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Zusammenfassung

Im Rahmen dieser Diplomarbeit wird ein mathematisches Modell zur Simulation und

Vorhersage von Influenza Epidemien entwickelt werden.

Die klassischen Methoden für die Modellierung und Lösung solcher Aufgabenstel-

lungen sind Differentialgleichungssysteme. Diese erweisen sich in mancher Hinsicht

jedoch leider als eingeschränkt. Vor allem bei der Betrachtung von heterogenen Popu-

lationen und räumlichen Komponenten werden diese Systeme extrem kompliziert und

über die Maße komplex. Am Anfang dieser Arbeit werden deshalb die Potentiale von

alternativen Ansätzen – im Speziellen zellulären Automaten und agentenbasierten Sys-

temen – untersucht.

Die Analyse dieser Methoden gliedert sich in zwei Teile. Einerseits in den theo-

retischen Teil, in welchem die Methoden verglichen und ihre Stärken bzw. Schwächen

ermittelt werden. Andererseits in den praktischen Teil, einschließlich der Untersuchun-

gen des Verhaltens der Implementierungen beider Methoden. Zu diesem Zweck wurde

eine einfache SIR-Epidemie sowohl mit der einen als auch der anderen Methode mod-

elliert.

Bestärkt von den Ergebnissen der Evaluierung der Ansätze, wurde das hybride

Modell aufgesetzt. Da die genaue Parametrisierung des Modells gute und reale Daten

voraussetzt, und aufgrund der Tatsache, dass die weitere Entwicklung des Modells sehr

von der Qualität dieser vorhandenen Daten abhängt, wird auch die Datenlage genauer

betrachtet. Am Ende werden Experimente, durchgeführt am neu entwickelten Modell,

analysiert.

Die Ergebnisse dieser Experimente unterstützen die ursprüngliche Motivation des

hybriden Ansatzes und ermutigen zu weiteren Untersuchungen desselben. Schließlich

wird ein Ausblick auf die mögliche Entwicklung von und notwendigen Bedingungen für

so einen Modellansatz gegeben.
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Abstract

In the course of this thesis a hybrid mathematical model for the simulation and pre-

diction of influenza epidemics is going to be established.

The classic methods applied for modelling such epidemics used to be ODE-Systems

but unfortunately these systems are limited in some respect. They become particularly

complicated and complex beyond limit when observing heterogeneous populations and

spatial components. Thus the potential of alternative approaches – namely cellular

automata and agent based systems – is analyzed in the beginning of this work.

Analysis of these methods was split into two major parts. The first one being the

theoretical one in which the methods were compared in order to locate their respective

strengths and weaknesses. The second part being the practical analysis including

behavior of the implementations, for this a simple SIR epidemic was modelled with

each approach.

Backed by the findings of the analysis of the methods, the final hybrid model was

set up. Since accurate parametrization of models requires reliable and authentic data

for validation purposes, and due to the fact that a further development of the model

strongly depends on the quality of this data, this issue is also covered in this thesis.

Finally the experiments with the newly created model are analyzed.

The outcome of the experiments backs the basic motivation to use a hybrid approach

and encourages further investigation of it. Thus an outline for future possibilities of

and necessities for such modelling approaches is sketched.
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Zvanatoga se kanim i srdačno zahvalit kod mojega profesora Ao.Univ.Prof.

Dipl.-Ing. Dr.techn. Felixa Breiteneckera, a posebno kod Günthera Zaunera

i Nikia Poppera za njev trud i njevu pomoć pri pisanju ovoga djela.
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Chapter 1

Introduction

1.1 Motivation for Modelling Diseases 1

Looking at the effects, diseases and particularly epidemic or even pandemic outbreaks

did have on mankind throughout history, it may be hard to grasp the full scale of pain,

tragedy and suffering that they carried along. The toll of human lives is astronomic,

easily surpassing that of all wars. The figures for historic epidemics are estimates and

of course vary, but even the conservative assumptions are shocking.

The black death epidemic of the 14th century can be held accountable for about 20-

25 million deaths in Europe alone. Europe at that time had a population of estimated

80-100 million, meaning that up to a third of the population was carried off by it.

Although latest studies assume that it was not only the plague but a combination of a

few diseases that were circulating at that time.

Only diseases that the human immune system cannot cope with are potentially life

threatening. This was the case for the plague in middle ages and it was also discovered

fast by the military. The first known case of biological warfare being the siege of Genoa

in 1346, when infectious corpses were thrown over the city walls to cause death and

panic among the city’s population.

But even seemingly “harmless” diseases proved to be extremely lethal. The Aztecs

did not have any anti bodies against smallpox. Accidentally introduced by the Spanish

army, smallpox killed approximately half of the Aztecs population, whereas the invaders

did not suffer noteworthy.

In modern times specialists for chemical warfare were and are struggling to create

new or mutated viruses against which humans do not have any immunity protection.

1Main references for this section: [L4, L8, L24]
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CHAPTER 1. INTRODUCTION 2

This seems increasingly irrational if looking at the efforts that were undertaken to

eradicate the natural threats to humans and with the recent threat that such diseases

might fall in the hands of terrorists.

Although some diseases that used to be common causes for death have been ex-

tinct2, some others were just pushed back beyond the frontiers of western countries

and forgotten there. A famous example being malaria which used to be common also

in the Mediterranean parts of Europe but was conquered by simply draining swamps

and thus destroying the malaria mosquitoes habitat. In underdeveloped regions on the

other hand, it is still cause of 1.5 - 2.7 million deaths per year, with estimated 90% of

the sickened living in Africa.

Yet another example for usually harmless diseases capable of devastating global

pandemics is influenza. Its most famous – and lethal – outbreak being the “Spanish

flu” at the beginning of the last century (1918 to 1920). With estimates varying from 20

up to 40 million its death toll is astonishing. Although the low hygiene standards, food

shortages and poor economic situation at the end of World War I were contributing

to its effects, this strain was remarkably dangerous. Unlike normal strains it mainly

killed adults and older children instead of elderly people.3

Since the Spanish flu two pandemic outbreaks of influenza have occurred, namely

the “Asian flu” (1957 to 1958) and the “Hong Kong flu” (1968 to 1969) pandemics,

killing an estimate of 1 - 1.5 million and 0.75 - 1 million humans respectively. A

known pattern for future outbreaks of influenza pandemics does not exist. Not even

the necessary conditions for a virus to become pandemic are know. It is uncertain

when and what kind of pandemic strain we will face. What we can be certain of is that

a pandemic outbreak will occur. The challenge we face is to be prepared for this case

as good as possible.4

The economic damage of such pandemic outbreaks, even if nonlethal, is tremendous.

It not only sums up enormous costs for medical treatment, but also brings along massive

loss of working time and thus high disease related follow-up costs. And even pandemics

not affecting humans but animals, do have the potential to severely bash our economy,

e.g. through necessary mass killing of poultry due to avian influenza.

In contrast to the social circumstances a 100 years ago, people from developed

countries and regions of the world, nowadays live in solid hygienic conditions and have

access to medication as well as sufficient food. But this by far does not mean that the

2With the most famous extinct disease being smallpox.
3[L8, L27]
4[L13, L24]



CHAPTER 1. INTRODUCTION 3

danger of a global pandemic is banned – on the contrary! The process of globalization

and increased mobility are making it possible for diseases to spread as fast as never

before in human history, as shown by SARS and the avian flu (H5N1).

Therefore national administrations, as well as international organizations need to

have efficient plans to respond to outbreaks and pandemic diseases as fast as possible.

And all scientific help available should be used to support these efforts, including

biologists, medical scientists, epidemiological research workers and mathematicians.

In Austria the ministry for health and women is in charge of the creation and

maintenance of such plans5. These kind of pandemic plans are created in cooperation

with the WHO6. This is necessary because of the global nature of pandemics.

The next section is going to give an overview of the work in this field done by

mathematicians so far.

1.2 The Historical Development of Modelling7

The wish to understand diseases and epidemics is probably as old as humans are facing

them. The first known effort to mathematically describe diseases dates back to ancient

Greece, and Hippocrates8 who described illnesses and epidemics.

In order to successfully describe or model the pattern of diseases, certain levels of

mathematical methods as well as of understanding the disease itself, are necessary. This

is the reason why, from Hippocrates on, it took centuries before progress was made.

Due to lack of understanding the diseases and their causes this progress was primarily

made by statistical analysis of medical data. John Graunt and William Petty were one

of the first when they analyzed the London Bills of Mortality in the 17th century.

After this beginning it again took another 200 years until at the end of the 19th

century adequate mathematical methods have been developed and mankind started to

explore bacteriology and understand the physical basis. With it the necessary basis for

the development of mathematical theories for the spread of epidemics was established.

Although already before this some remarkable progress was made by analysis of

spatial and temporal spread of epidemics. By such an analysis for example John Snow

was able to locate one specific water pump as the source for the 1854 cholera epidemic

in London. At that time this was a remarkable finding, since it was believed that foul

5see cite.[L8]
6World Health Organization
7Main references for this section: [L2, L4, L9, L11, L12, L14]
8460-370 BC, source [W11]
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air was the cause of cholera – instead of polluted water!

Another very important step in epidemic research was made by the efforts to un-

derstand the waxing and decline of epidemics, as done by William Farr in 1840. The

outcome was then used to effectively fit normal curves to existing epidemic data, in

Farrs case smallpox. Later he tried to predict the outbreak of rinderpest with such a

model, although with only moderate success. Only the shape of both the predicted

and the observed epidemic were similar.

Further improvement of prediction methods came at the beginning of the 20th cen-

tury, with a deeper understanding of the epidemic mechanisms through bacteriological

research. Hamer realized that the course of an epidemic strongly depends on the num-

ber of susceptible and infected individuals as well as on the contact rate between these

groups. The outcome were deterministic models which allowed to predict the num-

ber of infected at any given time by knowing the initial settings of susceptible and

infected individuals plus the specific attack- and recovery-rates. With these models it

was possible to understand the periodic patterns of epidemic occurrences.

These deterministic models were refined and made famous by Kermack and McK-

endrick. Often literature does refer to the ODE-system9

Ṡ(t) = −βS(t)I(t)

İ(t) = βS(t)I(t)− γI(t) (1.1)

Ṙ(t) = −γI(t)

as Kermack and McKendrick model. This is not correct, since system (1.1) is only

“derived from special case Ā = βe−γτ . . . ” of the Kermack McKendric model “. . .

Ṡ(t) = S(t)

∫ ∞

0

Ā(τ)Ṡ(t− τ)dτ (1.2)

with S(t) denoting the (spatial) density of susceptibles at time t and Ā(τ) equals

the expected infectivity of an individual that became infected τ units of time ago”.10

Nevertheless the ODE-system in (1.1) is used very often for classical modelling of SIR

epidemics11.

Subsequently it was noticed that all these deterministic models exhibit damped

harmonic waves, whereas disease data, although oscillating, does not show this effect.

9abbr. of Ordinary differential equation system
10cite. [L10]
11Alternative approaches for modelling such a SIR epidemic will be presented in chapter 3.
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The next generation of models was connected to better and more available data.

With the focus partially shifting from large scale models towards smaller groups the

need for models somehow influenced by probability became increasing. Such a model

was first presented by McKendrick in 1926 but did not find much attention. A fully

stochastic model, that did receive the necessary attention, was presented five years

later (1931) by Greenwood. The models of this time started to integrate latent and

incubation periods of the disease pattern and lead to chains of binomial distributions.

From the 1940ies on the development started to pick up speed, at the same time

some influential advances were made. Approaches were combined, for example using

deterministic models under some circumstances and changing to stochastic ones to

examine striking details exhibited by the deterministic models. To get a feeling for the

speed of development it is interresting to look at the published work of that time.

At the end of the 1950ies “the total number of references to mathematical work in

the literature was at about 100”12. This number doubled in the following 10 years and

another 8 years later it did lie at 500. The further development was supported by the

dawn of computers that set in during the 1950ies and 60ies. In the late 60ies control of

infectious diseases, to keep the disease levels at a “tolerable”13 level, came into focus

and studies were conducted with methods derived from operations research.

1.3 New Ways - A Hybrid Approach

Generally the above mentioned methods have been improved and specialized in many

ways. Methods were found to simulate multiple diseases or the spatial spread of dis-

eases. Nevertheless all methods do have in common that they are based on differen-

tial equations (PDE14 or ODE systems) and modelling idealized (e.g. homogeneous)

populations. When trying to apply the methods to inhomogeneous populations (e.g.

different age groups with varying attack rates) or spatial distributions (e.g. different

densities for rural and urban areas), complexity explodes in a way that it cannot be

handled.

12cit. [L4]
13In this context “tolerable” is a very delicate definition. Since the specification of this level of

course depends on the point of view. From a financial point of view it can mean to aim for the least
costs; from an affected persons perspective it will most likely mean the minimum of suffering. For
most nations this usually means best protection of the population combined with highest possible cost
efficiency.

14PDE – Partial differential equation
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Thus, in order to simulate epidemics with respect to spatial structures and inho-

mogeneous populations, other approaches need to be found. Two alternative methods

that are of interest for such tasks are agent based systems and cellular automata. These

methods will be presented and thoroughly covered in chapter 2 of this thesis. A pos-

sible application of them will be presented in chapter 3 by applying them to a SIR

epidemic, that is usually described by ODE-systems of the form (1.1).

As one will see in the chapters 2 and 3, cellular automata prove to be very efficient

tools when correctly implemented on computers. Whereas agent based systems offer

a very flexible structure, desirable for describing complex constructs (e.g. a mixed

population consisting of different age groups with specific social behavior and specific

infection risk).

The tools and approaches described in section 1.2 do rely only on little data – usually

the number of infected and healthy (susceptible) individuals within a population. They

further need infection/recovery rates to describe the development of the system from

the current point on. These rates can of course not be measured in nature and thus

estimation, calculation or combination of both is necessary. In addition the outcome

of this approach is based on the assumption of homogeneous populations.

The methods that we will look at are different in this respect. Since at the present

time a wide range of data is available (e.g. demographic data, medical data, statistics

on the housing situation, etc.) one can take advantage of this and try using the data

to set up simple, local rules in order to describe the spread of diseases. A model based

on such rules would have the advantage, that it can be fitted with data collected and

used to forecast the likely development of an epidemic. In addition the information

received from the model is based on a more realistic demographic structure.

Thus a combination of cellular automata and agent based systems seems promising

for modelling epidemics — with respect to an inhomogeneous demographic structure,

spatially distributed and moving individuals, while still remaining computationally

efficient. Such a hybrid model15 will be presented in chapter 4 of this thesis. Finally

the outcome of the hybrid approach as well as of the simulation with the model will

be presented in part 4.3.

15The created model is capable of simulating a 100-day period for a population of 100,000 inhabitants
in less than 9 hours on a standard desktop computer.



Chapter 2

The Modelling Concepts Used

This chapter deals with the modelling tools used in the subsequent model. At first

cellular automata (abbreviation CA) will be introduced together with a short historical

overview of the development. We will then focus on a special kind of CA namely Lattice

Gas Cellular Automata (abbr. LGCA).

Agent-based systems (abbr. ABS) are also referred to as multi-agent systems (MAS)

and will be covered in 2.2. The end of the chapter is marked by a short summary and

a comparison of the two modelling approaches.

2.1 Cellular Automata - CA

Cellular automata were first introduced in the late 1940ies by John von Neumann and

Stanislaw Ulam, thus are not a completely new method. The idea was to simulate

biological processes such as reproduction and evolution in a spacial environment, by

simple means – the cells.1 The difference between cellular automata and the methods

previously used for modelling purposes lies within the difference of the approach.

Differential equation models (ODE models) can be classified as “top-down” ap-

proach. This means one tries to describe the system as a whole by describing the

global processes and transitions. Whereas cellular automata on the other hand are

classified as “bottom-up” approach. “Bottom up” characterizes systems that are aim-

ing to model the global behavior, in other words the macroscopic point of view through

description of the microscopic correlations.

The idea behind cellular automata was partially influenced by the Turing machine.

A Turing machine is an automaton with only three operations (read, write, move on)

1see [L15, L19]

7



CHAPTER 2. THE MODELLING CONCEPTS USED 8

that is capable of manipulating information stored on a tape, manipulation is based on

simple rules. All basic arithmetic operations can be implemented on these machines

and with them other, more complex operations and programs can be produced.

Originally developed in only one dimension CA soon also became two-dimensional.

One-dimensional cellular automata amongst others have been used for simulation of

traffic and traffic jams. Later three dimensional Ca’s proved to be interresting for

simulation of gas- or liquid-distributions in space. Since the CA used in the subsequent

models will be solely two-dimensional only those will be the covered here2.

A major boost to the popularity of cellular automata was the publication of John

Conway’s game “Life” (1970) and succeeding publications (in the journal Scientific

American) dealing with “Life”.3

The definition of classical two-dimensional cellular automata is a very simple one.

The following four points are sufficient to describe a CA:

1. Geometry of cells:

The CA consists of equal (geometrical) cells which are arranged in a (regular)

lattice.

2. Neighborhood definition

A cell neighborhood is defined for the automaton. The neighborhood determines

which cells are influencing each other. This neighborhood is valid for all cells

during the whole runtime.

3. Cell states

A finite number of (discrete) states is defined. Every cell can assume one of those

states. The state of the cell is subject to change. The transition between states

is determined by the transition rules.

The states of the cells are updated synchronously (after discrete time steps) for

all cells.

4. Transition rules

These rules describe how the cells change its states. The rules only depend on

the state of the neighboring cells and on the state of the cell itself. One set of

transition rules is valid for the whole CA over the whole runtime.

2For further reading on especially one dimensional CA see [L35].
3see [L17, L34]
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The definition of cellular automata may vary throughout literature. This definition

was adopted from [L34] and is not the only possible definition.

