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Abstract

Increased demand on the package delivery industry is prompting companies to make
use of crowdsourced delivery drivers. In this industry, when crowdsourced drivers are
used the drivers need to be quickly provided with an optimal delivery route. This thesis
addresses a new, real-world, crowdsourcing variant of the Vehicle Routing Problem, with
deviation constraints and both heterogeneous and homogeneous capacity constraints
using ad-hoc drivers. Previously, the problem has only been solved with exact techniques.
Although exact techniques guarantee exact optimal solutions, they can have very long
running times making them impractical in a fast paced, real-world situation. For this
reason, this thesis explores a metaheuristic approach to solving the crowdsourced VRP,
where solutions are not guaranteed to be exact, but can be close to exact and the running
times are much shorter, thus practical in a real-world setting.

In this thesis, we develop two Memetic Algorithms (HA1 and HA2) by combining a
Genetic Algorithm with a Randomized Hill Climbing Local Search. The algorithms
aim is the problem’s objective of minimizing total deviations of all the drivers while
satisfying the problem’s constraints. Problem-specific crossover and mutation operations
are developed, and two variants of the crossover operation are explored. The results of
the algorithms are empirically evaluated. The algorithms best fitness values and running
times are compared to results of a Constraint Programming solver and the algorithms
are compared against each other.

One Memetic Algorithm in particular, HA1, provided positive results when evaluated.
This algorithm is able to provide feasible solutions to instances with up to 135 packages
with average running times of only a few minutes. On small instances the Memetic
and Genetic Algorithms found feasible, but not exact, solutions, compared to the exact
solutions of the Constraint Programming solver. Both Memetic Algorithms found more
feasible and better results than the Genetic Algorithm, with HA1 performing the best
in this area. The results found with a Memetic approach are practical for real-world
problems since results that are both feasible and practical are provided within very short
running times.
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Kurzfassung

Die steigende Nachfrage in der Paketzustellbranche veranlasst die Unternehmen, Crowdsourced-
Delivery-Fahrer einzusetzen. Wenn in dieser Branche Crowdsourcing-Fahrer eingesetzt
werden, muss den Fahrern schnell eine optimale Lieferroute zur Verfügung gestellt werden.
Diese Arbeit befasst sich mit einer neuen, realen Crowdsourcing-Variante des Fahrzeug-
Routing-Problems mit Abweichungsbeschränkungen und sowohl heterogenen als auch
homogenen Kapazitätsbeschränkungen unter Verwendung von Ad-hoc-Fahrern. Bislang
wurde das Problem nur mit exakten Verfahren gelöst. Exakte Verfahren garantieren zwar
exakte optimale Lösungen, können aber sehr lange Laufzeiten haben, was sie in einer
schnelllebigen, realen Situation unpraktisch macht. Aus diesem Grund wird in dieser
Arbeit ein metaheuristischer Ansatz zur Lösung des Crowdsourced VRP erforscht, bei
dem die Lösungen zwar nicht garantiert exakt sind, aber nahe an der Exaktheit liegen
können und die Laufzeiten viel kürzer sind, was in einer realen Umgebung praktisch ist.

In dieser Arbeit entwickeln wir zwei memetische Algorithmen (HA1 und HA2), indem
wir einen genetischen Algorithmus mit einer lokalen Suche (Randomized Hill Climbing)
kombinieren. Ziel der Algorithmen ist es, die Gesamtabweichungen aller Fahrer zu
minimieren und gleichzeitig die Randbedingungen des Problems zu erfüllen. Es werden
problemspezifische Crossover- und Mutationsoperationen entwickelt und zwei Varianten
der Crossover-Operation untersucht. Die Ergebnisse der Algorithmen werden empirisch
ausgewertet. Die besten Fitnesswerte und Laufzeiten der Algorithmen werden mit den
Ergebnissen eines Constraint Programming Solvers verglichen und die Algorithmen
werden miteinander verglichen.

Insbesondere ein memetischer Algorithmus, HA1, lieferte bei der Auswertung positive
Ergebnisse. Dieser Algorithmus ist in der Lage, machbare Lösungen für Instanzen mit bis
zu 135 Paketen bei durchschnittlichen Laufzeiten von nur wenigen Minuten zu liefern. Bei
kleinen Instanzen fanden der memetische und der genetische Algorithmus praktikable, aber
nicht exakte Lösungen, verglichen mit den exakten Lösungen des Constraint Programming
Solvers. Beide memetischen Algorithmen fanden mehr realisierbare und bessere Ergebnisse
als der genetische Algorithmus, wobei HA1 in diesem Bereich am besten abschnitt. Die
mit dem memetischen Ansatz gefundenen Ergebnisse sind für reale Probleme praktikabel,
da die Ergebnisse, die sowohl machbar als auch praktikabel sind, innerhalb sehr kurzer
Laufzeiten geliefert werden.
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CHAPTER 1
Introduction

1.1 Motivation

In recent years, there has been increasing demand on the package delivery industry.
Largely due to online sales, there is an ever-increasing number of packages needing to be
delivered. The demand is exacerbated by increasing customer expectations for shorter
delivery times. This puts a considerable strain on the package delivery industry. The
traditional method of package delivery involves the use of a standard fleet of trucks with
the single purpose of making deliveries and returning to their distribution center. This
method has worked well in the past but now struggles to keep pace with the new demands
of the industry. The traditional method is not only costly for the delivery company but
also has a large negative impact on the environment due to the emissions produced by
the delivery trucks. Due to these drawbacks, many companies including Amazon [1, 2]
and Walmart [3], are turning to crowdshipping as a solution.

Crowdsourcing refers to the use of many small contributions by people volunteering to
complete a larger task or solve a problem. Wikipedia is a prime example of crowdsourcing.
People from all over the world contribute to each Wikipedia article by writing, editing,
and researching Wikipedia content [4]. This leads to a massive collection of knowledge
created and maintained with the help of a large number of people, all making small
contributions to the whole. Crowdsourcing may also be leveraged in the delivery industry.
Crowdsourced deliveries (known as crowdshipping) utilize everyday people who agree
to deliver a few packages on their way to their own destination – e.g. their place of
work. They are often compensated monetarily or otherwise for their time and effort.
The crowdshipping approach has become a popular solution to the increased demand on
the delivery industry. A single driver may deliver only a few packages but collectively
hundreds of packages may be delivered in this manner, with only a small contribution
from each driver.
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1. Introduction

In this thesis, we will tackle a real-world, crowdsourced Vehicle Routing Problem, where
ad-hoc drivers deliver packages on their way to their own destination. Each driver
specifies the maximum volume they are willing to transport, and the vehicles have a
maximum number of packages they can transport. The drivers also specify the maximum
distance they are willing to deviate from their original route. The objective of the problem
is to minimize the total distance that all the vehicles deviate from their original route.
This new, real-world problem was defined, formalized, and studied using Constraint
Programming methods in 2020 by [5] at the Technische Universität Wien. The problem
is a variant of the NP-hard Vehicle Routing Problem. So far the problem has only been
solved using exact methods and no metaheuristic approach has been suggested.

Given enough time, the Constraint Programming method guarantees exact optimal
solutions. However, exact methods for NP-hard problems such as this have the drawback
of having impractically long running times. This is especially true for large instances.
Since the problem is NP-hard, as the size of the instances grow, the running times of
exact methods grow greatly. This can be impractical in real-world situations when a
solution is needed quickly. Even the fastest exact methods have this issue. However, an
exact solution is often not needed and an approximate solution is acceptable if it can
be found faster. In the world of NP-hard problems, there is often a trade-off between
accuracy and speed; an extremely fast algorithm at the cost of some accuracy is often
ideal in real-world situations. Thus, metaheuristics are often an excellent solution to
these types of problems. Metaheuristics do not guarantee precisely accurate solutions
but they tend to be considerably faster than exact methods. In our case, we have a
real-world package delivery problem where companies need to provide routes to drivers
quickly in order for packages to be delivered daily. In this case, waiting for an exact
optimal solution could take a considerable amount of time, especially when hundreds
of packages require delivery. Because of the demand on the industry to deliver a large
number of packages within increasing short delivery times, it may not be efficient to use
exact algorithms since waiting for solutions could take hours when such a large number of
packages is being considered. Hence metaheuristics are needed in this area; providing a
good, but not perfect, set of routes within a few minutes is more practical than providing
the best routes within several hours.

For this reason, we tackle the problem using a metaheurisitc approach. The aim is
to provide an approach that can be used in real-world situations and is practical for
use in the industry. We use a Genetic and Memetic approach to create metaheuristic
solutions to the problem. A Genetic Algorithm is a metaheuristic roughly based on the
evolutionary process, where good solutions are chosen to create a new population of
solutions that are more adapted to solve the problem.[6]. A Memetic Algorithm is a
Genetic Algorithm combined with a Local Search procedure to make use of the benificial
aspects of the Local Search [7]. A Genetic Algorithm on its own may not provide the best
results for Vehicle Routing Problems, but when combining a Genetic Algorithm with a
Local Search procedure we expect fast and close to accurate results to this problem.

2



1.2. Aims of This Thesis

1.2 Aims of This Thesis
In this thesis, we aim to tackle this real-world problem using two Memetic approaches
that combine Genetic Algorithms with a Randomized Hill Climbing Local Search. The
main goal of this thesis is to develop a metaheuristic technique to provide fast and
close to accurate solutions to this problem, that can be applied practically in real-world
situations. We aim to develop a Genetic Algorithm and a Local Search Algorithm, as well
as develop two Memetic Algorithms by combining these two algorithms. Another aim of
this thesis is to develop new problem-specific crossover and mutation operations to be
used in the Genetic and Memetic Algorithms. We also aim to solve smaller instances with
known exact solutions to optimality within practical, short running time. Additionally,
we aim to solve larger instances, where a true optimal solution cannot be guaranteed, to
feasibility with close to accurate results .

These aims are summarized as follows:

• Investigate metaheuristic solutions by developing a Genetic Algorithm and Local
Search Procedure.

• Combine the Local Search Procedure with the Genetic Algorithm to create two
Memetic Algorithms that can be practically applied in a real-world setting.

• Provide optimal solutions to small instance within practical running times.

• Provide close to accurate solutions to large instances within practical running times.

• Design new crossover and mutation operations to use in both the Genetic Algorithm
as well as the Memetic Algorithms.

1.3 Contributions of This Thesis
Smaller instances of this problem variant have been previously solved by [5] using
Constraint Programming (CP) techniques, yet there have been no solutions provided for
larger instances with more than 60 packages and the problem has not been solved using
a metaheuristic approach. In this thesis, we begin by providing a formal mathematical
formulation of the problem. We then develop a metaheuristic algorithm to solve large
instances of this crowdsourced Vehicle Routing Problem (VRP). Namely a Memetic
Algorithm (MA) where a Genetic Algorithm (GA) combined with a Local Search (LS)
is developed. Two techniques of hybridizing GA and LS along with new crossover and
mutation operations are developed. A Randomized Hill Climbing Algorithm is developed
as our Local Search procedure using the mutation operation to define the neighborhood.
These techniques and operations are experimented with, and the results are evaluated
empirically. The resulting algorithms give feasible solutions within reasonable running
times, and several large instances are solved that have been previously too large to solve.
Instances with up to 135 packages are solved within running times less than 8 minutes.
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1. Introduction

During the development process, operations and methods are tested with unit tests and
some results are checked using a solution validation process developed by [5]. The results
of the two Memetic Algorithms as well as the results of the Genetic Algorithm on its own
are evaluated on three sets of instances. The instance sets vary in size. The smallest set
of instances is solved to optimality using Constraint Programming techniques; hence, the
exact solutions are known. This set of instances is then used to evaluate the algorithms’
ability to find the true optimal solution on these small instances. The two other instance
sets have larger instances where the exact solution is unknown. On these instances, we
compare the algorithms’ solutions to some approximate solutions found using Constraint
Programming techniques, and we compare the algorithms against each other when no
exact or approximate solution is known. The feasibility of the results and running times
of the algorithms on these larger instances are also evaluated.

