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A B S T R A C T

A number of continuum mechanical models for the macroscopic and microscopic linear elastic behavior of
composites reinforced by continuous, unidirectional, coaxially coated fibers are critically compared. For the
study, the interphase is assumed to be of finite thickness and uniform. Selected analytical mean-field methods
and Finite-Element-based periodic homogenization models are applied to obtaining predictions for the effective
elastic tensors and moduli of generic composites of this type. In addition, the phase-averaged microscopic
stresses are evaluated for some macroscopic load cases. By comparing these results modeling schemes capable
of providing high-quality predictions are identified.
1. Introduction

In many composites reinforced by unidirectional, continuous
fibers a distinct layer of finite thickness, known as an interphase or
mesophase, is present between fiber and matrix. This layer may result
from chemical interactions between the constituents or it may be
specifically engineered with the aim of modifying some aspects of the
behavior of the composite. In the 2000s the latter issue has started to
come to the forefront, compare, e.g., Jones (2010), Karger-Kocsis et al.
(2015), Livanov et al. (2016) or Zheng et al. (2022). Recent relevant
developments include ‘‘fuzzy fibers’’ coated with carbon nanotubes,
see, e.g., Sager et al. (2009), and electrolyte coated carbon fibers for
multifunctional composites, compare, e.g., Asp and Greenhalgh (2014).
Such developments have fueled continuing research interest in models
for predicting the effects of interphases on the behavior of continuously
reinforced composites.

In the present work a number of continuum mechanical methods
for modeling the elastic responses of idealized composites reinforced by
coated, continuous, aligned fibers are critically compared and assessed.
For this purpose the interphases are assumed to be uniform and of
constant thickness, the fibers are taken to show a circular cross section,
constituents are treated as perfectly bonded, and small strain, linear
elastic behavior is considered. The comparisons are carried out for four
sets of generic material parameters chosen to explore a wide range
of elastic contrasts. Various configurations in terms of the volume
fractions of the phases are studied.

E-mail address: hjb@ilsb.tuwien.ac.at.
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Composites falling within the above scope show transversally
isotropic macroscopic behavior, so that, in general, five independent
elastic moduli are required for fully describing the effective elasticity
tensor. The following short discussion of the state of the art concen-
trates on models that can provide predictions for the macroscopic
elasticity tensors (or for appropriate sets of effective elastic moduli) of
the composites. It is limited to developments that are directly relevant
to the present study and is not intended as a formal review.

The majority of pertinent analytical approaches have used the
concept of describing coated fibers via uniform, equivalent inhomo-
geneities, a strategy referred to as the ‘‘replacement method’’ by Hashin
(1972). Modeling schemes of this type can be used to describe the ef-
fects of interphases of finite as well as interfaces of vanishing thickness,
compare, e.g., Firooz et al. (2021) and Duan et al. (2022). Most of the
two-step methods for coated fibers resulting from replacement schemes
can be classified as falling into two distinct lines of development.

The first group of models are based on rigorous elasticity solutions
for the displacement, stress and strain fields in a coated cylinder em-
bedded in a matrix. Early works of this type, e.g., Theocaris and Varias
(1986), provided solutions for some, but not all, of the required moduli.
The full set of ‘‘auxiliary problems’’ necessary for obtaining complete
sets of transversally isotropic, thermoelastic moduli describing such
configurations was explicitly spelt out by Benveniste et al. (1989).
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Nomenclature

Acronyms

BIR Birman’s model (Birman, 2021)
CCA Composite Cylinder Assemblage (Hashin and

Rosen, 1964)
DIM Double Inclusion Method (Hori and Nemat-

Nasser, 1993)
DIMM DIM dilute solution plus Mori–Tanaka Method
EDS Exact dilute solution plus Differential Scheme
EGSC Exact dilute solution plus Generalized

Self-Consistent scheme
EHS Exact dilute solution plus Hashin–Shtrikman

bounds
EHSW Exact dilute solution plus two-phase Hashin–

Shtrikman–Willis bounds
EMCM Exact dilute solution plus Method of Conditional

Moments
EMT Exact dilute solution plus Mori–Tanaka methods
E3PB Exact dilute solution plus 3-Point Bounds
E3PE Exact dilute solution plus 3-Point Estimates
HMM Hierarchical Multi-interphase Model (Li et al.,

2011)
HSW three-phase Hashin–Shtrikman–Willis bounds
FEM Finite Element Method
GEEE General Explicit Eshelby-type Estimator (Ghazav-

izadeh et al., 2019)
MTM Mori–Tanaka Method (Benveniste, 1987)
MTDS Mori–Tanaka dilute solution plus Differential

Scheme
MTMT Mori–Tanaka dilute solution plus Mori–Tanaka

method
PHA Periodic Hexagonal Array (of fibers)
PMC Periodic Multi-fiber Cell
RDIM Reformulated Double Inclusion Model (Dinzart

et al., 2016)
RVE Representative Volume Element

Symbols

�̄� (phase averaged) strain concentration tensor
�̄� (phase averaged) stress concentration tensor
𝐂 compliance tensor
𝐄 elasticity tensor
𝐈 4th order unit tensor
𝐋 tensor providing information on two-point statis-

tics (Khoroshun et al., 1988)
𝐏 Hill (mean polarization factor) tensor
𝐒 Eshelby tensor
�̄� (phase averaged) partial strain concentration

tensor
𝜺 strain tensor
𝝈 stress tensor
𝐸 Young’s modulus
𝐺 shear modulus
𝐾 bulk modulus
𝜈 Poisson number
𝛺 volume
𝜉 phase volume fraction
2

𝜂 partial volume fraction of core or layer
𝑎 (minor) in-plane side length of a volume element
𝑡 thickness of the interphase

Subscripts, superscripts and brackets

∙(p) phase in general
∙(m) matrix
∙(c) fiber core
∙(l) coating layer / interphase
∙I equivalent uniform inhomogeneity
∙∗ effective / macroscopic
∙(0) reference medium
∙A axial
∙T transverse
∙dil dilute
∙eqv equivalent
⟨∙⟩ volume average

Appropriate models were proposed, e.g., by Pagano and Tandon (1988),
Hashin (1990) or Benveniste et al. (1989); the latter contribution
approximated the macroscopic responses via a Mori–Tanaka method.
Hervé and Zaoui (1995) started out from the displacement solutions
for the Navier equations in cylindrical coordinates and used the in-
terfacial continuity conditions to set up a transfer matrix formalism
for the coefficients of the ansatz terms. On this basis expressions
for all effective moduli of the non-dilute composite were set up, the
effective transverse shear modulus being obtained by equating the
strain energies in the composite and in the equivalent homogeneous
embedding medium (Christensen and Lo, 1979). Hervé-Luanco (2020)
provided simplified expressions for the Hervé/Zaoui self-consistent
model and Blondel et al. (2020) extended it to studying morphological
fluctuations in composites reinforced by coated fibers. Wang et al.
(2016) as well as Chatzigeorgiou and Meraghni (2019) used analogous
ansatz functions to evaluate explicit, rigorous expressions for the phase
averaged concentration factors pertaining to single fiber–interphase
systems embedded in an infinite matrix. It is worth noting that di-
lute solutions of this type are available only for concentrically coated
spheres and for coaxially coated, infinitely long cylinders.

The second group of models aim at providing analytical approxi-
mations for dilute, coated configurations on the basis of the Eshelby
tensor (Eshelby, 1957) which, per se, is limited to handling uniform
inhomogeneities. This modeling strategy was pioneered by the Dou-
ble Inclusion Model (DIM) of Hori and Nemat-Nasser (1993), which
provides expressions for the elasticity and concentration tensors of
the equivalent inhomogeneities. These results were combined with a
Mori–Tanaka method by Dunn and Ledbetter (1995) to provide esti-
mates for the macroscopic elastic responses of non-dilute composites
containing aligned, coated reinforcements. Aboutajeddine and Neale
(2005) proposed an improved version of the DIM. This formed the
basis for a Generalized Self-Consistent scheme for the effective elas-
tic behavior of materials reinforced by coated ellipsoidal fibers or
particles proposed by Dinzart et al. (2016), referred to as the Re-
formulated Double Inclusion Model (RDIM). In an alternative line of
development Eshelby-tensor-based micromechanics theories have been
deployed for describing dilute inhomogeneity–coating arrangements.
The use of Mori–Tanaka-type methods for modeling the behavior of
equivalent coated inhomogeneities seems to go back to Friebel et al.
(2006), who considered a number of three-phase schemes in viscoelas-
ticity. Recently, Ghazavizadeh et al. (2019) presented a hierarchical
approach to studying composites containing multiply coated reinforce-
ments, called the General Explicit Eshelby-Type Estimator (GEEE). This

can be interpreted as a succession of steps each of which uses the
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Hashin–Shtrikman estimates of Ponte Castañeda and Willis (1995); for
the case of a uniform, coaxial coating it reduces to two Mori–Tanaka
steps. The GEEE was shown by its authors to give identical results
to the RDIM of Dinzart et al. (2016). Using a Differential Scheme
for evaluating the properties of the equivalent fibers was proposed
by Sevostianov et al. (2012), whereas Liu and Bian (2019) developed
a two-step model employing dilute concentration tensors based on an
effective field method. Most models in this group are capable of pro-
viding predictions for ellipsoidal core–interphase configurations that do
not have to be homothetic. Coaxially coated, circular cylinders are a
special case of such geometries.

