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Abstract 

Buildings are among the largest energy consumers and thereby significantly contribute to 

global greenhouse gas emissions. Reducing the energy consumption of buildings is one key 

element for achieving the European Union’s climate goals. 

Modern designs of newly erected or refurbished buildings proved to be highly energy-efficient 

while still offering a comfortable indoor climate. While some of these highly energy-efficient 

buildings meet their design values for energy consumption, others showed a significant 

deviation. An energy monitoring system with deeper submetering can help identify the reasons 

for a deviation, e.g., errors in the building’s systems or a building usage that deviates from the 

planning. Moreover, energy monitoring is a useful tool for continuous commissioning, which 

aids in ensuring an energy-efficient building operation. 

Before an energy monitoring system can be used to detect errors in the building operation, the 

monitoring system itself needs to be commissioned and validated – especially if the system is 

with deeper submetering and thus more complex. Ensuring that the energy monitoring system 

provides reliable data and is free of errors is a time-consuming but necessary task. By using 

different computer-aided methods and algorithms, this task could be aided and sped up. 

Considering the recent advances in computer science, a set of methods that can automatically 

detect almost all errors in the energy monitoring system solely by analyzing the data provided 

by the system appears possible. A key element that is needed as a prerequisite for such a set 

of methods is a method that can determine whether an energy meter is subordinate to another 

meter or not. The objective of this thesis is the development of such a method. 

The developed novel method determines the main meter-submeter relationship between two 

energy meters solely by analyzing the time series of the meter’s energy measurements. It is 

shown how the time series data must be transformed and which features must be derived from 

it to use them as input for random forest classifier machine learning algorithms. The application 

limits of the method are evaluated through development and validation with monitoring data of 

varying time resolutions and varying time slot lengths. As the method primarily focuses on 

detecting similar changes in load profiles, its performance depends on the measured energy 

consumers and the volatility of their load profiles. For the case of monitoring data from 

electricity meters with a time resolution of 5 min, it can be expected that the method can infer 

approximately 40% of the electricity meter hierarchy. For the cases 10 min and 15 min time 

resolution, the rate drops to approximately 34% and 26%. 

  



 

 

  



 

 

Kurzfassung 

Gebäude sind einer der größten Energieverbraucher und tragen daher stark zu den globalen 

Treibhausgasemissionen bei. Die Reduzierung des Energieverbrauchs von Gebäuden ist ein 

Schlüsselelement zur Erreichung der Klimaziele der Europäischen Union. 

Moderne Designs von neu errichteten oder sanierten Gebäuden haben sich als höchst 

energieeffizient erwiesen und bieten dennoch ein angenehmes Raumklima. Während einige 

dieser höchst energieeffizienten Gebäude ihre Auslegungswerte für den Energieverbrauch 

einhalten, zeigen andere eine deutliche Abweichung. Ein Energiemonitoringsystem mit 

Submetering kann helfen, die Gründe für Abweichungen zu identifizieren, z.B. Fehler in der 

Gebäudetechnik oder eine von der Planung abweichende Gebäudenutzung. Darüber hinaus 

ist das Energiemonitoring ein nützliches Tool für Continuous Commissioning, welches dabei 

hilft, einen energieeffizienten Gebäudebetrieb sicherzustellen. 

Bevor ein Energiemonitoringsystem zur Erkennung von Fehlern im Gebäudebetrieb eingesetzt 

werden kann, muss das Monitoringsystem selbst in Betrieb genommen und validiert werden – 

insbesondere, wenn das System mit Submetering und damit komplexer ist. Sicherzustellen, 

dass das Energiemonitoringsystem vertrauenswürdige Daten liefert und fehlerfrei ist, ist eine 

zeitaufwändige aber notwendige Aufgabe. Durch den Einsatz verschiedener 

computergestützter Methoden und Algorithmen könnte diese Aufgabe unterstützt und 

beschleunigt werden. Angesichts der jüngsten Fortschritte in der Informatik erscheint ein Set 

von Methoden möglich, das fast alle Fehler im Energiemonitoringsystem automatisch 

erkennen kann, indem es allein die vom System bereitgestellten Daten analysiert. Ein 

Schlüsselelement, das als Voraussetzung für ein solches Set von Methoden benötigt wird, ist 

ein Verfahren, das bestimmen kann, ob ein Energiezähler einem anderen Zähler 

untergeordnet ist oder nicht. Das Ziel dieser Arbeit ist die Entwicklung einer solchen Methode. 

Die entwickelte neuartige Methode bestimmt die Hauptzähler-Subzähler-Beziehung zwischen 

zwei Energiezählern allein durch die Analyse der Zeitreihen der Energiemessungen der 

Zähler. Es wird gezeigt, wie die Zeitreihendaten transformiert und welche Merkmale daraus 

abgeleitet werden müssen, um sie als Input für Random Forest Classifier Machine Learning 

Algorithmen zu verwenden. Die Einsatzgrenzen der Methode werden durch Entwicklung und 

Validierung mit Monitoringdaten unterschiedlicher zeitlichen Auflösungen und 

unterschiedlicher Zeitspannen evaluiert. Da sich das Verfahren primär auf die Erkennung 

gleichartiger Änderungen in Lastprofilen konzentriert, hängt seine Leistungsfähigkeit von den 

gemessenen Energieverbrauchern und der Volatilität ihrer Lastprofile ab. Für den Fall von 

Monitoringdaten von Stromzählern mit einer zeitlichen Auflösung von 5 min ist zu erwarten, 

dass die Methode ca. 40% der Stromzählerhierarchie identifizieren kann. Für die Fälle mit 

10 min und 15 min zeitlicher Auflösung sinkt die Rate auf etwa 34% und 26%. 
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1 Introduction 

As buildings account for approximately 40% of the EU’s final energy consumption [1], the 

building sector is crucial for achieving the EU’s energy and climate goals. With the Energy 

Performance of Buildings Directive (EPBD) 2018/844/EU [2] in its most recent version, the EU 

member states aim to improve the energy performance of buildings. One of the key elements 

of the EPBD is to ensure that all new buildings are nearly zero energy buildings (nZEB) by 31st 

December 2020. 

The numerous nearly zero energy buildings built before that deadline proved that the energy 

efficiency demanded by the EPBD is achievable [3]. Some highly-efficient buildings even 

harnessed enough energy from local resources to achieve net zero energy. Moreover, it is 

possible to design high-rise office buildings as net zero energy buildings, as exemplified by the 

Elithis Tower in France [4] and the (Plus-)Plus-Energy Office High-Rise Building in Austria [5] 

– see Fig. 1. 

 
Fig. 1: Examples of net zero energy buildings. Left: Elithis Tower in Dijon, France [4]. Right: (Plus-)Plus-Energy 

Office High-Rise Building in Vienna, Austria [5]. 

Even though achieving a nearly or net zero energy balance is feasible in theory, there are often 

issues when implementing the concepts. Several studies showed that the real energy 

consumption of highly efficient buildings often exceeds their theoretical consumption [6]. The 

difference between actual and theoretical energy consumption is referred to as “Energy 

Performance Gap” (EPG). If the actual consumption exceeds the theoretical consumption, the 

EPG is positive. In cases where the theoretical consumption exceeds the actual consumption, 

the EPG is negative. 

The EPG was also observed in the Elithis Tower and the (Plus-)Plus-Energy Office High-Rise 

Building. Fig. 2 illustrates both buildings’ non-renewable primary energy demand and the 

resulting EPGs due to higher actual demands observed during monitoring. It can be observed 

that in both cases, the energy consumption measured by the energy monitoring significantly 

exceeded the design value. In both cases, there was additional energy consumption in the 
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category “usage” – the consumption caused by plug-loads, which heavily depends on the 

building’s users. In the case of the (Plus-)Plus-Energy Office High-Rise Building, additional 

consumption could also be observed in the category “building” – the consumption needed to 

operate the building and make the building useable. 

 
Fig. 2: Performance gaps of the Elithis Tower and the (Plus-)Plus-Energy Office High-Rise Building. The primary 

energy factors of the (Plus-)Plus-Energy Office High-Rise Building [5] were applied to the original data of the 
Elithis Tower [4]. 

There are various reasons for the EPG, ranging from inaccuracy of inputs and assumptions 

for building modeling to malfunctioning equipment [7]. Especially for the cases with a positive 

EPG, an investigation should be conducted to identify the causes behind observed differences. 

The energy monitoring system plays a crucial role in such an investigation. Energy monitoring 

systems with deep submetering on system- and equipment levels allow for a detailed analysis 

of energy flows inside the building. Depending on the structure and depth of the monitoring 

system, the energy consumption can be traced back to certain building parts and systems or 

even single components [8]. 

An example of an energy monitoring system with deep submetering is the system installed in 

the (Plus-)Plus-Energy Office High-Rise Building. It is an extensive energy monitoring system 

with three levels of submetering. Thus, by analyzing the monitoring data, it was possible to 

pinpoint the consumers who cause additional energy consumption and draw conclusions 

regarding the underlying reasons – see Fig. 3. 
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Fig. 3: Reasons for the (Plus-)Plus-Energy Office High-Rise Building’s performance gap in the year 2018, 

presented as percentage of the additional non-renewable primary energy demand. 

Fig. 3 illustrates the reasons for the EPG at the end of the building’s monitoring and 

optimization project – the end of the year 2018. In the years before that, the EPG was even 

higher. Identifying the causes of the high energy consumption during the monitoring and 

optimization project was the first step in reducing the consumption [9]. Knowing the causes for 

the increased energy consumption that is still there after the optimization is an important 

knowledge gain for future near or net zero energy buildings. Without the building's extensive 

energy monitoring system, it would not have been possible to determine the reasons for the 

excessive energy consumption. 

An energy monitoring system is not only useful to optimize the building and thus reduce its 

consumption during or after the commissioning phase, but it is the key element to ensure the 

correct operation of the building’s equipment and controls and is the foundation for continuous 

commissioning [10,11]. By ensuring that buildings operate as efficiently as possible and stay 

that way, energy monitoring plays an essential role in reaching the EU’s energy and climate 

goals. 

1.1 Motivation 

Before an energy monitoring system can effectively be put to use, the system itself must be 

validated, and errors in the system must be fixed. The deeper the submetering, the more 

components are part of the monitoring system, and therefore the higher the probability of 

errors. There is comprehensive research regarding fault detection and diagnosis in building 

energy systems [12–14] but not in the case of energy monitoring systems themselves. 

The few methods that use energy monitoring data to detect faults in the energy monitoring 

system focus mainly on detecting faulty smart meters energy theft [15–17]. None of the 
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methods addresses errors in the structure and topology of the energy monitoring system, e.g., 

meters placed at a wrong location or meters measuring other consumers than they should. 

The commissioning of the energy monitoring of the (Plus-)Plus-Energy Office High-Rise 

Building in Vienna showed that there is indeed a need for methods that can help to deal with 

such errors – several structural and topological errors were detected. 

Fig. 4 shows the timeline of the building’s refurbishment process. The energy monitoring 

system should have been fully operational at the beginning of 2015, during the commissioning 

phase of the building itself. Instead, it took almost a year before the errors in the monitoring 

system were identified and corrected by the responsible contractors. 

 
Fig. 4: Timeline of the (Plus-)Plus-Energy Office High-Rise Building’s refurbishment process. 

There are several reasons why it took so long to identify and correct the errors: 

• The process of reporting errors to contractors needed to run through multiple 

administrative levels, and it was not possible for the research team to report the errors 

directly. 

• Four different contractors were commissioned to install the energy meters. It was not 

precisely defined if one contractor was responsible for the parametrization of all energy 

meters or whether each contractor was responsible for their own energy meters. 

• There was no overview of the hierarchy of the energy monitoring system. The research 

team had to derive the hierarchy from the circuit diagrams of the building’s switch 

cabinets, the heating and cooling schematics, and through site visits. 

• Some errors could only be discovered after other errors were fixed. 

No heat meter errors were found apart from the issue that the straight length of pipe in the inlet 

and outlet sections was less than advised by the heat meter manufacturer’s guidance. As this 

is not an issue that can be fixed easily and as metering heat is not the main purpose of the 

piping, this issue is not considered a real error in the context of this work. 
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Thus, practically all encountered errors were related to electricity meters. These errors can be 

summarized as follows: 

• Wrong parametrization of the electricity meter’s current transformer values 

• Current transformers were installed incorrectly 

• Electricity meter measured other consumers than expected 

• The wrong type of electricity meter was installed 

• Electricity meter was faulty 

• Electricity meter was not installed at all 

The identification and correction of those errors were relatively time-consuming. Instead of 

using the energy monitoring system to analyze the building performance, the research team 

had to verify that the energy monitoring system works properly first. Particularly, the 

preparation of an overview of the hierarchy of the energy monitoring system was labor-

intensive, but it was a major prerequisite for identifying the stated errors. 

To accelerate this time-consuming process of validating the energy monitoring system, a set 

of methods that aids in the tasks of generating an overview of the real energy meter hierarchy 

and identifying errors would be beneficial. The analysis of the energy meter data suggested 

that it might contain enough information to aid with both tasks. Considering the actual state of 

data science, the vision depicted in 5 steps in Fig. 5 seems possible: 

Step 1: After an energy monitoring system has been initialized by the contractor, the system 

accumulated some weeks of monitoring data and stored it in a data storage. The energy meter 

data is then automatically identified and extracted from the data. 

Step 2: By analyzing the energy meter data, it is determined whether an energy meter is the 

submeter of another energy meter. Using this information, parts of the energy meter hierarchy 

are automatically identified without providing additional information about the expected 

hierarchy. Some energy meters, e.g., those which measure consumers that measure almost 

constant energy consumption, cannot be placed in the energy meter hierarchy automatically. 

Step 3: All those energy meters which could not be placed in the energy meter hierarchy 

automatically are then positioned in the hierarchy manually. This step relies on additional 

information, which might be gathered by the designation of the data points, circuit diagrams, 

or site visits. 



16 Introduction 

 

 
Fig. 5: Vision of how the process of validating energy monitoring systems can be accelerated – step 1-5. 

Step 4: After the energy meters were placed in the hierarchy automatically or manually, further 

algorithms check the plausibility and try to identify errors. If possible, the algorithms indicate 

how an error can be fixed, e.g., the correct current transformer value. 

Step 5: The information contained in the energy meter data, combined with the knowledge 

about the energy meter hierarchy, might be enough to determine causal relations between 
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energy meters, e.g., if the relation between an electricity meter which measures the pump that 

transports the water which is measured by a heat meter is determined, it would be highlighted 

as a possible causal relationship. 

The key element to enable the process described in steps 1-5 in Fig. 5 is a method to determine 

whether an energy meter is subordinate to another energy meter. Even though the main 

application of this method is in step 2, it might also contribute to step 4, e.g., by using the 

method in a loop where the main meter-submeter relation of two meters is evaluated 

repeatedly while the data of one meter is manipulated according to typical current transformer 

values. Suppose the method only detects a main meter-submeter relation when the data of 

one meter is manipulated as it came from a meter with a particular current transformer value. 

In that case, this value should be the correct one that the meter must be parameterized with. 

1.2 Objective 

The objective of this doctoral thesis is the development of a method that can determine whether 

an energy meter is subordinate to another meter. The method shall be applicable to both types 

of energy meters – electricity meters and heat meters. As described in the vision in chapter 

1.1, this method is intended to be the key element for a process to accelerate the validation of 

energy monitoring systems – the final step of the commissioning of an energy monitoring 

system. 

