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Abstract: The two achiral ligands tris(1-methyl-1H-imidazol-2-yl)methanol ((mim)3COH) and
bis(1-methyl-1H-imidazol-2-yl)(3-methylpyridin-2-yl)methanol ((mim)2(mpy)COH) form on re-
action with Fe(BF4)2·6H2O, the octahedral low-spin complexes [Fe((mim)3COH)2](BF4)2·MeCN
(1) and [Fe((mim)2(mpy)COH)2](BF4)2·0.5MeCN (2). Both octahedral complexes immediately rearrange
to the chiral [Fe4O4]-cubane clusters [Fe4(mim)3CO)4](BF4)4 (3) and [Fe4(mim)3CO)4](BF4)4·CHCl3 (4),
whereas the highly symmetrical 3 crystallizes as racemate, 4 resolves based on the asymmetry
introduced by the 2-methylpyridine moiety and crystallizes as an enantiomerically pure sample.
Both clusters feature redox active [Fe4O4]-cubane cores with up to four individual accessible states,
which directs towards a potential application as electron-shuttle.

Keywords: [Fe4O4]-cubane core cluster; magnetic properties; electrochemistry; imidazoles

1. Introduction

Tuning the ligand field strength in octahedral azole Fe(II) complexes to obtain spin-
state switchable materials requires a carefully weighted equilibrium between sterics [1]
and electronics [2]. Especially for multidentate azole systems, the ligands’ strain can be
highly dominant, affecting the geometry around the central Fe(II) atom. A comprehensive
review on this phenomenon was published by M. Halcrow [3] using the example of
Fe(II) complexes of (substituted) 2,6-di(pyrazol-1-yl)pyridines. Due to the rigid ligands’
backbone, the corresponding Fe(II) complexes are affected by a—for Fe(II) unusual—Jahn
Teller distortion, which limits the occurrence of spin crossover to a narrow range of angles
between the ligands that still allow both the occurrence of the low-spin and high-spin state.

Multi-dentate azole ligands are, in general, a valuable platform for studies on structure–
property relationships in spin crossover materials, as the final complex geometry is con-
sistently predictable based on the systems’ parent–meaning unfunctionalized ligand. To
avoid the steric challenges inherent to a stiff ligand system such as, e.g., the 2,6-di(pyrazol-
1-yl)pyridine, a more flexible design was found in the tris(2-imidazolyl)carbinol reported
in 1978 by Breslow et al. as a model for the zinc-binding site of the carbonic anhydrase and
alkaline phosphatase [4]. Based on their studies, the reported tripodal ligand system was
used in further coordination studies with more transition metals such as metallo-enzyme
proxies [5,6].

The tris(azole)methanol provides access to a vast library of tripodal azole ligands,
providing huge versatility at the cost of undergrad synthetic protocols. Synthetic modifi-
cation is easily executed by reaction on the -COH site, as well as depending on the used
azoles for the ligands’ synthesis in direct proximity to the coordinated Fe(II). The azoles
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(most of them commercially available at low cost in a multi-gram scale) especially allow for
variation of ring size, number of available coordination sites in the ring, and substituents
for adjusting the ligands’ cone angle. This enables the systematic investigation of the azoles’
impact on the magnetic and spectroscopic properties of their coordination compounds.

Besides their ability to form hexacoordinated transition metal complexes, imidazoles
also tend to stabilize [Me4-µ3-O4] cubane-type clusters. With iron, multiple synthetic
iron-oxo clusters with the Fe4O4 cubane motif have been prepared to study the feasibility
of their occurrence in nature and compare their behavior with the known iron-sulfur
proteins [7–19]. Many single valent cores, mostly with the Fe(II) configuration, or mixed
valence compounds with mixtures of Fe(II/III) centers have been prepared, most of them
either with carboxylate ligands or as part of large polynuclear complexes. So far, no
tetranuclear Fe4O4 clusters employing tridentate ligands without iron atoms outside the
core cubane structure have been reported.

Interested in the impact that the variation of the azoles in the tripodal ligand sys-
tem would have on the Fe(II) spin crossover properties, as well as in these ligands’
[Fe4O4] clusters that could be formed, Breslow’s tris(2-imidazolyl)carbinol (II) ligand
was N-methylated to avoid the interaction of the basic NH site with the Fe(II) during
coordination. For comparison, tris(1-methyl-1H-imidazol-2-yl)methanol ((mim)3COH) and
bis(1-methyl-1H-imidazol-2-yl)(3-methylpyridin-2-yl)methanol ((mim)2(mpy)COH), hav-
ing one 2-methylimidazole exchanged for a notably larger 2-methylpyridine, were chosen.

