for(int j = 0; j < t.Length; j++) {

9 if(sc == taux[j]) {

10 exists = true;

11
✿✿✿✿✿✿

taux[j]
✿✿

=
✿✿✿✿

’-’;

12 break;

13 }

14 }

15 if(exists == false)

16 return false;

17 }

18 return true;

19 }

Figure 3.8: Removing / Manual 2 (R4)

3.4 Extensions

In this section, we discuss useful extensions to the core material presented so far. These
extensions are part of our implementation, but we discuss them separately to make the
presentation easier to follow.

3.4.1 Custom Data Equality

Another source of variations in implementations of the same strategy is data-representation.

That is, implementations might implement the same strategy using different representation
of the data, and therefore key-values will be different, although related or similar.

We discuss this on an example.

Example 3.22. In Figure 1.5 (Section 1.4) we have given the implementation R3;
this implementation implements the removing strategy (also discussed in Section 1.4).
Figure 3.8 shows the implementation R4, also implementing the removing strategy.

The implementations R3 and R4 implement the removing strategy in almost identical
ways — the only difference is at lines 11 in both programs: the former implementation
marks a character removed from a string with ’#’, the latter with ’-’. Thus, the only
difference is in the data representation of the removed characters.

The difference in the discussed example could be handled using non-deterministic variables,
however we would need to add a new such variable for each new character used to mark
removed characters.

Instead we extend the language to allow the teacher to specify custom data equality over
the observed values.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Extensions

1 void Puzzle(string s, string t) {

2 if (
✿✿

nd1) {

3 string tt = t;

4 t = s;

5 s = tt;

6 }

7 for (int i = 0; i < s.Length; ++i) {

8 if (s.Substring(i) == t) return;

9 int ni =
✿✿✿

nd2 ? i : s.Length - i - 1;

10 int k =
✿✿

nd3 ? t.IndexOf(s[ni])

11 : t.LastIndexOf(s[ni]);

12 t = t.Remove(k, 1);

13
✿✿✿✿✿✿✿✿

observe (t,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

CompareLetterString);

14 }

15 }

(a) Removing Specification (RS)

1 bool CompareLetterString(string a, string b){

2 var la = a.Where(x => char.IsLetter(x));

3 var lb = b.Where(x => char.IsLetter(x));

4 return la.SequenceEqual(lb);

5 }

(b) Custom data equality function (CDE)

Figure 3.9: Custom data equality example.

Definition 3.23 (Comparison function). We extend the observe and observeFun

constructs with the additional comparison parameter ξ ∈ E.

A function δ : Loc → E is called a comparison function, and defined in the following way:

• For any ℓ : observe (v, ξ) or ℓ : observeFun (f(v1, . . . , vn), ξ) we have δ(ℓ) = ξ;

• For the observe statements where ξ is left out (not specified), we have δ(ℓ) = ξdef .

We remind the reader that we defined E and ξdef in Definition 3.6.

In practice the teacher specifies ξ by providing a function (Val × Val) → {true,false}.
The teacher can then use ξ to define the equality of similar computation values.

The comparison function defined in a specification is then used in matching and trace
embedding as defined in Definition 2.13 and discussed in Section 2.3.

We illustrate the usage of a comparison function specified by a teacher on an example.

Example 3.24. In the previous example we discussed the implementations R3 and R4

(for the removing strategy); these implementations differ in the character that they use to
represent the removed characters.

Figure 3.9 show the specification RS (for the removing strategy), which uses the equality
function CompareLetterString (CDE, given in the same figure). The equality

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4 string cp = t;

5 for(int i=0; i<s.Length; i++) {

6 char k = s[i];

7 bool found = false;

8 for(int j=0; j<cp.Length; j++) {

9 if (cp[j] == k) {

10 if (j == 0) {

11
✿✿

cp
✿

=
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Char)0+cp.Substring(1)a;

12 } else if(j == cp.Length - 1) {

13
✿✿

cp
✿

=
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cp.Substring(0,
✿✿✿✿✿✿✿✿✿✿

j)+(Char)0;

14 } else {

15
✿✿

cp
✿

=
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cp.Substring(0,
✿✿✿

j)
✿✿

+

16
✿✿✿✿✿✿

(Char)
✿✿

0
✿✿

+
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cp.Substring(j
✿✿

+
✿✿✿

1);

17 }

18 found = true;

19 break;

20 }

21 }

22 if (!found)

23 return false;

24 }

25 return true;

26 }

Figure 3.10: Removing / Separate Computation (R5).

function compares only the letters of two strings, while ignoring any other non-letter
characters.

The teacher uses the equality function in the observe statement at line 13. Hence, the
teacher defines value representation of the both implementations 2 as equal.

3.4.2 One-to-many Mapping

According to definition of Trace Embedding (Definition 2.6), an embedding witness
π maps one implementation location to a specification location, i.e., it constructs a
one-to-one mapping. However, it is possible that a student splits a computation of some
value over multiple locations; we discuss this on an example.

Example 3.25. Figure 3.10 gives another example of a student attempt (R5) that
implements the removing strategy for the Anagram problem.

In this implementation the student removes a character from the input string across three
different locations (on lines 11, 13, and 15-16), depending on the location of the removed
character in the string.

2In this case of the implementations R3 and R4, but in general also for any other implementation
that uses non-letter characters to mark the removed characters.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Extensions

This example requires to map a single location from the specification to multiple locations
in the implementation. For this reason, we extend the notion of trace embedding to
one-to-many mappings:

Definition 3.26 (One-to-many mapping). We extend mapping π : Loc1 → Loc2, to
π : Loc1 → 2Loc2, with restriction π(ℓ) ∩ π(ℓ′) = ∅, for all ℓ, ℓ′ ∈ Loc1 such that ℓ 6= ℓ′.

It is easy to extend the algorithm Embed to this settings: the potential graph G is
also helpful to enumerate every possible one-to-many mapping. However, it is costly
and unnecessary to search for arbitrary one-to-many mappings. We use heuristics to
consider only a few one-to-many mappings. For example, one of the heuristics in our
implementation checks if the same variable is assigned in different branches of an if-
statement (e.g., in the above example R5, for all three locations there is an assignment
to variable cp).

We note that although many-to-many mappings may seem more powerful, the teacher
can always write a specification that is more succinct than the implementation of the
student, i.e., the above described one-to-many mappings provide enough expressivity to
the teacher.

3.4.3 Non-determinism in Semantics

1 void Puzzle(string s) {

2 // ...

3 HashSet<char> set =

4 new HashSet<char>();

5 foreach (char ch in s.Reversed()) {

6 set.Add(ch);

7 }

8 // ...

9 foreach (char ch in set) {

10 // ...

11 }

12 // ...

13 }

(a) An implementation.

1 void Puzzle(string s) {

2 HashSet<char> set =

3 new HashSet<char>();

4 foreach (char ch in s) {

5 set.Add(ch);

6 }

7 foreach (char ch in set) {

8
✿✿✿✿✿✿✿✿✿✿✿

observe (ch);

9 }

10 }

(b) A specification.

Figure 3.11: Example of two programs whose behavior depends on the iteration order of
sets.

Trace Embedding requires equal values in the same order in both the specification and
implementation traces. However, an implementation can use a library function or a
data structure with non-deterministic semantics, e.g., the values returned by a random
generator or the iteration order over a set data structure.

For such library functions and data-structures we eliminate non-determinism by fixing
one particular behavior. In this way, any implementation becomes deterministic, that is,

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

on every execution (on the same input) it generates the same values in the same order,
as required by the Trace Embedding notion.

For example, we fix the values returned by a random generator or the iteration order
over a set during program instrumentation.

We point out that the fixed, deterministic, behavior does not impact functionally correct
programs because they cannot rely on some non-deterministic behavior but allow us to
apply our matching techniques.

Example 3.27. Figure 3.11 shows two programs 3 (a specification and an implementa-
tion) whose behavior depends on the (non-deterministic) order of iteration of sets. 4

In the implementation the student adds all the characters of the input string s to the
hash-set set in the reversed order (at lines 5-7), and then iterates this set (lines 9-11).

In the specification the teacher also adds all the characters of the input string s to the
hash-set set (although not in the reversed order; lines 4-6), and then iterates this set
(lines 7-9) and observes the iteration character (line 8).

The semantics of iteration over sets is under-specified: the order in which the set elements
are iterated can depend on the underlying set implementation, an order in which the
elements were inserted, and possible other undocumented factors. Hence, the implemen-
tation might or might not match the specification, depending on this non-deterministic
behavior.

However, the sets in the implementation and the specification are equal (they contain
the characters of the input string), and we would want that the implementation matches
the specification. As mentioned above, we achieve this by fixing the order in which the
set elements are iterated; in this example we might always iterate the characters in the
alphabetic order.

3.5 Usage Methodology

In this section we discuss how we envision the described approach would be used by a
teacher in a real programming class.

General setting We imagine two usage scenarios:

• A classroom setting, where the teacher wants to classify student attempts in order
to grade them, and provide a feedback with the grade. Additionally, the teacher
can allow students to submit a new version after the feedback has been given.

3We point out that these are artificially made examples to illustrate non-deterministic behavior.
4Lines with the comment //... in the implementation denote some missing code irrelevant for this

example.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Usage Methodology

• A MOOC setting, where students are given automated, interactive, feedback, and
they can re-submit until they reach a final version. Of course, the number of
re-submissions, and the number of times the feedback can be received, could be
limited, or points could be deducted for the provided help.

We point out that in both cases the methodology is identical.

High-level view We remind the reader of the discussion in Section 3.1, and the high-
level overview in Figure 3.1: The teacher is maintaining a list of specifications, each for
one strategy, and both efficient and inefficient specifications. Each specification has a
textual feedback assigned to it. In the case of an inefficient specification it could be an
explanation of why the strategy is inefficient and how to make it efficient. In the case
of an efficient specification it could either acknowledge that the strategy is efficient, or
point to other possible efficient solutions (strategies).

Granularity of feedback The granularity of a feedback depends on the teacher. For
example, in a programming problem where sorting the input value is an inefficient strategy,
the teacher might not want to distinguish between different sorting algorithms, as they
do not require a different feedback. However, in a programming problem where students
are asked to implement a sorting algorithm it makes sense to provide different feedback
for different sorting algorithms.

Input values Our dynamic analysis approach requires the teacher to associate input
values with specifications. These input values should cause the corresponding implemen-
tations to exhibit their worst-case behavior; otherwise an inefficient implementation might
behave similar to an efficient implementation and for this reason match the specification
of the efficient implementation. This implies that trivial inputs should be avoided. We
remark that it is easy for a teacher, who understands the various strategies, to provide
good input values.

Example 3.28. Two strings with unequal lengths constitute a trivial input for the count-
ing strategy since each of its three implementations C1-C3 (Figure 1.1 and Figure 1.4)
then exit immediately. Similarly, providing a sorted input for the sorting strategy is
meaningless.

For example, for all specifications in the anagram problem we used the following single
input:

s = "ddeccdlzzzeefabbcedddeghikeddddddz"

t = "eddccdlzzeghikeddddddzzeefabbceddd"

When a student submits an implementation, one of two scenarios can happen:

1. The implementation matches some specification, and the student is presented with
the feedback assigned to this specification, either efficient or inefficient. In this

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

case the student is either done, or changes her implementation according to the
provided feedback and resubmits the new implementation (potentially receiving
new feedback).

2. The implementation does not match any specification and the teacher is notified
that there is an unmatched implementation. In this case the student needs to wait
until feedback is available.

Unmatched implementation and Inspection step In the case of an unmatched
implementation, the teacher studies the implementation and identifies one of the following
reasons why it fails to match some existing specification:

(a) The student has written an implementation of a new algorithmic strategy for which
there is no specification yet. In this case the teacher writes a new specification for
this strategy.

(b) The student has written an implementation of an algorithmic strategy for which
there is a specification, but the implementation does not match this specification;
that is, the existing specification for the strategy is too specific to capture this
implementation. In this case the teacher refines the existing specification to also
match the new implementation.

This process, that we call an inspection step, is repeated for each unmatched implementa-
tion. We now describe the inspection step in more detail.

(a) New specification The teacher creates a new specification using the following
steps:

(a.i) Copy the code of the unmatched specification.

(a.ii) Annotate certain values and function calls with observe statements.

(a.iii) Remove any unnecessary code, that is, not needed by the specification.

(a.iv) Identify input values for the dynamic analysis for matching.

(a.v) Associate a feedback with the specification.

(b) Specification refinement To refine a specification, the teacher first identifies one
of the following reasons as to why an implementation fails to match it:

(b.i) The implementation differs in minor details.

(b.ii) The specification observes more values than those that appear in the implementation.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Usage Methodology

1 bool Puzzle(string s, string t) {

2 if (s.Length != t.Length)

3 return false;

4 foreach (char c in t.ToCharArray()) {

5 int index = s.IndexOf(c);

6 if (index < 0) return false;

7
✿

s
✿✿

=
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

s.Remove(index,
✿✿✿

1);

8 }

9 return true;

10 }

(a) An implementation of a new strategy.

1 void Puzzle(string s, string t) {

2 foreach (char c in t) {

3 int index = s.IndexOf(c);

4 if (index < 0) return;

5 s = s.Remove(index, 1)

6
✿✿✿✿✿✿✿✿

observe (s);

7 }

8 }

(b) A new specification RS1.

1 void Puzzle(string s, string t) {

2 for (int i = 0; i < t.Length; ++i) {

3 int ni =
✿✿✿

nd1 ? i : t.Length - i - 1;

4 char c = t[ni];

5 int index = s.IndexOf(c);

6 if (index < 0) return;

7 s = s.Remove(index, 1)

8
✿✿✿✿✿✿✿✿

observe (s);

9 }

10 }

(c) A refined specification RS2.

1 void Puzzle(string s, string t) {

2 for (int i = 0; i < t.Length; ++i) {

3 if (s == t.Substring(i)) return;

4 int ni =
✿✿✿

nd1 ? i : t.Length - i - 1;

5 char c = t[ni];

6 int index = s.IndexOf(c);

7 if (index < 0) return;

8 s = s.Remove(index, 1)

9
✿✿✿✿✿✿✿✿

observe (s);

10 }

11 }

(d) A refined specification RS3.

Figure 3.12: Examples of unmatched implementations and corresponding new or refined
specifications (obtained from the inspection step).

(b.iii) The implementation uses different data representation.

The teacher then performs one of the following steps, respectively:

(b.i) The teacher adds a new non-deterministic choice, and if necessary, observes new
values or function calls.

(b.ii) The teacher modifies the specification so that it observes less values (e.g., omits
some loop iterations).

(b.iii) The teacher creates or refines a custom data-equality function.

Next we discuss some examples of the inspection step, and specification creation and
refinement.

Example 3.29. We discuss this example on the removing strategy (already discussed in
Section 1.4).

Assume that there is a new unmatched student implementation, similar to the implemen-
tation R1 (Figure 1.3), and that the teacher has not yet seen an implementation of the
removing strategy.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

Hence, the teacher creates a new specification for this strategy. An example of a new
specification is RS1, given in Figure 3.12. We comment on the above steps for creating
a new specification:

(a.i) The teacher started from the code of the implementation R1.

(a.ii) The teacher annotated s, the string from which the characters are removed, with
the observe statement on line 6.

(a.iii) The teacher removed unnecessary code, present in the implementation R1, but
not needed in the specification (e.g., the beginning if-then-else statement, call to
ToCharArray).

(a.iv) The teacher then added some inputs values, or reused the existing ones for the
Anagram problem (as discussed above).

(a.v) Finally, the teacher associates feedback with the specification; as mentioned in Sec-
tion 1.4, this could be: “Use a more efficient data-structure to remove characters”

Next we illustrate specification refinement scenarios.

(b.i) There is a new (unmatched) implementation of the removing strategy where the
student iterates the string t from the end, instead of the beginning.

The teacher refines the earlier specification (RS1) using the non-deterministic
Boolean variable. The result of this refinement is the specification RS2 (Figure 3.12):
the teacher replaces the foreach with for loop (in order to access the index being
iterated), and using the non-deterministic variable nd1 (on line 3) decides whether
to search for the character to remove from the beginning or the end of the string t.

(b.ii) There is a new (unmatched) implementation of the removing strategy where the
student performs a check in the loop whether the remaining of the original string
(t) is equal to the string from which the characters are removed (s), and returns
immediately in this case.

The teacher refines the earlier specification (RS2) by also returning (exiting) earlier,
i.e., by observing less values. The result of this refinement is the specification RS3

(Figure 3.12): the additional equality check and early return are added at line 3.

(b.iii) There is a new (unmatched) implementation of the removing strategy where the
student replaces removed characters with some special characters. This is the
situation that we have already discussed in Section 3.4.1; we have also discussed
the specification RS that uses a custom data-equality function for this purpose
(Figure 3.9).

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. Implementation

1 $./observer.exe anagram.json CS.cs C3.cs -v

2

3 DEBUG: Analyzing C3.cs

4 DEBUG: NDs: {True}

5 Loops:

6 5: foreach (var item in s) (line 4)

7 Expressions:

8 12: item (line 4)

9 Potential:

10 1: {{12}}

11 2: {}

12 4: {}

13 5: {}

14 7: {}

15 DEBUG: NDs: {False}

16 Loops:

17 5: foreach (var item in s) (line 4)

18 Expressions:

19 6: s.Split(item) (line 5)

20 7: s.Split(item).Length (line 5)

21 8: t.Split(item) (line 6)

22 9: t.Split(item).Length (line 6)

23 12: item (line 4)

24 Potential:

25 1: {{12}}

26 3: {{6}, {8}}

27 4: {{7}, {9}}

28 6: {{6}, {8}}

29 7: {{7}, {9}}

30 MAP:

31 1 -> {12}

32 3 -> {6}

33 4 -> {7}

34 6 -> {8}

35 7 -> {9}

36 OK!

37 *MATCH*

Figure 3.13: A sample output of the Observer tool.

3.6 Implementation

We have implemented the presented framework, namely the algorithms Embed and
Matches, in a tool called Observer. The implementation is in C#, and analyzes C#

programs; that is, implementations and specifications are written in the C# language
(this is because on Pex4Fun students solve exercises in C#).

Trace Construction We have implemented the trace construction (see Section 3.2.2
and Section 3.2.3) by instrumenting (discussed below) the student’s implementation,
and providing observe and cover functions, as well as providing the special non-
deterministic Boolean variables (distinguished by the prefix nd) to the teacher.

Further, we fixed the iteration order on data-structures where order is non-deterministic
(as discussed in Section 3.4.3). This was done by instrumenting the iteration and
conversion of unordered data-structures to ordered ones.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

We want to point out that the framework is language-independent; that is, it would be
quite easy to implement it in any (imperative) language that can be suitably, as discussed
above, instrumented to generate a computation trace.

Instrumentation The instrumentation was implemented using Microsoft’s Roslyn
compiler framework 5. The implementation replaces each sub-expression with code that
assigns an unique ID (program location), and remembers its value during an execution;
and thus creating a computation trace. We point out that assigning a unique ID to each
subexpression in the implementation achieves the same purpose as the three-address
code in our formal model (each subexpression has a unique program location and it is
recorded in the trace).

Next, we discuss an example when the tool is run on some specification-implementation
pair. Additional discussion, further examples, and the tool itself are available on the
original publication’s experimental evaluation web site 6.

The tool is run on a set of inputs (provided as a JSON file), a single teacher specification
and on one or more student implementations; additionally the teacher has to specify
whether to use partial or full matching. The output is Match or No Match, and some
additional (optional) information on why matching succeeded or failed.

Example 3.30. We discuss the invocation of the tool on the counting specification CS’

(Figure 3.5) and the implementation C3 (Figure 1.4). This sample invocation is shown
in Figure 3.13; we discuss some interesting details.

At line 1, the tool observer.exe is invoked with the inputs anagram.json (discussed
in Example 3.28), on the specification CS.cs (CS’) and the implementation C3.cs

(C3). Additionally, the tool is given the -v flag, which results in printing some additional
(verbose) debug information.

The tool first explores the case when the non-deterministic variable nd1 is True (lines
4-14 of the output). In this case the tool does not find an embedding, and hence the
specification and the implementation do not match; we remind the reader that we have
discussed this in more detail in Example 3.16.

The tool next explores (as discussed in Example 3.16) the case when the non-deterministic
variable nd1 is False (lines 15-37). In this case the tool finds an embedding and the
specification and the implementation match. The actual embedding is given at lines 30-35;
we comment on how to interpret the output next.

