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Agricultural droughts are extreme events which are often a result of interplays

between multiple hydro-meteorological processes. Therefore, assessing

drought occurrence, extent, duration and intensity is complex and requires

the combined use of multiple variables, such as temperature, rainfall, soil

moisture (SM) and vegetation state. The benefit of using information on SM and

vegetation state is that they integrate information on precipitation, temperature

and evapotranspiration, making them direct indicators of plant available water

and vegetation productivity. Microwave remote sensing enables the retrieval

of both SM and vegetation information, and satellite-based SM and vegetation

products are available operationally and free of charge on a regional or

global scale and daily basis. As a result, microwave remote sensing products

play an increasingly important role in drought monitoring applications.

Here, we provide an overview of recent developments in using microwave

remote sensing for large-scale agricultural drought monitoring. We focus on

the intricacy of monitoring the complex process of drought development

using multiple variables. First, we give a brief introduction on fundamental

concepts of microwave remote sensing together with an overview of recent

research, development and applications of drought indicators derived from

microwave-based satellite SM and vegetation observations. This is followed

by a more detailed overview of the current research gaps and challenges in

combining microwave-based SM and vegetation measurements with hydro-

meteorological data sets. The potential of using microwave remote sensing

for drought monitoring is demonstrated through a case study over Senegal

using multiple satellite- and model-based data sets on rainfall, SM, vegetation

and combinations thereof. The case study demonstrates the added-value of

microwave-based SM and vegetation observations for drought monitoring

applications. Finally, we provide an outlook on potential developments

and opportunities.
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Introduction

As a result of climate change, the frequency and intensity

of droughts have increased in much of the world, driven

by continuously evolving precipitation shifts and temperature

increases (Dai, 2013; Trenberth, 2014; Hoegh-Guldberg et al.,

2018). The effects of drought on ecosystems and society are

staggering, leading to crop losses and famine, tree mortality

and amplification of heatwaves, among many other impacts

(Schumacher et al., 2019; Senf et al., 2020; Brás et al., 2021).

Due to the significant and often costly impact of droughts,

drought monitoring is pivotal for early warning and early action.

However, droughts are complex extreme events. As described

in detail by Zscheischler et al. (2020) events such as droughts

can occur as a result of existing preconditions, interactions of

multiple drivers, a succession or a spatial interplay of events.

In addition, droughts are often creeping disasters, developing

from a meteorological drought due to a long-term rainfall

deficit or prolonged increased temperatures to an agricultural

and hydrological drought, affecting vegetation and ground-

and surface waters. A socio-economic drought is the result of

prolonged agricultural and hydrological drought, when these

impact forests, crop yields, infrastructure and drinking water

sources for people and livestock. Due to its complex nature,

identifying and monitoring drought is an intricate problem

and many methods exist based on single or combined hydro-

meteorological variables as well as vegetation observations.

Meteorological droughts are usually monitored by a

combination of precipitation and temperature observations,

such as the Standardized Precipitation Index (SPI). Most

agricultural drought indicators use precipitation and

temperature in combination with information on vegetation

productivity to characterize the main drivers and impacts of

droughts. For monitoring drought impact on vegetation, visible

and near-infrared (VNIR) indices such as the Normalized

Difference Vegetation Index (NDVI) and Leaf Area Index (LAI)

aremost commonly used. The use of SM for agricultural drought

monitoring has increased in recent decades as it can fill a gap

between the lagged response of the land surface to precipitation

deficits. Mostly modeled or satellite-based SM information is

used as it can provide global and daily information on SM. The

advantage of satellite-observed SM products is that they better

capture variability of SM than rainfall and temperature driven

models, and they implicitly include irrigation water which is

seldom considered in models (Massari et al., 2021).

Several publicly available, operational SM products are based

on satellite microwave observations, providing global, daily

coverage. The microwave signal interacts with the land surface

and is sensitive to the water content in the top centimeters of the

soil and the above ground biomass. Therefore, they do not only

allow for the retrieval of SM, but also of the water contained in

the above ground biomass. Often the water content in the above

ground biomass is parametrized through the Vegetation Optical

Depth (VOD), which describes the attenuation of themicrowave

signal by the vegetation (Attema and Ulaby, 1978). However,

studies also use direct satellite measurements as indicators

of vegetation dynamics, such as the slope of the backscatter

incidence angle relationship and the ratio between co- and

cross polarized backscatter or brightness temperatures (Saatchi

et al., 2013; Steele-Dunne et al., 2019). Studies have shown that

microwave-based vegetation indicators can complement VNIR

vegetation indicators as they provide information on water

content in the above ground biomass including the woody part

of the vegetation (Liu et al., 2011; Andela et al., 2013; Tian et al.,

2016; Konings et al., 2019).

Many products based on remotely sensed microwave

observations are available and the aim of this paper is to

provide an overview of how satellite-based microwave data

and products are used for agricultural drought monitoring.

Several publications have given an overview of the use of

remote sensing for drought monitoring from meteorological to

socio-economic drought (Table 1). Recent drought monitoring

overviews by AghaKouchak et al. (2015), West et al. (2019), and

Jiao et al. (2021) included satellite SM next to other datasets and

methods. Other review papers focus on applications of specific

microwave instruments, techniques or datasets (Dorigo et al.,

2017; Steele-Dunne et al., 2017; Wigneron et al., 2021). Our

paper distinguishes itself from these existing reviews by focusing

on the use of microwave observations and thereof derived

products for agricultural drought monitoring without focusing

on a specific sensor or dataset. We address the complexity

of monitoring droughts and the benefits and shortcomings in

using microwave-based products and indices. Furthermore, we

discuss the challenges and opportunities of using a combination

of variables such as precipitation, SM and vegetation indices.

These are illustrated using a case study for drought monitoring

in Senegal.

Fundamental concepts in microwave
remote sensing

Microwave sensors operate at frequencies between 0.3 and

300 GHz, corresponding to wavelengths between 1m and 1mm

(Ulaby et al., 1986). The sensing depth in vegetation canopy

or soil is related to the wavelength, where longer wavelengths

have higher sensing depths than shorter wavelengths. Therefore,

microwaves interact with, and sense more of, the medium

than visible and near infrared signals. So, while VNIR

sensors measure surface characteristics, microwaves provide

information from within the soil and vegetation. Many Earth

observation microwave sensors operate between 1 and 18 GHz,

in the so-called L-, C-, X- and Ku-bands. At these frequencies,

there is a large difference between the dielectric constant of water
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TABLE 1 Summary of relevant review papers on drought monitoring with remote sensing data.

Study Aim Data/sensors Location Drought type Key results

West et al. (2019) Overview of remote

sensing-based monitoring of

‘environmental drought’.

Optical, multispectral,

hyperspectral,

microwave, models

Global Meteo, Agri, Hydro Increased spatial and temporal resolution

enhances drought monitoring capacity. Key

challenge is the requirement of long data

records.

Jiao et al. (2021) Overview of multi-sensor

remote sensing based drought

studies

Optical, multispectral,

hyperspectral,

microwave, models

Global Meteo, Agri, Hydro Remote sensing provides unique benefits for

drought monitoring. Challenges are data

fusion, a precise definition on drought

severity, lack of cause and effect.

AghaKouchak et al.

(2015)

Review of remote sensing of

drought from climatological

and ecosystem perspective.

Optical, multispectral,

hyperspectral,

microwave, models

Global Meteo, Agri, Hydro Satellite remote sensing provided unique

toolset for monitoring droughts. High spatial

resolution, microwave-based vegetation

monitoring is key to understand drought.

Wigneron et al.

(2021)

Overview of SMOS algorithm

development and quality, and

its applications

Passive microwave

SMOS

Global n.a. VOD applications are more dominant than

SM for SMOS. VOD can be used to monitor

vegetation dynamics, including biomass.

Challenges are RFI and the continuity of

L-band data.

Dorigo et al. (2017) Overview of ESA CCI soil

moisture state of the art and

applications

passive and active

microwave ESA CCI Soil

Moisture

Global Agri ESA CCI SM is a valuable dataset for drought

monitoring. Care needs to be taken with

spatial and temporal differences in data

quality.

Steele-Dunne et al.

(2017)

Overview of current state of

art on backscatter from

vegetated landscapes and

opportunities and challenges.

Microwave Radar:

Scatterometer, SAR

Regional Agri Radar can be used to study water stress in

vegetation. More research needed to relate

vegetation response to backscatter.

Current study Overview of microwave-based

soil moisture and vegetation

data for drought monitoring

including case study.

