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Kurzfassung

Bisher wurden viele unterschiedliche Roboter gebaut und entwickelt um den Menschen zu
helfen, die Lebensqualität zu verbessern oder die Arbeit zu erleichtern. Heutzutage leben
wir immer mehr in einer Leistungsgesellschaft, wodurch viele Menschen mehr Stress und
Druck im Leben verspüren. Eine gängige Methode um den Stresspegel zu senken ist zum
Beispiel eine Fußmassage.

Diese Diplomarbeit präsentiert einen Prototyp von einem bildbasierten Fußmassagerobo-
ter. Dazu wurden ein Hardware- und ein Softwaresetup erstellt. Ein Teil des Hardwa-
resetups umfasst die Modifikation des Roboterarms. Dies beinhaltet das Ersetzen des
Greifers, der ursprünglich als Endeffektor diente, mit einem Deoroller. Dieser Deoroller
ist zusätzlich mit fünf Tastern ausgestattet, die den physischen Kontakt zwischen dem
Roboter und einer Fußsohle erkennen sollen. Außerdem wurden eine Plattform und eine
Fußablage angefertigt.

Eines der Hauptziele des Softwaresetups ist die Identifizierung und Erkennung der Fuß-
sohle und des Roboters selbst. Dazu wurde ein Mask Region-Based Convolutional Neural
Network trainiert. Dieses Netzwerk markiert die Pixel von der Fußsohle und dem Roboter
auf dem Eingabebild. In der weiteren Abfolge wurde eine Sohlenmaskenvorlage erstellt,
auf welcher die Massagepunkte einmal manuell platziert wurden. Die Punkte dieser
Vorlage werden während der Massage auf die Maske des zu massierenden Fußes projiziert.
Zusätzlich werden diese Punkte in eine Simulation, in welcher der Roboter abgebildet ist,
geladen. Mittels inverser Kinematik werden die Rotationswinkel der einzelnen Servomo-
toren in der Simulation berechnet, sodass der Endeffektor den Massagepunkt erreicht.
Danach werden diese Winkel an den Roboterkontroller, in diesem Fall ein Arduino,
gesendet um den Roboter zu bewegen. Wird ein physischer Kontakt erkannt, wird die
Massagetechnik Friktionieren ausgeführt. Des Weiteren können einige Einstellungen der
Massagebewegungen, wie zum Beispiel die Geschwindigkeit, verändert werden. Dazu
wurden drei neuronale Netzwerke (Convolutional Neural Networks) trainiert, die zur
Audioerkennung für Befehle eingesetzt werden.

Schließlich wurde der Prototyp in einer Nutzerstudie mit einer Gruppe von 13 Teil-
nehmer*innen getestet. Bei der Auswertung wurde festgestellt, dass ein Roboterarm
eine State-of-the-Art Fußmassage durchführen kann. Der Stresspegel ist niedriger als
vor der Massage und die Teilnehmer*innen sind entspannter. Jedoch massiert der Ro-
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boter den rechten Fuß genauer als den Linken und reagiert nicht immer korrekt auf die
Sprachbefehle.



Abstract

So far, many different robots have been built and developed to help people, improve the
quality of life or make work easier. Nowadays we live in a society where pressure arises
due to work and other factors, causing people to develop stress in their lives. A massage
can have a relaxing effect and help alleviate stress, such as a foot massage.

This thesis presents a prototype of a vision-based foot massage robot. For this purpose,
a hardware and a software setup was created. One part of the hardware setup was the
modification of the robotic arm. This involved replacing the claw, which originally served
as an end-effector, with a deodorant roller. This deodorant roller is additionally equipped
with five buttons, which are supposed to detect the physical contact between the robot
and the sole. Furthermore, a platform and a footrest was built.

One of the main goals of the software setup is to identify and recognize the sole of the
foot as well as the robot. To achieve this goal, a Mask Region-Based Convolutional
Neural Network was trained. This network marks the pixels from the robot and the sole
of the foot on the input image. The massage points are manually generated once on
a sole mask template and projected onto the mask of the foot during the massage. In
addition, these points are loaded into a simulation, where the robotic arm is also mapped
into. The rotation angles of each servomotor are calculated in the simulation with inverse
kinematics, so that the end-effector reaches the massage point. Then these angles are
sent to the robot controller, in this case an Arduino, to move the robot. If physical
contact is detected, the massage technique frictioning will be performed. Furthermore,
some settings of the massage movements, such as the speed, can be changed. For this
purpose, three Convolutional Neural Networks were trained, which are used for audio
command recognition.

Finally, the prototype was tested in a user study with a group of 13 participants. Through
the evaluation it was discovered that a robotic arm can perform a state-of-the-art foot
massage. The stress level of the participants is lower than before the massage and they
reported to be more relaxed. However the robot massages the right foot more accurate
than the left one and the robot does not always respond well to the voice commands.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Robots have been indispensable for decades. They facilitate our work and also daily
life. Further, robots appear in various shapes and colors. Some examples include robotic
hands for grasping objects, a human-like robot for social contact in a nursing home or
small moving robots for transporting goods. Amazon uses many of them to transport
packages from one workplace to another. Moreover, their idea to have a fully autonomous
warehouse is becoming real [Sta22]. For this purpose, all robots need a system to control
their actions. This is often a combination of different sensors to receive various data
(position, pressure, distance, etc.) and a "brain" to process this information. Therefore,
robot kinematics or machine learning is often used [CHM20]. Due to the increasing
amount of available data and complexity of various algorithms, machine learning has
become an important area of research. According to Naqa and Murphy [ENM15], it is
designed to emulate the human brain and intelligence by learning from its surrounding
environment. Various fields of application are computer vision, pattern recognition,
biomedical engineering, etc., in order to select relevant results of searches, detect different
objects in images or convert speech to text. According to Shinde and Shah [SS18], deep
learning is a subset of machine learning. It is used for more complex tasks. An example is
understanding images as to annote and tag them. This is useful for image indexing, image
retrieval and image search engines [GWB17]. Further, deep learning is outperforming
approaches from machine learning for image classification [KSH17] and speech recognition
[HDY+12]. Another area of application is the healthcare sector. According to Razzak
et al. [RNZ18], consumers expect the highest level of care. Therefore many medical
professionals are trained to interpret available information such as images of maladies.
As mentioned before, the increasing amount of data makes it more difficult to develop an
understanding of it. Due to the complexity of medical pictures, it is quite different for
experts to interpret them. In addition, there exists extensive variation in interpretation
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1. Introduction

between specialists. Furthermore, they may miss important information due to their
heavy workload and the resulting tiredness. Therefore, state-of-the-art deep learning
architectures are used for medical image segmentation and classification [RNZ18].

According to Varma et al. [VJMJ21], younger people deal with more problems concerning
their overall physical and mental health during the COVID-19 pandemic. They perceived
stress, anxiety, depression and financial insecurity. Further, it seems to be that stress can
cause cancer, heart disease, high blood pressure and suicide [Kee03]. Different methods
such as exercising, eating healthy, etc. can be used to improve mental health. Another
method is receiving a massage. According to Vickers and Zollman [VZ99], a massage
is used to promote relaxation, treat painful muscular complaints, reduce anxiety and
stress. To achieve these results, techniques such as friction massaging or kneading are
used. Friction massage is a deep massage in which the thumbs or fingertips make circular
motions. Different parts like the back, head, neck, stomach, shoulders, etc. can be
focused. According to Hayes and Cox [HJ99], a foot massage can reduce heart rate, blood
pressure and increases relaxation. This observation is the result of a five minute foot
massage.

In this thesis a combination of cameras, deep learning, a robot and foot massage techniques
are used. The aim of this work is to develop a massage robot that performs a state-of-
the-art foot massage based on audio commands and pictures from the cameras. The
following questions are in focus to be answered in this thesis:

1. Can a robot perform a state-of-the-art foot massage?

2. Is it possible to adjust the massage in a convenient way based on the audio feedback
from the user?

3. Is it possible to reduce the stress level and to improve the well-being of the user
within a twenty minute foot massage from a robot?

Several problems have to be solved to answer these questions. First, the setup of the
hardware has to be constructed. This includes building a footrest, modifying the head
of the robot, mounting the robot on a wooden platform, connecting the footrest to the
platform, and placing the cameras. Afterwards, a state-of-the-art method for recognizing
feet and audio commands has to be researched and compared. Then the most promising
classifier has to be chosen and trained. For the training, a dataset has to be found or
created. After that, the cameras have to be calibrated and a distance estimation function
has to be discovered. Then a method to calculate inverse kinematics for the robot has
to be explored. Later, an application has to be implemented that, will recognizes the
foot, controls the robot, responds to audio commands and performs state-of-the-art foot
massages. After that, a case study has to be designed and evaluated. In the last step,
the evaluation has to be analyzed and a final conclusion has to be made.
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1.2. Contribution

1.2 Contribution
This thesis provides a prototype consisting of a robot and a software solution and uses
it for a case study to investigate the effect of a robotic foot massage. Several steps
were necessary for the contribution. First, literature research was conducted to gather
background information. Then, the setup of the hardware was constructed. Furthermore,
a pre-trained model for object detection and segmentation was trained and fine-tuned
with a new dataset. It contained different images of feet with and without socks. Once the
model was ready for use, the cameras were calibrated and a distance estimation function
was discovered. Then the inverse kinematics for the provided robot were calculated and
implemented. To simulate a state-of-the-art foot massage, the points to be treated on the
foot, were generated. At the end of the implementation, an audio model was provided
to recognize commands and manipulate the movement of the robot in a convenient way.
Finally, a case study was designed, focusing on the questions that this thesis aimed to
answer. In addition, the results were analyzed and presented.

1.3 Thesis Structure
This thesis focuses on developing a hardware and software prototype that includes a
footrest, feet and audio command recognition, inverse kinematics calculation, control of a
robot, performance of state-of-the-art foot massage techniques with the robot, evaluating
the effect of a robotic foot massage and manipulating the motion of the robot via audio
commands. To achieve this goal, the structure of the thesis provides for the following
steps. In Chapter 2, the theoretical background is explained to provide the reader the
necessary background knowledge. This includes machine learning methods, camera
calibration, robot kinematics and foot massage techniques. A deep insight into the design
is shown in Chapter 3 and implementation of the prototype is provided in Chapter 4.
The case study, its results and the evaluation of the prototype are explained in Chapter
5. Further, limitations and future research are presented in Chapter 6.2. At the end, a
summary of the conclusions is provided in Chapter 6.1.
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CHAPTER 2
Theoretical Background

In this chapter, an overview of the used methods in this thesis is presented and related
background information is provided. First, a brief insight into deep learning techniques
that are used for classification, is given in Section 2.1. Then, Section 2.2 presents the
basics of calibrating and undistorting a camera. In Section 2.3 fiducial marker is explained
and how to detect it. Further, a brief insight into robotics including robot kinematics, is
given in Section 2.4. At the end, Section 2.5 provides information about the effects and
techniques of a foot massage.

2.1 Deep Neural Networks
This section describes relevant background information on deep learning techniques used
in this thesis. First, the basics of machine learning are described. Then, artificial neural
networks and convolutional neural networks are explained. At the end, mask region-based
convolutional neural networks is presented.

2.1.1 Basics of Machine Learning
According to Mitchell [Mit97, p. 2], the definition of learning is defined as follows: "A
computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.". In the case of this project, the three features are defined as:

• Experience E: a dataset with images of labeled feet and robots.

• Task T: recognize and label the mask of a foot and a robot.

• Performance P: percentage of the overlap between the ground truth and the
prediction, also called Intersection over Union (explained in Section 2.1.9).
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2. Theoretical Background

Machine learning can be categorized into two main classes: supervised and unsupervised
learning. The main difference between them is the labeled dataset. Supervised learning
is often used for classification [Zha10]. Further, the dataset is divided into a training set
and a validation set. According to Quin [Qin20], the training set is used for adjusting the
parameters and training the model. The validation set is used to test the model during
the training. Therefore, it is possible to improve the model while training. Supervised
learning can be divided into two main categories: regression and classification algorithms.
Regression algorithms are used to predict a continuous quantity and classification algo-
rithm predict a discrete or categorical output, which usually represents a class [CHP21].
An example of regression would be a prediction about the temperature in the next few
days and for classification of whether the weather will be hot or cold. To measure the
performance of a classification model, accuracy is used. Accuracy refers to the number
of correct predictions in percentage. The opposite is the error rate, which refers to the
amount of incorrect outcomes, which is also expressed as a percentage [Jap06]. To obtain
these two evaluation values, the model must process a set of data, that was not used for
training. This dataset is called test set. Unsupervised learning uses a dataset without a
given label. It discovers similarities in data groupings or hidden patterns. An example is
clustering [Qin20]. Unsupervised learning will not be mentioned in further detail, as this
work focuses on supervised machine learning.