The thesis presents these contributions:

• A Genetic Algorithm with two variations on a new problem-specific crossover is
explored. The GA is evaluated and compared against Constraint Programming
results.

• A problem-specific mutation operation is developed using a element swap approach.

• A Randomized Hill Climbing Local Search procedure is implemented with a neigh-
borhood defined using the mutation operation.

• By combining the Hill Climbing procedure with the Genetic Algorithm, two Memetic
Algorithms are experimented with and compared to Constraint Programming results.
The two Meemtic algorithms can solve large instances with up to 135 packages.

• Before the empirical evaluations, the Genetic and Memetic Algorithms’ parameters
are experimentally tuned yield feasible solutions.

• Using the Genetic Algorithm and the Memetic Algorithms, feasible solutions to
small instances with up to 14 packages are obtained with average running times of
less than 0.4 seconds.

• Feasible solutions better than CP results are found using the Memetic Algorithms
with running times less than 6 seconds on instances with 33 to 48 packages.

• Feasible solutions to large instances with up to 135 packages are obtained in less
than 8 minutes that are too large to solve using exact methods within two hours.

1.4 Structure Of This Thesis
In Chapter 2 we provide a formal definition of the problem and review the recent work on
similar problems in the current literature. After providing a mathematical definition of
the problem, recent work on similar problems is examined. The exploration of the related

4
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work begins with an investigation of capacity and distance constrained VRP with open
ended routes (Open VRP). Such problems have many similarities to ours. Next, VRP
with occasional drivers (VRPOD) first introduced by [8] in 2016 is discussed. Finally, we
examine similar Memetic Algorithms on Open VRPs. In Chapter 3, we begin by discussing
the techniques used in the implementation of the Genetic Algorithm. In this section,
section 3.1, we provide a background of Genetic Algorithms and aspects to consider
when developing such an algorithm. The fitness function is also discussed in this section.
Furthermore, we define the solution representation, and how the crossover and mutation
operations. In the next section of Chapter 3, section 3.2, the Memetic Algorithms are
discussed. This begins with a background on Memetic Algorithms and then explores
how the Genetic Algorithm is combined with a Local Search procedure to create our two
main Memetic Algorithms. In the final section of Chapter 3, section 3.3, we discuss the
design of the Local Search procedure. Chapter 4 presents the experiments performed
on several sets of problem instances and the meaningful findings of the experiments are
discussed. Finally, we conclude our findings in Chapter 5. Here our work is summarized,
and the overall results of the experiments are reviewed. In addition, possible future work
that could be done on Memetic approaches to this problem and further problem variants
that could be explored is discussed in Chapter 5.
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CHAPTER 2
Problem Statement and Related

Work

The traditional approach to package delivery is analogous to the classical Vehicle Routing
Problem first introduced in 1959 [9]. The Vehicle Routing Problem is an optimization
problem where vehicles are routed to service a number of customers and the routes are
optimized in some way. Most often VRP is defined to include a central depot location
where all vehicles leave from and return to. There are many variants of the Vehicle
Routing Problem; common variations include capacity constraints [10, 11], distance
constraints [10], open-ended routes [12] where drivers do not return to the central depot
after their route, and many more variations and constraints.

Several variants of this general problem have been tackled in the past, but this thesis
will focus on a new, real-world variant that appears in the industry. Here, the problem is
a crowdsourced package delivery problem where the goal is to deliver packages from a
single depot to customers in various locations. Delivery drivers are crowdsourced. The
drivers are compensated by the number of packages they deliver and other factors are
not considered in driver compensation. The goal then, is to provide these drivers with
reasonable routes and to minimize the total distance that all the drivers deviate from
their original route. Minimizing the total deviations of all the vehicles will in turn reduce
fuel costs and emissions.

In this chapter, we present the formal definition of the problem, explore similar problems,
and explore the current state-of-the-art approaches to these similar problems.

2.1 Problem Statement
The problem is a Constraint Optimization problem and a Vehicle Routing Problem. A set
of packages, P , and a set of drivers, A, are given. For each package p E P , a destination,

7



2. Problem Statement and Related Work

destp, and a volume, vp, are provided. For each driver a E A , three attributes are
provided: the drivers’ original destination desta, the maximum volume their vehicle
accommodates v.

a, and the maximum distance they are willing to deviate from their
original path maxDeva. Also given is the maximum number of packages a vehicle can
deliver, maxP . The value maxP is the same for every vehicle.

The goal is to provide routes to these drivers such that the sum of the deviations over
all the drivers is minimized, while simultaneously fulfilling several constraints. A route,
ra, for a vehicle a E A is an ordered sequence beginning with the first packages to be
delivered by vehicle a and ending with the last package to be delivered by vehicle a. A
solution would then be a set of these routes, one for every driver in A. The deviation
of driver a, deva, is defined as the difference between the distance traveled by vehicle a
along route ra and vehicle a’s original route. Several constraints must be satisfied by
these routes. These constraints are hard constraints, meaning a solution is not feasible
unless all the constraints are satisfied.

• Package Delivery Constraint Each package must be delivered and a package
must not be assigned to multiple cars ( i.e. each package must be assigned to
exactly one car).

• Volume Constraint: The maximum volume each car can accommodate, va, must
not be exceeded.

• Number of Packages Constraint: The maximum number of packages a driver
can deliver, maxP , must not be exceeded by the route provided to any vehicle.

• Deviation Constraint: The maximum distance each driver is willing to deviate,
maxDeva, must not be exceeded by the route provided for the vehicle.

The objective of this constraint problem is to minimize the sum of the deviation of all
the vehicles, ∑

aEA deva, while also satisfying all of the above constraints.

2.1.1 Formal Problem Definition
We can formulate this problem formally as follows.

Constants:

P = {1, 2, ..., n} represents the packages to be delivered.

A = {1, 2, ..., m} represents the vehicles available to make deliveries.

vi := the volume of package i, Ai E P .

v.
i := the volume of vehicle i, Ai E A.

si := the distance from the depot to the destination of package i, Ai E P .

8



2.1. Problem Statement

s.
i := the distance from the depot to the destination of vehicle i, Ai E A.

dj
i := the distance from package i E P to package j E P .

f j
i := the distance from the destination of package i to destination of vehicle j,

Ai E P and Aj E A.

maxP := the maximum number of packages a vehicle can transport.

maxDevi := the maximum distance a vehicle is willing to deviate from its original
route.

Variables:

li := the number of packages delivered by vehicle i, Ai E A.

ri = {x1
i , x2

i , ..., xli
i } := the ordered set of all packages delivered by vehicle i. This

represents the route for vehicle i, Ai E A.

xk
i E ri := the kth package delivered by vehicle i, Ai E A and Ak E {1, 2, ...li}.

Objective:

MIN
∑
iEA

devi (2.1)

where devi = sx1
i

+
∑

k<li-1
(dxk+1

i

xk
i

) + f i

x
li
i

- s.
i

Subject to the following constraints:

Ap E P, Ei E A s.t p E ri (2.2)

Ap E P if Ei E A s.t p E ri then p /E rj Aj E A \ {i} (2.3)

∑
pEri

vp < v.
i Ai E A (2.4)

li < maxP Ai E A (2.5)

devi < maxDevi Ai E A (2.6)

9



2. Problem Statement and Related Work

Equations 2.2 and 2.3 represent the Package Delivery Constraint. Equation 2.2 ensures
that each package is assigned to a vehicle and is delivered. Equation 2.3 ensures that
no package is assigned to more than one vehicle. Equation 2.4 represents the Volume
Constraint, ensuring that the total volume of the packages assigned to each vehicle does
not exceed the vehicles maximum volume v.

i. Equation 2.5 ensures that the number of
packages assigned to each vehicle does not exceed maxP ; this satisfies the Number Of
Packages Constraint. The final equation, Equation 2.6, ensures that every vehicle’s route
does not exceed the vehicle’s allowed maximum deviation.

2.2 Related Work
Although this is a new problem, it shares many aspects with similar problems found in
the literature. Our problem is a variant of the VRPOD where occasional drivers make
up the entire fleet rather than supplement a standard fleet. Two capacity constraints
are included in our problem: a volume constraint that is heterogeneous across the fleet
and a homogeneous constraint on the discrete number of packages a vehicle can deliver.
Deviation constraints are also included and instances can be such that occasional drivers
deliver more than a single package. In this problem, the routes can be considered similar
to "open" routes in Open Vehicle Routing Problem since the drivers do not return to the
depot after their deliveries. However, unlike the Open Vehicle Routing Problem, where
drivers end on their final delivery, the drivers go to their own final destination after their
final delivery, and that distance must be considered in the calculations of distance and
deviation.

After an extensive review of the literature on the Vehicle Routing Problem, we found
a large amount of research on several problems that share similarities to our proposed
problem. In this section, we will first discuss similar and interesting algorithms for the
Open VRP (OVRP) with capacity and/or distance constraints. We will look at the
current research on these problems since they have some similarities to our problem.
Since our problem is a variant of VRPOD, we will discuss VRPOD and recently proposed
algorithms that solve VRPOD variants effectively and efficiently. Lastly, we will look
again at Open VRPs and recent work where Memetic approaches similar to our proposed
algorithms are used.

2.2.1 Capacity and Distance Constrained Open VRP
In this section we will discuss recent and related work on capacity and distance constrained
VRPs with open ended routs. Our problem is a VRPOD where the occasional drivers
make up the entire delivery fleet. However, our problem has several other constraints that
are common in VRP variants. For example, the Open Vehicle Routing Problem (OVRP)
- first introduced in 1997 [13] - is similar to our problem since the drivers do not return
to the depot at the end of their deliveries. Our problem is also capacity constrained and
could be considered distance constrained, albeit the distance is constrained by drivers
deviations from their original path. It is still important to look at work previously done

10



2.2. Related Work

on standard distance constrained problems. There has been a significant amount of work
done on VRP in general [10]. We will address some recent and related work on capacity
and distance constrained VRPs and Open VRPs since they have many similarities to our
problem.

An Open Vehicle Routing Problem with capacity and distance constraints was solved by
[14] using a biased random-key GA. In a random key GA, the chromosomes are a set
of fractional values between 0 and 1. The chromosome cannot represent aspects of the
solution directly and must be decoded into a solution [14]. The authors use benchmark
VRP instances to evaluate the algorithm, and solve distance and capacity constrained
versions with open routes [14]. They compare their solutions with previous OVRP
solutions and obtain promising results [14]. Their solutions to instances with around 100
vertices (customers and depots) are competitively better than previous solutions, and
the algorithm can solve instances with up to 440 vertices [14].