Microwave active and

passive soil moisture and

vegetation

Global,

Senegal

Agri Microwave remote sensing provides benefits

in terms of coverage, homogeneity and

independence. Use of different microwave

frequencies can provide more information of

vegetation response. Challenges exist in terms

of physical limitations of microwave remote

sensing and calculation of robust anomalies.

The current study is added for completeness.

(up to e = 80), soil particles (2 < e < 4) and dry matter (1.5

< e <2) (Ulaby and El-Rayes, 1986). Hence, microwaves are

sensitive to the water content in the surface soil layer and the

above ground biomass through their sensitivity to the dielectric

constant of the medium they interact with or originate from.

With increasing water content, the dielectric constant of the

medium increases, leading to a higher reflectivity and lower

emissivity (Ulaby et al., 1982). In addition to the sensitivity

to the dielectric constant, the microwave signal is also affected

by the geometry of the medium, e.g., vegetation structure and

soil roughness (Attema and Ulaby, 1978; Paloscia et al., 1998;

Verhoest et al., 2008).

Reflectivity and emissivity from the land surface can

be measured through active and passive microwave sensors,

respectively. Passive sensors measure the natural emission of

the land surface. As this signal is relatively weak, these sensors

must aggregate the emission over a relatively large area. The

required footprint depends on frequency, but can be several

tens of kilometers at L-band (Entekhabi et al., 2010a; Kerr

et al., 2012). An advantage is that global coverage is achieved

every few days over the equator and more frequently in

higher latitudes. The observable of passive systems is brightness

temperature [K], which is a function of physical temperature

and emissivity, and can be recorded in both vertical and

horizontal polarizations. Active sensors used for soil and

vegetation remote sensing are scatterometers and Synthetic

Aperture Radars (SAR). The sensors transmit a microwave

signal and receive the part of the echo that is reflected back to

Frontiers inWater 03 frontiersin.org

https://doi.org/10.3389/frwa.2022.1045451
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Vreugdenhil et al. 10.3389/frwa.2022.1045451

the sensor, the so-called backscatter. The signal can be emitted

and received under combinations of different polarizations,

including a combination of vertical and horizontal polarization,

and under different incidence angles. The active manner of

sensing allows for higher spatial resolutions. SAR systems, in

particular, can have spatial resolutions up to several meters,

although this is often at the cost of temporal resolution or

spatial coverage.

One of the challenges in the retrieval of SM and

vegetation information from both active and passive microwave

observations is to separate between the signal originating from

either the soil or the vegetation. Different types of methods and

model approaches exist to obtain SM or vegetation information,

ranging from simple indices to change detection, radiative

transfer models, and machine learning methods (Petropoulos

et al., 2015; Li et al., 2021). Purely data-driven approaches for

SM retrieval are to use change detection, where the observable

is scaled between measurements observed under the driest

and wettest conditions over a long period (Wagner et al.,

1999a), or machine learning (Kolassa et al., 2018). One of the

most common methods for the retrieval of soil and vegetation

information is by inverting a radiative transfer model (Owe

et al., 2001; Kerr et al., 2012; O’Neill et al., 2015). This forward

model characterizes the brightness temperature or backscatter

as a combination of emissions or reflections from the soil

(which are attenuated by the vegetation), emission from the

vegetation (also attenuated by the vegetation), and interactions

between the two. The last term is often neglected as some

studies have suggested it does not significantly contribute to

the total signal at lower wavelengths (Attema and Ulaby, 1978;

Jackson and Schmugge, 1991). SM can be retrieved from the soil

contribution, and the attenuation by the vegetation is described

by VOD, which is related to the water content of the above

ground biomass. Note that this approach makes a number

of assumptions on the scattering mechanisms, distributions of

scatterers and contributions from the different constituents to

simplify the model.

In active microwave remote sensing, diversity in viewing

geometry and/or polarization can provide insight into the

relative contribution of different scattering mechanisms from

vegetated surfaces. Vegetation can be considered a volume

scatterer, where multiple scattering occurs within the medium

and this scattering occurs more or less equally in all directions

(Ulaby et al., 1986). Multiple scattering can also change

the polarization of the signal, e.g., where the incoming

vertically polarized signal is changed to horizontal polarization.

Soils act more like a surface scatterer, which mainly directs

scattering away from the sensor in the same polarization. SAR

polarimetry can be used to monitor changes in vegetation

height, structure and biomass (e.g., Steele-Dunne et al., 2017),

anomalies in which can indicate the impact of drought.

When backscatter is obtained at multiple incidence angles,

one can quantify the relationship between incidence angle

and backscatter, which is strongly driven by changes in

vegetation, with an increase in vegetation leading to a less

steep slope (Wagner et al., 1999b; Naeimi et al., 2009). The

slope has been used to monitor phenology and vegetation

water dynamics and to retrieve VOD (Vreugdenhil et al.,

2017; Steele-Dunne et al., 2019; Petchiappan et al., 2022). In

addition, when cross-polarized backscatter is measured, this

can be used to quantify vegetation dynamics (Toan et al.,

1992; Paloscia et al., 1998; Saatchi et al., 2013; Khabbazan

et al., 2019). The cross-polarized backscatter will increase with

increasing vegetation as the vegetation causes depolarization of

the signal.

The above described methods for obtaining SM and

vegetation information are simplifications of complex processes

and interactions, and neglect for example the effect of multiple

scattering, vegetation structure or soil roughness on the

microwave signal. Nevertheless, reliable SM is retrieved from

different microwave sensors using radiative transfer, change

detection, or machine learning models and are available

operationally, such as the Soil Moisture Ocean Salinity [SMOS,

(Kerr et al., 2012)] and Soil Moisture Active Passive [SMAP,

(Entekhabi et al., 2010a)], Advanced Microwave Scanning

Radiometer Sensor (AMSR-E) Land Parameter Retrieval Model

(LPRM) (de Jeu et al., 2008; Owe et al., 2008), Metop Advanced

Scatterometer [ASCAT, (Wagner et al., 2013)] HSAF SM

product and the long-term merged record from the European

Space Agency Climate Change Initiative [ESA CCI, (Dorigo

et al., 2017)]. The Vegetation Optical Depth Climate Archive

[VODCA, (Moesinger et al., 2020)] dataset merges VOD derived

from the radiative transfer based Land Parameter Retrieval

Model (Meesters et al., 2005; Van der Schalie et al., 2017) into

a long-term record.

Drought monitoring approaches and
applications based on microwave
remote sensing

Soil moisture indicators

The increasing availability of operational SM products

has boosted their use for agricultural drought monitoring in

recent years. An overview of indicators used for agricultural

drought monitoring based on single variables from microwave

observables and SM are given in Table 2. The indicators can

be divided into two general approaches: (1) indicators based

on anomalies from a long-term mean, and (2) indicators

based on plant available water. The skill of satellite SM-based

drought indicators has been evaluated with many different

reference datasets, depending on the focus of the study. Many

studies that focus more on meteorological drought monitoring

or drought monitoring in general use hydro-meteorological

indicators, such as the Standardized Precipitation Index (SPI),
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TABLE 2 Drought indicators based on SM data.

Indicator Equation Common thresholds

Anomalies and percentiles

(Champagne et al., 2011; Nicolai-Shaw et al., 2017; van

Hateren et al., 2021; Vroege et al., 2021)

SMAk,i = SMk,i − SMi No drought 20% or more

Mild 10–20%

Moderate 5–10%

Significant 2–5%

Severe 1–2%

Extreme Lower than 1%

Z-scores

(Cammalleri et al., 2017)

Zk,i = (SMk,i − SMi)/σi Mild More than−1

Moderate −2 to−1

Severe Lower than−2

Standardized Soil Moisture Index (SSI, ESSI, SSMI)

(Carrão et al., 2016; Xu et al., 2018; Ford and Quiring, 2019;

Modanesi et al., 2020)

Monthly average soil moisture; Fitted statistical distribution

function with Kernel Density Estimator; Percentile value

transformed to standard normal cumulative probability

distribution function

No drought −0.84 or more

Mild −0.84 to−1.00

Moderate −1.01 to−1.50

Severe −1.51 to−2.00

Extreme Lower than−2.00

Soil Moisture Anomaly Percentage Index (SMAPI)

(Liu et al., 2019)

SMAP

Ik, i =
SMk, i−SMi

SMi
× 100%

No drought −5% or more

Mild −15 to−5%

Moderate −30 to−15%

Severe −50 to−30%

Extreme More than−50%

Soil Moisture Deficiency Index (SMDI)