Typical problems when training a model are underfitting and overfitting. Overfitting
means that the model performs well only in the training set and not in the test set.
Therefore, the model is not flexible and adaptive. It learns all the noises and too many
details from the training set. On the other hand, underfitting is the counterpart of
overfitting. Generalization and modeling the data is not possible. The model is not able
to capture patterns or trends in the data as well as having a bad performance on the
training data [ZZJ19].

2.1.2 Artificial Neural Networks
Artificial neural networks (ANNs) are inspired by the human brain. It is a machine
learning algorithm designed to emulate the learning behavior of a person [JMM96]. Two
parts of the human brain are biological neurons and synapses. A biological neuron
processes incoming information and synapses form a functional unit between two neurons
[JMM96]. An artificial neuron is a simplified model of the biological one. In addition, it
is also a computational unit. Figure 2.1 shows the design of an artificial neuron.

• xn is the input value where n goes from 0 to m.

• wn is the weight value where n goes from 0 to m.

• θ is the bias.

• F is a transfer function.

• y is the output value.

6



2.1. Deep Neural Networks

Figure 2.1: Artificial neuron design.

In Figure 2.1 it is shown that the body receives the information from the inputs
(x1, x2...xn). To improve the computational efficiency of learning algorithms, this informa-
tion is normalized. In addition, each input has a weight (w1, w2...wn) which is multiplied
together. The weight symbolizes the relevance of the input signal with respect to the
functionality of the artificial neuron [DSSF+17]. Then the body sums up the weighted
inputs and its bias, afterwards processing the sum with a transfer (activation) function.
This function can be any mathematical function like a Step function, a Linear function
or a Non-linear function (Sigmoid, rectified linear unit). Furthermore, the properties of
an artificial neuron are defined [KBK11]. The simplicity of an artificial neuron model
can be seen in Equation 2.1.

y = F (
m


n=1
wn ∗ xn + θ) (2.1)

Most of the time non-linear activation functions are used because a neural network with
many hidden layers would become a large linear regression model. Consequently, it would
be useless to train with real-world data, in order to learn complex patterns. The step
function is a binary function. In the binary function, a threshold value is defined to
decide whether a neuron should be activated or not. Therefore, only two output values
(for example 0 and 1 ) are possible [KBK11]. When a neuron is deactivated, its output is
not passed on to the next layer. The mathematical description is shown in Equation 2.2.

y =
�

1 if wnxn ≥ threshold
0 if wnxn < threshold

(2.2)

A layer is a combination of neurons, with its results being passed on to the next layer.
Every single neuron of a layer is connected to every neuron of the next layer. When two
or more artificial neurons are combined, they form an artificial neural network. According
to Da Silva et al. [DSSF+17], ANNs can be divided into three parts:

7



2. Theoretical Background

• Input layer: This layer receives normalized information from the external environ-
ment.

• Hidden layers: These layers process the most and are responsible for extracting
patterns. The name hidden represents the property that the outputs of these layers
are only available within the network.

• Output layer: This layer presents the final results.

It is important to mention that the output layer presents a prediction as output. Also,
an artificial neuron is called perceptron, if a binary step function (activation) is used,
which is shown in Equation 2.2. It is most commonly used in the last layer to solve
classification problems. For the output layer, a linear transfer function is often used,
which calculates a linear transformation over the sum of the weighted inputs and the
bias [KBK11]. The hidden layers usually use a non-linear function such as Sigmoid
or Rectified Linear Unit (ReLU) 1. Linear functions can only learn linearly separable
problems. Therefore non-linear functions are often used to solve non-linear problems.
According to Sharma et al. [SSA17], ReLU is used regularly, because in most cases it has
a better performance than other activation functions. The mathematical representation
is shown in Equation 2.3 where z = wn ∗ xn + θ.

f(z) = max(0, z) (2.3)

Moreover, it does not activate all the artificial neurons at the same time. The neurons
will be deactivated if the output of the linear transformation is less than 0. ReLU has
two linear pieces, for this reason it is considered a piecewise linear function. Further, the
activation function ReLU can be seen in Figure 2.2.

Figure 2.2: Rectified linear unit function.

Another non-linear activation function is the Sigmoid function, which is often used for
the output layer. It is an S-shaped curve and belongs to the family of squash functions.

1ReLU appears later in the evolution of neural networks

8



2.1. Deep Neural Networks

It maps the interval (-∞ , ∞) to (0,1 ). Therefore, the Sigmoid function is useful to
convert real numbers into properties [DQZ18]. Equation 2.4 shows the mathematical
representation.

g(x) = 1
1 + e−x

(2.4)

The topology or architecture of an artificial neural network is the interconnection of
individual neurons. Numerous possible topologies can be created, which can basically be
divided into two classes: feed-forward topology and recurrent topology. Figure 2.3 shows
those two basic topologies of an artificial neural network [KBK11].

Figure 2.3: Graphical representation of a feed-forward (left) and recurrent (right) topology
[KBK11].

One can see that a feed-forward topology (FNN) is an acyclic graph. The information
always flows in one direction without back-loops. The input marks its starting point
and the output its destination. Further, Figure 2.3 shows a simple feed-forward neural
network with one hidden layer. According to Lou et al. [LPW+17], the width and depth
of a network is often specified by the architecture. The amount of hidden and output
layers determines the depth of a network, while the maximal number of nodes in a layer
defines the width of a network. A network with more than one hidden layer is classified
as a deep neural network [LRM20].

In a recurrent topology (RNN) or feedback architecture, the output of the neurons is
used as feedback. The information flows not only in one direction, but in both. From
the input to the output and in the opposite direction as well [KBK11]. In addition, the
feedback is used for other neurons for dynamic information processing [DSSF+17]. With
this ability, an internal state of the network is possible. Moreover, it is possible to show
a dynamic temporal behavior, as the inputs of each neuron are modified within the
feedback paths. This leads the network into a new state [JMM96]. A recurrent topology
is shown in Figure 2.3.

Every network has to be trained. To gain an understanding of how to adapt a network
model, a loss function like cross-entropy is used. Therefore, the output of a model has

9



2. Theoretical Background

to be evaluated and compared to the label, to measure accuracy. The main goal is to
minimize the loss between the model prediction and the ground truth output. Moreover,
the best model has a cross-entropy loss of 0. To achieve such a value, an optimization
algorithm like gradient descent is used. This is one of the most common methods for
neural network optimization [Rud16]. With this algorithm, the gradient of a loss function
is calculated and moved in the opposite direction of the gradient, in order to search for
values that minimize the function at a local or global minimum. This means that after
each epoch the weights and biases are updated in the opposite direction of the gradient
of the loss function. This process is also called training.

In one epoch the neural network is trained with all the training data for one cycle.
Further, backpropagation is a method of reducing the cost function by modifying the
weights. Due to that, the gradient is computed by going backwards through the network.
Backpropagation also calculates the error with the partial derivative of the gradient
[LBH15]. The counterpart is forward propagation, where the predicted value is generated.
In addition, the learning rate is a tuning parameter in an optimization algorithm. It
often has a range between 0.0 and 1.0 and scales the magnitude of the weight during
training. It is also used as a step size and indicates how slowly or quickly the weight
values of the model are updated with respect to the loss gradient descent. On the one
hand, a small learning rate requires many updates before the minimum point is reached
and causes a training algorithm to converge slowly. On the other hand, a learning rate
with a too large value causes the training algorithm to diverge and skip the optimal
solution [Ben12]. The loss function, learning rate and optimization algorithm are also
known as hyperparameters.

A variation of gradient descent in which the parameters are updated incrementally for
every predefined number of examples, is called stochastic gradient descent (SGD). This
predefined number of examples is known as batch size [Mit97]. Moreover, the batch size is
also a hyperparameter [YS20]. In the next subsection, a class of ANNs will be explained.

2.1.3 Convolutional Neural Networks
In this work, two main goals are the detection of the foot and the recognition of audio
commands. The most common solution was used. Convolutional neural networks (CNNs)
are often used for facial recognition, object detection, semantic segmentation and also
for data that is not images such as audio. Moreover, they are a class of artificial neural
networks [YNDT18]. One of the most advantageous aspects of CNNs is that the number
of parameters in ANNs is reduced. CNN is shift- and space invariant. Therefore, it is not
necessary to know the position of a face in an image, for example. The only goal is to
detect the face in the picture [AMAZ17]. CNN has three main types of layers [YNDT18]:

• Convolutional layers

• Pooling layers

• Fully-connected layer

10



2.1. Deep Neural Networks

A convolutional layer consists of a combination of nonlinear and linear operations. Linear
operations are convolution operations and nonlinear operations are activation functions.
Further, this layer performs feature extraction. The linear operation convolution uses a
(filter) kernel, also known as a filter bank, which is applied across the input. A kernel is a
small array of numbers that can be multi-dimensional and the size of the kernel is smaller
than the input. These numbers are weights and are learned during training. The input is
also an array of numbers called tensor. To obtain the output tensor, an element-wise
product between each element of the input (patch of the image) and the kernel has to
be calculated. After that, the values are summed up and the result is passed to the
corresponding position of the output tensor, also called feature map [YNDT18]. This
calculation step is known as convolution. This process is repeated with the next patch
of the image until all values of the image are convolved and calculated. The patch of
the image has the same size as the kernel. A visual representation of the calculation is
shown in Figure 2.4.

Figure 2.4: A convolution operation [YNDT18].

CNNs have the following hyperparameters that have to be set before the training: kernel
size, number of kernels, padding and stride. The parameter stride determines the distance
between the kernel positions. Normally 1 is used for the stride value otherwise the output
is goint to be smaller than normal. In this way, downsampling of the feature maps can
be achieved [YNDT18]. Since it is not possible to center the outermost elements, the
resulting feature map will be smaller after each convolutional layer. Therefore, zero
padding is usually used. This technique adds zeroes to every side of the input tensor.
After that, it is possible to center the kernel on the outermost elements [YNDT18]. Figure
2.5 shows a convolution operation with zero padding.

The kernels are parameters. In the convolutional layer, they are learned during training.
Weight sharing is a key feature of a convolution operation. This means that the kernels
are shared for all image positions [YNDT18]. Fewer weights have to be learned and
reducing the number of parameters increases the efficiency of the model. Furthermore,
this leads to translation invariance. The features can be detected independently of their
location in the image. Moreover, it is not possible to use different filter banks in one
feature map. The weights of the kernel do not change during convolution. Another
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Figure 2.5: A convolution operation with zero padding [YNDT18].

property is that CNNs can be hierarchical. This happens when one convolutional layer
follows another convolutional layer. An example would be edge detection on a car. The
first layer would detect all edges and the next layer would combine these edges to detect
other features such as the shape of the wheel and windows.

The pooling layer is also known for downsampling. This operation reduces the number
of parameters that can be learned. Therefore, downsampling operations are used to
reduce the in-plane dimensionality of the feature maps. In addition, it extracts features
that are rotation and translation invariant. The pooling layer uses a filter without any
weights across the entire input. This is similar to the convolution layer but uses an
aggregation function instead of a convolutional one. Further, the pooling layer has the
hyperparameters filter size, stride and padding. Pooling operations can be divided into
two types: Max Pooling and Average Pooling [YNDT18].

Figure 2.6: Visual representation of max and average pooling.

Figure 2.6 shows the pooling operations. The hyperparameters are stride with a value
of 2, a filter size of 2x2 and no padding. Max pooling selects the maximum value of a
patch from the feature map, while average pooling takes the average of the patch. In
both cases, the depth of feature maps remains unchanged [YNDT18]. After the pooling
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operation, the result has to be multiplied by a trainable weight. Then a trainable bias is
added and finally a non-linear transfer function (ReLU) is used [SMB10].

In the fully-connected layer, the output of the previous convolution or pooling layer is
transformed into a one-dimensional array of numbers. This operation is called flatten.
The classification task is performed on this layer as well. Each node of a fully connected
layer is connected to every output of one or more fully connected layers by a learnable
weight. The last fully-connected layer has the same number of output nodes as the
number of classes to be predicted. Further, a softmax function is used that normalizes
the output between 0 and 1 such that the sum of the value is 1 [YNDT18]. Compared to
a fully connected network, CNNs are more efficient because they have fewer connections
and are easier to train. The backpropagation needs to be modified to use shared-weight.
An example of a CNN is the VGG-19 model, which is used for image classification [SZ14].
It is shown in Figure 2.7.

Figure 2.7: Visual representation of the VGG-19 architecture [ZYM18].