The ambition of the developed method is that the determination of whether an energy meter is 

subordinate to another meter is made based on the meters’ raw time series data only. There 

shall be no need to provide additional information. All necessary steps to automatically process 

the raw time series data are part of the method. 

As energy monitoring data can have different time resolutions, the method shall be capable of 

handling 5 min, 10 min, 15 min, 30 min, and 60 min time resolutions. 

Following the idea of the vision formulated in chapter 1.1, it is intended that the method is used 

shortly after the energy monitoring system has been initialized by the contractor. That means 

it should work with monitoring data from a few weeks. Using a time span of five weeks as the 

baseline, the impact of shorter and longer time spans shall be investigated. Thus, the method 

is to be tested with data from time slots with the following lengths: 1 week, 2 weeks, 5 weeks, 

3 months, 6 months, and 1 year. 

The prediction performance of the method and its application limits shall be evaluated for all 

the mentioned time resolutions and time slot lengths. Finally, the method is to be validated by 

providing it with data from another data source. 
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2 State of the art 

Fault detection and diagnostics of energy monitoring systems is not a broadly discussed or 

researched topic. There are various papers discussing the application of energy monitoring 

systems to detect errors in other systems, but none of them addresses the issues that arose 

during the commissioning of the energy monitoring system. Still, the plausibility of errors and 

faults in the energy monitoring system itself is documented in guidelines [18,19] and reports 

[20] regarding the installation of energy meters.  

Most of the available research that can be attributed to the topic “fault detection and diagnostics 

of energy monitoring systems” is part of at least one of these three research fields: 

• Smart meters 

• Fault detection and diagnostics for building systems 

• Fault detection and diagnostics for power systems 

Fig. 6 illustrates the overlap of these research fields and their sub-topics. It is based on the 

results of the literature research that was conducted for this thesis. The objective of this thesis, 

the detection of main meter-submeter relationships, is a subject at the intersection of several 

disciplines. The topic can be found under the umbrella of “detection of structural and 

topological errors”, which in turn is used for both “fault detection and diagnostics for power 

systems” and “fault detection and diagnostics for building systems”. 

 
Fig. 6: Overview showing the topics related to the detection of main meter-submeter relationships. 
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2.1 Smart meters 

The EU has specified the legal framework for the installation of smart meters in the directive 

2009/72/EC [21]. The directive states that, to facilitate energy efficiency, as many consumers 

as possible shall be equipped with smart meters. This directive is already implemented in the 

national legislation of the member states, and the roll-out of smart meters is ongoing – e.g., in 

Austria, approximately 30% of consumers were equipped with smart meters in 2020 [22]. 

With the increasing number of smart meters, there is also an increasing amount of research 

related to them. Smart meters promise advantages for the operation of power systems. Still, 

there are also concerns about issues regarding privacy and security, e.g., that the smart meters 

might reveal information about the presence of people at their residences [23]. 

One of the examples of research, which highlights the danger that smart meters pose to 

consumer privacy, is a study on multimedia content identification through smart meter power 

usage profiles. In this study, it was shown that it is possible to identify what channel the TV in 

a household was displaying under the precondition that the smart meter’s sample rate is set 

to 0.5 s-1 and there is at least a five minute-chunk of consecutive viewing without major 

interference by other appliances. The method used in this study relies mainly on calculating 

the correlation between the expected energy consumption calculated for the TV content and 

the real energy consumption measured by the smart meter [24]. 

Another study investigated the correct identification of appliances by analyzing their load 

profiles. The load profiles used in this study had a varying time resolution between one and 

five seconds. Out of these profiles, metadata was calculated, then used as features for a 

classification process. Different types of classifiers were investigated, and their cross-

validation accuracy for 25 folds was calculated. The random committee and random forest 

classifiers achieved the highest cross-validation accuracy, which is slightly above 95% in both 

cases. In this study, the classifiers were only trained with and used on clean load profiles of 

single appliances. It was not investigated how single appliances can be identified in a load 

profile of a group of multiple appliances, which is the load profile that a smart meter would 

provide in a real setting [25]. 

Yip et al. went further and analyzed the load profiles of a group of multiple smart meters 

individually and as a group to detect energy theft and defective smart meters in smart grids. 

The basic principle behind the method presented in this study is that the load profile measured 

at the supply node of the utility provider must equal the sum of the load profiles of the smart 

meters of the supplied consumers. For the method to work, all the supplied consumers must 

be equipped with a smart meter. Besides the transportation losses between the supply node 

and the consumers and usual measurement errors, unmetered energy consumption is not 

permitted. The main method used in this study is a multiple linear regression, where the load 
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profiles of all smart meters are the predictors, and the difference profile of their sum profile and 

the load profile of the supply node are the target. The regression coefficients of this multiple 

linear regression provided an indication if and which consumers seem to steal energy as well 

as the presence of defective smart meters. This method has been proven to work with load 

profiles with a time interval of 30 min [15]. 

A similar setup was used in another study, which focused solely on identifying defective smart 

meters. The method presented in this study also processes the load profile of a group of 

multiple smart meters and the load profiles of each of the meters to find the defective ones. 

Again, besides transportation losses and measurement errors, unmetered energy 

consumption is not permitted. The method was tested with load profiles with 15 min and 60 min 

time intervals. Instead of linear regression, a combination of a long short-term memory artificial 

recurrent neural network (LSTM) and a modified convolutional neural network (CNN) was 

used. The LSTM predicted the load profile of a group of multiple smart meters. If the prediction 

had a too high deviation from the real load profile of the group, a diagnostic process was 

initiated, where the CNN then classified the defective smart meters [17]. 

2.2 Fault detection and diagnostics for building systems 

Fault detection and diagnostics (FDD) for building systems is a broadly researched field. A 

review by Kim et al. showed that close to 200 studies investigating automated fault detection 

and diagnostics of building systems were published between 1990 and 2018. 83 of those 

studies discuss FDD methods for ventilation systems, 33 methods for chillers and cooling 

towers, and 32 methods for air conditioners and heat pumps. Other building systems, as well 

as FDD for the overall building, were discussed in 49 studies. The majority, namely 62%, of 

the methods used in the studies are process history-based, i.e., they derive behavioral models 

from measurement data obtained from the process over time. 26% of the methods are 

qualitative model-based, i.e., the models consist of qualitative relationships derived from 

knowledge of the underlying physics. The remaining 12% of methods are quantitative model-

based, i.e., the models are sets of quantitative mathematical relationships based on the 

underlying physics of the process [13]. 

Zhao et al.’s review focused on artificial intelligence-based FDD methods for building systems. 

They found that 135 papers discussing these methods were published between 1998 and 

2018. The studies can be classified into two major sub-categories: studies that discuss 

knowledge-driven methods and studies that discuss data-driven methods. About 21% of the 

methods are knowledge-driven, and a majority of 79% are data-driven. With the rise of 

computational power and the increased research in the field of machine learning, the number 

of studies investigating data-driven methods increased over the years. Approximately half of 

the studies covering data-driven methods were published between 2014 and 2018. Of the 
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data-driven methods, about 44% were unsupervised learning methods, 30% classification 

methods, and 26% regression methods [14]. 

For the literature research that was conducted for this thesis, some of the studies cited in [13] 

and [14] were investigated further. Still, none of them discussed a method that seemed useful 

for identifying main meter-submeter relationships. 

2.3 Fault detection and diagnostics for power systems 

In the research field of fault detection and diagnostics for power systems, there are several 

studies [26–30] that address topology identification of power systems. The authors of those 

studies state that the main motivation for topology identification of power systems is that 

especially the topology of low-voltage distribution networks recorded by the network operators 

is often inaccurate. This is due to the high complexity of those systems, continuously 

undergoing changes, and the fact that the data is basically entered into the operator’s recording 

system manually. Some of the studies concern the identification of relationships between 

substation, feeder, and transformer nodes (short: supply nodes), others the identification of 

relationships between supply nodes and electricity meters, and some the identification of 

relationships between electricity meters. 

In most of the investigated studies [26–29], the topology is identified by processing the time 

series of the voltages measured at supply nodes or electricity meters. Basically, the methods 

used in these studies all combine a method that compares the time series of voltages of the 

different supply nodes or electricity meters with other methods or algorithms. 

In [26], the Pearson correlation coefficient is used to determine the strength of the linear 

association between the different voltage time series of electricity meters and their one shared 

transformer node. The pairs of voltage time series with the highest correlation coefficients 

indicate that they should come from neighboring electricity meters or the transformer node. By 

taking advantage of the fact that the general voltage level drops the further away a meter is 

from the energy supply, the hierarchy is determined. The method proposed in this study was 

tested with real monitoring data from one day with 5 min time resolution. Between 87.5% and 

93.5% of the topology could be identified. 

The Pearson correlation coefficient is also the main metric used in [27]. In this study, the goal 

is not to identify the metering topology below one transformer node but instead to determine 

which electricity meter is supplied by which transformer node. For this purpose, an algorithm 

combining the Pearson correlation coefficient and a Fuzzy C-Means clustering was proposed. 

The algorithm was tested with real monitoring data from 48,220 users that are supplied by 500 

transformers. It was data from a whole day with a time resolution of 15 min. In that case, 91.3% 
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of the transformer node-electricity meter relationships were identified correctly by the 

algorithm. 

Another study that uses the coefficient of determination R² as main metric is [28]. Similar to 

[27], the goal of this study is to find out which electricity meter is supplied by which feeder 

node. For each set of possible combinations of electricity meters and feeder node, a univariate 

linear regression is performed and the respective R² is calculated. Combinations with R² values 

above 0.95 are seen as correctly identified feeder node-electricity meter relationships. Energy 

meters that only achieve R² values below this threshold are automatically assigned to feeder 

nodes by using K-means clustering. This method was not tested on real data but instead on 

the results of a MATLAB/Simulink simulation of a power grid consisting of two feeder nodes 

and 25 electricity meters. With a sampling rate of 50 µs and a simulation period of 0.2 s could 

correctly identify 75% of the topology. 

The last of the investigated studies, in which the voltage time series are processed to identify 

the topology, is [29]. In this study, the goal is to find out which electricity meter is supplied by 

which transformer node phase. The proposed method also utilizes R² as main metric, but 

instead of applying univariate linear regression on the voltage time series, it is applied on 

characterization indicators that were derived from each voltage time series. Contrary to the 

method used in [28], there is no threshold for R². Thus, an electricity meter is automatically 

assigned to the transformer node phase with the highest R² value. The method was tested on 

Simulink simulation data of a power grid consisting of two transformer nodes with three phases 

each. Three or four electricity meters are connected to each phase, resulting in an overall 

number of 20 electricity meters. For the given simulation data, which has a time resolution of 

15 min, the proposed method could correctly identify 100% of the topology. The time span of 

the simulation data was not stated in the study. 

Only one of the investigated studies uses time series of energy measurements instead of time 

series of voltage measurements for the topology identification. The study proposes two 

algorithms that utilize principal component analysis. Algorithm one aims to identify the phase 

connectivity between electricity meters and phases of transformer nodes. Algorithm two is an 

extended version of algorithm one, which aims to identify the whole topology of the power grid 

– from the electricity meters over transformer nodes from all kinds of voltage levels up to the 

power supply with the highest voltage level. The algorithms were tested with synthetically 

generated data, which was generated by randomly (uniformly) sampling from certain pre-

defined ranges of possible energy measurements. Different distances between the nodes and 

meters were randomly sampled and modeled, and random errors were introduced to account 

for losses and limited measurement accuracy. As soon as there are at least twice as many 

energy values from different points in time as there are transformer nodes or electricity meters, 

both algorithms perfectly fulfill their purpose by identifying 100% of the phase connectivity or 
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topology. The main prerequisites for these algorithms are that there is no energy theft and that 

there are no un-metered loads in the power network [30]. 

2.4 Machine learning 

Most of the methods used in the studies that are described in subchapters 2.1 to 2.3 utilize a 

machine learning algorithm or statistical approach that is related to machine learning. 

Machine learning can be seen as a sub-field of artificial intelligence. It aims at designing 

algorithms that allow a computer to learn in order to fulfill a particular task – e.g., the prediction 

of values or the classification of new samples to certain predefined groups. There are several 

types of machine learning techniques, but as the objective of this thesis is a typical 

classification problem, this chapter focuses only on the type that is usually used for 

classification: the “supervised learning”. In “supervised learning”, an algorithm generates a 

function that maps input to desired outputs. The available compilation of input and output data 

is split into a training dataset and a test dataset. The training dataset is used to set up a model 

for the purpose of fulfilling the desired task, and the test dataset is then used to evaluate the 

model’s performance at fulfilling the task. This process of training and testing is usually 

repeated several times while fine-tuning the model [31,32]. 

 
Fig. 7: The two main prediction problems, regression and classification, with examples. 

Fig. 7 illustrates the two typical prediction problems that are addressed in “supervised 

learning”: the regression and the classification. In the regression case, a model is trained, 

which predicts continuous values, while in the classification case a model is trained, which 

predicts discrete classes. A model trained for the regression problem is called “regressor”. A 

model trained for the classification problem is called “classifier”. Depending on the number of 

classes that a classifier shall predict, the classification problem is either a “binary classification” 

or a “multiclass classification”. Binary classification indicates if an entry of data is either part of 
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a class or not and thus classifies data into two classes. In the case of the multiclass 

classification, there are more than two classes [33]. 

As the objective of this thesis is to develop a method that can determine whether an energy 

meter is subordinate to another meter, the problem is a typical binary classification problem. 

This problem shall be solved by analyzing the time series data that is provided by the energy 

meters. For such time series classification problems, there are two types of methodologies: 

“feature-based” and “distance-based”. Since time series are usually of varying length, varying 

quality, and probably have gaps, the time series data must be processed before a classifier is 

trained. 

In the case of the feature-based methodology, features – typically statistical indicators – are 

extracted from the original time series signal. After the feature extraction, the classifier is 

trained with the features instead of the time series. All new time series data that the classifier 

shall predict to classes also must undergo the feature-extraction process. Thus, the classifier 

never directly processes the original time series data. The basic idea behind that is that the 

classifier shall capture information hidden in the signal statistics that can be used to separate 

data into classes. 

The distance-based methodology avoids the feature extraction process. Instead, suitable 

distances between time series signals are calculated and used as metric for separating data 

into classes. For this methodology to work, the time series signals either must be cut to the 

same time length, the time axis must be adjusted, or the signal must be transformed, e.g., to 

a parametric representation [34]. 

The distance-based methodology can only classify one signal at once because the distances 

are calculated between the time series signal that shall be classified and other time series 

signals that the classifier was trained with. However, the classification problem that shall be 

solved in this thesis involves two time series signals from two energy meters. As the features 

can be calculated from both signals, the feature-based methodology is the logical choice. 

Basically, the feature-based methodology can be split into four steps: Preprocessing, Feature 

extraction, Dimensionality reduction, and Classification [34]. 

Embedding these four steps into the general workflow for classification of time series data, the 

whole classification process can be summarized as follows: 

1. Define the problem: analyze the setting, specify the classes, and specify the cases that 

need to be classified 

2. Algorithm selection: select a suitable feature-based classifier algorithm 

3. Preprocessing: reduce measurement noise, e.g., outliers 
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4. Feature extraction: calculate features for all cases out of the time series data 

5. Clustering: automatically or manually assign the entries to the classes 

6. Split the dataset into training and test data: automatically or manually assign the entries 

to the training dataset or test dataset 

7. Dimensionality reduction: remove the features that do not contribute to the 

classification 

8. Classification: set up classifiers in different configurations 

a. (Repeatedly) train the classifiers with the training dataset 

b. (Repeatedly) test the classifiers with the test dataset 

9. Model selection: evaluate the classification performance that was achieved with the 

test dataset and select the best classifier 

10. Validation: validate the classifier performance with other data 

There are several machine learning methods that could be used as feature-based classifier 

algorithm for the classification of time series data: Ranging from the application of the very 

fundamental statistical technique of regression, over the memory-based k-nearest-neighbor 

classifiers, to the computation-intensive neural networks [32]. In this thesis, only two of those 

methods were used: (i) linear regression of an indicator matrix (short: linear classifier) and (ii) 

random forest classifier. 