(Pablos et al., 2017; Xu et al., 2018; Fang et al., 2021)

SMDIk, i = 0.5 · SMDIk, i−1 +
SDk, i
50

SDk,i =
SMk,i−SMmedian,i

SMmax,i−SMmedian,i
· 100 if SMk,i > SMmedian,i

SDk,i =
SMk,i−SMmedian,i
SMmedian,i−SMmin,i

· 100 if SMk,i < SMmedian,i

No drought 0 or more

Mild −1 to−0.01

Moderate −2 to−1.01

Severe −3 to−2.01

Extreme −4 to−3.01

Soil Water Deficit Index (SWDI)

(Martínez-Fernández et al., 2016, 2017; Mishra et al., 2017;

Pablos et al., 2017; Paredes-Trejo and Barbosa, 2017; Bai

et al., 2018; Fang et al., 2021; Paredes-Trejo et al., 2021; Zhou

et al., 2021; Cao et al., 2022; Chatterjee et al., 2022; Wu et al.,

2022)

SWDI = SM−SMFC
SMFC−SMWP

· 10 No drought 0 or more

Mild −2 to−0.01

Moderate −3 to−2.01

Severe <-3

Extreme

Soil Moisture Agricultural Drought Index (SMADI)

(Sánchez et al., 2016; Mercedes-Salvia et al., 2021; Souza

et al., 2021)

VCI = NDVIi−NDVImax
NDVImax −NDVImin

MTCI = LSTi−LSTmax
LSTmax −LSTmin

SMCI = SMmax−SMi
SMmax −SMmin

SMADIi = SMCIi
MTCIi
VCIi+1

No drought 0 to1

Mild 1.01 to 2

Moderate 2.01 to 3

Severe 3.01 to 4

Extreme More than 4

SMi,k soil moisture for specific month (i) and year (k), SMi long-term mean soil moisture for the month (i), σ i long-term standard deviation of soil moisture for the month (i).

Standardized Precipitation Evapotranspiration Index (SPEI),

Atmospheric Water Deficit (AWD) or Palmer Drought Severity

Index (PDSI) as a reference for assessing the microwave-

based drought indicators. Studies that particularly focus on

agricultural drought monitoring often use vegetation datasets

or indicators for evaluation, such as the Crop Moisture Index

(CMI) or Vegetation Health Index (VHI). Regional studies

often use regional or national existing drought indicators,

such as data from the United States Drought Monitor

(USDM). Some evaluations do not use a specific drought

reference dataset, but calculate the same index with in situ

or modeled SM observations and inter-compare them. Most

studies developed drought indicators for certain regions and

only few studies have assessed drought monitoring on a

global scale using satellite SM data. Few studies focused

specifically on agricultural drought monitoring. Hence, we

include general drought monitoring studies that address

agricultural areas.
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Anomaly approaches

The simplest approaches are based on SM anomalies,

percentiles or indices, such as the Standardized Brightness

Temperature Index (SBTI), Standardized Soil Moisture Index

(SSMI or SSI), Soil Moisture Deficit Index (SMDI), Soil Moisture

Condition Index (SMCI) and Soil Moisture Anomaly Percentage

Index (SMAPI) (Champagne et al., 2011; Scaini et al., 2015;

Carrão et al., 2016; Velpuri et al., 2016; Cammalleri et al., 2017;

Nicolai-Shaw et al., 2017; Pablos et al., 2017; Padhee et al., 2017;

Eswar et al., 2018; Sadri et al., 2018; Xu et al., 2018; Blyverket

et al., 2019; Ford and Quiring, 2019; Liu et al., 2019; Zhu et al.,

2019; Modanesi et al., 2020; Fang et al., 2021; van Hateren et al.,

2021; Vroege et al., 2021). There are many ways to prepare

raw SM data to calculate robust anomalies from the long-term

mean. Most studies aggregate raw SM data to multiple days

(e.g., dekadal), monthly or seasonal values using linear averaging

or smoothing windows to obtain robust anomalies. Anomalies

are calculated as deviations from the long-term mean. To

obtain a drought indicator, a threshold needs to be defined

on what constitutes drought conditions. Studies using the

percentile anomaly approach set different thresholds for drought

conditions, varying between values of below 10% to below 33%

compared to all occurring conditions for that particular period.

For standardized SM indices and Z-scores, usually a standard

deviation of −1 or lower is classified as moderate drought

(Carrão et al., 2016), which is also recommended by WMO

for the Standardized Precipitation Index. This corresponds to a

percentile of 15.8%, if the data is normally distributed.

The advantage of these approaches is that they are data-

driven and can be calculated from satellite SM when a long

record is available without the need for auxiliary data. A method

to obtain robust anomalies when only short time series are

available is to use parameters from a long-term SM record in

combination with a short time series. Sadri et al. (2018) fitted

3 years (2015–2017) of SMAP SM to a beta distribution and

used the percentiles as drought indices. However, to obtain the

bounds of the beta distribution, a long time series is needed. To

circumvent this, modeled SMwas used to assess the quality of the

fit based on 3 (2015–2017) compared to 38 (1979–2017) years

of data. SMAP data was only used over areas where the fit of

model data over 3 years was statistically significantly similar to

the fit using 38 years of data. Xu et al. (2018) calculated the SSI

and SMDI from SMAP using the mean and standard deviation

from long-term SM records from North American Land Data

Assimilation System (NLDAS) and Global Land Assimilation

System (GLDAS), respectively. Champagne et al. (2011) used

a space for time approach, where AMSR-E SM was aggregated

over regions of homogenous SM dynamics, where each pixel in

the region was used to obtain a stable frequency distribution.

Several studies have assessed the skill of satellite SM-based

drought indicators on a global scale by comparing it to models

(Cammalleri et al., 2017; Ford and Quiring, 2019; Liu et al.,

2019). Cammalleri et al. (2017) demonstrated the potential of the

ESA CCI SM dataset for drought monitoring when comparing

Z-scores of ESACCI SM anomalies to those of Land Information

System (LIS) modeled SM and Land Surface Temperature

(LST) from Moderate Resolution Imaging Spectroradiometer

(MODIS) as a proxy for SM. Especially over arid regions ESA

CCI SM outperformed the other datasets, whereas LIS was more

reliable over areas where station data was available, i.e., Europe

and North-America. Liu et al. (2019) compared global-scale

drought characterization using SMAPI based on ESA CCI and

GLDAS-Noah surface SM datasets to the SPI calculated from

Global Precipitation Climatology Centre (GPCC) precipitation

data. The performance of SMAPI of both SM datasets was

highly consistent with the SPI especially with respect to spatial

drought patterns. ESA CCI SMAPI had a higher frequency in

drought detection than SMAPI based on GLDAS-Noah, which

they attributed to the shallower soil depth represented by the

former. Furthermore, large discrepancies between SMAPI based

on ESA CCI and GLDAS-Noah were found over arid and semi-

arid regions and dense vegetation, as there is a low signal-to-

noise ratio over these areas. Zhang et al. (2016) also found that

the SMCI based on the AMSR-E observations performed poorly

over densely vegetated regions in CONUS. Ford and Quiring

(Ford and Quiring, 2019) compared the skill of model- and

satellite-based standardized SM anomalies from SMOS, SMAP

and ESA CCI, to in situ based SM anomalies and found that over

the US the SSMI based on the NLDAS VICmodel outperformed

those based on most satellite-based indicators. The satellite-

based indicators based on SMAP outperformed those based

on ESA CCI and SMOS with respect to drought occurrence.

The lower accuracy of the SMOS-based SSMI was attributed

to high Radio Frequency Interference. On the other hand, the

short period of SMAP impeded drought severity estimates from

SMAP, as the anomaly calculation was based on a too short

period. Issues on length of data record also affected drought

indicators from AMSR-E, where Champagne et al. (2011) found

moderate correlations between SM anomalies of AMSR-E and

drought indicators such as SPI and SPEI and attributed this

to the short observation period (2003–2009). Nicolai-Shaw

et al. (2017) encountered problems obtaining reliable drought

indicators using ESA CCI before 1991 due to insufficient data

density. After 1991, drought conditions using a percentile

approach corresponded to hydro-meteorological indicators such

as temperature, precipitation and vegetation indicators.