Lines 18-23 list the matched expressions of C3 (we point out that these are the underlined
expression in Figure 1.4), together with their unique IDs. Hence, the output at lines
30-35 encodes the following information:

5http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
6http://forsyte.at/static/people/radicek/fse14/

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.7. Experimental Evaluation

• The first observe statement in CS’ (at line 4) matches the expression with ID
12 (at line 4).

• The third observe statement in CS’ (at line 11) matches the expression with ID
6 (at line 5).

• And similarly for all other observe statements and listed expressions.

The output also includes:

• The list of loops (lines 16-17) in the implementation. However, this is only relevant
for efficient specifications (discussed in Example 3.21).

• The constructed potential graph (lines 24-29) during the running of the Embed

algorithm (discussed in Section 2.2).

• Additional information (not shown here) about the running of the algorithm. We
point the interested reader to the evaluation web site mentioned above for more
information.

3.7 Experimental Evaluation

In this section we describe an experimental evaluation of the implementation of our
framework.

3.7.1 Data

The evaluation data, as already discussed Section 1.4, consisted of 3 programming
problems that already existed on Pex4Fun, and 21 additional programming problems
that we created.

Existing Programming Problems The descriptions of the 3 preexisting problems
from Pex4Fun are given in Appendix A.1.1. We have chosen these 3 specific problems
because they had a high number of student attempts, diversity in algorithmic strategies
and a problem was explicitly stated (for many problems on the Pex4Fun platform
students have to guess the problem from failing input-output examples).

Created Programming Problems We have created a new course 7 on Pex4Fun.
These problems were assigned as a homework to students in a second year undergraduate
course. We created this course to understand performance related problems that computer
science students make, as opposed to regular Pex4Fun users who might not have previous
programming experience. We encouraged our students to write efficient implementations
by giving more points for performance efficiency than for mere functional correctness.

7http://pexforfun.com/makingprogramsefficient

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

The course consists of the 21 programming problems; the descriptions of these problems
are given in Appendix A.1.2.

3.7.2 Evaluation

The aggregated evaluation results are in Table 3.1. Below we discuss the results in detail.

Results from the manual code study We first observe that a large number of
students managed to write a functionally correct implementation on most of the problems
(column # correct implementations). This shows that Pex4Fun succeeded in guiding
students towards a correct solution.

Our second observation is that for most problems a large fraction of correct implementa-
tions is inefficient (column # inefficient implementations), especially for the Anagram
problem: 90%. This shows that although students manage to achieve functional correct-
ness, efficiency is still an issue (recall that in our homework the students were explicitly
asked and given extra points for efficiency).

We also observe that for all, except two, problems there is at least one inefficient algo-
rithmic strategy, and for most problems (62.5%) there are several inefficient algorithmic
strategies (reported in the column N). These results highly motivate the need for a tool
that can find inefficient implementations and also provide a meaningful feedback on how
to fix the problem.

The questions we were interested in the evaluation are the following:

(1) Are the proposed specification language and framework precise and expressive enough
for providing strategy-based feedback?

(2) What is the teacher effort required to provide feedback using the proposed method?

(3) What is the performance of the framework?

Precision and Expressiveness For each programming problem we used the method-
ology described in Section 3.5, and wrote a specification for each algorithmic strategy
(both efficient and inefficient). We then manually verified that each specification matches
all implementations of the strategy, hence providing desired feedback for implementations.
This shows that our approach is precise and expressive enough to capture the algorithmic
strategy, while ignoring low level implementation details.

Teacher Effort To provide manual feedback to students the teacher would have to
go through every implementation and look at its performance characteristics. In our
approach the teacher has to take a look only at a few representative implementations. In
column S we report the total number of inspection steps that we required to fully specify
one programming problem, i.e., the number of implementations that the teacher would

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.7. Experimental Evaluation

P
r
o

b
le

m
#

c
o

r
r
e

c
t

#
in

e
ffi

c
ie

n
t

N
S

I
N

D
L

S
/ L

I
O

S
O

I
M

P
e

r
fo

r
m

a
n

c
e

(i
n

s)
N

a
m

e
im

p
ls

.
im

p
ls

.
A

v
g

.
M

a
x

.

A
n

a
g
ra

m
2
9
0

(3
7
.9

%
)

2
6
1

(9
0
.0

%
)

5
2
5

1
3

1
.4

1
1
1

8
9

2
8
3
5
7

0
.4

2
7
.6

7
Is

S
o
rt

ed
1
4
6
0

(9
0
.1

%
)

1
3
9

(9
.5

%
)

3
2
3

2
2

1
.4

5
6

5
1

1
3

0
.3

3
1
.3

1
C

a
es

a
r

5
6
6

(8
1
.2

%
)

3
4
3

(6
0
.6

%
)

5
1
8

1
1

1
.1

0
7

3
9

1
7
2

0
.3

7
0
.8

3

D
o
u

b
le

C
h

a
r

4
6

(9
7
.9

%
)

3
1

(6
7
.4

%
)

1
5

1
0

0
.7

2
3

2
3

2
0
.3

1
0
.4

2
L

o
n

g
es

tE
q

u
a
l

3
7

(7
8
.7

%
)

1
(2

.7
%

)
1

3
1

0
0
.5

7
1

3
5

2
0
.3

3
0
.4

4
L

o
n

g
es

tW
o
rd

3
9

(8
3
.0

%
)

1
3

(3
3
.3

%
)

2
6

2
0

1
.3

1
7

4
6

1
5

0
.3

5
0
.4

7
R

u
n

L
en

g
th

4
3

(9
7
.7

%
)

3
2

(7
4
.4

%
)

1
6

1
0

0
.9

0
8

3
7

5
4

0
.3

3
0
.4

4
V

ig
en

er
e

4
1

(9
3
.2

%
)

3
2

(7
8
.0

%
)

3
5

1
0

0
.6

4
3

8
4

6
0
.3

4
0
.5

0
B

a
se

T
o
B

a
se

1
5

(3
9
.5

%
)

1
4

(9
3
.3

%
)

2
5

1
1

0
.3

5
3

6
4

1
3

0
.3

6
0
.4

8
C

a
tD

o
g

4
1

(8
7
.2

%
)

8
(1

9
.5

%
)

2
1
8

1
1

2
.0

2
2
1

5
3

1
6
2
9

0
.3

6
0
.5

8
M

in
im

a
lD

el
et

e
1
5

(3
9
.5

%
)

8
(5

3
.3

%
)

1
8

2
3

2
.2

1
4

7
5

1
0

0
.8

6
4
.3

6
C

o
m

m
o
n

E
le

m
en

t
4
3

(9
5
.6

%
)

3
2

(7
4
.4

%
)

4
1
4

2
1

0
.9

7
6

7
9

1
0
7

0
.3

6
0
.5

3
O

rd
er

3
4
0

(8
7
.0

%
)

3
0

(7
5
.0

%
)

6
1
2

1
2

1
.4

5
6

7
8

1
9

0
.4

0
0
.5

9
2
D

S
ea

rc
h

3
7

(8
4
.1

%
)

3
6

(9
7
.3

%
)

3
7

1
1

1
.0

9
2

6
7

1
0
.3

4
0
.4

5
T

a
b

le
A

g
g
S

u
m

1
1

(2
5
.0

%
)

1
0

(9
0
.9

%
)

1
5

1
1

0
.8

0
3

1
4
4

1
0
.4

0
0
.5

3
In

te
rs

ec
ti

o
n

1
4

(3
1
.8

%
)

1
2

(8
5
.7

%
)

3
7

2
1

0
.8

9
4

7
3

5
0
.3

7
0
.5

6
R

ev
er

se
L

is
t

3
9

(9
7
.5

%
)

0
(0

.0
%

)
0

3
1

0
0
.3

5
4

3
4

1
0
.3

4
0
.4

4
S

o
rt

in
g
S

tr
in

g
s

4
1

(9
1
.1

%
)

3
4

(8
2
.9

%
)

5
1
1

1
1

1
.4

8
1
3

1
1
0

8
6
6

0
.5

5
1
4
.5

9
M

in
u

te
sB

et
w

ee
n

4
5

(1
0
0
.0

%
)

0
(0

.0
%

)
0

5
1

0
0
.6

4
8

1
0
1

1
0
.3

7
0
.4

8
M

a
x

S
u

m
4
2

(9
5
.5

%
)

1
7

(4
0
.5

%
)

2
7

1
1

1
.1

4
2

5
1

3
0
.3

5
0
.4

7
M

ed
ia

n
4
7

(1
0
0
.0

%
)

4
7

(1
0
0
.0

%
)

1
1

1
0

0
.3

9
1

1
0
0

1
0
.3

4
0
.4

4
D

ig
it

P
er

m
u

ta
ti

o
n

3
6

(1
0
0
.0

%
)

1
(2

.8
%

)
1

3
1

0
0
.2

6
4

2
9

4
0
.3

2
0
.4

4
C

o
in

s
2
7

(6
5
.9

%
)

1
4

(5
1
.9

%
)

2
6

1
1

1
.6

5
4

9
3

1
7
5

2
.4

1
1
5
.4

4
S

eq
2
3
5

3
3

(8
9
.2

%
)

3
0

(9
0
.9

%
)

4
1
2

1
2

1
.7

9
3

2
3
2

3
0
.9

4
2
2
.0

8

T
ab

le
3.

1:
L

is
t

of
al

l
p
ro

gr
am

m
in

g
p
ro

b
le

m
s

in
th

e
ev

al
u
at

io
n
,

w
it

h
ex

p
er

im
en

ta
l

re
su

lt
s

(N
is

th
e

nu
m

b
er

of
in

effi
ci

en
t

st
ra

te
gi

es
;

S
is

th
e

nu
m

b
er

of
in

sp
ec

ti
on

st
ep

s;
I

is
th

e
nu

m
b

er
of

in
p
u
ts

;
N

D
is

th
e

m
ax

im
al

nu
m

b
er

of
u
se

d
n
on

-d
et

er
m

in
is

ti
c

va
ri

ab
le

s;
L

S
/ L

I
is

th
e

la
rg

es
t

ra
ti

o
of

sp
ec

ifi
ca

ti
on

an
d

av
er

ag
e

m
at

ch
ed

im
p
le

m
en

ta
ti

on
(i

n
li
n
es

of
co

d
e)

;
O

s
is

th
e

m
ax

im
al

nu
m

b
er

of
ob

se
rv

ed
va

ri
ab

le
s

in
a

sp
ec

ifi
ca

ti
on

;
O

I
is

th
e

m
ax

im
al

nu
m

b
er

of
ob

se
rv

ed
va

ri
ab

le
s

in
an

im
p
le

m
en

ta
ti

on
;

M
is

th
e

m
ax

im
al

nu
m

b
er

of
m

ap
p
in

g
fu

n
ct

io
n
s

th
at

ou
r

to
ol

h
ad

to
ex

p
lo

re
).

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

0 5 10 15 20 25

0

500

1,000

1,500

of inspection steps

#
o
f

m
a
tc

h
ed

im
p

le
m

en
ta

ti
o
n

s

(a) # of required inspection steps (1/3)

Anagram

IsSorted

Caesar

0 5 10 15

0

20

40

of inspection steps

#
o
f

m
a
tc

h
ed

im
p

le
m

en
ta

ti
o
n

s

(b) # of required inspection steps (2/3)

DoubleChar

LongestEqual

LongestWord

RunLength

Vigenere

BaseToBase

CatDog

MinimalDelete

CommonElement

Order3

0 2 4 6 8 10 12

0

10

20

30

40

50

of inspection steps

#
o
f

m
a
tc

h
ed

im
p

le
m

en
ta

ti
o
n

s

(c) # of required inspection steps (3/3)

2DSearch

TableAggSum

Intersection

ReverseList

SortingStrings

MinutesBetween

MaxSum

Median

DigitPermutation

Coins

Seq235

Figure 3.14: The number of inspection steps required to completely specify all the
problems.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.7. Experimental Evaluation

0 10 20 30 40

0

500

1,000

1,500

time [min]

#
o
f

m
a
tc

h
ed

im
p

le
m

en
ta

ti
o
n

s

(a) time required to write/refine specifications (1/3)

Anagram

IsSorted

Caesar

0 10 20 30 40

0

20

40

60

80

time [min]

#
o
f

m
a
tc

h
ed

im
p

le
m

en
ta

ti
o
n

s

(b) time required to write/refine specifications (2/3)

DoubleChar

LongestEqual

LongestWord

RunLength

Vigenere

BaseToBase

CatDog

MinimalDelete

CommonElement

Order3

0 10 20 30

0

20

40

60

80

time [min]

#
o
f

m
a
tc

h
ed

im
p

le
m

en
ta

ti
o
n

s

(d) time required to write/refine specifications (3/3)

2DSearch

TableAggSum

Intersection

ReverseList

SortingStrings

MinutesBetween

MaxSum

Median

DigitPermutation

Coins

Seq235

Figure 3.15: Time (in minutes) required to completely specify all the problems.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

had to go through to provide feedback on all implementations. For the 3 pre-existing
problems the teacher would only have to go through 66 out of 2316 (or around 3%)
implementations to provide full feedback. Figure 3.14 shows the number of matched
implementations with each inspection step, and Figure 3.15 shows the time it took us to
create/refine all specifications (we measured the time it takes from seeing an unmatched
implementation, until writing/refining a matching specification for it).

In column LS/LI we report the largest ratio of specification and average matched imple-
mentation in terms of lines of code. We observe that in half of the cases the largest
specification is about the same size or smaller than the average matched implementation.
Furthermore, the number of the input values that need to be provided by the teacher is
1-2 across all problems (reported in the column I). In all but one problem (IsSorted)
one set of input values is used for all specifications. Also, in about one third of the
specifications there was no need for non-deterministic variables, and the largest number
used in one specification is 3 (reported in the column ND). Overall, our semi-automatic
approach requires considerably less teacher effort than providing manual feedback.

The complete log of inspection steps with all intermediate specifications can be downloaded
from the original publication’s experimental web page 8.

Performance The main purpose of our framework is provide real-time feedback for
a large number of students, so performance is critical. Our implementation consists of
two parts. The first part is the execution of the implementation and the specification
(usually small programs) on relatively small inputs and obtaining execution traces, which
is, in most cases, neglectable in terms of performance. The second part is the Embed

algorithm. As discussed in Section 2.2 the challenge consists in finding an embedding
witness π. With OS observed variables in the specification and OI observed variables
in the implementation, there are OI !

(OI−OS)! possible injective mapping functions. For

example, for the SortingStrings problem that gives ≈ 1026 possible mapping functions
(OI = 110, OS = 13). However, our algorithm reduces this huge search space by
constructing a bipartite graph G of potential mappings pairs. In M we report the number
of mapping functions that our tool had to explore. For example, for SortingStrings only
866 different mapping functions had to be explored. For all values (OS , OI and M) we
report the maximal number across all specifications.

In the last column we show the total execution time required to decide if one implemen-
tation matches the specification (average and maximal). Note that this time includes
execution of both programs, exploration of all assignments to non-deterministic Boolean
variables and finding an embedding witness π. Our tool runs, in most cases, under half a
second per implementation. These results show that our tool is fast enough to be used in
an interactive teaching environment.

8http://forsyte.at/static/people/radicek/fse14/

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.8. Conclusion

3.7.3 Threats to Validity

Unsoundness Our method is unsound in general since it uses a dynamic analysis that
explores only a few possible inputs. However, we did not observe any unsoundness in our
large scale experiments. If one desires provable soundness, an embedding witness could
be used as a guess for a simulation relation [Mil71] that can then be formally verified by
other techniques. Otherwise, a student who suspects an incorrect feedback can always
bring it to the attention of the teacher.

Program size We evaluated our approach on introductory programming assignments,
usually programs with around tens of lines of code. A question might be raised about
the applicability of our approach to larger programs (either from advanced education
or from real-world software engineering). However, we point out that the goal of the
approach was not to analyze arbitrary programs, but rather to develop a framework to
help teachers who teach introductory programming with providing performance feedback

— this is currently a manual, error-prone and time-consuming task, and hence any advance
in this area can bring huge benefits in programming education.

Difficulty of the specification language Although we did not perform a case study
with third-party instructors, we report our experience with using the proposed language
and the implemented tool; that is, we measure effort taken to provide feedback on problems
from a real classroom. We would also like to point out that writing specifications is a
one-time investment, which could be performed by an experienced personnel.

3.8 Conclusion

We have presented a novel semi-automated approach to performance-related feedback
generation in introductory programming. We summarize the key contributions.

Performance feedback generation The key observation is that algorithmic strategies
can be identified by observing key-values computed during the execution. Following this
observation the technical contributions of this chapter are:

• We propose a new language construct, called observe, that allows a teacher to
annotate key-values and thus specify an algorithmic strategy.

• We propose an automated dynamic analysis based approach to test whether a
student’s implementation matches the teacher’s specification.

Implementation and experimental evaluation We describe an implementation of
the proposed approach and its experimental evaluation. We show the following (in terms
of the criteria set in Section 1.2):

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Performance Feedback

• Performance: the feedback is generated under half a second in most cases, hence
enabling interactive teaching.

• Correctness: we observe no false-positives among generated feedback.

• Exhaustiveness: we were able to write specifications for all algorithmic strategies,
thus providing feedback on all student attempts.

• Automation and usefulness: we show huge savings in teacher effort for providing
performance feedback.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Functional Correctness Feedback

In this chapter we describe our approach for providing repair-based functional feedback
on incorrect student attempts.

We start by discussing an overview of the approach on some examples in Section 4.1.

We then continue with the technical development of the approach: in Section 4.2 we
describe some preliminaries required to discuss the core algorithms in Section 4.3, and
some extensions to it in Section 4.4.

In Section 4.5 we describe the methodology how the approach could be used in practice,
we discuss the implementation of the approach in Section 4.6, and in Section 4.7 we
describe our experimental evaluation of the implementation and the obtained results.

4.1 Overview of the Approach

In this section we give an overview of our approach for repairing incorrect student attempts,
in order to provide functional feedback.

Our approach to program repair is based on the matching relation that we discussed in
Chapter 2 (Definition 2.21): two programs match if they have the same memory traces
(up to the renaming of the variables by a bijective function).

Given a correct student solution and an incorrect student attempt (also called an
implementation), the goal is to minimally modify the implementation, such that the
correct solution and the modified implementation have the same memory traces (i.e.,
that they match).

As mentioned earlier, the notion of matching is inspired by the notion of a simulation
relation, adapted for a dynamic program analysis; hence, we also call this notion dynamic
equivalence (to stress the usage of dynamic program analysis).

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

REPAIR

ALGORITHM

.py
B

.py
D

.py
C

.py
F

.py
E

.py
A

CLUSTERING.py
A

.py
B

.py
D

.py
E

.py
C

.py
F

.py
G

R1
MINIMAL

R2 R3

Figure 4.1: High-level overview of the approach.

Figure 4.1 gives a high-level overview of our approach:

(I) For a given programming assignment, we first automatically cluster the correct
student solutions (A-F in the figure), based on the notion of dynamic equivalence
(any two correct solutions in the same cluster match each other). From each cluster
(there are three in the figure) we arbitrary pick a cluster representative (A, E, and
B in the figure).

(II) Given an incorrect student implementation (G in the figure) we run the repair algo-
rithm against each cluster independently; for each cluster the algorithm generates
a candidate repair (R1-R3 in the figure) such that the repaired implementation
and the cluster representative match. Among the candidate repairs, the algorithms
selects the minimal repair w.r.t. some cost metric 1 (R2 in the figure). To gener-
ate a candidate repair the algorithm combines expressions from multiple correct
solutions of a cluster.

The overall idea is to use the wisdom of the crowd: our approach uses the already existing
correct student solutions to repair new incorrect student implementations. The approach
leverages the fact that MOOC courses already have tens of thousands of existing student
attempts; this was already noticed by Drummond et al. [Dru+14].

Intuitively, the clustering algorithm groups together similar correct solutions. The repair
algorithm can be seen as a generalization of the clustering approach of correct solutions
to incorrect attempts. The key motivation behind this approach is as follows: to help
the student, with an incorrect implementation, our approach finds the set of most similar
correct solutions, written by other students, and generates the smallest modifications
that get the student to a correct solution.

1In this thesis we use syntactic distance as the cost metric.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Overview of the Approach

We next discuss some key points about the clustering and repair algorithms. We start by
discussing the clustering algorithm.