Eshelby tensors may also be used within one-step models for elastic
composites containing coated, ellipsoidal reinforcements, an example
being the approximation proposed by Birman (2021). A further ap-
proach to studying the effects of coated ellipsoidal inhomogeneities
makes use of the interfacial operator proposed by Hill (1983). This
line of work was initiated by Cherkaoui et al. (1994) for handling thin
interphases and underwent considerable development. For example,
a Generalized Self-Consistent scheme for general configurations was
reported by Berbenni and Cherkaoui (2010) to closely approach results
based on rigorous solutions.

A conceptually different path towards obtaining closed form solu-
tions for the responses of fiber reinforced composites with uniform
interphases was proposed by Guinovart-Díaz et al. (2005), who applied
an analytical asymptotic homogenization scheme to Periodic Hexagonal
Arrays (PHA) of coated fibers.

Numerical work on the behavior of elastic composites reinforced by
continuous, aligned, coated fibers started to appear in the literature in
the late 1980s. At first it concentrated on the responses to transverse
loading, using the Finite Element Method (FEM) and the Boundary
Element Method for studying planar, periodic hexagonal or periodic
square arrays of coated fibers, see, e.g., Adams (1987) and Achenbach
and Zhu (1990). Among the first numerics-based publications providing
effective elastic tensors of such composites was a study by Gardner et al.
(1993), who applied the Method of Cells to describing periodic square
arrays of coated fibers of square cross-section.

Most of the numerical works pertinent to the present focus have
combined periodic homogenization schemes with the FEM. Chouchaoui
and Benzeggagh (1997) reported the effective elastic tensors of a glass–
epoxy bundle using PHA microgeometries, as did Hammerand et al.
(2007) for periodic hexagonal as well as clustered arrangements of
hollow fibers. Periodic volume elements containing a number of ran-
domly positioned reinforcements, which are a mainstay of numerical
micromechanics of composite materials and are referred to as Periodic
Multi-fiber Cells (PMC) in the following, were first applied to extracting
the effective elasticity tensors of materials reinforced by coated uni-
directional fibers by Kari et al. (2008). Volume elements of this type
were also employed, e.g., by Gusev and Kern (2018) in a viscoelastic
setting and by Pitchai et al. (2020) in combination with the Variational
Asymptotic Method.

Other numerical schemes suitable for evaluating the effective elas-
tic tensors of materials reinforced by coated unidirectional fibers in-
clude Fast Fourier Transformation methods for periodic models, com-
pare Wang et al. (2019), as well as multipole expansions or FE-based
homogenization schemes that employ macrohomogeneous boundary
conditions, compare Mogilevskaya et al. (2010) and Riaño et al. (2018),
respectively. Their use, however, seems to have been limited to planar
models.

Neither numerical models based on discrete volume elements nor
analytical methods can provide exact solutions for the effective elas-
tic responses of non-dilute composites reinforced by (non-coated or
coated) unidirectional, continuous fibers. These two groups of modeling
strategies, however, make use of fundamentally different approxima-
tions in order to obtain estimates. Whereas typical analytical schemes
combine statistical descriptions of phase geometries with mean field or
3

effective field approximations for the microfields in the constituents, ⟨
the numerical approaches are ‘‘full-field models’’ that can resolve the
stress and strain fields of specific microgeometries at high accuracy.
These phase arrangements, however, in practice are only approxima-
tions to proper Representative Volume Elements (RVEs) as defined by
Hill (1963). On account of the marked differences underlying these
approaches consistent agreement between given analytical and numer-
ical methods, maintained over sets of dissimilar input data, is a strong
indicator that both results are valid. Also, in view of the computa-
tional costs of numerical models, identifying high-quality analytical
approximations is of obvious practical interest.

A number of studies in the literature have included comparisons
between different models for the elastic responses of composites rein-
forced by coated unidirectional fibers, see, e.g., Wang et al. (2016),
Chatzigeorgiou and Meraghni (2019) or Chen et al. (2021). Further
relevant information can be obtained from the other publications ref-
erenced above. The present work aims at systematically extending this
body of knowledge, special emphasis being put on models introduced
during the past decade. It follows the strategy used for comparing
models for materials reinforced by coated spheres by Böhm (2019),
where analytical and numerical schemes are assessed for a number of
geometrical configurations and generic phase properties.

Basics of the analytical and numerical modeling approaches used
in the paper are introduced in Section 2, expressions for some of
the analytical sub-models being provided in Appendix A. Section 3
presents and compares results obtained with the various models. Data
on equivalent homogeneous fibers are presented in Appendix B and
the behavior of some pertinent bounds is discussed in Appendix C. The
supplementary material provides tables of predictions for effective and
equivalent moduli as well as for phase-averaged microstresses.

2. Models

In this section the basic ideas of two-step analytical approaches as
well as the numerical schemes are discussed. All models considered are
based on stress equilibrium in multi-phase regions.

2.1. Two-step analytical mean-field models

The present contribution deals with linear elastic multi-phase ma-
terials the macroscopic behavior of which takes the form

⟨𝝈⟩ = 𝐄∗
⟨𝜺⟩ and ⟨𝜺⟩ = 𝐂∗

⟨𝝈⟩ , (1)

where ⟨𝝈⟩ and ⟨𝜺⟩ are the macroscopic stress and strain tensors, 𝐄∗ is
he effective elasticity tensor and 𝐂∗ the effective compliance tensor.
he constitutive behavior of each phase (p) can be denoted in analogy
s

𝝈⟩(p) = 𝐄(p)
⟨𝜺⟩(p) and ⟨𝜺⟩(p) = 𝐂(p)

⟨𝝈⟩(p) , (2)

here ⟨𝜺⟩(p) and ⟨𝝈⟩(p) stand for the volume averages of the stress and
train tensors, respectively, in phase (p). The relations

𝝈⟩ =
∑

(p)
𝜉(p)⟨𝝈⟩(p) and ⟨𝜺⟩ =

∑

(p)
𝜉(p)⟨𝜺⟩(p) , (3)

ollow directly from volume averaging, 𝜉(p) being the volume fraction
f phase (p).

Mean-field micromechanical methods in elasticity can be conve-
iently formulated in terms of phase-averaged strain and stress concen-
ration tensors (Hill, 1963), �̄�(p) and �̄�(p), which connect the volume
veraged stresses and strains to their macroscopic equivalents, such
hat

𝜺⟩(p) = �̄�(p)
⟨𝜺⟩ and ⟨𝝈⟩(p) = �̄�(p)

⟨𝝈⟩ . (4)

he closely related partial strain concentration tensors, which link the
hase averaged strains in two different phases, (p) and (q), are defined
s

(p) ̄ (p,q) (q)
𝜺⟩ = 𝐓 ⟨𝜺⟩ . (5)
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For a three-phase composite consisting of a matrix (m) and two inhomo-
geneity phases, (c) and (l), the relations

𝜉(m)�̄�(m) + 𝜉(c)�̄�(c) + 𝜉(l)�̄�(l) = 𝐈 (6)

hold, where 𝐈 stands for the 4th order unit tensor. The effective elastic-
ity tensor of such a composite is given by

𝐄∗ = 𝜉(m)𝐄(m)�̄�(m) + 𝜉(c)𝐄(c)�̄�(c) + 𝜉(l)𝐄(l)�̄�(l) , (7)

which, like Eq. (6), is a direct consequence of Eq. (3).
By setting

𝜂(c)𝐄(c)�̄�(c) + 𝜂(l)𝐄(l)�̄�(l) = 𝐄I
eqv�̄�

I
eqv , (8)

where the ‘‘partial volume fractions’’, 𝜂(c) and 𝜂(l), are defined as

𝜂(c) =
𝜉(c)

𝜉(c) + 𝜉(l)
and 𝜂(l) =

𝜉(l)

𝜉(c) + 𝜉(l)
, (9)

Eq. (7) can be brought into the form

𝐄∗ = 𝜉(m)𝐄(m)�̄�(m) + 𝜉I𝐄I
eqv�̄�

I
eqv . (10)

𝐄I
eqv and �̄�I

eqv can be interpreted as the elasticity and averaged strain
concentration tensors, respectively, pertaining to uniform equivalent
inhomogeneities of volume fraction 𝜉I = 𝜉(c)+𝜉(l). The above definitions,
which correspond to Hashin’s replacement method, also imply that
𝜉(c) = 𝜂(c)𝜉I and 𝜉(l) = 𝜂(l)𝜉I. In addition, consistency with Eq. (6) results
in the requirement that

�̄�I
eqv = 𝜂(c)�̄�(c) + 𝜂(l)�̄�(l) . (11)

It is worth noting that Eqs. (6) to (11) hold for any three-phase
composite regardless of its phase topology or geometry. Information
on specific configurations, e.g., coated inhomogeneities consisting of a
core (c) surrounded by an interphase layer (l), must be introduced via
suitable concentration tensors �̄�(c) and �̄�(l).