Sentinel-1 was launched in 2015 and still has a short

data record. Few studies have used Sentinel-1 SM for drought

monitoring. Urban et al. (2018) used SM retrieved from 10m

Sentinel-1 VV and VH backscatter using a change detection

method to monitor drought impact in the Kruger National Park

in South Africa. Results showed Sentinel-1 SM to be sensitive

even to small changes in moisture content, making it suitable for

drought monitoring in this area. A strong decrease in Sentinel-1
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SM was observed during the 2015–2016 drought, which was

more pronounced over open and sparsely vegetated areas.

Plant available water approaches

Indicators of SM related to plant available water can be

calculated based on soil information, such as wilting point

and field capacity. With these approaches the resulting value

is directly indicating drought or non-drought conditions. The

advantage is that these indicators can be calculated when no

long-term records are available to calculate anomalies. This

allows for the use of shorter satellite SM datasets such as

NASAs SMAP (launched in 2015) and Sentinel-1 (launched

in 2014). For example, the Soil Water Deficit Index (SWDI)

(Martínez-Fernández et al., 2016; Mishra et al., 2017; Pablos

et al., 2017; Paredes-Trejo and Barbosa, 2017; Bai et al., 2018;

Zhu et al., 2019; Fang et al., 2021; Zhou et al., 2021; Cao

et al., 2022) can be calculated as the SM scaled between field

capacity and wilting point, indicating drought conditions when

the value is below 0. The benefit of SWDI for short time

series was demonstrated by Mishra et al. (2017) who calculated

SWDI over the continental US from SMAP passive microwave

SM observations. The analysis demonstrated that even though

original SMAP SM did not reveal spatial drought patterns,

the SWDI based on SMAP SM data did when compared to

AWD and PDSI. Fang et al. (2021) assessed SWDI and SMDI

calculated from downscaled SMAP SM and SMAP combined

with GLDAS-Noah over Australia and found SWDI to capture

drought conditions better than SMDI. Martínez-Fernández et al.

(2016) and Paredes-Trejo and Barbosa (2017) used SMOS (L2,

v5.51, and v6.2, respectively) SM to retrieve SWDI over Spain

and Brazil which compared well to AWD and CMI. The SWDI

was able to detect drought-weeks, when SWDI is below 0,

with a good performance in probability of detection compared

to AWD (where drought constitutes AWD <0), except over

mountainous areas. Pablos et al. (2017) calculated multiple

drought indicators from SMOS (BEC L4 SM v.3) over Spain

and found the SWDI showed a smoother temporal behavior

compared to other drought indicators, which jumped between

drought and non-drought from one observation to the next.

However, a downside of this method is that in order to

obtain these indicators additional information is needed on field

capacity and wilting point, introducing additional uncertainty

from auxiliary datasets.

To avoid the use of auxiliary data, Martínez-Fernández et al.

(2017) tested the scaling of SWDI between wilting point and

field capacity from soil samples and via pedotransfer functions,

and several approaches to calculate wilting point and field

capacity from the data itself. However, the accuracy of SM

data is important in this approach. When field capacity and

wilting point were estimated from SMOS SM data, the dry bias

in SMOS led to an overestimation of drought-weeks. When

the parameters were estimated through pedotransfer functions

or from in situ data, the number of drought-weeks was more

accurately captured (Martínez-Fernández et al., 2017; Pablos

et al., 2017). Pablos et al. (2017) also showed that SWDI

calculated from SMOS BEC L4 SM v.3 SM overestimated the

number of drought-weeks when using in situ and pedotransfer

functions to obtain soil properties. This was also attributed to the

dry bias that is observed in SMOS SM. The dry bias was observed

in SMOS v.3 and has been resolved since. To mitigate the impact

of bias, several studies advocate for applying a bias correction

before calculating drought indicators. For SMAP, studies found

that a bias correction against in situ or modeled data on the

satellite SM data improved drought monitoring skill (Mishra

et al., 2017; Cao et al., 2022). These results demonstrate that the

accuracy of the satellite SM products is crucial for estimating

drought duration and a scaling of SM to in situ SM or model SM

data prior to calculation of a drought index is recommended.

One advantage of approaches based on plant water

availability is that theymay bemore directly related to the impact

of drought on vegetation. Several studies have assessed this

by comparing SWDI to vegetation observations and indicators

such as NDVI, Gross Primary Production (GPP) and Vegetation

Condition Index (VCI). Chatterjee et al. (2022) demonstrated

the use of SMAP SWDI over the Continental US with a strong

correspondence to vegetation GPP derived from MODIS. The

study particularly highlighted the improved drought detection

of SMAP SWDI, compared to SPI, SPEI and Comprehensive

Drought Index (CDI), when evaluated with MODIS GPP. Zhou

et al. (2021) calculated SWDI both from GLDAS-Noah and

ESA CCI SM over China and looked at lags in drought onset

compared to VCI. No lags between VCI and SWDI were found

over crops, but over forests VCI showed a later drought onset

than SWDI. Wu et al. (2022) used high resolution (3 km) SM

based on SMAP and Sentinel-1 (SPL2) and medium resolution

(9 km) SMAP only SM (SPL3) to calculate SWDI and compared

this to AWD, and anomalies from the long-term monthly

means for NDVI and GPP over China. Spatial and temporal

patterns between SWDI and AWD were similar and a high

correlation was found for SPL3, without a lag time. Only over

very heterogeneous, small, scattered croplands low correlations

were observed. Correlations with vegetation indicators were

lower than with AWD and a lag of 8 days, with SWDI leading

GPP, was observed over most land cover types. Although the

high-resolution product showed more spatial detail, correlation

with AWD, NDVI and GPP was lower.

Vegetation indicators

In their review on remote sensing of drought, AghaKouchak

et al. (2015) already argued for the use of high spatial resolution

microwave vegetation indicators to improve the understanding

of drought impact on ecosystems. Advantages of microwave

remote sensing are the possibility to use day- and night-time
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observations and the higher penetration depth of the signal, thus

allowing for amore comprehensive look at moisture status of the

entire canopy. Here, microwave-based data can complement the

VNIR data as it is sensitive to both the canopy and the woody

parts of the vegetation, where increasing wavelength increases

the sensitivity to woody parts. For microwave remote sensing

most studies on vegetation monitoring have focused on coarse

spatial resolution microwave data.

Coarse resolution data from radiometers and scatterometers

has mainly been used to monitor drought impact on

forests. Studies have demonstrated the potential of vegetation

parameters such as VOD to monitor drought impact on

vegetation, particularly on forests (Konings et al., 2021), such

as the Amazon in 2005, 2010 and 2015 (Saatchi et al., 2013; Liu

et al., 2018; Petchiappan et al., 2022), and on tree mortality (Rao

et al., 2019). Over croplands and pastures only very few studies

have been performed using coarse resolution data, mostly

passivemicrowave-based VOD (Buitink et al., 2020; Afshar et al.,

2021; Likith et al., 2022) or the active microwave-based slope

from the backscatter incidence angle relationship (Schroeder

et al., 2016; Vreugdenhil et al., 2017; Steele-Dunne et al.,

2019; Petchiappan et al., 2022). Most studies investigate satellite

observations such as backscatter and brightness temperature

directly, or use VOD.

Anomaly approaches

Several studies use Z-scores to monitor drought using

microwave observations. Vreugdenhil et al. (2017) usedmonthly

means of VOD derived from Metop ASCAT to obtain Z-scores

from the anomalies to the long-term mean to assess inter-

annual variability in Australia during the Millennium drought.

Over grass- and croplands strong inter-annual dynamics were

observed, with low values in standardized VOD and LAI

in south-eastern Australia during the Millennium drought

compared to the wetter La Niña years of 2010 and 2011. In

Western Australia, the 2010 La Niña year was one of the driest

years on record, which was reflected by anomalously low VOD

over croplands. Similar to other studies, VOD lagged behind

LAI by 1–2 months over croplands and more woody biomass,

while no lag was found in sparse vegetation and grasslands.