2.1.4 Residual Neural Networks
Observations were made that the depth of a CNN is of importance for image recognition
tasks [SLJ+15] [SZ14]. The accuracy of a model can be increased with the number of
layers stacked. Unfortunately, a problem occurred when a deep model was changed to
have even more depth. By increasing the depth, the accuracy degrades rapidly and the
training error increases. However, overfitting was not the reason for these troubles [HS15]
[SGS15]. The problem is called degration [HZRS16]. This can be seen as an indicator
that it is not always easy to optimize different systems. To solve this problem, a Residual
Neural Network (ResNet) was developed in which stacked layers fit a residual mapping.
For this purpose, residual blocks are required.

Figure 2.8 shows a residual block used in ResNet. It consists of a shortcut connection and
stacked layers. ResNet can be trained by stochastic gradient descent with backpropagation
like CNNs. The advantage of ResNet is that it leads to faster convergence at earlier stages
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Figure 2.8: A building block for residual learning [HZRS16].

and better accuracy at a bigger depth parameter [HZRS16]. The idea is that shortcut
connections skip some layers by connecting activations of one layer to further layers.
This means that the output of the previous layer is added to the layer ahead, also known
as identity mapping. Identity mapping does not have any parameters. The approach
is that optimizing the residual mapping is easier than optimizing the original mapping.
Therefore, H(x) represents the underlying mapping and the input of the first layer of the
underlying mapping as x. The residual function is defined as F (x) := H(x) − x and the
original mapping H(x) := F (x) + x [HZRS16].

y = F (y, {Wi}) + x (2.5)

Equation 2.5 shows the definition of a building block, where x is the input and y is
the output of the stacked layers. The residual mapping is defined as F (x, {Wi}). The
example in Figure 2.8 shows a block with two layers. Due to this reason, the function is
defined as F = W2σ(W1x), where σ refers to the ReLU activation function. To simplify
the notation, the biases are left out. An element-wise addition for F + x is calculated by
the shortcut connection. For this calculation, F and x need to be the same size. If this
is not the case, a linear projection Ws like zero-padding can be performed. Equation 2.6
shows the adaption of the linear projection to perform in the same dimension [HZRS16].

y = F (y, {Wi}) + Wsx (2.6)

2.1.5 Feature Pyramid Network
Detecting objects at different scales is a major challenge in image recognition. A solution
for this would be pyramid representations, but they are memory-intensive and time-
consuming. Another solution is a Feature Pyramid Network (FPN). It consists of a
bottom-up and a top-down pathway [LDG+17]. The architecture of FPN is shown in
Figure 2.9 and 2.10.

To construct the bottom-up pathway, ResNet or VGG is used. It is the feedforward
computation of the backbone ConvNet and is used for feature extraction. It creates a
feature hierarchy consisting of feature maps. The spatial dimension is reduced by 0.5.
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Figure 2.9: Feature pyramid network [LDG+17] .

Figure 2.10: A detailed architecture of FPN[Hui18b].

When layers produce an output with the same size, they are in the same network stage.
The feature pyramid has one level for each stage. The feature map is the output of the
last layer [LDG+17].

The top-down pathway generates the final set of feature maps. Therefore, the spatial
resolution is upsampled by a factor of 2. Then, the feature maps of the same size
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from the bottom-up and top-down pathways are merged with an element-wise addition.
Furthermore, the channel dimension is reduced by a 1x1 convolutional layer. These steps
are iterated until the last feature map is calculated [LDG+17]. The last layer is skipped
because the spatial dimension is too large. To reduce the aliasing effect of upsampling, a
3x3 convolution is added to each merged map, to generate a prediction or the final set
of feature maps (P2, P3, P4,P5).

2.1.6 Region Proposal Network
One of the most time-consuming tasks in real-time object detection has been the region
proposal algorithms for estimating the location of the objects. An example is the Selective
Search algorithm [UVDSGS13]. It takes 2 seconds per image in a CPU implementation.
To solve this problem, Ren et al. [RHGS15] introduced Region Proposal Network (RPN).
The main idea of RPN is to share convolutions during the test time to reduce the
computing proposals. This method reduces the required calculation time to only 10ms
per image [RHGS15]. It is a fully convolutional network that generates bounding boxes
with an objectness score at each position. It can also be integrated into any object
detection network.

Figure 2.11: Region proposal network [RHGS15].

In Figure 2.11 an illustration of the network at a single position is shown. First, RPN
generates anchor boxes for every anchor point. An anchor point is a point in the feature
map generated by the last layer of a backbone network (for example CNN). An example is
a VGG16 model, where the input could be an RGB-Image with dimensions of 224x224x3
(width, height and channels). The generated feature map of the last layer would have a
size of 1/16 of the original image. In this example, the map has a size of 14x14x512,
where 512 refers to the number of feature maps. An nxn spatial window of the feature
map is taken as input to RPN. For the input in Figure 2.11, a default kernel is shown
as a 3x3 spatial window, which is also a 3x3 convolutional layer. The anchor point
is always in the center of a window. Due to this reason, the scale and aspect ratio
have to be taken into account. By default, the value 3 is used for scales and aspect
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ratios to generate k =9 anchors. To use the above example, a feature map, with the
dimension of 14x14x9 anchors, is used. The maximum amount of possible proposals are
represented by k for each location [RHGS15]. Further, in Figure 2.11 the layer 256 -d
represents a lower dimensional feature, where the sliding windows are mapped to it. The
box-regression layer (reg) has 4k outputs used to detect the position of k boxes and the
box-classification layer (cls) has 2k scores to classify the box. Both are fully connected
layers. For training, each anchor has a binary class label whether it is an object or not.
Only anchors with the highest Intersection-over-Union (explained in Section 2.1.8) or
an overlap higher than 0.7, receive a label [RHGS15]. The position difference is used as
input for the cross-entropy loss, and the robust loss function (smooth L1) to learn offsets.
To obtain a Region-of-Interest (RoI), the anchor boxes with a high confidence score are
modified with the learned offsets (also called proposal generation) and then forwarded to
a RoI pooling layer (explained in Section 2.1.8).

2.1.7 Faster Regional Convolutional Neural Network
In the previous Chapter 2.1.6 RPN was introduced, where almost cost-free region proposals
can be made. RPN was first mentioned by Ren et al. [RHGS15]. To improve Fast
Region-Based Convolutional Neural Network (Fast R-CNN) [Gir15], which was already
an improvement of Region-Based Convolutional Neural Network (R-CNN) [GDDM14],
the new Faster Region-Based Convolutional Neural Network (Faster R-CNN) with RPN
was invented.

To provide insight into R-CNN and Fast R-CNN, both are used for object detection
and semantic segmentation. In semantic segmentation, each pixel is associated with a
category or a label. Figure 2.12 shows the pipeline of R-CNN.

Figure 2.12: Region-based convolutional neural network [GDDM14].

R-CNN has an image as input. Then regions or boxes are generated, where an object
could be located. For this purpose, a selective search [UVDSGS13] algorithm is used
[GDDM14]. This algorithm works with texture, size, shape and color. These properties
are used to create sub-segmentations that could belong to an object [UVDSGS13]. About
2000 bottom-up region proposals (bounding boxes) are generated with selective search.
Then, the patch of the image within a bounding box is subtracted and warped to a
227x227 pixel size image, to be compatible with the CNN. After that, a 4096 -dimensional
feature vector is extracted from each warped bounding box [GDDM14]. Finally, each
region is classified using a class-specific linear Support Vector Machine (SVM) [HDO+98].
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A support vector machine algorithm attempts to distinguish categories with a hyperplane.
This hyperplane is in an N-dimensional space to classify the data points, where N is the
number of features.

Figure 2.13: Architecture of fast region-based convolutional neural network [Gir15].

Fast R-CNN is different from R-CNN. Figure 2.13 shows the architecture of a Fast
R-CNN. The idea of Fast R-CNN is, that the image is the input for the CNN (for example
a VGG-16 model) and not the region proposals. As a result, a convolutional feature map
is created. Further, a set of object proposals is still required for the Region of Interest
(RoI) pooling layer. It is calculated for example by selective search. After the feature
map is generated, the RoI pooling layer extracts feature vectors from the feature map.
These vectors are fixed in length and are generated for each object proposal. Therefore,
it is possible to obtain vectors of the same size from rectangles with different sizes. The
RoI pooling layer maps the region proposal to the corresponding feature map and divides
the section into fixed sizes. Then, the largest value in each section is copied to the output
buffer. The RoI feature vector is then used for the softmax and bbox regressor layer.
Thus, the network has two outputs. The softmax layer predicts one category or one class
of the proposed region and the bbox regressor predicts one bounding-box regression offset
per class [Gir15].

The faster solution to Fast R-CNN is Faster R-CNN [RHGS15], which is an extension of
Fast R-CNN. The main difference is, that instead of selective search algorithms it uses a
region proposed network (RPN), which is explained in Section 2.1.6. These algorithms
are slow and time-consuming. Figure 2.14 shows the architecture of Faster R-CNN.

Faster R-CNN consists of two modules: RPN and Fast-RCNN [RHGS15]. It takes the
full image as input to a convolutional network, that calculates a feature map. This map
is forwarded to the RPN, which predicts region proposals. Then, the region proposals
are reshaped with the RoI pooling layer. At the end, the reshaped proposed regions are
classified and the offset of the bounding boxes is predicted.

2.1.8 Mask Region-Based Convolutional Neural Networks
Mask Region-Based Convolutional Neural Networks (Mask R-CNNs) are extensions of
Faster R-CNN. The goal of Mask R-CNN is to perform instance segmentation [HGDG17].
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Figure 2.14: Architecture of faster region-based convolutional neural network [RHGS15].

There are two different segmentation tasks: semantic segmentation and instance segmen-
tation. In semantic segmentation, pixels are grouped and labeled with a class such as
pedestrians or a car. There is no difference between multiple objects, thus objects of
the same class form a single entity and are not distinguished from each other. Instance
segmentation differs between multiple objects like pedestrians. Figure 2.15 shows the
architecture of Mask R-CNN that performs instance segmentation.

Figure 2.15: Architecture of mask region-based convolutional neural network [Hui18a].

Faster R-CNN and Mask R-CNN differ in two main parts. The first part is that Mask-
RNN does not use a RoI Pool-Layer. Instead, a RoI-Align layer is used. In the RoI
Pool-Layer, the boundary of the feature vector is aligned with the boundaries of the input
feature map. Hence, the cells may have different sizes, which would lead to misalignments
between the extracted features and the RoI [RHGS15]. As a result, pixels would not
be classified or classified incorrectly and the mask would therefore be inaccurate. The
RoI-Align layer solves this problem. It aligns the extracted feature with the input more
properly and eliminates quantization. It also calculates the values for the feature map by
interpolation. Figure 2.16 shows a RoI-Align example [RHGS15].
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Figure 2.16: RoI-Align process [RHGS15].

The second part is that Mask R-CNN has two additional convolution layers after the
RoI-Align layer. These two layers create the mask. To explain the architecture in detail,
the input is an image for the backbone, which is a CNN (for example ResNet50 or
ResNet101). This backbone detects, for example, edges and corners as low-level features
and as higher-level features, for example, pedestrians or flowers. Also, an FPN is used to
share features at different levels. This has to be mentioned because in this work a Mask
R-CNN is used with a Resnet50 and FPN backbone. After the feature map is generated,
the RPN is used to search for regions, that contain objects. Moreover, RPN reuses the
extracted features as it uses the backbone feature map. As an output, candidate object
bounding boxes are given. Then, the RoI-Aling layer aligns the bounding boxes to the
feature map without quantizations and calculates the values by interpolation. Finally,
the last convolution layers generate the mask, class and offset of the bounding boxes
[RHGS15].

2.1.9 Intersection over Union

Intersection over Union (IoU), also called Jaccard Index, measures the overlap between
the ground truth and the prediction. To calculate IoU, the area of overlap, of either
the bounding boxes or the mask segmentation, is divided by their area of union [Cos21].
Figure 2.17 shows a visual representation. In addition, the IoU score is normalized,
meaning that the value is between 0.0 and 1.0 [RTG+19]. For example, if the predicted
bounding box overlaps exactly with the ground truth, the IoU score is 1.0. This is the
most optimal and means that both bounding boxes fully overlap. On the other hand, a
score of 0.0 means no overlap. In general, an IoU score, which has a value greater than
0.5, is considered a good prediction. Three examples are shown in Figure 2.17. Further,
two different Intersection over Union metrics were used:

• bbox - Bounding Box

• segm - Mask Segmentation
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Figure 2.17: Visual representation of Intersection over Union and examples.