The cells of classical cellular automata usually have a rectangular lattice and square

cells. For different reasons, e.g. simulation of liquid-/gas-dynamics, other structures

may be used. In case of the mentioned examples a hexagonal lattice is used. We will

describe this kind of CA more detailed in Section 2.1.

The above mentioned criteria are not always fulfilled – there are exceptions in which

it makes sense to use (slightly) different criteria. For example the transition rules may

also contain a probabilistic component.

Figure 2.1: von Neumann (left) and Moore (right) neighborhoods of range 1 and 2

Let us assume a cellular automaton with Moore neighborhood (see Fig.2.1) of

range 1. And let n be the number of possible states that a cell can take on in ac-

cordace to our transition rule Φ. As stated above Φ is updating the state of every cell

at every time step. The new value of the cell ci,j with location i, j only depends on the

state of the cell itself and the states of its neighbors. Thus we can express the change

of ci,j after one timestep t → t + 1 through

c
(t+1)
i,j = Φ

(
c
(t)
i,j , c

(t)
i−1,j−1, c

(t)
i−1,j, c

(t)
i,j+1, c

(t)
i,j−1, c

(t)
i,j+1, c

(t)
i+1,j−1, c

(t)
i+1,j, c

(t)
i+1,j+1

)
. (2.1)

To give an example we will look at Conway’s famous cellular automaton based game

“Life”. It is based on a rectangular lattice of which every cell can assume one of two
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states: ‘dead’ or ‘alive’. The transition rules are defined as follows (by neighbor we

mean a live neighboring cell):

• A live cell with two or three neighbors will stay alive, else it will die.

• A dead cell with exactly three neighbors becomes alive.

Despite their simple definition cellular automata are capable of producing very

complex systems. And due to their local structure they are able to represent ge-

ographic distributions. They can be used to describe ecological-, social- as well as

immune-systems (e.g. pollution of groundwater, segregation in neighborhoods, growth

of cancer)4 only to name a few.

A very early example for the use of cellular automata were the findings of Thomas

C. Schelling5. Although exclusively done by hand he showed how slight personal pref-

erences or attitudes can change a whole society in a very dramatic way. The concrete

example was the segregation of neighborhoods. With cellular automata he simulated

different demands that people have regarding their neighbors skin color. One would

think, that if a person would demand only little more than a third of his neighbors

being of the same color mixed neighborhoods would form. Schelling showed that the

opposite happens, the system still ends in segregation!

Another big advantage of cellular automata lies within their computational sim-

plicity. Since they consist of only a few simple rules and a very rigid structure they

can easily be implemented very efficiently in computer systems. Although they of

course need a certain amount of memory to save the cell related information6. Because

of their locally bound transition rules they are appropriate for parallel computation.

Thus making them more and more interesting with parallelization rapidly developing in

today’s (personal) computers. A very handy property is, that they are “unconditionally

numerically stable by construction”7.

A disadvantage of classical cellular automata is the fixed cell. Making it hard

to model travelling individuals/particles. In Schellings model described above, a cell

changes its state depending on the number of neighbors of same/different color. The

state of the cell represents the color of the inhabitant. Thus the population is not

4[L3, L29, L23]
5see [L29]
6The consumed memory to store a 10 x 1,000,000 matrix with double precision entries in Matlab

lies at approx. 75 MB (amount can be reduced by using other data types).
7cit. [L34], page 36
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really travelling, but only jumping from one cell to another one that better suits the

demands.

If we want to model individuals that are truly travelling in space an enhancement to

our cellular automata needs to be found. In the following section we will be looking at

lattice gas cellular automata which do prove to be a usefull extension for our purposes.

Lattice Gas Cellular Automata - LGCA

Because of its features and properties CA are also of interrest for the simulation of

physical problems and models. This was the basic idea out of which lattice-gas cellular

automata evolved in the early 1970ies.

To simulate large systems or structures by using a smaller scale model one needs

to obey the law of dynamic similarities (e.g. wind tunnels). The law also needs to be

applied when simulating real flows within lattice-gas cellular automata.

One can describe the flow of incompressible liquids by the Navier-Stokes 8 equation

∂u

∂t
+ (u∇)u = −∇P + ν∇2u (2.2)

with the continuity equation ∇u = 0 and ∇ being the nabla operator, u the flow

velocity, P the kinematic pressure, ν the kinematic shear viscosity and ∇2 the laplacian

operator.

The Navier-Stokes equation is derived from the conservation laws of energy, mass,

momentum and angular momentum. It is nonlinear in the velocity u and thus in

general analytically not solveable – save for a few exceptions. This question is strongly

connected to the question of boundary conditions.

To compute the results for the equation numeric methods need to be applied. The

area that is engaged with finding such numerical solutions for the Navier-Stokes equa-

tion is called computational fluid dynamics (CFD). Lattice-gas cellular automata and

lattice Boltzmann methods are, amongst others, a possible way to simulate the behavior

of flows in fluids or gases.

In order to simulate the Navier-Stokes equation with cellular automata it is nec-

essary, that they “hold corresponding conserved quantities”9. The first proposal for

simulation of liquid flows with cellular automata was made by Hardy, de Pazzis and

8Named after Claude-Louis Navier (1785-1836) and George Gabriel Stokes(1819-1903).
9cit. [L34], page 36
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Pomeau in 1973, their CA named HHP-LGCA after their initials. Unfortunately the

CA did not yield the Navier-Stokes equation.

After this attempt it took another 13 years, before Frisch, Hasslacher and Pomeau

discovered that a third condition needs to be fulfilled: In addition to conservation of

mass and momentum the cellular automata also needs to hold sufficient symmetry. The

demand for symmetry was met by a triangular lattice, the cellular automaton named

“FHP lattice gas cellular automata” after its developers.

The main features of the FHP-LGCA can be summed up by following 8 points 10:

1. It has a regular lattice with hexagonal symmetry.

2. Nodes (sites) are linked to its six nearest neighbors (located all at the same

distance) by edges/vectors.

3. The vectors ci linking nearest neighbor nodes are called lattice vectors or lattice

velocities

ci =
(
cos

π

3
i, sin

π

3
i
)

, i = 1, . . . , 6

with |ci| = 1 for all i.

4. A cell is associated with each link at all nodes.

5. Cells can either be empty of occupied by at most one particle (exclusion princi-

ple).

6. All particles have the same mass and are indistinguishable.

7. The evolution in time proceeds by an alternation of collision C and stream-

ing/propagation S:

E = S ◦ C,

where E is called evolution operator.

8. The collisions are strictly local -only particles of a single node are involved.

With these properties one can better understand the difference between FHP-LGCA

and classical CA.

10cit. [L34], chapter 3.2
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Figure 2.2: The lattice (left) and lattice vectors (right) of an FHP LGCA

As stated before, the FHP has an underlying triangular lattice and thus possesses

hexagonal symmetry. Within this lattice all nodes are connected with its six nearest

neighbors via edges/vectors (see Fig. 2.2). And the cells are not defined by surrounding

edges, but are located at each node at all links. In addition a lattice vector ci is assigned

to every cell. The vector ci connects the node with its nearest neighbor in direction

i. Since the time steps in CA are (usually) always 1 we can also refer to ci as lattice

velocity. The particles all do have the same mass, in order for the collisions to be mass

and momentum conserving. This lets us interpret our lattice vector/lattice velocity ci

in yet another way: as the momentum of the particle.

As mentioned, collisions play an essential role in LGCA. According to the set of

rules used, one can distinguish between three FHP variants, namely FHP-I, FHP-II

and FHP-III. The smallest set of rules consists of 2 and 3 particle collisions (without

spectator-/rest-particle) and distinguishes the FHP-I variant (for this set of collisions

see Fig. 2.3). The other two types consist of additional collision rules (more colliding

particles and a possible spectator-/rest-particles).

The CA used in the subsequent model is a slight modification of the FHP-I. Since

the model is not aiming to reproduce physical dynamics but a social structure the

amount of interaction/collisions is sufficient. In addition the FHP-I is also faster in

terms of runtime than a FHP-II or FHP-III with a full implementation of all collision-

rules. A difference to the FHP-LGCA described above, is the uniqueness of the parti-

cles. In order to represent the (unique) individuals of the system it is necessary that

they are distinguishable within the automaton. To realize this requirement each par-

ticle represents an individual via its individual key. The boundaries of the automaton

are set to be periodic -allowing a better mixing of the individuals than reflexive border

conditions.

If we take a looking at the properties of cellular automata and accept modifications
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Figure 2.3: FHP collision rules without rest particle. Arrows represent the occupied cells,
lines the cells empty. Left hand side constellations before collision, right hand side after.
Only rules I through III are used for FHP-I automata.

of their strict rules, one can guess, that they do have hidden potential. Especially

if considering their local nature and the kind of data available at the present time it

seems promising to use CA for modelling inhomogeneous systems.

Another promising method for modelling of complex systems is the agent based

approach which we will deal with in the following section.

2.2 Agent-based Systems

Agent-based systems, or multi-agent systems (abbr. ABS, MAS) are fairly new mod-

elling tools. They evolved out of research into the field of distributed artificial intel-

ligence (DAS), a side branch of artificial intelligence research. Like cellular automata

the ABS approach is categorized “bottom up”. The focus of agent-based systems lies

on individual agents, as the name implies. Because of their complexity, MAS opened a
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broad field of new possibilities on the modelling sector. Some even say, that they were

“the breakthrough in computer modelling in social sciences”11. But at the same time

their complexity is also a limitation, since simulation runs require a high amount of

computing power.

Nevertheless MAS are currently being used for a wide variety of applications; server-

client simulations, socio-economic models or simulations of transport robots in factories

only to name a few. It may at first be quite surprising to find such a broad variety

in a discipline this young. But after taking a closer look one can see, that the flexible

definition of agent-based systems encourage such diverse implementations.

A shortcoming, resulting from the youth of this approach, is the inconsistency or

even lack of common definitions. For example there is no common answer to the ques-

tion “What exactly is an agent?”.

A constantly present danger when talking about or describing agents is to use terms

normally associated with humans. Examples are words like intelligence, memory or

autonomy which are tempting to overestimate or misjudge the capabilities of these

computer systems. Keeping this in mind we can take a shot at sketching agent-based

systems. Looking at it from the ABS perspective we can use following definition12:

An agent is a computer system situated in an environment. In addition it has the

capabilities to flexibly and autonomously act in this environment in order to reach its

(predefined) objectives/goals.

This leaves us with three terms that need to be refined:

• Situated in our case means that the agent is interacting with its environment.

The agent is capable to receive input from the surrounding (generally via sensors)

and can also manipulate it to some extent.

• The definition of autonomy needs to be handled with care, as explained above

-we are talking about a pre-programmed computer system. Thus it is satisfactory

if the agent can reach decisions without (human) interaction.

• Flexibility is required in multiple ways. Firstly one demands that the system is

operating and acting in reasonable time. Secondly the agents are not to be solely

reactive but goal-oriented or in the best case anticipating. And thirdly agents

11cit. [L18]
12adapted from [L22]
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may have the capability to communicate or interact with other agents and/or

real humans.

Of course there may be differing definitions of the term agent. And naturally

these definitions are subject to change - different implementations may require different

emphases. What still needs to be defined is the multi agent system.

MAS are characterized by:

• agents with a limited point of view (incomplete information13 and/or problem

solving capabilities),

• the absence of global system control,

• decentralized data and

• asynchronous computation of the agents.

Judging by this we can come to a similar conclusion for agent based systems as

for cellular automata. Both simulation methods do represent the bottom-up approach.

The agents within MAS are usually locally anchored. Thus information and data

describing local conditions (e.g. medical data from physicians, sizes of child care facil-

ities, etc.) can be very well implemented by the use of agents. Whereas the classical

top-down approach does not leave room to utilize this kind of data.

2.3 Comparison of the Methods

Both of the presented approaches of course do have their strengths and flaws. Some

of them may have been already mentioned, some not. In this section we will try

to get a concluding overview of their similarities and differences, their strengths and

weaknesses.

The Smallest Unit

As we already know CA are based on cells, or in case of LGCA on travelling particles.

These cells or particles do not hold a big amount of information and are very limited

in terms of movement as well. During one time step they can usually advance only one

distance unit.

13Incompleteness with respect to the whole system with all related information, e.g. total number
of population, knowledge of conditions elsewhere, etc.
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Agents within MAS on the other hand, can hold many properties and are physically

not bound. They can “jump” within the system from one place to another without

(major) limitations. Further, agents can have a list of “partners”, “friends”, or other

kinds of “contacts”. Depending on the implementation they may even have the ability

to communicate with each other.

Lapse of Time

Time in CA is a strictly discrete factor – all cells are updated synchronously, thus all

changes happen synchronously. This also means, that within cellular automata there

are times with no changes happening (e.g. after an update step has been executed).

Such a moment may prove to be beneficial if trying to save the content of the automata

at given points in time.

In agent-based simulations time may either be discrete or virtually continuous,

depending on the implementation and the desired qualities of the system. Changes are

usually triggered by events and thus may happen at any time during the simulation.

Compared to cellular automata this means that event handling within MAS requires

much more attention, and thus computing power. In addition to the overhead produced

the risk of errors and mistakes is increasing.

Spatial structure

Cellular automata are built of cells which are usually identical and symmetrical, al-

though at least one study14 exists, which shows that the shape of the cells is not

essential for the outcome of some simulations. This might be interesting since many

sociologists are of the belief that complex social structures cannot be modelled by

simple and symmetrical grids.

Agent-based systems do not necessarily need a spatial grid or structure, although

most of them do have one. Just as before MAS are also more flexible when it comes to

the underlying grid. Often coordinates are assigned to agents, by which the agent then

is positioned within the system. It is of course possible to create a structure within

MAS that resembles a cellular grid and can be used to emulate cellular automata15.

14see [L20]
15This can be done by using fixed agents, positioned on a lattice and defining a neighborhood that

corresponds to the CA neighborhood.
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State Transitions

Within cellular automata the state transitions are controlled by fixed rules. They are

applied simultaneously to all cells once every time step. Thus the automaton changes

its face step by step.

Agent-based models do not have universally valid rules, changes are triggered by

events. These events depend on certain parameters which are continuously monitored.

If their value reaches a critical point the event is launched and a change takes place.

And even these critical points may be subject to change, depending on time, spatial

position, property of agent, etc.

Sphere of Influence

The sphere of influence within CA is equivalent to the defined neighborhood, thus it is

of a very local nature. Only very few cells of the direct surrounding are within reach.

Agents in multi-agent systems usually also do have a quite manageable sphere of

influence, but unlike in CA it is not limited to the direct surrounding. For example

an agent can have contacts all over the system – which can even represent a whole

country. With every “visit” of its contacts the agent is affecting only one individual –

but in very distant regions of the system.

2.4 Summary

Altogether one could interpret multi-agent systems as an extension of cellular au-

tomata16. Cellular automata are much more standardized and have stricter rules than

multi-agent systems, leaving more tolerance when programming ABS. But this free-

dom comes at a price. The more possibilities a system offers, the more parameters it

has to use. The process of parameter optimization becomes increasingly harder with

increasing number of parameters to define, as well as instabilities within the system

are much more difficult to locate.

To simulate more realistic, although still simplified, populations and their complex

socio-economic behavior, ABS will be the modelling tool of choice. On the other hand

there are efforts to loosen up the strict definition of CA to bring them closer towards

MAS – with interesting effects!17

16This is for example done in [L26].
17see [L28] for details



CHAPTER 2. THE MODELLING CONCEPTS USED 19

But there are still many areas in which a simple structure is sufficient to describe

the system’s behavior, and with it cellular automata as modelling tools (e.g. diffusion

of gases or liquids in three dimensional space). In this case it does not make sense to

use unnecessarily complicated systems for modelling.

To put it in the words of CA-luminary Stephen Wolfram:

“Cellular automata are sufficient simple to allow detailed mathematical

analysis, yet sufficient complex to exhibit a wide variety of complicated

phenomena.” Wolfram, 1983

2.5 The Simulation Environment

2.5.1 MATLAB

In chapter 4 a hybrid system for the modelling of influenza epidemics will be set

up. This modell is programmed in Matlab R©, which is a software package and pro-

gramming language for numerical computing. Often referred to as computer algebra

package.

Its name derives from MATrix LAboratory and this already describes the classic

strenghts of the language: matrix and vector manipulation. It was originally developed

to provide easy access to matrix software in the late 1970ies. It features a wide variety

of add-ons called toolboxes that enhance its capabilities. An interresting toolbox for

simulation and modelling purposes would be the state event toolbox.

Over the years Matlab evolved into a simulation environment. A big contribution

to this was the add-on Simulink (firstly released in 1990), which nowadays is a graphical

block-tool for modelling, simulation and analysis of dynamic systems.

Nowadays Matlab is capable of handling a wide spectrum of applications (e.g.

signal and image processing, communications, control design, test and measurement,

financial modelling and analysis, and computational biology). It is possible to write

programs, functions and subfunctions in order to fit ones needs. The latest versions of

Matlab are even capable of symbolic computation – and thus of solving ODE systems.

The program does offer numerous interfaces in order to link it with other program-

ming languages such as C, C++, Java, Fortran, etc. This in combination with the

optimization algorithms allows Matlab to be used as optimization tool for external

as well as for internal models. It also offers a wide variety of 2D and 3D graphic
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functions for visualization purposes.

A question that might arise is why Matlab was used for programming the model

and not an object oriented language. Matlab in its current versions did extremely

improve matrix manipulation in terms of runtime. Several features are even written

in assembler code. Compared to not optimized C++ code Matlab is even faster for

matrix operations. Since the most operations used within the subsequent program are

matrix operations and Matlab is capable of handling them very conveniently, it has

been the program of choice.