2. Results and Discussion

The reaction of (mim)3COH and (mim)2(mpy)COH with Fe(BF4)2·6H2O under inert at-
mosphere resulted at room-temperature in the formation of the homoleptic mononuclear com-
plexes [Fe((mim)3COH)2](BF4)2·MeCN (1) and [Fe((mim)2(mpy)COH)2](BF4)2·0.5 MeCN (2)
in a low-spin configuration. Gentle heating of the reaction mixture to 40 ◦C resulted in
the initially colorless reaction mixture of ((mim)3COH) turning to a dark blue color over
time. Further investigation of this observation resulted in the development of a solvothermal
protocol, allowing for the isolation of two iron-oxo clusters with a [Fe4O4]-cubane-like core:
[Fe4((mim)3CO)4](BF4)4 (3) and [Fe4((mim)2(mpy)CO)4](BF4)4·CHCl3 (4).

The cluster compounds could be prepared either in situ from pure ligand and iron
precursor or as a two-step reaction after isolation of the mononuclear complexes.

Following the dark blue color during the formation of 3, a side reaction could be
identified, as, under solvothermal conditions, the (mim)3COH ligand was found to be
prone to the elimination of one imidazole moiety. The resulting bis(imidazolyl)ketone
ligand formed with the Fe(II) in the solution the previously reported dark blue [Fe((Me-
bik)3](BF4)2 (5) [20]. Figure 1 depicts the entire reaction scheme.

The elimination of the imidazole from (mim)3COH at elevated temperatures is pro-
moted by the ligands’ basicity. To shift the equilibrium, the reaction was investigated under
the addition of three equivalents of N-methylimidazole, as well in a slightly acidic environ-
ment. However, in all cases, the elimination could not be prevented. For (mim)2(mpy)COH,
no elimination reaction was evidenced, which seems to be a combination of the increased
steric bulk due to the 2-methylpyridine moiety, as well as to the slightly lower basicity.

2.1. Structural Characterization

[Fe((mim)3COH)2](BF4)2·MeCN (1) crystallizes as a stable acetonitrile solvate
(Figure 2a) in the monoclinic space group C2/c, the Fe(II)-core located on the Wyckoff-
position 4a ( 1

2 , 1
2 , 1

2 ). The Fe-N bond lengths vary between 1.902 and 1.924 Å, which is
in good agreement with literature for Fe(II)–azole complexes in the low-spin state. The
angular deviation parameter, defined as the sum of the deviation from an ideal octa-
hedral angle of 90◦ of the 12 cis angles in the coordination sphere, is calculated with
Σ = 37.9◦ [21]. The continuous-shape measures [22] against an ideal octahedron to give a
shape-deviation parameter SO = 0.13, which aligns with a near-ideal octahedral geometry
of the complex cation. On a supramolecular level, 1 forms infinite chains parallel to the
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c-axis, the individual [Fe((mim)3COH)2]2+-cations associated to each other by the formation
of stabilizing hydrogen bonds between the ligands’ OH-groups (Figure 2b). The strain
introduced through the hydrogen bonds causes a twist of the [Fe((mim)3COH)2]2+-cations
by 28.29◦ towards each other, giving rise to a characteristic zig-zag orientation of the chains.
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of 1 yield [Fe4O4]-cluster 3 with 5 as a competing path. (bottom) (mim)2(mpy)COH coordinates 
Fe(BF4)2∙6H2O resulting in the octahedral complex 2. Solvothermal reaction of ligand and Fe(II) or 
solvothermal treatment of 2 yields [Fe4O4]-cluster 4. 
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Figure 1. Reaction scheme for the cluster formation, with hydrogens, anions, and solvates omitted.
(top) (mim)3COH coordinates Fe(BF4)2·6H2O, resulting in the octahedral complex 1 and the rear-
ranged elimination product 5. Solvothermal reaction of ligand and Fe(II) or solvothermal treatment
of 1 yield [Fe4O4]-cluster 3 with 5 as a competing path. (bottom) (mim)2(mpy)COH coordinates
Fe(BF4)2·6H2O resulting in the octahedral complex 2. Solvothermal reaction of ligand and Fe(II) or
solvothermal treatment of 2 yields [Fe4O4]-cluster 4.
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Figure 2. (a) Molecular structure of [Fe((mim)3COH)2](BF4)2·MeCN (1). (b) Zig-zag chains
of 1 parallel to the z-axis, stabilized through intramolecular hydrogen bonds between the
ligands’ OH-groups.
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[Fe((mim)2(mpy)COH)2](BF4)2·0.5MeCN (2) crystallizes as 0.5 MeCN solvate in the
triclinic space group P1 with two molecules of 2 per unit cell. The Fe-atoms are located
at the Wyckoff positions 1h ( 1