Buitink et al. (2020) used VOD from C-band VODCA and

near-infrared reflectance of terrestrial vegetation (NIRv) to

assess the anatomy of the 2018 agricultural drought in the

Netherlands. A 31-day smoothing window was applied over the

data from 2016 and 2017 and these were averaged to obtain

a climatology. Anomalies were calculated as deviations from

the climatology. Strong negative anomalies in VOD and NIRv

were observed, although they were preceded by higher-than-

average values in early summer indicating early development

due to favorable temperatures. In general, a two- and three-

week lag was observed between decreasing SM and decreasing

VOD and NIRv, respectively. Afshar et al. (2021) assessed the

potential of SMOS L-VOD (SMOS-IC v2) in comparison to

NDVI for monitoring agricultural drought. Here standardized

VOD and NDVI for drought and non-drought periods based on

a 12-month SPI were compared. VOD was smoothed over 30

days and monthly standardized anomalies are calculated using

a Z-score approach. Average Z-scores of VOD and NDVI were

calculated for drought periods, characterized as SPI values of

lower than 1 and at least 3 months duration. VOD showed a

sensitivity to drought with significant differences in Z-scores

between drought and non-drought conditions. Drought onset

and termination of VOD was later than that of SPI. Evaluated

against SPI, VOD performed better compared to NDVI over

wetter climates, which was attributed to the more frequent cloud

cover impeding reliable NDVI observations. Furthermore, VOD

was more sensitive to capture drought over dense vegetation, as

NDVI was argued to suffer from saturation. Likith et al. (2022)

evaluated Z-scores of VOD from SMOS (L-band, CATDS-PDC

L3SM) and VODCA (C- and X-band) with NDVI, solar-induced

chlorophyll fluorescence (SIF) and precipitation data over India.

Monthly averages were obtained to normalize the datasets with

Z-scores of the anomalies from the long-term mean. Strong

correlations between rainfall, SIF and VOD Z-scores were found

over India, where a response in SIF and VOD lagged rainfall by

1–2 months. Testing L-, C- and X-band, strongest correlations

were found between X-band VOD and precipitation for most

regions in India.

Z-score statistics from multi-sensor VOD datasets are

notoriously impacted by the sensor blend at a certain time and

location, with periods of enhanced noise potentially leading

to higher Z-scores and thus an overestimation of drought

severity. To overcome this, Moesinger et al. (2020) proposed

the Standardized Vegetation Optical Depth Index (SVODI) by

combining VOD estimates from multiple passive microwave

sensors and frequencies in a probabilistic manner. Particularly in

water-limited areas, SVODI patterns compared well to temporal

patterns of VHI, VCI, the temperature condition index (TCI),

and soil moisture, but anomalies occur later, indicating that

VOD anomalies likely represent a more advanced stage of

drought conditions.

Other approaches

Shorachi et al. (2022) used Sentinel-1 backscatter and Cross

Ratio (CR) to assess the 2018 drought in the Netherlands

for different crop types. They found a drop in backscatter

of 1–2 decibel. Although the CR did not show convincing

negative anomalies during the growing season, it did show

an early end of the growing season for onions and maize.

Furthermore, negative anomalies in CR were found in 2019,

indicating the impact of the drought on the next growing season.

It was also noted that negative anomalies were stronger in

descending (morning) overpasses than ascending overpasses. In

their study to assess the drought monitoring potential of the
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combined SMAP and Sentinel-1 SM product SPL2, Wu et al.

(2021) showed that Sentinel-1 VH backscatter has a higher

predictive power for NDVI than brightness temperature over

croplands. Abdel-Hamid et al. (2020) studied the impact of the

2015/2016 drought on commercial and communal grasslands

in South-Africa using Sentinel-1 and NDVI from Landsat-8

with a regression analysis. The analysis showed a strong impact

of the drought on both VV and VH backscatter, with lower

values during the drought period. Furthermore, communal

grasslands were more impacted by droughts than commercial

grasslands. Ghazaryan et al. (2020) demonstrated the use of

Sentinel-1 backscatter and ratio of VH/VV backscatter, and

VNIR based vegetation indices for drought monitoring over

different crops in the Ukraine. Drought duration and spatial

extent were obtained from Sentinel-1 backscatter and VNIR

data by calibrating thresholds on the area of the Receiver

Operating Characteristic Curve with in situ data on drought.

Compared to VNIR-based indices Sentinel-1 drought indicators

showed a longer drought duration and drought onset was 12–

24 days earlier. Spatial patterns in drought impact corresponded

between VNIR and Sentinel-1 indicators. Furthermore, during

drought periods, higher variability was observed in backscatter

from Maize crops. For wheat fields, backscatter was higher

during drought periods, which was explained as a decrease in

attenuation during drought period.

Steele-Dunne et al. (2017) provided a thorough overview

on the use of radar remote sensing for agricultural canopies.

Here the use of radar remote sensing for monitoring diurnal

differences is discussed, as diurnal differences in backscatter are

related to a decrease in canopy water content as a result of water

loss during the day. For example, Schroeder et al. (2016), found

that diurnal differences in ASCAT backscatter over the US were

most pronounced over areas that suffered from drought. Steele-

Dunne et al. (2019) demonstrated the potential for drought

monitoring with the slope and curvature of the backscatter-

incidence angle relationship of Metop ASCAT over North-

American grasslands. Data was aggregated to 10-daily values,

and drought years identified with the USDM were compared

to the long-term mean over 2007–2016. During the 2011 and

2012 drought strong negative anomalies in slope were observed,

suggesting an impact of drought on the vegetation. Petchiappan

et al. (2022) also performed an analysis of drought impact

on vegetation over the Cerrado regions. The 2015 drought

occurred during the wet season in the Cerrado, and most of

the agricultural areas showed higher than average slope values

for this period. This was explained by above-average radiation,

leading to increased vegetation activity.

Sawada et al. (2020) compared trends in LAI and C-band

VOD retrieved with LPRM and found significant negative trends

in precipitation and VOD, but not in LAI for the period 1993–

2009. This was explained as a decrease in above ground biomass

during the drought, whereas the greenness as represented by

LAI stayed stable. These results were also found by van Dijk

et al. (2013) when assessing the Millennium drought impact

over wheat. Although a decline concurrent with declining

precipitation was expected for the three indicators, this decline

was not observed in NDVI. This was explained by the fact that

NDVI shows the long-term increase in Water Use Efficiency

of crops. Jiao et al. (2020) retrieved VOD from SSM/I, TRMM

and AMSR-E C-band observations over Australia and used

this as an indicator for canopy density (CD). The magnitude

of absolute and relative anomalies of monthly aggregated CD

were calculated compared to a baseline which was defined

as CD in the same season for a year when a water balance

indicator showed no drought conditions. Sensitivity of CD

to drought was assessed as fraction of decline to its normal

state when the water balance was one standard deviation lower

than the long-term mean (1970–2012). The severe impact of

drought on cultivated and grasslands was shown, where negative

anomalies corresponded to declines in above ground biomass

and fraction of absorbed photosynthetic active radiation (FPAR)

and photosynthetic vegetation cover (PVC) from Advanced

Very High Resolution Radiometer (AVHRR) observations. The

study also showed a high sensitivity of the indicators to drought,

particularly over grass- and croplands. Furthermore, CD tended

to lag PVC and FPAR over cultivated areas and forests, whereas

no lag was found for sparse vegetation cover types.

Combined drought indicators

Approaches to combine multiple satellite datasets for

drought monitoring are mostly based on a combination of

precipitation and temperature data. However, studies have

started to integrate satellite SM as an additional indicator.

Enenkel et al. (2016) developed the Enhanced Combined

Drought Index (ECDI), that conceptualizes drought as a

cascading process for four variables (precipitation, SM, land

surface temperature and vegetation status). For each variable

the anomaly from the long-term average is calculated as a ratio,

which is then multiplied by the ratio between the length of

the current deficit and the long-term average of deficits for

the period of interest. The ECDI assigns individual weights to

rainfall, SM and land surface temperature based on the historical

correlation with NDVI as a proxy for vegetation health.

Several other studies used a weighted sum of precipitation,

temperature and SM, and some vegetation, where the weights

are obtained with constrained optimization or Principal

Component Analysis (Zhang and Jia, 2013; Hao et al., 2015;

Zhang et al., 2016; Arun Kumar et al., 2021; Niaz et al.,

2021). The resulting combined drought indicators have been

evaluated against reference data such SPI or SPEI. Hao et al.

(2015) tested different combinations of variables and found

that an indicator based on precipitation, temperature and SM

corresponds most to 1-month SPI. When including vegetation

information through VCI the indicator correlated more with
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3-month SPI. Arun Kumar et al. (2021) also found a strong

correspondence with 3-month SPI when including VCI in

the combined drought indicator and that the most important

variables for drought monitoring were based on vegetation and

precipitation for the study area in India and not SM.