With all its features and several runtime enhancements Matlab currently is a fully-

fledged simulation and development environment capable of solving most mathematical

and modelling problems.

2.5.2 AnyLogic

In chapter 3 we will use the simulation environment AnyLogic R© to set up an epidemic

model using the agent based approach. AnyLogic 5.5 is an object oriented programming

tool that provides a wide variety of features used in multi agent systems, such as

message passing, state charts and -events, setting up of object classes and many more.

AnyLogic is based on JAVA and by this offers users the possibility to add JAVA code

at any place of the program.

On one hand this is a very comfortable feature, including all benefits of object

oriented programming, on the other hand it brings along the “classic” JAVA flaw of

poor runtime. Another positive aspect of the JAVA based environment is the possibility

to export models as JAVA applets for easy use and/or distribution and integration on

web sites.

Besides agent based modelling AnyLogic can also be used to program and com-

bine Discrete Events and System Dynamics approaches. In addition it also offers an

easy possibility to add animation to models. Further it is possible to modify model

properties during runtime (e.g. change infection rates, speed of agents, etc.).

In AnyLogic it is very difficult to export data from simulations and experiments

for further analysis and interpretation. This turns out to be a big disadvantage of

AnyLogic, especially because the program does not offer much possibilities for analysis.

AnyLogic does offer, similar as Matlab, various toolboxes to expand the possibil-

ities of the program. These also include some visualization possibilities, although they

are by far not as extensive as Matlab’s. The storage of data is also by far not as

convenient as with Matlab’s matrices that allow numerous possibilities for analysis.



Chapter 3

A Simple SIR-Epidemic

The final model is aiming to simulate an epidemic outbreak of influenza within a realis-

tic population. This means that there are numerous things that need to be considered,

starting from influenza-related information (e.g. mean duration of illness) over social

factors (e.g. demographic structure) up to counter measures that shall be tested.

For the final model to be efficient and provide realistic results all these factors need

to be summed up for a successful implementation. We will start with a simple SIR

model to study some general effects and properties of the system as well as of the

methods. These findings are going to be helpful when setting up the full scale model

in chapter 4.

3.1 The CA Approach

Since we want to model a population of moving (human) individuals we are going to use

a slightly modified FHP-I version. In a SIR-model individuals can either be susceptible,

infected or recovered.1 Only a susceptible individual can become infected, infected

individuals recover with a given probability and recovered individuals are immune to

infection for the rest of the simulation. Later we will also look at a variation that allows

the recovered to go back to susceptible state. Let S(t) be the number of susceptible

individuals, I(t) the number of infected and R(t) the number of recovered individuals

at time t.

Further we are going to make a few assumptions in order to keep the model simple.

Our population size is stable during the simulation meaning no deaths or births occur.

1Often the SIR model is extended onto a SEIR model in which individuals are not immediately
infectious. They pass through a phase in which they are infected but not yet infectious.

21
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Individuals become infective at the time of infection and stay so until recovery. Infec-

tion and recovery are implemented by fixed rates (infection r and recovery a) that are

applied after every time step.

Alltogether this is quite far from being realistic, it is sufficient to start with. In

chapter 4 we will refine most of these settings to receive an improved model.

3.1.1 Basic Implementation

The cellular automaton is implemented as matrix. The first and second dimension

resemble the lattice (the rows and the nodes in every row), the “third dimension” is

reserved for the content of the cells at each node. Thus the matrix is only 6 entries

deep. The boundary condition is periodic to allow better mixing of the particles. For

easier implementation of the boundary conditions the length and height of the lattice

are equal l. Thus one can visualize the automaton as a cube (actually a hexahedron)

with edges of lengths l, l and 6.

In Matlab one can produce such a matrix (with all zero entries) easily by using

following command:

% ca s i z e be ing the l eng t h ‘ ‘ l ’ ’ o f one s i d e o f the automaton

c a s i z e = l ;

ca matr ix = zeros ( c a s i z e , c a s i z e , 6 , ’ i n t32 ’ ) ;

The population information is stored in a look up table – a two dimensional matrix.

The first row representing the unique key of the individual, the second its health status2.

The cellular automata is filled randomly with particles, which are the unique keys of

the modelled particles (which will later on become agents). All two and three particle

collision rules3 (without spectator) are applied to the CA.

The infection routine is called up at every time step t after propagation and collision

of the CA. The routine checks all nodes (i, j) , i, j = 1 . . . l for infected Ii,j(t) and

susceptible Si,j(t) particles at time t. If at least one infected and one susceptible

particle are found at a node (Ii,j(t) > 0 and Si,j(t) > 0) the susceptible particles are

put at risk of infection with probability r.

The recovery routine is executed subsequently. First a search for all infected par-

ticles is carried out, thereafter they are cured with probability a. This procedure is

not realistic, for example it does allow for a particle to become infected and recover

during one single time step. But changing the order of the procedures would bear the

2This realization was chosen because of the expansions that will be applied. For the goals of the
current implementation it would be sufficient if the states of the individuals would serve as particles.

3See Fig. 2.3 for an illustration.
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probability of the initial infection dying out before even making a single step. With

this implementation the duration of the disease is determined purely probabilistic.

Theoretically allowing a particle to stay infected until infinity.

This is a matter that needs to be changed for the final implementation.

3.1.2 Stability Analysis

In the current model one can already identify a few parameters that can be modified

and experimented with. Naturally these are the infection and recovery rates r and a.

Secondly these are the initial sizes of the sub-populations of susceptible S(t = 0) = S0,

infected I0 and recovered R0 individuals. And the last parameter left for modification

being the density of individuals within the automaton.

One should also keep in mind that fairly small automata – with only few particles

inside – offer only poor results. The reason for such a behavior is easy to guess: If one

particle represents a relatively big part of the population, random effects have much

more weight and thus more influence on the total behavior. These effects are shown

nicely in Fig. 3.1.4

Figure 3.1: Standard runs with CA size 4 x 4 (left) and size 15 x 15 (right); (density being
approx. 30% leading to 27 and 400 particles; x-axes: time, y-axes number of particles)

For the following analysis we will run several experiments with our automaton. The

initial standard configuration of the system is displayed in the following table:

4Simulation configurations: standard config. with 27 particles (3 infected) respectively 400 (10
infected).
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Standard parameters used for

subsequent CA simulations

Infection rate . . . 0.6

Recovery rate . . . 0.3

Susceptibles . . . 990

Infected . . . 10

Recovered . . . 0

Density approx. . . . 30%

The approximate nature of density derives from the fact, that the

side length =

√
number of particles

6 ∗ density
.

Hence (usually) only an approximate density can be achieved within automata, since

the side length needs to be an integer. Further all MATLAB simulations are run ten

times and averaged in order to reduce the deviation caused by the stochastic nature of

infection, recovery and movement. This method of averaging is called “Monte Carlo”

method.5 The effects and necessity for such an averaging are shown in more detail in

section 3.4.

In the first experiments we will vary the infection rate from 20 to 100% (see Fig. 3.2).

When looking at these results one must keep in mind that an infection rate of 100%

means that all susceptible particles that are at a node together with an infectious

neighbor will be infected in that time step. If such a neighbor does not exist infection

cannot occur.

This also explains the difference in the graphs when changing the recovery rate (as

done in Fig. 3.3). As one can easily notice the recovery rate has a stronger influence

on the overall system than the infection rate6, at 40% recovery the infection already

dies out very fast.

A very interresting method to analyze the mutual effects of two parameters on a

system is to run several (hundred) simulations with varying settings and compare the

results. In this case we will gradually change the infection and recovery rate from 0 to

100%.

In Fig. 3.4 following plots are displayed the time until the epidemic dies out (top

left), the number of infections per simulation (top right), maximum of infected particles

5see [L6]
6This can easily be explained by the fact that no neighbor is required for recovery.
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Figure 3.2: First row: infection rate 20% and 40%, second row: standard simulation = 60%
and 100% (x-axis: units of time; y-axis: number of particles)

during one timestep (bottom left) and the number of susceptible particles at the end

of the simulation (bottom right). The runtime of the simulations was limited to 50

units, since most epidemics die out until then. Much longer runtimes only appear very

rarely (e.g. for extreme settings) and would disturb the color coding.7 Every setting

was averaged over 10 runs. Unfortunately this method only works for two parameters

and thus is not of much use for large systems with more parameters. For systems

with 10, 20 or even several hundred parameters8 it is simply impossible to try and run

simulations with all possible combinations.

Another handicap of this method is the consumed runtime. In this case the two

rates were raised in 4% steps from 0 to 100, meaning that 262 = 676 initial settings

7In addition the simulation was broken of in case that the epidemic died out before reaching 50
time units – to save runtime.

8A normal CA is not going to have such an amount of parameters, but it might be the case for
different methods.
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Figure 3.3: First row: recovery rate 0 and 10%, second row: 20% and 40%, (see Fig. 3.2
for standar simulation = 30%, x-axis: units of time; y-axis: number of particles)

needed to be computed. By averaging each setting over 10 runs this required 6,760

runs of the model9. If this method of running consecutive simulations with varying

parameters is applied to complex models with long runtimes, this approach is extremely

time consuming.

When looking at the outcome of this experiment, two graphs show to be partic-

ularly interresting: the development of the duration of the epidemic and the number

of unaffected particles at the end of it. With the former changing its behavior at an

infection rate greater than 50% and recovery rate over 20%. And the latter presenting

only a very tiny corridor in which it is possible to escape infection. Regarding the

graph “maximum no. of infected (particles per timestep)” one can easily understand

the high level of infections for recovery rate 0%, in order to show details for a wider

area the color coding maximum was set to 70010.

9Some runtime can be saved by breaking off the simulation after the infection dies out.
10On the very left of the graph the actual number reaches the maximum of 1000 particles.
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Figure 3.4: First row: time until epidemic dies off (left), number of infections per simu-
lation (right); second row: maximum of infected particles at one timestep (left), number of
susceptible particles at the end of the simulation (left). (Axes: x-recovery rate, y-infection
rate in percent)

When replacing several of the susceptible particles with infected ones, system’s be-

havior does not change drastically. The higher the initial number of infected particles,

the smaller the raise of the peak and the earlier the infection dies out. This can be

seen in Fig. 3.5 where an initial configuration of 50 respectively 300 infected particles

is presented. The impression is amplified if one compares the results with the standard

simulation (initially 10 infected particles). The results so far have not been too much

of a surprise. An experiment that is already more interresting is the manipulation of

density, meaning the ratio of particles in the system divided by available spots. It is

obvious that if there are hardly any particles in the system (in relation to free spots)

than the chance for contact and thus for risk of infection is minimal.11 This risk is of

11A possible interpretation would be the spread of diseases in rural and urban areas (low vs. high
population density).
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Figure 3.5: Course of epidemic outbreak with starting configurations of 50 and 300 infected
particles (x-axis: units of time; y-axis: number of particles).

Figure 3.6: First row: 10% and 20% of spots taken by particles, row two: 40% and 80% of
spots taken (These numbers are approximate due to the fact that the number of spots in the
automaton is 6 ∗ LengthOfAutomaton2 (x-axis: units of time; y-axis: number of particles))

course increasing with the density within the automaton as can be seen in Fig. 3.6.
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3.1.3 Countermeasures - Immunization

We are now capable to conduct a first, simple countermeasure. If the fraction of

susceptible particles decreases the infection does not find hosts as easily. This can for

example be achieved by vaccination and thus immunization of particles and is very

easy to implement in our model. All we have to do is to change the initial number

of recovered particles. These particles cannot become infected any more and thus are

already immune to the disease. As one can see in Fig. 3.7 this countermeasure is having

quite some impact on the course of the disease.

Figure 3.7: First row: Standard run with no immunized particles and simulation with 50
vaccinated particles, row two: initial configurations with 100 and 350 immunized particles
(x-axis: units of time; y-axis: number of particles).

It is evident, that already a relatively small number of vaccinated particles does

change the course of the epidemic. In the simulation with initial configuration of 350

immunized particles the epidemic is not even breaking out. This is rather surprising,

even though the majority of the population is not immunized the vaccination of the
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minority does prevent an outbreak of the infection. On the other hand this is prolonging

the time until the infection dies out, which can become critical if for example immunity

would only last for 30 units!

When following the idea of vaccination one can understand the importance of pro-

tecting so-called hubs in society that are crucial for the spread of diseases, such as

hospitals, medical personal, etc.12

3.1.4 Transition to SIRS-Epidemic

Until now we did model a disease that can affect every individual only once. This is

true for several real diseases, the most famous being the childhood diseases like measles,

mumps, chickenpox, etc. But for many other diseases this does not apply. Thus our

model will now be enhanced in order to simulate the loss of immunity. This means

that our particles need to change their status from recovered to susceptible. In order to

achieve this we could either add another random procedure or we have to expand our

existing model. Choosing latter possibility we are going to add a time variable to our

particles in which we will store the moment of recovery, allowing the particle to become

susceptible after a given phase of immunity. By this we are actually leaving the strict

concept of cellular automata13. Our model is now capable of simulating epidemic waves

by transforming recovered individuals into susceptible ones after a certain amount of

time.

In Fig. 3.814 we can see the effects which different immunization periods do have

on our system. The effect does of course depend on the length of the immunity period.

The main frequency for the simulations are approx.: 27.8, 35.7 and 50 days (from left

to right).15 If the immunity period is becoming too long the infection will die off.

These effects are shown in more detail for the AB implementation by Fig. 3.14 through

Fig. 3.16 of section 3.2.

12a) The national pandemic plans therefore usually strongly recommends to protect such personal
by vaccination or other prophylaxis.
b) An interresting countermeasure experiment, the intentional placement of vaccinated populations
within the automaton, was conducted in [L21].
c) Another kind of hubs could be places like harbors and airports. A study on the effects on disease
spread via seaways has been conducted in [L30].

13Here the implementation of storing the particle information in a look-up table comes in handy.
We now only need to add another row to our matrix in which the time of recovery will be stored.

14It is necessary to keep in mind, that these graphs represent the average of 30 simulation runs.
15These figures are calculated by dividing 1 through the “frequency per day” (which is represented

by the x-axis).
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Figure 3.8: First row: Our standard model with loss of immunity after 15, 20 and 30 time
steps (x-axis: units of time; y-axis: number of particles); second row: fft-analysis of above
results (x-axis: frequency per day; y-axis: unscaled).

This new variable for the time-stamp that we just introduced, can be used not only

for keeping track of the time of immunization. Since the health-states are mutually

exclusive the variable can also be used to keep track of the disease length. This would

allow an individual to recover after a specified time (average disease duration) – as will

be done in the subsequent model.
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3.2 Simulation with AB-Model

Of course it is also possible to model a SIR-type epidemic with multi agent systems. For

this example we will use AnyLogic R©, a softwaretool that claims being capable to deal

with System Dynamics, Discrete Events, ODE-solving and Agent Based approaches.

It is based on JAVA which on one hand is allowing the user to manually add additional

code. On the other hand JAVA is not necessarily the fastest programming language,

which proves to be a drawback for large simulations.

We will keep our assumptions the same as for the previous simulations (constant

population, immediate infectiousness, etc.) and start by defining our smallest unit the

agent. Since all agents are “equal” we just need to create one and then reproduce this

prototype.

Our agent of course needs a starting position within the system and velocity to

move. We thus assign two variables to represent the x- and y-coordinate and two more

for the x- and y-component of the velocity. This is done by a picking two random

numbers form a normal distribution in each case. In addition the agent does hold a

(logical) variable which controls whether a contact/partner is available or not (starting

value 0).

Figure 3.9: State charts for health (left) and movement (right) transitions of the agents.
Circled B’s are branches at which –in this case– probabilities come into play. They are used
to model the initial infection and the stochastic recovery of the agents

The health states are again modelled as before, only allowing a susceptible agent to

become infectious and only infectious agents being able to recover. This is solved by

assigning a state chart health to the agent (see Fig. 3.9 left). Next we define movement,

contacts and thus infections of the agents. This is solved by adding another state chart
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(movement) to our prototype agent (see Fig. 3.9 right). This information and properties

are sufficient for our purposes. If desired, it is possible in AnyLogic to produce colorful

visualizations by creating animations of the system.

Next step is to define the infection procedure. We assume that infection is only

possible during contact, thus we need to define contact – an event triggering the in-

fection routine. For this a neighborhood is defined – these definitions can of course

vary. In the present example a “field of view” is defined by vision range and distance

(see Fig. 3.10 for a sketch). If an agent crosses another agents field of vision both are

stopped and set as partners. This is triggering the infection event. In case that one of

them is infected the second is put at risk of infection with a given probability. After

a short contact break both agents continue to travel with new velocities and slightly

offset travelling directions.

Figure 3.10: Sketch of an agent’s vision field – defined by vision range and vision distance.

In case an agent reaches the boundary of the environment different strategies are

applicable (e.g. periodic boundaries, reflection, etc.). In our simulation the reflective

border condition was chosen because of better visualization. This means that an agent

reaching the predefined border is triggering the event transition which results in the

change of the leading sign of the velocity component interfering with the boundary (x-

or y-component).

All that is needed now is to replicate the agent sufficiently often and run the sim-

ulation.



CHAPTER 3. A SIMPLE SIR-EPIDEMIC 34

3.2.1 Stability Analysis

In this model setup we can already spot quite a few parameters that influence the

outcome of our model. Obviously the infection and recovery rates, which we will not

cover again16. The velocity and the size of the field of view also do play an essential

role since they influence the number of contacts between individuals in our system.

The number of contacts is of course also determined by the density of our population.

In the next sections we will tests the influence that modification of these parame-

ters has upon our system. Due to programming issues the simulations have not been

averaged, but all figures are drawn from representative results.