The goal of clustering is twofold:

(1) Scalability: elimination of dynamically equivalent correct solutions that the repair
algorithm would otherwise consider separately.

(2) Diversity of repairs: mining of dynamically equivalent, but syntactically different
expressions from the same cluster, which are later used to repair incorrect student
attempts.

We next discuss on an example the notion of dynamically equivalent (correct) solutions,
and discuss dynamically equivalent expressions later, in context of their usage in the
repair algorithm.

Clusters of Dynamically Equivalent Solutions

Two programs, P and Q, belong to the same cluster if they match each other. Hence,
clusters are then equivalence classes of the matching relation.

In order to show that P and Q match, we need to find a total bijective relation between
the variables of P and Q, such that the related variables take the same values, in the
same order, during the execution on the same inputs.

We next discuss this notion on an example. All the examples discussed in this section
are attempts on the derivatives problem: “Compute and return the derivative of a
polynomial function (represented as a list of floating point coefficients). If the derivative
is 0, return [0.0].”

Example 4.1. In Figure 1.7 (Section 1.4) we have given two correct student solutions
for the derivatives problem, D1 and D2.

Programs D1 and D2 match (are dynamically equivalent) because there is the bijective
variable relation: 2

τ = {poly 7→ poly, deriv 7→ result,? 7→ ?, i 7→ e, return 7→ return}

For example, on the input poly = [6.3, 7.6, 12.14], the variable result, takes:

• the value [] before the loop,

• the sequence of values [7.6], [7.6,24.28] inside the loop, and

2The variables ? and return are special variables denoting the loop condition and the return value,
which we need to make the control-flow and the return values explicit. This is further discussed in the
following section (Section 4.2).

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

• the value [7.6,24.28] after the loop.

Exactly the same values are taken by the variable deriv; and similarly for all the other
variables related by τ .

Therefore, D1 and D2 belong to the same cluster, which we denote by C. For further
discussion, we need to fix one correct solution as a cluster representative; we pick D1,
although it is irrelevant which program from the cluster we pick.

The Repair Algorithm

We have given a high-level overview of the repair algorithm in the beginning of this
section. Now we illustrate some details on two examples.

Example 4.2. In Chapter 1 we discussed the incorrect implementations (on the derivatives
problem) I1 (Figure 1.1) and I2 (Figure 1.8). We have also given repairs for these two
implementations in Figure 1.9.

These repairs were generated using the cluster C, with its representative D1.

As mentioned above, the top-level procedure also considers other clusters (not discussed
here), but found the smallest repair using the cluster C.

In the rest of this section we discuss the repair algorithm on a single cluster.

The algorithm generates a repair in two steps:

1. The algorithm generates a set of local repairs for each implementation variable (its
assigned expression). A local repair either replaces an implementation expression
with an expression obtained from the correct cluster, or leaves it unmodified. 3

2. A (whole-program) repair consist of a combination of local repairs, exactly one for
each implementation variable (its assigned expression). There could be numerous
such combinations of local repairs; however we are interested in the correct repair
(such that the repaired implementation and the cluster representative match)
with the smallest cost. The algorithm finds such a repair by using a constraint-
optimization technique.

We are not going to describe these two steps in more detail here (see Section 4.3.2 for
a formal definition and a detailed discussion). However, we are going to discuss, on an
example, how are expressions obtained from the correct solutions of a cluster, and how
are those expressions used in the repair algorithm.

3Actually, the algorithm can also delete or introduce new variables or statements. This is discussed
in more detail in Section 4.4.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Overview of the Approach

1. result += [float(poly[e]*e),]

2. if(e==0): result.append(0.0)

else: result.append(float(poly[e]*e))

3. result.append(1.0*poly[e]*e)

4. result.append(float(e*poly[e]))

5. result += [e*poly[e]]

(a) Expressions for the result variable inside
the loop.

1. if(len(result)==0): return [0.0]

else: return result

2. if(len(result)>0): return result

else: return [0.0]

3. return result or [0.0]

(b) Expressions for the return statement af-
ter the loop.

Figure 4.2: Dynamically equivalent expressions.

Example 4.3. The following expressions are assigned to the variables result (from D1)
and deriv (from D2) inside the loop body; we state the expressions in terms of the
variables of the cluster representative D1:

• append(result, float(poly[e]*e)), and

• result + [float(e)*poly[e]], where

the second expression has been obtained by replacing the variables from D2 with the
variables from D1 using the variable relation τ (e.g., we have replaced deriv with result,
because τ(deriv) = result).

We call the two expression dynamically equivalent, because they produce the same values
on the same inputs (values for the variables in the expressions).

In our benchmark we found 15 syntactically different, but dynamically equivalent, ways
to write expressions for the assignment to the result variable inside the loop body, and
6 different ways to write the return expression after the loop (observing only different
ASTs, and ignoring formatting differences).

Some of these examples are given in Figure 4.2 (all the expressions are stated in terms
of the variables of the cluster representative D1).

Finally, we discuss how are these different expressions used in a repair. In Figure 1.9 (b)
we have given a repair for I2. The cluster representative and the repaired program match,
because there is the following variable relation (we show only a part of the total bijective
relation, relevant for this example):

τ2 ⊆ {poly 7→ poly, result 7→ result, i 7→ e}

This repair combines the following expressions from the cluster C:

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

• The first modification is generated using the expression from the cluster representa-
tive D1, at line 3: range(1, len(poly)).

• The second modification is generated using the expression (4.) from Figure 4.2 (a):
result.append(float(e*poly[e])).

• The third modification is generated using the expression (3.) from Figure 4.2 (b):
return result or [0.0].

In these expressions, the algorithm replaces the variables of D1 with the variables of I2,
using the variable relation τ2 (same as above).

We point out that the algorithm also considered other dynamically equivalent expressions,
but picked the above ones, because they give a correct repair with the smallest cost. For
example, to generate the second modification, the algorithm considered all dynamically
equivalent expressions in Figure 4.2 (a).

4.2 Program Model

In this section we define a program model that captures key aspects of imperative
languages (e.g., C, Python). This model allows us to formalize our notions of program
matching and program repair.

Definition 4.4 (Expressions). Let Var be a set of variables, K a set of constants, and
O a set of operations. The set of expressions E is built from variables, constants and
operations in the usual way. We fix a set of special variables Var ♯ ⊆ Var. We assume
that Var ♯ includes at least the variable ?, which we will use to model conditions, and the
variable return, which we will use to model return values.

Definition 4.4 can be instantiated by a concrete programming language. For example, for
the C language, K can be chosen to be the set of all C constants (e.g., integer, float),
and O can be chosen to be the set of unary and binary C operations as well as library
functions. The special variables are assumed to not appear in the original program text,
and are only used for modelling purposes.

Definition 4.5 (Program). A program P = (LocP , ℓinit , VarP , UP , SP) is a tuple, where
LocP is a (finite) set of locations, ℓinit ∈ LocP is the initial location, VarP is a (finite)
set of program variables, UP : (LocP × VarP) → E is the variable update function that
assigns an expression to every location-variable pair, and SP : (LocP ×{true,false}) →
(LocP ∪ {end}) is the successor function, which either returns a successor location in
LocP or the special value end (we assume end 6∈ LocP). We drop the subscript P when
it is clear from the context.

We point the reader to the discussion around the semantics below for an intuitive
explanation of the program model.

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Program Model

Definition 4.6 (Computation domain, Memory). We assume some (possibly infinite)
set D of values, which we call the computation domain, containing at least the following
values:

1. true (bool true);

2. false (bool false); and

3. ⊥ (undefined).

Definition 4.7 (Memory). Let Var be a set of variables. A memory σ : (Var∪Var ′) → D
is a mapping from program variables to values, where the set Var ′ = {v′ | v ∈ Var}
denotes the primed version of the variables in Var; let ΣVar denote the set of all memories
over variables Var ∪ Var ′.

Intuitively, the primed variables are used to denote the variable values after a statement
has been executed (see the discussion around the semantics below).

Definition 4.8 (Evaluation). A function J·K : E → Σ → D is an expression evaluation
function, where JeK(σ) = d denotes that e, on a memory σ, evaluates to a value d.

The function J·K is defined by a concrete programming language. The function returns
the undefined value (⊥) when an error occurs during the execution of an actual program.

Definition 4.9 (Program Semantics). Let P = (LocP , ℓinit , VarP , UP , SP) be a program.
A sequence of location-memory pairs γ ∈ (LocP × ΣVarP

)∗ is called a trace. Given some
(input) memory ρ, we write JP K(ρ) = (ℓ1, σ1) · · · (ℓn, σn) if:

(1) ℓ1 = ℓinit;

(2) σ1(v) = ρ(v) for all v ∈ VarP ;

(3a) σj(v′) =JUP (ℓj , v)K(σj), and

(3b) σj+1(v) = σj(v′), and

(3c) ℓj+1 = SP (ℓj , σj(?′)), for all v ∈ VarP and 0 ≤ j < n; and

(4) SP (ℓn, b) = end, for any b ∈ {true,false}.

For some trace element (ℓ, σ) ∈ γ and variable v, σ(v) denotes the value of v before the
location ℓ is evaluated (the old value of v at ℓ), and σ(v′) denotes the value of v after
the location ℓ is evaluated (the new value of v at ℓ). The definition of JP K(ρ) then says:

(1) The first location of the trace is the initial location ℓinit .

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

(2) The old values of the variables at the initial location ℓinit are defined by the input
memory ρ.

(3a) The new value of variable v at location ℓj is determined by the semantic function
J·K evaluated on the expression UP (ℓj , v).

(3b) The old value of variable v at location ℓj+1 is equal to the new value at location ℓj .

(3c) The next location ℓj+1 in a trace is determined by the successor function SP for
the current location ℓj and the new value of ? at ℓj (i.e., σj(?′)).

(4) The successor of the last location, ℓn, for any Boolean b ∈ {true,false}, is the
end location end.

We next discuss some peculiar aspects of our model.

Control-flow modelling We model if-then-else statements differently, depending on
whether they contain loops or they are loop-free. In the former case, the branching is
modelled, as usual, directly in the control-flow. In the latter case, (loop-free) statements
are (recursively) converted to ite expressions that behave like a C ternary operator (we
discuss this below on an example). Hence, any loop-free sequence of code is treated as a
single block, since blocks can include nested if-then-else statements without loops (for
example, similar to Beyer et al. [Bey+09]).

We could have picked a different granularity of control-flow; e.g., to treat only straight-
line code (without branching) as a block. However, this particular granularity enables
matching of programs that have different branching-structure, and as a result the repair
algorithm is able to generate repairs that involve missing if-then-else statements (see
Section 4.3).

Multiple or no assignments According to Definition 4.5, we have exactly one as-
signment (update) for each variable per program location; more precisely, UP assigns
exactly one expression to any location-variable pair. However, in C or Python programs
a variable can be unmodified (not assigned) at some location or assigned multiple times.

The former case can be easily modeled by setting UP (ℓ, v) = v, if the variable v is not
assigned at the location ℓ in the program P . The latter case is modeled by rewriting the
assignments in the original program such that there is at most one assignment to each
variable at any program location. We illustrate this on an example.

Example 4.10. In the following sequence of assignment the variable a is assigned twice:
a = 1; b = a + 1; a = 2;

This can be rewritten into a semantically equivalent sequence of assignment, where a is
assigned only once: b = 1 + 1; a = 2;.

Next, we give a complete example of how a concrete program is represented in our model.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Program Model

Example 4.11. We show how a concrete program (D1 from Figure 1.7 in Section 1.1)
is represented in our model.

The set of locations is
Loc = {ℓbefore, ℓcond , ℓloop, ℓafter}

where:

• ℓinit = ℓbefore is the location before the loop, and the initial location,

• ℓcond is the location of the loop condition,

• ℓloop is the loop body, and

• ℓafter is the location after the loop.

The successor function is given by:

• S(ℓbefore,true) = S(ℓbefore,false) = ℓcond ,

• S(ℓcond ,true) = ℓloop, S(ℓcond ,false) = ℓafter ,

• S(ℓloop,true) = S(ℓloop,false) = ℓcond , and

• S(ℓafter ,true) = S(ℓafter ,true) = end.

Note that for non-branching locations the successor functions points to the same location
for both true and false.

The set of variables is
Var = {poly, result, e, return,?, it}

where it is used to model Python’s for-loop iterator. An iterator is a sequence whose
elements are assigned, one by one, to some variable (e in this example) in each loop
iteration. The expression labeling function is given by:

• U(ℓbefore, result) = [],

• U(ℓbefore, it) = range(1,len(poly)),

• U(ℓcond ,?) = len(it)>0,

• U(ℓloop, e) = ListHead(it),

• U(ℓloop, it) = ListTail(it),

• U(ℓloop, result) = append(float(poly[e]*e)),

• U(ℓafter , return) = ite(result==[], [0.0], result).

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

For any variable v that is unassigned at some location ℓ we set U(ℓ, v) = v, i.e., the
variable remains unchanged.

Finally, we state the trace when C1 is executed on the input ρ = {poly 7→ [6.3, 7.6, 12.14]}.
We state only defined variables that change from one trace element to the next. Otherwise,
we assume the values remain the same or are undefined (⊥) (if no previous value existed).

JC1K(ρ) =

(ℓbefore, {poly 7→ [6.3, 7.6, 12.14], result ′ = [], i′ = 0, it ′ = [1, 2]})

(ℓcond , {?′ = true})

(ℓloop, {e′ 7→ 1, it ′ = [2], i′ 7→ 1, result ′ 7→ [7.6]}

(ℓcond , {?′ = true})

(ℓloop, {e′ 7→ 2, it ′ = [], i 7→ 3, result ′ 7→ [7.6, 24.28]}

(ℓcond , {?′ = false})

(ℓafter , {return 7→ [7.6, 24.28]})

4.3 Algorithms

In this section we formally define the clustering and the repair algorithm.

4.3.1 Clustering

The clustering is based on the trace matching notion (defined in Definition 2.21), with
an additional constraint that the programs have the same control-flow.

Hence, informally, two programs match when:

1. The programs have the same control-flow (i.e., the same looping structure); and

2. The corresponding variables in the programs take the same values in the same
order, or in other words, the programs have the same memory traces (up to the
renaming of the variables by a bijective function).

For the following discussion we fix two programs, P = (LocP , ℓinitP
, VarP , UP , SP) and

Q = (LocQ, ℓinitQ
, VarQ, UQ, SQ).

Definition 4.12 (Program Structure). Programs P and Q have the same control-flow
if there exists a bijective function, called structural matching, π : LocQ → LocP , s.t., for
all ℓ ∈ LocQ and b ∈ {true,false}, SP (π(ℓ), b) = π(SQ(ℓ, b)).

We remind the reader, as discussed in Section 4.2, that we encode any loop-free program
part as single control-flow location; as a result we compare only the looping structure of
the two programs.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Algorithms

We note that both our matching and repair algorithms require the existence of a structural
matching π between programs. Therefore, in the rest of this chapter we assume that such a
π exists between any two programs that we discuss, and assume that Loc = LocP = LocQ

and S = SP = SQ, since they can be always converted back and forth using π.

Next, we state two definitions that will be useful later on.

Definition 4.13 (Variables of expression). Let e be some expression, by V(e) = {v | v ∈
e} we denote the set of variables used in the expresison e. We also say that e ranges over
V(e).

Definition 4.14 (Variable substitution). Let τ : Var1 → Var2 be some function that
maps variables Var1 to variables Var2. Given an expression e over variables Var1, i.e.,
V(e) ⊆ Var1, by τ(e) we denote the expression, which we obtain from e, by substituting v
with τ(v) for all v ∈ Var1. Note that V(τ(e)) ⊆ Var2.

In the rest of this chapter we call a bijective function τ : Var1 → Var2, between two sets
of variables Var1 and Var2, a total variable relation between Var1 and Var2.

Next we give a formal definition of matching between two programs. Afterwards, we
give a formal definition of matching between two expressions. The definitions involve
execution of the programs on a set of inputs.

Definition 4.15 (Program Matching). Let I be a set of inputs, and let γP,ρ = JP K(ρ)
and γQ,ρ =JQK(ρ) be sets of traces obtained by executing P and Q on ρ ∈ I, respectively.

We say that P and Q match over a set of inputs I, denoted by P ∼I Q, if there exists
a total variable relation τ : VarQ → VarP , such that γP,ρ ∼τ γQ,ρ, for all inputs ρ ∈ I,
where ∼τ is defined in Definition 2.21.

We call τ a matching witness.

Intuitively, a matching witness τ defines a way of translating Q to range over variables
VarP , such that P and Q translated with τ produce the same traces.

Given a set of inputs I, ∼I is an equivalence relation on a set of programs P : the identity
relation on program variables gives a matching witness for reflexivity, the inverse τ−1 of
some total variable relation τ gives a matching witness for symmetry, and the composition
τ1 ◦ τ2 of some total variables relations τ1, τ2 gives a matching witness for transitivity.

We remind the reader that the algorithm for finding τ is discussed in Section 2.2 and
Section 2.3.

Definition 4.16 (Expression matching). Let Γ ⊆ (Loc × ΣVarP
)∗ be a set of traces

over variables VarP , and let e1 and e2 be two expressions over variables VarP , at some
location ℓ ∈ Loc.

We say that e1 and e2 match over a set of traces Γ, denoted e1 ≃Γ,ℓ e2, if Je1K(σ) =Je2K(σ),
for all (σ, ℓi) ∈ γ where ℓi = ℓ, and all γ ∈ Γ.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

Expression matching says that two expressions produce the same values, when considering
the memories at location ℓ, in a set of traces Γ. In the following lemma we state that
expression matching is equivalent to program matching; this lemma will be useful for our
repair algorithm, which we will state in the next section.

Lemma 4.17 (Matching Equivalence). Let I be a set of inputs, and let ΓI = {JP K(ρ) |
ρ ∈ I} be a set of traces obtained by executing P on I. We have the following equivalence:
P ∼I Q witnessed by τ : VarQ → VarP , if and only if, eP ≃ΓI ,ℓ τ(eQ), for all (ℓ, v1) ∈
Loc × VarP , where v1 = τ(v2), eP = UP (ℓ, v1), and eQ = UQ(ℓ, v2).

Proof. “⇒”: Directly from the definitions. “⇐”: By induction on the length of the trace
γ =JP K(ρ) for some ρ ∈ I.

Clustering We define clusters as the equivalence classes of ∼I . For the purpose of
matching and repair we pick an arbitrary class representative from the class and collect
expressions from all programs in the same cluster:

Definition 4.18 (Cluster). Let P be a set of (correct) programs. A cluster C ⊆ P is an
equivalence class of ∼I . Given some cluster C, we fix some arbitrary class representative
PC ∈ C.

We define the set EC(ℓ, v1) of cluster expressions for a pair (ℓ, v1) ∈ Loc × VarPC
: e1 ∈

EC(ℓ, v1) iff there is some Q ∈ C witnessed by τ : VarQ → VarPC
such that v1 = τ(v2),

e2 = UQ(ℓ, v2) and e1 = τ(e2).

Note that it is irrelevant which program from C is chosen as cluster representative PC;
we just need to fix some program in order to be able to define the expressions EC over a
common set of variables VarPC

. We note that by definition the sets of expressions EC have
the following property: for all e1, e2 ∈ EC(ℓ, v) we have e1 ≃ΓI ,ℓ e2 that is, expressions e1

and e2 match.

Example 4.19. In Example 4.1 we have discussed why the solutions D1 and D2 (given
in Figure 1.7) match; therefore these two solutions belong to the same cluster, which we
denote here by C, and chose D1 as its representative PC.

In Figure 4.2 we also give examples of different dynamically equivalent expressions of
assignment to the variable result inside the loop body and the return statement after the
loop, respectively. To be more precise, these were examples of sets EC(ℓloop, result) and
EC(ℓafter , return), respectively.

4.3.2 Repair

As already mentioned in Section 4.1, the high-level idea of our algorithm is to use clusters
of correct solutions to repair an incorrect student implementation. This is depicted in
Figure 4.3, which shows the top-level repair algorithm, RepairTop. The algorithm takes

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Algorithms

1 def REPAIRTOP(Clusters C, Implementation Pimpl, Inputs I):
2 R = map(λC. REPAIR(C, Pimpl , I), C)

3 return arg minR∈R cost(R)

Figure 4.3: The Top-level Repair Algorithm.

a set of clusters C, a student implementation Pimpl , and a set of inputs I, and returns a
repair R (we define the repair R precisely below). The algorithm first (at line 2) runs
the Repair algorithm on each cluster C separately 4, which results in a set of repairs R
(each for one cluster C). The algorithm returns (at line 3) a repair with the minimal cost.
In the rest of this section we discuss the underlying Repair algorithm that uses a single
cluster C (with its representative PC) to repair a student implementation Pimpl , on some
set of inputs I. We assume that Pimpl and PC have the same control-flow.