Previous work on capacity constrainted OVRP(but not distance constrainted) include a
hybrid evolutionary algorithm by Repoussis et al. [15]. This algorithm is much like a
classical GA but it uses only mutation on individuals and no recombination or crossover
is used on individuals [15]. However, for each individual vector, there is also a "strategy
parameters" vector where each element represents the probability that the corresponding
element in the individual’s chromosome will be mutated [15]. These "strategy parameter"
vectors evolve using a recombination operation rather than a mutation like their solution
representation counterpart [15]. The authors combine this evolutionary algorithm with
the common metaheuristic Tabu Search [15]. Every offspring from the mutation is further
improved using the Tabu Search [15]. The results of this algorithm are compared to
previous solutions on OVRP instances and are shown to be competitive with previous
work [15].

2.2.2 VRP with Occasional Drivers
Since our problem is a VRPOD variant, in this section we explore related work on several
variants of the VRPOD. In 2016 the Vehicle Routing Problem with Occasional Drivers
(VRPOD) was introduced by Archetti et al. [8]. The VRP variant discussed in [8]
uses crowdsourced ad-hoc drivers to supplement a standard fleet of delivery trucks. [8]
evaluates the cost-effectiveness and benefits of using occasional drivers and considers
the various schemes for compensating the occasional drivers. The authors propose an
Integer Programming formulation of the new problem, which they solve using CPLEX.
CPLEX is commonly used Mathematic Programming solver by IBM [16]. A Multi-Start
heuristic is also employed by the authors in [8] to solve the VRPOD and the results
are compared against the Integer Programming solutions. Since this introduction of the
VRPOD, many variants have been solved using numerous techniques both approximate
and exact [17, 18, 8, 19, 20, 21, 22, 23, 24, 25].

In 2021, [18] uses a new “Evolutionary Multitasking” algorithm to simultaneously solve
multiple instances of a VRPOD variant. The variant of the problem considered in [18]
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2. Problem Statement and Related Work

has heterogeneous vehicle capacities and time window constraints. In this problem,
the occasional drivers again supplement a regular fleet of delivery vehicles [18]. The
Evolutionary Multitasking algorithm takes multiple instances of the problem as input,
and the chromosomes can encode a solution to any of these instances [18]. Their algorithm
is able to return a solution to each of the instances. This multitasking algorithm showed
quality results in terms of both solution accuracy and efficiency [18].

Fabian Torres et al., [18], investigate a new variant of VRPOD where “stochastic destina-
tions" are used. In the article, the term "stochasitc destinations" means the occasional
drivers have random destinations that may vary over separate days [19]. Their problem
is titled the “Open VRP with Stochastic Destinations" [18]. In this article, the problem
is formulated as a Mixed Integer Program (MIP) and is solved using a branch-and-price
approach. Their approach was able to solve instances where up to 50 customers are
served by the vehicles [18]. The authors improve on this result by employing a Column
Generation Heuristic to relax the MIP formulation. With this heuristic they can solve
instances with up to 100 customers [18].

In an article in 2019, Macrina et al., [17], develop a Variable Neighborhood Search
Heuristic for a variant of the VRPOD that includes time windows and “transshipment
nodes” [17]. In their problem, smaller warehouses, called "transshipment nodes", are
used throughout the city or delivery area [17]. At these "transshipment" warehouses, the
occasional drivers make pickups for their deliveries and the "transshipment" warehouses
are stocked using a standard fleet trucks [17]. Macrina et al. [17] show the cost advantages
of both the use of occasional drivers as well as of the use of these “transshipment nodes”.
They formulate the problem as a Mixed Integer Program and solve it using CPLEX, and
develop a Variable Neighborhood Search Heuristic (VNS) for the problem. The VNS is
efficient and effective compared to the CPLEX results and is capable of solving instances
with 50 customers [17].

In 2020, the same problem variant that was studied by [17] is also solved by [20] using
Greedy Randomized Adaptive Search Procedures (GRASP) [20]. The results of this
approach are compared to previous results on the problem. The GRASP approach is
both efficient and effective in providing solutions to the problem [20].

In a 2019 paper, Abu Al Hla et al. [25] develop a complex VRP problem using occasional
drivers [25]. In an interesting combination of constraint optimization and behavioral
economics, the authors develop an MIP formulation where driver behavior is included.
This is done by allowing drivers to choose routes, and driver behavior is modeled using
a parameter for risk adverseness [25]. In this article [25], the problem is solved to near
optimality with the use of two different heuristics, a Greedy Heuristic and an Intra-Route
Heuristic Neighborhood Search.

Sampaio et al. [24] use an Adaptive Large Neighborhood Search metaheuristic to solve a
variant of VRPOD [24]. Their variant includes a time window constraint and transfers
[24]. Transfers means a driver can take the package part of the way to a location where
another driver will pick it up from that location and complete the delivery [24].
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2.2.3 Memetic and Genetic Algorithms on OVRP

In this thesis, we develop a Memetic Algorithm to solve our crowdsourced Vehicle
Routing Problem. To the best of our knowledge, there has been little to no research
using Memetic Algorithms where GA is combined with a Local Search to solve a VRPOD
variant. However, there is promising research on other VRP variants using Memetic
Algorithms. As discussed before, the OVRP is similar to our problem, especially when
capacity and deviation constraints are included in the OVRP. In this section, we will
look at recent research using Memetic Algorithms and Hybrid Genetic Algorithms on
problems with open routes. Over the years there have been several Memetic Algorithms
proposed on various OVRP variants: [26, 27, 28, 29].

Ran Liu et al. [28] propose a Hybrid Genetic Algorithm (HGA) where a Local Search is
used instead of a mutation operation. Every child chromosome from the recombination
process has a chance that the Local Search methods will be applied to it [28]. Their
algorithm is used to solve a multi-depot variant of the OVRP. The authors also formulate
their problem as an MIP and solve it using CPLEX. The results of their HGA are
compared to both CPLEX results and results form another metaheuristic algorithm
called a “list based threshold accepting heuristic” [28]. The HGA algorithm outperforms
both CPLEX and the other heuristic, especially on moderate to large sized instances
with 100 to 350 customers [28]. These are impressive results [28].

Richard Y.K. Fung et al.[26] explore an Open Capacity Constrained Arc Routing Problem
(OCARP). In Arc Routing Problems, instead of all locations (nodes in a graph) needing
to be visited by the vehicles, all arcs in the graph must be visited. The authors propose
a Memetic Algorithm similar to the one proposed for the multi-depot OVRP by Ran
Liu et al. [28]. In the algorithm by Fung et al. [26], at every generation, each new
child has a chance of being improved upon using a Local Search. The authors use
three different operations within their Local Search to achieve a better solution. The
results of this algorithm on random instances outperformed CPLEX on a lower bound
Linear Programming formulation of the OCARP problem [26]. They also compare the
results of the Memetic Algorithm to that of a classical GA and the Memetic Algorithm
outperforms the GA in all cases [26]. The Memetic Algorithm was also compared to
previously proposed heuristics for Capacity Constrainted Arc Routing Problems (CARP)
on commonly used benchmark instances [26]. The Memetic Algorithm was competitive
with the other heuristics [26]. The OCARP problem discussed was quite different from
ours since it is an Arc Routing Problem. An Arc Routing Problem is not the same as a
Vehicle Routing Problem. Nevertheless, these findings are incredibly interesting results
on the use of a Memetic Algorithm to solve a routing problem.

In an article published in 2021, Liang Sun et al., [27], employ a Genetic Algorithm for
a specific variant of OVRP where time windows are considered, and travel times are
uncertain. Because of the uncertainty, the authors propose a “light-robust-optimization
model” [27]. They develop a Genetic Algorithm with a self-adaptive mutation rate that
increases if the quality of the population is low [27]. The quality of the population is
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determined by the fitness of the best solution in the population [27]. The authors also
have a self-adaptive crossover rate that is decreased for individuals with a problem-specific
attribute that leads to poor solutions. They use a “hybrid tournament selection" where
the winners of a tournament are determined by not only the fitness of the chromosome
but also by an attribute that tends to lead to poor solutions [27].
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CHAPTER 3
The Algorithms

This chapter introduces a Genetic Algorithm and a Local Search Algorithm, which are
then combined to create two Memetic Algorithms. We begin with the Genetic Algorithm
development. Some background on Genetic Algorithms is provided as well as some
aspects to be considered when developing a Genetic Algorithm. These aspects include
a solution representation, a fitness function, a crossover and mutation operation, and
selection and replacement strategies. In the Genetic Algorithm section of this chapter,
we discuss the solution representation that is developed in this thesis and the fitness
function. These methods are used not only in the Genetic Algorithm but also in the Local
Search and the Memetic Algorithms. We then discuss the design of our new crossover
and mutation operations. Lastly the selection and replacement strategies used in the
Genetic Algorithm are discussed. In the next section of this chapter, beginning with a
brief background on Memetic Algorithms, we explore the development process of our
Memetic Algorithms. In the final section of this chapter, we address the Local Search
algorithm. As our Local Search procedure, we develop a Randomized Hill Climbing
procedure with a neighborhood defined using the mutation operation. We also discuss in
detail how the Local Search is integrated into the Memetic Algorithms.

3.1 Genetic Algorithm
A Genetic Algorithm is a metaheuristic algorithm that is inspired by and mimics the
evolutionary process and natural selection [6]. In a Genetic Algorithm, a chromosome is
generally a list of numbers or digits (elements) that represents a solution to the instance
being solved [6]. A chromosome is also sometimes be referred to as an individual or a
solution [6]. At the initialization of a GA, a set of chromosomes, called the population,
is generated often randomly [30]. At every iteration of a Genetic Algorithm, called a
generation, there is a new set of chromosomes that make up the population [30]. For
every generation, several individual chromosomes are selected based on some selection
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strategy [30]. These selected individuals are called parents [30]. In the next step, each
selected pair of parents has a chance to be recombined using the crossover operation to
create new children chromosomes [30]. If the parents are not crossed-over, the parents
themselves are used as their children in the next generation [30]. After the crossover,
each child has a chance of being mutated with the mutation operation [30]. A mutation
operation uses only one parent chromosome and it involves a simple operation such as
flipping a bit (when the chromosome elements are 1 or 0) or swapping two elements within
the chromosome [6]. After the crossover and mutation phase, the newly created children
replace most or all the individuals in the population [30, 6]. Hence a new population is
created for the next generation. This process continues until some stopping criterion is
met, for example, a maximum number of generations without improvement on the best
fitness in the population [6]. Once a stopping criteria is met, the individual with the best
fitness is returned.

Several things are required to develop a Genetic Algorithm. A crossover operation, a
mutation operation, a solution representation that will be used as a chromosome, a
selection, and a replacement strategy are required. In this thesis, a solution represen-
tation is developed and is used in both the Genetic Algorithm and the Local Search
algorithm. A crossover operation and a mutation operation are developed for the Genetic
Algorithm. The mutation operation is also used in the Local Search algorithm to define
the neighborhood. A Roulette Wheel selection technique is used, where the chance
of and individual being selected is proportional to that individuals fitness value. A
replacement strategy where the children replace the chromosomes that they are most
similar to is used.

3.1.1 Solution Representation
The first step in the algorithm development process is to define a solution representation to
be used both as a chromosome in the Genetic Algorithm as well as used as an individual in
the Local Search process. The solution representation must be well-suited for developing
GA operations and must work well in our Local Search. The solution representation
must also fully represent a solution to a problem instance. Therefore, it must express
which packages are to be delivered by which vehicles, as well as the order in which these
packages are to be delivered. It is vital in a real-world situation that our algorithms
output a solution to the instance. Hence, the solution representation must be adaptable
such that the algorithms can output solutions where the drivers are given the specific
packages they must deliver and their delivery routes. In order to provide such routes to
the drivers we must also represent the order in which packages are delivered.