For the bounding box metric, the COCO evaluator measures the overlap between the
predicted bounding box and the ground truth. The ground truth boxes are generated
boxes of the hand-labeled mask, wherein the image of the object is. Furthermore, the
metric mask segmentation measures the overlap between the hand-labeled mask repre-
senting the ground truth and the predicted mask [iC]. An example is shown in Figure 2.18.

Figure 2.18: Metric - segm: the ground truth is shown on the left side and the prediction
on the right side.

Additionally, a predicted bounding box is considered as True Positive, if the IoU score is
greater than 0.5. Since a single reached threshold can induce a bias in the evaluation
metric, the COCO evaluator averages the mean average precision of 80 classes over ten
True Positive thresholds. Those thresholds are from 0.5 to 0.95 with a step size of 0.05.
Furthermore, different metrics for the area measured in pixels, are presented [iC]:

• small = area < 32x32

• medium = 32x32 < area < 96x96

• large = area > 96x96
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Different techniques for detecting objects with an image as input have been explained
and presented. In this thesis, cameras are used to capture images of the robot and foot.
The next section will give an overview of the camera calibration.

2.2 Camera Calibration
In this work, one of the main components is the camera. This device captures a three-
dimensional image and converts it into a two-dimensional one. There are some distortion
problems to solve before an image can be used for this work. In this section, insights
into camera distortion effects are given. Further, camera parameters and methods to
undistort an image are presented.

2.2.1 Distortion Effects
The pinhole camera has some advantages over a camera with lens optics. The advantages
are a wide angular field and no problems with linear distortions, the disadvantage would
be its resolution [You89]. In this work, resolution matters and therefore the images had
to be undistorted. There are two main distortion effects: radial and tangential lens
distortion.

Figure 2.19: Radial distortion effects. Left: normal grid; Middle: pincushion distortion
(negative radial distortion); Right: barrel distortion (positiv radial distortion) [DPWJ22].

Figure 2.20 shows the radial distortions where a straight line in the real world is not
straight in an image. Two examples are barrel distortion and pincushion distortion. These
distortions occur when the light is unequally bent. For this reason, the light rays bend
in the optical center less than near the edges of a lens. The distortion increases with
the size of the lens. Moreover, if the size of the lens decreases, the distortion increases
[CV14].

Figure 2.20: Tangential distortion [MD18].
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Another distortion effect is tangential lens distortion. This distortion occurs when the
image plane and the lens are not parallel, the reason being that the lens is not centered.
As a result, the image plane is skewed and objects would look farther away than they
really are.

2.2.2 Camera Parameters
There are two main categories of camera parameters: extrinsic and intrinsic. The
extrinsic parameters form a 4x4 transformation matrix. It is used to transform points
from world space to camera space. Consequently, if the physical position or orientation of
a camera has changed, the extrinsic matrix will also change. This leads to the extrinsic
matrix is being ignored in this work. The usual coordinate systems for computer vision
are: World Space –> Camera Space –> Pixel Space [HS97].

The intrinsic parameters form a 3x3 matrix and convert points from camera space to
pixel space. It consists of the focal length (fx, fy) and the optical center cx, cy. The
focal length measures the distance between the pinhole and the image plane in pixels.
Also, the intersection between the image plane and the principal axis of the camera is
represented as the optical center. The intrinsic matrix is used to undistort the images

and can be defined as

fx 0 cx

0 fy cy

0 0 1

. The mathematical representation of the radial and

tangential distortions are shown in Equation 2.7 [HS97].

xradial = x(1 + k1r2 + k2r4 + k3r6)
yradial = y(1 + k1 ∗ r2 + k2r4 + k3r6)

xtang = x + 2p1xy + p2(r2 + 2x2)
ytang = y + p1(r2 + 2y2) + 2p2xy

(2.7)

The tangential distortion coefficients are represented as p1, p2, the radial distortion
coefficients as k1, k2, k3 and r2 = x2 + y2. (x, y) is a point in a distorted image, which is
normalized by dividing it by the focal length and converting it to the optical center. To
undistort an image, the distortion coefficient must first be calculated. Then the radial
and tangential components from Equation 2.7 are combined. Finally, an interpolation
method is used, since the algorithm for undistortion can produce non-integer values
[Mat].

2.3 Fiducial Marker
In this section, the basics of fiducial markers and the scope of applications are presented.
Furthermore, a short description of the detection method is explained and examples of
different variations are shown.
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2.3.1 Basics

Object detection combined with real-time pose estimation is a time-consuming task. For
this purpose, complex neural networks are often used. Another solution is the detection
of fiducial markers. According to Fiala [Fia05], fiducial markers are used in a scene to
locate point correspondences between an object or model and images. They are often
used for drones to land at a specific location or for augmented reality. Different marker
variants like aruco marker [KYW18], ARToolKit [KB99] or a QR-Code [Soo08] are shown
in Figure 2.21.

Figure 2.21: Examples of fiducial markers. 1: aruco marker; 2: ARToolKit; 3: QR-Code.

These markers can be used as a reference point to estimate the distance or scale of an
object. In addition, the orientation of an object, like a robotic arm, can be detected. It
is also possible to identify objects with unique markers. These markers have a pattern,
that is distinct enough to distinguish them from their surroundings. It should also be
possible to distinguish them from each other. The pattern is robust against lightning,
blurring and partial occlusion [Fia09].

2.3.2 Detection

To detect an aruco marker, the border of the marker has to be detected first, for example.
Therefore, quadrilateral contours have to be found in an image. An edge-based method
such as the Canny Detector [DG01] is used and then these border pixels are linked into
segments and grouped into quads to create a homography mapping for the interior of the
marker [Fia05]. Another method for detecting the border is to fulfill image binarization
and then discard all polygonal shapes, that are not squares [LES20]. After that, the
candidate markers are analyzed by detecting black and white pixels and segmenting the
marker image into cells. Further, the pixels are counted and every marker is assigned to
a certain map based on the ratio of white and black pixels [LES20]. An example of a
fiducial marker detection is shown in Figure 2.22.

2.4 Robot Kinematics

In this section, an overview of robot kinematics is given. Some basics about robotics are
explained and methods to calculate the position of a robotic arm are presented. This
section focuses on a robotic arm since this type of robot was used for this work.
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Figure 2.22: Example of aruco marker detection [GJMSMCMJ14].

2.4.1 Basics
Robots appear in various shapes and colors. Examples are a small moving robot or a
robotic hand. The focus is on the robotic arm, which was used for this work. In Figure
2.23 a comparison between a robot arm and a human arm is shown.

Figure 2.23: Human arm and a 5 -DOF robotic arm [ML18].

Degrees of Freedom (DOF) is a parameter that describes the motion capability of a robot.
It represents the number of independent displacements. To calculate DOF for robot arms,
the structure of a robot manipulator must be understood. The structure of a robot arm
consists of links and joints [SSVO09]. A link is a rigid body, that does not deform when
a force is applied. A joint is connected between at least two links. Hence, it is possible
to apply motion to the connected links. A chain of joints and links forms a robotic arm.
The shoulder and elbow of a human arm are joints and the bone between these joints is
a link. According to Siciliano et al. [SSVO09], an arm (mobility), a wrist (dexterity) and
an end-effector (performs task) form a manipulator. Joints can be classified into many
different types like prismatic and revolute. In Figure 2.24 a kinematic diagram is shown
where R-joint is a revolute joint and P-joint a prismatic one. Prismatic joints apply
translational motion between the connected links, while revolute joints apply rotational
motion. This work focuses on the revolute joint. Both types provide a single DOF. An
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object in space has 6 -DOF. They are divided into 3 -DOF for positioning and the other
3 for orienting the object. It is possible that a robotic arm has more than 6 -DOF but
then it is called redundant [SSVO09].

Figure 2.24: Kinematic diagram with revolute and prismatic joints [AAE10].

In order to program and move a robot arm without considering forces, kinematics is
required. Kinematics can be divided into two main categories: forward and inverse
kinematics. This work focuses on inverse kinematics [KB06].

2.4.2 Forward Kinematic
According to Kucuk and Nigul [KB06], the forward kinematics is straightforward with
no complexity in deriving the equations. Moreover, there is always a solution for the
manipulator. Forward kinematics focuses on calculating the position and orientation of
the end-effector. This, the joint angles are the input for the calculation of the cartesian
orientation and position. One method for solving this problem is the Denavit-Hartenberg
method [Cor07]. For this purpose link length, link twist, link offset and joint angles are
used. In addition, each joint has a coordinate frame and homogeneous transformation
matrices are calculated.

2.4.3 Inverse Kinematic
The main difference between forward and inverse kinematics is, that forward kinematics
calculates the position with the joint angles as input, while inverse kinematics calculates
the joint angles with the position of the end-effector as input. To solve the inverse
kinematics problem, the Jacobian matrix can be used. This is an iterative method like
the Gradient Descent Method [GS93], which can be computationally expensive. The steps
to calculate the target positions are divided into three. First, the joint configuration is
determined, then the rotational changes are computed and finally, the Jacobian matrix is
calculated.

X = f(θ) (2.8)
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θ = f−1(X) (2.9)
According to Meredith and Maddock [MM04], the forward kinematic, presented in
Equation 2.8, is derived to calculate the Jacobian matrix. Therefore θ is the set of
orientation values and X is the global position of a link. Equation 2.9 represents the
inverse kinematics.

dX = J(θ)dθ (2.10)
where

Jij = ∂fj

∂xi
(2.11)

dθ = J−1dX (2.12)

Equation 2.10 represents the partial derivatives of the forward kinematics. Equation 2.12
shows the form for inverse kinematics, which requires the inverse of the Jacobian matrix.
Meredith and Maddock [MM04] used an incremental change of each joint. As long as the
end-effector is not located at the target position, this is the starting. In each iteration,
the distance between the current position of the end-effector (X) and the target position
(Xd) is updated. The partial derivatives of the joint angles (θ) are also updated for each
iteration. The Jacobian matrix is represented as J [MM04]. A simplified algorithm of
Meredith and Maddock [MM04] is shown below:

1. The position of the end-effector is taken for calculating the distance to the target
position dX = Xg − X.

2. Equation 2.11 with the joint angles is used to calculate the Jacobian matrix and to
invert it.

3. New joint orientations are calculated and set as current values θ = θ + J−1dX.

4. The position of the end-effector is checked with forward kinematics, if it is close
enough to the target position. This is considered to be the case, when the solution
is below a predefined threshold, leading to the algorithm getting terminated. If this
is not the case, the calculation restarts at step 1.

2.5 Foot Massage
In the previous sections different object recognition techniques, camera calibration and
kinematics were presented. This section focuses on the massage techniques used for this
thesis. A massage is used to promote relaxation and treat painful muscular complaints
[VZ99]. Different parts like the back, shoulders, feet, etc. can be focused. Further, a five-
minute foot massage can reduce heart rate and blood pressure [HJ99]. To achieve these
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results, different techniques like kneading, frictioning, stroking, etc. can be used. This
work focuses on foot massages using the following techniques: stroking and frictioning.
These two techniques were chosen because the architecture of the robot used in this work
was capable of performing them.

Figure 2.25: Frictioning and stroking [Joa83].

The friction method is a deep massage. During friction massage, the thumb or a fingertip
is moved over the sole in a circular motion [Joa83]. It is also called cross-friction massage.
The main purpose of this technique is to maintain the mobility of soft tissue structures
[Cyr75]. In Figure 2.25 frictioning and stroking is presented. Stroking is a technique in
which the muscles are stretched. It involves one hand that performs an up-and-down
motion on a sole [Joa83]. It is also known as Effleurage, where one hand strokes along
the length of a muscle [VZ99]. These are the most important techniques for this thesis.
In the next chapter the design of the prototype will be presented.
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CHAPTER 3
Design

In this chapter, the requirements and design of the prototype are discussed. First, Section
3.1 lists all requirements with a short description. Then the hardware and software
architecture is shown in Section 3.2 and 3.3. At the end of this chapter, the methodology
of this work is presented in Section 3.4.

3.1 Requirements
The main goal of this thesis is to build and develop a robotic arm that performs a foot
massage. To achieve this goal, the prototype is divided into several requirements. These
requirements are defined as follows:

• Hardware Setup: Foot recognition is a main part of this thesis. Therefore,
cameras are required and placed in the correct locations. To prevent the robot
from breaking out, it has to be mounted on a stable surface, a plate for example.
Also, the robot requires to reach the sole of the foot, due to this a footrest needs to
be built. An optimal hardware setup would be transportable.

• End-effector Modification: Usually, a foot massage is performed by hand.
However, in this thesis a robot which has a claw as an end-effector, is used. In
order to provide a more comfortable massage, the end-effector has to be modified.
Further, additional hardware has to be implemented to detect contact between the
foot and the robot.