Maximum Velocity

The velocity of the agents is a random number between zero and maxVelocity –variable

set at beginning of simulation. In the test runs all parameters have been kept the same,

only maxVelocity was changed from 10 to 30 and 6017. We can clearly see the effects

of these changes in Fig. 3.11. Distance of the vision field is set to 15 during this

experiment18.

Figure 3.11: The same simulation run with different maxVelocity of agents, from left to
right: 10, 30 and 60 (color coding: susceptible=blue, infected=red, recovered=green; x-axis:
units of time; y-axis: number of agents)

Although the duration of the infection is quite short in all three runs, ranging from

about 20 to 40 time steps, the outcome varies drastically. The number of individuals

infected in the course of the epidemic is approximately doubling from run to run. The

behavior of the overall system does not change abruptly by modifying this parameter.

Only if we would let maxVelocity tend towards zero the infection would logically die

off.

16See section 3.1 for experiments with infection and recovery rates.
17These figures have been arbitrarily chosen in order to obtain meaningful results.
18In order to compare this experiment with the experiment in Vision Field.
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Vision Field

In this experiment we are going to test the impact of the size of the vision field. This

is, in our AB implementation, the equivalent of the CA neighborhood. Although the

vision field is calculated in a more complex way, namely by defining an angle of range,

relative to the traveling direction of the agent and a vision distance (see Fig. 3.10).19

We could of course test changes of both range and distance, but it is sufficient to vary

only one of them because the effect we want to achieve, is to raise the number of

contacts. This number is increasing with the area covered by the vision field. It is –

more or less – regardless how the area is shaped.

The following results were produced under the same circumstances as before, vary-

ing only distance from 5 to 15 and 25 units of length (see Fig. 3.12). All experiments

have been run with a maxVelocity of 10 for comparison purposes20.

Figure 3.12: The same simulation run with different distance of vision field, from left
to right: 5, 15 and 25 (color coding: susceptible=blue, infected=red, recovered=green; x-axis:
units of time; y-axis: number of agents)

We again notice quite a strong influence of the parameter on the system. The pop-

ulation of recovered individuals -implying they have been infected during the epidemic-

is again doubling at each run. The duration of the epidemic is also quite similar to

the last experiment, varying from 20 to 35 time units. And same as before no abrupt

changes occur save for the trivial case of setting the vision field to zero.

3.2.2 Extension of the Model - SIRS

As with the CA-model we will now expand the model in such a manner that it is

capable of modelling SIRS-type epidemics. Since we already did define the state chart

health for our agents we just need to refine it in such a way that it meets our needs.

19Of course this complexity also holds the advantage of more possibilities for the implementation.
20Thus run 2 of this experiment is the same as run 1 of the experiment in Maximum Velocity.
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This is done by adding a transition from recovered to susceptible state (see Fig. 3.13).

All that is left to do is set the trigger for this transition. In this case the trigger is a

time interval specifying the duration of immunity.

Figure 3.13: Modified state chart “health” – this implementation extends the model onto a
SIRS-type epidemic (see highlighted arrow on far right).

Figure 3.14: Epidemic spread with immunity lasting for 10 units of time (x-axis: units of
time; y-axis: number of agents)

The duration of immunity does have a strong influence on the course of the epidemic.

We will take a look at this influence by comparing immunity intervals of 10, 20, 30, 40

and 50 time units (see Fig. 3.14 through Fig. 3.16). These experiments have been run

with maxVelocity of 30 and a vision distance of 5 units.

Firstly one can notice that for immunity length of 10 units (Fig. 3.14) the periodic

pattern of the epidemic is not yet visible. With growing length of immunity the visi-

bility of this pattern improves as well as the amplitudes of the sub-populations. The
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Figure 3.15: Epidemic spread with immunity lasting for 20 (top) and 30 (bottom) units of
time (x-axis: units of time; y-axis: number of agents)

frequency on the other hand gets lower with increasing length. It is also visible, that in

Fig. 3.15 and 3.16 the local minima of the infected population is dangerously close to

extinction, thus to an extinction of the disease itself. In the next step (50 time units,

Fig. 3.16) the minimum of the infected population reaches zero and the epidemic dies

off due to a lack of hosts spreading the disease. The logical consequence that follows

is the extinction of the sub-populations of immune individuals – with a delay equal to

the duration of immunization.

Variation of the starting population of immunized (recovered) agents has been un-

dertaken in the CA section.
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Figure 3.16: Epidemic spread with immunity lasting for 40 (top) and 50 (bottom) units of
time (x-axis: units of time; y-axis: number of agents)

3.3 Comparison with ODE Approach

Finally we will take a short look at the classic way to solve the question of how such

a SIR epidemic would look like. Based on the ODE-system (1.1) from chapter 1

we can compute solutions of the model. The ODE-system’s behavior when fed with

our standard parameters from the CA approach as well as with an increased 100%

infection rate is displayed in Fig. 3.17. One can notice that the qualitative behaviour

is very similar to the behaviour seen in the previous experiments. Of course there are

differences when looking at the quantitative behaviour which can be explained by the

influence of density and spatial distribution within the cellular automata.

And of course the influence of the infection rate is stronger within the ODE system.

This is explained by the fact, that the infection rate within a CA is only applicable

to susceptibles with infected neighbors. In the ODE model the infection rate is scaled

by the number of infected individuals, but still remaining global because of the perfect
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homogeneity of the population.

Figure 3.17: The ODE-system in comparison: with standard settings from the CA (left)
and with 100% infection rate (right) (x-axis: units of time; y-axis: number of individuals)

3.4 Conclusion

Although we have been looking at fairly simple models of simplified epidemics one can

already see quite a lot of interresting things. Firstly we showed that it is possible to

model such an epidemic with cellular automata as well as with multi agent systems –

both leading to similar results. The difference in results can be explained by different

parametrization.

Which leads us to the next interresting topic: parametrization. As visible in sections

3.1.2 and 3.2.1 these small systems already offer quite a spectrum of parameters that

need to be adjusted in order to fit the model (e.g. to match real data from epidemics).

Further the differences of the two approaches can be measured in terms of runtime.

Both models were run with a population of 1000 individuals (a fairly small popula-

tion) and an initial infection of 10%. For both models only the actual computation

without initialisation was timed. The AnyLogic implementation of the AB approach

took 100 seconds to compute 100 units of time21. During the the same time the CA

implementation computed approximately 16,300 units of time22. This difference grows

21One has to be careful when comparing the units of time and the outcome of different models/ap-
proaches. If the quality and quantity of results shall be compared, a propper fitting is necessary.

22These figures have been measured on a fairly slow machine (notebook with Intel Pentium M
1.6 GHz CPU and 512 MB shared memory).
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Figure 3.18: The left graphic does show the variation of 40 consecutive runs with standard
settings, the right graphic does show the computed average of those 40 runs.

even larger for bigger populations23.

Since CPU and memory usage are the factors that limit the performance of the

simulation these findings are of high importance. Of course these effects can be over-

come by the use of faster and more powerful machines, but one must keep in mind that

these experiments were of a very small scale. The final simulation should be able to

simulate the epidemic pattern for metropolitan cities or even countries over a whole

disease season.

Since infection procedures in these models are of probabilistic nature a single sim-

ulation run is not sufficient to provide good results. In order to flatten the curves

(representing single, stochastically influenced simulation runs) and receive a reasonable

average behavior it is necessary to run the simulation several times24, this magnifies

the effect of poor runtime (Fig. 3.18 visualizes the effects of and the necessity for av-

eraging several runs). To sum things up: it is necessary that the model is fairly fast

and efficient.

The AB approach turns out to be on one hand computationally less effective but

on the other more flexible than the CA approach. Looking at the enhancement of our

CA in order to simulate a SIRS epidemic, we did already leave the strict definition of

cellular automata into direction of agent based systems. This backs our basic idea –

brought up in the introduction – to combine the two methods within a single model.

23It needs to be mentioned that the AB implementation was quite intuitive and the runtime could
probably be improved by code optimization. Nevertheless a difference of factor 150 – 200 is an
astonishing difference.

24Monte Carlo method, see [L6]



Chapter 4

The Extended Influenza-Model

In this chapter we will set up the final model to simulate an influenza epidemic in a

realistic population. With this model we will run several experiments and interpret

the findings. The models set up in chapter 3 did lack detail and thus realism. As every

model is (and can be) only a simplification of reality one has to decide what kind of

information is necessary for the modelling.

Since the goal is to model an influenza epidemic one needs to consider the charac-

teristics of the disease. In the next step the social circumstances need to be modelled.

To simplify the social behavior of humans is probably one of the hardest parts. How

to condense this behavior for it to fit into a machine, without neglecting (the most)

important influences. Yet another question that arises, is which methods to use for

which part of the model and which programming language to choose.

Because it is efficient and convenient to use matrices for the modelling of such

a system, we will base our model on them. As we already discussed in section 2.5,

Matlab for our purposes appears to be a good and useful simulation environment

and therefore will be the programming language of choice.

The set up model has to be capable of producing reasonable results with the data

provided and available. This of course sounds logical and simple but it often turns out

to be harder than expected, as we will see in section 4.2.

4.1 Model Structure

In this section we are going to examine the characteristics of the disease and the

demographic structure in which our model will be located. From the information drawn

out of this investigation, we’ll be able to set up the frame for the model structure.

41
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4.1.1 Influenza

Influenza is an infectious disease caused by a virus of the family of influenza viruses of

type A or B. Firstly this means that antibiotics are not effective against it. In addition

the virus has the bad habit of constant mutation meaning that every year/season some

strains die out and some new ones appear. This fact further decreases the effectiveness

of drugs designed to conquer influenza.

The virus affects humans as well as other mammals and birds. It is mainly transmit-

ted via body fluids such as saliva, blood and most important by coughing or sneezing.

Alternatively infections also occur through contact with surfaces that have been con-

taminated with the virus. The survival time of the viruses varies, studies imply that at

least for some strains the survival time is increasing. For the H5N1 virus the survival

time at human body temperate of 37◦ C was two days in 1997 and six days in 2004.

The survival times increase as temperatures decrease, allowing it the virus to survive

longer in winter and in cold surroundings. It is suspected that it may even survive

indefinitely long in frozen substances.1

Influenza usually appears in two seasons every year – during winter in the northern

and southern hemisphere. Every year it affects between 5 and 20% of the worlds human

population2. Most people suffering from influenza will recover after a period of one to

two weeks. The greatest influenza related danger comes from secondary infections

(mainly pneumonia) which can quickly become life-threatening3.

Worldwide the influenza related (category ICD-104) death toll reaches some hundred

thousand people every non pandemic year. In western countries nearly all casualties of

the usually circulating strains are over the age of 60. This group is at extreme risk of

developing pneumonia if infected with influenza. The probability for this lies around

90%. Nevertheless one has to keep in mind that these figures are subject to change

and mainly depend on the circulating strains. For example, more than 90% of the

causalties of the Spanish flu pandemic5 were under the age of 65.

The typical incubation period of influenza ranges from 1 to 4 days with an average of

2 days. And to make things more complicated infected persons are infectious already

up to two days prior to development of symptoms. The symptomatic phase of the

1see [L5]
2These figures vary largely depending on the active strains.
3Pnuemonia is held accountable for 80-100% of all influenza-related deaths.
4ICD is the International Classification of Diseases published by the WHO.
5The Spanish flu was raging from 1918 to 1920, killing an estimated 15 to 40 million people.
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disease lasts for approximately one week.6

Treatment and Prevention of Influenza

Effective treatment of influenza is limited to neuraminidase inhibitors, such as Tamiflu R©

(by Roche) or Relenza R© (by GlaxoSmithKline) and M2 inhibitors (adamantane

derivatives). Since the latter are having quite serious side effects they are not used too

often for influenza treatment. The aim of both drugs is to halt the spread of the virus

within the body. If taken early enough they may shorten the recovery process by a few

days. These two drugs are supposed to have a prophylactic efficiency of 70%, attested

by the “Pandemieplan 2006 – Strategie für Österreich”7.

Prophylaxis by vaccination is possible, although the effectiveness does strongly de-

pend on the vaccine mixture. The WHO8 every year issues a recommendation for a

number of strains that are probable to circulate in the season following. The vaccine

mixture is then produced by pharmaceutic companies according to this recommenda-

tion. If the recommendation does predict the strains correctly the vaccine is quite

effective, although not fully excluding the possibility of infection. The effectiveness of

the vaccine varies widely, but can reach up to 80% in ideal cases.9. The above men-

tioned “Pandemieplan 2006” does specify a vaccine effectiveness of 70-90% for people

under the age of 65 and 30-70% for those older than 65 years10. Nevertheless most

national influenza centers recommend that at least high risk groups should use pro-

phylactic vaccination. Such guidelines are set up by every nation itself, but usually

derived from international cooperation and guidelines issued by the WHO11. These

groups usually consist of elderly people, people with weak immune system and medical

personal (because of above avaerage exposure to the virus).

The problem of vaccination is to correctly determine the circulating strains. Since

in pandemic cases one is facing a new mutation of the virus the vaccines will not be

effective against it. The problem that arises in this situation, to produce as much

serum as fast as possible, is that it takes three to six months before serum for a new

strain can be produced in necessary quantities. During this time there is hardly any

medical assistance except for the above mentioned drugs.

6Most information of this section was taken from medical online platforms, such as [W2, W8, W10].
7Pandemic Emergency Plan of the Austrian Ministry for Health and Women, see [L8]
8World Health Organization
9see [L16, L16]

10These quotas are again reached “under ideal circumstances” (see [L8]).
11see [W10] for web address
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Unfortunately there is no available data for infection probabilities overall or for

specific age groups. Although it is known, that normal influenza stems are mainly

affecting young children and senior citizens. We will cover the topic of acquiring data

to describe the process and likelyhood of infections later on in more detail (in section

4.2).

4.1.2 Demographic Structure

The model will be settled in Vienna, the capital of Austria. The demographic structure

and data is derived from the 2001 census and 2004 micro census. The data is collected

and processed by “Statistik Austria”12. The demographic structure of the Viennese

population13 for 2001 was as follows:

Population by age groups

Age Inhabitants in %

under 4 73,857 4.87%

5-9 76,849 5.06%

10-14 74,871 4.93%

15-19 74,485 4.91%

20-59 896,062 59.04%

60-79 263,846 17.39%

80 plus 57,679 3.80%

total 1,517,649

The average inhabitants per household for Vienna were exactly 2. The detailed numbers

for people living in the same household are as follows14:

12“Statistik Austria is an independent and non-profit-making federal institution under public law,
responsible for performing scientific services in the area of federal statistics.”, cit. [W9]

13see [L32]
14see [L33]
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Inhabitants per Household

Household size Inhabitants in %

singles 359,500 49.82%

2 persons 221,300 27.88%

3 persons 108,500 13.67%

4 persons 72,800 9.17%

5 persons 22,200 2.80%

6 and more 9,500 1.20%

total 793,800

For the year 2005/2006 81.4% of the children in Vienna aged three to five (under

the age of six) were in child care facilities15, beeing a total of 53,864 children . During

the same time 1,863 active child care facilities have been counted in Vienna, leading

to an average of 28.91 children per facility16.

In the year 2005/2006 “Statistik Austria” did count 62,113 pupils in elementary

schools (aged 6-10) and 150,579 pupils in middle schools (aged 10-18) for Vienna. These

numbers do not include special schools for mentally and/or physically challenged pupils

(3,367 students). In that period of time the number of elementary schools in Vienna

was 249, the number of middle schools 402, thus the average number of students per

school would have been 249.45 and 374.57 respectively17.

The 2001 census identified 821,458 employed persons and 87,691 working places in

Vienna. This means that on average 9.37 workers were employed per working place.

Following the 2005 micro census the average unemployment rate in Vienna did lie at

9.1% (of people aged 15 to 64) for the year 2005.

4.1.3 Shaping the Model

Since it is impossible to model the exact social behavior of all inhabitants it is necessary

to compress it. This reduction of course needs to be sufficient in terms of representing

the real behavior as well as in being simple enough to ensure a reasonable implemen-

tation and computation runtimes.

We can assume that an average persons day is divided in three major parts. The

15see “Statistik Austria” press release No.: 8.599-108/06
16Data derrived from cit. [L31].
17Data derived from “Statistik Austria” Excel-sheets:

(http://www.statistik.at/fachbereich 03/Uebersicht Schulen 2005 06.xls
http://www.statistik.at/fachbereich 03/Schueler01 2005 06.xls)
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first part being working time or time at school, second leisure time and social life

and the third part time at home respectively sleeping. This basic division at the

same time already seems to be a sensible reduction of the social behavior. We will

take the following for a rough assumption: At the work place, child care facility or

school a person is going to meet the same people every day. During leisure time a

person usually visits friends, doctors, goes shopping, et cetera and usually stays within

a defined surrounding. The people one meets during this time are often the same.

Finally being at home it is assumed that only the family is together.

Figure 4.1: Visualization of daily routine on a time schedule. The three parts of the day do
not necessarily have to be equally long!

This is naturally not representing real life social behavior. And especially certain

work groups (e.g. sales people, medical personal, etc.) do have much more contacts

than others. We must not forget about this, and it might prove useful in case the

model is being expanded and more detail implemented.

This structure already implies several things that we need to care about when

implementing the system in our programming language. For example the modelling

methods used for the different parts of the model. It seems logical to use the agent

based approach to control the whole system and cellular automata to model the sub-

systems (schools, working places, neighborhoods, etc.). Such a structure would allow

our agents to switch easily from one sub-system to another, without any time gaps

within the model (see Fig. 4.1). In addition the CA modelled working places can be

computed quite fast with Matlab. On the other hand the reduction already shows

some shortcomings of the model. For example there are no long-distance contacts

included. We also do not consider all contacts during the leisure time but simply

replace them by a “neighborhood” of random people.