We develop the following as our solution representation: The packages and the vehicles
are both represented as an integer value starting at index 1. An array of length equal
to the number of packages is used with the index representing a package and the array
elements representing the vehicle assigned to deliver that package. A vehicle can appear
several times in the array but no more than the number of positions available in each
vehicle. [3, 2, 3, 1] is an example of such a solution representation for an instance with 4
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packages, 3 vehicles and 2 positions per vehicle. In this example, packages 1 and 3 are
delivered by vehicle 3, package 2 is delivered by vehicle 2, and package 4 is delivered by
vehicle 1.

This solution representation functions well as a chromosome in the Genetic Algorithm
and leads to the development of some interesting and effective crossover and mutation
operations. The representation also works well in the Local Search, combining it with the
mutation operation we are able to define a neighborhood in the Local Search procedure.
Another advantage of this representation is that due to the length of the array being
equal to the number of packages, the constraint that all packages must be delivered is
satisfied for all solutions that are represented by this chromosome.

As previously noted, it is required that the order in which the packages are delivered
must be provided by the algorithm in order for routes to be given to the drivers. However,
including this in our solution representation and allowing the genetic operations to change
the order of delivery would add many solutions to the search space that have poor fitness
and fail to guide the algorithm toward better solutions. This would be detrimental to
the algorithms’ performance since many unimportant and similar solutions would be
explored needlessly. However, it is still vital that the order of delivery be taken into
account when an individual is evaluated. We always consider the best order for those
packages to be delivered in the calculation of solution fitness. To achieve this we need to
find the best order of delivery for each vehicle in each solution, this is done with brute
force, by iterating over all possible orders of delivery to find the optimal order. Since
instances do not usually have a large value for maxP (the number of packages a vehicle is
able to deliver) this brute force calculation is not excessively computationally expensive.

3.1.2 Initialization

To begin the Genetic Algorithm an initial population must be generated. We initialize the
population by creating a large number of random solutions. The size of the population is
controlled by a parameter we call p. This parameter is a percentage of the length of the
chromosomes. Hence the population size is equivalent to p x P where p is the population
size parameter and P is the number of packages in the instance.

To generate random individuals for each package we choose a random available vehicle
and assign it to deliver that package. If that assignment violates the Volume Constraint,
then a new vehicle is chosen. A vehicle becomes unavailable when it has been assigned
to deliver maxP packages. This ensures that the Number of Packages Constraint is
not violated. Due to the length of the solution representation, the Package Delivery
Constraint is also satisfied by every random solution. Hence, when the chromosomes are
initialized they do not violate the Volume Constraint, the Number of Packages Constraint,
or the Package Delivery Constraint
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3.1.3 Fitness Function
To determine which solutions are better than others we need to define a fitness function
to calculate a fitness value for each individual. The fitness function will be used in both
the Genetic Algorithm and the Local Search Algorithm, which seek to minimize this
fitness value. Within our fitness function, we include a penalty value that is added when
the Deviation Constraint is violated. We define our fitness function to be the sum of
the deviations of all the vehicles plus this penalty value. In our problem, a solution
is considered a good solution if it satisfies all the constraints outlined in the problem
statement while also minimizing total deviation over all vehicles. We call a solution
feasible if all the constraints are satisfied: the Package Delivery Constraint, the Volume
Constraint, the Number of Packages Constraint, and the Deviation Constraint. The
first three constraints (i.e. the Package Delivery Constraint, the Volume Constraint, and
the Number of Packages Constraint) are satisfied by the solution representation and
remain satisfied after each crossover or mutation operation. The Deviation Constraint is
not so easily satisfied since there are too many combinations to efficiently calculate the
deviations of each vehicle. Because of this, the Deviation Constraint is implemented as
a penalty within the fitness function. The fitness function calculates the fitness of an
individual by adding the combined total deviations of all the vehicles (i.e. the problem’s
objective) to a penalty value that is added when the solution violates the Deviation
Constraint. Since the Deviation Constraint is a hard constraint the solution is still
considered infeasible when the constraint is violated. Hence, it is important to ensure
our algorithms consider feasible solutions better than infeasible solutions. To do this, we
need to ensure that every feasible solution has a smaller fitness value than any solution
where the deviation constraint is violated. We then define the fitness function as follows:

Let A be the set of all vehicles, devi the deviation of vehicle i E A, maxDevi be the
maximum allowed deviation for vehicle i E A, and A. be the set of cars that exceed their
maximum deviation allowance: A. = {x s.t x E A and devx > devmax

x }. The fitness
function is defined as

fitness =
∑
iEA

devi + m
∑
jEA,

(devj - maxDevj) (3.1)

where the penalty m is defined as

m =
∑
iEA

maxDevi (3.2)

The worst possible fitness for a feasible solution is when all vehicles meet their allowed
deviations exactly: ∑

iEA maxDevi. Hence, by defining m such that m = ∑
iEA maxDevi,

Function 3.1 ensures that any individual that violated the Deviation Constraint would
have a fitness greater, by a large amount, than that of even the worst possible feasible
individual. The penalty also takes into account the amount a vehicle exceeds its maximum
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deviation allowance. Therefore, a solution where the vehicles only slightly exceed their
maximum allowance is considered better than a solution where the deviation allowances
are exceeded by a large amount. This helps guide the Genetic and Local Search algorithms
toward better solutions and feasibility.

3.1.4 Crossover
A significant aspect to be considered when designing a Genetic Algorithm is the crossover
operation. A crossover operation generally takes two chromosomes, selected from the
population during the selection process, and recombines them with each other in some
way producing two new chromosomes. Input chromosomes are called parents and
the chromosomes produced by the operation are called children. When designing the
crossover operation, there are some requirements we want the operation to satisfy. The
first requirement is the crossover must guarantee the satisfaction of the first three problem
constraints - the Deviation Constraint is not included since it is handled in the fitness
function. This means that given two parents satisfying these constraints, the resulting
children must also satisfy the same constraints. The second requirement is that the newly
created children should take important aspects from both parents. We develop a new
crossover operation and experiment with two different variations on that operation. The
resulting crossover both guarantees that the children do not violate the constraints, and
allows the children to take elements from both parent chromosomes.

The crossover operation is defined as follows: Given two parent solutions, beginning
with the first index the vehicle at that index in the first parent is exchanged with the
vehicle at that index in the second parent and vice versa. This exchange is only made if
such an exchange of vehicles does not violate any of the three non-penalty constraints
(the Package Delivery Constraint, the Volume Constraint, or the Number of Packages
Constraint). If an exchange violates one of these constraints we say the exchange is
“illegal”. We then move to the second index and exchange those two vehicles if it is
a legal exchange. This process continues until the end of the chromosome is reached
or a predetermined crossover point is reached. The resulting children are later used
in the next generation of the GA population. Figure 3.1 shows the first steps in the
process of element exchanges between two parent chromosomes. In this example, we
assume maxP = 2. We see at the 2nd step, that the exchange is illegal since making
this exchange would result in vehicle 2 holding 3 packages; therefore the exchange is not
made. Figure 3.2 shows the final result of the crossover operation when exchanges are
made until the end of the chromosomes.

This crossover operation fulfills the requirement that all three of the non-penalty con-
straints remain satisfied. The Package Delivery Constraint, that all the packages must
be delivered, is trivially satisfied by the solution representation since the length of the
chromosomes remain unchanged by the crossover operation. The next two constraints, the
Volume Constraint and the Number of Positions Constraint were more computationally
expensive to satisfy. These constraints must be checked at every vehicle exchange, but
in the end, the constraints remain satisfied since an exchange is not made if one of the
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[3, 2, 3, 1]
[1, 3, 2, 2]

↓
[1, 2, 3, 1]
[3, 3, 2, 2]

↓
[1, 2, 3, 1]
[3, 3, 2, 2]

Figure 3.1: Crossover operation: first steps

[1, 2, 3, 2]
[3, 3, 2, 1]

Figure 3.2: Crossover operation: final result

constraints is violated by the exchange. At every step in the crossover operation, the
chromosomes do not violate the constraints, so the final results also do not violate the
constraints. These checks at every index contribute to most of the complexity of the
crossover function.

We experiment with two variations on this crossover. In the first variation, we iterate
through the entire chromosome when making the exchanges. We will refer to this variation
as crossover-1. In the second variation, exchanges are only made until the midpoint of
the chromosome is reached, this we use as a crossover point. We refer to this variation as
crossover-2.

3.1.5 Mutation
Another operation needed in a Genetic Algorithm is a mutation operation. We develop
a simple chromosome element swap operation, where two vehicles swap places in the
solution representation. Below is an example of such an operation:

[3, 2, 3, 1] mutate----→ [3, 1, 3, 2]

This operation represents the real-world action of swapping two packages between two
vehicles. In our mutation operation, the two elements that are to be swapped are chosen
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at random from the solution representation. If a swap violates the Volume Constraint
or the Number of Packages Constraint the swap is not made and two new elements are
randomly chosen to swap. In this way, the operation is able to ensure that the mutated
solution satisfies the non-penalty constraints, given that the constraints are satisfied
before the mutation operation is applied. The mutation operation also guarantees the
satisfaction of the Package Delivery Constraint since the operation does not change the
length of the solution representation array.

This mutation operation is used on the new children after the crossover operation. There
is a small chance for each child to be mutated using the operation. This chance of
mutation is controlled by the mutation rate parameter µ. The mutation operation is
also used to define the neighborhood of the Randomized Hill Climbing algorithm. We
define an immediate neighbor as an individual that can be reached with one mutation
operation.

A slight drawback to our mutation operation is that it does not allow the possibility of
vehicles with no packages assigned to them in the original chromosome to gain packages
in the mutated chromosome. Because of this, it is important that these unused vehicles
can be incorporated into new individuals that are created from the crossover operation.
The new vehicles will come from the other parent individual during the crossover process.
This makes diversity vital to our algorithms’ population. A possible fix for this problem is
to use a different mutation operation, for example, a flip operation where a single element
is changed to any other available vehicle. This however presents its own drawbacks.
Another option would be to somehow combine our mutation with another operation that
allows for the infusion of unused vehicles, like the method mentioned above. We did
not develop such an operation due to concerns about the computation time of such a
mutation. We also believe this issue is not significant, the crossover operation combined
with a diverse population should be sufficient to counteract any negative effects this
issue may cause. However, this is an interesting area that could be explored in further
research.

3.1.6 Selection
In the selection process of a Genetic Algorithm, individuals in the population are chosen
to recombine and create the next generation of the population. In the selection process,
two solutions are chosen from the current population, they are then recombined using the
crossover operations to produce two new children solutions. Then two new solutions are
chosen from the population and the process is repeated until some or all of the population
has been selected and reproduced. The number of children created during this process is
controlled by a parameter called σ. The value of this parameter is a percentage of the
population size. The selection process continues until the number of children created
equal to the product of the size of the population and the parameter σ. The children are
inserted into the population for the next generation using a replacement strategy.