• Foot Recognition: Another requirement is foot recognition. For this purpose,
a computer vision framework such as OpenPose should be used. Since OpenPose
does not work for the bottom of a foot, a Mask R-CNN (explained in Section 2.1.8)
has to be trained.

29



3. Design

• Distance Estimation: A distance estimation function could be used to establish
contact between the foot and the robot. As mentioned before, additional hardware
has to be implemented, to make sure that the robot has physical contact.

• Robot Movement: A function has to be implemented, that is responsible for
moving the robot from one position to another. For this purpose, forward or inverse
kinematics (explained in Section 2.4) could be used.

• Massage Techniques: There are different massage techniques for the sole of a
foot. Since the robot used in this thesis is limited, a simplified frictioning and
optionally a simple stroking function could be implemented.

• Audio Recognition: To ease control of the robot and to improve comfort of the
user, audio commands which remove the need to interact via mouse and keyboard,
should be implemented. Commands such as GO and STOP for example.

These are the requirements to fulfill. In the next two sections of this chapter, an overview
of the hardware and software architecture is presented.

3.2 Architecture Hardware
This thesis is overall divided into two main parts: hardware and software. For this reason,
software and hardware are of equal importance. The hardware part includes the physical
contact between the foot and the robot, as well as modifying the end-effector, constructing
a footrest, building a transportable setup and establishing communication between the
components. Figure 3.2 shows the communication of the hardware architecture used in
this thesis.

Figure 3.1: Communication model of the hardware architecture. The robot controller is
an Arduino.
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As it can be seen in Figure 3.2, the computer is connected to four devices: two cameras,
a microphone and an Arduino. The cameras are used for capturing frames. These frames
are then processed to detect and recognize the foot and the robot. Another component is
the microphone. It is used to record the audio commands given by the user. This device
is optional since the webcams have a built-in microphone. The advantage of having an
external one is that the environmental noise is reduced and the quality of the audio
samples is higher. To move the robot into the correct positions, the servomotors have to
be controlled. In this case an Arduino, which is a small computer, is used. To detect
physical contact between the foot and the robot, buttons are utilised and connected
to the Arduino. A detailed explanation of the construction and implementation of the
hardware is given in Chapter 4.

3.3 Architecture Software
In this section, an overview of the software architecture is presented. There are two main
components, which are divided into the main program for the PC and the main program
for the Robot-Controller (Arduino). Figure 3.2 shows the software modules.

Figure 3.2: Communication model for the software architecture.

First, the modules of the PC are introduced with a short description. After that, an
overview of the Arduino modules is given. A serial cable was used to connect these two
devices. The software architecture of the PC is divided as follows:

• Audio Recognition: This module consists of a CNN module, that uses time-
domain waveforms as input [DDQ+17]. For this purpose, the input stream from the
microphone is converted into a waveform and then audio commands are predicted.
The commands are used to control and modify the movement of the robot such as
GO, in order to begin the massage.

• Foot and Robot Recognition: To recognize the foot and the robot, a Mask
R-CNN is trained and used. Frames are extracted from the camera streams as
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input, and afterwards analyzed to receive a mask and a bounding box from the
related objects as output.

• Massage-Points Generation: Massage points are the movement targets of the
robot. Thus, the points have to be generated and mapped on the sole of the
foot. Predefined points from a foot sole template are mapped on to the actual
foot. Moreover, a distinction is made between the left and right foot because the
longitudinal arch on the foot is not on the same side. If this is not taken into
account, the robot could miss the sole of the foot.

• Distance Estimation: The distance estimation function is required to measure
the distance between the actual massage point and the robot. Consequently, an
aruco marker is used for the back camera and a checkered board for the side camera.
With two known points and the actual distance in world space, it is possible to
map pixels to mm.

• Robot Movement Simulation: This module represents a 3D simulation of
the robot used in this thesis. The distance estimation function is used to map
the current massage point into the 3D simulation. The end-effector moves in the
simulation with inverse kinematics to the mapped massage point. The angles of
each joint are the outputs for the robot communicator.

• Robot Communicator: The communicator is responsible for sending and re-
ceiving messages between the PC and the Arduino (robot). There are several
commands for communication such as if the robot is ready and connected or the
calculated angles for the servomotors.

After resolving the recognition tasks and the motion simulation of the robot, the calculated
angles and movement type are sent to the Arduino. This computing unit is mainly used
to control the servomotors with the received angles. The modules of the Arduino are
divided as follows:

• PC Communicator: In this module the Arduino translates received messages
from the PC and extracts information. In addition, new messages are sent back as
a response.

• Servomotor Movement: Each servomotor has to be controlled separately. Due
to this reason, the angles have to be mapped into pulses. Further, every motor
has an individual pulse range that represents the minimal and maximal possible
rotation. This range is coordinated with each joint of the 3D simulation of the
robot. The smoothing out and reducing the jerky movement of the robot while
massaging, happens in this module as well.

• Massage Movement: Frictioning and stroking are two different massage tech-
niques. With frictioning, the robot applies more pressure when physical contact
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is achieved. This additional pressure is not applied for stroking. In this module,
these two massage techniques are performed.

• Physical Contact Check: Physical contact is important for the massage. The
mapped massage points from 2D into 3D are not always correct. The robot requires
additional verification that physical contact has been made with the foot. Hence
the status of each button is frequently analyzed.

The hardware and software architecture are needed, in order to fulfill the requirements.
In the next section, the methodology used in this thesis, is presented.

3.4 Methodology
In this thesis, a vision-based foot massage robot has to be developed. Alternative,
prototyping is used as the research methodology. It is divided into the following four
parts:

1. Literature Review and Research: This includes the investigation of state-of-
the-art foot massage techniques, that can be performed with the presented robot. In
addition, various methods of recognizing the foot, audio commands and controlling
the robot are being investigated

2. Sketching and Designing: This thesis has two parts to build and develop: the
software modules and hardware components. Thus, it is necessary to sketch and
design the prototype.

3. Prototype Development: The construction of the hardware prototype includes
a footrest, a platform and a new end-effector. The software framework includes
controlling the robot, recognizing feet and performing a foot massage.

4. Evaluation: To evaluate the performance of the prototype, a qualitative evaluation
should be conducted. For this purpose, a user study should be developed in which
test users sit in front of the prototype for about twenty minutes and receive a foot
massage. Some questions have to be answered before and after the massage, and
then the results are analyzed and evaluated

In this chapter, the requirements, the architecture of the prototype and the methodology
are presented. The implementation of this project was based on these requirements and
processes, as can be seen in the next chapter.
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CHAPTER 4
Implementation

4.1 Overview of the Chapter

This chapter presents the implementation of the vision-based foot massage robot used
in the user study, which is discussed in Chapter 5. In this thesis, a robot capable of
performing a state-of-the-art foot massage will be designed. In order to achieve this goal,
several steps are required. First, Section 4.2 presents the construction of the hardware
setup. This includes the footrest, the platform, the modification of the end-effector and
some features of the robot. After that, an explanation of image preprocessing, where
the images are undistorted, is given in Section 4.3. One of the main parts of this thesis
is the recognition and detection of feet. Therefore, a Mask R-CNN model was trained
and used, which is shown in Section 4.4. Then, the distance estimation function for
converting 3D objects from world space to pixel space and vice versa is described in
Section 4.5. Performing a foot massage with a robot involves moving the end-effector to
target points on the sole of a foot. An explanation of the generation of these massage
points is presented in Section 4.6. Another main component of this work is the calculation
and simulation of the inverse kinematics concerning the robot, which is shown in Section
4.7. An additional computer, in this case an Arduino, is required to control the robot.
The communication between the computer and the Arduino is presented in Section 4.8.
Furthermore, an explanation of controlling the servomotors of the robot is shown in the
same section. At the end of this chapter, Section 4.9 describes the recognition of audio
commands, where a CNN model is trained and used for this purpose.
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4.2 Hardware Setup

4.2.1 Construction: Footrest and Platform
The hardware setup includes the construction of the footrest, the main platform, the
camera platforms and the modification of the end-effector. In this subsection, the overall
setup is explained first. Figure 4.1 shows the assembled prototype.

Figure 4.1: Hardware Setup.

The back camera and side camera have their own platform component, which is connected
to the main platform via a plug-in system. This makes it possible to detach the camera
platforms and get the setup to be transportable. One reason for the construction of
the platforms is to get the cameras into the same spot every time. At the beginning of
the massage, the cameras detect the foot and the robot. As can be seen in Figure 4.1,
the end-effector could cover the sole of the foot if the back camera is in too low of a
position. Further, the distance estimation function requires the detection of the aruco
marker and the checkered board, which is explained in Section 4.5. Another component
of the hardware setup is the main wooden platform, into which each wooden part can be
plugged in. It is thus the center of the hardware setup. Also, the robot is attached to
the platform, otherwise it would push itself away from the foot during the massage and
the pressure could not be increased. In addition, the Arduino is also fixated on it. This
computational unit is located on the left side behind the robot for safety reasons, as the
robot requires additional cables connected to the top of the Arduino motor controller. If
it were mounted directly behind the robot, a link could hit a plastic cover of a cable and
break the connection as the base of the robot rotates.

Figure 4.2 shows the footrest component. A checkered board is attached to the same
side as the side camera for the distance estimation function. To improve the stability
of the footrest during the massage, additional wooden beams are mounted on the left
and right sides. There are also three wooden beams at the front to prevent the footrest
from twisting. The middle one is used to hold the platform and the footrest together to
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Figure 4.2: Picture of the footrest with a mannequin foot.

prevent these components from being pushed away by the robot during the massage. At
the top, a part of a pipe with foam glued onto it, is screwed together with the footrest.
The shape of the pipe ensures that the foot stays in position and the foam changes the
height of the foot, so that the sole is at an accessible angle for the massage.

4.2.2 Foot Massage Robot
A foot massage with a robotic arm is a challenging task. For this reason, the end-effector
should be modified so that it does not injure the foot with its shape or surface. In this
work, the claw of the robot has been changed as shown in Figure 4.3.

Figure 4.3: End-effector prototype.

The main idea for the new end-effector was to simulate a thumb. Therefore, a kickerball
could be used, which is encapsulated in a 3D-printed case. In addition, only the case
should be fixated on the arm, so that the ball can rotate freely in its case, when the
robot massages the foot. To minimize the amount of work and the complexity of the
design, a deodorant roller is used. The modification of the deo-roller is shown in Figure
4.3, which requires the following three steps:
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1. A hole is drilled behind the ball, into which a button is inserted.

2. A small button is glued directly behind the ball. This is required to detect the
physical contact between the foot and the robot.

3. Four additional buttons are attached to the aluminium link. Additionally, the head
of the end-effector is glued only to the top of these buttons.

It is possible that the robot slips off the foot while applying pressure to it. Thus, it may
happen that the button is not pressed and no physical contact is detected. To prevent
this, the four additional buttons, which are bigger than the button behind the ball and
mounted on the aluminium link, are hit more easily. No difference is made between all
five buttons for detecting physical contact. They are connected to the Arduino.

Figure 4.4: Robotic prototype arm.

In Figure 4.4 the complete prototype with additional markings for each joint is shown.
The correlation between a real and a robotic arm is described in Section 2.4. The
presented prototype is reduced to 4 -DOF, to minimize the complexity of movement.
Hence, a newly built aluminium link replaced the joint of the wrist.

4.3 Image Preprocessing
Before the images are used to detect the foot, robot, etc. they have to be preprocessed.
This is useful to have more accurate distance estimation and recognition results. In order
to achieve this goal, an undistortion method is used, which is explained in Section 2.2.
First, the intrinsic parameters are required. To calculate them, the side and back cameras
are configured before the massage begins. Each camera needs about twenty different
images with a checkered board in it, taken by the camera itself. Then, for each image,
the corners of the checkered board have to be detected. When the corners are found,
the 3D points for the world space are simplified such as (0,0,0 ),(1,0,0 ) ... (6,5,0 ) and
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saved as object points. After that, all corners of a predefined number of rectangles on the
checkered board are located in the image space. These are 2D points. If all corners are
found and each checkered board image has gone through these steps, the camera can be
calibrated. For this purpose, an external library OpenCV 1 is used. As a result, the 3x3
camera intrinsic matrix and the distortion coefficients p1, p2, k1, k2, k3 are calculated.

To undistort the image, the camera matrix, distortion coefficients and image size are used
to compute an optimal camera matrix and a RoI (Region of Interest). Then, the optimal
camera matrix and distortion coefficients are used for remapping and interpolation, which
are presented in Section 2.2. A warped image is received as a result. In the final step, the
warped image has to be cropped with the RoI box. Finally, the image is preprocessed
and can be used for recognition tasks and distance estimation functions.