At the beginning of the model the population is randomly initialized with the

parameters derived from demographic data. This means that every agent does have a

unique ID, a certain health state, an age, a work place (or child care facility respectively

school) depending on its age, an assigned household and neighborhood. To further

simplify the model it is assumed that children under the age of three are not going to

any child-care facility or similar but are staying at home during the working part of

the day. Further full employment with no job less people is assumed.
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Every day all agents move to their work places (respectively schools or child care

facilities) and spend the working time there. Excluded from this procedure are senior

citizens which are assumed to stay at home during this time. The simulation of the

working time is done by cellular automata: every workplace is simulated in a separate

automaton. This is convenient to implement and offers great potential for paralleliza-

tion. This is becoming specially interresting in the near future with increasing numbers

of cores on CPUs.

After work the agents proceed to the neighborhoods which are again simulated

separately by cellular automata, thus parallelization is applicable here as well! It

would be possible to process several households/neighborhoods parallel on machines

with multiple processors or cores and by this improve the performance of the model.

Figure 4.2: Social structure of the used model.

At the end of the day the agents return into their households. Here infection is

simulated by simple probabilities since contact between all members of the household

can be taken as given. In single households infection is of course not possible. An

overview of this model structure is given in Fig. 4.2.
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Attributes of Agents

The implementation of the agents is realized by a look-up table, as already sketched in

chapter 3. This look-up table, in form of a matrix, contains all agent related information

which is used throughout the simulation. This is a very convenient way to solve this

task, since firstly Matlab is handling matrices in a very efficient way. Secondly by

defining this look-up table as a global variable all subroutines are able to directly

draw out relevant information and update the states of the agents. One can imagine

the global look-up table lying alongside the model, always being in range to draw

information from it or write changes into it. In addition it is very simple to add

attributes if the model is enlarged or extended (as shown in section 3.1.4).

The look-up table does store following agent related information:

Information stored in look-up table

Row Attribute

1 Key - unique ID of agent

2 Health status

3 Age of agent

4 Household ID

5 Neighborhood ID

6 Workplace number (age specific)

7 Timestamp

8 Infection probability (age specific)

9 Controlvariable (if symptomatic)

10 Help variable

Variables one to six are self explanatory. Entry seven is used to save the time of

infection, outbreak of symptoms, time of recovery or time of death. This is possible

since the health states are mutually exclusive, as explained earlier.18 Variable eight

is again self explanatory, and variable nine is used to control whether a symptomatic

person is going to stay home or continue to be part of the daily routine. Finally variable

ten is an auxiliary variable used to keep track whether the probability for death already

was applied on the infected agent for the current case of disease19.

The health status of the agent is currently structured in 5 parts, namely being

susceptible, infected (without symptoms), symptomatic, recovered (and immune) and

18Thus the current health state of an agent characterizes the event which the variable is tracking.
19The agents are put at risk of death during every infection only once.
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dead. For future extensions the respective numbering is not consecutive (see table

below). This is allowing to add more states to the model without the need to rewrite

large parts of the program or loosing logical numbering.

Health states of agents

State

1 Susceptible

2 Susceptible - type II (not yet used)

3 Susceptible - type III (not yet used)

4 [reserve]

5 Infected without symptoms

6 Symptomatic

7 [reserve]

8 Recovered (and immune)

9 [reserve]

10 Dead

For example could state two and three be used for vaccinated, or otherwise protected,

agents and state four and seven to model the course of the infection more detailed in

future extensions of the model.

Such a look-up table for 1,000,000 agents does consume approximately 7 MB of

memory. This is for a matrix of type int32 as used in the model. The amount of

memory used of course depends on the data type of the matrix. A matrix of type

single or double would need 35 MB or 70 MB respectively. Thus one should think

about code optimization in terms of memory usage and of course runtime as well.

A Tribute to Runtime

As we are aiming to simulate large populations with the model that we are about to

build, the use of resources used by the program is crucial. For example, a common

(and widely spread) mistake when implementing CA is to use two lattices20 and copy

their contents back and forth. This seemingly intuitive approach turns out to be quite

inefficient.21

With some optimization effort it is possible to distinctly improve the performance

of the implementation. The necessary steps of course also depend on the platform used

20One representing the current state, the second one to store the results of the update.
21see [W3]
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for programming. Matlab being a computer language optimized for the treatment of

matrices and vectors, is suited to take advantage of these data structures. One example

for the use of this feature is to use vectorized loops. A simple example would be to

replace search functions implemented with loops, as for example

% IDs of agents with s t a t u s=2 are p laced in vec tor ’ in f e c t ed ’

index = 1 ; % Index fo r address ing cor r ec t entry o f vec tor

t a b l e s i z e = length ( ag en t t ab l e ( 1 , : ) ) ;

for i =1: t a b l e s i z e

i f ( ag en t t ab l e (1 , i )==2))

i n f e c t e d ( index ) = i ;

index = index + 1 ;

end

end

by vector based implementations, such as

% IDs of agents with s t a t u s 2 are p laced in vec tor ’ in f e c t ed ’

i n f e c t e d = find ( ag en t t ab l e (1 , : )==2) ;

This is not only shorter in code, but essentially faster than the loop-equivalent. For a

matrix of size 10 by 100,000 created by

% matrix s im i l a r to the look−up t a b l e used in the model

agent tab l e=round(rand ( 10 , 100000 )∗4 ) ;

the runtimes to execute the first loop using the for and if commands had a runtime of

1.344 seconds, whereas the vectorized loop took only 0.019 seconds. Thus the vectorized

loop is 70 times faster!22

4.2 Disease Data

As mentioned in section 4.1.1 accurate data of disease transmission and infection prob-

abilities is not yet available. This might change since such data is might be (or maybe

already is) recorded easily with the introduction of the E-Card23.

In addition available rates would be very specific to certain settings. However this

data is inevitable for a realistic model and significant simulation results. The optimum

would be to have data of infections with high spatial and temporal resolution. Since

influenza does have an incubation and duration period of a few days the temporal

resolution is much more important than for models of diseases with longer periods

22Both loops tested on a note book with CPU 1.6 GHz and 512 MB shared memory.
23The E-Card is a chipcard that did replace the paper health insurance certificate in Austria. Data

regarding the patient is stored on it and centrally processed.



CHAPTER 4. THE EXTENDED INFLUENZA-MODEL 51

(e.g. HIV). The infection risk is also a completely different one (e.g. it is very unlikely

that one individual infects 30 other with HIV on a single day). Data collected by med-

icals with the day of diagnosis, residential location and age of the infected individual

would be ideal.

The Sentinella-Network is collecting this kind of data in Austria as well as in several

neighboring countries. The findings of the Austrian network can be viewed at the

homepage of the “Diagnostisches Influenza Netzwerk Österreich”24 (abbr. DINÖ). It

needs to be mentioned that the sites is copyright protected by “Roche Austria GmbH”

– the company producing the influenza drug Tamiflu R©, a neuraminidase inhibitor.

Unfortunately this network is very loose, since it only consits of about 50 physicians,

spread over all of Austria and does not cover metropolitan areas. In addition the

correct diagnosis of influenza often requires a confirmation of the virus by a laboratory

to exclude common cold as cause of the symptoms. This confirmation costs time and

money and is therefore only done in random cases. This is supported by the fact that

during influenza season the rate of correct influenza diagnosis by medicals is very high.

Of course some data or information on the course of influenza epidemics does ex-

ist. Together with the Viennese MA 1525 the DINÖ is publishing an estimate of new

influenza infections for the city during influenza season.26. The “European Influenza

Surveillance Scheme”27 (abbr. EISS) does monitor the influenza levels in European

countries and weekly publishes them on their website. Although this coverage is de-

pendend of the national surveillance networks and coverage is often inconsistent. In

Germany the “Arbeitsgemeinschaft Influenza”28 (abbr. AGI) does monitor and eval-

uate the influenza activity – the AGI is financially supported by four pharmaceutic

companies that are producing influenza vaccine.

When trying to compare figures from various sources there are quite a few problems

one needs to face. Often the periods of surveillance vary, and almost all surveillance

systems only cover the influenza season and not the activity during the whole year.

Another problem is the incidences they are counting. Some schemes are counting

“influenza like illnesses” (ILI) others “influenza and common flu” or “acute respiratory

infections” (ARI). Some sources are providing only the number of laboratory confirmed

samples others only extrapolations.

24Diagnostic Influenza Network Austria, see [W4] for web address
25The MA 15 (Viennese municipality department 15) is in charge of health and social issues.
26In the northern hemisphere the influenza season lasts for about 15 weeks during winter. See

[W5, W4] for web addresses of DINÖ.
27see [W6] for web address
28Working group Influenza, see [W1] for web address
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Since this thesis is written in cooperation with the “Hauptverband der öster-

reichischen Sozialversicherungsträger”29 (abbr. HVB) the author did have limited ac-

cess to their data. Unfortunately this data does currently offer only very poor spatial

and temporal resolution. This situation will hopefully change, with a new system in

place. On the other hand the figures taken from the HVB are supposed to be very

accurate. Thus it is possible to extrapolate and estimate data from other sources on

basis of the HVB data.

The numbers of main diagnosis influenza (ICD group 10) and ICD-10 related deaths,

that are transmitted to the HVB for the year 2005 are displayed in Table 4.3 (on

page 60), including all cases in Austria and all cases in Vienna.

From these figures the higher death rate, as well as an increased number of diagnosis,

amongst senior citizens is obvious. We can assume, that almost 100% of all influenza

related deaths are recorded, since persons with severe health problems are very likely

to consult a doctor. This is not necessarily the case for the disease itself, especially

younger and middle aged men are known to rarely consult doctors. Thus it is necessary

to verify the infection figures.

Rough Estimate of Death Rate

With the demographic data and the P(diagnosis) and P(death) from the HVB we can

calculate the total number of incidences per age group (for Austria and Vienna in the

year 2005), the results are presented in Table 4.4 (on page 60). The figures of the

DINÖ and MA15 for the year 2005 can be taken from the graphics presented on the

website of the institute of virology30 (see also Fig. 4.3).

If we add up the number of estimated cases for the year 2005 (read out of these

graphics), we do receive an approximate 350,000 infections (in spring and winter 2005).

One may assume that some 70-100% of influenza cases do occur during the mon-

itored period of time (influenza season), which leads to a range of about 350,000 to

500,000 infections for the year 2005 for Vienna (equaling 23 - 33% of the population).

This meets the estimates, which state that 5 - 20% of the population is infected every

(non-pandemic) year.31

Dividing the number of infections onto the remaining weeks of the year we do get

a range of 0 up to 6,000 infections/week (off-season). With these figures we can take a

29Main Association of Austrian Social Security Institutions
30see [W5] for web address
31see [W2]
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Figure 4.3: Weekly number of new infections with influenza like illness (ILI), estimated by
the Viennese MA15 for the seasons 2004/05 (left) and 2005/06 (right)

shot at estimating the approximate probability – for our model – for the death of an

agent, given illness and an age of over 60. This probability lies around 0.20%, based

on the calculated figures (see Table 4.1). What we still lack, is the probability for an

agent to get infected. This probability is very hard to obtain for several reasons. To

start with, it is different for every strain of virus, thus dependend on the circulating

strain(s). Secondly such a probability does not exist in literature (to the knowledge of

the author). And even if it would exist in literature it could not be applied one-to-one

onto the model.

% of Infections Diagnosed infections per year Number of Death Ratio

occurring estimate % HVB-reported Diagnoses (ill & ≥ 60)

during season for Vienna [based on: 5,515] for age ≥ 60 [based on: 456]

100 % 350,000 1.58 % 175,000 0.26 %

90 % 388,889 1.42 % 194,444 0.23 %

80 % 437,500 1.26 % 218,750 0.21 %

70 % 500,000 1.10 % 250,000 0.18 %

Table 4.1: Probability for death provided that person is over the age of 60 and ill
P( death | age ≥ 60, health state = ill )
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Age group in percent confidence interval (p = 95%) ratio

0-4 36% [28,46] 1.09

5-18 62% [57,67] 1.88

19-64 25% [21,28] 0.76

≥ 65 21% [15,27] 0.64

overall 33% [30,37] 1.00

Table 4.2: Average illness attack rates for different age groups (estimated for H2N2 virus;
source: see [L25]).

What can be done is to estimate the relation between the infection probabilities

of different age groups. Although even this estimate remains relative, since the prob-

abilities are changing with the type of circulating virus – and of course: it is just an

estimate.

The estimated illness attack rates32 for the different age groups, displayed in ta-

ble 4.2 is taken from [L25], representing the H2N2 virus33. Surprisingly the attack

rates are lower for the older population, and even the babies do show less susceptibility

to the virus than children. This is interresting since the reports about the Spanish flu

describe a similar attack behavior.

To receive a better (more realistic) infection behavior the model needs to be fitted

to data from observations. As already mentioned, one would need infection data with

high temporal and spatial resolution together with the age and – in the best case –

even the residential location of the patient, to obtain the optimum results. Such data

was unfortunately not available to the author. Thus the infection rates used within

the model are (more or less) based on subjective judgment.

32illness attack rate = exposed people infected/exposed people
33The virus causing the “Asian flu” pandemic (1957-1958)
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4.3 Experiments and Findings

The disease information from sections 4.1 and 4.2 enables us to conduct first experi-

ments with the final model. The full Matlab R© source code of the model can be found

in Appendix B.

Description of experiment result graphics in Fig. 4.5 through 4.8:

• Top left: Sub-populations within the system (x-axis: days, y-axis: number of

individuals)

• Top middle: Infection-related sub-populations – infected with & without symp-

toms and dead (axes as before)

• Top right: Number of simultaneously infected individuals with the corresponding

number of days (x-axis: number of individuals, y-axis: number of days)

• Second row: Ratio of infected babies (left), child care children (middle) and

elementary school pupil (right) over the time of the simulation (x-axis: days,

y-axis: number of individuals)

• Third row: Ratio of infected high school students (left), adults (middle) and

senior citizens (right) over the time (in days) of the simulation (axes as before)

Color coding used in top left and top middle plot: blue – susceptible, pink – infected without

symptoms, red – infected with symptoms, green – recovered, black – immunized. No color

coding used for the other graphics.

Figure 4.4: The influenza activity in Germany during season 2004/05 according to the
EISS-Index (x-axis: weeks; y-axis: EISS-Index) [Source of graphic: AGI-Report [L1]].
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Figure 4.5: Experiment with a neighborhood size of 250 individuals (For a description of
the plotted figures and color coding see page 55).

Since the available data does not allow for a reasonable fitting of the model –

especially of P( infection ) and P( death ) – the result can only be understood as being

academic. But there are still some remarkable things that can be found in the results

of the experiments. One of the first things to notice is the shape of the curve described

by the number of infected individuals. It does not show a single peak as in chapter 3

but does grow up to a point where a plateau of infected individuals is reached and

held. This corresponds with the influenza activity of the season 2004/05 in Germany,

described by the EISS-Index in Fig. 4.4.34 A possible interpretation for this would

be, that the saturation of infected agents reaches a certain level within the cellular

automata which allows for a very good spread of the disease. It keeps on this level

until potential hosts are getting fewer and thus the number of infected starts to decline.

34Graphic taken from [L1].



CHAPTER 4. THE EXTENDED INFLUENZA-MODEL 57

Figure 4.6: Experiment with a neighborhood size of 100 individuals (For a description of
the plotted figures and color coding see page 55).

In Fig. 4.5 and 4.6 one can see the impact of changes to the neighborhood size.

The neighborhood size was set to 250 and 100 individuals respectively. This did not

change the (approximate) density within the CA, since the automata are programmed

to fit their size according to a pre-defined density. The results of both experiments

have been averaged over 10 and 5 runs respectively.35 The influence of this change is

most evident for the age groups of middle school and high school students (they also

had the highest infection rates).

What is interresting to notice is the delay of the epidemic spread for different age

groups. For example the peak of infected adults is reached at a point of time when

there are hardly any infected students any more. This effect is reduced in Fig. 4.7

35The difference of repetitions is due to lack of time, since 10 consecutive repetitions took about 16
hours on the computer used.
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Figure 4.7: Results for a run with an increased probability that agents stay at home if they
become symptomatic (For a description of the plotted figures and color coding see page 55).

in which the probability for an infected individual to stay at home is significantly

raised. Also clearly visible in latter result is the lower maximum of the epidemic. A

(not averaged) run with settings similar to Fig. 4.6 was conducted for a population of

100,000 individuals. The result of both runs (see Fig.4.836) are fairly similar. But the

curve of infected starts to raise approx. 10 days later in the larger population. This can

be explained with the initially infected population which in both cases was 10 agents.

For an larger total population (e.g. 1 million and more) an even stronger delay of the

outbreak can be expected.

It would be very interresting to validate these effects (as far as possible) through

data from real epidemics. If such a (temporal) coherence is proved in reality, this would

36One has to keep in mind that this experiment was not averaged. But because of the high number
of agents the graphic is representative, although not as accurate as other (averaged) graphics.
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Figure 4.8: Experiment with a population of 100,000 agents and settings similar to those
in Fig. 4.6 (For a description of the plotted figures and color coding see page 55).

offer new possibilities for the control of epidemics, e.g. vaccination appeals for special

age groups (in the face of an acute threat or likely epidemic outbreak). Especially in

the case that certain age groups would show increased risk of infection and/or death,

such measures could be life saving.

Altogether this (still simple) model of an urban population leads to very inter-

resting and partially unexpected results. We can reason that the quality of results

should improve with better data becoming available and the model being expanded –

if necessary.

With such results different prevention and response strategies can be verified and

tested, leading to a better understanding of epidemic patterns. A deeper knowledge of

these enables better planning and response, which again leads to health care improve-

ments and cost savings.
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Chapter 5

Conclusion and Perspectives

Looking at the methods that have been and still are used for simulation and forecast

of epidemics we found the situation to be unsatisfactory. Especially if considering the

huge amount of data that is collected and available nowadays.