Another often used combined drought indicator is the

SM Agricultural Drought Index (SMADI), which is based on

the slope of standardized land surface temperature and NDVI

relationship multiplied with SM standardized to its maximum,

the so-called SM condition index [SMCI (Sánchez et al.,

2016)]. Drought conditions are represented by high slopes of

LST/NDVI, relating to low vegetation and high temperature

conditions, and high values of the SM condition index. A lag

needs to be included between the LST/NDVI slope and SM to

account for the delayed response of the vegetation. This lag has

been tested in various studies but is often set to 8 or 14 days. The

quality of SMADI for drought monitoring is assessed in several

studies at local, regional and global scale (Sánchez et al., 2016,

2018; Mercedes-Salvia et al., 2021; Souza et al., 2021). Sánchez

et al. (2016) found that SMADI corresponded to SWDI and CMI

calculated from in situ observations over the Iberian Peninsula.

Pablos et al. (2017) compared both SMADI and SWDI to

AWD andCMI. High temporal correlations were found between

SMADI and AWD. Lower agreement was found with CMI, as

CMI showed continuous zero values at the beginning and end

of the growing season. The SMADI slightly underestimated the

number of drought-weeks as compared to AWD, but was similar

to the number of drought weeks obtained from CMI. Over

the Continental US the SMADI corresponded to the USDM,

although it underestimated spatial drought extent and intensity.

Also, on a global scale SMADI corresponded to Emergency

Events Database (EM-DAT) drought events (Sánchez et al.,

2018). Mercedes-Salvia et al. (2021) tested the added-value of

the SMADI, standardized SM anomalies, SPI, SPEI compared to

the national drought monitor for early warning of agricultural

drought in Argentina. Results showed that SMADI performed

best in detecting drought, where 84% of droughts were captured,

against 53% of false positives. The standardized SM anomalies

showed the lowest false positive drought detections, but also the

lowers true positive drought detections (47%). Similar to other

combined drought indicators, Souza et al. (2021) showed that

SMADI corresponded most to 3-month SPI over Brazil.

Applications

Crocetti et al. (2020) assessed the potential of various

EO-based water- and vegetation-related drought indicators

against an extensive database of reported drought impacts in

the Pannonian Basin. They found that microwave-based soil

moisture anomalies had very similar skill in identifying severe

drought as SPEI and the evaporative stress index based on

thermal imagery. The EO-based vegetation indicators showed a

more mixed response to severe drought, with drought impacts

on VOD occurring later in the season than for SIF and NDVI.

Some studies use drought indicators based on microwave

observations for crop yield prediction and monitoring. Carrão

et al. (2016) showed that the Empirical Surface Soil Moisture

Index (ESSMI) from ESA CCI cumulated during the growing

season corresponded to yield from maize, soybean and wheat

in South America. Also, Padhee et al. (2017) demonstrated

that a SM deficit indicator from ESA CCI SM corresponded

to yield losses of Rabi crops over the Bundelhand regions

and was a better indicator for yield losses than VCIs based

on optical data. Modanesi et al. (2020) calculated SSI from

ESA CCI and Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRA-2) and SPI from rainfall

observations from the Indian Meteorological Department

over India. Results showed that SM is more suitable than

precipitation for agricultural drought monitoring, and that SSI

based on ESA CCI satellite SM was better capable of explaining

crop yield reductions than the SSI based on MERRA-2 SM.

Microwave observations are also used in drought risk

financing. Vroege et al. (2021) demonstrated that the use of

ESA CCI SM to obtain a yield index significantly decreases

drought risk exposure of farmers. The study demonstrated that

satellite SM outperformed in situ based SM for index insurance

of drought when assessing anomalies over longer time scales

but not on shorter time scales, due to lower data density of

satellite observations.

Case study

The purpose of the following case study is to demonstrate

the complexity of monitoring drought with different satellite-

based rainfall, SM and vegetation datasets. The focus is

on the major drought event that struck Senegal in 2014

and the development of the drought, including onset,

severity and duration is calculated from different datasets

and compared.

Study area and data

Climate in Senegal is characterized by strong gradients. The

average annual temperature is 27.8◦C but temperature varies

from the coast to the inland. Precipitation varies strongest from

north to south. In the north, rainfall is below 400mm per year,

hence, this area is not suitable for rainfed agriculture every

year. The central area of Senegal receives between 400 and

800mm of rainfall per year. Two distinct seasons characterize

Senegal’s climate: a dry season from roughly October to May

and a rainy season from June to September. Crop growing

areas in Senegal correspond mostly to regions that, according

to the ESA CCI Land Cover classification, are classified as
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FIGURE 1

Predominant land cover in the study area (ESA CCI Land Cover

classification resampled to 0.1◦).

cropland, natural vegetation, shrublands, or herbaceous cover,

and mixtures thereof (Figure 1). Most planted crops in Senegal

are groundnut, millet, maize, sorghum and rice, and most crops

are sown in June and July, except for rice. The exact timing

of sowing of crops depends on the start of the rain season. As

agriculture ismainly rainfed, crops are highly sensitive to climate

disasters such as droughts, and food insecurity is common.

Many droughts have impacted Senegal over the years, and as a

result of climate change, droughts are expected to become even

more common. In the last decade, Senegal experienced droughts

in 2011, 2014, and 2019.

We selected microwave-based surface SM, Soil Water Index

(SWI) and VOD datasets for the case study, along with the

thermal infrared/rain gauge-based CHIRPS rainfall dataset and

NDVI from optical data. The SWI is based on a temporal

filtering method with a parameter T as an indicator of soil

depth divided by diffusivity indicating infiltration time. The

SWI is available for different T-values, where a higher T-

value is related to deeper soil depths. An overview and

characteristics of the datasets are provided in Table 3. Several

studies (Cammalleri et al., 2017; Myeni et al., 2019) showed

the good performance of some of the selected datasets over

Africa and particularly Senegal. The overlapping temporal

coverage is 2007–2018. All datasets were resampled to a 0.1◦

grid and 10-day (“dekadal”) averages. To make anomalies

in the different variables comparable, we calculated dekadal

anomaly time series by subtracting the average value of each

dekad of the year, calculated from all 12 years of data, from

the original time series. These anomaly values were then

converted to percentiles. We applied the following classification:

Extreme deficit < 10th percentile <= moderate deficit < 33th

percentile (p33) <= normal or close to normal conditions

< 66th percentile <= moderate surplus < 90th percentile

<= extreme surplus.

Intercomparison of drought monitoring
skill

In 2014, late and irregular rains at the start of the growing

season as well as erratic rains in July and August led to

very high yield deficits, affecting close to a million people.

Especially the northwest of the country was hit hard by the

drought event (African Risk Capacity End of Season Report,

EM-DAT, Global Information and Early Warning System on

Food and Agriculture). Figure 2 shows the spatial and temporal

development of the 2014 drought. In normal years, rainfalls start

in the beginning of June, allowing for the sowing of crops and

the start of the growing season. In June 2014, there was a rainfall

deficit in the north of Senegal and later expanding over the

country, leading to deficits in both ESA CCI passive and HSAF

SM. Drought conditions develop slightly later in SWI, because it

takes time for a drought to develop into lower soil depths. Also,

in the vegetation datasets drought impacts can be observed,

where onset is earliest and strongest in NDVI and Ku-band

VOD. All variables show a progression of the negative anomalies

from at first mainly in the north and east of Senegal to the north

and west, and thus over time affecting all major crop growing

regions of the country. In July and August 2014, extreme

rainfall deficits aggravated the already critical conditions of the

early growth season, depicted by extreme drought conditions

in all rainfall and SM products in the third dekad of July

for the whole country. Strongest drought conditions in the

vegetation indicators, observed in the first dekad of August 2014,

correspond to strongest drought conditions in SWI, with the

epicenter of drought conditions in western Senegal. Only toward

mid-September, the situation slowly started to relax in terms of

rainfall. Nonetheless, in SM and SWI and vegetation indicators

drought conditions persisted, particularly the extreme drought

conditions in the north. The Casamance region, located in the

south west, typically receives more rainfall than the rest of the

country, which was also the case in 2014 and is reflected by

all variables: whereas large parts of the country experienced

moderate to extreme negative anomalies during the growing

season, rainfall, SM and vegetation conditions were at least

temporarily above average in Casamance.

Figure 3 shows the number of pixels as percentage of the

total under drought (values lower than the 33rd percentile p33)

for cropland, shrublands and the tree/shrub mosaic ESA CCI

land cover class. This allows comparing the extent and onset

of drought in the different variables. The top three panels,

showing drought pixels as depicted by the CHIRPS dataset,

show that almost 100% of the three major land cover classes

experienced very low rainfalls in mid-June 2014. In July and

August, there are some periods of slight recovery, but only

in September the situation relaxes, and <50% of the pixels in

cropland and shrublands appear under drought. Surface SM

from active and passive sensors shows relatively similar extent of
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TABLE 3 Datasets used in the case study for Senegal and their main characteristics.