The linear classifier is one of the most basic machine learning algorithms. It facilitates the well-

established method of multivariate linear regression and adjusts it for the classification 

purpose. In most cases, other types of classifiers will outperform the linear classifier. Still, one 

of its main advantages is that its function is relatively easy to comprehend, as one simply has 

to analyze its coefficient matrix to understand the impact of the different parameters of the 

training data on the classifier model [32]. 

A random forest classifier is basically a set of decision tree classifiers that were trained with 

different datasets, which were created by randomly sampling data from the original training 

data. During the training of a decision tree, the parameters available in the training data are 

analyzed, and then they are used to partition the data with the aim that the different classes 

are separated as good as possible from each other. When a decision tree is fully grown, there 

are only entries of one of the classes in each partition. As a fully-grown decision tree always 

perfectly fits its training dataset, it is overfitted and might not fully grasp the underlying 

connections hidden in the data. To counteract that, several decision trees are grown from data 

that was bootstrapped (randomly sampled with replacement) from the original training dataset. 
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When tasked with the classification of new data, all decision trees are provided with the new 

data, and each of the trees assigns the data to one class. Finally, the class which was assigned 

by the majority of the trees is the classification output of the random forest classifier [32,35]. 

2.5 Research gap 

The review of the literature showed that there are no examples of studies investigating the 

detection of structural and topological errors in building energy monitoring systems. Instead, 

several studies in the research field of fault detection and diagnostics for power systems 

address this topic. Since both building energy and power system monitoring process time 

series data related to energy measurement, the methods used for power systems should also 

be applicable to building energy monitoring. The main difference is that power system research 

focuses on the distribution of energy to buildings or single consumers, while building energy 

monitoring research focuses on the distribution of energy inside a building. 

Tab. 1 gives an overview of the studies from the research field of fault detection and 

diagnostics for power systems that were discussed in section 2.3. They all investigate methods 

that shall detect relationships between supply nodes and/or electricity meters based on time 

series data from an electricity measurement. Most of the investigated methods have in 

common that they have a very high accuracy between 87.5% and 100%. Only one of them has 

an accuracy of 75%, which can still be interpreted as success. 

Tab. 1: Study overview of methods that detect relationships between supply nodes and/or electricity meters. 

source processed time 
series 

method 
allows for 

unmetered 
consumers 

time resolution 
(sampling rate) 

time series length 
(analyzed interval) 

origin of the data 
that the method 
was tested with 

correctly identified 
relationships between 
supply nodes and/or 

energy meters 
(accuracy) 

[26] Zhang et al. 
voltage 

measurements yes 

5 min 1 day 
monitoring 

87.5% - 93.5% 
[27] Chao et al. 15 min 1 day 91.3% 
[28] Qian et al. 50 µs 0.2 s 

simulation 

75.0% 
[29] Liu et al. 15 min not stated 100.0% 

[30] Pappu et al. energy 
measurements no 408 different points in time 100.0% 

 

Four of the methods presented in Tab. 1 process time series data of voltage measurements 

[26–29], while only one processes time series data of energy measurements [30]. The 

processing of voltage measurements has the advantage that not only the profiles of the time 

series can be used to infer relationships between supply nodes and/or energy meters, but also 

the average voltage levels. The deeper the voltage level, the further the supply node/energy 

meter must be away from the electricity source. 

There is no such advantage in the case of the method that processes only data of energy 

measurements. The detection of relationships between supply nodes and/or electricity meters 

must be conducted only based on the information hidden inside the profiles of time series. That 
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this is more difficult than detecting relationships based on voltage measurements is indicated 

by the fact that the methods presented in [26–29] allow for some consumers to be unmetered, 

while the method of [30] does not. 

As each consumer must be billed, the prerequisite that all consumers are metered should 

usually be met in power systems if there is no energy theft. In the case of building energy 

monitoring systems, there is a higher chance that consumers remain unmetered because 

sometimes only consumers of higher interest are metered, and a high number of meters 

increases the system’s costs and complexity. 

The reduction of costs and complexity is also the reason why in building energy monitoring 

systems, voltage, although measured by the electricity meters, is often not recorded. As the 

main goal of building energy monitoring is the observation of energy consumption, the 

recording of voltage is considered unnecessary. Moreover, the dynamics of the measured 

loads can be investigated by recording instantaneous power values. 

Counter values and instantaneous power values are also the information that can be expected 

to be provided by heat meters. For heat meters, there is not even one study that investigates 

the hierarchical relationships between two heat meters. 

A general method that can identify main meter-submeter relationships for both types of energy 

meters – electricity meters and heat meters – must work with the time series of counter values 

and eventually the time series of instantaneous power values. Thus, the methods that are 

based on the processing of voltage measurements [26–29] are not applicable. As the 

prerequisite that there are no unmetered consumers is often not met in building energy 

monitoring systems, the method presented in [30] is also not applicable. There is a need for a 

new method that processes time series of energy measurements and allows for some 

consumers to be unmetered – see Fig. 8. 
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Fig. 8: Overview showing the topics related to the detection of main meter-submeter relationships with an 

illustration of the research gap. 

Fig. 8 illustrates the research gap that needs to be filled by the new method by integrating it 

into the overview of the topics related to the detection of main meter-submeter relationships 

that was initially presented in Fig. 6. The detection of relationships between supply nodes 

and/or electricity meters is not separately shown for better readability. It is considered a part 

of “detection of main meter-submeter relationships”. The same applies to the detection of 

relationships between heat meters. 

This doctoral thesis aims at filling the research gap. The task of automatically analyzing energy 

monitoring data to get an indication of whether an energy meter is subordinate to another meter 

is a possible application for machine learning algorithms. That machine learning is the right 

tool is indicated by the high accuracy rates achieved by the existing methods – see Tab. 1. As 

the task that needs to be handled by the new method is a typical classification problem, and 

as the data the method shall work with is time series data, a feature-based classification 

methodology is the most reasonable choice for the foundation of the new method. 
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3 Data sources 

3.1 Case study 

The (Plus-)Plus-Energy Office High-Rise Building is located near the center of Vienna. It is 

owned by the Austrian federal real estate company Bundesimmobiliengesellschaft (BIG) and 

used by TU Wien. The high-rise building is part of a building complex from the 1970s that was 

refurbished between 2012 and 2014 – see Fig. 9 for photographs of the building before and 

after the refurbishment. 

 
Fig. 9: Case study building "(Plus-)Plus-Energy Office High-Rise Building" before and after the refurbishment. 

The building complex consists of several parts with different usages, the main parts being: 

(i) offices, (ii) lecture halls, (iii) library, and (iv) event hall. The term “(Plus-)Plus-Energy Office 

High-Rise Building” only refers to the office part of the building complex [36]. The office part is 

designed as a net zero energy building. This means the building’s annual electricity and heat 

production on site is at least equal to the annual energy consumption of the building. The 

building was equipped with an extensive building energy monitoring system to substantiate 

whether the planned building performance could be achieved in reality and to aid with the 

commissioning of the building [37]. 

During the commissioning of the energy monitoring system itself, several errors were found in 

the system. As described in section 1.1, these errors were the main motivation for the 

development of the method presented in this thesis. Moreover, the energy monitoring system 

provided the necessary data for the development and validation of the method. 

For better readability, the (Plus-)Plus-Energy Office High-Rise Building is referred to as “case 

study” in the following sections of this work. 

Fig. 10 gives an overview of the case study’s energy monitoring system. It illustrates the 

different components of the system and how they are connected to each other. 
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Fig. 10: Scheme of the case study's energy monitoring system. 

As shown in Fig. 10, the energy monitoring system is interconnected with the building 

management system. Most of the collected data comes from energy meters but also selected 

data from the single room controllers, the automation stations, the weather station, and the 

inverters of the photovoltaic (PV) plant is collected. All components are connected to the 

building management system, which receives their data and then transfers it to the MS-SQL 

database. 

Including the integrated energy meters of the photovoltaic plant inverters, the total number of 

energy meters amounts to 150. Tab. 2 shows this number broken down. 

Tab. 2: Overview of the case study’s energy meters. 

number type of energy meter 

28 heat meters with one counter 
4 heat meters with two separate counters 
96 electricity meters with one counter 
3 electricity meters with two separate counters 
19 electricity meters with one counter integrated into the inverters 

 

Each of the 150 energy meters provides at least the counter value and the instantaneous 

power value of the measured energy. Some of the electricity meters also provide information 

about the instantaneous current values. Only four electricity meters are more advanced meters 

that offer detailed information about each of the measured phases. Those four are also the 

only meters that record information about the measured instantaneous voltage values. All 

measurement values that are used by the heat to calculate the counter value and the 

instantaneous power value internally are recorded, i.e., volume flow, volume count, flow 

temperature, and return temperature. 

The total sum of the data points that originate from the electricity meters and heat meters is 

537. Further 1,159 data points originate from other sources in the building, e.g., the single 

room controllers or the weather station. All data points are recorded in a 5 min time resolution. 
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Not considering gaps in the data, the 537 data points from the electricity and heat meters 

deliver 154,656 daily measurement values. 

Fig. 11 illustrates the quantitative quality of the energy monitoring data by displaying the 

number of daily measurement values from the electricity and heat meters over time. Especially 

during 2015, 2016, but also 2017, there are several larger gaps in the data. Most of them were 

caused by software updates and bugfixes of the building management system. The building 

management system sometimes failed to reconnect to the MS-SQL database automatically. 

After 2017 there was only one larger gap in 2019. Some of the energy monitoring’s data points 

were added in the first quarter of 2017, which is indicated by the slightly less saturated daily 

values before that. As the monitoring data of 2020 and 2021 is not processed yet, the heatmap 

ends at the beginning of 2020. 

 
Fig. 11: Heatmap depicting the quantitative quality of the case study energy monitoring data. 

Fig. 12 depicts the energy meter hierarchy of the case study’s energy monitoring system. It 

shows the energy meters of each hierarchy level and their main meter-submeter relations. 

Meters that have two separate counters are displayed as two separate meters, e.g., the eight 

meters in the category “heat meters (heating & cooling)” are actually only four real meters. 

The electricity meters on hierarchy level 1 that are connected to the PV supply are the 

integrated meters of the PV inverters. Thus, they are not consumers but suppliers whose 

combined electricity supply is metered by the “PV supply” meter on hierarchy level 0. All other 

electricity meters on hierarchy level 1 are supplied by three sources: the main supply, the 

emergency supply, and the PV supply. As the PV supply simply reduces the supply from the 

other two sources, its connections to the consumer electricity meters on level 1 are neither 

displayed nor considered a real main meter-submeter relation. 

The connections between the server waste heat recovery and the cooling and heating systems 

are not displayed as well, and they are also not considered real main meter-submeter relations. 

This is because the server waste heat recovery simply reduces the cooling consumption of the 

server room while simultaneously reducing the heating consumption of the underfloor heating. 
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Fig. 12: Network graph depicting the case study’s energy meter hierarchy. 

A more detailed depiction of the energy meter hierarchy can be found in appendix A. There 

the energy meters are labeled with their short designation, indicating the measured energy 

consumers or energy supply. 

Fig. 13 illustrates selected statistical data of the load profiles that are measured by the case 

study’s energy meters: (i) the mean and (ii) the relation of the standard deviation to the mean, 

the coefficient of variation (COV). While the mean indicates the magnitudes of the energy flows 

measured by the meters, the COV shows the extent of the variability of these energy flows.  

The data is differentiated according to a meter’s level in the hierarchy and according to the 

meter type – electricity meter or heat meter. 19 meters which did not measure consumption at 

all, i.e., have a mean load of 0 W, are not shown in the figure. 

Fig. 13 shows that the higher the mean load, the smaller the COV. Energy meters on a higher 

hierarchy level measure higher mean load, as is to be expected because they are often the 

superior meters of meters with a lower level. The graph indicates that the mean loads of the 

meters on hierarchy levels 1 to 3 span over several magnitudes: from near zero (less than 

10 W) up to more than 10 kW. For the case of the meters on level 3, the measured maximum 

mean load is approximately 15 kW; for the meters on level 2, approximately 50 kW; and for 

meters on level 1, approximately 130 kW. 
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Fig. 13: Illustration of the statistical data (mean load and coefficient of variation) of the load profiles measured by 

the case study’s energy meters. Basis for the graph: the monitoring data of 2018 in 5 min time resolution; load 
profiles calculated out of the first order difference-quotient of the counter values. 

Compared to electricity meters, heat meters show a trend to load profiles with higher mean 

loads and higher COV values. This can be explained by the case study building having less 

submetering for heat meters than for electricity meters, e.g., only one meter measures the 

entire heat consumption of floors 5 to 10. In contrast, in the case of the electricity meters, each 

floor is metered separately.  The reason for the higher COV values is the relatively low counter 

resolution of the installed heat meters. Given the case study data with a time resolution of 

5 min, this often leads to load profiles that jump between few values, in the worst case, only 

between zero and one other value. This issue can also be observed in the load profiles of 

some electricity meters, which leads to elevated COV values. 

Another reason for high COV values is that often meters feature low to no consumption but 

regularly measure sudden spikes in the consumption. For example, the load profiles of the 

case study’s electrical under-counter water boilers in the accessible toilets showed such 

characteristics. 

Meters with a COV below 0.1 measured a practically constant consumption with less than ten 

noticeable spikes with a duration below 5 min during the whole year. 
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3.2 Synthetically generated data 

To ensure that the method that is developed in this thesis does work on data besides the 

monitoring data from the case study, another data source is needed for its validation. As the 

method shall work with real monitoring data, the second data source should be real monitoring 

data or at least replicate the attributes of real monitoring data. 

The open data platform “Open Power System Data” offers the data package “Household Data” 

(OPSD household data), which encompasses real energy monitoring data from 68 electricity 

meters in a time resolution of 1 min. This data is one of the outputs of the EU research project 

“CoSSMic” (Collaborating Smart Solar-Powered Microgrids)” that was conducted between 

2013 and 2016 [38]. 

Tab. 3: Overview of the 68 electricity meters included in the “OPSD household data” dataset. 

category description code 
industrial public residential 

i1 i2 i3 p1 p2 r1 r2 r3 r4 r5 r6 

supply 

battery s_b   X                   
public grid s_g X X X X X X X X X X X 

photovoltaic plant 
s_pv1 X X X     X   X X   X 
s_pv2 X   X                 

export public grid e_g               X X   X 

consumption 

battery charging c_b   X                   
circulation pump c_cip             X X     X 
cooling aggregate c_coa     X                 
compressor c_com     X                 
cooling pumps c_cop     X                 
dishwasher c_d     X     X X X X X X 
electrical vehicle c_ev     X           X     
freezer c_f           X X X X   X 
heat pump c_hp           X     X     

industrial or research machine 

c_m1     X                 
c_m2     X                 
c_m3     X                 
c_m4     X                 
c_m5     X                 

several smaller loads in an office area c_o     X                 

several smaller loads in a room 

c_r1     X                 
c_r2     X                 
c_r3     X                 
c_r4     X                 

refrigerator c_ref     X         X X X   
ventilation c_v     X                 
washing machine c_wm           X X X X X X 

 

Tab. 3 gives an overview of the 68 electricity meters that are included in the OPSD household 

data dataset. Even though the dataset is labeled “household”, it also includes the monitoring 

data from industrial and public buildings. Regardless of the type of building, from each building, 

there is at least data from the main electricity meter that counts the electricity that is supplied 

by the public grid. From seven buildings, there is also data from the energy meter for each 
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building’s PV plant. The industrial building “i3” is monitored in detail – there is data from 20 

electricity meters that measured different rooms, machines, and system components in the 

building. In the case of the residential buildings, most of the meters measured the electricity 

consumption of typical household appliances, e.g., dishwashers and washing machines. 