4.4 Mask Region-Based Convolutional Neural Network -
Foot and Robot Recognition

For detecting the foot and the robot a mask region-based convolutional neural network
(Mask R-CNN) is used, which is explained in Section 2.1.8. In addition, some changes
have been made to the architecture. The input of a Mask R-CNN, such as an image, is
forwarded to a convolutional network, also known as backbone structure. Section 2.1.8
presents a Mask R-CNN model with a ResNet backbone. In this thesis, a Mask R-CNN
with a ResNet50 and an FPN (shown in Section 2.1.5) backbone is used. Figure 4.5
shows the pipeline of the Mask R-CNN, without resizing the image.

Figure 4.5: Pipeline of a Mask R-CNN without resizing the image [ZCLM20].

1https://docs.opencv.org/ (visited on 06.12.2022)
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Specifically, the bottom-up pathway is the ResNet (convolutional network). Conversely,
the top-down pathway generates feature maps that are a combination of lower and
higher-level features to improve the accuracy of feature extraction. After that, all the
feature maps from the top-down pathway are processed by an RPN (explained in Section
2.1.6). RPN is used to obtain candidate bounding boxes and can be divided into two
paths. The first path obtains positive and negative classifications by classifying anchors.
This classification is done by a softmax function [ZCLM20]. The parallel second path is to
receive an accurate proposal for calculating the offset of a bounding box for each anchor.
The last layer excludes all proposals that are too small. Moreover, RPN takes only the
optimal scale from the FPN (P2, P3, P4, P5) [ZCLM20] to extract the RoI and passes it
to the RoI-Align layer, which is explained in detail in Section 2.1.8. The RoI-Align layer
extracts feature vectors from a feature map (P2, P3, P4, P5). These features are based on
the RoI output of the RPN. In Section 2.1.8 a Mask R-CNN is presented with a simple
ResNet rather than an FPN backbone. Therefore, the network heads differ from each
other. The fifth stage of ResNet is computationally intensive. With an FPN backbone,
this stage is already included. This is an advantage because fewer filters are required for
the head and it is more efficient [HGDG17]. At the end, a mask, a class and the offset of
the bounding boxes are generated.

To train such a Mask R-CNN, a dataset is required. This dataset contains images of
three object categories consisting of more than 2400 labeled instances in 1440 images.
Further, these images have different resolutions and both objects (robot and foot) are
not always in the same one. Some were taken with different cameras as well. The dataset
was split in the ratio 80 :20. 80% are used for training and the other 20% were taken for
testing.

There are several ways to train such a model. In this thesis, a pre-trained model with a
ResNet50 and FPN backbone was used and finetuned. For this purpose, the head of the
Mask R-CNN model was replaced with a new one to recognize the foot and the robot.
This approach was chosen due to the small dataset. Moreover, a detailed explanation of
the implementation from PyTorch 2 was used. The results of the evaluation of the Mask
R-CNN model are presented in Section 5.4.1.

4.5 Distance Estimation

4.5.1 Side Camera Distance Estimation
To perform a foot massage, several steps must be considered. First, the hardware setup
has to be built. Second, the images from the camera are preprocessed to recognize the
foot and the robot. And at third, the distance estimation function for the side and back
cameras is performed and some other steps, that will be presented later on. This section
is only about the distance estimation function.

2https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html (visited
on 06.12.2022)
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In the hardware setup of this thesis, the cameras are arranged orthogonally to each
other. Each base has a certain height, so that the cameras have full sight of the foot and
prevent the robot from covering parts of the foot. This is crucial in order to generate
massage points, which is explained in Section 4.6. The robot has to move to these points
to massage the foot. For this purpose, the distance estimation function estimates pixels
to centimeters. This means that a 2D pixel is mapped to a certain centimeter value,
which is then used as distance. This is important in order to map all 3D points of the
real world to the simulation, which is presented in Section 4.7.

Figure 4.6: Fixed distance between the checkered board and the robot for the side camera.

For the distance estimation function, the real world distance between two known points
is required. Therefore, the rightmost point of the end-effector of the robot and the upper
left corner of the checkered board are used. With OpenCV it is possible to receive the
corners of the checkered board. To find the rightmost point of the robot, the output
mask of the presented Mask R-CNN model is taken. Then the real world centimeter
distance (in this case 23 cm) is divided by the vertical distance (x-axis) in pixels between
these points. Figure 4.6 shows the known points and the real world distance.

4.5.2 Back Camera Distance Estimation
Since the robot will not only move up, down, forward and backward, but also sidewards,
the back camera is required. Due to this, a distance estimation function is required for
the back camera. This function works similarly to the one of the side camera.

Figure 4.7 shows a visual representation of the known distance and the object point.
To map a pixel to centimeters, a fiducial marker is required on the back of the robot.
Moreover, an aruco marker is used as a fiducial marker. First, the aruco marker has to
be detected and then the lower right corner is used. Then the topmost pixel of the robot
mask from the Mask R-CNN model is taken as the second known point. For this reason,
the default position of the robot is required. Hence, the real world distance (in this case
6.6 cm) is divided by the horizontal distance (y-axis) in pixels between these two known
points.
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Figure 4.7: Fixed distance between the fiducial marker and the robot for the back camera.

4.6 Massage Point Generation
In the previous sections, the hardware setup, image preprocessing, foot recognition and
distance estimation were presented. To perform a foot massage, the robot requires targets
to move to. The generation of foot massage points is explained in this chapter. The
basic idea for generating these points is to save a mask template of a sole and then mark
positions on it. These marked points are saved and when a foot massage starts, the
template sole with the marked points is loaded, rotated and warped to the actual mask
of the sole. Figure 4.8 shows the template mask on the left with the predefined foot
massage points (blue) and the actual foot mask with rotated and warped massage points.
On the right, the actual foot mask with the modified massage points on the real-time
frame of the back camera is shown.

Figure 4.8: Massage points generation: (left) template mask and actual foot mask with
foot massage points; (right) actual foot mask on the real-time frame with the mapped
foot massage points.
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The process of generating these massage points can be essentially divided into two parts,
namely the manual generation of massage points on a predefined sole mask and the
loading of massage points onto the actual sole mask. Consequently several steps have to
be considered:

1. Generate template mask: This step was performed once to generate a template
mask. This was done by placing a mannequin foot on the footrest, then using Mask
R-CNN to detect the mask of the sole and save it to the local drive in the project.
A external library Numpy 3 was used for this step.

2. Load the template: To create new massage points, the sole of the foot has to be
loaded into the program first. The loading process is also performed with Numpy.
After that, it is shown in an extra window.

3. Mark points: When the extra window has loaded, it is possible to generate new
massage points. For this purpose it is necessary to mark the points within the foot
template. For each new point, all new massage points are saved locally in a file.

4. Load points: All previous steps are used to generate new massage points. The
normal massage program includes the steps starting with this one. Therefore, the
predefined massage points with the template mask are required to be loaded first.
Further, the top and bottom points of the foot mask are saved and loaded as well.
In Figure 4.8 on the left, the blue points are the loaded massage points as well as
the top and bottom point of the foot mask.

5. Translate template: After detection and recognition of the actual foot mask
with the Mask R-CNN, the top and bottom points of the new mask are calculated.
Then the mask of the template is translated to the actual foot mask so that both

bottom points are in the same position. The translation matrix
�

1 0 tx

0 1 ty

�
is used

for this process.

6. Rotate template: In this step, the template mask is rotated. For this purpose,
the arc cosine of the dot product of two unit vectors (bottom point - top point
template foot/bottom point - top point actual foot) is calculated.

7. Translate/Rotate massage points: After the foot mask has been moved and
rotated, the massage points are also translated with the same difference tx and ty.
The rotation angle is the same as in the previous step and the points are rotated
around the bottom point of the current foot mask.

8. Warp massage points: At this point in the process, all massage points are
translated and rotated in relation to the actual foot mask. Since each foot has a
different shape and size, the points have to be warped. First, the massage points

3https://numpy.org (visited on 13.12.2022)
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are shifted in the y-direction with the difference of both foot sizes as a percentage.
Then, the points are shifted with the percentage difference of the two foot sizes in
the x-direction. The size of the foot in the x-direction is the point furthest to the
left and furthest to the right of the foot mask.

9. (Optional) mirror points: All the steps above require the sole of a right foot.
If the left foot is to be massaged, then all the massage points and also the top
and bottom point have to be mirrored. To do this, the points are shifted by the
difference between the width of the image and the actual x-position of a point. This
step is done before translating the template in step 5.

10. Map to real-time frame: The last step of generating the massage points is to
map the points to the real-time frame. It is possible that the foot rotates during
the massage. It is assumed that the bottom point of the foot mask never changes
and therefore the massage points are rotated only to the top point of the newly
detected foot mask. In Figure 4.8 on the right, the real-time frame with the mapped
massage points on it, is shown on the right. Additionally, the translations and
rotations are calculated with OpenCV 4.

4.7 Inverse Kinematics for Robot Arms
4.7.1 2D Simulation
One of the main parts of this thesis is to move the robot to the generated massage points.
For this purpose, inverse kinematics is used within a 2D and a 3D simulation. In Figure
4.9, the 2D simulation of the robot is shown.

Figure 4.9: 2D Simulation of inverse kinematics.

The 2D simulation is the same view as the side camera. The base rotator is ignored
because the robot only moves up, down, forward and backward in this simulation. The

4https://opencv.org (visited on 13.12.2022)
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links have the same length as the robot in the real world. The movement of the robot in
the simulation requires a target. Section 4.6 introduces the generation of massage points
for the sole of the foot. These points are mapped for the back camera view. Since the 2D
simulation has the same view as the side camera, the massage points must be mapped to
that view. For this purpose, the top and bottom point of the foot mask of both frames
(side and back camera) are required. The y-position of the massage point is mapped from
the back view mask to the side view mask. After that, the leftmost point of the side view
mask in the y-position (from the massage point) is taken as the x-position. The massage
point is now mapped from the back view to the side view. Moreover, it is now located in
a 3D position because the x- and y-positions are taken from the side view and the depth
or z-position is the x-position of the back view.

Since the position of the massage point is calculated in pixels, the distance estimation
function (explained in Section 4.5) is required to obtain the position and distance between
the end-effector of the robot arm and the massage points in centimeters. The position of
the end-effector is known by the detection of the Mask R-CNN. After that, it is possible
to display the massage point in the 2D simulation.

To move the end-effector to the target point (massage point), the distance between those
two is first calculated with numpy.linalg.norm (using Frobenius norm). This distance is
always updated so that the position of the end-effector approaches the target position.
Then the Jacobian matrix is calculated. Therefore, a new matrix (3x3 - 3 for x,y position
and 3 for the joints) is created, which is filled with zeroes. The position of the end-effector
is subtracted from the position of the current joint (beginning with the base). After that,
the cross product is calculated with the z-unit vector (0,0,1 ) and entered into the first
column of the Jacobian matrix. Then the pseudo-inverse is calculated from the resulting
Jacobian matrix. A dot-product of the x- and y-difference between the target and the
end-effector is calculated afterwards. The results are angles, which are added to the
existing angles of the joints. Further, the new angles are checked for violating policies.

If an angle violates the policies, it means that a servomotor cannot rotate to that angle
due to physical limitations. If everything is fine, the positions are updated. For this
purpose, the rotation matrix for the z-axis is used [Wei03]. The new distance between
the end-effector and the target is calculated, and if it is below a certain threshold, the
inverse kinematics calculation for the 2D simulation is finished. A detailed description is
presented in Section 2.4.

4.7.2 3D Simulation
In the previous subsection, the 2D simulation of the robot was presented. In this
subsection, the 3D simulation is shown. It is necessary because the base of the robot
can be rotated to the left or right side, so that points near the edges of the sole can be
reached. Figure 4.10 shows the 3D simulation of the robot.

For simplicity, the 3D simulation is only required for the rotation of the base of the robot.
For this purpose, the robot in the start position and also the massage point is mapped in
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Figure 4.10: 3D Simulation of inverse kinematics.

the 3D simulation. The basic idea for calculating the inverse kinematics in 3D for the
robot used in this thesis, is to rotate the massage point in front of the end-effector. The
rotation angle is calculated using the unit vector of the target and the end-effector. Then
the massage point is rotated around the base, located at the position (0,0 ). This rotation
angle is used to rotate the base servomotor. From there, the target point with its new
position can be mapped into the 2D simulation presented in the previous subsection.