The parents are selected for reproduction using a Roulette Wheel Selection. In Roulette
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Wheel Selection each individual in the population has a chance of being selected based
on its fitness value. Two parents are then chosen from the population based on these
chances. The pseudo-code in Algorithm 3.1 shows the steps of the selection process. In
the pseudo-code, Algorithm 3.1, solution.F itess() returns the fitness of that solution
and array.binarySearch(v) does a binary search in the array for the value v, returning
the position of the value just below v if v is not the array. This finds the position
corresponding to the solution that the random value v will select.

Algorithm 3.1: Roulette Wheel Selection
Input : population, σ, χ, µ
Output : children

1 children ← new empty array
2 for i < (population.size * selectionSize)/2 do
3 wheel[0] ← 1/(population[0].F itness())
4 for j < population.size - 1 do
5 wheel[j + 1] ← wheel[j] + 1/(population[j + 1].F itness())
6 end
7 randomV alue1, ← random double between 0 and

wheel[population.size - 1]
8 randomV alue2, ← random double between 0 and

wheel[population.size - 1]
9 index1 ← wheel.binarySearch(randomV alue1)

10 index2 ← wheel.binarySearch(randomV alue2)
11 parent1 ← population[index1]
12 parent2 ← population[index2]
13 if random double between 0 and 1 < χ then
14 child1, child2 ← Crossover(parent1, parent2)
15 end
16 else
17 child1 ← parent1 child2 ← parent2
18 end
19 if random double between 0 and 1 < µ then
20 child1 ← Mutate(child1)
21 end
22 if random double between 0 and 1 < µ then
23 child2 ← Mutate(child2)
24 end
25 children.add(child1) children.add(child2)
26 end

Once two parents are selected they are either crossed-over to create two new children or
they remain unchanged and are used as the resulting children. The chance that a pair of
parents are crossed-over is controlled using a parameter χ. At this point, there is also a
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chance that the resulting children are mutated. This is also controlled with a parameter
µ

3.1.7 Replacement
In the next step of the Genetic Algorithm, the newly created children replace all or
some of the individuals in the current population to create the next generation of the
population. This is the replacement process. There are several techniques for replacement
that are often used in Genetic Algorithms.

In our replacement strategy, we use an elitist strategy where the best individual in the
population is never replaced. All the children created are inserted into the population
replacing the individuals in the old population that are most similar to them, unless the
individual to be replaced is the best individual in the current population. The number
of individuals that are replaced is then roughly the same as the number of individuals
that are selected during the selection process. If only some of the population is selected
for reproduction then we only replace some of the population with the newly created
children, keeping both some of old individuals that are dissimilar to the new children and
the best individual in the population. This helps maintain a degree of diversity within
the population. What portion of the population is selected for reproduction is controlled
by the parameter σ. If σ = 1, then all of the population is selected- In this case, the only
solution that is kept for the next generation is the elite solution. After all of the selected
parents have been recombined, each of the children are then inserted into the population.
The section of the population that is replaced is not necessarily the same section of the
population that is chosen for reproduction.

This replacement is done using a strategy that replaces the solution that is most “similar”
to each child. To use this strategy a measure of similarity or “closeness” between two
chromosomes is needed. We use hamming distance as our distance measure. Hamming
distance is defined as the number of index locations in the solution representation array
where the element at that location differs. For example the chromosome [3, 1, 2, 2]
would have a hamming distance of 2 from the chromosome [3, 3, 1, 2], since two of the
chromosome elements differ.

This distance measure works well as a measure of similarity between two of the chro-
mosomes. It does not take the actual numeric value of the chromosome’s elements
into account, which is important because a vehicle’s value is arbitrary and carries no
information about the vehicle or its destination. Several other commonly-used distance
measures take the numeric value of the elements into account, so they were not considered
for our distance measure. For example, Euclidean distance or Manhattan distance would
not be suitable for our case. These distance measures would indicate that chromosome
[3, 1, 2, 2] is closer to chromosome [3, 1, 3, 2] than to chromosome [1, 3, 9, 2], which would
be detrimental as these element values do not hold this type of numeric or ordinal
meaning. Another distance measure to consider would be to use our mutation operation
as a way to measure the distance between individuals; for example, the number of swaps
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needed to reach the other individual. This, however, has a major drawback in that it
cannot consider unused vehicles. This is not an issue for the mutation operation because
our crossover counteracted the effects but it is not suitable for the distance measure in
our replacement strategy. Two solutions where one uses a vehicle and the other does
not use that vehicle would be considered infinity distance from each other since they
cannot reach each other using the mutation swaps. This would be detrimental if in every
other aspect the two chromosomes are extremely similar or identical. For example, the
chromosomes [1, 2, 3, 4] and [1, 2, 3, 5] illustrate this issue. These two chromosomes would
be considered infinitely dissimilar, however we can see that they are similarly.

Algorithm 3.2 shows the pseudo-code for the replacement strategy. In the pseudo-code
HammingDistance(sol1, sol2) returns the hamming distance between the solutions sol1
and sol2 and population.bestInPopulation() results the solution in the current population
with the smallest fitness value.

Algorithm 3.2: Replacement
Input : children, population
Output : population

1 for child E children do
2 mostSimilar ← population[0]
3 for i E population do
4 if HammingDistance(i, child) < HammingDistance(mostSimilar, child)

then
5 mostSimilar ← i
6 end
7 end
8 if mostSimilar /= population.bestInPopulation() then
9 population.remove(mostSimilar)

10 population.add(child)
11 end
12 end
13 return population

3.2 Memetic Algorithm
A Memetic Algorithm is a Hybrid Genetic Algorithm where the evolutionary algorithms
such as GA are combined with Local Search techniques [7]. Our aim, in taking a Memetic
approach, is to capitaize on the best attributes of a Genetic ALgorithm and a Local
Search algorithm. A Genetic Algorithm can find promising areas of the search space
while the Local Search Algorithm delves deeper into theat specific area. There are many
ways for these two methods to be combined, and many varying techniques were used
in the literature: [31, 32, 33, 34, 35, 36, 37]. Often the Local Search is applied to some
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individuals in the population at every generation of the GA.

We develop two Memetic Algorithms and refer to them as HA1 and HA2. Algorithms 3.3
and 3.4 as well as the flowcharts in Figures 3.3 and 3.4 show the process of each algorithm.
In HA1 the Local Search is applied at each generation of the GA and is applied to the
best solution in the current population. In HA2 the Local Search is applied at the end of
the process and only to the final solution found by the GA. In both cases, a Randomized
Hill Climbing Local Search is used, and the two crossover variants are can be used.

Algorithm 3.3: HA1
Input : Instance, stoppingCriteria, p, µ, χ, σ
Output : Solution

1 population ← initialize population with p * Insance.P
individuals

2 n ← 0
3 currentBest ← individual in population with smallest Fitness
4 while n < stoppingCriteria do
5 children[ ] ← SelectionCrossoverMutation(population, σ, χ, µ)
6 population ← Replacement(population, children[])
7 Solution ← individual in population with smallestFitness
8 Solution ← RandomizedHillClimbing(Solution)
9 if Solution.F itness < currentBest.F itness then

10 n ← 0
11 currentBest ← solution

12 end
13 else
14 n ← n + 1
15 end
16 end
17 return Solution

3.3 Local Search
Over the years many approaches have been used in creating Memetic Algorithms and
Hybrid Genetic Algorithms [11, 37]. We took two distinct approaches when combining a
Genetic Algorithm with a Local Search. We used a Randomized Hill Climbing Algorithm
as our Local Search procedure. The aim of the Local Search component is to explore
a specific area of the search space while the GA component explores the space more
globally. The Randomized Hill Climbing algorithm can only explore the immediate area
near the current solution, and only take steps if the step shows improvement in fitness.
Hence, if the algorithm is in a local valley, it will converge early on a local optimum
and be unable to move out of the valley. However, for our purposes this is acceptable
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Algorithm 3.4: HA2
Input : Instance, stoppingCriteria, p, µ, χ, σ
Output : Solution

1 population ← initialize population with p * Insance.P
individuals

2 n ← 0
3 currentBest ← individual in population with smallest Fitness
4 while n < stoppingCriteria do
5 children[ ] ← SelectionCrossoverMutation(population, σ, χ, µ)
6 population ← Replacement(population, children[])
7 Solution ← individual in population with smallestFitness
8 if Solution.F itness < currentBest.F itness then
9 n ← 0

10 currentBest ← solution

11 end
12 else
13 n ← n + 1
14 end
15 end
16 Solution ← RandomizedHillClimbing(Solution)
17 return Solution

behavior for the Local Search process of our algorithms. The detrimental effects of early
convergence are to be counteracted by the Genetic Algorithms.

The same solution representation used in the GA is used for individuals in the Randomized
Hill Climbing algorithm. We define the neighborhood as individuals reachable with one
mutation operation. At every iteration of the Randomized Hill Climbing algorithm, a
random mutation operation is applied to the current individual. This is equivalent to
choosing a random neighbor from the neighborhood of the individual. If this neighbor
has better fitness than the current individual then the neighbor becomes the new current
individual. If the neighbor does not have better fitness than the current individual then
no move is made and the current individual remains the same. This continues until no
individual in the current neighborhood is better than the current individual or until a
stopping criterion is met.

The Hill Climbing process is used at every generation in HA1. This greatly increases the
running time of the algorithm. So in order to keep the running time reasonable, only a
few iterations of Randomized Hill Climbing are used. A maximum of 10 iterations of
Randomized Hill Climbing is used in HA1 along with a stopping criterion of 5 iterations
without improvement on the current solution. Since, in HA2, the LS process is only
applied to the final solution returned by the GA, HA2 excludes the possibility of a refined
search of other areas in the search space, which HA1 is able to do. However, HA2 has
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the benefit that many more iterations of the Hill Climbing procedure can be used since
the LS procedure is only applied once. This allows HA2 to search the area in more detail
and come closer to finding the local optimum at that point. For HA2, a maximum of 100
iterations is used, with a stopping criterion at 50 iterations without improvement.
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CHAPTER 4
Experiments and Results

In this chapter, the algorithms’ parameters are tuned and experiments are preformed on
various sized instance. The Genetic and Memetic Algorithms results are compared to the
results found by a Constraint Programming solver using the model proposed in [5]. We
begin by randomly generating instances using an instance generator developed by [5].
Then instances are randomly selected, some are used for the parameter tuning process
and the other randomly selected instances are used form the experiments. During the
parameter tuning process, the parameters that yielded the most feasible solutions over
all the instances are selected to be used in the experiments. In the experiments, the best
fitness found by the algorithms are compared to each other and to solutions found by the
Constraint Programming solver. All parameter tuning runs and experiments are done on
a PC running Linux Mint 19.3 Cinnamon with the following specifications:

• CPU: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx

– 4 Cores
– 2.1 GHz

• RAM: 8GB

• GPU: Radeon 540X

For both the parameter tuning and the expeiments, we generated three sets of random
instances: small instance (5 to 15 packages), medium-sized instance (30 to 50 packages),
and large instances (100 to 150 packages). We used a random instance generator previously
implemented by [5] to generate instances. For each size range (small, medium, and large)
we generated 20 instance.