For each of the electricity meters, there is only one time series, namely the time series of the 

electricity that was consumed within the 1 min time interval – basically the first difference 

quotient of an electricity counter value. In the case of the 20 electricity meters of the industrial 

building “i3”, the total number of daily measurement values amounts to 28.800 – given that 

there are no data gaps during the day. As each of the public buildings only has one meter, the 

expected number of daily measurement values amounts to 1.440 for each building. 

 
Fig. 14: Heatmap depicting the quantitative quality of the “OPSD household data” dataset. 

Fig. 14 illustrates the quantity of available data points as the number of daily measurement 

values from the electricity meters over time. It also shows the time span during which the data 

was collected in each of the buildings. The almost constant shading of the industrial buildings 

i1-i3 and the residential buildings r1-r6 indicates that there were practically no gaps during the 

investigated time spans. On the other hand, the public buildings p1 and p2 had several gaps, 

at least during some of the days. 

Since the OPSD household data lacks hierarchical levels and instead of electricity counter 

values and instantaneous power values, it only offers the first difference quotient of an 

electricity counter value, the data cannot be used directly for the validation of the method. The 

OPSD household data was therefore subjected to a transformation process to generate 

synthetical data that fits the following criteria: 

• The time resolution of the data should be the same as the time resolution of the case 

study data, namely 5 min. Time resolutions with larger time intervals can be calculated 

out of the 5 min data later. 

• Time series data of counter values and the instantaneous power values of the meter 

should be available for every meter. 
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• The underlying load profiles that are used to calculate the counter values and 

instantaneous power values of each meter shall have a realistic course. This means 

they must not be a series of randomly sampled values. 

• There should be as least as many energy meters as there are in the case study. 

• The energy meters shall be distributed over the same number of hierarchical levels as 

in the case study. This shall be done in a realistic way, i.e., energy meters that count a 

large consumption should not be placed on levels where there would usually only be 

small consumers. 

The generation of synthetical data is conducted in two parts: (i) random synthetic load profiles 

are created, and (ii) a random energy meter hierarchy is generated. Fig. 15 illustrates the first 

part and Fig. 16 the second one. 

As shown in Fig. 15, the first step is the preprocessing of time series data of the original OPSD 

household data. Within this step, outliers are removed, small gaps with one missing value are 

filled by linear interpolation, and larger gaps are filled with the last value before the gap. At the 

end of the preprocessing, the data of each building is stored in a separate data frame. The 

second step is the random selection of one of the building data frames, from which a time 

series (load profile) is then randomly selected in the third step. Within the fourth step, it is 

randomly decided whether the time series order of the load profile is to be reversed or not. The 

resulting load profiles are then used in the fifth step to create synthetic load profiles with a time 

span of one year. 

Fig. 15 shows that there are two options to create the synthetic load profiles in the last step. 

For the first option, whole days of the load profile that is available after step 4 are selected at 

random and then strung together to form a combined new synthetic load profile. With this 

option, it is ensured that the daily cycle of the load profile is not lost, and therefore the synthetic 

load profile has a realistic course. 

In the case of the second option, time slots with a random length of between 20 min and a 

whole day are selected at random and then strung together to form a combined new synthetic 

load profile. The idea behind this option is to add more randomness while keeping the local 

structure of the selected time slots intact. 

Steps 2 to 5 are then repeated 300 times to generate 300 random synthetic load profiles with 

a time span of a whole year and a time resolution of 1 min. 150 of those profiles are created 

according to option 1 and the other 150 according to option 2. 
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Fig. 15: Steps of the process to generate 300 random synthetic load profiles. 
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This pool of 300 random synthetic load profiles is then used as the basis for the process of the 

generation of a random energy meter hierarchy – see Fig. 16. First, each profile is assumed 

to be the load profile that is measured by an electricity meter – neglecting that there might be 

measurement errors and further inaccuracies. As the origin of the load profiles is real electricity 

meters, the data was already affected by measurement errors and inaccuracies. The fact that 

the synthetic load profiles have a time resolution of 1 min while the goal is to generate data 

with a time resolution of 5 min is exploited for the calculation of the 5 min time series data that 

meters would measure: 

• For the calculation of the time series of one meter’s instantaneous power values, the 

values of the 1 min synthetic load profile at the 5 min time interval are extracted. Thus, 

these values are indeed the instantaneous values of the load profile. 

• For the calculation of the time series of one meter’s counter values, the 1 min synthetic 

load profile is cumulated, and out of this cumulated profile, the values at the 5 min time 

interval are extracted. If the first-order difference quotient were to be calculated out of 

these counter values, the resulting time series would equal the average power values 

that occurred between the 5 min time intervals. Thus, this time series is slightly different 

than the time series of the instantaneous power values – generally, it is less volatile. 

At the end of the first step, for each of the 300 random synthetic load profiles, there is a virtual 

energy meter (electricity meter) featuring time series data of a counter and instantaneous 

power values for a time span of one whole year with a time resolution of 5 min. 

In the second step, the virtual energy meters are sorted into three groups according to their 

mean loads: (i) a mean load below 15 kW, (ii) a mean load between 15 kW and 50 kW, and 

(iii) a mean load above 50 kW. These limits were chosen according to the maximum mean 

loads in the different hierarchy levels of the case study meters, as they can be observed in Fig. 

13. Those observations also influenced the assignment of the load profiles to the hierarchy 

levels of the random energy meter hierarchy, as depicted in Fig. 16 in the third step: load 

profiles with mean loads above 50 kW were only assigned to hierarchy level 1, load profiles 

between 15 kW and 50 kW to hierarchy level 1 and 2, and load profiles below 15 kW were 

assigned to all three hierarchy levels. 
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Fig. 16: Steps of the process to generate a random energy meter hierarchy. 

The structure of the case study’s energy meter hierarchy (see the network graph in Fig. 12) 

was used as a role model for the random grouping in steps 4 to 6, shown in Fig. 16. For each 

of the hierarchy levels of the case study meter hierarchy, the maximum number of meters that 
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share the same main meter was determined. This value times two and then rounded to a 

multiple of five was then used as the maximum random group size for the random grouping in 

the random energy meter hierarchy: 

• In step 4, the virtual energy meters assigned to hierarchy level 3 were randomly 

grouped in groups of 1 to 25 meters. By adding up the time series of the counter values 

and instantaneous power values of the meters in each group, the counter values and 

instantaneous power values of a virtual energy meter on hierarchy level 2 were created. 

• In step 5, the virtual energy meters assigned to hierarchy level 2 were randomly 

grouped in groups of 1 to 30 meters. By adding up the time series of the counter values 

and instantaneous power values of the meters in each group, the counter values and 

instantaneous power values of a virtual energy meter on hierarchy level 1 were created. 

• In step, 6 the virtual energy meters assigned to hierarchy level 1 were randomly 

grouped in groups of 1 to 50 meters. By adding up the time series of the counter values 

and instantaneous power values of the meters in each group, the counter values and 

instantaneous power values of a virtual energy meter on hierarchy level 0 were created. 

At the end of the process of generating a random energy meter hierarchy, there are 322 virtual 

meters that are arranged in the random structure depicted in the network graph in Fig. 17. 

 
Fig. 17: Network graph depicting the randomly generated energy meter hierarchy. 
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Since the OPSD household data only consists of electricity meters, the virtual energy meters 

are all electricity meters as well. There are approximately twice as many virtual energy meters 

in this random hierarchy than there are real energy meters in the case study hierarchy (see 

Fig. 12). To keep the structure of the random hierarchy simple, it was set up in a way so that 

each virtual energy meter has only one main meter. Further, it was also refrained from 

integrating energy sources into the randomly generated energy meter hierarchy. 

As the process of generating a random energy meter hierarchy uses the characteristics of the 

case study monitoring system as a role model, the characteristics of the synthetic load profiles 

should be like the characteristics of the case study load profiles. 

 
Fig. 18: Comparison of statistical data (mean load and coefficient of variation) of the load profiles measured by 

the case study’s energy meters and the load profiles of the virtual energy meters in the randomly generated 
energy meter hierarchy. 

Fig. 18 shows the comparison of the statistical data of the case study’s energy meters and the 

statistical data of the virtual electricity meters, the synthetically generated data. It shows that 

the statistical data of the synthetically generated data fits well within the range that was 

observed in the case study. There is a tendency towards the area in the middle – there are no 

virtual electricity meters with a COV below 0.18 and none above 12.5. Since the load profiles 

of the case study’s meters with a COV value below 0.1 showed an almost constant course, 

this area is not of interest for a method that uses data hidden in the course of load profiles to 

infer the meter hierarchy. As in the case study higher COV values were often caused due to 

too low counter resolutions, the area above the points of the synthetically generated data is 

also deemed as negligible for the method developed in this thesis. 
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4 Method 

As stated in section 1.2, the objective of this thesis is the development of a method that uses 

solely the monitoring data of energy meters to evaluate whether a meter is subordinate to 

another meter. Considering the state of the art elaborated in section 2, utilizing a machine 

learning algorithm appeared to be the right choice to tackle the objective. Since determining 

whether a meter is subordinate to another meter is a typical classification problem and because 

the monitoring data is time series data, the development of the method basically follows the 

general workflow for time series data classification as laid out in section 2.4. Fig. 19 shows the 

steps taken to develop the method, the corresponding chapters where the steps are described, 

and how they are related to the general workflow for time series classification. 

 
Fig. 19: Overview of the steps taken to develop the method, the corresponding chapters, and the relation to the 

general workflow for time series classification. 
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As illustrated in Fig. 19, the development of the method partially differs from the general 

workflow for time series classification. Different processes of the workflow extend over several 

development steps: the processes “algorithm selection”, “dimensionality reduction”, 

“classification”, and “model selection”. 

The process “algorithm selection” extends over steps 2 to 8 because the method was initially 

developed to work with a linear classifier: a linear regression of an indicator matrix. Since such 

a linear classifier is relatively easy to comprehend and as its coefficient matrix indicates how 

different input parameters influence the classification, the linear classifier was deemed the right 

choice for the first development steps. After processing the data to be suitable to be used by 

the linear classifier, the data indicated that a tree-based method like a random forest should 

be better suited for the classification task at hand. Thus, the method was then developed to 

work with a random forest classifier. 

The switch to the random forest classifier happened at an early stage of method development. 

As the random forest classifier promised better prediction performance than the linear 

classifier, the linear classifier was not investigated further. Nevertheless, the linear classifier 

influenced the choice of features that were extracted from the time series data. This is 

discussed further in section 4.5 “Feature extraction”. 

Within the 9 steps of the development of the method, there are several challenges that needed 

to be overcome: 

• Determination of the necessary preprocessing of the raw energy data. The data must 

be cleaned of outliers while ensuring that the information hidden in the time series is 

kept intact. 

• Calculation of suitable features that can be used as input for the classifier. Features 

are metadata derived from the meter’s time series data. In the given case, the goal was 

to identify features that indicate the presence or absence of a main meter-submeter 

relation between two energy meters. 

• Identification of strategies for: 

o clustering, 

o splitting the data into training and test data, 

o dimensionality reduction, and 

o the selection of the best classifiers. 

This thesis does not address measurement errors or inaccuracies of the energy meters 

themselves. The method was developed from the point of view of a person, which did not 
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actively participate in the design and installation of the energy monitoring system, but instead 

only received monitoring data from the system. 

4.1 Processed time series data 

The presented method aims at using the information contained in the monitoring data of energy 

meters to assess whether an energy meter is subordinate to another energy meter. This 

section provides an overview of the available time series data that is used as the basis for this 

assessment. 

Regardless of the type of energy meter – heat meter or electricity meter – all of the case study’s 

meters provide time series data of the meter’s counter value and the instantaneous power 

value. Fig. 20 shows an example of the time series data of the counter value. 

 
Fig. 20: Example of a typical time series of counter values of energy meters. 

Provided that the counter of one meter either exclusively records energy consumption or 

energy supply, the curve of the counter value should be a monotonically non-decreasing 

function. Fig. 20 depicts such an expected curve. In the case that the meter is parameterized 

to count in the negative direction, the function should be monotonically non-increasing – i.e., 

the depicted example curve would be mirrored along the x-axis. Deviations from this monotonic 

behavior are usually measurement errors. Only if the counter counts energy flow in both 

directions – consumption and supply – the curve would be not monotonic. 

Fig. 21 shows the time series data of the instantaneous power value of the same meter, whose 

counter value is illustrated in Fig. 20. The curve follows a pattern that indicates daily cycles. 

With the additional knowledge that the first day presented in the figure is a Sunday, it could be 

inferred that the daily cycles might differ from day to day – which is indeed true, as the 

measured consumer is the electricity consumption of one office floor. 
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Fig. 21: Example of a typical time series of instantaneous power values of energy meters. 

The curve shows a base consumption that is never undershot – even during the night. During 

the last three days (Monday, Tuesday, and Wednesday), the curve indicates a consumption 

pattern that would be expected to be found in a typical office: an increase in power 

consumption in the morning, during the day the power oscillates around a plateau, and in the 

afternoon the consumption drops to the base consumption. The spikes indicate larger 

consumers that were switched on for a short period of time, e.g., hotplates in the office kitchen. 

As the instantaneous power values are the values that were recorded during the time interval 

of the monitoring system (in this case, it is a 5 min interval), the connecting lines between the 

measured values are just an approximation. In between the measurement time interval, the 

load profile could be very different. Therefore, the curve of the measured instantaneous power 

values should be considered an approximation of the true load profile. 

Another approximation of the true load profile, which is at least true to the total energy that was 

consumed between two measurement points, is the first-order difference quotient of the time 

series of the counter values. Fig. 22 shows the first-order difference quotient of the curve of 

Fig. 20 atop the curve of Fig. 21. The first-order difference quotient curve basically follows the 

same course, but it appears smoother; the spikes are generally smaller. 

 

Fig. 22: Comparison of the time series of instantaneous power values and the timeseries of the first-order 
difference quotient of the counter values – both are approximations of the real load profile. 
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The two approximations of the load profile illustrated in Fig. 22 – one calculated out of the 

counter values and one being the measured instantaneous power values – are the two data 

sources that are utilized by the method. 

Since the energy measured by one meter must also pass through a superior meter, changes 

of the load profile should also be observable in the load profile of the superior meter. The 

search for similarities in the changes of load profiles is the main principle of the developed 

method. Thus, it is evident that the method will struggle to determine the superior meter for the 

case that subordinate meters measure load profiles without notable changes. Moreover, 

measurement errors or the consumption of other consumers, which are supplied by the same 

superior meter, also pose a challenge for the search for similarities. 