The goal is to repair Pimpl ; that is, to modify Pimpl minimally, w.r.t. some notion of
cost, such that the repaired program matches the cluster. More precisely, the repair
algorithm searches for a program Prepaired , such that PC ∼I Prepaired , and Prepaired

should be syntactically close to Pimpl . Therefore, our repair algorithm can be seen as a
generalization of clustering to incorrect programs.

We first define a version of the repair algorithm that does not change the set of variables,
i.e., Var impl = Varrepaired . In Section 4.4.2 we extend this algorithm to include changes
of variables, i.e., we allow Var impl 6= Varrepaired . In both cases the control-flow of Pimpl

remains the same.

For the following discussion we fix some set of inputs I. Let Γ = {JPCK(ρ) | ρ ∈ I} be the
set of traces of cluster representative PC for the inputs I.

High-level idea As we discussed in the previous section, two programs match if all
of their corresponding expressions match (see Lemma 4.17). Therefore the high-level
idea of our repair algorithm is to consider a set of local repairs that modify individual
implementation expressions. These local repairs are then combined into a full program
repair with the minimal cost, using constraint-optimization techniques. This is depicted
in Figure 4.4. We first discuss local repairs; later on we will discuss how to combine local
repairs into a full program repair.

Local repairs are defined with regard to partial variable relations. It is enough to consider
partial variable relations (as opposed to the total variable relations needed for matchings)
because these relations only need to be defined for the expressions that need to be
repaired.

Definition 4.20 (Local Repair). Let (ℓ, v2) ∈ Loc × Var impl be a location-variable pair
from Pimpl , and let eimpl = Uimpl(ℓ, v2) be the corresponding expression. Further, let

4This can be done in parallel, as the invocations of the Repair on individual clusters are
independent; in fact our implementation (described in Section 4.6) does exactly that.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

C
O

N
S
T
R

A
IN

T
-

O
P
T
IM

IZ
A
T
IO

N
LOCAL REPAIRS

Figure 4.4: High-level overview of the repair algorithm.

ω : Var impl ⇀ VarPC
be a partial variable relation such that v2 ∈ dom(ω), let v1 = ω(v2)

be the related cluster representative variable, and let eC = UPC
(ℓ, v1) be the corresponding

expression.

A pair r = (ω, erepaired), where erepaired is an expression over implementation variables
Var impl , is a local repair for (ℓ, v2) when eC ≃Γ,ℓ ω(erepaired) and V(erepaired) ⊆ dom(ω). A
pair r = (ω, •) is a local repair for (ℓ, v2) when eC ≃Γ,ℓ ω(eimpl) and V(eimpl) ⊆ dom(ω).

We define the cost of a local repair r = (ω, erepaired) as cost(r) = diff (eimpl , erepaired) and
the cost of a local repair r = (ω, •) as cost(r) = 0.

We comment on the definition of a local repair. Let (ℓ, v2) ∈ Loc × Var impl be a location-
variable pair from Pimpl , let eimpl = Uimpl(ℓ, v2) be the corresponding expression, and
let r be a local repair for some (ℓ, v2). In case r = (ω, •), the expression eimpl matches
the corresponding expression of the cluster representative under the partial variable
mapping ω; this repair has cost zero because the expression eimpl is not modified. In case
r = (ω, erepaired), the expression erepaired constitutes a modification of eimpl that matches
the corresponding expression of the cluster representative under the partial variable
mapping ω; this repair has some cost diff (eimpl , erepaired). In our implementation we
define diff (eimpl , erepaired) to be the tree edit distance [Tai79; ZS89] between the abstract
syntax trees (ASTs) of the expressions eimpl and erepaired .

Example 4.21. We illustrate the notion of local repairs on a few local repairs for I1

(Figure 1.1) with regard to the cluster representative D1 (Figure 1.7):

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Algorithms

1. (ω1, •) is a local repair for new before the loop (i.e., (ℓ1, new)), where ω1 = {new 7→
result}, since the expressions of new and result match (i.e., they take the same
values).

2. (ω2,if new==[]: return [0.0] else: return new) is a local repair
for return after the loop (i.e., (ℓ4, return)), where ω2 = {new 7→ result, return 7→
return}, since then the return expressions match.

3. (ω3,if poly==[]: return [0.0] else: return poly) is a local re-
pair for return after the loop (i.e., (ℓ1, return)), where ω3 = {poly 7→ result, return 7→
return}, since then the return expressions match.

Next we discuss how to combine local repairs into a full program repair.

Note. In the definitions below we use notation r = (ω, −) when erepaired or • is not
important in r; similarly we use r = (−, erepaired) and r = (−, •) when ω is not important
in r.

Definition 4.22 (Repair). Let R be a function that assigns to each pair (ℓ, v) ∈ Loc ×
Var impl a local repair for (ℓ, v). We say that R is consistent, if there exists a total variable
relation τ : Var impl → VarPC

, such that ω ⊆ τ , for all R(ℓ, v) = (ω, −). A consistent R
is called a repair. We define the cost of R as the sum of the costs of all local repairs:
cost(R) =

∑

(ℓ,v)∈Loc×Var impl
cost(R(ℓ, v)).

A repair R defines a repaired implementation Prepaired = (Loc, ℓinit , Var impl , Urepaired , S),
where Urepaired(ℓ, v) = erepaired if M(ℓ, v) = (−, erepaired), and Urepaired(ℓ, v) = Uimpl(ℓ, v)
if M(ℓ, v) = (−, •), for all (ℓ, v) ∈ Loc × Var impl .

Theorem 4.23 (Soundness of Repairs). PC ∼I Prepaired .

Proof. (Sketch) From the definition of R(ℓ, v2), we have eC ≃Γ,ℓ τ(erepaired), for all
(ℓ, v2) ∈ Loc × Var impl , where v1 = τ(v2), eC = UC(ℓ, v1) and erepaired = Urepaired(ℓ, v2).
Then it follows from Lemma 4.17 that PC ∼I Prepaired .

Example 4.24. The repair for example I1 (Figure 1.9) corresponds to the total variable
relation τ = {poly 7→ poly, new 7→ result, e 7→ i, return 7→ return,? 7→ ?}. The repair M
includes local repairs (1) and (2) from the previous example, where only (2) has cost > 0.

Next we discuss the algorithm for finding a repair.

The repair algorithm The algorithm is given in Figure 4.5: given a cluster C, an
implementation Pimpl , and a set of inputs I, it returns a repair R. The algorithm has two
main parts: First, the algorithm constructs a set of possible local repairs; we define and
discuss the possible local repairs below. Second, the algorithm searches for a consistent
subset of the possible local repairs, which has minimal cost; this search corresponds to
solving a constraint-optimization system.

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

1 def REPAIR(Cluster C, Implementation Pimpl, Inputs I):
2 π = control-flow matching

3 if π = ∅:
4 return no repair

5 Γ = {JPCK(ρ) | ρ ∈ I}
6 for all (ℓ, v2) ∈ Loc × Var impl:

7 LR(ℓ, v2) = ∅
8 eimpl = Uimpl(ℓ, v2)
9 for all v1 ∈ VarPC

:

10 eC = UPC
(ℓ, v1)

11 for all ω : (V(eimpl) ∪ {v2}) → VarPC
s.t. ω(v2) = v1:

12 if eC ≃Γ,ℓ ω(eimpl):
13 LR(ℓ, v2) = LR(ℓ, v2) ∪ {(ω, •)}
14 for all e ∈ EC(ℓ, v1):
15 for all ω : (V(e) ∪ {v1}) → Var impl s.t. ω(v1) = v2:

16 LR(ℓ, v2) = LR(ℓ, v2) ∪ {(ω−1, ω(e))}
17 return FINDREPAIR(LR)

Figure 4.5: The Repair Algorithm.

Definition 4.25 (Set of possible local repairs). For all (ℓ, v) ∈ Loc × Var impl , we define
the set of possible local repairs LR(ℓ, v) as:

1. (ω, e) ∈ LR(ℓ, v), if ω(e) ∈ EC(ℓ, ω(v)); and

2. (ω, •) ∈ LR(ℓ, v), if eC ≃Γ,ℓ ω(eimpl)

where eC = UPC
(ℓ, ω(v)) and eimpl = Uimpl(ℓ, v).

The set of possible local repairs LR(ℓ, v) includes all expressions from the cluster
EC(ℓ, ω(v)), translated by some partial variable relation ω in order to range over imple-
mentation variables. It also includes (ω, •) if eimpl matches eC under partial variable
mapping ω. Next we describe how the algorithm constructs the set LR(ℓ, v) (at lines
6-16).

For the following discussion we fix a pair (ℓ, v2) ∈ Loc × Var impl (corresponding to
line 6), and some v1 ∈ VarPC

(corresponding to line 9); we set eimpl = Uimpl(ℓ, v2) and
eC = UPC

(ℓ, v1). Possible local repairs for (ℓ, v2) are constructed in two steps: In the first
step, the algorithm checks if there are partial variable relations ω : Var impl ⇀ VarPC

s.t. eC ≃Γ,ℓ ω(eimpl) (at line 11), and in that case adds a pair (ω, •) to LR(ℓ, v2)
(at line 13). In the second step, the algorithm iterates over all cluster expressions
e = EPC

(ℓ, v1) (at line 14), and all partial variable relations ω : VarPC
⇀ Var impl (at

line 15), and then adds a pair (ω−1, ω(e)) to LR(ℓ, v2) (at line 16). We note that
ω−1(ω(e)) = e ∈ EC(ℓ, v1) = EC(ℓ, ω−1(v2)), and thus (ω−1, ω(e)) is a possible local repair
as in Definition 4.25.

We remark that in both steps, the algorithm iterates over all possible variable relations
ω. However, since ω relates only the variables of a single expression — usually a small
subset of all program variables, this iteration is feasible.

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Algorithms

Finding a Repair With the Smallest Cost

Finally, the algorithm uses sub-routine FindRepair (at line 17) that, given a set of
possible local repairs LR, finds a repair with smallest cost. FindRepair encodes this
problem as a Zero-One Integer Linear Program (ILP), and then hands it to an off-the-shelf
ILP solver. Next, we define the ILP problem, describe how we encode the problem of
finding a repair as an ILP problem, and how we decode the ILP solution to a repair.

Definition 4.26 ((Zero-One) ILP). An ILP problem, over variables I = {x1, . . . , xn}, is
defined by an objective function O = �

∑

1≤i≤n wi · xi, and a set of linear (in)equalities
C, of the form

∑

1≤i≤n ai · xi D b. 5 Where � ∈ {min, max} and D= {≥, =}. A solution
to the ILP problem is a variable assignment A : I → {0, 1}, such that all (in)equalities
hold, and the value of the objective functions is minimal (resp. maximal) for A.

We encode the problem of finding a consistent subset of possible local repairs as an
ILP problem with variables I = {xv1v2

| v1 ∈ VarPC
and v2 ∈ Var impl} ∪ {xr | r ∈

LR(ℓ, v), (ℓ, v) ∈ Loc × Var impl}; that is, one variable for each pair of variables (v1, v2),
and one variable for each possible local repair r. The set of constraints C is defined as
follows:

(

∑

v2∈Var impl
xv1v2

)

= 1 for each v1 ∈ VarPC
(4.1)

(

∑

v1∈VarPC
xv1v2

)

= 1 for each v2 ∈ Var impl (4.2)
(

∑

r∈LR(ℓ,v) xr

)

= 1 for each (ℓ, v) ∈ Loc × Var impl (4.3)

−xr + xu1u2
≥ 0 for each r = (ω, −) ∈ LR (4.4)

and each ω(u2) = u1

Intuitively, the constraints encode:

(4.1) Each v1 ∈ VarPC
is related to exactly one of v2 ∈ Var impl .

(4.2) Each v2 ∈ Var impl is related to exactly one of v1 ∈ VarPC
. Together (1) and (2)

encode that there is a total variable relation τ : Var impl → VarPC
.

(4.3) For each (ℓ, v) ∈ Loc × Var impl exactly one local repair is selected.

(4.4) Each selected local repair r = (ω, −) ∈ LR is consistent with τ , i.e., ω ⊆ τ .

The objective function O = min (
∑

r∈LR cost(r) · xr) ensures that the sum of the costs of
the selected local repairs is minimal.

5In general, the coefficients of the objective function and the inequalities range over the real numbers;
that is, wi, ai, b ∈ R (for all 1 ≤ i ≤ n). In our encoding, as we discuss below, we have wi ∈ N,
ai ∈ {−1, 0, 1}, and b ∈ {0, 1}.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

Decoding an ILP solution to a repair Let A : I → {0, 1} be a solution of the ILP
problem.

We obtain the following total variable relation from A:

τ(v2) = v1 if and only if A(xv1v2
) = 1

For each A(xr) = 1, where LR(ℓ, v) = r, we set R(ℓ, v) = r.

4.4 Extensions

In this section, we discuss useful extensions to the core material presented so far. These
extensions are part of our implementation, but we discuss them separately to make the
presentation easier to follow.

4.4.1 Order of Statements

In our model we tacitly assumed that all variables at some location are updated simulta-
neously. However, in C or Python programs an assignment to some variable can depend
on the value of some other variable already assigned at the same location (block). Hence,
we need to model the order in which variables as assigned in the original program.

Order of statements in the program model To model variable order (or their
dependencies) we use primed versions of variables. That is, given some variable v, we
denote by its primed version v′ the value of v already assigned at that location. More
precisely, given some sequence of assignments v1 := e1; · · · ; vn := en (in the original
program), we replace all occurrences of vi with v′

i in ej when i < j.

We illustrate this on an example.

Example 4.27. The following sequence of statements (taken from one of our benchmarks)

f = f + i; i = n1 + 1; n1 = i;

is represented in our model (at some location ℓ) as:

• U(ℓ, f) = f + i,

• U(ℓ, i) = n1 + 1, and

• U(ℓ, n1) = i’ (note that i is primed here).

Primed and unprimed variables here denote that:

• f is assigned before i,

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Extensions

• i is assigned before n1 and

• n1 is assigned after i.

Note that primed and unprimed variables align with our definition of the semantics (in
Section 4.2): (unprimed) v denotes the old value (before the location is executed) and
(primed) v′ denotes the new value (after the location is executed).

Order of statements in repair Next we discuss how ordering of statements affects
the repair algorithm. We motivate this by considering some repairs for the program
discussed in the previous example above.

Example 4.28. Consider a repair that changes n1 from i′ to i, that is to, moves the
assignment to n1 before the assignment to i.

However, the unmodified assignment to i (n1+1) requires that i is assigned before n1 .
Obviously, both is not possible.

We now discuss how we augment the repair algorithm to consider only the possible (valid)
order of statements. We first define conflicting variable orders.

Definition 4.29 (Variable Order). Let v be a variable, and e an expression; we define

order(v, e) = {(v, v2) | v2 ∈ e} ∪ {(v2, v) | v′
2 ∈ e}

Two orders o1 and o2 are conflicting if there are two distinct variables v1 and v2 for
which we have both (v1, v2) ∈ o1 and (v2, v1) ∈ o2.

Let r1 and r2 be two local repairs for some pairs (ℓ, v1) ∈ Loc × Var impl and (ℓ, v2) ∈
Loc × Var impl . Further, let e1 and e2 be expressions corresponding the repairs r1 and r2

(by corresponding we mean ei = e when ri = (−, e), or ei = Uimpl(ℓ, vi) when ri = (−, •)).
Finally, let o1 = order(v1, e1) and o2 = order(v2, e2) be the corresponding orders.

If o1 and o2 are conflicting orders we disallow that both local repairs r1 and r2 appear in
a repair generated by the algorithm.

ILP encoding The restriction can be done in our ILP encoding in the following way:
for each r1 and r2 with conflicting orders o1 and o2 (as just discussed above) we add the
following constraint to the ILP model:

xr1
+ xr2

≤ 1

This ensures that the final repair cannot involve both the local repairs r1 and r2.

However, we noticed that adding all possible order-constraints to an ILP instance
considerably increases the solving time, and also that repairs with conflicting orders
rarely occur. Therefore, we adopt the following incremental approach, instead of adding
all the constraints:

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

1. When a repair is generated we check for conflicting orders;

2. If there are conflicting orders, then we add constraints to an ILP model only for
those orders, and solve a new model.

4.4.2 Adding and Deleting Variables

The repair algorithm described so far does not change the set of variables, i.e., Varrepaired =
Var impl . However, since the repair algorithm constructs a bijective variable relation, this
only works when the implementation and cluster representative have the same number
of variables, i.e., |VarPimpl

| = |VarPC
|. Hence, we extend the algorithm to also allow the

addition and deletion of variables.

We extend total variable relations τ : Var impl → VarPC
to relations τ ⊆ (Var impl ∪{⋆})×

(VarPC
∪ {−}). We relax the condition about τ being total and bijective: ⋆ and − can

be related to multiple variables or none.

When some variable v ∈ VarPC
is related to ⋆, that is τ(⋆) = v, it denotes that a fresh

variable is added to Pimpl , in order to match v.

Conversely, when some variable v ∈ Var impl is related to −, that is τ(v) = −, variable v
is deleted from Pimpl , together with all its assignments.

We show examples of these kinds of repairs in Section 4.7.1.

Completeness of the algorithm We point out that with this extension the repair
algorithm is complete (assuming Pimpl and PC have the same control-flow). This is because
the repair algorithm can always generate a trivial repair : all variables v2 ∈ Var impl are
deleted, that is τ(v2) = − for all v2 ∈ Var impl ; and a fresh variable is introduced for every
variable v1 ∈ VarPC

, that is τ(⋆) = v1 for all v1 ∈ VarPC
. Clearly, this trivial repair has

high cost, and in practice it is very rarely generated, as witnessed by our experimental
evaluation in the next section.

4.5 Usage Methodology

In this section we discuss how we envision the described approach would be used by a
teacher in a real programming class.

The approach can be used in two different scenarios, where the methodology is mostly
identical:

• a classroom setting, and

• a MOOC setting.

We have already discussed these two scenarios in Section 3.5.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Usage Methodology

We point out that the overall methodology for the functional feedback approach is simpler
than for our performance feedback approach, since the former is fully automated, while
the latter is semi-automated and requires more of the teacher attention.

The workflow The teacher maintains a list of the correct solutions, or more precisely
a list of correct clusters. When a student submits a new attempt, the following scenarios
can happen:

1. The submitted attempt is correct. In this case the clustering algorithm is run on
this correct solution with respect to the existing clusters. There are two possible
outcomes:

(a) The correct solution matches one of the existing clusters; in this case the
solution is added to this cluster.

(b) The correct solution does not match any of the existing clusters; in this case a
new cluster is added to the existing clusters. The new cluster at this point
contains only the new correct solution.

2. The submitted attempt is incorrect. In this case the top-level repair procedure is
run on the incorrect attempt and all the existing clusters. Again, there are two
possible outcomes:

(a) The repair algorithm found a repair for the incorrect attempt and feedback is
generated for the student from this repair. We discuss this further in the next
section.

(b) The repair algorithm could not find a repair for the incorrect attempt. In this
case the student cannot be given feedback, but the system could notify the
teacher and the teacher could manually write a correct solution (repair the
incorrect attempt) and add it to the system in the same manner as described
in (1.b). After the teacher has added this new solution, the algorithm will be
able to find a repair and the feedback is generated in the same way as in (2.a).

Except for the scenario described in (2.b), the system is fully automated and does not
require any manual effort from the teacher. Further, in our experimental evaluation (see
Section 4.7) we show that the scenario where we cannot provide feedback automatically
occurs very rarely.

Correct student solutions As mentioned above, the teacher is maintaining a list of
correct student solutions. These correct solutions come from two sources:

I. Already existing correct solutions from the previous course offerings. As we already
mentioned in Section 4.1, MOOC courses already have tens of thousands of existing
student attempts.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

II. New correct solutions obtained during the course offering, as described in scenarios
(1.a) and (1.b).

We believe that our approach is best suited for MOOC-like setting where there already
exists a lot of correct student solutions.