2 , 1
2 , 1

2 ) and 1c (0, 1
2 ,1; 1, 1

2 , 1; 1, 1
2 , 0; 1, 1

2 , 1). Moreover, for 2,
the Fe-N bond lengths are typical for Fe(II) low-spin complexes with 1.944–1.983 Å. Only
the Fe-N bonds to the pyridine-N are slightly longer, with 2.011 Å (Fe1) and 2.014 Å (Fe2)
(Figure 3a). For both Fe(II) atoms, the angular deviation parameter results Σ = 30.4◦, and
the shape-deviation parameter of SO = 0.14 is also for 2, which is in alignment with a
near-ideal octahedral geometry.
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Figure 3. (a) Molecular structure of [Fe((mim)2(mpy)COH)2](BF4)2·0.5MeCN (2). (b) Stacking of
infinite chains of interacting [Fe((mim)2(mpy)COH)2]2+ molecules along the b-axis with a clear view
on the nitrilic nitrogen interacting with the pyridine in the ligand through n→ π*Ar interactions.

On a supramolecular level, 2 also forms infinite chains of [Fe((mim)2(mpy)COH)2]2+-
cations parallel to the c-axis, stabilized through an n→ π*Ar interaction between the MeCN
solvate and the ligands’ pyridine ring located on the Wyckoff position 1h. The distance
between the centroids of the pyridine and the nitrilic nitrogen is with 3.601 Å, which
is perfectly in line with the reported ranges in the literature (2.8–3.8 Å) [23], whereas
the pyridine rings of the [Fe((mim)2(mpy)COH)2]2+-cations on the edges of the unit cell
are with distances above 4.3 Å, and are therefore out of range. Based on the mediocre
stabilization of the MeCN molecules in the structure, it is hypothesized that a full solvate
compound is initially formed, losing solvate molecules in time. The finite chains are stacked
along the b-axis, the BF4

—anions, and the OH-groups directed towards the next layer of
[Fe((mim)2(mpy)COH)2]2+ chains. It is noteworthy that, between those layers, no hydrogen
bond structure is established.

The solvothermal rearrangement of the octahedral complexes results in both ligands
in the formation of the [Fe4O4]-cubane clusters, which are chiral due to the handed arrange-
ment of the per se achiral ligands. Cluster 3, [Fe4((mim)3CO)4](BF4)4, is highly symmetrical
(Figure 4a), thus crystallizing as racemate in the cubic space group Fd3 with eight [Fe4O4]-
cores per unit cell. Four deprotonated OH-groups of the tripodal (mim)3COH ligand
compose with 4 Fe(II)-atoms in the distorted [Fe4-(µ3-O)4]-cubane core, the surface of the
cluster core decorated with the imidazole ligands. The imidazoles of each tripodal ligand
coordinate to the three adjacent Fe(II)atoms next to the ligands’ O-atom in the [Fe4-(µ3-
O)4]-cubane core. (Figure 4b) The distortion of the [Fe4O4]-cubane core is reflected in the
Fe-O-Fe and O-Fe-O angles—77.02◦ for O1-Fe1-O1 and 101.62◦ for Fe1-O1-Fe1. The Fe-O
bond length of 2.109 Å is about 10% longer than the Fe-O bonds reported in literature for
similar iron-oxo clusters [24], which resonates well with the Fe(II) oxidation state in 3 vs.
the Fe(III) oxidation state in the literature. Compared to the 1.980 Å Fe-O bond length
calculated in a first principles study on Me4O4-cubane clusters [25], the experimentally
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observed Fe-O bond is 7% longer. This suggests a slight destabilization of the Fe-O bonds,
explaining the higher sensitivity of 3 towards oxygen (see Section 2.4).
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ity. (b) Distorted [Fe4-(µ3-O)4]-cubane core in 3 decorated with imidazole ligands (3 ligands and
hydrogen omitted for clarity). Color code: Fe orange, O red.

Based on the larger 2-methylpyridine, the (mim)2(mpy)COH ligand is less symmet-
rical than its (mim)3COH analogue. Whereas, in 2, this slight asymmetry has no direct
structural impact, the solvothermal rearrangement of 2 into cluster [Fe4(mim)3CO)4](BF4)4
(4) results in a higher degree of distortion in the [Fe4O4]-cubane core, as well as in enan-
tiomeric resolution. Moreover, 4 crystallizes the CHCl3-solvate of the enantiomerically
pure R-[Fe4((mim)3CO)4] (BF4)4 in the orthorhombic space group P212121. Similar to 3,
the distorted [Fe4-(µ3-O)4]-cubane core builds from the deprotonated OH-groups of the
tripodal (mim)2(mpy)COH ligand and the four Fe(II)-atoms (Figure 5a). Three of the four
2-methylpyridine ligands coordinate to Fe1, and the fourth 2-methylpyridine coordinates
to Fe2. This asymmetric coordination also affects the bond-lengths and angles (Table 1) in
the [Fe4O4]-cubane core.