As the data provided by energy meters might vary, e.g., not include time series data of the 

instantaneous power values or not be in the time resolution of 5 min, other common cases are 

considered. This is done by resampling the available 5 min time series data to time resolutions 

with a larger interval. Tab. 4 gives an overview of the different cases and time resolutions that 

were evaluated. 

Tab. 4: Overview of the evaluated cases. 

utilized data sources time resolution of the training data 

counter values and 
instantaneous power values 

5 min 
10 min 
15 min 
30 min 
60 min 

only counter values 

5 min 
10 min 
15 min 
30 min 
60 min 

 

Almost all features are calculated for both the load profile derived from the counter values as 

well as the curve of the measured instantaneous power values. To highlight the underlying 

data source used for the feature calculation, the following codes are used as tokens and 

prefixes in this work: 

• c_d1 – The curve of the first-order difference quotient of the counter values of an 

energy meter: the load profile in W. 

• c_d2 – The curve of the second-order difference quotient of the counter values of an 

energy meter: the changes of the load profile in W/(5 min). 

• p_m – The curve of the measured instantaneous power values: the approximation of 

the load profile in W. 
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• p_d1 – The curve of the first-order difference quotient of the measured instantaneous 

power values: the changes of the approximation of the load profile in W/(5 min). 

As later described in section 4.5.2, a filter was applied to c_d2 and p_d1, which is indicated by 

extending the prefix by the letter “t”: 

• c_d2t – The curve of the second-order difference quotient of the counter values of an 

energy meter after applying a filter: the changes of the load profile in W/(5 min) after 

applying a filter. 

• p_d1t – The curve of the first-order difference quotient of the measured instantaneous 

power values after applying a filter: the changes of the approximation of the load profile 

in W/(5 min) after applying a filter. 

4.2 Preprocessing 

Before the time series data can be used for time series classification, the data must be 

preprocessed. Irregularities and obvious measurement errors must be eliminated without 

compromising information deducted from load profile change information. 

 
Fig. 23: Time series of the counter values of the case study’s main electricity energy meter illustrating the typical 

errors and occurrences. 

Fig. 23 illustrates three of the issues that were encountered in the raw time series data of some 

energy meters: 

• Sudden jumps to zero: The counter value suddenly dropped to zero for one or more 

consecutive points in time and then continued its course. This could be attributed to 

communication issues between the meters and the building management system. 

• Counter overflows: The counter value dropped from a value just under 1.000 MWh to 

almost zero and started continuously increasing again from the new level. Such a 

counter overflow is a common occurrence that happens when the maximum value of 
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the meter’s counter is exceeded. In the case of the monitoring data of the case study, 

up until the beginning of 2020, counter overflows have only been observed in the 

electricity meters that measure the main supply and the meter that measures the entire 

PV supply. 

• Backward counts: As practically all the meters only count consumption or supply, their 

counter values should show monotonically non-decreasing or non-increasing curves. 

Sometimes the curves deviate from this behavior – the counter counted in the other 

direction. It is suspected that these occurrences were due to measurement 

inaccuracies or communication issues between the meters and the building 

management system. 

Another issue that can be observed in Fig. 23 is the gaps in the curves. These data gaps were 

already discussed in section 3. Since the method is developed to operate with information 

hidden in the changes of the load profiles, gaps are not an obstacle if there is enough time 

series data that can provide the needed information. 

For the jumps to zero and the backward counts, the solution is to set the values of the affected 

data points to “NaN” and thus create artificial gaps. 

The solution for the counter overflows is to shift all data points after an overflow by 1.000 MWh. 

When a counter had multiple overflows, the data points past those overflows are subject to 

multiple shifts. 

Fig. 24 shows the same time series that is illustrated in Fig. 23 after correcting the discussed 

issues: Counter overflows were corrected by shifts, and the jumps to zero and backward counts 

were cut out of the data creating artificial gaps. 

 
Fig. 24: Time series of the counter values of the case study’s main electricity energy meter after the 

preprocessing. 
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The solutions presented in this section were applied to the entire available time series of the 

counter values of all energy meters. The analysis of the instantaneous power values showed 

that there are no obvious outliers. If there are some errors within the values, they seem to be 

within the range of the usual values. All the algorithms and data manipulations that are 

described in the following sections were only applied to data from specifically selected time 

slots. 

4.3 Selection of training data 

Updates, bugfixes, and the resulting communication issues during the first years of the case 

study’s energy monitoring were the main reasons for the gaps in the energy monitoring data. 

Only after the final updates in the fall of 2017 the energy monitoring system operated 

continuously without larger errors. In the data of the year 2018, there are basically no gaps. 

Thus, this year was reserved as the source for the first part of the validation of the method – 

see section 5.2. Five consecutive weeks of 2017 without data gaps were selected as the 

source for the training data for the classifier development. Fig. 25 highlights both selected time 

slots. 

 
Fig. 25: Heatmap depicting the quantitative quality of the case study monitoring data and the time slot which was 

deemed suitable for training of classifiers. 

4.4 Smoothing 

Several misclassifications indicated that the low resolution of some meters – mainly heat 

meters – were the reason for the misclassifications. To cope with that, a gaussian filter was 

used on the load profiles, which were calculated as the first-order difference quotient of the 

counter values. After analyzing all load profiles, a simple ruleset was set up to decide whether 

a load profile needs smoothing or not. 

For the first step, the load profiles were manually clustered into two groups: One group with 

low-resolution load profiles that need additional smoothing and a second group where 

smoothing is unnecessary. 
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In the next step, for each load profile, the changes of the load profile – the second-order 

difference quotient of the counter values – were calculated, and then the following metadata 

was derived: 

• c_d1_unique: Number of unique values occurring in the load profile. 

• c_d2_all: Number of all data points of the changes of the load profile. 

• c_d2_jumps: Number of jumps of the changes of the load profile. In this case, a jump 

is the occurrence of a change of the load profile where the next following data point 

indicates a change of identical magnitude but in the other direction. 

• c_d2_zero: Number of data points of the changes of the load profile that have a value 

of zero. 

• c_d2_relation_to_std: The difference between the maximum value of the changes of 

the load profile and the minimum value of the changes of the load profile in relation to 

the standard deviation of the changes of the load profile. 

Finally, by analyzing the metadata of the two groups, the ruleset, which is depicted as the 

decision tree in Fig. 26, was developed. This ruleset was applied to all load profiles derived 

from the counter values. The load profiles which were put into the group “smoothing necessary” 

were then smoothed by a Gaussian filter with a sigma of 3. 

 
Fig. 26: Decision tree for determining whether smoothing is necessary or not. 

In all following steps of the method, the smoothed load profiles were treated the same way as 

the unaltered load profiles from meters where no smoothing was necessary. The smoothed 

load profiles replaced the according original load profiles, and thus, their features 

(characterization indicators) were calculated out of the smoothed profiles. 
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4.5 Feature extraction 

As the classifier cannot process the energy meter’s time series data directly, suitable metadata 

must be derived from the time series data. The derived metadata can be seen as 

characterization indicators. One single indicator is commonly referred to as “feature” and 

several indicators as “features.” 

The energy monitoring data of the case study contains data of 150 energy meters. As seven 

energy meters feature two counters, the data from the counters are stored in 157 data points. 

The data from the instantaneous power values measured by the meters are stored in 150 data 

points. 

Assuming that there is no further information except which measured instantaneous power 

values relate to which energy counter, the 157 counters with their corresponding instantaneous 

power values can be viewed as 157 individual energy meters where seven pairs of them have 

identical instantaneous power values. 

There are 157 x 156 = 24,492 possibilities to combine these 157 energy meters. Each of these 

combinations represents a situation where one energy meter is assumed to be the superior 

main meter and the second one is assumed to be the subordinate submeter. 

For all these possible 24,492 combinations, the features described in the following subchapters 

are calculated for both the load profiles derived from the energy counters as well as the load 

profiles approximated by the measured instantaneous values. 

In this thesis, the general workflow for selecting the features is to first calculate several different 

features that might somehow reflect whether there is a main meter-submeter relation and 

subsequently reduce the number of features by step-wise backward selection. This diminishes 

the need for a detailed analysis per feature, as it can be assumed that features that do not 

carry relevant information for the classification are filtered out automatically. 

4.5.1 Features derived from the load profiles 

As first step for the identification and decision on features, the cases that shall be separated 

are compared. Since the classification problem is a binary one, there are two cases: (i) the 

case where there is a real main meter-submeter relation, and (ii) the case where there is no 

main meter-submeter relation. Examples for both cases are illustrated in Fig. 27 and Fig. 28. 

Fig. 27 shows the load profiles of two energy meters where there is indeed a main meter-

submeter relationship. The load profile of the main meter is always larger than the profile of 

the submeter. The difference between those profiles is energy that is consumed by other 

consumers – possibly metered by other submeters or unmetered. 
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Fig. 27: Load profiles of two meters where there is a real main meter-submeter relation between both meters. 

Changes in the load profile of the submeter can also be seen in the profile of the main meter, 

but the changes do not perfectly match. Measurement inaccuracies and errors aside, the other 

consumers are the reason for this mismatch. Spikes in the profile of the main meter, which are 

not visible in the profile of the submeter, are caused by the other consumers. Moreover, spikes 

in the profile of the submeter, which are not visible in the profile of the main meter, are hidden 

due to a drop in energy consumption of other consumers that occurred at the same moment. 

Fig. 28 depicts the load profiles of two energy meters with no main meter-submeter 

relationship. There is no restriction regarding the level of the load profile – for any given point 

in time, any profile can be larger than the other profile. There are also no similarities in the 

changes of the profiles of both meters, or similarities are coincidental and possibly caused by 

other causal connections, e.g., similar time schedules of the consumers. 

 
Fig. 28: Load profiles of two meters where there is no main meter-submeter relation between meter 1 and 2. 

Following the observation that the load profile of the main meter should generally be larger 

than the load profile of the submeter, the first feature was defined as follows: The relation of 

the means of the load profiles, expressed by the symbol 𝑟𝑝𝑜𝑠 or the code profile_relation. With 

the load profile of the assumed main meter as 𝑓𝑚𝑚 and the profile of the assumed submeter 

as 𝑓𝑠𝑚, the feature is calculated as shown in (1). 

 𝑟𝑝𝑜𝑠 = |𝑓𝑚𝑚(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅||𝑓𝑠𝑚(𝑡)̅̅ ̅̅ ̅̅ ̅̅ |  (1) 
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When the assumed submeter is indeed a submeter of the assumed main meter, this indicator 

should yield values above 1. Values below 1 are usually a strong argument against the 

suspected main meter-submeter relation, except for when energy is supplied to the main meter 

via another source parallel to the submeter. As such cases are uncommon in single buildings, 

no special routines were developed to handle those cases. 

The means’ absolute values are used to account for the possibility that an energy meter might 

count in the negative direction. This alteration will affect the meaningfulness of 𝑟𝑝𝑜𝑠 only for the 

case that a submeter counts energy supply while the main meter predominantly counts 

consumption. But since such a submeter could theoretically be subordinate to every other 

meter, the information lost due to the alteration is deemed negligible. 

The basis for the second feature is the curve of the differences of the load profiles 𝑓𝑚𝑚 − 𝑓𝑠𝑚. 

Fig. 29 depicts an example of how such a difference profile could look like when the load 

profiles are not related and have a similar magnitude but a different course. 

 
Fig. 29: The difference profile calculated by subtracting the load profile of the suspected submeter from the load 

profile of the suspected main meter. 

The second feature, 𝑟𝑛𝑒𝑔 or profile_relation_neg, is calculated as the sum of the negative 

profile differences to the sum of all profile differences. The simplified formula for this calculation 

is shown in (2) and the corresponding formula featuring 𝑓𝑚𝑚 and 𝑓𝑠𝑚 in (3). 

 𝑟𝑛𝑒𝑔 = 𝑁𝐷𝑃𝐷 + 𝑁𝐷 (2) 

 

 𝑟𝑛𝑒𝑔 = 12∑ |𝑓𝑚𝑚(𝑡) − 𝑓𝑠𝑚(𝑡)| − 𝑓𝑚𝑚(𝑡) + 𝑓𝑠𝑚(𝑡)𝑛𝑡=0 ∑ |𝑓𝑚𝑚(𝑡) − 𝑓𝑠𝑚(𝑡)|𝑛𝑡=0  (3) 

 

For correctly identified submeters, this feature should yield the value 0 or – to account for 

measurement inaccuracies – values slightly above 0. Values significantly above 0 are usually 

a strong argument against the suspected main meter-submeter relation. 

In the case that there is a submeter that counts in the negative direction, the curves of 𝑓𝑚𝑚 

and 𝑓𝑠𝑚 are interchanged to be also applicable for the case of two meters counting in the 
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negative direction. This alteration impacts the case where a submeter counts energy supply 

while the main meter predominantly counts consumption so that the calculated value will 

always be exactly 1. 

4.5.2 Features derived from the changes of the load profiles 

Similar load change behavior is a strong indication of a main meter-submeter relationship. 

When calculating the time series of the changes of the load profiles that were depicted in Fig. 

27, the result is the curves shown in Fig. 30. 

 
Fig. 30: The changes of the load profiles of two energy meters displayed over time. 

Given that a main meter meters the only source of supply of the consumers that are metered 

by a submeter, every load change of the submeter’s load should result in a similar load change 

of the main meter. As a main meter will most certainly register several submeters and 

consumers, the change of load in the main meter will be distorted. Moreover, distortions will 

also be caused by measurement uncertainties. 

For cases with only minor distortions, it is possible to see a linear relationship between the 

load change of both meters, and the Pearson correlation coefficient should reflect this 

relationship.  For the calculation of the Pearson correlation coefficient, the pre-defined function 

“pandas.DataFrame.corr” of the Python package “Pandas 1.0.1” [39] was used. This function 

was also utilized to calculate the Kendall tau rank correlation coefficient and the Spearman’s 

rank correlation coefficient. 

The mentioned three correlation coefficients are chosen as features. The symbols and code 

used to refer to them in this thesis are: 

• Pearson correlation coefficient: symbol 𝜌, code pearson 

• Kendall correlation coefficient: symbol 𝜏, code kendall 

• Spearman correlation coefficient: symbol 𝑟𝑠, code spearman 
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In cases where there is indeed a main meter-submeter with only minor distortions, all three 

features should tend towards a value of 1. For all other cases, these features are expected to 

tend towards a value of 0. 

Further features are computed after applying an ordinary least squares regression on the 

scatterplot of the changes of the load profile of the assumed main meter against the changes 

of the load profile of the assumed submeter. If a meter is really a subordinate of another meter 

and its profile is distinctive enough, the ordinary least squares regression should yield an 

intercept of approximately 0 and a slope near 1. Fig. 31 depicts two examples calculated with 

the case study’s monitoring data: On the left side, a case where there is no relationship 

between the two analyzed meters, and on the right side, a case where there is indeed the main 

meter-submeter relationship. 

 
Fig. 31: Load profile change behavior of two energy meters displayed as scatterplots. Left: Exemplary with no 
submeter-main meter relation between meter 1 and 2. Right: Exemplary case with a real main meter-submeter 

relation between the two analyzed energy meters. 

As indicated by the metrics of the example displayed in Fig. 31, in both cases, the 𝑅2 value 

and the intercept value of approximately 0 do not seem to carry much information regarding 

the main meter-submeter relationship. Nevertheless, their values might still be relevant when 

combining them with other indicators. 