Dataset Variable Spatial sampling Data source Reference

CHIRPS 2.0 Rainfall 0.05◦ Thermal infrared and

microwave RS, rain gauges

Funk et al. (2015)

H SAF SM H116 Surface SM 12.5 km Active microwave RS Wagner et al. (2013)

ESA CCI SM (passive)

v5.2

Surface SM 0.25◦ Passive microwave RS Dorigo et al. (2017), Gruber et al. (2019)

CGLS Soil Water Index

(SWI) T=10 v3.0

Root-zone SM 0.1◦ Active microwave RS https://land.copernicus.eu/

global/products/swi, Contains

modified Copernicus Service

information 2022

CGLS NDVI v2.2.1 Normalized

Difference

Vegetation Index

1 km Optical RS https://land.copernicus.eu/

global/products/ndvi, Contains

modified Copernicus Service

information 2022

VODCA (Ku-, X-,

C-Band) v1.0

Vegetation optical

depth

0.25◦ Passive microwave RS Moesinger et al. (2020)

FIGURE 2

Spatio-temporal development of the 2014 drought in Senegal represented by anomaly percentiles in all datasets.

drought conditions apart from August 2014, where the fraction

of drought pixels identified by the passive dataset drops to below

50% in all three land cover classes. Figure 2 shows that in the

first two dekads of August, positive anomalies are observed in

the rainfall datasets and are also present for a large area in the

passive surface SM but to a smaller extent in the H SAF dataset.

Root-zone SM dynamics are very similar to H SAF surface SM,

as SWI is based on the same dataset, but smoother and show a

lag of around one dekad to surface SM.

Finally, the comparison of vegetation datasets, i.e., NDVI

and VOD, shows that NDVI reacts faster to moisture deficits

than VOD at the beginning of the growing season. Of the

Frontiers inWater 12 frontiersin.org

https://doi.org/10.3389/frwa.2022.1045451
https://land.copernicus.eu/global/products/swi
https://land.copernicus.eu/global/products/swi
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Vreugdenhil et al. 10.3389/frwa.2022.1045451

FIGURE 3

Pixels under drought over the duration of the 2014 drought in Senegal for rainfall, SM and vegetation.

VOD datasets, VOD-Ku is closest to NDVI in terms of drought

onset and extent, followed by VOD-X and VOD-C. VOD from

Ku-band usually shows the highest number of drought pixels

and VOD from C-band the lowest number. In all land cover

types, VOD-C lags behind NDVI, VOD-Ku and VOD-X in

the beginning of the growing season. This is what one would

expect from theory, as longer wavelengths penetrate deeper into

the canopy and are sensitive to the larger canopy constituents

(Steele-Dunne et al., 2012, 2017; Konings et al., 2021). NDVI

and Ku-band are sensitive to the leaves at the canopy surface.

Longer wavelengths sense more, and potentially all of the plant,

and therefore a larger water store than the surface leaves alone.

Furthermore, at C-band, VOD may be sensitive to stems/stalks.

In shrublands, the VOD datasets show the same decrease in

drought pixels in August as passive SSM, indicating that this is

caused by a systematic effect that especially the lower frequencies

are sensitive to.

In a last step, we calculated common drought statistics from

all variables, including drought onset (dekad of the first value in

the growing season lower than p33), drought duration (number

of dekads in the growing season with values lower than p33), and

drought severity (average percentile of all anomaly values in the

growing season lower than p33). We defined the growing season

as the months June to October.

Figure 4 shows how the deficits first occurred in the

northeast of Senegal and only later occurred also in the west.

In addition, time lags of several dekads between surface and

root-zone SM, as well as between NDVI and the different

VOD frequencies, are apparent. The drought duration maps

of the vegetation variables highlight again differences between

microwave sensors with different wavelengths. The spatial

patterns are most similar between NDVI and the VOD datasets

with shorter wavelengths. Still, there is a clear similarity also

with VOD-C, with longest duration in west Senegal. It also

needs to be noted that based on CHIRPS precipitation the

Casamance suffered a relatively long and severe drought,

whereas vegetation indicators showed no drought impacts. The

area along Senegal’s border to Mauritania is visible as a region
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which was slightly less affected by the drought, most likely

due to irrigation using freshwater from the Guiers Lake and

Senegal river.

In summary, the case study showed the good

correspondence of the selected datasets and their ability to

detect drought events, including drought onset, duration

and severity. Differences between the variables highlight the

respective sensitivities and the benefit of variable combinations

for drought assessment. Using rainfall, surface and root zone

SM, and vegetation data, the development of drought can be

monitored. Note that the common data period was 12 years

(2007–2018), which is generally considered (too) short for the

robust derivation of climate-related parameters and trends. A

great value thus lies in long-term data records such as the ESA

CCI SM or VODCA datasets, which combine observations from

different sensors and span periods from 1978 to present and

1987–2018, respectively.

Current research gaps and
challenges

Most studies discussed in this review show the added-

value of using microwave-based SM or vegetation data for

drought monitoring. The main strengths are that more reliable

data is available over areas where no weather station data is

available, which may impact the skill of certain precipitation

datasets and models. This also allows for drought monitoring

on a global scale using a homogeneous dataset. In vegetation

monitoring, microwave-based observations provide additional

information on deeper layers of the vegetation, including

the woody component of the vegetation. This provides the

opportunity to assess the impact of drought through the plant,

instead of only the surface of the canopy.

There are several physical limitations of microwave remote

sensing that may be relevant for drought monitoring, namely

topography, vegetation density and structure, and the potential

for enhanced scattering in very dry soil.

Limitations of all microwave-based products are related to

the difficulty of obtaining reliable retrievals over mountainous

regions. In mountainous regions the topography can affect the

microwave signal (Davenport et al., 2008; Mialon et al., 2008;

Naeimi et al., 2009) and this led to uncertainties in drought

monitoring in several studies (Mishra et al., 2017; Paredes-Trejo

and Barbosa, 2017). Potential ways to mitigate the effect of

topography on the SAR backscatter signal is to use gamma◦

(Small, 2011; Navacchi et al., 2022).

Dense vegetation is a limiting factor in drought monitoring

as microwaves cannot penetrate dense vegetation and lose their

sensitivity to SM (Magagi and Kerr, 1997; Wagner et al., 2013;

Colliander et al., 2017; Dorigo et al., 2017). Most SM datasets

are masked for dense vegetation, impeding drought monitoring

over these regions. Working with SAR data at high resolution,

the structural effect can influence the signal. Shorachi et al.

(2022) looked at Sentinel-1 backscatter and CR per orbit, but

noted that, when a dense time series from Sentinel-1 is needed,

the incidence angle effect on the backscatter from Sentinel-

1 can play a role. Particularly when monitoring crops, it is

suggested that this is problematic as geometry affects backscatter

differently at different incidence angles.

Furthermore, some studies note a lower quality of SM

retrievals over arid and semi-arid regions, particularly for

active microwave observations. Baik et al. (2019) found that

SWDI from ASCAT deviated from that of modeled SM

over Australia over arid regions, where it is suggested that

roughness and scattering from the subsurface were affecting the

signal. Enenkel et al. (2018) noted the subsurface scattering in

backscatter as a potential issue for droughtmonitoring.While all

current soil surface backscatter models predict that backscatter

increases with increasing soil wetness for all polarizations,

recent experimental research (Morrison and Wagner, 2020;

Wagner et al., 2022) has demonstrated that under very dry

soil conditions, when the microwave signal penetration depth

is high, an unexpected inverse relationship between backscatter

and SM occurs. Instead of the soil acting primarily as a

surface scatterer, deeper soil layers induce volume scattering,

i.e., enhanced scattering due to subsurface discontinuities.

Especially for detection and monitoring of drought, the sub-

surface scattering issue needs to be taken into account and

more research is needed to understand the extent and severity

of this problem on drought monitoring. Challenges particular

to obtaining reliable drought indicators are the data availability

of the used data sets. One of the limitations mentioned by

Ghazaryan et al. (2020) is that the density of Sentinel-1

observations was a limiting factor to estimate drought duration.