In analytical micromechanics estimates for responses at finite rein-
forcement volume fractions are often based on the behavior of dilute
systems such as single inhomogeneities embedded in an infinite matrix
region. This strategy is directly applicable to composites reinforced
by coated reinforcements that are described via equivalent, uniform
inhomogeneities. On this basis a range of two-step schemes can be
set up, in which the dilute, coated reinforcements embedded in the
matrix are described via equivalent elasticity tensors 𝐄I

eqv and/or strain
concentration tensors �̄�I

dil,eqv that are obtained from suitable ‘‘equivalent
homogeneous fiber sub-models’’. In the second step, essentially any mi-
cromechanical model applicable to two-phase composites, referred to
as a ‘‘composite-level sub-model’’ in the following, may be used for the
transition from dilute to non-dilute volume fractions. In such a ‘‘con-
struction kit’’ approach the overall accuracy of any scheme necessarily
depends on that of either of the sub-models.

For some analytical micromechanical models that are candidates
for use at the composite level it is sufficient to know the equivalent
elastic moduli of the coated fibers, examples being the third order weak
contrast expansions (‘‘three-point estimates’’) of Torquato (1998) or
the Generalized Self-Consistent scheme of Christensen and Lo (1979).
Conversely, if the dilute strain concentration tensors of core and coating
as well as the non-dilute equivalent concentration tensor �̄�I

eqv are
known, the effective elasticity tensor may be obtained as

𝐄∗ = 𝐄(m) + 𝜉I(𝐄(m) − 𝐄(l)) �̄�I
eqv + 𝜉(c)(𝐄(c) − 𝐄(l)) �̄�(l)

dil

= 𝐄(m) + 𝜉I(𝐄(m) − 𝐄(c)) �̄�I
eqv + 𝜉(l)(𝐄(l) − 𝐄(c)) �̄�(c)

dil , (12)

compare Dunn and Ledbetter (1995), no explicit expression for 𝐄I
eqv

being needed.
Many mean-field-type composite-level sub-models, however, re-

quire both 𝐄I
eqv and �̄�I

dil,eqv, compare, e.g. Eqs. (A.4) and (A.5). A
number of relations are available that provide links between these
4

tensors. On the one hand, if the phase-level dilute concentration tensors i
�̄�(c)
dil = �̄�(c,m)

dil and �̄�(l)
dil = �̄�(l,m)

dil are known, as is the case for the exact
solutions given by Wang et al. (2016) and Chatzigeorgiou and Meraghni
(2019) or the DIM, �̄�I

dil,eqv may be evaluated from the dilute equivalent
of Eq. (11), as

�̄�I
dil,eqv = 𝜂(c)�̄�(c)

dil + 𝜂(l)�̄�(l)
dil . (13)

On the other hand, if the equivalent elasticity tensor, 𝐄I
eqv, is available,

the equivalent dilute strain concentration tensor can be estimated from
standard results for dilute two-phase configurations such as

�̄�I
dil,eqv =

[

𝐈 + 𝐒I,m𝐂(m)(𝐄I
eqv − 𝐄(m))

]−1 (14)

(Hill, 1965). Here 𝐒I,m is the Eshelby tensor pertaining to the shape of
the compound inhomogeneity. Finally, equivalent elasticity tensors can
be evaluated from the concentration tensors via Eq. (8) as

𝐄I
eqv =

(

𝜂(c)𝐄(c)�̄�(c)
dil + 𝜂(l)𝐄(l)�̄�(l)

dil
)

(�̄�I
dil,eqv)

−1 , (15)

provided �̄�I
dil,eqv is invertible (which, in general, is the case for contin-

uous, aligned fibers).
Whereas for two-phase composites the effective and phase elastic

tensors uniquely determine the phase averaged concentration tensors,
no such unambiguous relationships are available for general multi-
phase composites. However, by using the concept of equivalent in-
homogeneities, composites reinforced by (simply or multiply) coated
inhomogeneities can be treated as hierarchies of two-phase materials,
so that all phase-level concentration tensors can be extracted once the
effective elasticities are known, e.g.,

�̄�I
eqv = 1

𝜉I
(𝐄I

eqv − 𝐄(m))−1(𝐄∗ − 𝐄(m))

�̄�(c) = 1
𝜂(c)

(𝐄(c) − 𝐄(l))−1(𝐄I
eqv − 𝐄(l))�̄�I

eqv , (16)

ompare Böhm (2019). Furthermore, it is possible to evaluate the stress
oncentration tensors of the phases and of the equivalent inhomogene-
ty from the corresponding strain concentration tensors (and vice versa)
y postprocessing operations of the type

̄ (p) = 𝐄(p)�̄�(p)[𝐄∗]−1 , (17)

ee Dvorak (1991). A number of additional relations (pertaining, e.g., to
hermoelasticity) given by Böhm (2019) for materials containing coated
pherical particles also hold for composites reinforced by unidirec-
ional, coated fibers.

Composites of the type considered in the present study are a special
ype of three-phase material. Accordingly, they must fulfill the appro-
riate three-phase Hashin–Shtrikman–Willis bounds (Willis, 1977). Fur-
hermore, it is possible to exploit the equivalent inhomogeneities to set
p two-phase Hashin–Shtrikman bounds (Hashin, 1965, 1983), Hashin–
htrikman–Willis bounds or three-point bounds (Torquato, 2002).

.2. Numerical models

Volume-discretizing numerical methods tend to become unwieldy
hen applied to studying microgeometries incorporating very thin

nterphases — resolving fine geometrical features quickly leads to very
arge models. The Finite Element Method used here, with its inherent
apability of handling unstructured meshes and, consequently, of local
esh refinement, can mitigate this practical difficulty to a considerable

xtent. Nevertheless, models of the type discussed in this section are
ot very efficient for partial interphase volume fractions significantly
ower than, say, 𝜂(l) = 0.05. This issue poses less of a constraint when
n appropriate Boundary Element Method is used.

The numerical models employed in the present work evaluate the
lastic responses of two types of three-dimensional volume element.
hese are, on the hand, Periodic Hexagonal Arrays (PHA) of fibers,
hich combine geometrical simplicity with the required transversally
sotropic elastic symmetry, compare Ptashnyk and Seguin (2016), and,
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on the other hand, Periodic Multi-fiber Cells (PMC) that contain a con-
siderable number of randomly positioned, identical, aligned, cylindrical
fibers. The method of macroscopic degrees of freedom (Michel et al.,
1999), a standard periodic homogenization approach, was applied to
the volume elements. The latter have the shape of right hexahedra,
see Fig. 1. The thickness of the cells was set to 0.02𝑎, where 𝑎 is the
minor in-plane side length of the volume element. PMC arrangements
containing 50 fibers each were generated by an in-house code using
random sequential addition followed by random perturbation, which
allows reaching fiber volume fractions exceeding 0.7. The minimum
distances between individual fibers and between the cylinders’ sur-
faces and the faces of the volume elements were thresholded at 0.01𝑎
and 0.015𝑎, respectively. Coaxial cylindrical cores were inscribed into
the cylindrical inhomogeneities, with the regions between the two
cylinders representing the coating layer. Alternatively, the interphases
of closely approaching fibers may be treated as confluent, compare,
e.g., Riaño et al. (2018); such geometries, however, are less directly
comparable to the ones underlying the analytical models.

For an interphase partial volume fraction of 𝜂(l) = 0.1 and a volume
element containing 50 cylindrical fibers at a volume fraction of 𝜉I = 0.2,
the interphase thickness evaluates as 𝑡 ≈ 0.0018𝑎. Geometries become
more benign in this respect with increasing 𝜉I and 𝜂(l). Meshing was
carried out with the preprocessor netgen (Schöberl, 1997), which has
strong capabilities in generating graded meshes. Tetrahedral continuum
elements with quadratic interpolation were used throughout the study.
For interphase partial volume fractions of 𝜂(l) ≥ 0.1 the meshes were re-
quired to incorporate at least two elements over the layer’s thickness in
order to allow resolving stress and strain distributions sufficiently well.
For the analyses with 𝜂(l) = 0.05, however, only one element over the
coating thickness could be accommodated within models of acceptable
size. The resulting node counts in the meshes for the periodic multi-
fiber cells range between 1.3×106 and 8.7×106, depending on the fiber
volume fraction and the interphase thickness, whereas they are lower
by considerably more than an order of magnitude for the PHA unit
cells. Fig. 1 shows an example each of a PMC geometry and a PHA cell
employing identical fibers of volume fractions 𝜉I = 0.6 and 𝜂(l) = 0.1,
ogether with the surface mesh employed for a part of the multi-fiber
eometry.

The constraint equations required for implementing the periodic-
ty boundary conditions were set up with an in-house program and
olutions were obtained with the general-purpose finite element code
BAQUS/Standard (3DS, Dassault Systémes, Providence, RI). The re-
ponses to six linearly independent load cases involving uniaxial ten-
ion in 𝑥-, 𝑦- and 𝑧-directions as well as simple shear in the 𝑥𝑦-,
𝑧- and 𝑧𝑥-planes were evaluated by applying appropriate unit loads,
o that the stiffness matrix had to be decomposed only once for a
iven geometry. The resulting macroscopic displacement vectors were
sed for extracting the macroscopic strains, from which, in turn, the
acroscopic elasticity tensor was evaluated. It is worth noting that for

he configurations considered here the microscopic stress and strain
ields do not vary in the direction of the fibers, i.e., they constitute
eneralized plane strain states. In principle, such analyses could be
one at lower cost with planar models that use special generalized
lane strain elements of the type proposed, e.g., by Adams and Crane
1984).