From the least squares regression, the metrics 𝑅2, slope, and intercept are then chosen as 

features. The symbols and code used to refer to those three features in this thesis are: 

• 𝑅2: symbol 𝑅2, code r_squared 

• slope: symbol 𝛽, code slope 

• intercept: symbol 𝜀, code intercept 
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To emphasize the impact of situations where the assumed submeter had a large load profile 

change, the data points that portray the large change and the corresponding value of the load 

profile change of the assumed main meter were filtered out and each stitched together to form 

sequences of peaks. To be registered by the filter, the change in the load profile of the 

submeter has to exceed a certain threshold. This threshold was defined as a quarter of the 

difference between the maximum value and the minimum value of the curve of the submeter’s 

changes of the load profile. Fig. 32 shows the changes of the load profiles of an exemplary 

case of a real main meter-submeter relationship with the depiction of the corresponding 

submeter thresholds. Circles highlight the data points where the submeter values are outside 

the thresholds. 

 
Fig. 32: The changes of the load profiles of two energy meters displayed over time including the depiction of the 

thresholds. 

Fig. 33 shows the resulting sequences after stitching together the data points that were outside 

the thresholds. Note that the curve is based on the data points of a 5-week time slot and not 

just the 16-hour time slot displayed in Fig. 32. 

 
Fig. 33: The changes of the load profiles of two energy meters displayed over time after applying the threshold-

filter. 

This filter is the one that was already mentioned at the beginning of this chapter. When it is 

applied to the c_d2 data source, the code for the filtered data is c_d2t, and when it is applied 

to the p_d1 data source, the code for the filtered data is c_d1t. 
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In the same way, as with the unfiltered data, the curves of the load profiles of two energy 

meters are plotted against each other, and an ordinary linear regression is applied. Fig. 34 

depicts the same examples as those shown in Fig. 31, but this time after applying the filter: On 

the left side, the case where there is no relationship between the two analyzed meters, and on 

the right side, the case where there is indeed the main meter-submeter relationship. The gap 

in the middle of both examples clearly shows the impact of the threshold filter. 

 
Fig. 34: Load profile change behavior of two energy meters after applying the threshold-filter displayed as 
scatterplots. Left: Exemplary case with no submeter-main meter relation between meter 1 and 2. Right: 

Exemplary case with a real main meter-submeter relation between the two energy meters. 

Besides the metrics from the ordinary least squares regression, 𝑅2, slope, and intercept, there 

are two additional features that are calculated out of the filtered data: 

• The number of data points with submeter values exceeding the submeter thresholds: 

symbol 𝑛𝑠𝑚, code sum_sm 

• The number of data points with submeter values exceeding the submeter thresholds 

with main meter values unequal to zero: symbol 𝑛𝑚𝑚, code sum_mm 

The sum_sm value provides a measure of the volatility of load profile changes of the assumed 

submeter. In combination with sum_mm, it can give an indication of the main meter-submeter 

relationship: The difference between sum_mm and sum_sm yields the number of 

occurrences where the load profile of the assumed main meter showed no change while the 

assumed submeter showed a change that was larger than the threshold. Therefore, a high 

difference could be an argument against the main meter-submeter relation. 
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4.5.3 Overview over the primary features 

In this section, all previously discussed features are presented together in Tab. 5. The “x” 

entries in the table mark the data sources used for the calculation of the respective feature. 

The code of the data source is used as a prefix together with the code of the feature, e.g., 

c_d2_spearman refers to the Spearman correlation coefficient calculated out of the second-

order difference quotient of the counter values. 

The 32 features presented in the table are the primary features. Further features that can be 

derived from those primary features are presented in section 4.5.4. 

Tab. 5: Overview of the primary features and the data sources which were used to calculate the features 

features data source of the profiles which were used to calculate the features 

short description symbol code 

counter values instantaneous power values 

first-order 
difference 
quotient 

second-
order 

difference 
quotient 

second-
order 

difference 
quotient 

with 
threshold 

measure- 
ment 

first-order 
difference 
quotient 

first-order 
difference 
quotient 

with 
threshold 

c_d1 c_d2 c_d2t p_m p_d1 p_d1t 

relation of the means of 
the profiles fpos profile_relation x     x     

relation of the absolute 
sum of the negative profile 
differences to the entire 
sum of the absolute profile 
differences 

fneg profile_relation_neg x     x     

Pearson correlation 
coefficient ρ pearson   x x   x x 

Kendall correlation 
coefficient τ kendall   x x   x x 

Spearman correlation 
coefficient rs spearman   x x   x x 

results of 
ordinary 
least 
squares 
regression 

coefficient of 
determination R² r_squared   x x   x x 

slope β slope   x x   x x 

intercept ε intercept   x x   x x 

amount of 
data 
points 
where the 
submeter 
values are 
outside of 
the 
submeter 
thresholds 

all data points nsm sum_sm     x     x 

and where the 
main meter 
values were 
not zero 

nmm sum_mm     x     x 
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4.5.4 Features derived from the primary features 

Tab. 6 shows the features derived from the primary features. The table set-up is comparable 

to Tab. 5, with “x” marking the data sources used for the calculation of the respective feature. 

The total number of derived features amounts to 30. The “formula” column provides the 

information on how a derived feature was computed. 

Many of those derived features implement a subtraction of a primary feature from the value 1. 

As the method was initially developed for a linear classifier, these features were intended to 

be used as building blocks for the calculation of interaction values. Because these derived 

features were already computed, they were kept for the training of the random forest classifier. 

Moreover, the derived features are multiplied with the natural logarithm of the number of data 

points with submeter values exceeding the submeter thresholds: ln(𝑛𝑠𝑚). Thereby a feature 

calculated out of many data points carries more weight than a feature calculated out of only a 

few data points. 

Tab. 6: Overview of the features which were derived from the primary features and the data sources which were 
used to calculate the derived features. 

primary feature that the 
derived feature is based 

upon 
formula code 

data source of the profiles which were used to calculate 
the features 

counter values instantaneous power values 

second-
order 

difference 
quotient 

second-
order 

difference 
quotient 

with 
threshold 

first-order 
difference 
quotient 

first-order 
difference 
quotient 

with 
threshold 

c_d2 c_d2t p_d1 p_d1t 

results of 
ordinary least 
squares 
regression 

coefficient of 
determination 
(R²) 

1 - R² r_squared_sub x x x x 

(1 -R²) · ln(nsm) r_squared_sub_ln   x   x 

slope 
|1 - β| deviation_slope_1 x x x x 

|1 - β| · ln(nsm) deviation_slope_1_ln   x   x 

intercept 
divided by the 
standard 
deviation 

|ε / σ| intercept_to_std x x x x 

|ε / σ| · ln(nsm) intercept_to_std_ln   x   x 

amount of 
data points 
where the 
submeter 
values are 
outside of the 
submeter 
thresholds 

all data points 
/ 
and where the 
main meter 
values were 
zero 

nsm - nmm diff_sm_mm   x   x 

(nsm - nmm) · ln(nsm) diff_sm_mm_ln   x   x 

Pearson correlation coefficient (1 - ρ) · ln(nsm) pearson_sub_ln   x   x 

Kendall correlation coefficient (1 - τ) · ln(nsm) kendall_sub_ln   x   x 

Spearman correlation 
coefficient (1 - rs) · ln(nsm) spearman_sub_ln   x   x 

threshold value divided by the 
standard deviation t / σ threshold_to_std   x   x 
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One special feature that does not fit into the design of the overview tables Tab. 5 and Tab. 6 

is the feature with the code smoothed. In this feature, the information, whether the load profile 

of either the assumed main meter or the assumed submeter was smoothed, is encoded as 0 

(false) and 1 (true). 

4.6 Preparations for the training of the classifiers 

4.6.1 Cleaning 

As the method shall be independent of the unit of the provided load profiles and the length of 

the processed time series, the primary features intercept, sum_sm, and sum_mm had to be 

excluded from the following steps. As these features were the basis for the calculation of 

certain derived features, their information is retained, e.g., parts of intercept are retained in its 

standardized versions: intercept_to_std and intercept_to_std_ln. 

With the remaining 24 primary features, the 30 derived features, and the smoothing feature, 

55 features are available for each of the 24,492 possible combinations of two energy meters. 

As the main principle behind most of the calculated features is to compare similarities in the 

changes of the load profiles, not all those combinations have useable information stored in 

their features; e.g., an energy meter, which has an almost constant load profile, could 

theoretically be a submeter of several meters as long as their load profiles never drop below 

the constant value. Or an energy meter, which did not count any consumption at all during the 

analyzed time slot, could be a submeter of any other meter. To deal with that, energy meter 

combinations were excluded from the dataset of possible combinations if they fit at least one 

of the following criteria: 

• The assumed main meter or the assumed submeter counted no consumption at all. 

• The profile of the measured instantaneous power value of the assumed main meter 

was equal to the profile of the measured instantaneous power value of the assumed 

submeter. These combinations were the meters which have two separate counters. 

• Cases where there was no or only one jump of the assumed submeter (sum_sm ≤ 1). 

The reason for that is that several features are derived from the metrics of the least 

squares regression (r_squared, slope, intercept, and all their derivatives). For the 

metrics to be well-defined, the least squares regression requires at least two data 

points. 

• Cases where there was no or only one jump of the assumed main meter while there 

were jumps of the assumed submeter (sum_mm ≤ 1). The reason for that is that such 

occurrences are considered a strong argument against a main meter-submeter 

relation. 
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After applying these criteria, the remaining possible combinations are 17,968. Of these 17,968 

combinations, only 168 are cases where there is a real main meter-submeter relation, i.e., 

those are the combinations that can be seen in the case study’s network graph in Fig. 12 and 

that were not filtered out. 

Fig. 35 illustrates the described break-down of the 24,492 possible combinations. It visualizes 

that the classification problem at hand is an extremely unbalanced one. The vast majority of 

the 17,968 meter combinations are cases where there is no main meter-submeter relation. In 

contrast, only 1% of them are cases with real main-meter submeter relations. 

 
Fig. 35: Overview of the cases of the classification problem. Time resolution of the underlying data: 5 min 

These two groups of cases are the two classes that the (binary) classifier must separate. In 

the following parts of this work, the cases with no main meter-submeter relation are referred 

to as cluster “no relations”, and the cases with real main meter-submeter relation are referred 

to as cluster “relations”. 

4.6.2 Clustering 

As the classification problem at hand is an extremely unbalanced one, a generally poor 

prediction performance of the classifiers is expected. To devise a strategy for dealing with this, 

the features of the cases of the clusters “no relations” and “relations” were analyzed in detail. 

After the analysis, it became clear that the combinations with real main meter-submeter 

relationships are not one homogenous group where their features share similar values. 

Instead, these combinations could be split into three sub-clusters: 

• cluster “obvious relations” – The features of these cases strongly tend towards the 

values that would be expected for real main meter-submeter relationships. 
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• cluster “rare partial supply” – Some energy meters have not only one superior main 

meter but two or more. This is the case when consumers have more than one energy 

supply – e.g., the emergency electricity supply from another main connection. In such 

cases, some of the features show values that would usually be a strong argument 

against a main meter-submeter relationship. 

• cluster “inconspicuous relations” – The features of these cases don’t show strong 

tendencies. They look like the features of cases where there is no real main meter-

submeter relationship with no obvious distinctive pattern that could be used for 

classification. 

With the knowledge of these three clusters, the random forest classifier was developed as a 

multiclass classification problem with four clusters: the three clusters mentioned before and 

the one large cluster with no main meter-submeter relations – cluster “no relations”. Tab. 7 

shows the four clusters and typical values for some selected features that can be expected in 

those clusters. 

Tab. 7: Overview over the identified clusters and their typical values for selected features. 

cluster 

classification features 

calculated out of counter values calculated out of instantaneous power values 

first-order difference 
quotient 

second-
order 

difference 
quotient 

second-
order 

difference 
quotient 

with 
threshold 

measurement 
first-order 
difference 
quotient 

first-order 
difference 
quotient 

with 
threshold 
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obvious 
relations > 1 ≈ 0 ≈ 1 ≈ 1 > 1 ≈ 0 ≈ 1 ≈ 1 

rare partial 
supply < 1 ≈ 1 ≈ 1 ≈ 1 < 1 ≈ 1 ≈ 1 ≈ 1 

inconspicuous 
relations varying 

no relations varying 

 

Fig. 36 illustrates how the meter combinations with real main meter-submeter relation were 

broken down into the three sub-clusters for the multiclass classification. Most of the cases with 

real main meter-submeter relation are part of the cluster “inconspicuous relations”. That means 

that their features showed no distinct pattern that might help to distinguish these cases from 



66 Method 

 

the cases in the cluster “no relations”. Detecting subtle patterns in the data and using them to 

separate cases into classes is one of the main functions of classifiers. 

 

 
Fig. 36: Overview of the cases of the classification problem after splitting the cluster “relation” in the three 

separate clusters “obvious relations”, “rare partial supply” and “inconspicuous relations”. Time resolution of the 
underlying data: 5 min. 

The binary classification problem was artificially transformed into a multiclass classification 

problem to reduce the misclassifications and use the different clusters as prediction quality 

indicator; e.g., one could be quite certain that there is a real main meter-submeter relationship 

if a combination is predicted to the cluster “obvious relations”. Otherwise, if a combination is 

predicted to the cluster “inconspicuous relations”, the probability might be higher that there is 

no real main meter-submeter relationship. 

To prove the assumption that in this case multiclass classification outperforms binary 

classification, both types of classification are investigated in this work. The binary classifiers 

were trained with data that were grouped into the two clusters “no relations”, and “relations” 

and the multiclass classifiers were trained with the data that were grouped into the four clusters 

“no relations”, “obvious relations”, “rare partial supply”, and “inconspicuous relations”. 

4.6.3 Split in training and test data 

Since the clusters are very unbalanced and given the background knowledge about the 

specific structure and issues of the case study’s energy monitoring system, the splitting of the 

data in training and test data was not conducted completely at random. Instead, some 

combinations were assigned manually. The goals behind the manual assignments were: 

• Ensure that there are enough entries of each cluster in the training dataset and the test 

dataset. 
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• Ensure that the entries of the cluster “obvious relations” that represent meters 

measuring different types of electrical consumers are evenly distributed between the 

training dataset and the test dataset. 

• Ensure that entries of the cluster “no relations” which show features that would usually 

be expected for entries of the cluster “obvious relations” are not in the training dataset. 

Tab. 8 gives an overview of the different members of each cluster were assigned to the training 

and the test dataset. 

Tab. 8: Composition of the clusters and depiction of how they were assigned to the training and test datasets. 
Time resolution of the underlying data: 5 min. 

cluster sub-category within cluster training 
dataset 

test 
dataset 

obvious 
relations 

combinations of the 4th floor electricity main meter and a 4th floor electricity 
submeter 8   

combinations of the 9th floor electricity main meter and a 9th floor electricity 
submeter   8 

rest 1 * 1 * 

rare partial 
supply all entries 14 * 14 * 

inconspicuous 
relations 

combinations of the 4th floor electricity main meter and a 4th floor electricity 
submeter 1   

combinations of the 9th floor electricity main meter and a 9th floor electricity 
submeter   2 

combinations of the electricity meters which measure the energy recovery of the 
elevators and their superior electricity meter   3 

rest 58 * 58 * 

no relations 

combinations featuring at least one of the electricity meters of the 4th floor 2,274   

combinations featuring one electricity meter of the 4th floor and one electricity meter 
of the 9th floor   193 

combinations featuring at least one of the electricity meters of the 9th floor   2,353 

anticipated blinds misclassifications   22 

anticipated PV inverter misclassifications   324 

rest 12,018 * 616 * 

sum 14,374 3,594 

proportion 80.0% 20.0% 
* randomly sampled 

 

As most of the combinations in the cluster “obvious relations” come from the electricity meters 

that are installed on the 4th and 9th floor – two very similar floors that are monitored in detail – 

it was decided that the combinations related to one floor shall exclusively be put into the 

training dataset, and the ones related to the other floor shall exclusively be put into the test 

dataset. 