This data seems to make new approaches for modelling of epidemics possible. Thus

we investigated two modelling methods – cellular automata and agent based systems.

Both showed that they can be compared with the classical ODE approach when sim-

ulating a simple SIR epidemic. Hence we proceeded to find a possibility of combining

these methods in order to build a hybrid model capable of simulation of influenza

epidemics within inhomogeneous populations.

Setting up the model in the sense of simplifying reality and transforming it into a

computable system is always the most time consuming part of modelling. In addition

to this necessary reduction one must also judge which kind of data will be necessary

to shape and parametrize the model and how much of this data is available. This was

not any different for this model.

The structure of the model was gradually expanded. In this aspect the agent

based “umbrella” that is steering the model proved extremely valuable, since it has a

flexible structure allowing for easy changes and extensions without rewriting the whole

program. It is possible to add more features and/or information to the agent by simply

adding another variable to the look-up table.

The biggest problem that was encountered and could not be conquered satisfactory

was the parametrization of the model. Fitting the model to reality would require

more detailed data. Namely infection data with high spatial and temporal resolution,

together with the infected person’s age and – in the best case – also the patients

residential location. Since influenza is not a notifiable disease this kind of data is not

61
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publicly available – although it does exist.

Despite the fact that the model currently only resembles a very simplified social

structure and is not “fitted” properly, the results are promising as we could see in the

simulation outcome (see Fig. 4.5 through 4.8). The behavior of the modelled system

is similar to real influenza patterns observed (see Fig. 4.4), and still offers a lot of

possibilities for further enhancement.

The model is capable of simulating temporal infection coherences (e.g. disease

spread by child care facilities, and infection development within age pools) which can

partially be derived from common sense. But in addition to this, the individual struc-

ture is not lost as for example in ODE-systems (e.g. infected persons always return to

their household constantly putting their family at risk). Thus the model enables us to

test strategies for prevention of and response to epidemic outbreaks.

It seems likely that, based on this model, acceptable if not good results can be

achieved – with the necessary information available. This because, as mentioned be-

fore, the model still offers a lot of potential for improvement. For example the neigh-

borhood sub-system could be improved, as well as the situation of job less and elderly

implemented in a more realistic way. In addition hospitals and/or medical facilities

could be implemented, and so on.

Based on such a fitted model a lot of scenarios can be tested. Starting from effec-

tiveness of countermeasures such as prophylactic vaccination up to quarantine in case

of severe pandemic outbreaks. Investigations on the spread of the disease by different

age pools (e.g. transmission via pupils) can be undertaken. And with better under-

standing of these kind of coherence the existing emergency plans and procedures can

be evaluated and – if necessary – improved.

To embrace the results of this thesis, the combination of the two approaches can be

seen as successful. It seems to be worthy of further investigation and study, where the

presented model can be used as a base and be extended to suit the developer’s needs.

Using such a model to test strategies and forecast the spread of epidemics, would

entail the possibility for better planning and thus improved allocation of resources.

Which again would make it possible to save human lives and money – health care- as

well as disease related follow up costs.
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Source Code of Model

Listing B.1: infmod.m - Main program
% autor : s t e f an emrich

% co−autor : guenter s chneckenre i t he r

% dateiname : infmod .m

%

% hauptprogramm zur s imu la t ion e iner ( i n f l u en za ) epidemie . kombination des

% agent−based und c e l l u l a r automata ansa t ze s .

% Nummerierung der Gesundhe i t s s ta tus :

% 1 . . . S u s c e p t i b l e

% 2 . . . Sus v .2 ( noch n i ch t implement ier t ) −ev . Sus mit Prophlaxe

% 3 . . . Sus v .3 ( noch n i ch t implement ier t ) −ev . Sus mit Impfung

% 4 . . . Reserve

% 5 . . . I n f i z i e r t OHNE Symptome

% 6 . . . I n f i z i e r t , symptomatisch

% 7 . . . Reserve

% 8 . . . Genesen (Immun)

% 9 . . . Reserve

% 1 0 . . . Tod

%% Funktion

function [ eval mat , krank age ]= infmod ( f i g h and l e r )

% f i g h and l e r wird verwendet um p l o t s a l l e r e p e t i t i on en zu beha l t en ; )

warning o f f

% p r o f i l e c l e a r on

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% zur z e i t ke in output . . .

% [ eval mat , ag mat , c oun t i n f ] =

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% z e i t stoppen :

dauer s im = cputime ; % doub le

64
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%% Eingangs Variab len

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% I ) Fes t l egung der Populat ion ( en ) :

pop s i z e = int32 (10000 ) ;

i n f s i z e = int32 ( 1 0 ) ;

r e c s i z e = int32 ( 0 ) ;

% II ) Fes t l egung der CA−Belegungsd ichten :

belegung ap = double ( 0 . 3 ) ; % Dichte am Arb e i t s p l a t z

be l e gung f z = double ( 0 . 1 ) ; % Dichte in der Nachbarschaf t / F r e i z e i t

% I I I ) S t a t i s t i s c h e Daten werden in ’ i n fm in i t .m’ f e s t g e l e g t ! !

% 1) Groesse d . Al tersgruppen

% 2) Hausha l t s spez . Informationen

% 3) In f e k t i on s r a t en ( a l t e r s a bhaeng i g )

% 4) Groesse der soz . S trukturen

% V) Fes t l egung der Lau f z e i t ( en ) :

l a u f z e i t = int32 ( 1 0 0 ) ;

a r b e i t s z e i t = int16 ( 1 0 0 ) ;

f r e i z e i t w e e k = int16 ( 7 0 ) ; % Fre i z e i t unter der Woche

f r e i z e i t e n d = int16 ( 1 4 0 ) ; % Fre i z e i t am Wochenende

% VI) I n f i z i e r t e Ind iv iduen b l e i b en ab Ende des Tages zuhause

% ( fuer d ie Dauer der Kranheit ) [ aus : 0 , e in : 1 ]

%stayhome = in t8 ( 0 ) ;

%% LUT (Look Up Table ) und g l o b a l e Datenspeicher

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Agenten Matrix :

global ag mat

ag mat = zeros (10 , pop s i ze , ’ i n t32 ’ ) ;

% Richtungsaenderung be i Ko l l i s i on :

global ca turn

ca turn = [2 3 4 5 6 1 ; 6 1 2 3 4 5 ] ;

% Zaehler fuer In f e k t i onen :

% Arbe i t s p l a t z , Nachbarschaf t und Famil ie ge t renn t !

global c oun t i n f

c oun t i n f = zeros (3 , 1 , ’ i n t32 ’ ) ;

% Vektor fuer a l t e r s b e d i n g t e Wahrsch . b e i In f . zuhause zu b l e i b en

global prob stayhome

prob stayhome = 0 : 1 3 0 ;

global pop vektor

pop vektor = zeros (1 , 5 , ’ s i n g l e ’ ) ;
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%% Res t l i c h e Varaib len und Spe i c h e r f l e d e r

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Evaluat ions Matrix zum Speichern der Daten :

eval mat = zeros ( l a u f z e i t +1 ,5 , ’ i n t32 ’ ) ;

% Erste Ze i l e der Matrix :

eval mat ( 1 , : ) = [ pop s i ze− i n f s i z e −r e c s i z e , i n f s i z e , in t32 ( 0 ) , r e c s i z e , in t32 ( 0 ) ] ;

% Evalu ierungsmatr ix fuer Al tersgruppen :

krank age = zeros ( l a u f z e i t , 6 , ’ i n t32 ’ ) ;

% Re l a t i v i e r t e Eva lu ierungsmatr ix :

krank std = zeros ( l a u f z e i t , 6 , ’ s i n g l e ’ ) ;

% Spe i ch e rp l a t z fuer d ie Anzahl der Nachbarschaften :

anz nachb = int32 ( 0 ) ;

% Spe i c h e rp l a t z fuer d ie Anzahl der Haushal te :

anz haush = int32 ( 0 ) ;

% Spe i c h e rp l a t z fuer d ie Anzahl der Ar b e i t s s t a e t t e n :

anz work = int32 ( 0 ) ;

%% In i t i a l i s i e r u n g der Agenten

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

[ anz nachb , anz haush , anz work ] = i n fm i n i t ( pop s i ze , i n f s i z e , r e c s i z e ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% ag mat i s t g l o b a l d e f i n i e r t !

% die I n f e k t i o nwah r s c h e i n l i c h k e i t muss durch 10000 d i v i d i e r t werden !

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%% Simulat ion

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

disp ( ’ ( infmod .m) SIMULATION BEGINNT . . . ’ ) ;

disp ( ’ ’ ) ;

for i n d z e i t=int32 ( 1 ) : l a u f z e i t

t ic

i f double ( i n d z e i t )/7 ˜= i n d z e i t /7

% Arbei t

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
for i n d a r b e i t s p l=int32 ( 1 ) : anz work

a r b e i t e r = int32 ( find ( ag mat (6 ,:)== i n d a r b e i t s p l & ag mat (9 ,:)== int32 ( 0 ) ) ) ;
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i f length ( a r b e i t e r )>0 % kann noch v e r b e s s e r t werden

in fm ca ( a r b e i t s z e i t , a rb e i t e r , i n d z e i t , belegung ap , i n t8 ( 1 ) ) ;

end

end % Arbei t

f r e i z e i t = f r e i z e i t w e e k ;

else

f r e i z e i t = f r e i z e i t e n d ;

end

% Fre i z e i t

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
for ind nachb=int32 ( 1 ) : anz nachb

nachbarn = int32 ( find ( ag mat (5 ,:)== ind nachb & ag mat (9 ,:)== int32 ( 0 ) ) ) ;

i f length ( nachbarn)>0 % kann noch v e r b e s s e r t werden

in fm ca ( f r e i z e i t , nachbarn , i n d z e i t , be l egung fz , i n t8 ( 2 ) ) ;

end

end % Fre i z e i t

% Famil ie

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

for ind fam = int32 ( 1 ) : anz haush

f am i l i e = int32 ( find ( ag mat (4 ,:)== ind fam ) ) ;

anz f am in f = s i n g l e ( length ( f am i l i e ( ag mat (2 , f am i l i e )==int32 (5 ) | . . .

ag mat (2 , f am i l i e )==int32 ( 6 ) ) ) ) ;

i f anz fam in f > 0

fam susc = f am i l i e ( ag mat (2 , f am i l i e )==int32 ( 1 ) ) ;

i n f e k t i o n en = fam susc ( . . .

rand (1 , length ( fam susc ) ) < 1−(1− s i n g l e ( ag mat (8 , fam susc ) ) / . . .

10000) .ˆ anz fam in f . . .

) ;

% Status wird auf i n f i z i e r t g e s e t z t :

ag mat (2 , i n f e k t i o n en ) = int32 ( 5 ) ;

% In f e k t i o n s z e i t p un k t wird g e s p e i c h e r t :

ag mat (7 , i n f e k t i o n en ) = i n d z e i t ;

% In f e k t i on wird g e z a e h l t :

c oun t i n f (3 ) = coun t i n f (3)+ int32 ( length ( i n f e k t i o n en ) ) ;

end % i f

end % Famil ie
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% Genesung

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
in fm genesung ( i n d z e i t ) ;

% Tod

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
in fm death ( i n d z e i t ) ;

% Daten spe ichern und Ausgabe

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

eval mat ( i n d z e i t +1 , : ) = [ . . .

i n t32 ( length ( find ( ag mat (2 ,:)== int32 ( 1 ) ) ) ) , . . .

i n t32 ( length ( find ( ag mat (2 ,:)== int32 ( 5 ) ) ) ) , . . .

i n t32 ( length ( find ( ag mat (2 ,:)== int32 ( 6 ) ) ) ) , . . .

i n t32 ( length ( find ( ag mat (2 ,:)== int32 ( 8 ) ) ) ) , . . .

i n t32 ( length ( find ( ag mat (2 ,:)== int32 ( 1 0 ) ) ) ) ] ;

krank age ( i nd z e i t ,1)= length ( find ( ag mat (3 ,:) <=3 & ( ag mat (2 ,:)==5 | . . .

ag mat (2 , : )==6) ) ) ;

krank age ( i nd z e i t ,2)= length ( find ( ag mat (3 , : ) >3 & ag mat (3 , : ) <6 & . . .

( ag mat (2 ,:)==5 | ag mat (2 , : )==6) ) ) ;

krank age ( i nd z e i t ,3)= length ( find ( ag mat (3 ,:) >=6 & ag mat (3 , : ) <10 & . . .

( ag mat (2 ,:)==5 | ag mat (2 , : )==6) ) ) ;

krank age ( i nd z e i t ,4)= length ( find ( ag mat (3 ,:) >=10 & ag mat (3 , : ) <18 & . . .

( ag mat (2 ,:)==5 | ag mat (2 , : )==6) ) ) ;

krank age ( i nd z e i t ,5)= length ( find ( ag mat (3 ,:) >=18 & ag mat (3 , : ) <60 & . . .

( ag mat (2 ,:)==5 | ag mat (2 , : )==6) ) ) ;

krank age ( i nd z e i t ,6)= length ( find ( ag mat (3 ,:) >=60 & ( ag mat (2 ,:)==5 | . . .

ag mat (2 , : )==6) ) ) ;

save ( ’ save infmod ’ , ’ eval mat ’ , ’ ag mat ’ , ’ c oun t i n f ’ , ’ krank age ’ ) ;

dauer=toc ;

disp ( [num2str( i n d z e i t ) , ’ . Tag s imu l i e r t in ’ , num2str( dauer ) , ’ Sekunden . ’ ] ) ;

end % l a u f z e i t

%% Ausgabe

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

dauer s im = cputime−dauer s im ;

disp ( ’ ’ ) ;
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disp ( [ ’Gesamte Lau f z e i t der S imulat ion : ’ , num2str( dauer s im ) , ’ Sekunden ’ ] ) ;

disp ( ’ ’ ) ;

disp ( ’STATISTIKEN: ’ ) ;

disp ( ’ ’ ) ;

disp ( [ ’ I n f ek t i on en am Arbe i t sp l : ’ ,num2str( c oun t i n f ( 1 ) ) ] ) ;

disp ( [ ’ I n f ek t i on en in der Nachbarschaft : ’ ,num2str( c oun t i n f ( 2 ) ) ] ) ;

disp ( [ ’ I n f ek t i on en zu Hause : ’ ,num2str( c oun t i n f ( 3 ) ) ] ) ;

disp ( [ ’ I n f ek t i on en gesamt : ’ ,num2str(sum( c oun t i n f ) ) ] ) ;

disp ( ’ ’ ) ;

% Ausgabe der Matrize mit den Pop−Groessen :

% eva l mat

disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

% Re la t i v i e rung der Eva lu ierungsmatr ix

krank std ( : , 1 )= s i n g l e ( krank age ( : , 1 ) ) / pop vektor ( 1 ) ;

krank std ( : , 2 )= s i n g l e ( krank age ( : , 2 ) ) / pop vektor ( 2 ) ;

krank std ( : , 3 )= s i n g l e ( krank age ( : , 3 ) ) / pop vektor ( 3 ) ;

krank std ( : , 4 )= s i n g l e ( krank age ( : , 4 ) ) / pop vektor ( 4 ) ;

krank std ( : , 5 )= s i n g l e ( krank age ( : , 5 ) ) / pop vektor ( 5 ) ;

krank std ( : , 6 )= s i n g l e ( krank age ( : , 6 ) ) / pop vektor ( 6 ) ;

clear krank age ;

figure ( f i g h and l e r ) ;

c l f ;

subplot (331) , hold on

subplot (331) , plot ( eval mat ( : , 1 ) , ’ b ’ ) ;

subplot (331) , plot ( eval mat ( : , 2 ) , ’ r ’ ) ;

subplot (331) , plot ( eval mat ( : , 3 ) , ’ r ’ ) ;

subplot (331) , plot ( eval mat ( : , 4 ) , ’ g ’ ) ;

subplot (331) , plot ( eval mat ( : , 5 ) , ’ k ’ ) ;

t i t l e ( ’ o v e r a l l pop ’ )

subplot (331) , hold o f f

subplot ( 3 , 3 , 2 ) , hold on

subplot ( 3 , 3 , 2 ) , plot ( eval mat ( : , 2 ) , ’m’ ) ;

subplot ( 3 , 3 , 2 ) , plot ( eval mat ( : , 3 ) , ’ r ’ ) ;

subplot ( 3 , 3 , 2 ) , plot ( eval mat ( : , 5 ) , ’ k ’ ) ;

t i t l e ( ’ i n f e c t e d and dead ’ )

subplot ( 3 , 3 , 2 ) , hold o f f

subplot ( 3 , 3 , 3 ) , hist ( double ( eval mat ( : , 2 )+ eval mat ( : , 3 ) ) )

t i t l e ( ’# o f i n f e c t e d / t imestep ’ )

subplot ( 3 , 3 , 4 ) , plot ( krank std ( : , 1 ) )

axis ( [ 0 100 0 1 ] )

t i t l e ( ’ i n f e c t e d bab ie s ’ )

subplot ( 3 , 3 , 5 ) , plot ( krank std ( : , 2 ) )

axis ( [ 0 100 0 1 ] )

t i t l e ( ’ i n f e c t e d in k . garden ’ )

subplot ( 3 , 3 , 6 ) , plot ( krank std ( : , 3 ) )

axis ( [ 0 100 0 1 ] )

t i t l e ( ’ i n f e c t e d in elementary s choo l ’ )
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subplot ( 3 , 3 , 7 ) , plot ( krank std ( : , 4 ) )

axis ( [ 0 100 0 1 ] )

t i t l e ( ’ i n f e c t e d in high schoo l ’ )

subplot ( 3 , 3 , 8 ) , plot ( krank std ( : , 5 ) )

axis ( [ 0 100 0 1 ] )

t i t l e ( ’ i n f e c t e d adu l t s ’ )

subplot ( 3 , 3 , 9 ) , plot ( krank std ( : , 6 ) )

axis ( [ 0 100 0 1 ] )

t i t l e ( ’ i n f e c t e d s e n i o r s ’ )

% Loeschung der g l o ba l en Variab len

clear global c a s h i f t

clear global ca turn

% p r o f i l e o f f v iewer

end % of func t ion
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Listing B.2: infm init.m - Initialisation of Agents
% autor : s t e f an emrich

% co−autor : guenter s chneckenre i t he r

% dateiname : i n fm in i t .m

%

% i n i t i a l i s i e r u n g der agenten fuer d ie s imu la t ion .