Comparisons of elastic moduli obtained by PMC simulations using
ifferent geometrical realizations pertaining to given volume fractions
I and 𝜂(l) showed relative differences below 1% in most cases. How-
ver, for elevated fiber volume fractions and high elastic contrasts these
ifferences exceeded 5% for some configurations. Accordingly, the PMC
odels must be viewed as being statistical volume elements in the sense

f Ostoja-Starzewski (2006) rather than proper representative volume
lements. In order to improve this aspect of the models’ behavior,
∗ may be evaluated as the ensemble average over the predictions
btained from a number of different, statistically equivalent geometries,
5

ompare Kanit et al. (2003). For the present study, four such volume
lements were used for each set of volume fractions considered, which
ositively affected the Zener parameters describing deviations from
acroscopic transverse isotropy. Removing the remaining deviations,

n the one hand, is in agreement with the ‘‘standard assumption’’ on
he macroscopic symmetry of composites reinforced by aligned fibers
nd, on the other hand, facilitates comparisons with the other models.
n order to achieve this, expressions due to Moakher and Norris (2006)
ere used for finding the transversally isotropic tensor closest to a
iven ensemble averaged elasticity tensor 𝐄∗ in terms of log-Euclidean

distances. The tensors resulting from this procedure were treated as the
final estimates from numerical homogenization.

For comparison with the analytical models phase averages of the
microfields, ⟨𝑓 ⟩(p), were approximated numerically, volume integrals
eing replaced by weighted sums of the type

𝑓 ⟩(p) = 1
𝛺(p) ∫𝛺(p)

𝑓 (𝐱) 𝑑𝛺 ≈ 1
𝛺(p)

𝑁 (p)
∑

𝑖=1
𝑓𝑖 𝛺𝑖 . (18)

Here 𝑓𝑖 and 𝛺𝑖 are the function value at and the volume of, respectively,
the 𝑖th integration point within a given phase volume 𝛺(p) that contains
a total of 𝑁 (p) integration points. In analogy to Böhm (2019) the vol-
umes 𝛺(p) were taken to be the union of all appropriate phase volumes
from the four volume elements pertaining to a given configuration and,
in view of the macroscopic transverse isotropy, all equivalent load cases
(e.g., outputs from the two axial shear load cases) were combined.
Phase-level standard deviations of the microfields were evaluated from
the integration point data by analogy.

Limited convergence tests in terms of the mesh size were carried
out. They involved a configuration of fiber volume fraction 𝜉I = 0.7 and
an interphase partial volume fraction of 𝜂(l) = 0.5, i.e., a thick coating.
Predictions from five different discretizations using between 1.37 × 106
(which corresponds to the mesh as used in Section 3) to 9.25×106 nodes
were compared for material data sets M2 and M3 (compare Table 1).
Relative differences in the evaluated effective moduli were found to fall
below 0.1% and those in the phase averaged stress components did not
exceed 2.5%, with the largest deviations occurring for the transverse
stress under transverse normal loading of the high-contrast material
data set M2. Differences in the predicted standard deviations of the full-
field phase-level stress distributions reached 5.3% for this load case,
but differences in the phase-level minima and maxima obtained with
the five discretizations remained below 2.5%. This behavior indicates
that the element sizes enforced by the specifications for the interphase
regions make the numerical results sufficiently independent of mesh
size.

2.3. Material parameters

Four sets of generic, linear elastic constituent data, M1 to M4,
were used in the study, which were primarily selected to cover widely
different points in the pertinent parameter space. The Young’s modulus
of the matrix was set to unity in all cases. Material data sets M1 to
M3 employ isotropic constituents, cover a range of elastic contrasts
and are identical to the ones employed by Böhm (2019) for compos-
ites reinforced by coated particles. For material M1, the stiffness of
the coating lies between the ones for matrix and core, whereas for
composite M2 the coating is considerably stiffer than the core and
markedly stiffer than the matrix. Data set M3 targets interphases that
are more compliant than the matrix and markedly more so than the
fiber core. The pertinent elastic moduli are listed in Table 1. The
fourth material data set, M4, probes the models’ behavior when the
fibers are transversally isotropic. The interphase in this case was chosen
to be somewhat more compliant than the matrix and to be nearly
incompressible. The constituents’ moduli for material data M4 set are
given in Table 2.

Appendix B lists, in tabular form, the elastic moduli of equivalent
fibers corresponding to material data sets M2 and M3 obtained with
a number of equivalent homogeneous fiber sub-models for selected

(l)
values of 𝜂 .
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Fig. 1. Phase arrangement of a typical multi-fiber volume element (a) and a PHA unit cell (b), both pertaining to volume fractions 𝜉I = 0.6 and 𝜂(l) = 0.1. (c) shows the surface
E mesh used for a part of the PMC geometry.
Table 1
Normalized Young’s moduli, 𝐸(p), and Poisson numbers, 𝜈(p), of matrix, core and
nterphase used for material data sets M1, M2 and M3, respectively.
mater.set 𝐸(m) 𝜈(m) 𝐸(c) 𝜈(c) 𝐸(l) 𝜈(l)

M1 1.0 0.33 10.0 0.1 3.0 0.2
M2 1.0 0.33 10.0 0.1 50.0 0.2
M3 1.0 0.33 10.0 0.1 0.2 0.2

Table 2
Normalized axial and transverse Young’s moduli, 𝐸(p)

A and 𝐸(p)
T , axial and transverse

shear moduli, 𝐺(p)
A and 𝐺(p)

T , axial and transverse Poisson numbers, 𝜈(p)A and 𝜈(p)T , as well
as transverse bulk modulus, 𝐾 (p)

T , of matrix, core and interphase layer, respectively,
used for material data set M4.

Phase 𝐸A 𝐸T 𝐺A 𝐺T 𝜈A 𝜈T 𝐾T

(m) 1.0 1.0 0.376 0.376 0.33 0.33 1.106
(c) 20.0 2.0 2.000 0.870 0.10 0.15 1.179
(l) 0.5 0.5 0.168 0.168 0.49 0.49 8.389

3. Results and discussion

The analytical procedures for which results are compared can be
split into three groups. The first consists of two-step methods that
use the exact results for the dilute partial strain concentration tensors
of coated cylinders, �̄�(c,m)

dil and �̄�(l,m)
dil , provided by Chatzigeorgiou and

eraghni (2019), to evaluate the equivalent tensors �̄�I
dil,eqv and 𝐄I

eqv
ia Eqs. (13) and (15), respectively. This equivalent homogeneous fiber
ub-model is combined with composite-level sub-models taking the
orm of a standard Benveniste-type Mori–Tanaka scheme, see Eq. (A.3),
o give model EMT, with a Differential Scheme, see Eq. (A.4), to
ive model EDS, with the three-point estimates of Torquato (1998)
o give model E3PE, and with the Method of Conditional Moments of
horoshun et al. (1988), see Eqs. (A.5) and (A.6), to give model EMCM.

The Generalized Self-Consistent scheme of Hervé and Zaoui (1995),
via model EGSC, also is part of this group. Model E3PE employs the
6

three-point statistical parameters for identical hard cylinders proposed
by Torquato and Lado (1992).

The second group of analytical models describe the equivalent
inhomogeneities via two-phase Mori–Tanaka-type schemes, compare
Eqs. (A.7) and (A.8). Following Friebel et al. (2006) this data is com-
bined with a Mori–Tanaka scheme at the composite level, Eq. (A.3),
to obtain a ‘‘Mori–Tanaka–Mori–Tanaka’’ model. Identical predictions
were obtained with this method, with the GEEE of Ghazavizadeh et al.
(2019) in the simplified form of Eq. (A.8), and with the RDIM model
of Dinzart et al. (2016) for all configurations considered. The same
responses can also be recovered by using two-phase Maxwell schemes,
compare, e.g., Torquato (2002), at both levels. Results from this cluster
of methods are marked as MTMT in the plots. The hierarchical multi-
interphase model of Li et al. (2011) uses the same equivalent elasticity
tensors as the MTMT scheme, but employs different equivalent dilute
strain concentration tensors, see Eq. (A.9). The predictions marked as
HMM in the plots were obtained by combining these descriptors with a
Mori–Tanaka model at the composite level. Furthermore, as an example
of the ‘‘construction kit’’ approach discussed in Section 2.1, a combina-
tion of the Mori–Tanaka method at the equivalent homogeneous fiber
level with the Differential Scheme at the composite level, referred to as
MTDS, is considered.

Among the two-step models listed above, the MTDS, to the author’s
knowledge, is new and the E3PB, E3PE, EDS and EMCM were applied
to composites reinforced by continuous, aligned, coated fibers for the
first time.

The third group of analytical schemes includes the model of Dunn
and Ledbetter (1995), which combines equivalent strain concentration
tensors obtained with the DIM of Hori and Nemat-Nasser (1993),
compare Eq. (A.10), with Eqs. (12) and (A.3) at the composite level.
Its predictions are marked as DIMM. In addition, the one-step method
of Birman (2021), compare Eq. (A.2), denoted by BIR, is covered. Tests
were also carried out with the method of Liu and Bian (2019), which,
however, gave rise to non-symmetric elasticity tensors for some of the
configurations studied here.
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Fig. 2. Normalized effective transverse Young’s modulus 𝐸∗
T∕𝐸

(m), transverse bulk modulus 𝐾∗
T∕𝐾

(m)
T , transverse shear modulus 𝐺∗

T∕𝐺
(m) and axial shear modulus 𝐺∗

A∕𝐺
(m) predicted

or composites reinforced by coated continuous fibers. Results are given as functions of the volume fraction of the compound fibers, 𝜉I. They pertain to an interphase partial
olume fraction of 𝜂(l) = 0.1 and to material data set M1.
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In order to avoid excessive cluttering of the plots, neither two-phase
ounds evaluated with the equivalent fiber data nor three-phase bounds
re shown in Figs. 2 to 5. They are, however, provided and discussed
n Appendix C.