4.6 Implementation

1 $ clara match D1.py D2.py --entryfnc computeDeriv --args "[[[4.5]],

→֒ [[1.0,3.0,5.5]]]" --verbose 1 --ignoreio 1

2

3 // Truncated debug output

4 [debug] Match: {’computeDeriv’: {’$cond’: ’$cond’,

5 ’$ret’: ’$ret’,

6 ’e’: ’i’,

7 ’ind#0’: ’ind#0’,

8 ’iter#0’: ’iter#0’,

9 ’poly’: ’poly’,

10 ’result’: ’deriv’}}

11 Match!

12

13 $ clara feedback D1.py I1.py --entryfnc computeDeriv --args "[[[4.5]],

→֒ [[1.0,3.0,5.5]]]" --verbose 1 --ignoreio 1

14

15 // Truncated debug output

16 [debug] mapping: {’iter#0’: ’iter#0’, ’ind#0’: ’ind#0’, ’e’: ’i’, ’$ret’: ’$ret’, ’

→֒ poly’: ’poly’, ’result’: ’new’, ’$cond’: ’$cond’}

17 [debug] repairs: [3-$ret $ret (1.0)]

18 [debug] total time: 0.033

19 * Change ’return (0.0 if (new == []) else new)’ to ’return ([0.0] if (new == [])

→֒ else new)’ *after* the ’for’ loop starting at line 3 (cost=1.0)

Figure 4.6: A sample output of the Clara tool.

We implemented the proposed approach in the publicly available tool Clara6 (for
CLuster And RepAir). The tool currently supports programs in the programming
languages C and Python, and consists of:

1. Parsers for C and Python that convert programs to our internal program repre-
sentation;

2. Program and expression evaluation functions for C and Python, used in the
matching and repair algorithms;

3. Matching algorithm;

4. Repair algorithm;

5. Simple feedback generation system.

6https://github.com/iradicek/clara

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Experimental Evaluation

We use the lpsolve 7 ILP solver, and the zhang-shasha 8 tree-edit-distance algorithm.

Feedback generation We have implemented a simple feedback generation system that
generates the location and a textual description of the required modifications (similar to,
for example, AutoGrader). Other types of feedback can be generated from the repair as
well, and we briefly discuss it in Section 6.2.

Next, we discuss some example invocations of the tool; a more detailed documentation
can be found on the tool web site (mentioned above).

Example 4.30. Figure 4.6 shows two invocations of the Clara:

1. To demonstrate the matching algorithm on the correct solutions D1 and D2 (Fig-
ure 1.7);

2. To demonstrate the repair algorithm and feedback generation on the correct solution
D1 and the incorrect attempt I1 (Figure 1.9).

At line 1 Clara is invoked to test for matching between D1 and D2; the additional
arguments are: --entryfnc to specify the entry function, --args to provide the inputs,
--verbose to output extra debug information, and --ignoreio to ignore the standard
input and output. 9 Lines 4-10 show the matching witness found by the algorithm. We
point out that the tool uses two variables (ind#0 and iter#0) to model Python’s
for-loop iterator (discussed in Example 4.11); the special variables return and ? (discussed
in Section 4.2), are denoted in the tool with $ret and $cond.

At line 13 Clara is invoked to generate feedback for I1, using the correct solution D1 10;
the arguments are the same as for the matching. Line 16 shows the embedding witness for
the matching between D1 and the repaired I1, line 17 shows the repaired variable ($ret)
and the cost (1.0, since a single modification has been made: 0.0 has been modified to
[0.0]), line 18 shows the time required for the feedback generation, and line 19 shows
the generated feedback.

4.7 Experimental Evaluation

In this section we describe an experimental evaluation of the implementation of our
framework. We evaluate our approach in two experiments:

7http://sourceforge.net/projects/lpsolve/
8https://github.com/timtadh/zhang-shasha
9Without this flag, the tool would introduce additional two variables to model standard input and

output, $in and $out, respectively. However, standard input and output are not relevant for this
problem.

10This corresponds to running the repair algorithm on a single cluster that contains a single correct
solution.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

• On a MOOC-size dataset (Section 4.7.1); and

• A user study on repair usefulness (Section 4.7.2).

4.7.1 MOOC-size Experiment

Setup In the first experiment we evaluate Clara on data from the MITx intro-
ductory programming MOOC 11, which is similar to the data used in evaluation of
AutoGrader [SGSL13].

This data is stripped from all information about student identity, i.e., there are not even
anonymous identifiers. To avoid the threat that a student’s attempt is repaired by her
own future correct solution, we split the data into two sets. From the first (chronologically
earlier) set we take only the correct solutions: these solutions are then clustered, and
the obtained clusters are used during the repair of the incorrect attempts. From the
second (chronologically later) set we take only the incorrect attempts: on these attempts
we perform repair. We have split the data in 80 : 20 ratio since then we have a large
enough number (12973; see the discussion below) of correct solutions that our approach
requires, while still having quite a large number (4293) of incorrect attempts for the
repair evaluation. We point out that this is precisely the setting that we envision our
approach to be used in: a large number of existing correct solutions (e.g., from a previous
offering of a course) are used to repair new incorrect student submissions.

Results The evaluation summary is in Table 4.1; the descriptions of the problems
are given in Appendix A.2.1. Clara automatically generates a repair for 97.44% of
attempts. As expected, Clara can generate repairs in almost all the cases, since there is
always the trivial repair of completely replacing the student implementation with some
correct solution of the same control flow. Hence, it is mandatory to study the quality
and size of the generated repairs. We evaluate the following questions in more detail:

(1) What are the reasons when Clara fails?

(2) Does Clara generate non-trivial repairs?

(3) What is the quality and size of the generated repairs?

We next discuss the results of the evaluation.

(1) Clara fails Clara fails to generate repair in 110 cases: in 69 cases there are
unsupported Python features (e.g., nested function definitions), in 35 cases there is
no correct attempt with the same control-flow, and in 6 cases a numeric precision error
occurs in the ILP solver. The only fundamental problem of our approach is the inability
to generate repairs without matching control-flow; however, since this occurs very rarely,

11https://www.edx.org/school/mitx

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Experimental Evaluation

P
r
o

b
le

m
L

O
C

A
S

T
si

z
e

#
c
o

r
r
e

c
t

#
c
lu

st
e

r
s

#
in

c
o

r
r
e

c
t

#
r
e

p
a

ir
e

d
(%

o
f

#
in

co
rr

ec
t)

a
v

g
.

(m
e

d
ia

n
)

ti
m

e
in

s
n

a
m

e
m

e
d

ia
n

m
e

d
ia

n
(%

o
f

#
co

rr
ec

t)
C

l
a

r
a

A
u

to
G

ra
d

er
C

l
a

r
a

A
u

to
G

ra
d

er

d
e
r
i
v
a
t
i
v
e
s

1
4

3
3

1
4
7
2

5
3
2

(3
6
.1

4
%

)
4
8
1

4
7
2

(9
8
.1

3
%

)
2
3
5

(4
8
.8

6
%

)
4
.9

s
(4

.4
s)

6
.6

s
(5

.2
s)

o
d
d
T
u
p
l
e
s

1
0

2
5

9
0
0
1

4
5
4

(5
.0

4
%

)
3
5
8
4

3
5
1
4

(9
8
.0

5
%

)
5
7
6

(1
6
.0

7
%

)
3
.0

s
(2

.6
s)

2
5
.5

s
(1

3
.3

s)
p
o
l
y
n
o
m
i
a
l
s

1
3

2
5

2
5
0
0

2
3
4

(9
.3

6
%

)
2
2
8

1
9
7

(8
6
.4

0
%

)
1
7

(7
.4

6
%

)
1
.9

s
(1

.6
s)

4
.3

s
(4

.0
s)

T
o
ta

l
1
1

2
5

1
2
9
7
3

1
2
2
0

(9
.4

0
%

)
4
2
9
3

4
1
8
3

(9
7
.4

4
%

)
8
2
8

(1
9
.2

9
%

)
3
.2

s
(2

.7
s)

1
9
.7

s
(6

.3
s)

T
ab

le
4.

1:
L

is
t

of
th

e
p
ro

b
le

m
s

w
it

h
ev

al
u
at

io
n

re
su

lt
s

fo
r

th
e

M
O

O
C

d
at

a
(w

it
h

A
u
to

G
ra

d
er

co
m

p
ar

is
on

).

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

Figure 4.7: Histogram of relative repair sizes.

we leave the extension for future work. Hence, we conclude that CLARA can repair
almost all programs.

(2) Non-trivial repairs Since a correct repair is also a trivial one that completely
replaces a student’s attempt with a correct program, we measure how much a repair
changes the student’s program. To measure this we examine the relative repair size:
the tree-edit-distance of the repair divided by the size of the AST of the program.
Intuitively, the tree-edit-distance tells us how many changes were made in a program,
and normalization with the total number of AST nodes gives us the ratio of how much
of the whole program changed. Note, however that this ratio can be > 1.0, or even ∞ if
the program is empty. Figure 4.7 shows a histogram of relative repair sizes. We note
that 68% of all repairs have relative size < 0.3, 53% have < 0.2 and 25% have < 0.1; the
last column (∞) is caused by 436 completely empty student attempts. As an example,
the two repairs in Figure 1.9 (a) and (b) (discussed in Section 1.1), have relative sizes
of 0.03 and 0.24; below, we also state the relative size of some example repairs that we
discuss. We conclude that Clara in almost all cases generates a non-trivial repair that
is not a replacement of the whole student’s program.

(3) Repair quality and repair size We inspected 100 randomly selected generated
repairs, with the goal of evaluating their quality and size. Our approach of judging repair
quality and size mirrors a human teacher helping a student: the teacher has to guess the
student’s idea and use subjective judgment on what feedback to provide. We obtained
the following results: (a) In 72 cases Clara generates the smallest, most natural repair ;
(b) In 9 cases the repair is almost the smallest, but involves an additional modification
that is not required 12; (c) In 11 cases we determined the repair, although correct, to be

12We discuss two examples of this kind of repairs below (Example 4.32 and Example 4.33).

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Experimental Evaluation

Equal
num ber

Less
AG

Less
Clara

10
1

10
2

10
3

N
u

m
b

e
r

o
f

a
tt

e
m

p
ts

580

164

83

(a) The number of modified expressions per
repair.

(b) Distribution of the number of modified
expressions per repair.

Figure 4.8: Comparison of the generated repairs size between AutoGrader and Clara.

different from the student’s idea; (d) In 8 cases it is not possible to determine the idea of
the student’s attempt, although Clara generates some correct repair.

For the cases in (d), we found that program repair is not adequate and further research
is needed to determine what kind of feedback is suitable when the student is far from any
correct solution. For the cases in (c), the set of correct solutions does not contain any
solution which is syntactically close to the student’s idea; we conjecture that Clara’s
results in these cases can partially be improved by considering different cost functions
which do not only take syntactic differences into account but also make use of semantic
information (see the discussion in Section 4.8). However, in 81 cases (the sum of (a) and
(b)), Clara generates good quality repairs. We conclude that Clara mostly produces
good quality repairs.

Summary Our large-scale experiment on the MOOC data-set shows that Clara can
fully automatically repair almost all programs and the generated repairs are of high
quality.

Clusters Finally, we briefly discuss the correct solutions, since our approach depends
on their existence. The quality of the generated repair should increase with the number of
clusters, since then the algorithm can generate more diverse repairs. Thus, it is interesting
to note that we experienced no performance issues with a large number of clusters; e.g.,
on derivatives, with 532 clusters, a repair is generated on average in 4.9s. This
is because the repair algorithm processes multiple clusters in parallel. Nonetheless,
clustering is important for repair quality, since it enables repairs that combine expressions
taken from different correct solutions from the same cluster, which would be impossible
without clustering. We found that 2093 (around 50%) repairs were generated using at
least two different correct solutions, and 110 (around 3%) were generated using at least
three different correct solutions, in the same cluster.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

Comparison with AutoGrader

While the setting of AutoGrader [SGSL13] is different (a teacher has to provide an
error model, while our approach is fully automated), the same high-level goal (finding
a minimal repair for a student attempt to provide feedback) warrants an experimental
comparison between the approaches.

Setup and Data We were not able to obtain the data used in AutoGrader’s evaluation,
which stems from an internal MIT course, because of privacy concerns regarding student
data. Hence, we compare the tools on the same MITx introductory programming MOOC
data, which we used in the paper for Clara evaluation. This dataset is similar to the
dataset used in AutoGrader’s evaluation. AutoGrader’s authors provided us with an
AutoGrader version that is optimized to scale to a MOOC, that is, it has a weaker error
model than in the original AutoGrader’s publication [SGSL13]. According to the authors,
some error rewrite rules were intentionally omitted, since they are too slow for interactive
online feedback generation.

Results The evaluation summary is in Table 4.1. AutoGrader is able to generate
a repair for 19.29% of attempts, using manually specified rewrite-rules, compared to
97.44% automatically generated repairs by Clara. (We note that AutoGrader is able
to repair fewer attempts than reported in the original publication [SGSL13] due to the
differences discussed in the previous paragraph.) As Clara can generate repairs in
almost all the cases, these numbers are not meaningful on their own; the numbers are,
however, meaningful in conjunction with our evaluation of the following questions:

(1) How many repairs can one tool generate that other cannot, and what are the reasons
when AutoGrader fails?

(2) What are the sizes of repairs?

(3) What is the quality of the generated repairs, in case both tools generate a repair?

We next summarize the results of this evaluation.

(1) Repair numbers In all but one case, when Clara fails to generate a repair,
AutoGrader also fails. Further, we manually inspected 100 randomly selected cases where
AutoGrader fails, and determined that in 77 cases there is a fundamental problem with
AutoGrader’s approach 13: The modifications require fresh variables, new statements
or larger modifications, which are beyond AutoGrader’s capabilities. This shows that
Clara can generate more complicated repairs than AutoGrader.

In the 100 cases we manually inspected we also determined that in 74 cases Clara

generates good quality repairs, when AutoGrader fails.

13We discuss several examples of this kind of repairs below (starting with Example 4.31).

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Experimental Evaluation

(2) Repair sizes We do not report the relative repair size metric for AutoGrader,
because we were not able to extract the repair size from its (textual) output. However,
Figure 4.8 (a) compares the relation of the number of modified expressions when both
tools generate a repair. We note that the number of modified expressions is a weaker
metric than the tree-edit-distance, however, we were only able to extract this metric for
the repairs generated by AutoGrader. We conclude that AutoGrader produces smaller
repair in around 10% of the cases.

Figure 4.8 (b) also compares the overall (not just when both tools generate a repair)
distribution of the number of changed expression per repair. We notice that most of
AutoGrader’s repairs modify a single expression, and the percentage falls faster than in
Clara’s case.

(3) Repair quality Finally, we manually inspected 100 randomly selected cases where
both tools generate a repair. In 61 cases we found both tools to produce the same repair;
in 19 cases different, although of the same quality; in 9 cases we consider AutoGrader
to be better; in 5 cases we consider Clara to be better; and in 6 cases we found that
AutoGrader generates an incorrect repair. We conclude that there is no notable difference
between the tools when both tools generate a repair.

Examples of repairs from the manual inspections Finally, we discuss some repair
examples that we mentioned while describing the different manual inspections:

• Examples when AutoGrader fails, but Clara is able to generate a repair; in
particular we discuss an example that AutoGrader’s authors describe as a big
conceptual error.

• Two examples when Clara generates a repair that is almost the smallest, but
involves an additional modification that is not necessary.

Example 4.31. Figure 4.9 shows an incorrect attempt on the oddTuples problem, and
a repair for it generated by Clara.

On the other hand, AutoGrader cannot generate a repair for this attempt for several
reasons:

• It requires addition of a fresh variable, which their error model does not support;

• It requires addition of two new statements (assignment to new_x and a return
statement), which their error model also does not support;

• It requires changing a whole sub-expression i.length() with a variable.

The modification (2.) from the generated repair is not possible in AutoGrader (even if
we ignore the freshly added variable) because it requires changing an arbitrary expression

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

1 def oddTuples(aTup):

2 tuple=()

3 for i in aTup:

4 if i.length()%2!=0:

5 tuple=(tuple+(i,))

The repair generated by Clara:

1. Add a new variable with assignment new_x = 1 at the beginning of function oddTuples.

2. In codition at line 4 change i.length() % 2 != 0 to new_x % 2 != 0.

3. Add assignment new_x = new_x + 1 inside the loop starting at line 3.

4. Add return statement return tuple after the loop staring at line 3.

The relative cost of this repair is 0.28.

Figure 4.9: A big conceptual error and a repair involving addition of a fresh variable.

1 def oddTuples(aTup):

2 if len(aTup)== 1:

3 return aTup

4 elif len(aTup)==0:

5 return aTup

6 else:

7 for n in range(1, len(aTup)):

8 if (n-1)%2==0:

9 print ((aTup)[n-1])

The repair generated by Clara:

1. Add a new variable with assignment new_ans=() to the beginning of function oddTuples.

2. In condition at line 2 change len(aTup)==1 to len(aTup)==0.

3. In condition at line 4 change len(aTup)==0 to len(aTup)==1.

4. In the iterator at line 7 change range(1, len(aTup)) to range(0, len(aTup), 2).

5. Add assignment new_ans = new_ans + aTup[n] inside the loop starting at line 7.

6. Add return statement return new_ans after the loop staring at line 7.

The relative cost of this repair is 0.48.

Figure 4.10: Reverse condition branches in the repair.

with some variable. AutoGrader’s authors describe this as a big conceptual error in their
paper, and also mention that this is one of the biggest challenges for AutoGrader.

Example 4.32. Figure 4.10 shows another incorrect attempt on the oddTuples problem,
and a repair for it generated by Clara.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Experimental Evaluation

1 def oddTuples(aTup):

2 rTup = ’’

3 for index in range(0,len(aTup)):

4 rTup += aTup(index)

5 index += 1

6 return rTup

The repair generated by Clara:

1. Change assignment rTup = ” to rTup = () at line 2.

2. Add assignment index = 0 in the beginning of function oddTuples.

3. In the iterator at line 3, change range(0, len(aTup)) to range(0, len(aTup), 2).

4. Change assignment rTup += aTup(index) to rTup += (aTup[index],) at line 4.

The relative cost of this repair is 0.19.

Figure 4.11: An additional statement.

The generated would also be correct if modifications (2.) and (3.) were omitted, but
Clara generates this repair since the closest correct attempt has the branches reversed,
i.e., it first examines the case when len(aTup)==0, and since the repair algorithm
requires the same control-flow, it also suggests these modifications. To eliminate these two
modifications, we would have to relax our repair algorithm’s requirement on control-flow;
however it is not clear at the moment how to do that.

On the other hand AutoGrader cannot repair this attempt for two reasons:

• It requires addition of a new variable, which is not expressible in its error model;

• It requires adding 3 new statements (two assignments to the fresh variable new_ans,
and a return statement), which is also not expressible in its error model.

Example 4.33. Figure 4.11 shows yet another incorrect attempt on the oddTuples

problem, and a repair for it generated by Clara.

This repair would be also correct if the modification (2.) is omitted, but, same as in
the previous example, because it is present in the correct solution Clara generates this
modification as well.

This could be handled by performing an additional analysis that would find this statement
redundant.

However, AutoGrader did not manage to generate any repair for this example.

4.7.2 User Study on Usefulness

In the second experiment we performed a user study, evaluating Clara in real time. We
were interested in the following questions:

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

P
r
o

b
le

m
L

O
C

#
c

o
r
r
e

c
t

#
c

lu
s
t
e

r
s

#
in

c
o

r
r
.