% i n k l u s i v e e ingabe der demografie− und krankhe i t s−parameter

function [ anz nachb , anz hh , anz work ] = i n fm i n i t ( pop s i ze , i n f s i z e , r e c s i z e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% ag mat i s t g l o b a l d e f i n i e r t !

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

global ag mat

global prob stayhome

global pop vektor

disp ( ’ ’ ) ;

disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

disp ( ’ ( i n fm i n i t .m) AGENTEN WERDEN INITIALISIERT . . . ’ ) ;

disp ( ’ ’ ) ;

t ic

% S t a t s i t i s c h e Eingaben ( r e l a t i v e Werte )

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Bevoe l k e rungsau f t e i l ung nach Al ter :

proz sen = 0 . 2 1 ; % Senioren ( ueber 60 Jahre )

proz erw = 0 . 6 1 ; % Erwachsene (18−60)

proz ms = 0 . 0 8 ; % Mi t t e l s c hu e l e r (10−18)

proz vs = 0 . 0 4 ; % Volk s schue l e r (6−10)

proz kg = 0 . 0 3 ; % Kindergartenkinder (3−6)

% Babies (0−3) werden ueber Di f f e r enz gerechnet

% A l t e r s s p e z i f i s c h e In f e k t i on s r a t en :

i n f r a t e s e n = 0 . 0013 ; %0.002 ;

i n f r a t e e rw = 0 . 0017 ; %0.0016 ;

i n f r a t e ms = 0 . 0025 ; %0.002 ;

i n f r a t e v s = 0 . 0025 ; %0.0024 ;

i n f r a t e k g = 0 . 0 0 3 ; %0.004 ;

i n f r a t e baby = 0 . 0 0 2 ; %0.006 ;

% A l t e r s s p e z i f i s c h e Wahrsch . b e i In f . zuhause zu b l e i b en :

p s th s en = 0 . 8 ;

p s th erw = 0 . 7 ;

p sth ms = 0 . 7 5 ;

p s th v s = 0 . 8 5 ;

p s th kg = 0 . 9 3 ;

p sth baby= 0 . 9 9 ;
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% Hausha l t s in format ion :

avg hh s i z e = 2 ; % Durchschn . HH−groes se in Personen

hh1 = 0 . 4 5 ; % Haushal te mit 1 Person in %

hh2 = 0 . 3 ; % usw . . .

hh3 = 0 . 1 3 ; % usw

hh4 = 0 . 0 8 ;

hh5 = 0 . 0 4 ; % HH mit mehr a l s 5 Personen

% Soz i a l e Strukturen :

nachb s i z e = 100 ; % Nachbarsch . g roes se ( in Haushalten )

work s i z e = 10 ; % Arbe i t s p l . g roes se

mschu l s i z e = 375 ; % Mi t t e l s c h u l s g r .

v s c h u l s i z e = 250 ; % Volks schu l g r .

kga r t n s i z e = 29 ; % Kindergartengr .

% Variab len berechnen ( ab so l u t e Werte )

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Damit d ie Agenten mit ihren Daten a l s 32− b i t In t e ge r g e s p e i c h e r t werden

% k n n e n , m u die I n f e k t i o n swah r s c h e i n l i c h k e i t umgerechnet werden !

% F r d ie Berechnungen i s t es aber n t z l i c h , dass pop s i z e a l s doub le

% v o r l e i g t .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pop s i z e=double ( pop s i z e ) ;

% In f e k t i on s r a t en :

i n f r a t e s e n = int32 ( i n f r a t e s e n ∗ 10000) ;

i n f r a t e e rw = int32 ( i n f r a t e e rw ∗ 10000) ;

i n f r a t e ms = int32 ( i n f r a t e ms ∗ 10000) ;

i n f r a t e v s = int32 ( i n f r a t e v s ∗ 10000) ;

i n f r a t e k g = int32 ( i n f r a t e k g ∗ 10000) ;

i n f r a t e baby = int32 ( i n f r a t e baby ∗ 10000) ;

% Anz . d Nachbarschaften :

anz nachb = int32 ( ce i l ( pop s i z e / nachb s i z e ) ) ;

% Indiv iduen pro A l t e r s poo l :

anz s en i o r en = f loor ( pop s i z e ∗ proz sen ) ;

a n z a r b e i t e r = f loor ( pop s i z e ∗ proz erw ) ;

anz mschuler = f loor ( pop s i z e ∗ proz ms ) ;

anz v s chu l e r = f loor ( pop s i z e ∗ proz vs ) ;

anz kgk inder = f loor ( pop s i z e ∗ proz kg ) ;

anz baby = pop s i ze −( anz s en i o r en+anz a rb e i t e r+anz mschuler+anz vschu l e r . . .

+anz kgk inder ) ;

pop vektor = [ anz baby , anz kgkinder , anz vschu le r , anz mschuler , anz a rbe i t e r , . . .

anz s en i o r en ] ;

clear proz sen proz erw proz ms proz vs proz kg ;
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% Anz d . Haushal te :

anz hh = ce i l ( pop s i z e / avg hh s i z e ) ; % wird e r s t s p t e r in in t32 umgewandelt

anz hh1 = f loor ( anz hh ∗ hh1 ) ;

anz hh2 = f loor ( anz hh ∗ hh2 ) ;

anz hh3 = f loor ( anz hh ∗ hh3 ) ;

anz hh4 = f loor ( anz hh ∗ hh4 ) ;

anz hh5 = anz hh−(anz hh1+anz hh2+anz hh3+anz hh4 +1);

i f ( hh1+hh2+hh3+hh4+hh5)>1

error ( ’ACHTUNG! Summe der Haushalte g r o e s s e r a l s 100 Prozent ! ’ ) ;

end

clear hh1 hh2 hh3 hh4 hh5 ;

% Anz . d . A r b e i t s p l a e t z e ( i n k l . Schulen & Kindergaerten )

anz a rbe i t sp = ce i l ( an z a r b e i t e r / work s i z e ) ;

anz mschulen = ce i l ( anz mschuler / mschu l s i z e ) ;

anz vschu len = ce i l ( anz v s chu l e r / v s c h u l s i z e ) ;

anz k i ga r t en = ce i l ( anz kgk inder / k g a r t n s i z e ) ;

anz work = int32 ( anz a rbe i t sp+anz mschulen+anz vschu len+anz k i ga r t en ) ;

clear work s i z e mschu l s i z e v s c h u l s i z e k g a r t n s i z e

% Vektor fuer Wahrsch . b e i In f . zuhause zu b l e i b en

for i =0:130

i f i >=60

prob stayhome ( i+1)=p s th s en ;

e l s e i f i >=18

prob stayhome ( i+1)=p sth erw ;

e l s e i f i >=10

prob stayhome ( i+1)=p sth ms ;

e l s e i f i>=6

prob stayhome ( i+1)=p s th v s ;

e l s e i f i>=3

prob stayhome ( i+1)=p sth kg ;

else

prob stayhome ( i+1)=p sth baby ;

end

end

clear p s th s en p sth erw p sth ms p s th v s p s th kg p sth baby

i f an z a r b e i t e r < anz hh

error ( ’ACHTUNG! Es e x i s t i e r e n weniger Erwachsene a l s Haushalte ! ’ ) ;

end
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% Agenten i n i t i a l i s i e r e n

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Generierung der Agenten mit :

% Ageneten−ID

% Al ter ( entsprechend demographischen Daten => e ingabe oben )

% In f . Wahrsche in l i chke i t ( a l t e r s a b h n g i g )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ag id = int32 ( 1 ) ; % ag id wird ab j e t z t immer a l s in 32 g e s p e i c h e r t !

% Generierung der Erwachsenen

for i =1: a n z a r b e i t e r

a g l i s t e ( ag id ) . id = ag id ; % i s t schon in t32 !

a g l i s t e ( ag id ) . s t a tu s = int32 ( 1 ) ;

a g l i s t e ( ag id ) . a l t e r = int32 ( ce i l (rand∗41 .99 + 17 ) ) ;

% Jedem HH einen Erwachsenen !

i f i<=anz hh

a g l i s t e ( ag id ) . HHid = int32 ( i ) ;

a g l i s t e ( ag id ) . nachb = int32 ( ce i l ( i / nachb s i z e ) ) ;

else

a g l i s t e ( ag id ) . HHid = int32 ( 0 ) ;

a g l i s t e ( ag id ) . nachb = int32 ( 0 ) ;

end

a g l i s t e ( ag id ) . work = int32 ( f loor (rand∗ anz a rbe i t sp ) ) ;

a g l i s t e ( ag id ) . i n f z e i t p = int32 ( 0 ) ;

a g l i s t e ( ag id ) . in f wahsch = i n f r a t e e rw ; % i s t schon in t32 !

a g l i s t e ( ag id ) . stay home = int32 ( 0 ) ;

a g l i s t e ( ag id ) . s u r v i v e r = int32 ( 0 ) ;

ag id = ag id + 1 ; % naechs ter Agent−ID

end

% Generierung d . Senioren

for i =1: anz s en i o r en

a g l i s t e ( ag id ) . id = ag id ;

a g l i s t e ( ag id ) . s t a tu s = int32 ( 1 ) ;

a g l i s t e ( ag id ) . a l t e r = int32 ( ce i l (abs ( normrnd (9 , 11 ) ) )+59) ;

a g l i s t e ( ag id ) . HHid = int32 ( 0 ) ;

a g l i s t e ( ag id ) . nachb = int32 ( 0 ) ;

a g l i s t e ( ag id ) . work = int32 ( 0 ) ; % vor l . annahme : senioren ” arbe i t en ” zuhause

a g l i s t e ( ag id ) . i n f z e i t p = int32 ( 0 ) ;

a g l i s t e ( ag id ) . in f wahsch = i n f r a t e s e n ;

a g l i s t e ( ag id ) . stay home = int32 ( 0 ) ;

a g l i s t e ( ag id ) . s u r v i v e r = int32 ( 0 ) ;

ag id = ag id + 1 ; % naechs ter Agent−ID

end

% Generierung d . M i t t e l s c hu e l e r

for i =1: anz mschuler

a g l i s t e ( ag id ) . id = ag id ;

a g l i s t e ( ag id ) . s t a tu s = int32 ( 1 ) ;
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a g l i s t e ( ag id ) . a l t e r = int32 ( f loor (rand∗7 .999+10)) ;

a g l i s t e ( ag id ) . HHid = int32 ( 0 ) ;

a g l i s t e ( ag id ) . nachb = int32 ( 0 ) ;

a g l i s t e ( ag id ) . work = int32 ( ce i l (rand∗anz mschulen + anz a rbe i t sp ) ) ;

a g l i s t e ( ag id ) . i n f z e i t p = int32 ( 0 ) ;

a g l i s t e ( ag id ) . in f wahsch = in f r a t e ms ;

a g l i s t e ( ag id ) . stay home = int32 ( 0 ) ;

a g l i s t e ( ag id ) . s u r v i v e r = int32 ( 0 ) ;

ag id = ag id + 1 ; % naechs ter Agent−ID

end

% Generierung d . Vo l k s schue l e r

for i =1: anz v s chu l e r

a g l i s t e ( ag id ) . id = ag id ;

a g l i s t e ( ag id ) . s t a tu s = int32 ( 1 ) ;

a g l i s t e ( ag id ) . a l t e r = int32 ( f loor (rand∗3 .999+6)) ;

a g l i s t e ( ag id ) . HHid = int32 ( 0 ) ;

a g l i s t e ( ag id ) . nachb = int32 ( 0 ) ;

a g l i s t e ( ag id ) . work = int32 ( ce i l (rand∗ anz vschu len + anz mschulen + . . .

an z a rb e i t sp ) ) ;

a g l i s t e ( ag id ) . i n f z e i t p = int32 ( 0 ) ;

a g l i s t e ( ag id ) . in f wahsch = i n f r a t e v s ;

a g l i s t e ( ag id ) . stay home = int32 ( 0 ) ;

a g l i s t e ( ag id ) . s u r v i v e r = int32 ( 0 ) ;

ag id = ag id + 1 ; % naechs ter Agent−ID

end

% Generierung d . Kindergartenkinder

for i =1: anz kgk inder

a g l i s t e ( ag id ) . id = ag id ;

a g l i s t e ( ag id ) . s t a tu s = int32 ( 1 ) ;

a g l i s t e ( ag id ) . a l t e r = int32 ( f loor (rand∗2 .999+3)) ;

a g l i s t e ( ag id ) . HHid = int32 ( 0 ) ;

a g l i s t e ( ag id ) . nachb = int32 ( 0 ) ;

a g l i s t e ( ag id ) . work = int32 ( ce i l (rand∗ anz k i ga r t en + anz vschu len + . . .

anz mschulen + anz a rbe i t sp ) ) ;

a g l i s t e ( ag id ) . i n f z e i t p = int32 ( 0 ) ;

a g l i s t e ( ag id ) . in f wahsch = i n f r a t e k g ;

a g l i s t e ( ag id ) . stay home = int32 ( 0 ) ;

a g l i s t e ( ag id ) . s u r v i v e r = int32 ( 0 ) ;

ag id = ag id + 1 ; % naechs ter Agent−ID

end

% Generierung d . Babies

for i =1: anz baby

a g l i s t e ( ag id ) . id = ag id ;

a g l i s t e ( ag id ) . s t a tu s = int32 ( 1 ) ;

a g l i s t e ( ag id ) . a l t e r = int32 ( f loor (rand ∗ 2 . 9 9 9 ) ) ;

a g l i s t e ( ag id ) . HHid = int32 ( 0 ) ;

a g l i s t e ( ag id ) . nachb = int32 ( 0 ) ;

a g l i s t e ( ag id ) . work = int32 ( 0 ) ;

a g l i s t e ( ag id ) . i n f z e i t p = int32 ( 0 ) ;

a g l i s t e ( ag id ) . in f wahsch = in f r a t e baby ;

a g l i s t e ( ag id ) . stay home = int32 ( 0 ) ;

a g l i s t e ( ag id ) . s u r v i v e r = int32 ( 0 ) ;

ag id = ag id + 1 ; % naechs ter Agent−ID

end
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clear ag id i n f r a t e baby i n f r a t e k g i n f r a t e v s i n f r a t e ms i n f r a t e e rw i n f r a t e s e n ;

clear anz baby anz kgk inder anz vs chu l e r anz mschuler an z a r b e i t e r anz s en i o r en ;

clear anz a rbe i t sp anz mschulen anz vschu len anz k i ga r t en ;

% Zuweisung der Agenten in Haushal te und Nachbarschaften

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Waehrend der Generierung der Agenten wurde s i c h e r g e s t e l l t , dass j ede r

% Haushalt einen Erwachsenen bewohner hat .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

hh vec = zeros (1 , anz hh , ’ i n t32 ’ ) ;

for i =1: anz hh2

z u f l = ce i l (rand∗anz hh ) ;

while hh vec ( z u f l ) ˜= 0

z u f l = z u f l +1;

i f z u f l > anz hh

z u f l =1;

end

end

hh vec ( z u f l ) = 1 ;

end

for i =1: anz hh3

z u f l = ce i l (rand∗anz hh ) ;

while hh vec ( z u f l ) ˜= 0

z u f l = z u f l +1;

i f z u f l > anz hh

z u f l =1;

end

end

hh vec ( z u f l ) = 2 ;

end

for i =1: anz hh4

z u f l = ce i l (rand∗anz hh ) ;

while hh vec ( z u f l ) ˜= 0

z u f l = z u f l +1;

i f z u f l > anz hh

z u f l =1;

end

end

hh vec ( z u f l ) = 3 ;

end

for i =1: anz hh5

z u f l = ce i l (rand∗anz hh ) ;

while hh vec ( z u f l ) ˜= 0

z u f l = z u f l +1;
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i f z u f l > anz hh

z u f l =1;

end

end

hh vec ( z u f l ) = 4 ;

end

clear anz hh5 anz hh4 anz hh3 anz hh2 anz hh1 ;

%???????????????????????????????

%disp ( [ ’ f uer HH benoe t i g t : ’ , num2str (sum( hh vec ) + l eng t h ( hh vec ) ) ] ) ;

%di sp ( [ ’ p op s i z e : ’ , num2str ( pop s i z e ) ] ) ;

%???????????????????????????????

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% ’ hh vec ’ en t h a e l t nun d ie Anzahl der noch feh l enden Bewohner pro

% hausha l t

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i =1: anz hh

for j =1: hh vec ( i )

h i l f e = 0 ;

z u f l = ce i l (rand∗ pop s i z e ) ;

while h i l f e == 0

i f a g l i s t e ( z u f l ) . HHid == 0

a g l i s t e ( z u f l ) . HHid = int32 ( i ) ;

a g l i s t e ( z u f l ) . nachb = int32 ( ce i l ( i / nachb s i z e ) ) ;

h i l f e = 1 ;

else

z u f l = z u f l +1;

i f z u f l > pop s i z e

z u f l =1;

end

end

end

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%j e t z t s ind noch e i n i g e agenten ohne HH. d i e s e g e h r e n a l l e den 5+ HHs

%zugewiesen . wie zu b ew e r k s t e l l i g e n ?