Numerical results generated with the multi-fiber periodic volume
lements are marked as PMC and data obtained with periodic hexago-
al arrays as PHA. PMC predictions were evaluated for inhomogeneity
olume fractions of 𝜉I = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 for materials M1,
2 and M3 and for 𝜉I = 0.5 as well as 𝜉I = 0.7 in the case of material
4. For each value of 𝜉I the partial interphase volume fractions of

(l) = 0.1, 0.2 and 0.5 were covered, and 𝜂(l) = 0.05 and 0.9 were
studied as well for 𝜉I = 0.7. PHA results were obtained for the same
configurations and, in addition, for 𝜉I = 0.1 as well as 𝜉I = 0.8. Because
the predictions of the various models become increasingly similar
as dilute configurations are approached, periodic multi-fiber volume
elements were not considered worth the considerable numerical cost for
volume fractions below 𝜉I = 0.2. The upper limit of 𝜉I = 0.7 for the PMC
models is due to limitations of the algorithm used for generating such
phase arrangements with the minimum inter-fiber distance specified in
Section 2.2.

Among the values of 𝜂(l) considered here, the higher ones fall outside
the range typical of fiber coatings, but were included in order to give a
broader picture of the capabilities of the various methods. For brevity
the following discussion covers only part of the above data; a more
complete set of results is provided in the supplementary material.

3.1. Macroscopic responses

Predictions for the effective axial Young’s modulus, 𝐸∗
A, provided

by the various methods in most cases differ only marginally from each
other (and from the ‘‘rules of mixture’’). Accordingly, this modulus is
not considered further in the present work. In the plots all moduli are
normalized with respect to the corresponding modulus of the matrix.

Fig. 2 shows predictions for the normalized transverse Young’s
modulus, 𝐸∗

T∕𝐸
(m), transverse bulk modulus, 𝐾∗

T∕𝐾
(m)
T , transverse shear

modulus, 𝐺∗
T∕𝐺

(m) and axial shear modulus, 𝐺∗
A∕𝐺

(m) as functions of
the inhomogeneity volume fraction 𝜉I. The moduli were evaluated for
material data set M1 at an interphase partial volume fraction of 𝜂(l) =
0.1. There is not much to choose between the various methods for fiber
7

volume fractions below, say, 𝜉I = 0.25 but differences between them
become obvious at higher values of 𝜉I and are most pronounced for the
axial and transverse shear moduli.

Among the two-step schemes based on the exact solutions for the
dilute equivalent fibers, for material data set M1 the predictions of
the Mori–Tanaka model (EMT) for the moduli can be seen to give the
lowest effective moduli, followed by those of the three-point estimates
(E3PE), the Differential Scheme (EDS) and the Method of Conditional
Moments (EMCM). All of these results fulfill the two-phase Hashin–
Shtrikman bounds and the latter group complies with the three-point
bounds. The EMT, EGSC (not shown in Fig. 2 because its differences
to the EMT in 𝐸∗

T and 𝐺∗
T are too small to be resolved there) and

MTMT methods give identical results for the effective moduli 𝐸∗
A, 𝐺∗

A
and 𝐾∗

T — this behavior was consistently observed for all configurations
covered in the present study. Identical predictions for these moduli can
also be obtained by recursively applying expressions of the two-phase
Composite Cylinder Assemblage (CCA) of Hashin and Rosen (1964),
as shown by Hervé and Zaoui (1995) for the case of the Generalized
Self-Consistent Scheme. This may indicate a connection of the above
two-step approaches to microgeometries with widely dispersed fiber
radii (among the analytical models used in this study, only the E3PE
and E3PB unequivocally pertain to identical fibers). The MTDS scheme
(not shown) closely tracks the EDS results for all effective moduli. The
Double Inclusion Model (DIMM) and Birman’s method (BIR) predict
slightly lower effective moduli than the other analytical methods. The
results generated with periodic multi-fiber cells (PMC) for 𝐺∗

A and 𝐾∗
T

traddle the E3PE ones, whereas those for the moduli 𝐸∗
T and 𝐺∗

T are
closer to the EDS curves. The periodic hexagonal arrays (PHA) yield
slightly lower values for the effective moduli than the PMC model.

The elastic contrasts between equivalent fibers and matrix for ma-
terial data set M2 considerably exceed the ones pertaining to material
M1, compare Table B.1 for 𝜂(l) = 0.1. As a consequence, differences
between the predictions for the effective elastic moduli from the various
models are more pronounced, as can be seen for the case of the
transverse shear modulus presented in Fig. 3. The two plots in this
figure show 𝐺∗

T∕𝐺
(m) for two partial volume fractions of the interphase,

𝜂(l) = 0.1 and 𝜂(l) = 0.5, both of which lead to qualitatively similar,
ut quantitatively different predictions. The bounds on the effective
lastic moduli presented in Fig. C1 pertain to the configuration with
(l) = 0.1.
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Fig. 3. Normalized effective transverse shear modulus 𝐺∗
T∕𝐺

(m) predicted for composites reinforced by coated continuous fibers. Results are given as functions of the volume
fraction of the compound fibers, 𝜉I. They pertain to interphase partial volume fractions of 𝜂(l) = 0.1 and 𝜂(l) = 0.5, respectively, and were evaluated for material data set M2.
Fig. 4. Normalized effective transverse Young’s modulus 𝐸∗
T∕𝐸

(m), transverse bulk modulus 𝐾∗
T∕𝐾

(m)
T , transverse shear modulus 𝐺∗

T∕𝐺
(m) and axial shear modulus 𝐺∗

A∕𝐺
(m) predicted

or composites reinforced by coated continuous fibers. Results are given as functions of the volume fraction of the compound fibers, 𝜉I. They pertain to an interphase partial
olume fraction of 𝜂(l) = 0.2 and to material data set M3.
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Compared to Fig. 2 the main difference concerning the analytical
odels is that the HMM clearly underpredicts 𝐺∗

T for the high-contrast
aterial M2. Also, in Fig. 3 the MTMT-scheme can be seen to yield

lightly higher moduli than the EMT, and the predictions of the EGSC
re somewhat stiffer again. Furthermore, in this high-contrast situation
he MTDS estimates can be seen to be somewhat stiffer than the EDS
nes. These differences grow as the thickness of the interphase is
ncreased. Birman’s scheme provides reasonable results for fiber volume
ractions up to 𝜉I ≈ 0.75, but starts to ‘‘run away’’ for higher values. The
umerical results obtained with multi-fiber volume elements (PMC)
gree very well with analytical predictions of the Differential Scheme,
ell with those of the three-point estimates and fairly well with the

elf-consistent and Mori–Tanaka data. As in Fig. 2 the PHA geome-
ries provide lower predictions than the PMC ones, with the largest
eviations occurring for fiber volume fractions around 𝜉I ≈ 0.6.

Fig. 4 compares predictions for the effective moduli 𝐸∗
T, 𝐾∗

T, 𝐺∗
T

nd 𝐺∗
A obtained for material data set M3 as functions of the volume

raction of the compound fibers, 𝜉I. The partial volume fraction of the
ighly compliant interphase is set to 𝜂(l) = 0.2, leading to elastic con-
rasts between matrix and equivalent fibers close to unity for the above
oduli, see Table B.3. Combined with the marked elastic contrast

etween fiber core and coating, this tends to challenge the capabilities
8

f the models to correctly predict the stress partitioning between the
hases. Whereas the approaches using the exact and the Mori–Tanaka
olutions for the equivalent fibers give nearly identical predictions as
he numerical models, the DIMM and Birman’s method do not pass this
est and even fail to capture the decrease of 𝐾∗

T with increasing 𝜉I. The
MM shows minor deviations from the numerical predictions. Bounds
ertaining to this configuration are given in Fig. C2. At an interphase
artial volume fraction 𝜂(l) = 0.01 the elastic contrasts resulting for
aterial M3 clearly exceed unity, compare Table B.2, and at 𝜂(l) =
.5 all of them fall considerably below this value. Under the former
onditions the DIMM does better and the HMM worse compared to
(l) = 0.2, and vice versa for the thick interphase.