The electricity meters for energy recovery of the building’s elevators measure negative load 

profiles. As some features are less meaningful when they are calculated out of negative load 

profiles than in the case of positive load profiles, combinations with the meters of the elevator 
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energy recovery were excluded from the training dataset and instead manually put into the test 

dataset. 

Moreover, the energy meters measuring the building’s automatic blinds of the 4th and the 9th 

floor (the only blinds that are separately measured) were assigned to the test dataset. As the 

only difference between the load profiles of the blinds on each floor are the consumptions 

caused by manual interventions by users, there was a high probability of misclassifications. 

Some of the building’s PV inverters have very similar load profiles, which also involves a high 

probability of misclassification. Therefore, those anticipated misclassifications were also 

manually allocated to the test dataset. 

The same test and training dataset that was used for the development of the multiclass 

classifiers was also used for the development of the binary classifiers. For this, the cluster 

membership of cases of the clusters “obvious relations”, “rare partial supply”, and 

“inconspicuous relations” was simply changed back to cluster “relations”. 

4.7 Training of classifiers 

The steps elaborated in sections 4.4 to 4.6 were applied to the same data from the five-week 

time slot described in section 4.3, but with different time resolutions. Tab. 9 shows the overview 

of the 20 cases that were evaluated in this work. 

Tab. 9: Extended overview of the evaluated cases. 

type of classification clusters utilized data sources time resolution of the training data 

multiclass 

"obvious relation" /  
"rare partial supply" / 

"inconspicuous relation" / 
"no relations" 

features derived from counter 
values and instantaneous 

power values are used (CP) 

5 min 
10 min 
15 min 
30 min 
60 min 

only features derived from 
counter values are used (C) 

5 min 
10 min 
15 min 
30 min 
60 min 

binary "relations" / "no relations" 

features derived from counter 
values and instantaneous 

power values are used (CP) 

5 min 
10 min 
15 min 
30 min 
60 min 

only features derived from 
counter values are used (C) 

5 min 
10 min 
15 min 
30 min 
60 min 
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It was not necessary to repeat the steps for each of the cases presented in Tab. 9. Instead, 

they were only repeated for each of the five different time resolutions. The variation of the 

different utilized data sources and different classification types could be done afterward by 

manipulating each time resolution's training and test dataset. The procedure was as follows: 

1. For time resolutions different than 5 min: Resample the monitoring data (load profiles 

derived from the counter values and instantaneous power values) from the five-week 

time slot to the desired time resolution. 

2. Apply the smoothing algorithm as described in section 4.4. 

3. Calculate all 55 features as described in section 4.5, i.e., both the counter values and 

the instantaneous power values are used as source (CP). 

4. Clean, cluster, and split the data in training and test data as described in section 4.6, 

i.e., prepare the data for multiclass classification. 

5. To set up the variant where only the counter values are used as source (C), duplicate 

the training and test dataset and remove all features that were calculated out of the 

instantaneous power values. Thus, only 28 features remain in the duplicate. 

6. To set up the variants of the binary classification, duplicate all training and test datasets 

and change the class memberships of cases of the clusters “obvious relations”, “rare 

partial supply”, and “inconspicuous relations” to cluster “relations” in those duplicates. 

After this procedure was conducted for each of the five different time resolutions, there were 

20 pairs of training and test datasets, which were ready for the training and test of the random 

forest classifiers. 

Due to the relatively large number of 55 respectively 28 available features, with the possibility 

of some features containing little to no information useful for classification, a backward-

selection process was chosen. Within this process, classification evaluation metrics were 

calculated to evaluate the performance of the classifiers. These metrics were then used to 

decide upon the best classifier for each case. 

4.7.1 Classification evaluation metrics 

Given the two clusters of the binary classification case, the confusion matrix for the 

classification problem at hand is a 2 x 2 matrix. It is depicted in Tab. 10. 
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Tab. 10: Confusion matrix between the actual cluster and the predicted cluster for the binary classification. 

    predicted cluster 

    relations no relations 

actual cluster 
relations tp fn 

no relations fp tn 

 

The entries in each of the cells in Tab. 10 correspond to the number of entries that fit the 

scheme illustrated by the matrix. The letter pairs are the tokens that are used to refer to a 

certain position in the confusion matrix: 

• tp (true positive) – Entries that are from the cluster “relations” and were correctly 

predicted to this cluster. 

• tn (true negative) – Entries that are from the cluster “no relations” and were correctly 

predicted to this cluster. 

• fp (false positive) – Entries that are from the cluster “no relations” and were incorrectly 

predicted to the cluster “relations”. 

• fn (false negative) – Entries that are from the cluster “relations” and were incorrectly 

predicted to the cluster “no relations”. 

Based on the entries of the confusion matrix, several metrics can be calculated to determine 

the quality of the prediction. A common metric is the so-called “accuracy” (ACC), which 

measures the ratio of correct predictions over the total number of instances evaluated [40]. In 

the binary case, it is usually calculated as shown in (4). 

 𝐴𝐶𝐶 = 𝑡𝑝 + 𝑡𝑛𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛 (4) 

 

As the cluster “no relations” is extremely overrepresented, the ACC value is expected to be 

close to 1. Even if all entries of the test dataset would be manually assigned to the cluster “no 

relations”, the ACC would be 0.991. To cope with that, the metric is altered by neglecting all 

“no relations” entries and thus forming a new metric, namely the “custom accuracy” (CACC), 

as presented in (5). 

 𝐶𝐴𝐶𝐶 = 𝑡𝑝𝑡𝑝 + 𝑓𝑛 (5) 

 

Another common metric is the so-called “misclassification rate” (MCR) [40]. In the binary case, 

it is usually calculated as shown in (6). 



Method 71 

 

 𝑀𝐶𝑅 = 𝑓𝑝 + 𝑓𝑛𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛 (6) 

 

Again, due to the overrepresentation of the “no relations” cluster, the MCR formula is altered 

to calculate a new metric. But in this case, all entries that were predicted to the cluster “no 

relations” are neglected. The new metric is called “custom misclassification rate” (CMCR), and 

its formula is (7). 

 𝐶𝑀𝐶𝑅 = 𝑓𝑝𝑡𝑝 + 𝑓𝑝 (7) 

 

Given the four clusters of the multiclass classification case, the confusion matrix for the 

classification problem at hand is a 4 x 4 matrix. It is depicted in Tab. 11. The single letters and 

the letter pairs are the tokens that are used to refer to a certain position in the confusion matrix. 

As in the binary case shown in Tab. 10, the entries of each cell correspond to the number of 

entries that fit the scheme illustrated by the matrix. The rows indicate the actual cluster 

membership and the columns the predicted cluster membership. Single letter tokens (O, P, I, 

and N) represent correct predictions to the actual cluster, like the true positive (tp) and true 

negative (tn) predictions in the binary case. Letter-pair tokens (OP, PI, IN, …) represent the 

incorrect predictions to another cluster beside the actual cluster, like the false positive (fp) and 

false negative (fn) predictions in the binary case. 

For easier readability of the following formulas (8-13), the confusion matrix was extended by 

another column, which shows the tokens that can be used to refer to the sum of each row (AO, 

AP, AI, and AN). 

Tab. 11: Confusion matrix between the actual cluster and the predicted cluster for the multiclass classification. 

    predicted cluster Σ 
(amount of all 
entries of one 
actual cluster)     obvious relations rare partial 

supply 
inconspicuous 

relations no relations 

actual cluster 

obvious relations O PO IO NO AO 
rare partial 

supply OP P IP NP AP 
inconspicuous 

relations OI PI I NI AI 

no relations ON PN IN N AN 
 

For multiclass classification, there is usually another formula for the accuracy, where the 

accuracy of each class is calculated, and their average is computed [40]. As the underlying 

issue is a binary case, the ACC formula of the binary case is used as the basis. In the case of 

the given multiclass classification, the ACC formula (4) translates to (8) or (9). 
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 𝐴𝐶𝐶 = (𝑂 + 𝑃 + 𝐼) + 𝑁(𝑂 + 𝑃 + 𝐼) + (𝑂𝑃 + 𝑂𝐼 + 𝑂𝑁 + 𝑃𝑂 + 𝑃𝐼 + 𝑃𝑁 + 𝐼𝑂 + 𝐼𝑃 + 𝐼𝑁) + 𝑁 + (𝑁𝑂 + 𝑁𝑃 +𝑁𝐼) (8) 

 

 𝐴𝐶𝐶 = 𝑂 + 𝑃 + 𝐼 + 𝑁𝐴𝑂 + 𝐴𝑃 + 𝐴𝐼 + 𝐴𝑁 (9) 

 

The ACC metric is altered to cope with the extreme overrepresentation of the cluster “no 

relations”. Comparable to the binary case, all “no relations” entries are neglected, and thus, 

the new metric “custom accuracy” (CACC) for the multiclass case is calculated as shown in 

(10). 

 𝐶𝐴𝐶𝐶 = 𝑂 + 𝑃 + 𝐼𝐴𝑂 + 𝐴𝑃 + 𝐴𝐼 (10) 

 

For multiclass classification, there is usually another formula for the misclassification rate, 

where the misclassification rate of each class is calculated, and their average is computed 

[40]. As the underlying issue is a binary case, the MCR formula of the binary case is used as 

the basis. In the case of the given multiclass classification, the MCR formula (6) translates to 

(11) or (12). 

 
 𝑀𝐶𝑅 = (𝑂𝑁 + 𝑃𝑁 + 𝐼𝑁) + (𝑃𝑂 + 𝐼𝑂 + 𝑁𝑂 + 𝑂𝑃 + 𝐼𝑃 + 𝑁𝑃 + 𝑂𝐼 + 𝑃𝐼 + 𝑁𝐼)(𝑂 + 𝑃 + 𝐼) + (𝑂𝑃 + 𝑂𝐼 + 𝑂𝑁 + 𝑃𝑂 + 𝑃𝐼 + 𝑃𝑁 + 𝐼𝑂 + 𝐼𝑃 + 𝐼𝑁) + 𝑁 + (𝑁𝑂 +𝑁𝑃 + 𝑁𝐼) (11) 

 

 𝑀𝐶𝑅 = (𝑂𝑁 + 𝑃𝑁 + 𝐼𝑁) + (𝑃𝑂 + 𝐼𝑂 + 𝑁𝑂 + 𝑂𝑅 + 𝐼𝑃 + 𝑁𝑃 + 𝑂𝐼 + 𝑃𝐼 + 𝑁𝐼)𝐴𝑂 + 𝐴𝑃 + 𝐴𝐼 + 𝐴𝑁  (12) 

 

Comparable to the binary case, the MCR metric is altered to cope with the extreme 

overrepresentation of the cluster “no relations”. All entries that were predicted to the cluster 

“no relations” and the entries that were misclassified between the other three clusters are 

neglected. Additionally, the weights 𝑤1 = 2 and 𝑤2 = 1 are introduced. Thus, the new metric 

“custom misclassification rate” (CMCR) for the multiclass case is calculated as shown in (13). 

 𝐶𝑀𝐶𝑅 = 𝑤1 𝑂𝑁𝑂 + 𝑂𝑃 + 𝑂𝐼 + 𝑂𝑁 + 𝑤2 𝑃𝑁 + 𝐼𝑁𝑃 + 𝑃𝑂 + 𝑃𝐼 + 𝑃𝑁 + 𝐼 + 𝐼𝑂 + 𝐼𝑃 + 𝐼𝑁𝑤1 +𝑤2  (13) 

 

The idea behind CMCR is to express how many entries from the “no relations” cluster were 

predicted to be part of the other clusters. As it is especially undesirable that such a member is 

classified to the cluster “obvious relations”, those cases are penalized with the weight 𝑤1. 
All combination cases which are members of the anticipated PV and blinds misclassifications 

are excluded from the calculation of CMCR – regardless of the classification type being binary 

or multiclass. 
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4.7.2 Random forest model selection 

With the decision on evaluation metrics CACC and CMCR as indicators for the prediction 

performance of the classifiers, the process of training random forest classifiers in different 

configurations and deciding upon the best ones could be initiated. The starting point for all of 

the evaluated 20 cases was always a random forest classifier that uses all of the features that 

are available for the case: 

• 55 for the cases where both the counter values and the instantaneous power values 

were used as data source (CP) 

• 28 for the cases where only the counter values were used as data source (C) 

Starting from this classifier utilizing all available features, a backward-selection process, where 

features were dropped one by one, was applied. The measure used to decide which feature 

shall be dropped from the features used in the random forest is the so-called “Gini importance”. 

This measure is named “feature importance” in the random forest implementation used for this 

work, “sklearn.ensemble.RandomForestClassifier” of the Python package “scikit-learn 0.22.1” 

[41]. It is automatically calculated for each feature used in the random forest during its training. 

The higher the feature importance value of a feature, the larger its relevance as splitting 

variable inside the random forest. So, this metric is indeed an expression of the importance of 

a feature. 

There is some research regarding the fact that the Gini importance is biased towards features 

with many possible split points, e.g., continuous variables or variables with a high cardinality 

[42]. Since the 55 respectively 28 features all have many unique values – most of them show 

numbers between 10,000 and 20,000 – they can be considered continuous. Thus, the impact 

of the bias should be negligible. 

The backward-selection process was combined with a variation of the maximum allowed depth 

of the trees in the random forest. Analyzing the trees of the random forest model featuring all 

55/28 features without limitation of the maximum allowed tree depth revealed that none of 

those trees had a depth larger than 25 – thus, the maximum tree depth was varied between 1 

and 30. Therefore, within the backward-selection process, there are 30 x 55 = 1,650 

respectively 30 x 28 = 840 different configurations of random forests that were repeatedly 

trained and evaluated according to the following steps: 

1. At the start, the selected features are all 55/28 features, and the selected maximum 

tree depth is 1. 

2. A random forest model consisting of 1,000 trees featuring the selected features and 

the selected maximum tree depth is trained 50 times with the training dataset. 
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3. Each of these 50 models is used to predict the test dataset´, and for each of these 

predictions, the custom accuracy (CACC) and custom misclassification rate (CMCR) 

are evaluated, and afterward, their respective means are calculated. 

4. The selected maximum tree depth is increased by one, and steps 2 to 4 are repeated 

if the maximum tree depth is below or equal to 30. 

5. When the maximum tree depth is equal to 30, for each feature, the mean of the 

corresponding feature importances of the 50 models is computed. 

6. If there is more than one feature left: The feature with the lowest mean feature 

importance is dropped from the group of selected features, the selected maximum tree 

depth is reset to 1, and the preceding steps are repeated starting from step 2. 

As randomness is one of the basic characteristics of random forests, the models need to be 

trained and evaluated several times to get an indication of the prediction performance that can 

generally be expected from the models. It is common to choose 100 or 200 as number for the 

repetitions. Due to limited computational resources, the number was set to 50. 

The process described in steps 1 to 6 was conducted for each of the 20 evaluated cases by 

applying it to the corresponding pair of training and test data. After this process, for each case, 

the resulting mean CMCR and CACC values were analyzed to select candidates for the best 

classifiers. 

Fig. 37 and Fig. 38 illustrate the results of the backward-selection process of one of the 20 

evaluated cases and visualize how the candidates were selected. The case that is presented 

as an example is the case of multiclass classifiers that utilize features derived from both the 

counter values and the instantaneous power values from data with a 5 min time resolution. 