#
fe

e
d

b
a

c
k

#
r
e

p
a

ir
fe

e
d

b
a

c
k

t
im

e
(in

s)
#

g
r
a

d
e

s
m

e
d

ia
n

(e
x

ist.+
stu

d
y

)
(e

x
ist.+

stu
d

y
)

(%
o

f
#

in
c
o

rr.)
(%

o
f

#
fe

e
d

b
a

ck
)

a
v

g
.

m
e

d
ia

n
1

/
2

/
3

/
4

/
5

F
i
b
o
n
a
c
c
i

s
e
q
u
e
n
c
e

1
2

5
1

2
+

8
4

7
0

+
1

7
(1

4
.6

0
%

)
5

7
2

5
3

9
(9

4
.2

3
%

)
4

4
0

(8
1

.6
3

%
)

1
0

.4
4

8
.5

1
1

/
7

/
9

/
1

6
/

1
3

S
p
e
c
i
a
l

n
u
m
b
e
r

1
5

3
5

8
+

5
9

3
9

+
3

(1
0

.0
7

%
)

1
2

1
1

0
9

(9
0

.0
8

%
)

9
4

(8
6

.2
4

%
)

3
.7

7
2

.3
8

2
/

3
/

8
/

9
/

1
3

R
e
v
e
r
s
e

D
i
f
f
e
r
e
n
c
e

1
7

3
4

2
+

4
6

4
8

+
8

(1
4

.4
3

%
)

1
0

3
7

7
(7

4
.7

6
%

)
6

8
(8

8
.3

1
%

)
4

.3
9

3
.0

7
4

/
4

/
5

/
3

/
5

F
a
c
t
o
r
i
a
l

i
n
t
e
r
v
a
l

1
4

3
9

1
+

4
4

5
6

+
8

(1
4

.7
1

%
)

2
3

4
2

3
2

(9
9

.1
5

%
)

1
8

5
(7

9
.7

4
%

)
3

.3
3

3
.1

7
2

/
5

/
4

/
5

/
1

3

T
r
a
p
e
z
o
i
d

1
4

2
8

1
+

4
1

3
6

+
1

5
(1

5
.8

4
%

)
1

4
3

1
2

9
(9

0
.2

1
%

)
1

2
1

(9
3

.8
0

%
)

7
.5

5
4

.8
2

7
/

5
/

7
/

7
/

5
R
h
o
m
b
u
s

2
1

2
6

4
+

3
8

7
3

+
2

2
(3

1
.4

6
%

)
5

2
5

4
1

7
(7

9
.4

3
%

)
1

9
2

(4
6

.0
4

%
)

9
.1

6
5

.3
5

6
/

9
/

6
/

5
/

3

T
ab

le
4.2:

L
ist

of
th

e
p
rob

lem
s

w
ith

evalu
ation

d
etails

for
th

e
u
ser

stu
d
y.

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Experimental Evaluation

(1) How often and fast is feedback generated (performance)?

(2) How useful is the generated repair-based feedback?

Setup To answer these questions we developed a web interface for Clara and conducted
a user study, which we advertised on programming forums, mailing lists, and social
networks. Each participant was asked to solve six introductory C programming problems,
for which the participants received feedback generated by Clara. There was one
additional problem, not discussed here, that was almost solved, and whose purpose
was to familiarize the participants with the interface. After solving a problem each
participant was presented with the question: “How useful was the feedback provided on
this problem?”, and could select a grade on the scale from 1 (“Not useful at all”) to 5
(“Very useful”). Additionally, each participant could enter an additional textual comment
for each generated feedback individually and at the end of solving a problem.

We also asked the participants to assess their programming experience with the question:
“Your overall programming experience (your own, subjective, assessment)”, with choices
on the scale from 1 (“Beginner”) to 5 (“Expert”).

The initial correct attempts were taken from an introductory programming course at IIT
Kanpur, India. The course is taken by around 400 students of whom several have never
written a program before. We selected problems from two weeks where students start
solving more complicated problems using loops. Of the 16 problems assigned in these
two weeks, we picked those 6 that were sufficiently different.

Results Table 4.2 shows the summary of the results; detailed descriptions of all
problems are given in Appendix A.2.2. The columns # correct and # clusters show
the number of correct attempts and clusters obtained from:

(a) the existing ESC 101 data (exist. in the table), and

(b) during the case study from participants’ correct attempts (study in the table).

Note 4.34. The complete data, with all the attempts, grades and textual comments is
publicly available 14.

Performance of Clara Feedback was generated for 1503 (88.52%) of incorrect at-
tempts. In the following we discuss the 3 reasons why feedback could not be generated:

1. In 57 cases there was a bug in Clara, which we have fixed after the experiment
finished. Then we confirmed that in all 57 cases the program is correctly repaired
and feedback is generated (note that this bug was only present in this real-time
experiment, i.e., it did not impact the experiment described in the previous section);

14https://forsyte.at/static/people/radicek/pldi18_survey_data.tar.gz

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

2. In 43 cases a timeout occurred (set to 60s);

3. In 95 cases a program contained an unsupported C construct, or there was a
syntactic compilation error that was not handled by the web interface (Clara

currently provides no feedback on programs that cannot be even parsed).

Further, the average time to generate feedback was 8 seconds. These results show that
Clara provides feedback on a large percentage of attempts in real time.

Feedback usefulness The results are based on 191 grades given by 52 participants.
Note that problems have a different number of grades. This is because we asked for a
grade only when feedback was successfully generated (as noted above, in 88.52% cases),
and because some of the participants did not complete the study. The average grade over
all problems is 3.4. This shows very promising preliminary results on the usefulness of
Clara. However, we believe that these results can be further improved (see Section 4.8).

The participants declared their experience as follows: 22 as 5, 19 as 4, 9 as 3, 0 as 2, and
2 as 1. While these are useful preliminary results, a study with beginner programmers is
an important future work.

Note 4.35. In the case of a very large repair (cost > 100 in our study), we decided to
show a generic feedback explaining a general strategy on how to solve the problem. This is
because the feedback generated by such a large repair is usually not useful. We generated
such a general strategy in 403 cases.

4.7.3 Threats to Validity

Program size We have evaluated our approach on small to medium size programs
typically found in introductory programming problems. The extension of our approach to
larger programming problems, as found in more advanced courses, is left for future work.
Focusing on small to medium size programs is in line with related work on automated
feedback generation for introductory programming (e.g., D’Antoni, Samanta, and Singh
[DSS16], Singh, Gulwani, and Solar-Lezama [SGSL13], Head et al. [Hea+17]). We stress
that the state-of-the-art in teaching is manual feedback (as well as failing test cases);
thus, automation, even for small to medium size programs, promises huge benefits. We
also mention that our dataset contains larger and challenging attempts by students which
use multiple functions, multiple and nested loops, and our approach is able to handle
them.

Unsoundness Our approach guarantees only that repairs are correct over a given set
of test cases. This is in accordance with the state-of-the-art in teaching, where testing
is routinely used by course instructors to grade programming assignments and provide
feedback (e.g., for ESC101 at IIT Kanpur, India [Das+16]). When we manually inspected
the repairs for their correctness, we did not find any problems with soundness. We believe

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.8. Conclusion

that this due to the fact that programming problems are small, human-designed problems
that have comprehensive sets of test cases.

In contrast to our dynamic approach, one might think about a sound static approach
based on symbolic execution and SMT solving. We decided for a dynamic analysis
because symbolic execution can sometimes take a long time or even fail when constructs
are not supported by an SMT solver. For example, reasoning about floating points and
lists is difficult for SMT solvers. On the other hand, our method only executes given
expressions on a set of inputs, so we can handle any expression, and our method is
fast. Further, our evaluation showed our dynamic approach to be precise enough for
the domain of introductory programming assignments. The investigation of a static
verification of the results generated by our repair approach is an interesting direction for
future work: one could take the generated repair expressions and verify that they indeed
establish a simulation with the cluster against which the program was repaired.

4.8 Conclusion

We have presented a novel fully-automated approach for generating functional feedback
in introductory programming. We summarize the key contributions.

Functional feedback generation The key idea is to use the already existing correct
student solutions to repair the incorrect student solutions:

• We propose a novel clustering algorithm that groups dynamically equivalent correct
solutions.

• We propose a novel program repair algorithm that extends our clustering algorithm:
the repair algorithm searches for a minimal repair w.r.t. some cluster of correct
solutions, such that the repaired program is dynamically equivalent to the programs
in that cluster.

Implementation and experimental evaluation We describe an implementation of
the proposed approach and its experimental evaluation. We show the following (in terms
of the criteria set in Section 1.2):

• Performance: the feedback is generated in order of seconds, hence enabling interac-
tive teaching.

• Correctness: we observe no incorrect repairs in generated feedback.

• Exhaustiveness: the feedback is generated for most of the student attempts (for
97.44% of student attempts in the MOOC experiment, and 88.52% of student
attempts in the user study).

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Functional Correctness Feedback

• Usefulness: in the MOOC experiment we perform a manual inspection of the
generated repairs, and conclude that the generated repairs are of good quality; we
also perform a user study that shows very promising preliminary results on the
usefulness of Clara.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Related Work

In this chapter we give an overview of the related work; some of the related work
has already been discussed in Chapter 1, here we give a more systematic and detailed
discussion. The discussed related work is far from comprehensive; however, we intend
our best to discuss all work that has been encountered while working on this thesis.

We categorize the related work as follows, although some of the mentioned approaches
can be put in multiple categories:

• directly related to providing feedback in (mostly programming) education (Sec-
tion 5.1),

• performance analysis (Section 5.2),

• program repair (Section 5.3),

• relational program analysis (Section 5.4).

5.1 Feedback in (programming) Education

There has been a lot of work in the area of generating automated feedback for programming
assignments. We mention several of these approaches, categorized as follows (although,
same as above, many approaches can be put in multiple categories):

• debugging - approaches that help in debugging errors in student programs (Sec-
tion 5.1.1),

• trace-based - approaches that analyze execution traces (Section 5.1.2),

• non-functional - approaches that provide feedback on non-functional properties
(Section 5.1.3),

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Related Work

• classification - approaches whose goal is to classify student attempts (Section 5.1.4),

• education platforms - approaches that develop (mostly web-based) platforms where
students can solve programming problems (Section 5.1.5),

• pedagogy - approaches whose goal is to study pedagogy of generate feedback
(Section 5.1.6),

• other areas - approaches that provide feedback on areas outside programming
(Section 5.1.7).

5.1.1 Debugging

TALUS [Mur87] matches a student’s attempt with a collection of teacher’s algorithms.
It first tries to recognize the algorithm used and then tentatively replaces the top-
level expressions in the student’s attempt with the recognized algorithm for generating
correction feedback.

LAURA [AL80] heuristically applies program transformations to a student’s program
and compares it to a reference solution, while reporting mismatches as potential errors
(they could also be correct variations).

In contrast, we perform trace comparison (instead of source code comparison), which
provides robustness to syntactic variations.

5.1.2 Trace-based Analysis

Striewe and Goedicke [SG11] have proposed localizing bugs by presenting full program
traces to the students, but the interpretation of the traces is left to the students. They
have also suggested automatically comparing the student’s trace to that of a sample
solution [SG13], for generating more directed feedback. However, the approach misses
a discussion of the situation when the student’s code enters an infinite loop, or has an
error early in the program that influences the rest of the trace. No implementation was
reported.

Apex [Kim+16] is a system that automatically generates error explanations for bugs in
programming assignments by comparing their execution traces. In contrast, our goal is
to also repair incorrect student attempts.

5.1.3 Non-functional Properties

There has been very little work on generating feedback for non-functional properties.

The ASSYST [JU97] system uses a simple form of tracing for counting execution steps
to gather performance measurements.

The Scheme-robo [SMK01] system counts the number of evaluations done, which can
be used for very coarse complexity analysis. The authors conclude that better error
messages are the most important area of improvement.

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Feedback in (programming) Education

We point out that these approaches cannot point the student to the root cause of the
performance issues in her program.

5.1.4 Program Classification

CodeWebs [Ngu+14] classifies different AST sub-trees in equivalence classes based on
probabilistic reasoning and program execution on a set of inputs. The classification is
used to build a search engine over ASTs to enable the instructor to search for similar
attempts, and to provide feedback on some class of ASTs.

OverCode [Gla+14] is a visualization system that uses a lightweight static and dynamic
analysis, together with manually provided rewrite rules, to group student attempts.

Drummond et al. [Dru+14] propose a statistical approach to classify interactive programs
in two categories (good and bad), without repairing incorrect programs or generating
feedback.

CoderAssist [Kal+16] provides feedback on student implementations of dynamic pro-
gramming algorithms: the approach first clusters both correct and incorrect programs
based on their syntactic features; feedback for incorrect program is generated from
a counterexample obtained from an equivalence check (using SMT) against a correct
solution in the same cluster.

5.1.5 Education Platforms

Ihantola et al. [Iha+10] present a survey of various platforms developed for automated
grading of programming assignments. The majority of these efforts have focussed on
checking for functional correctness. This is often done by examining the behavior
of a program on a set of test inputs. These test inputs can be manually written or
automatically generated [Til+13b].

Pex4Fun [Til+13a], and its successor CodeHunt [Til+14] are browser-based, interactive
platforms where students solve programming assignments with hidden specifications, and
are presented with a list of automatically generated test cases.

Prutor [Das+16] is a cloud-based web application to conduct introductory programming
courses. It provides instant counterexample-based feedback to students while solving
programming problems.

5.1.6 Pedagogy

This thesis is focused on technical approach to feedback generation, that is, how can we
generate feedback for students. An orthogonal research direction is focused on pedagogy
of generated feedback, that is, what kind of feedback should be given to the students.
We believe that the latter is not sufficiently understood and that more research should
be done in that direction in the future to fully utilize the power of automated feedback
generation.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Related Work

Head et al. [Hea+17] and Suzuki et al. [Suz+17] discuss how useful feedback can be
generated from repairs of student attempts.

Yi et al. [Yi+17] explore different automated program repair (APR) approaches in the
context of intelligent tutoring systems. They also conclude that further research is
required to understand how to generate the most effective feedback for students from
these repairs.

5.1.7 Other Education Areas

As mentioned in Chapter 1, techniques for generating automated feedback have been
developed also in other areas, outside of introductory programming (although mostly in
STEM area):

• Automata theory: Alur et al. [Alu+13] and D’antoni et al. [D’a+15];

• Arithmetic: Andersen, Gulwani, and Popovic [AGP13] and Andersen, Gulwani,
and Popovič [AGP14];

• Algebra and geometry: Singh, Gulwani, and Rajamani [SGR12] and Gulwani,
Korthikanti, and Tiwari [GKT11];

• Proofs: Ahmed, Gulwani, and Karkare [AGK13].

5.2 Performance Analysis

The Programming Languages and Software Engineering communities have explored
various kinds of techniques to generate various performance related feedback for programs.
We discuss some automated static performance analysis and dynamic analysis approaches.

5.2.1 Static Analysis

These techniques aim to automatically and statically (without executing the program)
determine upper bounds on program execution time. 1 The techniques can be categorized
by the type of programs analyzed (imperative and functional) and the underlying
technology.

There are variety of different approaches for performance analysis of imperative programs;
for example, based on recurrence equations [Alb+12; DLH90; FMH14], template con-
straints [CHS15], term-rewriting systems [ADLM15; Bro+16], ranking functions [Ali+10],
abstract interpretation [GMC09; GZ10; Her+05], abstract program models [Gup+08;
SZV14; SZV17], and interactive verification [MKK17].

1In general, these techniques could also analyze other types of resources, e.g., memory or energy
consumption.

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Program Repair

Since the topic of this thesis are not functional programs, we only briefly mention the
RAML project [HAH12]; this is a fully automated technique for inferring polynomial
bounds on functional programs, based on amortized analysis and the method of potentials.

These approaches aim for automated performance analysis, while in this thesis we are
interested in identifying whether or not there is a performance issue and generating
feedback based on its root cause. Further, as already discussed in Section 2.1, automated
performance analysis is of little help to introductory programming students, who struggle
with basic programming concepts and do not yet understand performance implications.

However, we believe that these approaches offer great benefits to experienced software
engineers for understanding performance of their code; similarly, we believe that these
tools would help senior students who already understand computation complexity and
performance issues.

5.2.2 Dynamic Analysis

The dynamic analysis approaches were developed for various performance-related feedback;
we mentioned three representative approaches known to us.

Goldsmith, Aiken, and Wilkerson [GAW07] use dynamic analysis techniques for empirical
computational complexity.

The Toddler [Nis+13] tool finds a specific pattern in programs: computations with
repetitive and similar memory-access patterns.

The Cachetor [NX13] tool finds memoization opportunities by identifying operations that
generate identical values.

Same as for the static analysis approaches we believe that these techniques could be very
useful to experienced engineers, but not very useful to novice students.

On the other hand, we conjecture that our dynamic relational analysis and the idea
of comparing program traces to a specification could also be useful in settings outside
of programming education: for empirical computational complexity analysis or finding
various patterns in programs (see Section 6.2 for further discussion).

5.3 Program Repair

The research on program repair is extensive, we mention some general-purpose repair
approaches as well as some approaches related to programming education.

5.3.1 General Purpose

Gopinath, Malik, and Khurshid [GMK11] propose a SAT-based approach for generating
likely bug fixes in programs that manipulate structurally complex data.

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Related Work

Könighofer and Bloem [KB11] propose an approach for automated error localization and
correction based on symbolic execution and model-based diagnosis for error localization,
and template-based corrections of the RHS expressions.

Jobstmann, Griesmayer, and Bloem [JGB05] and Staber, Jobstmann, and Bloem [SJB05]
model the localization and correction problem as a game between the environment that
provides different inputs, and the system which provides the repairs.

Prophet [LR16] mines a database of successful patches and uses these patches to repair
defects in large, real-world applications. SearchRepair [Ke+15] mines a body of code for
short snippets that it uses for repair.

Angelic Debugging [Cha+11] is an approach that identifies at most one faulty expression
in the program and tries to replace it with a correct value; that is, instead of finding
a correct replacement expression, it finds a set of values that the corrected expression
should take.

Other approaches are based on program mutation [DW10], or genetic programming [Arc08;
For+09], combining mutation with crossing operators and choosing repairs based on a
fitness function.

These approaches are not suitable for generating feedback in introductory programming
education. For example, Yi et al. [Yi+17] show that using automated program repair
approaches out-of-the-box in the setting of programming education seems infeasible due
to the low repair rate. Similarly, the general purpose program repair techniques discussed
in Goues et al. [Gou+15] on the Intro-Class benchmark, either repair a small number of
defects (usually <50%) or take a long time (i.e., over one minute).

In contrast, our program repair approach is designed to work well on programs in
introductory programming education, for which it can generate complex and large repairs
in couple of seconds.

5.3.2 Programming Education

We mention several approaches to program repair in programming education and comment
on their relation to the approach proposed in this thesis.

AutoGrader [SGSL13] is a synthesis- and SAT-based technique for repairing student
programs. However, as already discussed in Section 1.1, AutoGrader is limited in several
ways.

Refazer [Rol+17] learns programs transformations from example code edits made by
the students, and then uses these transformations to repair incorrect student submissions.
In comparison to our approach, Refazer does not have a cost model, and hence the
generated repair is the first one found (instead of the smallest one).

Rivers and Koedinger [RK17] transform programs to a canonical form using semantic-
preserving syntax transformations, and then report syntax difference between an incorrect

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Relational Program Analysis

program and the closest correct solution; the paper reports evaluation on loop-less
programs. In contrast, our approach uses dynamic equivalence, instead of (canonical)
syntax equivalence, for better robustness under syntactic variations of semantically
equivalent code.

Qlose [DSS16] automatically repairs programs in education based on different program
distances. The idea to consider different semantic distances is very interesting, however
the paper reports only a very small initial evaluation (on 11 programs), and Qlose is
only able to generate small, template-based repairs. We believe that the idea to consider
different distances (cost functions) is orthogonal to our approach and that our approach
could be extended with different cost functions (see Section 6.2).

Sarfgen [WSS18] is a follow-up work directly inspired by our approach: it repairs
an incorrect student attempt by finding the syntactically closest correct solution and
reporting syntactic differences; that is, compared to our dynamic analysis approach, it
relies more on syntactic methods. Additionally, Sarfgen has a post-processing step that
removes unnecessary repairs (by excluding a subset of repairs and running a repaired
program to determine the effect of the exclusion), which could be also easily added to
Clara.

5.4 Relational Program Analysis

We mention several approaches to relational program analysis.

Translation Validation [PSS98; Nec00] is an approach for checking equivalence between
the original program and the program resulting from compilation or optimization, using
a simulation-relation between the variables of the two programs in order to demonstrate
equivalence; the simulation relation is derived using heuristics and domain knowledge
about the performed transformations.

Lahiri et al. [Lah+15] apply automated differential program verification to show that an
approximate program does not diverge significantly from a reference implementation.

Radiček et al. [Rad+17], co-authored by the author of this thesis, is a relational cost
analysis based on proof systems combining cost analysis and functional properties.

In contrast to these approaches, our dynamic relational analysis guarantees that results
hold only over the provided inputs. We believe that using our analysis as a seed for a
formal proof might be an interesting research direction (see Section 6.2 for more details).

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Conclusions and Future Work

As defined in the aims of this thesis (Section 1.2) we have:

• Studied a large number of student solutions to better understand performance-
related issues in introductory programming.