Table 1. Selected bond lengths (Å) and interatomic angles (◦) for 4.

Bond Length (Å) Atoms Angle (◦) Atoms Angle (◦)

Fe1-O1 2.095(7) O1-Fe1-O3 79.3(3) Fe1-O1-Fe2 100.7(3)

Fe1-O3 2.096(7) O1-Fe1-O4 78.5(3) Fe1-O1-Fe4 100.9(3)

Fe1-O4 2.124(7) O3-Fe1-O4 77.9(3) Fe2-O1-Fe4 101.5(3)

Fe2-O1 2.138(7) O1-Fe2-O2 77.7(3) Fe2-O2-Fe3 101.1(3)

Fe2-O2 2.107(7) O1-Fe2-O3 77.2(3) Fe2-O2-Fe4 101.9(3)

Fe2-O3 2.150(7) O2-Fe2-O3 77.8(3) Fe3-O2-Fe4 100.4(3)

Fe3-O2 2.188(8) O2-Fe3-O3 76.6(3) Fe1-O3-Fe2 100.3(3)

Fe3-O3 2.127(7) O2-Fe3-O4 76.4(3) Fe1-O3-Fe3 102.3(3)

Fe3-O4 2.145(7) O3-Fe3-O4 76.8(3) Fe2-O3-Fe3 101.7(3)

Fe4-O1 2.134(7) O1-Fe4-O2 76.8(3) Fe1-O4-Fe3 100.7(3)

Fe4-O2 2.151(7) O1-Fe4-O4 77.7(3) Fe1-O4-Fe4 100.4(3)

Fe4-O4 2.120(7) O2-Fe4-O4 77.8(3) Fe3-O4-Fe4 102.8(3)
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Figure 5. (a) Distorted [Fe4-(µ3-O)4]-cubane core in 4 decorated with 2-methylimidazole/2-
methylpyridine ligands (3 ligands and hydrogen omitted for clarity). Color code: Fe orange, O
red, Cl green, F yellow, B pink. (b) Helical alignment of [Fe4O4]-cubane cores in 4 along the b-axis,
view along c-axis (((mim)2(mpy)CO) ligands omitted for clarity). (c) Location of [Fe4O4]-cubane
cores in 4 along the b-axis on the 21 screw-axis, view along a-axis (((mim)2(mpy)CO); ligands omitted
for clarity).

Compared to 3, the Fe-O bond lengths are slightly shorter, except for the ones in-
volving Fe1-O1 and Fe1-O3. This is attributed to the bare 2-methylpyridine coordination
environment around the Fe1 corner. Whereas, in 3, the Fe-O-Fe and O-Fe-O angles are
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all identical, in 4, they vary between 76.4◦ and 79.3◦ for O-Fe-O and 100.3◦ and 102.8◦

for Fe-O-Fe.
Each two cluster cores form a clockwise rotating helical supramolecular alignment

along the a-axis, characteristic for the R-enantiomer. (Figure 5b,c). For the refinement
of the structure, a Flack parameter of 0.014(5) was obtained, which confirms the correct
assignment of the given setting in the acentric space group symmetry. Moreover, it rules out
any inverse setting or any related twinning of enaniomorphic forms within the investigated
crystal. The molecular structure was determined in several crystal specimens from multiple
crystallization batches, which all confirmed the equivalent absolute crystallographic setting,
as evidenced by the absolute value and small uncertainty of the refined Flack parameter.
This relates to the hypothesis, namely that cluster 4 spontaneously resolves with the
identified enantiomer as its preferred form. In Table 2 the crystallographic parameters for
structures 1–4 are displayed.

Table 2. Crystallographic parameters for structures 1–4.