Vroege et al. (2021) noted that the lower data density of satellite

data decreased the accuracy of using satellite SM for drought

risk insurance. Also, Nicolai-Shaw et al. (2017) identified data

density as a limitation. To resolve the issue of data gaps, Liu

et al. (2019, 2022) successfully used model SM data for gap

filling of the ESA CCI dataset. When the need for long time

series is bypassed by calculating drought indicators based on

soil properties, the quality of soil property datasets is crucial

to obtain reliable drought indicators. More research is hence

needed on the effect of gap filling and use of auxiliary data for

drought monitoring.

For drought monitoring, it is important to realize that

microwaves penetrate the first few centimeters of the soil

and vegetation and that this brings certain advantages and

limitations. For SM it means that there is no information readily

available on the root zone. Some studies note discrepancies

between satellite SM drought indicators and modeled and in situ

SM indicators because of the different sensing depth of satellites.

Zhang et al. (2017) noted that SMCI from AMSR-E showed

highest correspondence to 1-month SPI, whereas vegetation-

based indicators from NDVI were more similar to 3-month SPI.
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FIGURE 4

Statistics for the 2014 Senegal drought in terms of onset, duration and severity as captured by rainfall, SM and vegetation datasets.

Mishra et al. (2017) and Zhang et al. (2021) found a 1-week delay

between SM based indices (ESA CCI and SMAP based) and

AWD, SPI and SPEI. Martínez-Fernández et al. (2016) found a

1-week lag between the SWDI from in situ SMobservations from

the root zone (0–50 cm) compared to AWD and CDI. However,

this lag was not observed with the SWDI based on SMOS surface

SM, demonstrating that the top layer reacts faster than the root

zone. Root zone SM may be a more suitable variable to analyze

agricultural drought as it can provide information on the plant

available water. Soil Water Index (Wagner et al., 1999a; Albergel

et al., 2008) as used in this study—provides an estimate of root

zone SM, which cannot be measured by satellites directly. The

difficulty with aggregating data or using SWI is that there is

no consensus on the soil depth a certain aggregation period

represents. For example, only few studies have tried to relate the

SWI T-value to actual soil depths (Albergel et al., 2008; Brocca

et al., 2010; Paulik et al., 2014) or to vegetation accessible water

(Bouaziz et al., 2020). Hence, a major research gap in using
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satellite SM for drought monitoring is to obtain reliable SM

representative for the root zone.

It also needs to be considered that a delay between SM

deficits and vegetation response may be present. Studying major

European droughts, van Hateren et al. (2021) demonstrated

differences in onset of drought between drought indicators

from ESA CCI SM and MODIS NDVI. This was also seen

in several of the studies that focused on drought monitoring

with SM and vegetation microwave data (Vreugdenhil et al.,

2017; Jiao et al., 2020; Wu et al., 2021; Likith et al., 2022) and

in the case study on Senegal. Combined Drought Indicators

usually account for the lagged response of the vegetation by

including a lag for the vegetation datasets (Sánchez et al.,

2016; Souza et al., 2021). Furthermore, not all rainfall or SM

anomalies lead to an anomaly in vegetation. van Hateren et al.

(2021) showed that negative anomalies observed in SM did

not always lead to negative anomalies in NDVI. This is also

demonstrated by numerous studies on the recent European

drought of 2018, where dry conditions led to increased

vegetation activity in energy limited regions (Bastos et al., 2006).

Similarly, in our case study for Senegal, drought conditions

are observed in a region in the south of Senegal in some of

the rainfall and SM indicators, which were not represented

in the vegetation indicators. The observed discrepancies

between the precipitation, SM and vegetation datasets

explicitly emphasize the complexity of drought development

and monitoring.

Conclusions and potential
developments

In this study, we demonstrated the use of microwave

remote sensing of SM and vegetation for agricultural drought

monitoring. Studies have shown the benefits of using satellite SM

datasets, particularly due to their global coverage, homogeneity

and independence of station data. However, there are physical

limitations of using microwave SM particularly over arid

regions, mountains and dense vegetation. In addition, it is

important to consider factors other than water content that may

manifest in drought anomalies (e.g., structural effects in SAR

data), and how they should be handled. One of the challenges

is the calculation of robust anomalies when a short dataset

or temporally discontinuous dataset is available. Furthermore,

the calculation of some drought indicators requires additional

ancillary data (e.g., soil parameters), the quality of which can

dominate the skill of the drought indicator.

The use of VOD or vegetation indicators from microwave

observations for monitoring drought impact on vegetation is

still in an early stage. The complex response of vegetation

to drought and how vegetation mitigates drought effects,

particularly if plants change their hydraulic and water use

efficiency, can potentially be studied using microwave-based

vegetation data in combination with VNIR data. Studies

discussed in this review demonstrated the complementarity

of microwave data to VNIR approaches, as it can provide

information on water content in the vegetation, including its

woody components. Especially with the availability of high

spatial and temporal resolution Sentinel-1 data, there is potential

to develop new methods for agricultural drought monitoring

and assessing the impact of drought on vegetation. The response

of vegetation to water deficit is different for different vegetation

types, where plants respond by speeding up their phenology

(escape), change water use efficiency or shedding and decreasing

(avoid) or tolerating a drought by changing osmosis or going

dormant (Chaves et al., 2003). Yet, these responses are not

straightforward to monitor with only one vegetation data

set. Therefore, research should focus on understanding the

complexity of drought development and how it varies across

vegetation types.

Microwaves allow us to sense dynamics within the canopy

rather than just observe its surface. In addition, the relative

sensitivity of microwave observations to soil and vegetation

varies by wavelength, polarization and technique. The diversity

of microwave observations available now, and in the coming

decades, provides a unique perspective on the complexity of

drought development. The Senegal case study demonstrated the

potential of using different bands, as it showed a difference

in drought onset and extent between microwave bands. This

suggests different bands can be used for different vegetation

and crop types to obtain information on the water content in

most important parts of the vegetation. To date, few studies

have addressed the different sensitivities of bands to vegetation

(Moesinger et al., 2020; Prigent and Jimenez, 2021), and there

is a need to understand how drought signals in different bands

vary across different vegetation types. One of the limitations is

the dearth of in situ data on how water content within plants

varies in response to drought. This is essential to understand

the mechanism by which soil water deficit propagates through

the water content of the various elements of the canopy,

thereby affecting emission and scattering from the canopy. The

vertical distribution of moisture within agricultural crops is

non-uniform, varies during the season, during the day, and

in response to water stress (Vermunt et al., 2020, 2022). A

recent modeling study using a multi-layer Water Cloud Model

suggests that backscatter can be dominated by deeper canopy

layers depending on the moisture content and its distribution

within the canopy. On the one hand, this highlights the value

of microwaves to sense deep into the canopy and to respond

to changes in response to water stress. On the other hand, it

highlights the need to improve our understanding of microwave

interactions with vegetation, so that we can make optimal use of

observations at different frequencies to study drought response

in vegetation. This is essential given the upcoming launches

of Sentinel-1 NG, ROSE-L, NiSAR, and the multi-frequency

CIMR mission.
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Established indicators based on precipitation and VNIR data

have been available as analysis-ready data products for many

years. Consequently, they are widely used and their strengths

and weaknesses have been evaluated in numerous studies.

User familiarity with the products, combined with this strong

track record facilitates their uptake by NGOs, government

bodies and insurance companies. Drought indicators based on

microwave satellite data are less “familiar” to users, and their

interpretation may be less intuitive for new users. To promote

the uptake of microwave-based drought indicators, the onus

is on the microwave remote sensing community to provide

quality-controlled, analysis-ready drought indicators, and to

demonstrate the benefit of including microwave-based drought

indicators. Many lessons can be learned from the successful

dissemination and use of microwave SM and microwave-based

vegetation products (Entekhabi et al., 2010b; Mecklenburg

et al., 2016; Brocca et al., 2017; Dorigo et al., 2017; Wigneron

et al., 2021). In addition, microwave-based indicators have

recently been used in drought risk insurance. Vroege et al.

(2021), for example, explored the potential of satellite-retrieved

SM to reduce farmers’ drought risk exposure. Furthermore,

Enenkel et al. (2018) argued that microwave SM can close

sensitive knowledge gaps between atmospheric moisture supply

and the response of the land surface in the context of

operational parametric insurance projects. This underscores the

need to view microwave-based drought indicators not as an

intended replacement for indicators from VNIR data. Rather,

it underscores the potential to exploit the unique perspective

provided by multi-sensor microwave-based drought indicators

to complement existing, established drought indicators.
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