Another aspect of the effective behavior of composites reinforced
y unidirectional, coated fibers is explored in Fig. 5, which shows the
ependence of the effective moduli 𝐸∗

T, 𝐾∗
T, 𝐺∗

T and 𝐺∗
A on the partial

olume fraction of the interphase, 𝜂(l), and thus on the interphase
hickness. The results were evaluated for material data set M4, i.e., for
ransversally isotropic fiber cores, at a fixed fiber volume fraction of
I = 0.7. Again, the numerical simulations as well as most analytical
odels provide similar predictions. However, the results of Birman’s
odel are clearly on the high side for all moduli shown and for coating
artial volume fractions between, say, 0.05 and 0.95. This behavior is
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Fig. 5. Normalized effective transverse Young’s modulus 𝐸∗
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(m), transverse bulk modulus 𝐾∗
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or composites reinforced by coated continuous fibers. Results are given as functions of the interphase partial volume fraction, 𝜂(l). They pertain to a volume fraction of the
ompound fibers of 𝜉I = 0.7 and to material data set M4.
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ost marked in the case of the transverse bulk modulus, where the
early incompressible behavior of the interphase may play a role. For
he effective axial shear modulus the DIMM delivers high and the HMM
ow predictions. The differences evident in the results for 𝜂(l) = 0.0 and
(l) = 1.0 are due to the fact that these two configurations represent two-
hase composites, for which the various composite-level sub-models in
eneral do not give identical predictions. As in Figs. 2 and 4 results for
he EGSC and MTDS estimates are not shown because they cannot be
istinguished from the results for the EMT and EDS, respectively, in the
lots.

Taken together, Figs. 2 to 5 show that the analytical models based
n the exact solutions for the dilute, equivalent fibers consistently
rovide results that match the numerical predictions very well for all
onfigurations and all moduli considered here. The best quantitative
greement with the numerical results was obtained when the three-
oint estimates, E3PE, and the differential scheme, EDS, were used
s composite-level sub-models, with the former tending to provide a
loser match at moderate elastic contrasts and the latter at elevated
nes. Combining the exact dilute solutions with the Mori–Tanaka and
eneralized Self-Consistent schemes also led to consistently good agree-
ent with the numerical results. Among the analytical approaches that

reat coated, cylindrical fibers as special cases of coated ellipsoids, the
luster of methods encompassing the MTMT, the GEEE and the RDIM
eliably provided predictions that are close to the ones of the EMT.
he MTDS model was found to track the EDS fairly well, indicating
hat this method may be of interest for modeling general coated,
pheroidal or ellipsoidal inhomogeneities in high-contrast settings. The
avorable behavior of this group of methods is somewhat surprising
ecause Mori–Tanaka approaches were not designed for describing
ilute, coated configurations. The other analytical models covered in
he present study show considerable weaknesses for one or more of the
onfigurations considered.

Numerical predictions for the effective elastic moduli obtained with
eriodic hexagonal arrays of fibers were found to deviate systemati-
ally, but not markedly from results obtained by periodic homogeniza-
ion of multi-fiber volume elements.

Finally, it is worth mentioning that the modeling schemes giving
avorable results for the effective elastic responses also showed similar
9

ualities in estimating the macroscopic thermal expansion behavior. l
t may also be expected that among the analytical schemes the ones
aking use of the exact solutions for the dilute equivalent fibers
ill be most suitable for studying composites with nonlinear matrix
ehavior.

.2. Microscopic responses

The numerical methods and many of the analytical approaches used
n the present work allow evaluating phase averaged strain and stress
ields. In this section selected results of the latter type are compared for
he unit transverse normal and shear load cases employed for building
p the effective elastic tensors. Phase averages and standard deviations
f stress components were evaluated from model PMC by Eq. (18); the
atter are visualized via error bars in Figs. 6 and 7. In interpreting these
tandard deviations it should be kept in mind that the above load cases
mply marked circumferential variations of the stress tensors in and
round fibers.

Predictions for the phase averaged transverse normal stresses are
hown in Fig. 6 for material data set M2, i.e., for a stiff interphase,
n dependence on the volume fraction of the compound fibers, 𝜉I. The
oad case is macroscopic transverse normal loading and the interphase
artial volume fraction is set to 𝜂(l) = 0.1. Results are provided for
he fiber core, the coating and the matrix, the pertinent phase aver-
ged stress components being denoted as ⟨𝜎tr⟩(c), ⟨𝜎tr⟩(l) and ⟨𝜎tr⟩(m),
espectively, and for the average transverse stress in the equivalent
nhomogeneity, ⟨𝜎tr⟩I. All analytical two-step schemes using the exact
olutions for the equivalent fibers give rise to similar responses which
re in good agreement with the numerical predictions. The stresses
redicted by the MTMT are also very close to the above results for
atrix and equivalent fibers and close for fiber cores and interphases.
he HMM, however, yields markedly different results and the DIMM
an be seen to clearly underpredict the stresses in the coating layer and
o overpredict those in the fiber core to a lesser extent. It is interesting
o note that, with the exception of the HMM, the results of all analytical
odels are much more tightly bunched for the equivalent fibers than

or core and interphase. The fluctuations of the stress fields predicted
y the multi-fiber full-field model, PMC, can be seen to be considerable
n all constituents and especially marked in the interphase for this

(l)
oad case. The rather low value of the standard deviations of ⟨𝜎tr⟩
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Fig. 6. Normalized, phase averaged, transverse normal stresses in the fiber core, the coating, the equivalent fibers and the matrix, ⟨𝜎tr ⟩(c), ⟨𝜎tr ⟩(l), ⟨𝜎tr ⟩I and ⟨𝜎tr ⟩(m), respectively,
redicted for composites reinforced by coated continuous fibers and loaded by a macroscopic uniaxial transverse stress ⟨𝜎tr ⟩. Results are given as functions of the volume fraction
f the compound fibers, 𝜉I. They pertain to an interphase partial volume fraction of 𝜂(l) = 0.1 and to material data set M2.
Fig. 7. Normalized, phase averaged, transverse shear stresses in the fiber core, the coating, the equivalent fibers and the matrix, ⟨𝜏tr ⟩(c), ⟨𝜏tr ⟩(l), ⟨𝜏tr ⟩I and ⟨𝜏tr ⟩(m), respectively,
redicted for composites reinforced by coated continuous fibers and loaded by a macroscopic transverse shear stress ⟨𝜏tr ⟩. Results are given as functions of the partial volume
raction of the interphase, 𝜂(l). They pertain to a volume fraction of the compound fibers of 𝜉I = 0.7 and to material data set M4.
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t 𝜉I = 0.4 may indicate that the number and/or size of the volume
lements in the ensemble average is insufficient for fully resolving the
ertinent phase-level stress distributions.

Fig. 7 displays predictions for the phase averaged transverse shear
tresses due to macroscopic transverse shear loading as functions of the
artial volume fraction of the coating, 𝜂(l). The volume fraction of the
ompound fibers is set to 𝜉I = 0.7 and material data set M4 is used,
.e., the same configurations are studied as in Fig. 5. The predictions
or the transverse shear stress components in the equivalent fibers,
𝜏tr⟩I, and the matrix, ⟨𝜏tr⟩(m), obtained from the various models are in
ood agreement for this load case and configuration, only the HMM
howing minor deviations. For the phase averages of the transverse
hear stresses in the fiber core and the coating, ⟨𝜏 ⟩

(c) and ⟨𝜏 ⟩

(l),
10

tr tr u
owever, only the two-step schemes based on the rigorous solutions
or the equivalent fibers show the same qualitative behavior as the
umerical predictions. Interestingly, the MTMT-type estimates differ in
his respect.

As in the case of the effective moduli, good agreement in terms of
he phase averaged stresses was found between, on the one hand, the
nalytical approaches based on the exact solutions for the equivalent
ibers and, on the other hand, the numerical simulations, with the
DS and E3PE models again doing very well. In the supplementary
aterial a range of results on the ‘‘direct’’ stress responses, i.e., the
hase averages of the stress component ⟨𝜎𝑖𝑗⟩(p) due to a macroscopic
nit load ⟨𝜎𝑖𝑗⟩, are presented for the load cases of uniaxial axial tension,
niaxial transverse tension, axial shear and transverse shear. Clear
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differences between the different groups of models are evident; they
are especially marked, on the one hand, for the transverse tension and
shear load cases and, on the other hand, for applied axial shear. Finally,
it should be noted that the local minima and maxima of the full-field
stresses as evaluated by the PMC models in many cases differ markedly
from the corresponding phase averages.

4. Conclusions

Predictions from a number of analytical and numerical modeling
schemes for the macroscopic and microscopic elastic responses of com-
posites reinforced by unidirectional, continuous fibers that are coated
by a uniform, coaxial interphase layer were compared by studying four
generic material data sets. The analytical methods form three groups,
viz., two-step schemes based on rigorous solutions for the equiva-
lent fibers, two-step models using Mori–Tanaka-type expressions at
the coated-inhomogeneity level, and other descriptions. The numerical
models combine Finite-Element-based periodic homogenization with
periodic hexagonal or random fiber arrangements.

Analytical models using the exact solutions for the dilute, coated
fibers were found to match the numerical simulations very well for
all configurations considered, three-point estimates and differential
schemes giving especially satisfactory results. Accordingly, this group
of methods may be viewed as the most suitable analytical models
for composites reinforced by coated fibers. Among the analytical ap-
proaches capable of handling coated ellipsoidal inhomogeneities, two-
step schemes using Mori–Tanaka-type methods at the coated fiber level
acquitted themselves well for the geometries and material parameters
considered.
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Appendix A. Expressions for some analytical models

This appendix provides expressions for the equivalent strain con-
centration tensors and/or equivalent elasticity tensors as well as the
effective elasticity tensors pertaining to some of the analytical microme-
chanical models used in the present study. For details and derivations
the reader is referred to the original papers. Only approaches that allow
writing the above tensors compactly in intrinsic notation are covered.