1 2 3 4

Formula C15H18.5BF4Fe0.5N7O C16H18.5BF4Fe0.5N5.5O C52H60B4F16Fe4N24O4 C61H62B4Cl3F16Fe4N20O4

m [g mol−1] 427.60 418.60 1655.88 1816.29

T [K] 200(2) 200(2) 200.15 200.15

Color Magenta Red Colorless Yellow

Shape Block Block Block Block

CrystalSystem monoclinic triclinic cubic orthorhombic

Space Group C2/c P1 Fd3 P212121

a [Å] 16.0441(17) 11.1878(13) 24.8347(8) 16.037(3)

b [Å] 11.6518(12) 12.6938(14) 24.8347(8) 22.753(4)

c [Å] 20.049(2) 13.6370(15) 24.8347(8) 23.418(5)

α [◦] 90 74.337(3) 90 90

β [◦] 102.904(2) 82.058(3) 90 90

γ [◦] 90 86.255(3) 90 90

V [Å3] 3653.3(7) 1846.1(4) 15317.1(15) 8545(3)

Z 8 4 8 4

ρ calc. [g cm−3] 1.555 1.506 1.436 1.412

µ [mm−1] 0.506 0.497 0.838 0.848

Measured Refl’s. 65735 51222 118123 133050

Indep’t Refl’s 7001 9124 1983 15661

GooF 1.016 1.017 1.106 1.026

wR2 0.0980 0.1179 0.1969 0.1433

R1 0.0431 0.0520 0.0636 0.0531

CCDC 2167517 2167516 2167518 2167519

2.2. Magnetic Susceptibility

Magnetic susceptibility measurements for the mononuclear complexes 1 and 2 show
that both compounds remain in the iron(II) low-spin configuration over the whole measured
temperature range, with values below 0.2 cm3 K mol−1 and gradually decreasing as the
temperature is lowered (Figure 6). The slightly faster decrease below 50 K is attributed to
the zero-field splitting. The irreversible increase in susceptibility above 350 K for complex 1
(Figure 6, inset) corresponds to the partial formation of the elimination coordination
compound [Fe(Me-bik)3](BF4)2 (5) [20].
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temperature is smaller than that of four uncoupled iron(II) atoms with a ground state of S 
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antiferromagnetic interactions. This behavior suggests an absence of intramolecular fer-
romagnetic interactions, which was further substantiated by field-dependent measure-
ment of the magnetization for a crystalline sample of 4 (Figure 7). 

Figure 6. Temperature dependence of the magnetic susceptibility: (a) Mononuclear Compounds: red:
Complex 1, green: Complex 2. (b) Tetranuclear Compounds: magenta: Complex 3, cyan: Complex 4.

The temperature dependent change of the effective magnetic moment for the [Fe4O4]
clusters 3 and 4 shows a gradual decrease from 12.4 cm3 K mol−1 and 10.1 cm3 K mol−1 at
T = 300 K to 1.9 cm3 K mol−1 and 1.8 cm3 K mol−1 at T = 10 K, respectively. The value at
room temperature is smaller than that of four uncoupled iron(II) atoms with a ground state
of S = 8, and the gradual decrease in susceptibility upon cooling demonstrates the presence
of antiferromagnetic interactions. This behavior suggests an absence of intramolecular fer-
romagnetic interactions, which was further substantiated by field-dependent measurement
of the magnetization for a crystalline sample of 4 (Figure 7).
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ble. The cyclic voltammogram for the [Fe4O4]-cluster 3 shows four different redox poten-
tials (Figure 10a), which correlate to the one-electron transitions of the four individual 
iron atoms each. The first three transitions describe chemically reversible processes, 
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Figure 7. Field-dependent measurement of the magnetization for a crystalline sample of 4, mounted
in arbitrary orientation in the field.

2.3. 57Fe-Mössbauer Spectroscopy

A 57Fe-Mössbauer spectrum (Figure 8) of a microcrystalline sample of [Fe4O4]-cluster
4 shows at 4.2 K a typical Fe(II) HS-doublet, which is in good agreement with the other
analyses. Fitting the spectrum provides the exclusively high spin state, without any
additional magnetic phases. Because the observed doublet is the sum of four subspectra,
representing the four iron sites, the electrostatic properties (isomer shift and quadrupole
splitting) of the four subspectra are practically identical, because the half width of the fitted
doublet is less than 50% broader than the natural line width. A separation within the given
statistics is therefore not possible.
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Figure 8. 57Fe-Mössbauer spectrum of a microcrystalline sample of complex 4.

2.4. Electrochemistry

A cyclic voltammogram of compounds 1 and 2 is given in Figure 9 and clearly shows
the singular reversible redox-potential for the Fe2+/3+ state at E1/2 = 0.06 V for 1 and
E1/2 = 0.16 V for 2. As long as an inert atmosphere is ensured, the redox cycle is fully stable.
The cyclic voltammogram for the [Fe4O4]-cluster 3 shows four different redox potentials
(Figure 10a), which correlate to the one-electron transitions of the four individual iron
atoms each. The first three transitions describe chemically reversible processes, whereas
the fourth was found to be only partially reversible.
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The separation of anodic and cathodic peak waves of roughly 150–200 mV suggests
that the electron transfer is accompanied by additional structural changes. Upon pro-
longed measurements, the redox behavior is gradually lost, which aligns with the quasi-
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reversibility attributed to the irreversible oxidation of the [Fe4O4]-core, forming increasing
amounts of Fe3O4. Deterioration of compound 3 in the solution is significantly increased
upon contact with O2.