An advantage of being able to see a visual representation of the joints and servomotors
in the simulation as well as real life, is to compare them both at the same time. It is
possible to check whether a servomotor is rotating correctly or not. In the next chapter
the communication between the robot controller and the PC as well as how to move the
robotic arm in the real world, are presented.

4.8 Robot Communication & Movement

4.8.1 Communication PC

For this thesis, two devices are required: a PC and an Arduino. The PC receives the
frames from the cameras, detects the foot and robot, estimates the distance and calculates
the inverse kinematics. The Arduino controls the servo motors from the robot, so that
a foot massage is possible. Both devices are connected with a serial cable. Further, an
additional component that is attached to the top of the Arduino, is required to supply
the servo motors with power. For communication on the PC side, an additional library
serial 5 is used for opening a serial port. All the messages have an UTF-8 format. In
addition, a start- and an end-character are defined, which marks the beginning and the
ending of a message. This is required to prevent the system from missing important
information, for example an angle for the servomotor or the physical contact message.

5https://pythonhosted.org/pyserial/ (visited on 16.12.2022)
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4.8.2 Robot Movement via Arduino
The robot moves through the rotations of the servo motors. To control them, an additional
library Adafruit PWMServoDriver 6 is used. Further, the Arduino receives rotation
angles for every motor from the PC. These angles have to be converted into pulses,
because the angles cannot be used for rotating the servos. Therefore, the minimum and
maximum pulse values are required for each motor. This has to be taken into account
because no joint of the robot can rotate 360 degrees due to physical limitations. All the
servos are configured and tested, so that the minimum and maximum pulse values are
known. With this information it is possible to map an angle of the simulation to a pulse.

Before a massage starts, the robot moves to its starting position with predefined angles.
The movement of the robot is regulated with a speed value, that is added to the current
pulse until the newly mapped pulse value is reached. In addition, the motors are controlled
from the bottom to the top. This means that the order is base, shoulder, elbow and wrist.
Each joint rotates alternately to the new angle, so that simultaneous movements are
performed since path planning is not implemented. Also, when all motors have reached
the new pulses, the Arduino sends a message if a button has been pressed and physical
contact has occurred. It is often the case that no contact was made, then a new massage
point is created, which refers to a forward movement of the robot, and the new angles
are sent to the Arduino.

Figure 4.11: Massage Technique: Frictioning.

When a button is pressed, the robot starts to perform frictioning. For this reason, the
difference between the last two angles is added again to the new angle, so that the robot
moves forward again and applies additional pressure. After two seconds, the robot moves
back to its original position before frictioning. This massage technique is shown in Figure
4.11. In addition, more pressure can be applied via an audio command, which is explained
in Section 4.9.

Another massage technique, which is optional, is stroking. It is shown in Figure 4.12.
This movement is performed by detecting the position of the robot and moving it to the

6https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library (visited on
16.12.2022)
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4. Implementation

Figure 4.12: Massage Technique: Stroking.

opposite top or bottom point and then to the center of the foot so that the end-effector
strokes along the foot sole. Due to the lack of path planning and the poor performance
of the servo motors, the robot may get stuck in one place or miss contact with the foot
during the stroking massage. The speed of the movement can also be controlled with
audio recognition, which is explained in the next section.

4.9 Audio Recognition
When the user is sitting in front of the robot, it is difficult to start, stop or modify
the movement of the robot during the massage by pressing a button on the keyboard.
Hence, another task of this thesis is to train and implement a model that recognizes
specified audio commands. This model is a CNN with an M5 -architecture, that uses four
convolutional layers and a fully connected one. Each convolutional layer is followed by a
batch normalization layer, which reduces vanishing gradients, and a max pooling layer to
limit computational costs. The CNN architecture is shown in Figure 4.13.

Figure 4.13: Architecture of the CNN model for the audio recognition.

This model architecture is set up after Dai et al. [DDQ+17]. Also, the first layer has a
kernel size of 80. Therefore, audio samples at 8kHz have a receptive field of 10ms, which
is similar to a receptive field from speech processing which uses about 20ms. If samples
of 4kHz are used, the receptive field is about 20ms. As an optimizer Adam, which is also
known as Adaptive with Momentum, is used with a learning rate of 0.001. The optimizer
computes adaptive learning rates for each parameter.

This CNN model predicts labels for raw waveforms. The set from Warden [War18]
is used as training data. Additional samples, recorded with a microphone from non-
native speakers, are added. Three CNNs were trained to reduce the number of False
Positive. The commands are explained in detail in Section 5.2. The first CNN only
recognizes the start command GO and some other words, which are ignored. The other
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two CNNs recognize commands to modify the massage. These two networks are always
used to process the same audio sample during the massage to reduce the false predictions.
Therefore, both predictions have to be the same output. The dataset was split in a ratio
of 80:20 and 85:15 for training and test set. The second model has an accuracy of 95%
and the third one an accuracy of 94%. In addition, the first model has an accuracy of
96%. For training PyTorch7 was used.

In order to filter the audio samples that do not contain commands, and to reduce the
amount of data that is further processed with the audio CNN model, a peak detection
has been implemented. For this purpose, only audio samples above an average threshold,
which is calculated before the massage start, are processed. To not block any process,
threading is used. Also, small audio samples are stitched together, so that no command
is overheard. When a peak above the threshold is detected, 0.2 seconds before the peak
are added to the sample. For more appropriate audio samples, a microphone is used
during the massage, to record the speech commands.

7https://pytorch.org/ (visited on 19.12.2022)

49

https://pytorch.org/




CHAPTER 5
Evaluation

In this chapter, the steps for evaluating the prototype are presented. The first two
sections cover the technical setup of the foot, robot and audio recognition. The third one
deals with the case study of a defined test group. Finally, the results of the evaluation
from the technical part and the case study are presented and discussed.

5.1 Foot & Robot Recognition
One of the main goals was to recognize and detect the mask of each individual foot.
Therefore, a pre-trained model on Common Objects in Common (COCO) train2017
with ResNet50 was fine-tuned [LMB+14]. To evaluate the performance of the mask
region-based convolutional neural network (Mask R-CNN), which is used to detect the
foot and robot, COCO Evaluator was used [HGDG17]. Furthermore, all results of each
epoch were documented during the training. The dataset contains images of three object
categories consisting of more than 2400 labeled instances in 1440 images. The categories
are divided into foot, robot and background.

5.2 Audio Commands
Another main goal was the interaction with the robot. This was realized through audio
commands and three convolutional neural networks (CNN), representing a specific M5
architecture [DDQ+17]. Three networks were trained to reduce the number of False
Positive commands. The first only recognized the command GO, which was used to
start the massage. Furthermore, to reduce the False Positive some other words like
bed, cat etc. were in the dataset. The other two were trained with about 20000 audio
samples [War18]. Both of them had to recognize the same word when reaching a certain
recognition-threshold, to process the command. The following commands were recognized:
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• backward - if frictioning is performed, the robot will press less

• forward - if frictioning is performed the robot will press more

• one - slowest speed

• two - middle speed

• three - fastest speed

• stop - the robot stops and moves back to its default position

5.3 Case Study
The case study was designed to evaluate the practicality of the system for a simple foot
massage. The goal is to find out if the system is able to reduce the stress level of a person,
as well as to improve their well-being and relax them. Further, if the robot can perform
a state-of-the-art foot massage and if it is possible to adjust the massage in a convenient
way based on the audio feedback from the user.

5.3.1 Test Group

For the evaluation of the case study, thirteen participants were included. To cover a wide
range of possible experiences, no restrictions to a specific gender nor age requirement
were set. However, the test users had to speak in English, with the reason being that the
audio model only recognized commands in English. In order to obtain more significant
results, it was also important that the feet of the participants were as diverse as possible.

5.3.2 Setup

For the setup, the participants had to sit on a chair in front of the robot for about twenty
minutes. To obtain more significant results, both feet were tested and each foot was
massaged for ten minutes. All of the participants had to answer a few questions before
and after the massage test, to compare their previous comfort and the stress level to their
current one. Further, each person was given a headset with a microphone to interact
with the robot. In addition, the participants were informed about and introduced to the
audio commands. Afterwards, it was explained how the robot moves and what massage
techniques were going to be performed. In the first half, the system only performed
frictioning, and in the second half stroking was added [WK] . To add stroking, a variable
in the program was manually changed and the system was restarted. In order to process
the frames as fast as possible, an NVIDIA graphics card and CUDA 1 were used.

1https://developer.nvidia.com/cuda-downloads (visited on 17.10.2022)
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5.3.3 Feedback
As mentioned in Section 5.3.2, each participant had to answer a few questions. A goal of
the feedback was to collect data about their experience with foot massages, details about
their foot shape and their relaxation level. These questions were part qualitative and
part quantitative. Another goal of the case study was to evaluate the performance of the
robot. The questionnaire included 20 questions with the following answer types:

• Scale X-Y : One value on a scale between X and Y can be selected.

• Single Choice: Only one option can be selected. An example is yes/no.

• Free Text: Answer in sentences.

Questions in Table 5.1 were asked before the test started. After the robot finished
massaging both feet, the participants provided feedback using the following questions in
Table 5.2.

Age Scale 1 - 99
Gender Female / Male
Body height Scale 140 - 200

Centimeter
Weight Scale 40 - 100

Kilogram
Shoe size Scale 30 - 50

EU
Foot Shape Normal/

Flat/
Hollow

Have you been to a professional foot massage before? Yes/No
How long did the professional foot massage last approximately? Scale 1 - 59

Minutes
What is your current state of relaxation before the massage? Scale 1 - 10

1 = Stressed
5 = Normal
10 = Relaxed

Table 5.1: body information and asked questions before the massage.
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How well did the robot respond to your commands? Scale 1 - 10
1 = Not at all
10 = Very good

Would you have preferred more voice commands? - if yes, which
commands?

Yes/No

Free Text
How does your RIGHT foot feel after the massage? Scale 1-10

1 = Worse
5 = Same
10 = Better

How does your LEFT foot feel after the massage? Scale 1-10
1 = Worse
5 = Same
10 = Better

Were there moments where the robot applied too much pressure
or caused pain?

Yes/No

Compared to a professional foot massage, is there a big difference
- if yes, which one? (only asked if the participant had been to a
professional foot massage)

Yes/No

Free Text
How pleasant was the massage? Scale 1-10

1 = Not pleasant
10 = Very pleasant

What is your current state of relaxation? Scale 1-10
1 = Stressed
5 = Normal
10 = Relaxed

Was frictioning and stroking better than only frictioning - if yes
why?

Yes/No

Free Text
Would you change the movement pattern of the robot - if yes,
what would you change?

Yes/No

Free Text
Do you have any suggestions for improvement? Free Text

Table 5.2: Feedback after the massage.

5.4 Results

In this section, the evaluation of the convolutional neural network is presented and the
results of the case study and its evaluation are shown. It is important to mention that
only thirteen participants were included in the case study. The following presented results
are not statistically representative and the conclusion should be seen as hypothesis.
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5.4.1 Mask Region-Based Convolutional Neural Network

As mentioned in the previous section 5.1, the COCO evaluator was used to evaluate the
fine-tuned Mask R-CNN model. The model was trained for 60 epochs with 1140 images
for training and 300 images for testing and evaluation. In Figure 5.1 the end results are
presented. They are measured with two Intersection over Union (IoU) metrics which are
explained in Section 2.1.9. The mean average precision for the bounding boxes is 0.85.
Moreover, with the IoU metric mask segmentation, the model reaches a value of 0.827.

Figure 5.1: Results of the M-RCNN model after 60 epochs.

The average precision could be increased if two Mask R-CNNs were trained. The first
model would only recognize the robot and the second one only the foot. Another problem
could be that the dataset contained images of the robot without the head modification.
Therefore the label was different and due to that it could be possible that the model was
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overfitted. In addition, the shape of the feet were different in some images as well, due
to the robot covering some parts of it. Those pictures were important for recognizing the
foot because during the massage the sole is never fully visible for the back view camera.
An example of the foot and robot detection is shown in Figure 5.2.

Figure 5.2: The ground truth is shown on the left side and the prediction on the right
side.

5.4.2 Test Group

The test group consisted of thirteen people with different foot shapes. As shown in Table
5.3 the gender was fairly even distributed. The shoe size ranged from 37 to 44 EU, with
all females having a shoe size between 36 and 40 EU and males being between 40 and
44 EU. Half of the participants had the foot shape normal and the other half had hollow
or flat.