Many of the relevant methods make use of the dilute partial strain
concentration tensor of a uniform, ellipsoidal inhomogeneity (p) embed-
ded in a phase (q), which can be expressed as

�̄�(p,q)
dil =

[

𝐈 + 𝐒(p,q)𝐂(q)(𝐄(p) − 𝐄(q))
]−1 , (A.1)

of which Eq. (14) is a special case.
11

c

One-step models
The approach proposed by Birman (2021) approximates the ef-

fective elasticity tensor of a composite reinforced by coated inhomo-
geneities as

𝐄∗
B = 𝐄cm(𝜉(c)) + 𝐄lm(𝜉(i)) − 𝐄lm(𝜉(c)) , (A.2)

where

𝐄pm(𝜉(q)) = 𝐄(m) + 𝜉(q)(𝐄(p) − 𝐄(m)) �̄�(p,m)(𝜉(q))

�̄�(p,m)(𝜉(q)) = �̄�(p,m)
dil

[

(1 − 𝜉(q))𝐈 + 𝜉(q)�̄�(p,m)
dil

]−1 .

are Mori–Tanaka-type expressions and the �̄�(p,m)
dil are given by Eq. (A.1).

Composite-level sub-models
The three-point estimates (Torquato, 1998) are formulated in terms

of elastic moduli and thus are not given here.
Following Benveniste (1987) the Mori–Tanaka non-dilute strain

concentration tensor pertaining to an equivalent inhomogeneity, �̄�I
MT,

can be expressed as

�̄�I
MT = �̄�I

dil,eqv
[

𝜉(m)𝐈 + 𝜉I�̄�I
dil,eqv

]−1 (A.3)

in terms of the dilute equivalent strain concentration tensor, �̄�I
dil,eqv.

When using the Differential Scheme, see, e.g., Hashin (1988), the
effective elasticity tensor is found by integrating up the system of
ordinary differential equations

d𝐄∗
D

d𝜉I
= 1

1 − 𝜉I
(𝐄I

eqv − 𝐄∗
D)�̄�

I,∗
dil,eqv , (A.4)

hich can be done numerically, e.g., by Runge–Kutta methods.
In the Method of Conditional Moments (MCM), the effective elastic-

ty tensor takes the form

∗
MCM = 𝜉(m)𝐄(m) + 𝜉I𝐄I

eqv − 𝜉I𝜉(m)(𝐄I
eqv − 𝐄(m)) ×

[

𝐈 + 𝐋I,0(𝜉(m)𝐄I
eqv + 𝜉I𝐄(m) − 𝐄(0))]−1 𝐋I,0(𝐄I

eqv − 𝐄(m)) , (A.5)

see, e.g., Khoroshun et al. (1988) or Nazarenko et al. (2017). Here
𝐋I,0 provides information on the two-point statistics of the phase ar-
rangement. Since no expression for this tensor appears to be available
for composites reinforced by aligned, continuous fibers, it was ap-
proximated for the present study by the Hill tensor of the equivalent
inhomogeneity evaluated with respect to the reference material (0),
i.e., 𝐋I,0 ≈ 𝐏I,0 = 𝐒I,0𝐂(0). The reference material was chosen as one
of the Hill (1952) bounds,

𝐄(0) =

{

𝜉I𝐄I
eqv + 𝜉(m)𝐄(m) for 𝐄I

eqv ≤ 𝐄(m)
[

𝜉I𝐂I
eqv + 𝜉(m)𝐂(m)]−1 otherwise

. (A.6)

as proposed by Khoroshun et al. (1988).
A dilute composite-level sub-model can be generated by inserting

the dilute strain concentration tensors for core and coating together
with the corresponding relation �̄�(m) = 1

1−𝜉I (𝐈 − 𝜉(c)�̄�(c)
dil − 𝜉(l)�̄�(l)

dil)
nto Eq. (7). There is no well-defined, physics-based threshold in terms
f 𝜉I beyond which such models become invalid — as the inhomo-
eneity volume fraction increases from zero, their predictions deviate
ore and more from solutions accounting for the interactions between

nhomogeneities; the detailed behavior depends on the elastic contrast
etween the phases. Arrangement effects, including influences of the
elative sizes of the inhomogeneities, tend to become smaller as the
nhomogeneity volume fraction is decreased. Due to their limitations
n handling elevated fiber volume fractions dilute models are not used
n the present contribution.

It is also worth mentioning that there is no inherent sensitivity to
he absolute size of inhomogeneities in the linear local elasticity models

onsidered in this work.
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Equivalent homogeneous fiber sub-models
Among the equivalent homogeneous fiber sub-models used in the

present work, the rigorous solutions for coated cylinders embedded in
an infinite matrix given by Wang et al. (2016) and Chatzigeorgiou and
Meraghni (2019) are obtained by solving systems of linear equations to
extract the coefficients of displacement ansatz functions for the Navier
equations. On this basis dilute, partial strain concentration factors
can be evaluated, which allow assembling the dilute, partial strain
concentration tensors of core and interphase, �̄�(c,m)

dil and �̄�(l,m)
dil . Because

hese coincide with the dilute strain concentration tensors, �̄�(c)
dil and �̄�(l)

dil,
respectively, Eqs. (11) and (15) can be used to evaluate �̄�I

dil,eqv and
𝐄I
eqv.

A Mori–Tanaka approximation for the elasticity tensor of the equiv-
alent uniform inhomogeneity can be given as

𝐄I
eqv,MT = 𝐄(l) + 𝜂(c)(𝐄(c) − 𝐄(l)) �̄�(c,l)

dil
(

𝜂(l)𝐈 + 𝜂(c)�̄�(c,l)
dil

)−1 , (A.7)

where �̄�(c,l)
dil is obtained via Eq. (A.1). This may be inserted into Eq. (14)

to find the equivalent strain concentration tensor �̄�I
dil,eqv,MT.

For the case of unidirectional fibers coated by a uniform, coaxial
interphase the General Explicit Eshelby-type Estimator of Ghazavizadeh
et al. (2019) for the equivalent elasticity tensor reduces to

𝐄I
eqv,GE = 𝐄(l) + 𝜂(c)

[

(𝐄(c) − 𝐄(l))−1 + 𝜂(l)𝐏(c,l)
]−1

(A.8)

where 𝐏(c,l) = 𝐒(c,l)𝐂(l) is a Hill tensor. This expression can be shown to
be identical to 𝐄I

eqv,MT as given in Eq. (A.7). The GEEE is formulated
such that no dilute equivalent concentration tensors are required for
homogenization.

In the HMM model of Li et al. (2011) the elasticity and strain
concentration tensors of the equivalent uniform inhomogeneity are
approximated as

𝐄I
eqv,HM =

(

𝜂(c)𝐄(c)�̄�(c,l)
dil + 𝜂(l)𝐄(l)) �̄�(l,m)

dil [�̄�I
dil,eq,HM]−1

�̄�I
dil,eqv,HM = (𝜂(c)�̄�(c,l)

dil + 𝜂(l)𝐈) �̄�(l,m)
dil . (A.9)

Whereas 𝐄I
eqv,HM coincides with the Mori–Tanaka result, Eq. (A.7),

�̄�I
dil,eqv,HM in general is not compatible with Eq. (14).

The Double Inclusion Method of Hori and Nemat-Nasser (1993)
allows approximating the equivalent, dilute strain concentration tensor
of a coaxially coated fiber as

�̄�(c)
dil,DI = 𝐈 + 𝐒I,m𝐂(m)(𝐄(c) − 𝐄(m)) �̄�(c,m)

dil

�̄�(l)
dil,DI = 𝐈 + 𝐒I,m𝐂(m)(𝐄(l) − 𝐄(m)) �̄�(l,m)

dil , (A.10)

where the matrix is used as the reference material. �̄�I
dil,eqv,DI can then

be evaluated via Eq. (13) or (14).

Appendix B. Elastic moduli of equivalent inhomogeneities

When following the ‘‘construction kit’’ approach discussed in Sec-
tion 2.1 an assessment of the capabilities of the individual sub-models
is of interest. Whereas the behavior of the composite-level sub-models is
well covered in the literature, fewer results are available on the equiv-
alent homogeneous fiber sub-models. Due to the phase geometries, the
equivalent fibers show transversally isotropic symmetry even if both
the fiber core and the coating layer are isotropic.

Table B.1 compares predictions for the elastic contrasts (elastic
moduli normalized with respect to the corresponding matrix properties)
of the equivalent continuous fibers for data set M2, compare Table 1,
and an interphase partial volume fraction of 𝜂(l) = 0.1. Tables B.2 and
B.3 provide analogous results for data set M3 at 𝜂(l) = 0.01 and 𝜂(l) = 0.2,
respectively. The exact results obtained from the dilute concentration
tensors given by Chatzigeorgiou and Meraghni (2019) via Eqs. (13)
and (15), the Mori–Tanaka approximations (MTM) evaluated from
Eq. (A.7), the predictions of the Differential Scheme (DS) obtained from
an analog to Eq. (A.4) as well as the DIM approximations evaluated
12

S

Table B.1
Normalized axial and transverse Young’s moduli, axial and transverse shear moduli as
well as transverse bulk modulus of the equivalent fibers evaluated by different models
for material data set M2 and an interphase partial volume fraction of 𝜂(l) = 0.1.