In contrast, compound 4 shows extraordinary stability (Figure 10b), even in contact
with air. [Fe4O4]-cluster 4 features between −0.5 V and +2 V three distinct and fully
reversible redox waves. The first two feature one-electron oxidations, followed by a third,
two-electron process. The distance between each oxidation step is greater than that for the
related compound 3, and can therefore be triggered more precisely.

Comparing the redox-potentials of 3 and 4, the redox waves of 3 occur at ~0.5 V
lower potentials than for 4. This is in good agreement with the slightly stretched Fe-O
bonds in 3 (see above), confirming their slight destabilization, and resulting in a more
reactive compound.

2.5. Vibrational Spectroscopy

The investigation of the mid-infrared spectra of the mononuclear compounds 1 and 2
shows the expected bands for the heteroatomic vibrations of the imidazole and pyridine
moieties in the range of 3124–3160 cm−1 and their carbon–carbon ring vibrations in the
range of 2950–3000 cm−1. The most distinct feature is the broad stretching band for their
free hydroxyl groups at 3472 cm−1 for 1 and 3471 cm−1 for 2. As the oxygen atoms become
incorporated into the cube-like construct upon conversion into the clusters 3 and 4, the
OH-band completely vanishes, whereas the heterocyclic vibrations stay in the same region
Figures 11 and S1).
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3. Conclusions

The two tripodal azole ligands ((mim)3COH) and ((mim)2(mpy)COH) were found
to form the octahedral Fe(II) low-spin complexes [Fe((mim)3COH)2](BF4)2·MeCN and
[Fe((mim)2(mpy)COH)2](BF4)2·0.5 MeCN at room temperature. Upon heating, they
reassemble reproducibly into the chiral azole-decorated distorted [Fe4O4]-cubane type
clusters [Fe4(mim)3CO)4](BF4)4 and [Fe4((mim)3CO)4](BF4)4·CHCl3. In the case of
[Fe((mim)3COH)2](BF4)2·MeCN, during the solvothermal rearrangement, the octahedral
[Fe((Me-bik)3](BF4)2 is formed as a product of the elimination of an imidazole.

The octahedral Fe(II)-complexes remain in the low-spin state between 10 and 400 K.
In contrast, the two [Fe4O4]-clusters are in the high-spin state (10–400 K), revealing a
notable antiferromagnetic interaction. Intramolecular ferromagnetic interactions could not
be observed.

Both clusters feature redox active [Fe4O4]-cubane cores with up to four individual and
reversibly accessible states; however, in the case of [Fe4((mim)3CO)4](BF4)4, significantly
higher reactivity towards O2 was found. The tendency for the decomposition of the [Fe4O4]-
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core was found to be in alignment with the slightly elongated Fe-O bond lengths in the
cluster, suggesting the reduced stabilization of the cluster core.

With this initial study on the Fe(II) coordination compounds of the tris(azole)methanol,
a promising ligand system was developed, allowing for the fine-tuning of the reactivity
in the octahedra and [Fe4O4]-clusters. This enables a path to a class of materials that
is predetermined for the continued investigation of their redox behavior for catalytic or
electron-shuttling applications.