ID Age Gender Body Size Weight Foot
Shape

Shoe Size

N01 25 female 171 51 normal 39
N02 32 female 171 65 normal 37
N03 26 male 178 89 normal 43
H04 51 female 168 48 hollow 38
F05 27 male 172 77 flat 43
N06 60 male 180 74 normal 44
H07 77 male 178 71 hollow 43
N08 77 female 165 62 normal 38
H09 57 female 165 60 hollow 40
H10 59 male 183 75 hollow 42
N11 26 female 172 46 normal 38
H12 25 female 167 60 hollow 39
N13 29 male 182 85 normal 44

Table 5.3: Information about the participants.
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5.4.3 Massage & Relaxation Effect

The main goals of the case study were to evaluate if a robot can perform a state-of-the-art
foot massage. Further, if it is possible to adjust the massage in a convenient way based
on the audio feedback from the user. Finally, if the robot can reduce the stress level and
improve the well-being of the user within a twenty minute foot massage. The case study
was designed to answer these questions. First of all, to answer the question if a robot
can perform a state-of-the art foot massage, it is important as to how many participants
have been to a professional foot massage before.

Figure 5.3: Overview of the participant’s foot massage experience.

In Figure 5.3 it is shown that only 15% of the participants had experience with a
professional foot massage. The massage lasted about twenty minutes for both feet. The
other 85% have never been to a professional foot masseur, but all indicated that they
have received a massage from their partner or a friend. After the massage, those 15% said
that there was a significant difference to a professional foot massage. The main difference
was that the head of the robot is a ball, and not a robotic hand that can grasp and knead
a foot. Since the robot has no fingers, it can be concluded that the robot cannot perform
a fully human-like massage for a foot because the instep was neglected. Nevertheless, it
is important to point out, that a state-of-the-art massage can be performed only on a
sole as well. Therefore, each participant was asked how the performance of frictioning
and stroking was. All thirteen users mentioned that the performance of the frictioning
massage was good. Furthermore, all participants felt that the option with the stroking
movement was better than without, because it felt more like a normal foot massage, even
if it did not always work as well.

Figure 5.4 shows that every user had a better feeling on both feet afterwards. Nevertheless,
the robot had a better performance on right foot. The reason could be attributed to
the footrest, because it was turned a little to the right, so that the distance between
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Figure 5.4: Survey results for left and right foot feeling.

the longitudinal arch of the foot and the head of the robot is minimized. In case of a
left foot, the rotation was a disadvantage because the head of the robot was further
away. Moreover, the side view camera was mounted on the right. The head of the robot
was always visible if a right foot was massaged, however when massaging a left foot, it
partially covered the robot on camera as soon as it tried to touch the sole. If the head is
not detected and localized, the function for the correction of its position fails.

Another question was if it is possible to control the robot via voice commands to adjust
the massage in a convenient way. Unfortunately, some participants did not change much
in the options. The start command GO and the stop command STOP were used by
every participant. In addition, the robot did not always respond well, because sometimes
the command was predicted incorrectly or it was not recognized. The reason could be
that the background noise was often very loud. Further, the transformed audio sample
that should be analyzed, occasionally did not contain the whole word of the spoken
command, due to the audio samples being merged, when a peak was louder than the
defined threshold. To point this out the second model has an accuracy of 95% and the
third model 94%. The dataset was split into a training and a test set with a ratio of
80 :20 for the second model and for the third model with a ratio of 85 :15.

Figure 5.5: Survey results for the robot reaction to the voice commands.
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The participants were asked how well the robot responded to their voice commands. In
Figure 5.5 the results from the reaction of the robot to the given voice commands are
shown. More than 76% answered that the robot reacted well to their commands and
they felt changes within the massage. The other 23% said that the robot did not respond
well to their commands. The participants were also asked if they would prefer more
voice commands. All of them were satisfied with the existing audio options. Since most
participants did not use the audio commands often, except the commands STOP and
GO, it possibly implies that the basic settings were satisfying enough. In addition, none
of the users would change the movement of the robot or the order and position of the
massage points. Further, it seems to be the case that none of the participants felt pain,
considering they had the possibility to lower the pressure of the massage and did not do
so. Since the participants changed the options only a few times during the massage, it
can hardly be said if it is possible to adjust the massage in a convenient way.

Figure 5.6: Survey results before and after the massage.

The last main goal was to find out if a foot massage by a robot can reduce the stress level
and improve the well-being of a person. To answer this question, all of the participants
were asked before and after the massage what their current state of relaxation was. In
Figure 5.6 the survey results are shown. The scale ranged from 1 to 10, whereby 1
represents stressed, 5 stands for normal and 10 is for relaxed. Before the massage the
average relaxation level was 5.07 and the deviation 0.977. Nearly every person was
in a normal or good mood. Only a few user were below 5. After the massage, the
average relaxation level increased from 5 to 8 with a deviation of 1.109. This means that
every person was in a better mood as before. An important observation is that every
participant, who had a relaxation level below five, had a significantly higher level than
before the massage. If a person was already in a relaxed mood, the massage increased
the well-being by only one or two points. Moreover, 24% of the participants had extra
feedback to improve the massage. Additionally, all of them said that a different structure
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of the ball would be nice, such as a rougher surface or a covering in massage oil. To
conclude this evaluation part, it can be said that the robot is able to reduce the stress
level and to improve the well-being of a participant.

5.5 Discussion
In the previous sections the results of the evaluation were presented. In Section 5.1 and
5.2 the technical main goals were explained. Further, Section 5.3 presented the case
study and the physical goals of this thesis. The main focus of the case study referred to
the questions if a robot can perform a state-of-the-art foot massage, if it is possible to
adjust the massage in a convenient way based on the audio feedback from the user and if
it is possible to reduce the stress level and to improve the well-being of the user within a
twenty minute foot massage from a robot. In the following, the results of the evaluation
are discussed.

The implementation and the training of the mask region-based neural network were
discussed in the previous chapter. It is important to recall that the dataset contained
images from the robot without the modified head. Further, the robot occluded parts of the
foot in some pictures, in order to recognize the sole even if it is not fully visible. As shown
in Figure 5.1 the achieved bounding box accuracy was at 85% and mask segmentation
was at 82%. It is worth pointing out that the model recognized the foot it was presented,
even if the user wore socks with different colours and patterns. Furthermore, if the robot
occluded parts of the sole, the detection still worked for the visible area. This was an
important task, because when a participant rotated the foot during the massage, the
massage points had to be updated in such way that the robot would not miss the sole.
Sometimes the robot missed it, implying that this could be an indication that there was
a problem with the recognition.

If the socks and pants of the participant were the same colour, the sole and the legs could
not always be distinguished. Therefore, the massage points were rotated and translated
in a wrong way. Further, the robot was not always recognized well, because the model
could be overfitted with images of the robot without its modified head. Another problem
could be a situation, where the prototype is in a room with bad lighting conditions, due
to the fact that the cameras used are not the most expensive ones. All in all it can be
concluded that this model is robust enough.

As mentioned in the previous section, only few participants had been to a professional
foot massage, but all thirteen had at least a regular massage. To point this out, each
person knew the feeling of being massaged. Since the head of the robot was a ball and not
a robotic hand, it was not possible to perform kneading. Therefore, a full foot massage
is not possible, despite that, Figure 5.4 has shown that the feet of each person felt better.
To answer the question if a robot is capable of performing a state-of-the-art foot massage,
each participant was asked about the performance of frictioning and stroking. These
techniques were limited to the sole of the foot. Everyone said that frictioning was good
and the pressure was not too much. To perform a more professional and varied massage,
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stroking was manually added at the second half. All of the participants mentioned that
the combination of both techniques felt better than with frictioning only. However, the
users indicated that the stroking movement did not always work well, because the exact
shape of the sole is not taken into account while performing this technique. To optimize
the stroking movement, a convex surface detection could be implemented. In summary
to answer the first question, the robot is capable of performing a state-of-the-art foot
massage.

It was mentioned in the previous section that the participants did not use the voice
command function often. Since the default options of the massage were pleasant, none
of them had a reason to change something via the audio commands. Nevertheless,
it was found that the variety of commands was enough to adjust the massage points.
Another observation was that some voice commands were not always recognized correctly.
Therefore, the accuracy in a real world scenario is lower than 95% and 94%. A reason
could be the difference between the quality from the voice commands and the samples
of the training set. In the previous sections it was already mentioned, that the audio
models are trained with audio samples, that are a raw waveform. This could be another
reason for the audio recognition problem. A solution could be to train the models with
audio samples, where mel-frequency cepstral coefficients are extracted. As mentioned in
the previous section, it is difficult to say whether it is possible to adjust the massage in a
convenient way, with the reason being that the participants did not interact with the
robot often.

To answer the last question whether it is possible to reduce the stress level and improve
the well-being of a participant, each user reported to be more relaxed afterwards. Even
those, who were already in a pleasant mood, saw an improvement of their well-being.
In conclusion, it is possible to reduce the stress level and improve the well-being of a
participant, after a foot massage by a robot.
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CHAPTER 6
Summary

6.1 Conclusion

In this work, a hardware and software prototype was developed. Modifying an existing
robotic arm, building a footrest and connecting all components to the platform are parts
of the process in creating the hardware prototype. The software prototype includes foot
and robot recognition, distance estimation, audio recognition, massage point generation
and inverse kinematics calculation within a simulation. In particular, all this steps
were necessary to investigate whether it is possible that a robotic arm can perform a
state-of-the-art foot massage.

To achieve this goal, the hardware prototype was developed first. For this purpose,
the robotic arm was modified so that it has 4 -DOF and an end-effector consisting of a
deodorant roller (with built-in buttons to verify physical contact) instead of a claw to
ensure a comfortable contact with the sole of a foot. Building the footrest and connecting
each component to a platform was the next step. After that, the software prototype was
developed. The first part was the recognition of the foot and the robot. Accordingly,
many images with different feet were collected and labeled. Since a robot was modified
for this thesis, only images of that robot were taken. Then, a Mask R-CNN was trained
and implemented into the program. A distance estimation function for the side and back
camera was the next step. Further, a mask of a sole template was saved and massage
points were marked on it. The mask and points are always transformed to the mask of
the foot to be massaged. To move the robot, the massage points are mapped into a 2D
and 3D simulation. Then the inverse kinematics are calculated and simulated. Finally,
the angles of individual joints are sent to the Arduino, which controls the robot, and
the foot massage begins. The Arduino also checks for physical contact and performs
some additional movements for a state-of-the-art foot massage. To manipulate the
movements of the robot during the massage, audio recognition was implemented. Due to
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this implementation, it was possible to start and stop the robot and change the pressure
or speed of the massage via voice commands.

To answer the research questions of this thesis presented in Chapter 1, a case study
was designed. For this reason, thirteen people were tested for approximately twenty
minutes. Before and after the massage, the participants had to fill out a questionnaire
about their experience. Later, these questions were analyzed and evaluated. The result
was that every person had a better feeling and was more relaxed after the foot massage.
In addition, the combination of stroking and frictioning felt better than a massage that
only involved frictioning, although stroking did not always work well.

Another observation was that the CNN used for audio recognition had some issues in
predicting audio commands from raw wave samples. The reason could be the difference
between the quality from the voice commands and the samples of the training set.
The participants did not interact with the robot often, as the default configurations
were comfortable enough. In conclusion, it is possible to decrease stress and perform a
state-of-the-art foot massage with a robot.

6.2 Future Work
Since this thesis consists of a hardware and software part, some limitations have been
faced. The provided robot had a claw as end-effector, therefore modifications were made
so that the end-effector is a deodorant roller with a comfortable surface for a massage.
Further, the robot misses an additional joint before the end-effector, keeping it from
reaching the outer edges of a sole during a massage and from performing more complex
movements. Because of this, and due to the limitation of time for this thesis, the robot
was kept simple. Moreover, the processing, detection and recognition tasks are very
expensive to compute. A newer GPU that supports CUDA is required to process these
tasks as quickly as possible to move the robot smoothly. For this reason, and in fact
that a Raspberry has no GPU which supports CUDA, the prototype was not as easy to
transport. The robot can massage the left and right foot. Because the side camera is on
the left, the longitudinal vault of the left foot is not visible. As a result, the massages on
the left are less accurate.

In a future work, the robot could be extended with an additional joint and the inverse
kinematics could be modified so that the movement can be more complex. An advantage
would be that the robot would not slip off the sole when the pressure is increased and
when the end-effector is rotated in the correction direction. In addition, with refined
distance estimation and a convex surface detection, the stroking massage technique would
be more accurate and comfortable. Another improvement can be made in the audio
command recognition. For this purpose, a model with mel-frequency cepstral coefficients
feature could be trained. Further, the audio recognition models could be extended to
recognize more commands, so that more modifications to the movements of the massage
are possible. An example would be the command left, limiting the movement of the
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robot to the left side of the sole. To conclude, all these possible implementations and
improvements could lead to a more pleasant massage by the robotic arm.
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