Model 𝐸I
A,eqv∕𝐸

(m) 𝐸I
T,eqv∕𝐸

(m) 𝐺I
A,eqv∕𝐺

(m) 𝐺I
T,eqv∕𝐺

(m) 𝐾 I
T,eqv∕𝐾

(m)
T

exact 14.039 11.784 14.837 13.638 6.461
MTM 14.039 12.063 14.837 14.209 6.461
DS 14.025 11.572 14.291 13.728 6.117
DIM 14.001 10.921 13.180 13.154 5.633

Table B.2
Normalized axial and transverse Young’s moduli, axial and transverse shear moduli as
well as transverse bulk modulus of the equivalent fibers evaluated by different models
for material data set M3 and an interphase partial volume fraction of 𝜂(l) = 0.01.

Model 𝐸I
A,eqv∕𝐸

(m) 𝐸I
T,eqv∕𝐸

(m) 𝐺I
A,eqv∕𝐺

(m) 𝐺I
T,eqv∕𝐺

(m) 𝐾 I
T,eqv∕𝐾

(m)
T

exact 9.902 7.608 9.491 8.838 4.098
MTM 9.902 7.594 9.491 8.810 4.098
DS 9.902 8.817 11.246 10.416 4.656
DIM 9.020 8.807 10.932 10.482 4.606

Table B.3
Normalized axial and transverse Young’s moduli, axial and transverse shear moduli as
well as transverse bulk modulus of the equivalent fibers evaluated by different models
for material data set M3 and an interphase partial volume fraction of 𝜂(l) = 0.2.

Model 𝐸I
A,eqv∕𝐸

(m) 𝐸I
T,eqv∕𝐸

(m) 𝐺I
A,eqv∕𝐺

(m) 𝐺I
T,eqv∕𝐺

(m) 𝐾 I
T,eqv∕𝐾

(m)
T

exact 8.040 1.357 1.716 1.474 0.795
MTM 8.040 1.289 1.716 1.357 0.795
DS 8.041 1.795 3.148 2.653 1.117
DIM 8.041 2.416 3.448 1.882 1.397

via Eqs. (15) and (A.10) are given in each case. The results marked as
MTM also pertain to the GEEE, RDIM and HMM models.

The stiff coating and fiber core in material data set M2 cause
all elastic contrasts between the equivalent fibers and the matrix to
markedly exceed unity in Table B.1. In contrast the very thin, highly
compliant interphase surrounding a stiff fiber core (material data set
M3) covered in Table B.2 gives rise to small reductions in the equivalent
moduli compared to those of the core. If the compliant coating layer of
material M3 is thicker at 𝜂(l) = 0.2, the elastic contrasts are close to
nity for all equivalent moduli except 𝐸I

A,eqv, see Table B.3, and for
a very thick interface, 𝜂(l) = 0.5, they fall clearly below unity. In the
atter cases, the considerable elastic contrasts between core and coating
n material data set M3, e.g. 𝐸(c)∕𝐸(l) = 50, accentuate the differences

between the predictions of the different equivalent homogeneous fiber
sub-models. The value of 𝜂(l) at which a modulus becomes identical
or matrix and equivalent fiber for a material like M3 depends on the
odulus considered, implying that a simply coated inhomogeneity that

s strictly neutral in the transverse plane does not exist in general.
The equivalent moduli 𝐸I

A, 𝐺I
A and 𝐾 I

T predicted when using the
TM as the equivalent homogeneous fiber sub-model can be seen

o coincide with the exact results in the above three cases, and the
ifferences in 𝐸I

T and 𝐺I
T remain rather small. The predictions obtained

ith the DIM, however, clearly deviate from the exact solutions for
ll equivalent moduli, the differences being pronounced for the thick
ompliant coating, Table B.3. In the latter case the DS, too, deviates
learly from the exact results, making the MTM a better choice for a
eneral-purpose equivalent homogeneous fiber sub-model. The differ-
nces between the predictions of the models vanish in the limit of very
hin interphases.

ppendix C. Bounds on effective moduli

Figs. C1 and C2 present results obtained with bounding schemes.
he three-phase Hashin–Shtrikman–Willis bounds (Willis, 1977) are
arked as HSW. The two sets of two-phase bounds, viz., the Hashin–
htrikman-bounds, EHS, as well as the three-point bounds, E3PB, are
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Fig. C1. Bounds on and estimates for the normalized effective transverse Young’s modulus 𝐸∗
T∕𝐸

(m), transverse bulk modulus 𝐾∗
T∕𝐾

(m)
T , transverse shear modulus 𝐺∗

T∕𝐺
(m) and axial

shear modulus 𝐺∗
A∕𝐺

(m), respectively, predicted for composites reinforced by coated continuous fibers. Results are given as functions of the volume fraction of the compound fibers,
𝜉I. They pertain to an interphase partial volume fraction of 𝜂(l) = 0.1 and to material data set M2.
Fig. C2. Bounds on and estimates for the normalized effective transverse Young’s modulus 𝐸∗
T∕𝐸

(m), transverse bulk modulus 𝐾∗
T∕𝐾

(m)
T , transverse shear modulus 𝐺∗

T∕𝐺
(m) and axial

shear modulus 𝐺∗
A∕𝐺

(m), respectively, predicted for composites reinforced by coated continuous fibers. Results are given as functions of the volume fraction of the compound fibers,
𝜉I. They pertain to an interphase partial volume fraction of 𝜂(l) = 0.2 and to material data set M3.
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based on equivalent fibers described via the exact results of Chatzige-
orgiou and Meraghni (2019). In cases where the moduli of equivalent
fibers and matrix were not well ordered (M3, 𝜂(l) = 0.2 and 𝜂(l) = 0.5,
s well as M4, 𝜂(l) = 0.5) two-phase Hashin–Shtrikman–Willis bounds,
arked as EHSW, employing synthetic reference materials were used

nstead of the classical Hashin–Shtrikman bounds; for all other config-
rations the EHS and EHSW bounds coincide. In addition, results of
he Differential Scheme (EDS) and numerical predictions from multi-
iber volume elements (PMC) as well as periodic hexagonal arrays of
ibers (PHA) are shown for the normalized effective transverse Young’s
odulus, transverse bulk modulus, transverse shear modulus and axial

hear modulus.
In Fig. C1, which pertains to an interphase partial volume fraction

f 𝜂(l) = 0.1 and material data set M2, the bounds can be seen to form
13

s

clear hierarchy, with the two-phase three-point bounds, E3PB, falling
ithin the two-phase Hashin–Shtrikman bounds, EHS, which comply
ith the three-phase Hashin–Shtrikman–Willis bounds, HSW (which,

n turn, lie within the Hill (1952) bounds not shown here). Both the
DS and the PMC results fulfill all three sets of bounds, whereas the
HA predictions typically fall below the two-phase E3PB lower bounds.
nalogous behavior was found for all configurations considered in the
resent work.

Because for material data set M2 the equivalent fibers are con-
iderably stiffer than the matrix, compare Table B.1, the EDS and
he numerical estimates closely approach the lower bounds and the
HS lower bounds coincide with the predictions of the EMT. The
ifferences between the lower three-phase and two-phase bounds are
mall, whereas those between the upper bounds are more pronounced,
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the two-phase Hashin–Shtrikman bounds being clearly tighter than
the three-phase ones. Similar behavior was obtained for material M1.
From a physical point of view the behavior shown in Fig. C1 reflects
the differences in the two-point probability distributions pertaining
to three-phase geometries involving aligned, coated fibers vs. two
‘‘independent’’ aligned inhomogeneity phases. The HSW upper bounds
pertain to the latter type of configuration, which is geometrically
much less constrained than coated arrangements, making these bounds
slacker.

For material M3 and an interphase partial volume fraction of 𝜂(l) =
0.2 the elastic contrasts 𝐸I

T∕𝐸
(m)
T , 𝐾 I

T∕𝐾
(m)
T , 𝐺I

T∕𝐺
(m)
T and 𝐺I

A∕𝐺
(m)
A are

fairly close to unity, compare Table B.3. As a consequence, the two-
phase bounds as well as the EDS, PMC and PHA estimates nearly
coincide. This behavior is evident in Fig. C2 (which pertains to the
same configuration as Fig. 4). The estimates and the two-phase bounds
remain close to, but slightly above the lower three-phase Hashin–
Shtrikman–Willis bounds; the upper three-phase bounds, however, can
be seen to be markedly higher. The marked slackness of the three-
phase bounds for this configuration evident in Fig. C2 is due to the
pronounced difference in the moduli of the stiffest and most compliant
constituents in material data set M3, which largely determine the
properties of the lower and upper reference media. Thus, in this case
the stronger geometrical constraint underlying the two-phase bounds
based on equivalent fibers has rather extreme consequences. It may be
noted that all results given in Fig. 4 fall within the three-phase bounds
of Fig. C2.

The majority of numerical results obtained with PMC models in this
study comply with the three-point bounds, with a few minor deviations
occurring for material data sets M3 and M4, where the bounds may
be extremely tight. Similarly, the PHA predictions largely comply with
the Hashin–Shtrikman-type bounds. An analogous behavior was also
observed with respect to the numerical predictions for 𝐺∗

T when com-
paring with the intervals recently proposed for this effective modulus
by Firooz et al. (2019) with the moduli of the equivalent fibers.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijsolstr.2022.112093.
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