4. Experimental Section
4.1. Methodology

If not otherwise stated, all operations involving iron(II) were carried out under inert
gas atmosphere (argon 5.0). The glassware used was oven dried at 120 ◦C for at least 2 h
before use. All solvents for the complexation reactions were dried before use and stored
over 3 Å molecular sieve under argon [26]. Unless otherwise stated, all starting materials
were obtained commercially and used without further purification. All NMR spectra were
recorded in dry, deuterated solvents (as indicated) on a Bruker Avance UltraShield 400 MHz
instrument [27]. Chemical shifts are reported in ppm; 1H and 13C shifts are referenced
against the residual solvent resonance. The magnetic moment of the Fe(II) complexes was
measured using a Physical Property Measurement System (PPMS®) by Quantum Design.
The experimental setup consisted of a vibrating sample magnetometer attachment (VSM)
bearing a brass sample holder with a quartz-glass powder container. The magnetic moment
was determined in an external field of 1 T in the range of 10 K to 400 K, measuring at 5 K
intervals with a thermal stabilization time of 5 min. The data were corrected for diamagnetic
contribution. 57Fe-Mössbauer measurements were performed with a standard constant
acceleration spectrometer in transmission geometry. The 57CoRh source was mounted on
the driving system and kept at room temperature. Calibration of velocity scale was carried
out with an α-Fe foil. For temperature variation between 4.2 K and room temperature
a continuous flow cryostat was used in which the sample is kept in He exchange gas.
Temperature stability was±0.2 K at the measured temperatures. The spectra were analyzed
by solving the full Hamiltonian with both magnetic and electrostatic interaction. Mid-range
(4000–450 cm−1) infrared spectra were recorded in ATR technique with a Perkin Elmer
Spectrum 400, fitted with a PIKE Gladi ATR Unit [28]. Electrochemical experiments were
performed with 2 mM compound and 0.1 M NBu4BF4 in acetonitrile using a Pt-plate-
working and auxiliary electrode, measured versus the Fc/Fc+ couple with a usual scan
rate of 100 mVs−1 at room temperature using an Agilent 33120A Waveform Generator and
an Agilent 34970A Data Acquisition Unit. Single crystals were attached to a glass fiber by
using perfluorinated oil and were mounted on a Bruker KAPPA APEX II diffractometer
equipped with a CCD detector with Mo Kα radiation (Incoatec Microfocus Source IµS: 30 W,
multilayer mirror, λ = 0.71073 Å). For all measurements, data were reduced to intensity
values by using SAINT Plus, and an absorption correction was applied by using the multi
scan method implemented by SADABS [29]. For structure solutions by direct methods and
the structure refinements, the programs SHELXT [30] and SHELXL-2018/3 [31] were used,
respectively. All non H-atoms were refined with anisotropic displacement parameters. The
residual electron densities corresponding to disordered solvent residues in 4 were flattened
by the SQUEEZE algorithm of PLATON [32].

4.2. Synthesis

tris(1-methyl-1H-imidazol-2-yl)methanol ((mim)3COH)
The title compound was prepared based on the synthesis of Sorrell and Borovik with

slight modifications [33]. To a solution of 1-methyl-imidazole (20.47 g, 249.3 mmol), in
anhydrous THF (300 mL), n-butyl-lithium was slowly added (as 2.5 M solution in hexane,
100 mL, 250 mmol). Upon complete addition, the dark orange solution was cooled to
−78 ◦C, and a cooled solution of methyl chloroformate (7.28 g, 77.0 mmol) in THF (30 mL)
was added dropwise. The mixture was allowed to slowly warm to room temperature
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overnight. The reaction was quenched by the addition of acetic acid and all volatiles were
evaporated under reduced pressure. The residue was extracted with dichloromethane,
dried over MgSO4, and recrystallized from acetone to yield the title compound as pale-
yellow crystals (15.48 g, 74%).

1H NMR (400 MHz, CDCl3) δ = 6.90 (d, J = 1.2 Hz, 3H), 6.84 (d, J = 1.2 Hz, 3H),
5.94 (s, 1H), 3.36 (s, 9H).

13C NMR (101 MHz, CDCl3) δ = 146.05, 126.42, 123.71, 71.43, 34.07.
IR (cm−1): 3453, 3152, 3121, 2968, 1537, 1508, 1419, 1284, 1227, 1168, 1129
bis(1-methyl-1H-imidazol-2-yl)(3-methylpyridin-2-yl)methanol ((mim)2(mpy)COH)
To an ice-cold solution of 1-methyl-imidazole (6 g, 73.1 mmol), in anhydrous THF

(300 mL), n-buthyl-lithium was slowly added (as 2.5 m solution in hexane, 30 mL, 74.9 mmol).
Upon the complete addition, the solution was stirred for 40 min and was afterwards further
cooled to −90 ◦C. A cooled solution of methyl 3-methylpicolinate (5.52 g, 36.5 mmol) in
anhydrous THF (60 mL) was slowly added. The reaction was slowly allowed to warm up
to room temperature and stirred overnight. The reaction was quenched by the addition of
150 mL saturated and aqueous NH4Cl. Most of the organic solvent was evaporated under
reduced pressure, and the residue was extracted three times with chloroform, washed once
with water and brine, and afterwards dried with MgSO4. All volatiles were evaporated
under reduced pressure to yield an oily residue, which was further purified by recrystal-
lization from benzene to yield the title compound as a colorless solid (7.07 g, 68.3%).