• Developed novel methods for performance and functional feedback generation in
introductory programming. The performance feedback approach is semi-automated,
while the approach for functional feedback is fully-automated. Further, these
methods have:

– a rigorous mathematical foundation, and

– a practical implementation with experimental evidence showing their speed,
correctness, exhaustiveness, and usefulness.

In Section 1.5 we summarized the contributions of this thesis; in this chapter we give a
more detailed discussion. After that, we conclude the thesis with some limitations of our
approach and directions for future work.

6.1 Contributions

6.1.1 Study of Correct Student Solutions

We study a large number of correct student solutions on 21 different programming
problems, with the goal of understanding performance problems faced by students in
introductory programming classes.

This study surfaced two things:

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Conclusions and Future Work

1. The notion of algorithmic strategies, that is, that for providing performance feed-
back it is sufficient to understand the student’s high-level idea that defines the
performance characteristics, while ignoring low-level program details.

2. The idea of key-values, that is, that the algorithmic strategy employed by a student
solution can be identified by observing the values computed during the execution
of the solution.

6.1.2 Dynamic Relational Program Analysis

Based on the observations from the study and the idea of key-values we develop a novel
dynamic relational program analysis. The analysis is inspired by the notion of a simulation
relation [Mil71] and adapted for a dynamic program analysis.

We give two instantiations of the analysis and use them as a core element in our methods
for feedback generation.

Overall, we believe that this thesis shows the effectiveness of using dynamic program
analysis in the domain of introductory programming education (as demonstrated by our
experimental evaluation; see below):

• Because of their simplicity these kinds of analyses generate the result quite fast.

• Although in general unsound, we show that in this domain it is not difficult to
specify all the interesting inputs and hence avoid any unsound results.1

6.1.3 Performance Feedback

We propose a novel semi-automated approach for generating performance feedback. As
discussed earlier this approach is based on the observations from our code study and the
algorithmic strategies notion.

In order to allow the teacher to specify algorithmic strategies we propose a new language
construct called observe. The teacher uses this construct to specify key-values that
a strategy computes during the execution, for each strategy that she wishes to provide
feedback for. The key strength of this language extensions is that it is lightweight: the
teacher has to implement the strategy for which she wants provide feedback and merely
annotate the expressions that compute the key values with observe.

We also propose a novel automated algorithm, based on our dynamic relational program
analysis, that decides whether a student’s implementation matches (implements) the
teachers specification.

1This does not hold in general for analysis of arbitrary program.

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Contributions

6.1.4 Functional Feedback

We propose a novel automated approach for generating functional feedback. The key idea
behind our approach is to use the existing correct student solutions, which are available
in tens of thousands in large MOOC courses, to repair incorrect student solutions.

The first step of the approach is to cluster existing correct solutions into equivalence
clusters, using our dynamic relational program analysis.

The second step is to use our novel repair algorithm to find a minimal repair with respect
to the clusters of correct solutions. The key idea of the repair algorithm is to extend our
dynamic relation program analysis to incorrect programs. That is, the algorithm searches
for the minimal repair such that the repaired program matches one of the correct clusters.

The key strengths of the proposed algorithm are:

• It can generate various kinds of modifications: changing expressions, swapping the
order of statements, adding and delimiting variables and statements.

• It is complete modulo the control-flow, i.e., if a correct solution with the matching
control-flow as the incorrect solution exists, the algorithm is able to find a repair.

6.1.5 Implementations and Experimental Evaluation

We have implemented both of the proposed approaches in a practical tool and performed
an experimental evaluation on a large number of student attempts. We show the following:

• Performance: Both of the approaches generate feedback in order of seconds; this
makes them suitable for real-time feedback generation (e.g., in context of MOOC
courses).

• Correctness: In both of the approaches we manually verified that the generated
feedback is sound; this is especially important in context of our dynamic program
analysis.

• Exhaustiveness: Both of the approaches generate feedback in most cases:

– In the context of performance feedback we evaluate this by the ability to write
specifications for all algorithmic strategies, thus providing feedback on all
student attempts.

– In the context of functional feedback we evaluate this by the percentage of
incorrect solutions for which the approach is able to generate repairs; in the
MOOC experiment the repair is generated for 97.44% of attempts, while in
the user study it is generated for 88.52% of attempts.

• Automation and usefulness:

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Conclusions and Future Work

– For the performance feedback generation we show huge savings in teacher
effort for providing feedback (e.g., for one of the problems we show that teacher
would have to examine only 3% of student attempts to provide feedback on
all of them).

– For the functional feedback we study the usefulness of the generated repair.
In the MOOC experiment we manually check a number of generated repairs
and determine that in 81% of cases Clara generates good quality repairs.
In the user study the participants graded the generated feedback with the
average grade of 3.4 (on a scale from 1 to 5).

6.2 Future Work

In this section we discuss some ideas for the future work.

6.2.1 Using Dynamic Analysis as a Seed for a Formal Proof

Our dynamic analysis is unsound in the same way as is program testing: the results are
guaranteed to hold only over the provided inputs.

However, in our experimental evaluation we did not observe any unsoundness. We believe
that this is the case because it is easy to provide quite exhaustive set of inputs for the
problems in introductory education. 2

On the other hand, an interesting research direction might be to investigate whether
the results of our analysis can be used as a seed for a formal proof. More precisely, an
embedding witness or a total variable relation produced by our methods could by used as
a guess for a simulation relation that can then be formally verified by other techniques.

6.2.2 Automated Specification Generation

In our approach to performance feedback generation, the teacher needs to write the
specifications manually. Although our experimental evaluation (see Section 3.7) shows
that writing specifications requires considerably less teacher effort that manual grading,
it would be interesting to investigate if this process could be even more automated.

We sketch a possible direction of automation, based on the insight that our approach
does not require specifications directly; they are just a way to specify a set of key-value
traces that implementations of the corresponding algorithmic strategy should match.
Hence, instead of writing a specification for some strategy, the teacher would manually
label several implementations of this strategy, and the system would automatically find a
set of traces that all of them match. When there is a new implementation that does not
match any of the existing strategies, the teacher labels it accordingly and the system

2This is especially the case for the teachers with ample experience in the introductory programming
courses.

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Future Work

automatically generalizes the traces of the corresponding strategy. Some challenges of
this approach are:

• How to guarantee that the generated traces are not too general (so that they match
too many programs) or too specific (so that they match too few programs and need
to be generalized too often)?

• How can the teacher interpret the automatically generated traces?

6.2.3 Pattern Finding in General-Purpose Programs

We have evaluated our Trace Embedding approach on introductory programming assign-
ments because the aims of this thesis were to develop methods to generate feedback
in introductory education. However, it would be interesting to investigate whether the
similar methods could be used to analyze larger (general-purpose) programs.

Although it is currently not clear how this approach would apply to larger programs, we
imagine the following scenarios.

Similar to the Toddler [Nis+13] and Cachetor [NX13] projects (mentioned in Section 5.2),
we imagine our approach being used for detecting different inefficiency patterns in code.
While these projects look for a set of specific patterns, we imagine that our approach
would allow a domain expert to write specifications (similar to the specifications written
by the teacher in our approach) that describe inefficient patterns.

Further, in would be interesting to investigate whether this could be used in a similar
way for finding patterns going beyond performance, that is, for functional correctness.
For example, to find incorrect usages of an API.

6.2.4 Cost Function in the Repair Algorithm

As discussed in Section 4.3, our repair algorithm uses the tree edit distance [Tai79; ZS89]
between the abstract syntax trees (ASTs) as the cost function while finding the repair
with the minimal cost.

We believe that the cost function could take into account more information; we mention
two possible ideas for extension, based on the existing work.

In Qlose [DSS16] approach the authors are also considering various notions of semantic
distance between programs, going beyond pure syntactic differences, but taking into
account differences in program behavior.

Demyanova, Veith, and Zuleger [DVZ13] study variable roles (e.g., flag, loop iterator,
counter, index) and their use in software analysis. In would be interesting to extend
Clara with knowledge of variable roles and reduce the repair search space such that
it only matches variables with the same roles. This would not only have performance
benefits (on the repair algorithm), but potentially might better match the student’s
intention.

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Conclusions and Future Work

6.2.5 Control-flow Matching

Our clustering and repair algorithms (Section 4.3) are restricted to the analysis of
programs with the same control-flow. In our experiments (Section 4.7) we observed
only 35 cases (out of 4293 attempts in our MOOC experiment) that require analysis of
programs with different control-flow. Hence, we did not extend our algorithms to handle
programs with different control-flow.

We conjecture that the algorithms could be extended to programs with similar (instead
of the same) control-flow.

6.2.6 Extension to Functional Programming Languages

Our relational dynamic analysis and both of our feedback generation techniques (for
performance and functional properties) are presented and evaluated in the context of
imperative programming languages.

We already argued that our techniques should easily apply to other imperative languages,
besides the ones we use in our implementations, since the techniques do not depend on
any particular feature of the implementation languages.

It would be interesting to investigate if the same techniques could be applied in the
context of functional programming languages as well. We speculate that it would not be
difficult to obtain an execution trace of a functional program and use the same algorithms.

6.2.7 Pedagogy of Automated Feedback Generation

While this thesis is mainly focused on the technical problem, an interesting orthogonal
direction for future work is to consider pedagogical research questions ([Hea+17; Suz+17]).
For example, in the context of functional feedback:

1. How much information should be revealed to the student (the line number, an
incorrect expression, the whole repair)?

2. Should the use of automated help be penalized?

3. How much do students learn from the automated help?

One possible direction is to consider different types of feedback that can be generated from
a repair of a student’s program. The straightforward feedback is to present the student
with full or partial set of changes. However, different kinds of feedback are possible; for
example: A course instructor could annotate variables in the correct solutions with their
descriptions, and when a repair for some variable is required, a matching feedback is
shown to a student.

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Problems List

Here we list the descriptions of all programming problems discussed in the thesis.

A.1 Performance Feedback Evaluation

A.1.1 Existing Problems on Pex4Fun

Anagram

Given two strings s and t, determine whether they are anagrams. Two strings are
anagrams when one can be permuted (rearranged) to match the other.

IsSorted

Given an integer input array A, check if A is sorted (i.e., whether A[i] ≤ A[j], for all
i < j).

Caesar

Apply the Caesar cipher 1 to the input string.

A.1.2 Created Course Problems

DoubleChar

Double every character in the input string.

For example: return "xxyyzz" for the input string "xyz".

1https://en.wikipedia.org/wiki/Caesar_cipher

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Problems List

LongestEqual

Given an integer input array, find the length of the longest sequence of equal values.

LongestWord

Find the longest word in the input string (words are contiguous sequences of letters
separated by spaces).

RunLength

Run-length 2 encode the input string.

Vigenere

Return the Vigenere cipher 3 of the input string.

BaseToBase

Convert the input string, representing a number in the base b1, to the base b2, where
2 ≤ b1, b2 ≤ 36. Characters 0 - 9 represent values 0 - 9 and characters A - Z represent
values 10 - 35.

CatDog

Check if the number of "cat" substrings in the input string the same as the number of
"dog" substrings.

MinimalDelete

Find the minimal number of characters that have to be deleted so that the two input
strings become equal.

CommonElement

Find the smallest common element of the three sorted input integer arrays.

Order3

Sort an integer array containing only the elements 1, 2, and 3, by using solely the swap
function.

Note: swap(A, i, j) changes the value of the array element A[i] with the value of
the array element A[j], and vice versa.

2http://en.wikipedia.org/wiki/Run-length_encoding
3https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.1. Performance Feedback Evaluation

2DSearch

Find the position of an integer in a 2D ordered integer array.

TableAggSum

Return the aggregated sum for IDs (the input is an array of ID-value pairs).

Intersection

Compute the intersection of the three input integer arrays.

ReverseList

Reverse the pointers in a linked list represented as an integer array.

SortingStrings

Sort the input array of strings, where each string is four characters long.

MinutsBetween

Calculate the number of minutes between two points of time (represented as strings in
the "HH:MM" 24-hour format).

MaxSum

Given an integer array, find the contiguous subarray whose sum is maximal and return
that sum.

Median

Compute the median of the input integer array.

DigitPermutation

Calculate the next permutation of the input integer array with regard to the lexicographic
ordering.

Coins

For the input array of integers (representing coin values), and the input value S, find the
minimum number of coins the sum of which is S.

Seq235

For the input n, find the nth element in the sequence of numbers that are divisible only
by 2, 3 and 5 (starting with 1,2,3,4,5,6,8, . . .).

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Problems List

A.2 Functional Feedback Evaluation

A.2.1 MOOC experiment

derivatives

Compute and return the derivative of a polynomial function represented as a list of floats.
If the derivative is 0, return [0.0].

input: list of numbers (length ≥ 0).

return: list of numbers (floats).

oddTuples

input: a tuple aTup.

return: a tuple, every other element of aTup.

polynomials

Compute the value of a polynomial function at a given value x. Return that value as a
float.

inputs: list of numbers (length > 0) and a number (float).

return: float.

A.2.2 User Study on Usefulness

Fibonacci sequence

Write a program that takes as input an integer k > 0 and prints the integer n > 0 such
that Fn ≤ k < Fn+1.

Here Fn means the nth number in the Fibonacci sequence defined by the relation:

Fn = Fn−1 + Fn−2 for n > 2
F1 = 1
F2 = 1

Examples of Fibonacci numbers are: 1, 1, 2, 3, 5, 8, . . .

Special number

Write a program that takes as input an integer n ≥ 0 and prints YES if n is a special
number, and NO otherwise.

A number is special if the sum of cubes of its digits is equal to the number itself.

Note: A cube of some number x is x3 = x · x · x.

For example: 371 is a special number, since 33 + 73 + 13 = 27 + 343 + 1 = 371.

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Functional Feedback Evaluation

Reverse Difference

Write a program that takes as input a positive integer n > 0 and prints the difference of
n and its reverse.

For example: if n is 1234, the output will be −3087 (result of 1234 − 4321).

Factorial interval

Write a program that takes as input two integers n and m (where 0 ≤ n ≤ m), and prints
the number (count) of factorial numbers in the closed interval [n, m].

A number f is a factorial number if there exists some integer i ≥ 0 such that f = i!

Note: i! = 1 · 2 · · · i, that is, i! is a product of first i natural numbers, excluding 0.

Examples of factorial numbers are: 1, 2, 6, 24, 120, . . .

Trapezoid

Write a program to do the following:

(a) Read height h and base length b as the input.

(b) Print h lines of output such that they form a pattern in the shape of a regular
trapezoid.

(c) Trapezoid should be formed using the symbol "*".

Example output for h = 5 and b = 14 ("-" denotes where spaces should go, you should
print a space " " instead of "-"):

----******
---********
--**********
-************

Important: There should be NO EXTRA SPACE (before the pattern, between rows,
between columns, . . .). The last line should be an empty line.

Rhombus

Write a program to do the following:

(a) Take height h as the input.

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Problems List

(b) Print h lines of output such that they form a pattern in the shape of a rhombus.

(c) Each line should be formed by the integer representing the column number modulo
10.

Note: You can assume that h will be odd and h ≥ 3.

Example output for h = 5 ("-" denotes where spaces should go, you should print a space
" " instead of "-"):

--3

-234

12345

-234

--3

Important: There should be NO EXTRA SPACE (before the pattern, between rows,
between columns, . . .). The last line should be an empty line.

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

1.1 Examples of student attempts. 3
1.2 Examples of student attempts requiring repair beyond expression modification. 7
1.3 Different algorithmic strategies for the anagram problem. 12
1.4 Different implementations of the counting strategy. 14
1.5 Different implementations of the sorting and removing strategies. 15
1.6 Examples of specifications. 16
1.7 Examples of correct student solutions to the derivative problem. 17
1.8 An additional incorrect student attempt (I2) to the derivative problem. . 17
1.9 Examples of repairs for the incorrect student attempts. 18

2.1 Algorithm for the subsequence problem. 26
2.2 Algorithm for the Trace Embedding problem. 28
2.3 Example of two simple programs. 33

3.1 High-level overview of the methodology. 40
3.2 A specification for the sorting strategy using non-deterministic variables (SS’). 42
3.3 The syntax for implementations and specifications. 44
3.4 Representation (simplified) of the program C3 in our program model. . . 47
3.5 The specification CS’ and its (simplified) representation in our program

model. 48
3.6 Algorithm for the matching problem. 50
3.7 Examples for the efficient implementation and specification. 53
3.8 Removing / Manual 2 (R4) . 54
3.9 Custom data equality example. 55
3.10 Removing / Separate Computation (R5). 56
3.11 Example of two programs whose behavior depends on the iteration order of

sets. 57
3.12 Examples of unmatched implementations and corresponding new or refined

specifications (obtained from the inspection step). 61
3.13 A sample output of the Observer tool. 63
3.14 The number of inspection steps required to completely specify all the problems. 68
3.15 Time (in minutes) required to completely specify all the problems. 69

4.1 High-level overview of the approach. 74

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2 Dynamically equivalent expressions. 77
4.3 The Top-level Repair Algorithm. 85
4.4 High-level overview of the repair algorithm. 86
4.5 The Repair Algorithm. 88
4.6 A sample output of the Clara tool. 94
4.7 Histogram of relative repair sizes. 98
4.8 Comparison of the generated repairs size between AutoGrader and Clara. 99
4.9 A big conceptual error and a repair involving addition of a fresh variable. 102
4.10 Reverse condition branches in the repair. 102
4.11 An additional statement. 103

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

3.1 List of all programming problems in the evaluation, with experimental results
(N is the number of inefficient strategies; S is the number of inspection steps; I
is the number of inputs; ND is the maximal number of used non-deterministic
variables; LS/LI is the largest ratio of specification and average matched
implementation (in lines of code); Os is the maximal number of observed
variables in a specification; OI is the maximal number of observed variables
in an implementation; M is the maximal number of mapping functions that
our tool had to explore). 67

4.1 List of the problems with evaluation results for the MOOC data (with Auto-
Grader comparison). 97

4.2 List of the problems with evaluation details for the user study. 104

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[ADLM15] Martin Avanzini, Ugo Dal Lago, and Georg Moser. “Analysing the Complex-
ity of Functional Programs: Higher-order Meets First-order”. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP 2015. Vancouver, BC, Canada: ACM, 2015, pp. 152–164.
isbn: 978-1-4503-3669-7. doi: 10.1145/2784731.2784753. url: http:
//doi.acm.org/10.1145/2784731.2784753.

[AGK13] Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare. “Automatically
Generating Problems and Solutions for Natural Deduction”. In: Proceedings
of the Twenty-Third International Joint Conference on Artificial Intelligence.
IJCAI ’13. Beijing, China: AAAI Press, 2013, pp. 1968–1975. isbn: 978-1-
57735-633-2. url: http://dl.acm.org/citation.cfm?id=2540128.
2540411.

[AGP13] Erik Andersen, Sumit Gulwani, and Zoran Popovic. “A Trace-based Frame-
work for Analyzing and Synthesizing Educational Progressions”. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’13. Paris, France: ACM, 2013, pp. 773–782. isbn: 978-1-4503-1899-0.
doi: 10.1145/2470654.2470764. url: http://doi.acm.org/10.
1145/2470654.2470764.

[AGP14] Eirk Andersen, Sumit Gulwani, and Zoran Popovič. Programming by demon-
stration framework applied to procedural math problems. Tech. rep. 2014.

[AL80] Anne Adam and Jean-Pierre H. Laurent. “LAURA, A System to Debug
Student Programs”. In: Artif. Intell. 15.1-2 (1980).

[Alb+12] Elvira Albert et al. “Cost Analysis of Object-oriented Bytecode Programs”.
In: Theor. Comput. Sci. 413.1 (Jan. 2012), pp. 142–159. issn: 0304-3975.
doi: 10.1016/j.tcs.2011.07.009. url: http://dx.doi.org/10.
1016/j.tcs.2011.07.009.

[Ali+10] Christophe Alias et al. “Multi-dimensional Rankings, Program Termination,
and Complexity Bounds of Flowchart Programs”. In: Static Analysis. Ed. by
Radhia Cousot and Matthieu Martel. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 117–133. isbn: 978-3-642-15769-1.

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Alu+13] Rajeev Alur et al. “Automated Grading of DFA Constructions”. In: Pro-
ceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence. IJCAI ’13. Beijing, China: AAAI Press, 2013, pp. 1976–1982.
isbn: 978-1-57735-633-2. url: http://dl.acm.org/citation.cfm?
id=2540128.2540412.