Each instance includes P (the number of packages), A (the number of vehicles), maxP
(the maximum number of packages the vehicles are willing to deliver), the volumes
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Instance Attribute Value Range
Package Volumes 50-500
Vehicle Available Volumes 700-1500
Maximum Auto Deviation 10-30
Max Number of Packages per Vehicle (maxP ) 1-4
Package and Vehicle Destinations Coordinates 25-40

Table 4.1: Instance Generation Value Ranges

available in each vehicle, and the maximum distances the vehicles are willing to deviate
[5]. The coordinates of the package destinations and the vehicle destinations are randomly
generated and are measured in kilometers, with the depot at the origin coordinate (0,0)
[5]. This range is used by the instance generator to calculate the distances between each
package destination, vehicle destination, and the depot [5]. These distances are then
used in the instances [5], thus, each instance also includes the distances between the
depot and the vehicles’ destinations, the distances between the depot and the package
destinations, the distances between each package destination, and the distances between
the package destinations and the vehicles’ destinations [5]. All distances are in kilometers
and volumes are in cubic decimeters [5].

We used this instance generator to generate several sets of instances with various sizes.
The number of packages is randomly generated from 5 to 15 for the small instances, 30
to 50 for the medium sized instances, and 100 to 150 for the large instances. The number
of vehicles is proportional to the number of packages. For the other values we used the
same ranges for all three sets of instances. maxP is randomly generated between 1 and
4. The volumes available in each car is generated as a random number between 700 and
1500, and the package volumes are random values between 50 and 500. The maximum
distances the vehicle drivers are willing to deviate are generated randomly between 10
and 30. The coordinates of the package and vehicle destinations are randomly generated
between 25 and 40. These ranges are summarized in Table 4.1.

After generating 20 instances in each size range, we then randomly chose 7 from each set
of 20. Next, using a CP implementation, previously formulated and implemented by [5]
we solved these instances using the "Chuffed" CP solver in MiniZinc [38, 39] with a time
limit of 2 hours. 2 instances from each set of 7 were randomly selected to be used in
the parameter tuning process and the remaining 5 in each set are used in the algorithm
comparisons.

4.1 Parameter Tuning
In order to evaluated the algorithms developed in this thesis, the parameter values
must be selected to be used when running the algorithms for the experiments. Genetic
Algorithms often have a large number of parameters. In our algorithms there are 4
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parameters:

• p: the population size as a portion of P (the number of packages in the instance)

• µ: the mutation rate

• χ: the crossover rate

• σ: the selection size

After generating the random instances we randomly selected 2 instances from each set of
7 to use as the training instances to tune the parameters. Table 4.2 shows the instances
used for the training data.

Training Instances
Instance P A maxP

Train_Small_1 12 13 2
Train_Small_11 7 8 2
Train_Medium_2 46 47 3
Train_Medium_18 36 37 1
Train_Large_1 135 136 4
Train_Large_2 127 128 4

Table 4.2: Training Instances

Each algorithm is then run on the set of training instances with various parameters. The
following parameter settings are used:

p = (0.1, 0.3, 0.5, 1)
µ = (0.05, 0.1, 0.3)
χ = (0.5, 0.75, 1)
σ = (0.5, 0.75, 1)

Each algorithm is run 10 times per parameter configuration (e.g. p = 0.5, µ = 0.1, χ =
1, σ = 0.5), 5 times using crossover-1 and 5 times using crossover-2. Each of these runs
goes for 100 generations without any other stopping criteria.

We selected the parameter configuration with the largest number of feasible solutions
found after 100 generations. A table showing the percentage of times each parameter
configuration finds a feasible solution can be found in Appendix A. From the results
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of these runs we find that, for algorithm HA1, parameter configuration with p = 0.3,
µ = 0.05, χ = 0.5 , and σ = 1, finds the most feasible solution, finding a feasible solution
on 91.41% of the runs. For HA2 the parameter configuration with p = 1, µ = 0.05, χ = 1,
and σ = 0.5 finds feasible solutions 64.29%, which is the most number feasible solutions
for HA2. Parameter configuration with p = 1, µ = 0.1, χ = 1, and σ = 0.5 found the
most feasible solutions for GA, finding feasible solutions on 58.49% of the time.

The selected parameters are summarized in the following table, Table 4.3:

Algorithm p µ χ σ % feasible
HA1 0.3 0.05 0.5 1 97.41%
HA2 1 0.05 1 0.5 64.29%
GA 1 0.1 1 0.5 58.49%

Table 4.3: Algorithm Parameters

4.2 Comparison of Algorithms
Using the selected parameters, the algorithms are then evaluated on the remaining
instances. There are 15 evaluation instances in total; 5 small instances, 5 medium-sized
instances, and 5 large instances. The instances used are shown in Tables 4.4, 4.5, and 4.6.

Small Instances
Instance P A maxP

Small_3 14 15 3
Small_4 10 11 4
Small_6 5 6 3
Small_13 11 12 1
Small_20 7 8 2

Table 4.4: Small Instances

Medium-Sized Instances
Instance P A maxP

Medium_2 46 47 3
Medium_4 38 39 4
Medium_5 40 41 1
Medium_10 44 45 2
Medium_11 33 34 3

Table 4.5: Medium-Sized Instances
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Large Instances
Instance P A maxP

Large_3 135 136 3
Large_4 121 122 1
Large_5 131 132 1
Large_6 124 125 1
Large_7 106 107 4

Table 4.6: Large Instances

The small instances have been solved to optimality using the "Chuffed" CP solver in
MiniZinc [38, 39]. The MiniZinc solver was also able to provide feasible solutions to some
of the medium-sized instances within the 2 hour time limit, but these solutions are not
necessarily optimal. On the large instances the MiniZinc solver was unable to find any
feasible solutions within 2 hours. Therefore, the MiniZinc CP results cannot be used as
benchmarks for comparison on these large instances.

The Genetic Algorithm and the Memetic Algorithms were run on all three sets of instances
with a general stopping criterion of 100 iterations without improvement and running
time limit of 2 hours maximum.

4.2.1 Results
Here we provide and examine the results of the algorithms using the selected parameters
shown in Table 4.3. Each algorithm is run 20 times per instance: 10 times using crossover-1
and 10 times using crossover-2. The tables in this section use the following abbreviations:

• GA_C1: Genetic Algorithm using crossover-1.

• GA_C2: Genetic Algorithm using crossover-2.

• HA1_C1: Memetic Algorithm HA1 using crossover-1.

• HA1_C2: Memetic Algorithm HA1 using crossover-2.

• HA2_C1: Memetic Algorithm HA2 using crossover-1.

• HA2_C2: Memetic Algorithm HA2 using crossover-2.

• CP: MiniZinc "Chuffed" Constraint Programming solver [38, 39] using a CP formu-
lation previously defined and implemented by [5].

In the following tables, the * symbol indicates that a feasible solution was not found
by that algorithm with that crossover variant and the fitness value reported includes
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the deviation penalty value. The † symbol indicates that the MiniZinc results are not
guaranteed to be optimal. In Table 4.8 and Table 4.11, the % gap in fitness between the
algorithms solutions and the CP solver results can be seen.The % gap is defined by the
formula

%gap = 100 * F - CP

F

where F is the best fitness found by the algorithm being considered and CP is the fitness
found by the CP solver.

On the small set of instances we had expected that the three metaheuristic algorithms
would find exact results, but this unfortunately was not the case on nearly all the
instances. However, all three algorithms found feasible solutions to these instances. We
can see the best found fitness of each algorithm and crossover combination in Table 4.7.
For these instance, the CP solver was able to find the true optimal solutions to every
instance within short running times. For most of the small instances (excluding Small_13
with HA1_C1), the algorithms were not able to reach the true optimal solutions found
by the CP solver but all the algorithms found feasible solutions. Table 4.8 shows the
percent difference between the best solution found by each algorithm and the exact
solution returned by the CP solver. In general, the algorithms performed best on instance
Small_13 in terms of fitness, with relatively small gaps. GA found feasible solutions on
all of small instance, but the best fitness values reported by GA on many of the small
instances were excessively far from the exact solutions with the largest gap of 58.49% on
instance Small_3. HA1 and HA2 tended to find more accurate solutions than GA on all
the small instances. This can be seen clearly on most instance but the difference is most
stark on instances Small_3 and Small_13. On instance Small_3, GA had a gap 58.49%
for both crossovers while HA1 has a gap of only 24.14% for both crossovers and HA2 has
a gap of 33.33% for crossover-2 and 37.14% for crossover-2. On instance Small_13, GA
found solutions with a gap of 10.42% for crossover-1 and 24.56% for crossover-2 while
HA1 and HA2 found results with gaps of at most 4.44%.

In Table 4.9, we can see the average running times of the algorithm and crossover
combinations on the small instances. We can see that on these small instances the
algorithms were able to find solutions within less than a second. In the final column of
this table the solve time of the CP solver can be seen. Here we see that on many of
the instances the CP solver found solutions in time similar to the Genetic and Memetic
Algorithms. On instance Small_3 and instance Small_4 the CP solver took considerably
longer than the metaheuristic algorithms; on instance Small_3 the CP solver took 6
minutes and 25 seconds to find the true optimal solution, where the worst average running
time of the metaheuristic algorithms was 0.32 seconds and the best average running
time of the metaheuristic algorithms was 0.14s. However, the solutions found by the
metaheuristics in these running time are feasible yet not exact. For instance Small_4,
the CP solver took 1 minute and 8 seconds to find the exact solution while the other
algorithms took fractions of a second to find only a feasible feasible solution that was not
exact. Although the running times are shorter, the CP solver guarantees exact solutions,
and the extra few minutes of running time can be worth the guarantee of exact solutions.
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Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2 CP
Small_13 48 57 43 44 44 45 43
Small_20 35 31 34 32 32 31 27
Small_3 53 53 29 29 33 35 22
Small_4 24 27 23 20 20 22 17
Small_6 11 10 11 9 8 9 6

Table 4.7: Best fitness on small instances

% Gap
Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2
Small_13 10.42% 24.56% 0.00% 2.27% 2.27% 4.44%
Small_20 22.86% 12.90% 20.59% 15.62% 15.62% 12.90%
Small_3 58.49% 58.49% 24.14% 24.14% 33.33% 37.14%
Small_4 29.17% 37.04% 26.09% 15.00% 15.00% 22.73%
Small_6 45.45% 40.00% 45.45% 33.33% 25.00% 33.33%

Table 4.8: % Gap between best fitness and CP fitness results on small instances

Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2 CP
Small_13 0.18s 0.14s 0.12s 0.11s 0.22s 0.13s 1.07s
Small_20 0.11s 0.10s 0.09s 0.09s 0.12s 0.10s 0.31s
Small_3 0.32s 0.23s 0.19s 0.14s 0.30s 0.20s 6m 24.66s
Small_4 0.20s 0.13s 0.12s 0.11s 0.19s 0.17s 1m 8.30s
Small_6 0.09s 0.09s 0.09s 0.08s 0.10s 0.09s 0.15s

Table 4.9: Average running times on small instances

On the set of medium-sized instances, the Memetic Algorithms are able to find feasible
solutions on all the medium-sized instances. Furthermore, HA1 and HA2 begin to
outperform the CP solver in some areas. The CP solver was only able to solve 2 of the
instances within the time limit of 2 hours, and these solutions are not guaranteed to
be exact. Table 4.10 shows the best fitness found by all the algorithms and crossover
variant combinations on the medium-sized instance. Here the best fitness values found
for each instance are highlighted in bold. Table 4.11 shows the percent gap in best fitness
between the solutions found by the CP solver and the solutions found by each algorithm
and crossover variant. This value is left blank if the CP solver could not provide any
solutions on that instance. Table 4.12 shows both the solve time of the CP solver and
the average running time of each algorithm and crossover variant on the medium-sized
instances. In this table the shortest running times are highlighted in bold. However,
these short running times do not necessarily provide feasible solutions, therefore the
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shortest running times that provide feasible solutions have also been highlighted in red.