1H NMR (400 MHz, CDCl3) δ = 8.35 (ddd, J = 4.8, 1.6, 0.7 Hz, 1H), 7.48 (ddd, J = 7.6,
1.5, 0.7 Hz, 1H), 7.44 (s, 1H), 7.19 (dd, J = 7.5, 4.8 Hz, 1H), 6.85 (d, J = 1.2 Hz, 2H),
6.80 (d, J = 1.2 Hz, 2H), 3.38 (s, 6H), 1.77 (s, 3H).

13C NMR (101 MHz, CDCl3) δ = 155.85, 146.90, 143.70, 140.71, 134.47, 129.05, 128.24,
126.58, 125.31, 123.73, 123.01, 73.86, 34.38, 18.67.

[Fe((mim)3COH)2](BF4)2 ·MeCN (1)
Two equivalents of ligand (mim)3COH (100 mg, 0.36 mmol) were added to a colorless

solution of Fe(BF4)2 · 6 H2O (62 mg, 0.18 mmol) in acetonitrile and were stirred for 3 h at
room temperature, resulting in a pink solution. The solvent was evaporated under reduced
pressure, and the pink residue was washed two times with diethyl ether to obtain the
mononuclear complex as magenta solid (141 mg, 94.9%). Magenta block-shaped single
crystals were obtained by slow diffusion of diethyl ether into a saturated acetonitrile
solution of 1 overnight.

[Fe((mim)2(mpy)COH)2](BF4)2 · 0.5MeCN (2)
Using the same synthetic procedure as for compound 1, the title compound was

obtained as red solid (136 mg, 97.3%). Red block-shaped single crystals were obtained by
slow diffusion of diethyl ether into a saturated acetonitrile solution of 2 overnight.

[Fe4((mim)3CO)4](BF4)4 (3)
A glass microwave vial was charged with a solution of Fe(BF4)2·6 H2O (62 mg,

0.18 mmol) in ethanol and an equimolar methanolic solution of ligand (mim)3COH (50 mg,
0.18 mmol). Immediately, a pinkish precipitate formed, and the reaction was stirred for
5 min at room temperature and was afterwards heated rapidly to 140 ◦C. A slow transition
from a pinkish precipitate to a grey dispersion was observed. The reaction was stopped
after heating for 30 min and before the change of the reaction color to blue by immediately
cooling below room temperature. The precipitate was separated by centrifuge and washed
twice with ethanol (4 mL). Evaporation of solvent traces under high vacuum yielded the
title compound as a grey solid (46 mg, 15.1%). Colorless single crystals were obtained
by slow diffusion of diethyl ether into an acetonitrile solution of 3 after approximately
one week.

[Fe4((mim)2(mpy)CO)4](BF4)4 · CHCl3 (4)
A glass microwave vial was charged with a solution of Fe(BF4)2·6 H2O (62 mg,

0.18 mmol) in ethanol and an equimolar methanolic solution of ligand (mim)2(mpy)COH
(52 mg, 0.18 mmol). Immediately, a red precipitate formed, and the reaction was stirred for
5 min at room temperature and was afterwards heated rapidly to 140 ◦C. The reaction was
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kept at this temperature overnight, upon which a yellow precipitate slowly formed. The
product was separated by centrifuge and washed once with ethanol (4 mL) and chloroform
(4 mL). Evaporation of solvent traces under high vacuum yielded the title compound as a
yellow solid (67 mg, 21.5%). Crystals were obtained by slow vapor diffusion of CHCl3 to
an acetonitrile solution of 4 over a few days.

[Fe(Me-bik)3](BF4)2 (5)
Two equivalents of ligand (mim)3COH (100 mg, 0.36 mmol) were added to a colorless

solution of Fe(BF4)2·6 H2O (62 mg, 0.18 mmol) in acetonitrile and were stirred at 60 ◦C
overnight, upon which the pink reaction mixture had turned dark blue. The solution was
evaporated to yield a dark blue residue, which was subsequently washed with diethyl
ether to obtain the title compound as a dark solid (37 mg, 38%). Dark colored singe crystals
were obtained by the solvothermal crystallization of an acetonitrile/dichloromethane (1:1)
solution of 5 in a sealed glass vial at 60 ◦C over several days.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/magnetochemistry8090095/s1, Figure S1: Mid-range infrared
spectrum of 2 and 4; Figure S2: 1H NMR of tris(1-methyl-1H-imidazol-2-yl)methanol; Figure S3:
13C NMR of tris(1-methyl-1H-imidazol-2-yl)methanol; Figure S4: 1H NMR of bis(1-methyl-1H-
imidazol-2-yl)(3-methylpyridin-2-yl)methanol; Figure S5: 13C NMR of bis(1-methyl-1H-imidazol-2-
yl)(3-methylpyridin-2-yl)methanol.
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