[Arc08] Andrea Arcuri. “On the Automation of Fixing Software Bugs”. In: Com-
panion of the 30th International Conference on Software Engineering. ICSE
Companion ’08. Leipzig, Germany: ACM, 2008, pp. 1003–1006. isbn: 978-
1-60558-079-1. doi: 10.1145/1370175.1370223. url: http://doi.
acm.org/10.1145/1370175.1370223.

[BBL98] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. “Pattern Matching for
Permutations”. In: Inf. Process. Lett. 65.5 (1998), pp. 277–283.

[Bey+09] D. Beyer et al. “Software model checking via large-block encoding”. In:
2009 Formal Methods in Computer-Aided Design. 2009, pp. 25–32. doi:
10.1109/FMCAD.2009.5351147.

[Bro+16] Marc Brockschmidt et al. “Analyzing Runtime and Size Complexity of
Integer Programs”. In: ACM Trans. Program. Lang. Syst. 38.4 (Aug. 2016),
13:1–13:50. issn: 0164-0925. doi: 10.1145/2866575. url: http://doi.
acm.org/10.1145/2866575.

[Cha+11] Satish Chandra et al. “Angelic Debugging”. In: Proceedings of the 33rd
International Conference on Software Engineering. ICSE ’11. New York, NY,
USA: ACM, 2011, pp. 121–130. isbn: 978-1-4503-0445-0. doi: 10.1145/
1985793.1985811. url: http://doi.acm.org/10.1145/1985793.
1985811.

[CHS15] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. “Compositional
Certified Resource Bounds”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
’15. Portland, OR, USA: ACM, 2015, pp. 467–478. isbn: 978-1-4503-3468-6.
doi: 10.1145/2737924.2737955. url: http://doi.acm.org/10.
1145/2737924.2737955.

[D’a+15] Loris D’antoni et al. “How Can Automatic Feedback Help Students Construct
Automata?” In: ACM Trans. Comput.-Hum. Interact. 22.2 (Mar. 2015), 9:1–
9:24. issn: 1073-0516. doi: 10.1145/2723163. url: http://doi.acm.
org/10.1145/2723163.

[Das+16] Rajdeep Das et al. “Prutor: A System for Tutoring CS1 and Collecting
Student Programs for Analysis”. In: CoRR abs/1608.03828 (2016). url:
http://arxiv.org/abs/1608.03828.

[DLH90] Saumya K. Debray, Nai-Wei Lin, and Manuel Hermnegildo. “Task Granu-
larity Analysis in Logic Programs”. In: SIGPLAN Not. 25.6 (June 1990),
pp. 174–188. issn: 0362-1340. doi: 10.1145/93548.93564. url: http:
//doi.acm.org/10.1145/93548.93564.

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Dru+14] A. Drummond et al. “Learning to Grade Student Programs in a Massive
Open Online Course”. In: Data Mining (ICDM), 2014 IEEE International
Conference on. 2014, pp. 785–790. doi: 10.1109/ICDM.2014.142.

[DSS16] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. “Qlose: Program
Repair with Quantitative Objectives”. In: Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-
23, 2016, Proceedings, Part II. 2016, pp. 383–401. url: http://dx.doi.
org/10.1007/978-3-319-41540-6_21.

[DVZ13] Yulia Demyanova, Helmut Veith, and Florian Zuleger. “On the concept
of variable roles and its use in software analysis”. In: Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23,
2013. 2013, pp. 226–230. url: http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=6679414.

[DW10] V. Debroy and W.E. Wong. “Using Mutation to Automatically Suggest Fixes
for Faulty Programs”. In: Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on. 2010, pp. 65–74. doi:
10.1109/ICST.2010.66.

[FMH14] Antonio Flores-Montoya and Reiner Hähnle. “Resource Analysis of Complex
Programs with Cost Equations”. In: Programming Languages and Systems.
Ed. by Jacques Garrigue. Cham: Springer International Publishing, 2014,
pp. 275–295. isbn: 978-3-319-12736-1.

[For+09] Stephanie Forrest et al. “A Genetic Programming Approach to Automated
Software Repair”. In: Proceedings of the 11th Annual Conference on Ge-
netic and Evolutionary Computation. GECCO ’09. Montreal, Québec,
Canada: ACM, 2009, pp. 947–954. isbn: 978-1-60558-325-9. doi: 10.1145/
1569901.1570031. url: http://doi.acm.org/10.1145/1569901.
1570031.

[GAW07] Simon Goldsmith, Alex Aiken, and Daniel Shawcross Wilkerson. “Measuring
empirical computational complexity”. In: ESEC/SIGSOFT FSE. 2007.

[GKT11] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. “Synthesizing
Geometry Constructions”. In: Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
’11. San Jose, California, USA: ACM, 2011, pp. 50–61. isbn: 978-1-4503-
0663-8. doi: 10.1145/1993498.1993505. url: http://doi.acm.
org/10.1145/1993498.1993505.

[Gla+14] Elena L. Glassman et al. “OverCode: Visualizing Variation in Student
Solutions to Programming Problems at Scale”. In: Proceedings of the Adjunct
Publication of the 27th Annual ACM Symposium on User Interface Software
and Technology. UIST’14 Adjunct. Honolulu, Hawaii, USA: ACM, 2014,
pp. 129–130. isbn: 978-1-4503-3068-8. doi: 10.1145/2658779.2658809.
url: http://doi.acm.org/10.1145/2658779.2658809.

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[GMC09] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. “SPEED:
precise and efficient static estimation of program computational complexity”.
In: POPL. 2009, pp. 127–139.

[GMK11] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. “Specification-
based Program Repair Using SAT”. In: Proceedings of the 17th Interna-
tional Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems: Part of the Joint European Conferences on Theory and
Practice of Software. TACAS’11/ETAPS’11. Saarbrücken, Germany:
Springer-Verlag, 2011, pp. 173–188. isbn: 978-3-642-19834-2. url: http:
//dl.acm.org/citation.cfm?id=1987389.1987408.

[Gou+15] C. Le Goues et al. “The ManyBugs and IntroClass Benchmarks for Auto-
mated Repair of C Programs”. In: IEEE Transactions on Software Engi-
neering 41.12 (2015), pp. 1236–1256. issn: 0098-5589. doi: 10.1109/TSE.
2015.2454513.

[GRZ14] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. “Feedback Generation
for Performance Problems in Introductory Programming Assignments”. In:
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. FSE 2014. Hong Kong, China: ACM, 2014,
pp. 41–51. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2635912.
url: http://doi.acm.org/10.1145/2635868.2635912.

[GRZ18] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. “Automated Clustering
and Program Repair for Introductory Programming Assignments”. In: Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018,
pp. 465–480. isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192387.
url: http://doi.acm.org/10.1145/3192366.3192387.

[Gul14] Sumit Gulwani. “Example-Based Learning in Computer-Aided STEM Edu-
cation”. In: To appear in Commun. ACM (2014). url: http://research.
microsoft.com/en-us/um/people/sumitg/pubs/education13.

pdf.

[Gup+08] Ashutosh Gupta et al. “Proving non-termination”. In: POPL. 2008, pp. 147–
158.

[GZ10] Sumit Gulwani and Florian Zuleger. “The reachability-bound problem”. In:
PLDI. 2010, pp. 292–304.

[HAH12] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. “Resource Aware ML”.
In: Computer Aided Verification. Ed. by P. Madhusudan and Sanjit A. Seshia.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 781–786. isbn:
978-3-642-31424-7.

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Hea+17] Andrew Head et al. “Writing Reusable Code Feedback at Scale with Mixed-
Initiative Program Synthesis”. In: Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale. L@S ’17. Cambridge, Massachusetts, USA:
ACM, 2017, pp. 89–98. isbn: 978-1-4503-4450-0. doi: 10.1145/3051457.
3051467. url: http://doi.acm.org/10.1145/3051457.3051467.

[Her+05] Manuel V. Hermenegildo et al. “Integrated Program Debugging, Verification,
and Optimization Using Abstract Interpretation (and the Ciao System
Preprocessor)”. In: Sci. Comput. Program. 58.1-2 (Oct. 2005), pp. 115–
140. issn: 0167-6423. doi: 10.1016/j.scico.2005.02.006. url:
http://dx.doi.org/10.1016/j.scico.2005.02.006.

[Iha+10] Petri Ihantola et al. “Review of Recent Systems for Automatic Assessment
of Programming Assignments”. In: Proceedings of the 10th Koli Calling
International Conference on Computing Education Research. Koli Calling
’10. Koli, Finland: ACM, 2010, pp. 86–93. isbn: 978-1-4503-0520-4. doi:
10.1145/1930464.1930480. url: http://doi.acm.org/10.1145/
1930464.1930480.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. “Program
Repair As a Game”. In: Proceedings of the 17th International Conference on
Computer Aided Verification. CAV’05. Edinburgh, Scotland, UK: Springer-
Verlag, 2005, pp. 226–238. isbn: 3-540-27231-3, 978-3-540-27231-1. doi:
10.1007/11513988_23. url: http://dx.doi.org/10.1007/
11513988_23.

[JU97] David Jackson and Michelle Usher. “Grading student programs using AS-
SYST”. In: SIGCSE. 1997, pp. 335–339.

[Kal+16] Shalini Kaleeswaran et al. “Semi-supervised Verified Feedback Generation”.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. FSE 2016. Seattle, WA, USA: ACM,
2016, pp. 739–750. isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.
2950363. url: http://doi.acm.org/10.1145/2950290.2950363.

[KB11] Robert Könighofer and Roderick Bloem. “Automated Error Localization and
Correction for Imperative Programs”. In: Proceedings of the International
Conference on Formal Methods in Computer-Aided Design. FMCAD ’11.
Austin, Texas: FMCAD Inc, 2011, pp. 91–100. isbn: 978-0-9835678-1-3. url:
http://dl.acm.org/citation.cfm?id=2157654.2157671.

[Ke+15] Yalin Ke et al. “Repairing Programs with Semantic Code Search (T)”.
In: Proceedings of the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). ASE ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 295–306. isbn: 978-1-5090-0025-8. url:
http://dx.doi.org/10.1109/ASE.2015.60.

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Kim+16] Dohyeong Kim et al. “Apex: Automatic Programming Assignment Error
Explanation”. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA 2016. Amsterdam, Netherlands: ACM, 2016, pp. 311–
327. isbn: 978-1-4503-4444-9. doi: 10.1145/2983990.2984031. url:
http://doi.acm.org/10.1145/2983990.2984031.

[KK12] Chinmay Kulkarni and Scott R. Klemmer. Learning design wisdom by
augmenting physical studio critique with online self-assessment. Tech. rep.
2012.

[Lah+15] Shuvendu Lahiri et al. Automated Differential Program Verification for
Approximate Computing. Tech. rep. 2015. url: https://www.microsoft.
com/en-us/research/publication/automated-differential-

program-verification-for-approximate-computing/.

[LR16] Fan Long and Martin Rinard. “Automatic Patch Generation by Learning
Correct Code”. In: SIGPLAN Not. 51.1 (Jan. 2016), pp. 298–312. issn:
0362-1340. url: http://doi.acm.org/10.1145/2914770.2837617.

[Mas11] Ken Masters. “A Brief Guide To Understanding MOOCs”. In: The Internet
Journal of Medical Education 1.2 (2011). doi: 10.5580/1f21. (Visited on
09/24/2012).

[Mil71] Robin Milner. An Algebraic Definition of Simulation Between Programs.
Tech. rep. Stanford, CA, USA, 1971.

[MKK17] Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. “Contract-
based Resource Verification for Higher-order Functions with Memoization”.
In: SIGPLAN Not. 52.1 (Jan. 2017), pp. 330–343. issn: 0362-1340. doi:
10.1145/3093333.3009874. url: http://doi.acm.org/10.1145/
3093333.3009874.

[Mur87] William R. Murray. “Automatic program debugging for intelligent tutoring
systems”. In: Computational Intelligence 3 (1987).

[Nec00] George C. Necula. “Translation Validation for an Optimizing Compiler”.
In: SIGPLAN Not. 35.5 (May 2000), pp. 83–94. issn: 0362-1340. doi: 10.
1145/358438.349314. url: http://doi.acm.org/10.1145/
358438.349314.

[Ngu+14] Andy Nguyen et al. “Codewebs: Scalable Homework Search for Massive Open
Online Programming Courses”. In: Proceedings of the 23rd International
Conference on World Wide Web. WWW ’14. Seoul, Korea: ACM, 2014,
pp. 491–502. isbn: 978-1-4503-2744-2. doi: 10.1145/2566486.2568023.
url: http://doi.acm.org/10.1145/2566486.2568023.

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Nis+13] Adrian Nistor et al. “Toddler: Detecting Performance Problems via Similar
Memory-access Patterns”. In: Proceedings of the 2013 International Confer-
ence on Software Engineering. ICSE ’13. San Francisco, CA, USA: IEEE
Press, 2013, pp. 562–571. isbn: 978-1-4673-3076-3. url: http://dl.acm.
org/citation.cfm?id=2486788.2486862.

[NX13] Khanh Nguyen and Guoqing Xu. “Cachetor: Detecting Cacheable Data to
Remove Bloat”. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ESEC/FSE 2013. Saint Petersburg, Russia: ACM,
2013, pp. 268–278. isbn: 978-1-4503-2237-9. doi: 10.1145/2491411.
2491416. url: http://doi.acm.org/10.1145/2491411.2491416.

[PSS98] A. Pnueli, M. Siegel, and F. Singerman. “Translation Validation”. In:
Springer, 1998, pp. 151–166.

[Rad+17] Ivan Radiček et al. “Monadic refinements for relational cost analysis”. In:
Proc. ACM Program. Lang. 2.POPL (2017), 36:1–36:32. issn: 2475-1421. doi:
10.1145/3158124. url: http://doi.acm.org/10.1145/3158124.

[RK17] Kelly Rivers and Kenneth R. Koedinger. “Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor”. In:
International Journal of Artificial Intelligence in Education 27.1 (2017),
pp. 37–64. issn: 1560-4306. doi: 10.1007/s40593-015-0070-z. url:
https://doi.org/10.1007/s40593-015-0070-z.

[Rol+17] Reudismam Rolim et al. “Learning Syntactic Program Transformations
from Examples”. In: Proceedings of the 39th International Conference on
Software Engineering. ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017,
pp. 404–415. isbn: 978-1-5386-3868-2. doi: 10.1109/ICSE.2017.44.
url: https://doi.org/10.1109/ICSE.2017.44.

[SG11] Michael Striewe and Michael Goedicke. “Using run time traces in automated
programming tutoring”. In: ITiCSE. 2011, pp. 303–307.

[SG13] Michael Striewe and Michael Goedicke. “Trace Alignment for Automated
Tutoring”. In: CAA. 2013.

[SGR12] Rohit Singh, Sumit Gulwani, and Sriram Rajamani. “Automatically Gen-
erating Algebra Problems”. In: Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence. AAAI’12. Toronto, Ontario, Canada:
AAAI Press, 2012, pp. 1620–1627. url: http://dl.acm.org/citation.
cfm?id=2900929.2900958.

[SGSL13] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. “Automated
feedback generation for introductory programming assignments”. In: PLDI.
2013, pp. 15–26.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[SJB05] Stefan Staber, Barbara Jobstmann, and Roderick Bloem. “Finding and Fix-
ing Faults”. English. In: Correct Hardware Design and Verification Methods.
Ed. by Dominique Borrione and Wolfgang Paul. Vol. 3725. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 35–49. isbn:
978-3-540-29105-3. doi: 10.1007/11560548_6. url: http://dx.doi.
org/10.1007/11560548_6.

[SMK01] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. “Fully Automatic As-
sessment of Programming Exercises”. In: Proceedings of the 6th Annual
Conference on Innovation and Technology in Computer Science Education.
ITiCSE ’01. Canterbury, United Kingdom: ACM, 2001, pp. 133–136. isbn:
1-58113-330-8. doi: 10.1145/377435.377666. url: http://doi.acm.
org/10.1145/377435.377666.

[Suz+17] Ryo Suzuki et al. “Exploring the Design Space of Automatically Synthesized
Hints for Introductory Programming Assignments”. In: Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems. CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 2951–2958.
isbn: 978-1-4503-4656-6. doi: 10.1145/3027063.3053187. url: http:
//doi.acm.org/10.1145/3027063.3053187.

[SZV14] Moritz Sinn, Florian Zuleger, and Helmut Veith. “A Simple and Scalable
Static Analysis for Bound Analysis and Amortized Complexity Analysis”.
In: Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings. 2014, pp. 745–761. doi: 10.1007/978-3-
319-08867-9_50. url: http://dx.doi.org/10.1007/978-3-
319-08867-9_50.

[SZV17] Moritz Sinn, Florian Zuleger, and Helmut Veith. “Complexity and Resource
Bound Analysis of Imperative Programs Using Difference Constraints”. In:
Journal of Automated Reasoning 59.1 (2017), pp. 3–45. issn: 1573-0670. doi:
10.1007/s10817-016-9402-4. url: https://doi.org/10.1007/
s10817-016-9402-4.

[Tai79] Kuo-Chung Tai. “The Tree-to-Tree Correction Problem”. In: J. ACM 26.3
(July 1979), pp. 422–433. issn: 0004-5411. doi: 10.1145/322139.322143.
url: http://doi.acm.org/10.1145/322139.322143.

[Til+13a] Nikolai Tillmann et al. “Teaching and Learning Programming and Software
Engineering via Interactive Gaming”. In: Proc. 35th International Conference
on Software Engineering (ICSE 2013), Software Engineering Education
(SEE). San Francisco, CA, 2013. url: http://www.cs.illinois.edu/
homes/taoxie/publications/icse13see-pex4fun.pdf.

[Til+13b] Nikolai Tillmann et al. “Teaching and learning programming and software
engineering via interactive gaming”. In: ICSE. 2013.

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Til+14] Nikolai Tillmann et al. “Code Hunt: Searching for Secret Code for Fun”.
In: Proceedings of the International Conference on Software Engineering
(Workshops) (2014). url: http://research.microsoft.com/apps/
pubs/default.aspx?id=210651.

[Uno97] Takeaki Uno. “Algorithms for Enumerating All Perfect, Maximum and
Maximal Matchings in Bipartite Graphs”. In: ISAAC. 1997, pp. 92–101.

[Wel+12] Daniel S. Weld et al. “Personalized online education - a crowdsourcing
challenge”. In: In Workshops at the Twenty-Sixth AAAI Conference on
Artificial Intelligence. 2012.

[WSS18] Ke Wang, Rishabh Singh, and Zhendong Su. “Search, Align, and Repair:
Data-driven Feedback Generation for Introductory Programming Exercises”.
In: SIGPLAN Not. 53.4 (June 2018), pp. 481–495. issn: 0362-1340. doi:
10.1145/3296979.3192384. url: http://doi.acm.org/10.1145/
3296979.3192384.

[Yi+17] Jooyong Yi et al. “A Feasibility Study of Using Automated Program Repair
for Introductory Programming Assignments”. In: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2017. Paderborn, Germany: ACM, 2017, pp. 740–751. isbn: 978-1-4503-5105-
8. doi: 10.1145/3106237.3106262. url: http://doi.acm.org/10.
1145/3106237.3106262.

[ZS89] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems”. In: SIAM J. Comput. 18.6 (Dec.
1989), pp. 1245–1262. issn: 0097-5397. doi: 10.1137/0218082. url:
http://dx.doi.org/10.1137/0218082.

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Feedback Generation for Introductory Programming
	Aim of the thesis
	Methodology
	Overview of the Thesis
	Contributions
	Structure of the Thesis

	Dynamic Relational Analysis
	Key Values
	Trace Embedding
	Generalizations of Trace Embedding
	Conclusion

	Performance Feedback
	Overview of the Approach
	Program Model
	Algorithms
	Extensions
	Usage Methodology
	Implementation
	Experimental Evaluation
	Conclusion

	Functional Correctness Feedback
	Overview of the Approach
	Program Model
	Algorithms
	Extensions
	Usage Methodology
	Implementation
	Experimental Evaluation
	Conclusion

	Related Work
	Feedback in (programming) Education
	Performance Analysis
	Program Repair
	Relational Program Analysis

	Conclusions and Future Work
	Contributions
	Future Work

	Problems List
	Performance Feedback Evaluation
	Functional Feedback Evaluation

	List of Figures
	List of Tables
	Bibliography