For medium-sized instances Medium_2, Medium_20 and Medium_4, the CP solver was
unable to find a solution within the running time limit of 2 hours. On the remaining
medium-sized instance, the CP solver found feasible solutions within the running time
limit but these solutions are not guaranteed to be the true optimum since the solver
returns the best solution found so far when the time limit of 2 hours is reached. In
Tables 4.10 and 4.11 one can see that on the two instance where the CP solver provided
a solution, both Ha1 and HA2 provide feasible solutions that have smaller fitness than
the CP solutions, and we can see in Table 4.12 that these solutions are provided in much
shorter running times than the CP solutions. GA was able to find feasible solutions on
several of the medium-sized instances, but not consistantly, with crossover-1 on instnace
Medium_20 and with crossover-2 on instance Mediuem_10, GA could not provide feasible
solutions. Furhtermore, unlike HA1 and HA2 the solutions provided by GA on instances
Medium_10 and Medium_11 that are feasible are not better than the CP solver solutions.
We can see in table 4.10 that both Memetic Algorithms start to outperform the Genetic
Algorithm. HA1 and HA2 could consistently find solutions to all instances with either
crossover, but GA could not consistently do the same. Furthermore, where GA did find
feasible solutions, the solutions found by HA1 and HA2 on the same instance had far
better fitness values than the solutions found by GA. We can also see in Tables 4.10 and
4.11 that HA1 even outperforms HA2 on the medium-sized instances since HA1 tends to
find solutions with better fitness. We discuss this further when we examine the values in
Table 4.10 and Table 4.11 in more detail.

We can see in Table 4.12 that the running times of HA1 and HA2 are somewhat similar.
We expect HA1 to have longer running times than HA2 since the Hill Climbing procedure
is applied as every generation. However, the population parameter for HA1 is p = 0.3,
which leads to a much smaller population size than p = 1 used with HA2. A much
smaller population leads to faster running times. We can see in Table 4.12 that HA1 and
HA2 outperform the CP solver in terms of running time as well. We can see in this table
and Tables 4.10 and 4.11 that HA1 and HA2 not only find better solutions than the CP
solver, but the average running time of these algorithms is also far superior to that of
the CP solver. On the medium sized instances, GA also had running times similar to
HA1 nad HA2, but the solutions provided by GA were not better than the CP solver
and in some cases GA could not provide feasible solutions. Thus, for the medium-sized
instance, CP may be a better algorithm than GA. In the table of running times, Table
4.12, we can also see that crossover-2 gives much faster running times than crossover-1 on
all algorithms. For every instance, every algorithm using crossover-2 has a faster average
running time than that same algorithm using crossover-1.

Several conclusions can be drawn when considering the fitness in Table 4.10 and the fitness
gaps in Table 4.11. In Table 4.11 we can see just how much better the solutions found by
HA1 are to the CP solutions. HA1 with crossover-1 provides a solutions 68.25% better
than the CP result on instance Medium_10 and 71.43% better on instance Medium_11.
HA1 with crosssover-2 gave a best fitness that is 69.60% better than the CP solver on
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instance Medium_10 and 65.52% better than the CP solver on instance Medium_11.
Furthermore, the algorithm that provided these solutions had average running times of
only a few minutes. HA1 clearly outperformed both GA and HA2 on the medium-sized
instances with HA1 finding solutions with a far better fitness value than the feasible
solutions found by HA2 and GA. Additionally, GA could not consistently find feasible
solutions with both crossovers. On every medium-sized instance, HA1 found the best
fitness values out of all the algorithms. We can see the best fitness over all highlighted
in bold in Table 4.10 and all the emboldened results belong to HA1. These results are
promising; the Memetic Algorithms (HA1 and HA2) are able to provide feasible solutions
that are often far superior to the solutions found by the CP solver within a matter of
seconds, while the CP solver was only able to solve two of the instances within its time
limit of 2 hours.

Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2 CP
Medium_10 275 2897* 126 125 193 195 212†

Medium_11 174 175 84 87 122 136 144†

Medium_2 175 217 70 75 130 135 _
Medium_20 1292* 291 106 101 200 195 _
Medium_4 274 291 119 114 157 187 _

Table 4.10: Best fitness on medium-sized instances

% Gap
Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2
Medium_10 22.91% 92.68%* -68.25% -69.60% -9.84% -8.72%
Medium_11 17.24% 17.71% -71.43% -65.52% -18.03% -5.88%
Medium_2 _ _ _ _ _ _
Medium_20 _ _ _ _ _ _
Medium_4 _ _ _ _ _ _

Table 4.11: % Gap between best fitness and CP fitness results on medium-sized instances

Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2 CP
Medium_10 3.89s 1.84s* 3.24s 1.99s 4.42s 1.90s 2h
Medium_11 1.55s 0.69s 1.01s 0.63s 1.58s 0.74s 2h
Medium_2 4.12s 1.89s 3.09s 2.08s 4.42s 1.81s 2h
Medium_20 3.55s* 1.98s 3.88s 2.43s 5.01s 1.89s 2h
Medium_4 2.23s 1.27s 1.85s 1.03s 2.25s 1.23s 2h

Table 4.12: Average running times on medium-sizes instances
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In Tables 4.13 and 4.14 we can see the results of the algorithms on the set of large
instances. The CP solver was unable to provide any results to any of these instances
within the time limit of 2 hours. Therefore, we cannot compare the results of the Genetic
and Memetic Algorithms to the CP results. However, we can compare the algorithms
to each other and assess the best fitness values and running times of the results of the
algorithms on the large instances. In Table 4.13, it can be seen that that HA1 clearly
outperforms HA2 and GA in terms of fitness by a large margin. HA1 was able to find
feasible solutions to all the large instances, while GA found no feasible solutions and HA2
was only able to find feasible solutions on a few of the instances. GA and the CP solver
were both unable to find feasible solutions on these large instances. HA2 found feasible
results on several instance (Large_4, Large_6, and Large_7), but the fitness values of
these solutions were far greater than that of the HA1 results on the same instances. This
can be seen clearly on instance Large_7 where the best fitness found by HA2 is 509 when
crossover-1 is used and 542 when crossover-2 is used. However on the same instance,
HA1 found solutions with fitness values as low as 214 using crossover-1 and 194 using
crossover-2 on the same instance.

In Table 4.14, the fastest average running times are highlighted in bold, but, as in Table
4.12, these do not necessary return feasible results. Thus, the algorithms with the best
average running times that also return feasible results are highlighted in red. In this table
(Table 4.14) we see that the average running times of both the Genetic and Memetic
Algorithms tend to be only a few minutes despite the instances being very large. On
these large instances, we also begin to see that HA1 does have longer running times
than HA2 and GA. But this is a difference of only a few minutes at most. For GA and
to some extent HA2 the reported running times may seem good but these algorithms
did not provide feasible solutions so one cannot claim that these average running times
are superior to algorithms with longer average running times that also provide feasible
solutions. HA1 was able to find feasible solutions to all the large instances and although
the average running times of HA1 are slightly longer than the running times of HA2 and
GA, GA and HA2 did not consistently find feasible solutions. Here HA1 outperforms
both GA and HA2 by a large margin since feasible solutions are consistently found within
a few minutes. The longest average running time was HA1 using crossover-1 on instance
Large_3, which took 7 minutes and 21 seconds. This is superior to the CP solver since
the CP solver found no results in 2 hours while HA1 found feasible results within a
few minutes. Taking a look at the crossover variants’ average running times in Table
4.14, we see again that crossover-2 is faster than crossover-1 on all instances and with all
algorithms.

As expected, the performance of the two crossover variants is dependent on the instance.
From Tables 4.9, 4.12, and 4.14, it can be seen that over all sets of instances (excluding
a few instances in the small set where the crossovers had the same average running time)
crossover-1 increases the running times of all the algorithms. This is to be expected
since crossover-1 tends to have more exchange operations than crossover-2. For the large
instances in Table 4.13, it is difficult to determine which crossover may be better in terms
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Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2 CPs
Large_3 153292* 200417* 310 286 31234* 34013* _
Large_4 5914* 13500* 429 428 698 692 _
Large_5 29587* 55676* 482 483 8668* 11229* _
Large_6 27857* 30346* 467 468 5621* 726 _
Large_7 37943* 31356* 214 194 509 542 _

Table 4.13: Best fitness on large instances

Instance GA_C1 GA_C2 HA1_C1 HA1_C2 HA2_C1 HA2_C2 CP
Large_3 2m 15s* 1m 8s* 7m 21s 3m 43s 2m 36s* 1m 7s* 2h
Large_4 1m 1s* 44s* 1m 48s 52s 1m 7s 28s 2h
Large_5 2m 7s* 1m 17s* 3m 44s 1m 55s 2m 28s* 1m* 2h
Large_6 1m 17s* 34s* 2m 3s 57s 52s* 48s 2h
Large_7 44s* 18s* 1m 18s 48s 42s 22s 2h

Table 4.14: Average running times on large instances

of best fitness. On three of the five large instances, crossover-2 provides the best fitness
found, but crossover-1 finds the best solutions on the other two instances. The same
results can be seen on the medium-sized instances in Table 4.10. Crossover-2 provides the
best solution on three of the five instance, while crossover-1 provides the best solution on
the rest. Which crossover produces better solutions largely depends on both the instance
and the algorithm. However, it is clear from Tables 4.9, 4.12, 4.14 that crossover-2 is far
faster than crossover-1 and nothing suggests that it provides less accurate solutions than
crossover-1. Therefore, it may be the better crossover overall.

Overall, HA1 produces the best results. Despite having slightly longer running times,
HA1 was able to find feasible results to several large instances where HA2 and GA could
not. HA1 found feasible solutions to every instances in all three sets, this was not the
case for GA and HA2. Furthermore, HA1 found feasible solutions that were superior to
the solutions found by the CP solver on the medium-sized instances and found solutions
that were superior to even the feasible solutions found by HA2 on the large instances.
HA1 was also able to find feasible solutions to all the large instances within a matter of
minutes while the CP solver could not find any solution within 2 hours.

The findings are summarized as follows:

• On several small instance the CP solver provided better solutions than the Genetic
and Memetic Algorithms within similar solve times.

• HA1 and HA2 performed similarly on the small instances. Both had similar average
running times and both provided solutions better than the solutions found by the
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GA.

• HA1 produces the best fit solutions on the large and medium-sized instances.

• HA1 found feasible solutions on more instances than HA2 and GA.

• HA1 had slightly longer running times than HA2 and GA on the large instances.

• GA did not find feasible solutions to any of the large instances.

• HA1 found feasible solutions to all of the large instances with average running
times of less than 8 minutes.

• For every metaheurstic algorithm, crossover-1 had longer running times than
crossover-2.