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

hh vec = find ( hh vec == 4 ) ;

for i =1: pop s i z e

i f a g l i s t e ( i ) . HHid==0

h i l f e = ce i l (rand ∗ length ( hh vec ) ) ;

a g l i s t e ( i ) . HHid = int32 ( hh vec ( h i l f e ) ) ;

a g l i s t e ( i ) . nachb = int32 ( ce i l ( h i l f e / nachb s i z e ) ) ;

end

end

clear hh vec ;
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% In f e k t i on s− bzw . Impf s ta tus s e t z t e n

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% I n i t i a l i n f e k t i o n ( In f )

for i =1: i n f s i z e

j=ce i l (rand∗ pop s i z e ) ;

while a g l i s t e ( j ) . s t a tu s ˜=1

j=j +1;

i f ( j>pop s i z e ) , j =1; end

end

a g l i s t e ( j ) . s t a tu s=int32 ( 5 ) ;

end

% geimpf te Ind iv iduen (Rec)

for i =1: r e c s i z e

j=ce i l (rand∗ pop s i z e ) ;

while a g l i s t e ( j ) . s t a tu s ˜=1

j=j +1;

i f ( j>pop s i z e ) , j =1; end

end

a g l i s t e ( j ) . s t a tu s=int32 ( 8 ) ;

end

% Umformungen und Generieren der Agenten Matrix

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%anz nachb=int32 ( anz nachb ) ; % wird oben schon a l s in t32 g e s p e i c h e r t

%anz work=int32 ( anz work ) ; % wird oben schon a l s in t32 g e s p e i c h e r t

anz hh=int32 ( anz hh ) ;

% Umformen der Agen t en l i s t e ( fuer CAs) :

a g c e l l = s t r u c t 2 c e l l ( a g l i s t e ) ;

clear a g l i s t e

ag temp = ce l l 2mat ( a g c e l l ) ;

clear a g c e l l

ag mat ( : , : ) = ag temp ( : , 1 , : ) ;

clear ag temp

% Status − Ausgabe

dauer=toc ;

disp ( [ ’ I n i t i a l i s i e r u n g der Agenten wurde in ’ ,num2str( dauer ) , ’ Sekunden ausge fuehr t . ’ ] ) ;

disp ( ’ ’ ) ;

disp ( ’ERRECHNETE AUSGANGSDATEN: ’ ) ;

disp ( ’ ’ ) ;

disp ( [ ’ anz . d . bewohner : ’ , num2str(max( ag mat ( 1 , : ) ) ) ] ) ;



APPENDIX B. SOURCE CODE OF MODEL 79

disp ( [ ’ hoechs te r s t a tu s : ’ , num2str(max( ag mat ( 2 , : ) ) ) ] ) ;

disp ( [ ’ k l e i n s t e r s t a tu s : ’ , num2str(min( ag mat ( 2 , : ) ) ) ] ) ;

disp ( [ ’max . a l t e r : ’ , num2str(max( ag mat ( 3 , : ) ) ) ] ) ;

disp ( [ ’min . a l t e r : ’ , num2str(min( ag mat ( 3 , : ) ) ) ] ) ;

disp ( [ ’ anz . d . hausha l te : ’ , num2str(max( ag mat ( 4 , : ) ) ) ] ) ;

disp ( [ ’ k l e i n s t HausH ID : ’ , num2str(min( ag mat ( 4 , : ) ) ) ] ) ;

disp ( [ ’ anz . d . nachbarschaf ten : ’ , num2str(max( ag mat ( 5 , : ) ) ) ] ) ;

disp ( [ ’ k l e i n s t e nachb . sch . ID : ’ , num2str(min( ag mat ( 5 , : ) ) ) ] ) ;

disp ( [ ’ anz . d . arb . p l a e t z e : ’ , num2str(max( ag mat ( 6 , : ) ) ) ] ) ;

disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

disp ( ’ ’ ) ;

disp ( ’ ’ ) ;

disp ( ’ ’ ) ;

end % func t ion
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Listing B.3: infm ca.m - CA implementation
% autor : s t e f an emrich

% co−autor : guenter s chneckenre i t he r

% dateiname : infm ca .m

%

% der programmtei l der d ie z e l l u l a e r e n automaten b e s c h r e i b t

function in fm ca ( l a u f z e i t , i d t e i l n ehmer , z e i t g l o b , ca d i chte , umfeld typ )

% Datentypen : int16 , int32 , int32 , double , in t8

%% GLOBALE VARIABLEN

global ag mat % int32

global c oun t i n f % int32

global ca turn % doub le

%% ’ ca matrix ’ GENERIEREN

pa r t i k e l a n z = double ( length ( i d t e i l n ehme r ) ) ;

c a s i z e = int32 ( ce i l ( sqrt ( p a r t i k e l a n z /(6∗ c a d i ch t e ) ) ) ) ;

ca matr ix = zeros ( c a s i z e , c a s i z e , 6 , ’ i n t32 ’ ) ;

ca matr ix ( 1 : p a r t i k e l a n z ) = id t e i l n ehme r ( : ) ;

ca matr ix ( 1 : c a s i z e ∗ c a s i z e ∗6) = ca matr ix (randperm( c a s i z e ∗ c a s i z e ∗ 6 ) ) ;

clear pa r t i k e l a n z ca d i ch t e ;

%% RESTLICHE VARIABLEN UND SPEICHERPLATZ

i n d c o l l z e i l e = zeros (50 ,1 , ’ double ’ ) ;

i n d c o l l s p a l t e = zeros (50 ,1 , ’ double ’ ) ;

i d s u s c = zeros ( length ( i d t e i l n ehme r ) , 1 , ’ i n t32 ’ ) ;

i d i n f e k t i o n e n = zeros ( length ( i d t e i l n ehme r ) , 1 , ’ i n t32 ’ ) ;

a n z i n f = sparse ( 0 ) ;

%% CA STARTEN

for z e i t c a = int16 ( 1 ) : l a u f z e i t

%% INFEKTIONEN

% ID der s u s c e p t i b l e s :

i d s u s c = id t e i l n ehme r ( ag mat (2 , i d t e i l n ehme r )==1 ) ’ ;

% Anzahl der i n f e c t e d in j ede r Z e l l e auf dem Gi t t e r :

an z i n f = sparse ( h i s t c ( i n t8 ( ismembc ( ca matr ix , i d t e i l n ehme r ( . . .

ag mat (2 , i d t e i l n ehme r )==5 | ag mat (2 , i d t e i l n ehme r )==6) . . .

) ) , i n t8 ( 1 ) , 3 ) ) ;

% ZWISCHEN SCHRITTE:

% 1) ’ in t32 ( f i nd ( ismembc ( ca matrix , i d s u s c ) ) ) ’

% l i e f e r t d i e 3−dim l inearen Ind i z e s der Pos i t ionen der s u s c e p t i b l e s
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% 2) ’rem( index − 1 , c a s i z e ∗ c a s i z e ) + 1 ’

% berechnet d i e 2−dim l inearen Ind i z e s aus den 3−dim Ind i z e s

% 3) ’rem( in t32 ( f i nd ( ismembc ( ca matrix , i d s u s c ) ) ) − 1 , c a s i z e ∗ c a s i z e ) + 1 ’

% l i e f e r t a l s o d ie (2−dim l inearen Ind i z e s der ) Pos i t ionen der susc auf

% dem Gi t t e r

% 4) ’ f u l l ( an z i n f ( p o s i t i o n e n d e r s u s c e p t i b l e s ) ) ’

% l i e f e r t d i e Anzahl der i n f e c t e d in den Ze l l en der s u s c e p t i l b e s

% ID der s u s c e p t i l b e s , d i e i n f i z i e r t werden :

i d i n f e k t i o n e n = i d s u s c ( . . .

rand ( length ( i d s u s c ) , 1 ) < . . .

1−(1−double ( ag mat (8 , i d s u s c ) ’ ) / 10000 ) . ˆ . . .

f u l l ( a n z i n f (rem( in t32 ( find ( ismembc ( ca matr ix , i d s u s c ) ) ) − 1 , . . .

c a s i z e ∗ c a s i z e ) + 1) ) . . .

) ;

ag mat (2 , i d i n f e k t i o n e n ) = int32 ( 5 ) ;

ag mat (7 , i d i n f e k t i o n e n ) = z e i t g l o b ;

c oun t i n f ( umfeld typ ) = coun t i n f ( umfeld typ ) + int32 ( length ( i d i n f e k t i o n e n ) ) ;

ag mat (9 , i d i n f e k t i o n e n ) = infm stayhome ( i d i n f e k t i o n e n ) ;

%% KOLLISIONEN

[ i n d c o l l z e i l e , i n d c o l l s p a l t e ] = . . .

find ( . . .

( . . .

l o g i c a l ( h i s t c ( ca matr ix , in t32 (0) ,3)==3) & . . .

l o g i c a l ( ca matr ix ( : , : , 1 ) )== l o g i c a l ( ca matr ix ( : , : , 3 ) ) & . . .

l o g i c a l ( ca matr ix ( : , : , 1 ) )== l o g i c a l ( ca matr ix ( : , : , 5 ) ) . . .

) | ( . . .

l o g i c a l ( h i s t c ( ca matr ix , in t32 (0) ,3)==4) & . . .

l o g i c a l ( ca matr ix ( : , : , 1 ) )== l o g i c a l ( ca matr ix ( : , : , 4 ) ) & . . .

l o g i c a l ( ca matr ix ( : , : , 2 ) )== l o g i c a l ( ca matr ix ( : , : , 5 ) ) . . .

) . . .

) ;

for ind = in t8 ( 1 ) : i n t8 ( length ( i n d c o l l z e i l e ) )

ca matr ix ( i n d c o l l z e i l e ( ind ) , i n d c o l l s p a l t e ( ind ) , : ) = . . .

ca matr ix ( i n d c o l l z e i l e ( ind ) , i n d c o l l s p a l t e ( ind ) , ca turn ( 1+ . . .

round(rand ) , : ) ) ;

end

%% LATTICE UPDATE

ca matr ix ( : , : , 1 ) = ca matr ix ( : , [ c a s i z e , 1 : c a s i z e −1 ] , 1 ) ;

ca matr ix ( : , : , 2 ) = ca matr ix ( [ 2 : c a s i z e , 1 ] , [ c a s i z e , 1 : c a s i z e −1 ] , 2 ) ;

ca matr ix ( : , : , 3 ) = ca matr ix ( [ 2 : c a s i z e , 1 ] , : , 3 ) ;

ca matr ix ( : , : , 4 ) = ca matr ix ( : , [ 2 : c a s i z e , 1 ] , 4 ) ;

ca matr ix ( : , : , 5 ) = ca matr ix ( [ c a s i z e , 1 : c a s i z e −1 ] , [ 2 : c a s i z e , 1 ] , 5 ) ;

ca matr ix ( : , : , 6 ) = ca matr ix ( [ c a s i z e , 1 : c a s i z e − 1 ] , : , 6 ) ;
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%% CA ENDE

% Visua l i s i e rung :

%{
i f umfeld typ==2

i n fm c a l a t t i c e ( ca matr ix , c a s i z e ) ;

%pause ;

end

%}

end % z e i t c a

end % func t ion
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Listing B.4: infm ca lattice.m - CA subroutine

% Fuer d ie v i s u a l i s i e r u n g notwendiges tei lprogramm

function i n fm c a l a t t i c e ( ca , c a s i z e ) ;

G=−100∗ones ( c a s i z e ∗3 , c a s i z e ∗4 ) ;

for z e i l e = 1 : c a s i z e

for s p a l t e = 1 : c a s i z e

G( ( z e i l e −1)∗3+1 ,( s p a l t e+z e i l e −1)∗2+1)=ca ( z e i l e , spa l t e , 3 ) ;

G( ( z e i l e −1)∗3+2 ,( s p a l t e+z e i l e −1)∗2+1)=ca ( z e i l e , spa l t e , 4 ) ;

G( ( z e i l e −1)∗3+3 ,( s p a l t e+z e i l e −1)∗2+1)=ca ( z e i l e , spa l t e , 5 ) ;

G( ( z e i l e −1)∗3+1 ,( s p a l t e+z e i l e −1)∗2+2)=ca ( z e i l e , spa l t e , 2 ) ;

G( ( z e i l e −1)∗3+2 ,( s p a l t e+z e i l e −1)∗2+2)=ca ( z e i l e , spa l t e , 1 ) ;

G( ( z e i l e −1)∗3+3 ,( s p a l t e+z e i l e −1)∗2+2)=ca ( z e i l e , spa l t e , 6 ) ;

end

end

imagesc (G, [ 9 0 0 1 0 0 0 ] ) ;

drawnow ;

end
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Listing B.5: infm stayhome.m - ’Stayhome’ routine

% Routine d ie bestimmt ob ein i n f i z i e r t e r Agent w h r e n d der Krankheitsdauer

% zu Hause b l e i b t , oder we i t e rh in einen normalen t a g e s a b l a u f hat

function [ output ] = infm stayhome ( i d i n f e k t i o n e n )

global ag mat

global prob stayhome

a g e i n f = ag mat (3 , i d i n f e k t i o n e n ) ;

output = (rand < prob stayhome ( a g e i n f + 1 ) ) ;

end %funt ion
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Listing B.6: infm genesung.m - Recovery routine

% Routine d ie zur Genesung & Krankhe i t sentwick lung innerha l b des

% In f e k t i on smode l l s d i en t

function in fm genesung ( z e i t )

global ag mat

% Vector mit a l l e n erkrankten Ind iv iduen :

ve c i d = find ( ag mat (2 , : )==5) ;

i n f i d = find ( ag mat (2 , : )==6) ;

% Ausbruch der Symptome be i erkrankten Indiv iduen ( p r o b a b l i s i t i s c h )

for i=ve c i d

i f ( ( z e i t − ag mat (7 , i ) ) >= 2)

ag mat (2 , i ) = 6 ;

ag mat (7 , i ) = z e i t ;

ag mat (9 , i ) = 0 ;

end

end

% Genesung der erkrankten Indiv iduen ( p r o b a b l i s i t i s c h )

for i=i n f i d

i f ( ( z e i t − ag mat (7 , i ) ) >= (abs ( normrnd(6 ,1)−4)+4) )

ag mat (2 , i ) = 8 ;

ag mat (7 , i ) = z e i t ;

ag mat (9 , i ) = 0 ;

end

end

% Ver lus t der Immunitaet

r e c i d = find ( ag mat (2 , : )==8) ;

for i=r e c i d

i f ( z e i t−ag mat (7 , i ) >= 75) % a l t e r n a t i v : normrnd (25 ,3))

ag mat (2 , i ) = 1 ;

ag mat (10 , i ) = 0 ; % Bei neue r l i c h e r Erkrankung i s t S t e r b e r i s i k o

end % wieder normal

end

end
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Listing B.7: infm death.m - Death routine

% Routine d ie d ie Tode s f a e l l e innerha l b des In f e k t i on smode l l s berechnet

function in fm death ( z e i t )

global ag mat

i f ( z e i t /4) == round( z e i t /4) % ausfuehrungn nur nach jedem 4 z e i t s c h r i t t

% zecks l a u f z e i t . e rmoeg l i ch t ausserdem bes s e re ve r b r e i t ung der krankhe i t

% Vektor mit a l l e n kranken Indiv iduen :

i n f i d = find ( ag mat (2 , : )==6) ;

% Tod der erkrankten Indiv iduen ( p r o b a b i l i s t i s c h & a l t e r s s p e z . )

for i=i n f i d

i f ( ag mat (3 , i )>=80 && ag mat (10 , i )==0 && rand<0.025)

ag mat (2 , i ) = 10 ; % Status fuer Tod ( s i c h e r h e i t s h a l b e r hoch : )

ag mat (7 , i ) = z e i t ; % Todesze i tpunkt

ag mat (9 , i ) = 1 ; % Individuum wird n i ch t mehr in CA genommen

e l s e i f ( ag mat (3 , i )>=60 && ag mat (10 , i )==0 && rand<0.02)

ag mat (2 , i ) = 10 ;

ag mat (7 , i ) = z e i t ;

ag mat (9 , i ) = 1 ;

else

ag mat (10 , i ) = 1 ; % Individuum kann an DIESER Erkrankung n i ch t

end % mehr s t e rben

end

end %of i f ( z e i t /4)==...

end % of func t ion



Bibliography

[L1] Arbeitsgemeinschaft Influenza, Abschlussbericht der Influenzasaison 2004/05,

Berlin, 2005

[L2] Anderson, May, Population Biology of Infectious Diseases, Springer, 1982

[L3] Bandini, Pavesi, Simulation of Pesticide Percolation in the Soil Based on Cel-

lular Automata, International Environmental Modelling and Software Society,

http://www.iemss.org/iemss2002/proceedings/pdf/volume%20tre/258 pavesi.pdf

[L4] Baylei Norman T. J. , The Mathematical Theory of Infectious Diseases and

its Applications, Charles Griffing & Company LTD, 1975

[L5] Behrens Doris, Influenza Report 2006, (www.InfluenzaReport.com)

[L6] Brenner Reinhard, Methoden zur Monte-Carlo-Simulation und deren Imple-

mentierung, Diploma-Thesis, Vienna University of Technology, 1995

[L7] Bridges, Thompson et al., Effectiveness and Cost-Benefit of Influenza Vaccina-

tion of Healthy Working Adults, The Journal of American Medical Association,

2000

[L8] Bundesministerium für Gesundheit und Frauen, Influenza Pandemieplan -
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