• The performance of crossover-1 verse crossover-2 is largely dependent on the instance;
neither preformed significantly better than the other in terms of fitness value.
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CHAPTER 5
Conclusion

5.1 Summary of Work
In this thesis, we introduced a new real-world crowdsourced VRP and we addressed the
question of whether we can develop an algorithm that can find good solutions to this
problem within reasonable running times. We developed a Genetic Algorithm and two
Memetic Algorithms and we produced highly promising results for real-world situations
and the delivery industry. An extensive review of the current related work on similar
VRP problems was discussed. Metaheuristics on OVRP with capacity and deviation
constraints was reviewed as well as a more recent problem using ad-hoc drivers called
the VRPOD. Lastly, we review recent Memetic Algorithms developed for various OVRP
problems. Two Memetic Algorithms were developed both combining a Genetic Algorithm
with Randomized Hill Climbing. In the first algorithm, HA1, the Hill Climbing step was
done at every generation. In the second algorithm, HA2, the Hill Climbing step was done
only once at the end of the algorithm. We also developed a new mutation operation and
a crossover operation where two variations were used. We use these operations in both
the Genetic Algorithm and the Memetic Algorithms. We used a Roulette Wheel selection
strategy and a replacement strategy where the new children replace the chromosome
most similar to them in the previous population. A new solution representation was also
developed that was used in both the Genetic Algorithm components and the Randomized
Hill Climbing components of our algorithms.

Upon comparing the algorithms against Constraint Programming results and against
each other, we found that a Memetic approach finds feasible but not guaranteed optimal
solutions in a short amount time. The algorithms were compared to Constraint Program-
ming results on small instances. It was found that Genetic and Memetic Algorithms are
faster than the Constraint Programming approach, but do not provide exact solutions as
the Constraint Programming solver does. Comparing the algorithms to each other on
larger instances, we found that the Memetic Algorithms found better solutions than the
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5. Conclusion

Genetic Algorithm on its own and that HA1 performed the best out of the two Memetic
Algorithms. This shows that the Local Search has a positive impact on the the results
of the algorithm, especially when it is applied at every generation. The two crossover
variants were also compared. Crossover-2 was notably faster on most instances, and the
fitness values found using the two crossovers were similar.

The Memetic approach in HA1 was very promising; although the solutions of HA1 are
not guaranteed to be exact, the algorithm is able to provide feasible solutions in short
running times and the solutions were notably better than other solutions found by the
GA and HA2. Although the solutions are not guaranteed to be exact, the fact that they
can be provided quickly can be very useful in real-world situations.

5.2 Future Work
In the future, our problem could be expanded to mimic real-world situations even further.
For example, time window constraints and multi-depot options could be considered.
Another interesting idea to explore to to including the drivers’ starting points into the
route calculations. In the current setting, the drivers are assumed to start at the depot,
but it could be to include their starting locations before they arrive at the depot. There
is also much work to be done on the analysis of the cost-effectiveness and emission
reductions of this problem. Other variants of the problem where drivers are compensated
in a different payment scheme could be considered. A different payment strategy could
lead to a multi-objective problem where both route distances and monetary costs are
considered. Concerning the algorithms, there is much that could be considered in future
work. For example, other hybridization techniques could be considered. Furthermore,
the possibility of using a smart population initialization strategy instead of a random
initialization could lead to interesting results. For example, selecting packages that
are within some distance of the driver’s destination first before considering packages
further away. There could also be more research done on the two crossover operations,
for example experimenting with the crossovers on widely varying instances could help
determine what types of instances the crossovers are better suited for. Another interesting
area of research would be to explore the effects of the number of iterations of the Local
Search in the Memetic Algorithms on the fitness and running times of the algorithms.
Since HA1 was able to find feasible solutions within only a few minutes on even the
largest instances, it would be interesting to see how much better the fitness values could
be if the number of iterations of the Hill Climbing component was increased.
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APPENDIX A
This section contains an additional table showing the percentage of times each parameter
configuration finds a feasible solution for all three algorithms. The highest percentage of
feasible solutions is highlighted in bold for each algorithm.

percent feasible per parameter configuration
p µ χ σ GA HA1 HA2
0.1 0.05 0.5 0.5 5.45% 73.58% 59.26%
0.1 0.05 0.5 0.75 14.29% 82.69% 55.77%
0.1 0.05 0.5 1 11.54% 80.00% 53.85%
0.1 0.05 0.75 0.5 11.32% 81.48% 55.36%
0.1 0.05 0.75 0.75 14.55% 77.36% 58.49%
0.1 0.05 0.75 1 12.96% 74.51% 52.94%
0.1 0.05 1 0.5 15.38% 79.63% 53.85%
0.1 0.05 1 0.75 7.41% 81.13% 53.85%
0.1 0.05 1 1 12.73% 77.36% 56.36%
0.1 0.1 0.5 0.5 9.43% 75.47% 60.38%
0.1 0.1 0.5 0.75 23.53% 85.45% 60.00%
0.1 0.1 0.5 1 22.64% 79.63% 60.38%
0.1 0.1 0.75 0.5 14.81% 77.36% 54.39%
0.1 0.1 0.75 0.75 16.07% 74.51% 55.56%
0.1 0.1 0.75 1 20.37% 76.36% 58.49%
0.1 0.1 1 0.5 16.98% 78.85% 57.69%
0.1 0.1 1 0.75 22.22% 79.25% 61.11%
0.1 0.1 1 1 18.52% 84.31% 55.56%
0.1 0.3 0.5 0.5 21.15% 74.07% 52.94%
0.1 0.3 0.5 0.75 30.19% 86.79% 58.82%
0.1 0.3 0.5 1 18.87% 78.43% 54.90%
0.1 0.3 0.75 0.5 16.98% 73.08% 55.77%
0.1 0.3 0.75 0.75 20.37% 81.82% 56.60%
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0.1 0.3 0.75 1 20.37% 75.47% 61.11%
0.1 0.3 1 0.5 14.81% 81.48% 60.38%
0.1 0.3 1 0.75 20.00% 79.25% 55.77%
0.1 0.3 1 1 25.00% 82.35% 57.41%
0.3 0.05 0.5 0.5 22.22% 75.00% 58.18%
0.3 0.05 0.5 0.75 22.64% 83.64% 50.94%
0.3 0.05 0.5 1 20.00% 90.74% 62.96%
0.3 0.05 0.75 0.5 22.64% 79.63% 58.49%
0.3 0.05 0.75 0.75 16.07% 74.07% 56.00%
0.3 0.05 0.75 1 23.08% 88.89% 58.18%
0.3 0.05 1 0.5 27.45% 81.48% 60.00%
0.3 0.05 1 0.75 28.30% 74.07% 60.38%
0.3 0.05 1 1 30.19% 79.63% 52.83%
0.3 0.1 0.5 0.5 23.08% 78.43% 57.89%
0.3 0.1 0.5 0.75 21.82% 78.85% 57.41%
0.3 0.1 0.5 1 30.19% 86.27% 60.38%
0.3 0.1 0.75 0.5 13.21% 79.25% 60.38%
0.3 0.1 0.75 0.75 22.22% 80.77% 58.18%
0.3 0.1 0.75 1 26.92% 75.47% 58.49%
0.3 0.1 1 0.5 28.85% 86.27% 56.00%
0.3 0.1 1 0.75 26.92% 83.02% 58.82%
0.3 0.1 1 1 21.57% 81.13% 58.93%
0.3 0.3 0.5 0.5 32.08% 77.36% 57.41%
0.3 0.3 0.5 0.75 26.42% 79.25% 56.60%
0.3 0.3 0.5 1 25.45% 81.13% 55.77%
0.3 0.3 0.75 0.5 26.92% 83.02% 57.41%
0.3 0.3 0.75 0.75 24.07% 77.78% 58.49%
0.3 0.3 0.75 1 30.77% 82.69% 55.56%
0.3 0.3 1 0.5 29.63% 76.79% 58.49%
0.3 0.3 1 0.75 32.08% 82.14% 56.60%
0.3 0.3 1 1 30.91% 80.77% 56.60%
0.5 0.05 0.5 0.5 33.93% 79.25% 61.54%
0.5 0.05 0.5 0.75 30.19% 76.36% 61.11%
0.5 0.05 0.5 1 32.69% 78.43% 62.96%
0.5 0.05 0.75 0.5 32.69% 78.85% 59.26%
0.5 0.05 0.75 0.75 35.09% 84.91% 59.26%
0.5 0.05 0.75 1 32.08% 78.85% 57.41%
0.5 0.05 1 0.5 26.42% 76.47% 55.56%
0.5 0.05 1 0.75 43.40% 83.64% 61.54%
0.5 0.05 1 1 34.55% 77.36% 58.49%
0.5 0.1 0.5 0.5 33.96% 83.33% 59.62%
0.5 0.1 0.5 0.75 41.51% 84.91% 57.41%
0.5 0.1 0.5 1 39.62% 76.47% 60.38%
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0.5 0.1 0.75 0.5 31.48% 86.79% 59.62%
0.5 0.1 0.75 0.75 38.00% 78.85% 62.26%
0.5 0.1 0.75 1 42.59% 78.85% 58.18%
0.5 0.1 1 0.5 27.27% 79.25% 55.77%
0.5 0.1 1 0.75 45.28% 75.00% 59.26%
0.5 0.1 1 1 41.51% 75.00% 58.49%
0.5 0.3 0.5 0.5 38.18% 75.47% 60.38%
0.5 0.3 0.5 0.75 35.85% 78.57% 60.38%
0.5 0.3 0.5 1 45.45% 87.27% 51.85%
0.5 0.3 0.75 0.5 38.89% 81.82% 61.11%
0.5 0.3 0.75 0.75 45.10% 81.82% 62.26%
0.5 0.3 0.75 1 35.85% 82.14% 61.82%
0.5 0.3 1 0.5 37.74% 82.35% 61.11%
0.5 0.3 1 0.75 33.33% 78.57% 61.82%
0.5 0.3 1 1 34.62% 80.00% 61.11%
1 0.05 0.5 0.5 48.08% 79.63% 59.62%
1 0.05 0.5 0.75 50.94% 76.92% 62.26%
1 0.05 0.5 1 46.30% 73.08% 61.54%
1 0.05 0.75 0.5 47.27% 76.92% 61.54%
1 0.05 0.75 0.75 48.15% 86.79% 61.54%
1 0.05 0.75 1 47.37% 76.47% 58.82%
1 0.05 1 0.5 50.00% 81.13% 64.29%
1 0.05 1 0.75 49.06% 82.14% 58.82%
1 0.05 1 1 52.83% 79.25% 62.26%
1 0.1 0.5 0.5 50.00% 87.27% 58.49%
1 0.1 0.5 0.75 50.94% 77.78% 59.62%
1 0.1 0.5 1 47.06% 76.92% 60.00%
1 0.1 0.75 0.5 49.06% 74.07% 60.00%
1 0.1 0.75 0.75 48.15% 84.62% 56.86%
1 0.1 0.75 1 50.94% 83.93% 60.00%
1 0.1 1 0.5 58.49% 80.39% 63.64%
1 0.1 1 0.75 47.27% 83.64% 58.18%
1 0.1 1 1 51.85% 76.92% 58.49%
1 0.3 0.5 0.5 52.83% 87.04% 61.82%
1 0.3 0.5 0.75 53.85% 77.36% 61.11%
1 0.3 0.5 1 57.69% 88.68% 59.62%
1 0.3 0.75 0.5 50.00% 87.27% 61.54%
1 0.3 0.75 0.75 50.00% 80.00% 60.38%
1 0.3 0.75 1 53.85% 88.68% 60.38%
1 0.3 1 0.5 54.00% 81.82% 62.96%
1 0.3 1 0.75 56.36% 84.62% 58.93%
1 0.3 1 1 51.85% 84.00% 60.71%
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