The heatmaps in both figures share the same structure: The X-axis shows the number of 

features that are used by the random forests is indicated. The Y-axis shows the maximum 

allowed depth of the trees in the random forests. 

As the backward-selection process started with all 55 features and a maximum tree depth of 

1, the result for the first evaluated random forest configuration is the entry in the top right corner 

of the heatmaps. For the following configurations, the maximum tree depth was increased by 

one until the configuration with all 55 features and a tree depth of 30 was reached. Out of the 

feature importances of all 50 random forests of this configuration, the mean feature importance 

was calculated. The feature with the lowest mean feature importance was dropped for the next 

random forest configurations with 54 features and a maximum tree depth varying from 1 to 30. 

In the same manner, the features of all following random forest configurations were selected. 
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Thus, even though the X-axis only displays the used features as a number, the number refers 

to a specific set of features. In appendix B, there are tables that show the features ordered 

according to the number-reference for each of the 20 evaluated cases. 

 
Fig. 37: Heatmap depicting mean values of the custom misclassification rates (CMCR) of 50 repetitions for 

different random forest configurations. Time resolution: 5 min. Used data sources: CP. Classifier: multiclass. 

As the results of the mean CMCR have different magnitudes, the coloring scheme of the 

heatmap in Fig. 37 was adjusted accordingly: 

• A mean CMCR value of exactly 0 is especially desirable as it means that with the given 

random forest model configuration, no members of cluster “no relations” were 

misclassified to the other clusters during each of the 50 repetitions. This case is 

highlighted in the heatmap in a separate color. 

• Mean CMCR values above 0 are colored according to a continuous color scheme 

tailored for the exponential scale. 

• No CMCR value could be computed for cases with no entries classified to the cluster 

“obvious relations” or to the clusters “rare partial supply” and “inconspicuous relations. 

The Python implementation of the CMCR formula yielded “NaN” in these cases. As 

these cases are especially undesirable, they were highlighted by a separate color. 
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As shown in Fig. 37, there are several possible random forest configurations with a mean 

CMCR value of the 50 repetitions of exactly 0. Most of those combinations utilize 18 to 55 of 

the 55 features and have a maximum tree depth of at least 4. Reducing the number of features 

below 18 shows that there is one area where the mean CMCR value is slightly above 0. 

Adjacent to this patch, there is again an area with mean CMCR values of exactly 0. Models 

with less than 7 features seem to be an unreasonable choice, as they show mean CMCR 

values of a much higher magnitude – except for models with 4 features. 

While values as small as possible are the goal for the CMCR metric, the goal for the CACC 

metric is to achieve values as large as possible. Analyzing the heatmap of the mean CACC 

values, see Fig. 38, reveals that the highest values can be found near the area with the mean 

CMCR values slightly above 0 and in the area between 7 and 9 features. This knowledge led 

to the decision that the candidates for the best random forest configuration must come from 

these areas. 

 
Fig. 38: Heatmap depicting mean values of the custom misclassification rates (CACC) of 50 repetitions for 

different random forest configurations. Time resolution: 5 min. Used data sources: CP. Classifier: multiclass. 

For the unique identification of the selected candidates for the best classifier, the naming 

scheme illustrated in Fig. 39 is used. It summarizes all major information of a classifier model. 
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Fig. 39: Naming scheme for the random forest classifiers. 

As the classifiers with 7, 9, and 18 features show a continuous mean CMCR value of exactly 

0 over almost all evaluated maximum tree depths and have high mean CACC values, it was 

decided that the candidates should have those specific sets of features. The first three 

candidates that were chosen have these three numbers of features and a maximum tree depth 

of 30, which could be interpreted as “no limitation of the tree depth” in the case at hand. 

As smaller, simpler classifier models require less computational power, and to counteract 

overfit, the maximum depth of the trees should be as small as possible. Therefore, the next 

three candidates also have 7, 9, and 18 features, but their maximum depth was set to the 

points where the mean CACC values do not increase further with increasing maximum depth. 

Moreover, the random forest model with all 55 features and a maximum tree depth of 30 was 

also selected, namely as the reference model. The seven random forest models of the example 

case that were selected as candidates for the best classifier are thereby: 

• 05min_CP_55-30 – model trained with all 55 features and a maximum tree depth of 30 

• 05min_CP_18-30 – model trained with 18 features and a maximum tree depth of 30 

• 05min_CP_18-10 – model trained with 18 features and a maximum tree depth of 10 

• 05min_CP_9-30 –model trained with 9 features and a maximum tree depth of 30 

• 05min_CP_ 9-14 –model trained with 9 features and a maximum tree depth of 14 

• 05min_CP_7-30 –model trained with 7 features and a maximum tree depth of 30 

• 05min_CP_7-14 –model trained with 7 features and a maximum tree depth of 14. 

All seven selected models are especially highlighted in Fig. 37 and Fig. 38. The actual features 

that were used for the training of the models are shown in Tab. 12. In the same manner, as in 

appendix B, the features are ordered according to their feature importance, i.e., the feature in 

the first row is the one that was kept until the end of the backward selection process. As can 

be seen, the most important feature is “c_d2_slope”, the slope of the scatterplot from the 

second-order difference quotient calculated out of the counter values. The following most 
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important features come from all various sources. Derived features are underrepresented, 

indicating that the primary features seem to carry most of the relevant classification information 

on their own. 

Tab. 12: Overview of the features used by some of the candidates for the best multiclass classifiers. The features 
are ordered according to their importance. Time resolution: 5 min. Used data sources: CP. 

feature random forest classifier 

order code 05min_CP_55-30 05min_CP_18-30 & 
05min_CP_18-10 

05min_CP_9-30 & 
05min_CP_9-14 

05min_CP_7-30 & 
05min_CP_7-14 

1 c_d2_slope x x x x 
2 p_d1_kendall x x x x 
3 c_d2_spearman x x x x 
4 c_d1_profile_relation_neg x x x x 
5 c_d2t_spearman x x x x 
6 p_d1t_kendall x x x x 
7 c_d1_profile_relation x x x x 
8 c_d2t_intercept_to_std_ln x x x   
9 c_d2t_kendall x x x   

10 p_m_profile_relation_neg x x     
11 c_d2_pearson x x     
12 p_d1_r_squared_sub x x     
13 p_m_profile_relation x x     
14 c_d2_kendall x x     
15 c_d2t_deviation_slope_1_ln x x     
16 p_d1t_spearman x x     
17 c_d2_deviation_slope_1 x x     
18 p_d1_spearman x x     
19 p_d1_deviation_slope_1 x       
20 c_d2t_pearson x       
21 c_d2t_intercept_to_std x       
22 c_d2t_deviation_slope_1 x       
23 p_d1_r_squared x       
24 c_d2_r_squared x       
25 p_d1t_diff_sm_mm x       
26 p_d1t_deviation_slope_1_ln x       
27 c_d2_r_squared_sub x       
28 c_d2t_slope x       
29 c_d2t_diff_sm_mm x       
30 p_d1t_pearson x       
31 c_d2t_r_squared x       
32 p_d1t_deviation_slope_1 x       
33 c_d2_intercept_to_std x       
34 p_d1_pearson x       
35 p_d1t_diff_sm_mm_ln x       
36 c_d2t_r_squared_sub_ln x       
37 p_d1_slope x       
38 p_d1t_pearson_sub_ln x       
39 p_d1t_intercept_to_std_ln x       
40 c_d2t_r_squared_sub x       
41 p_d1_intercept_to_std x       
42 c_d2t_diff_sm_mm_ln x       
43 p_d1t_threshold_to_std x       
44 p_d1t_intercept_to_std x       
45 p_d1t_kendall_sub_ln x       
46 c_d2t_pearson_sub_ln x       
47 p_d1t_r_squared_sub_ln x       
48 c_d2t_kendall_sub_ln x       
49 p_d1t_spearman_sub_ln x       
50 p_d1t_slope x       
51 c_d2t_spearman_sub_ln x       
52 c_d2t_threshold_to_std x       
53 p_d1t_r_squared x       
54 p_d1t_r_squared_sub x       
55 smoothed x       
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The heatmaps illustrating the mean CMCR and CACC results for all other of the evaluated 20 

cases can be found in appendix C. They are set up in the same way as described in the 

example case shown in Fig. 37 and Fig. 38. The classifiers that were chosen as candidates 

for the best classifiers were also chosen according to the goal of a low mean CMCR value and 

a high mean CACC value. They are also highlighted in the heatmaps. Tab. 13 and Tab. 14 

give an overview of those candidates. 

Tab. 13: The candidates for the best multiclass classifiers. 

designation of the 
classifier 

time resolution of 
the training data 

utilized data 
sources 

number of 
features used 

maximum tree 
depth 

05min_CP_55-30 

5 min 

CP 

55 30 
05min_CP_18-30 18 30 
05min_CP_18-10 18 10 
05min_CP_9-30 9 30 
05min_CP_9-14 9 14 
05min_CP_7-30 7 30 
05min_CP_7-14 7 14 
05min_C_28-30 

C 

28 30 
05min_C_7-30 7 30 
05min_C_7-13 7 13 
05min_C_5-30 5 30 
05min_C_5-14 5 14 
10min_CP_55-30 

10 min 

CP 

55 30 
10min_CP_40-30 40 30 
10min_CP_40-10 40 10 
10min_CP_17-30 17 30 
10min_CP_17-15 17 15 
10min_CP_12-30 12 30 
10min_CP_12-9 12 9 
10min_C_28-30 

C 

28 30 
10min_C_7-22 7 22 
10min_C_5-23 5 23 
10min_C_3-30 3 30 
10min_C_3-15 3 15 
15min_CP_55-30 

15 min 
CP 

55 30 
15min_CP_53-5 53 5 
15min_CP_45-5 45 5 
15min_CP_25-13 25 13 
15min_CP_25-4 25 4 
15min_CP_13-21 13 21 
15min_CP_8-8 8 8 
15min_C_28-30 

C 
28 30 

15min_C_3-22 3 22 
30min_CP_55-30 

30 min 
CP 

55 30 
30min_CP_41-30 41 30 
30min_CP_27-15 27 15 
30min_CP_20-20 20 20 
30min_CP_8-29 8 29 
30min_CP_5-7 5 7 
30min_C_28-28 

C 
28 28 

30min_C_28-17 28 17 
60min_CP_3-30 

60 min 
CP 

3 30 
60min_CP_3-15 3 15 
60min_C_4-27 C 4 27 
60min_C_4-14 4 14 
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Tab. 14: The candidates for the best binary classifiers. 

designation of the 
classifier 

time resolution of 
the training data 

utilized data 
sources 

number of 
features used 

maximum tree 
depth 

05min_CP_b_55-30 

5 min 

CP 

55 30 
05min_CP_b_27-30 27 30 
05min_CP_b_27-13 27 13 
05min_CP_b_4-30 4 30 
05min_CP_b_4-13 4 13 
05min_C_b_28-30 

C 

28 30 
05min_C_b_9-30 9 30 
05min_C_b_9-15 9 15 
05min_C_b_7-30 7 30 
05min_C_b_7-17 7 17 
10min_CP_b_55-30 

10 min 

CP 

55 30 
10min_CP_b_53-8 53 8 
10min_CP_b_26-5 26 5 
10min_CP_b_2-11 2 11 
10min_C_b_28-30 

C 

28 30 
10min_C_b_8-16 8 16 
10min_C_b_4-22 4 22 
10min_C_b_3-30 3 30 
15min_CP_b_55-30 

15 min 

CP 

55 30 
15min_CP_b_18-4 18 4 
15min_CP_b_7-10 7 10 
15min_CP_b_2-30 2 30 
15min_C_b_28-30 

C 

28 30 
15min_C_b_24-2 24 2 
15min_C_b_8-19 8 19 
15min_C_b_3-3 3 3 
30min_CP_b_55-30 

30 min 

CP 

55 30 
30min_CP_b_45-30 45 30 
30min_CP_b_45-18 45 18 
30min_CP_b_34-30 34 30 
30min_C_b_28-30 

C 

28 30 
30min_C_b_15-30 15 30 
30min_C_b_15-12 15 12 
30min_C_b_13-12 13 12 
60min_CP_b_55-30 

60 min 

CP 

55 30 
60min_CP_b_37-30 37 30 
60min_CP_b_37-20 37 20 
60min_CP_b_16-30 16 30 
60min_CP_b_16-14 16 14 
60min_C_b_28-30 

C 
28 30 

60min_C_b_22-14 22 14 
60min_C_b_6-30 6 30 

 

A detailed study of the results in appendix C reveals that the process of selecting the 

candidates for the best classifiers was not as straightforward as shown in the example case. 

Especially in the multiclass cases with a time resolution of 30 or 60 min, the mean CMCR 

values could not be computed for many of the configurations – indicated by the “NaN” entries. 

This led to a very limited choice of possible candidates. Nevertheless, for each of the 20 

evaluated cases, there are at least two classifier candidates for each case. In the next step, 

these classifier candidates were used on the validation data. 
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5 Validation 

In this chapter, the candidates for best multiclass and binary classifiers are used on validation 

data from the case study and the synthetically generated data. The main purpose of this is to 

verify that the method works with other data than the data the classifiers were developed with. 

As the validation data comes from different time slots with different lengths and different time 

resolutions, a byproduct is the estimation of the method’s prediction performance for various 

circumstances. Further, since the final best classifiers for each of the 20 evaluated cases were 

not chosen yet, but instead, only candidates were chosen, the selection of the final best 

classifiers is also part of this chapter. 

5.1 Adjusted evaluation metrics 

The classification evaluation metrics, as described in section 4.7.1, were designed to aid in the 

process of selecting candidates for the best classifiers. To estimate the prediction performance 

of the method, they must be adjusted. 

One of the reasons for that is that the method automatically filters out certain possible meter 

combinations. That is, in the case study’s network graph, see Fig. 12, the number of real main 

meter-submeter relations is stated as 180. In the overview of the classification problem, see 

Fig. 35, there are only 168 left. The missing 12 combinations were filtered out. Thus, the 

custom accuracy (CACC) metric, as stated in formula (5) for the binary case and in formula 

(10) for the multiclass case, only uses the 168 combinations as the denominator. To evaluate 

the prediction performance of the whole method, the filtered-out combinations need to be 

added to the denominator. The adjusted CACC metric is called CACC2. With the combinations 

that were filtered out during the cleaning step, see section 4.6.1, as 𝑍, the formula for CACC2 

in the binary case is (14) and in the multiclass case is (15). 

 𝐶𝐴𝐶𝐶2 = 𝑡𝑝𝑡𝑝 + 𝑓𝑛 + 𝑍 (14) 

 

 𝐶𝐴𝐶𝐶2 = 𝑂 + 𝑃 + 𝐼𝐴𝑂 + 𝐴𝑃 + 𝐴𝐼 + 𝑍 (15) 

 

Through this alteration, the CACC2 metric expresses how many of all the real main meter-

submeter relations the method could correctly detect. 

The CMCR metric also needs some adjustments to be suitable for estimating the prediction 

performance of the method. From the original CMCR metric, two new metrics, CMCR2 and 

CMCR2C, were derived, which take those adjustments into consideration. 

In the binary case, there is no need for the first adjustment, therefore, the CMCR2 metric, see 

(16), is identical to the original CMCR formula of the binary case (7). 
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 𝐶𝑀𝐶𝑅2 = 𝐶𝑀𝐶𝑅 = 𝑓𝑝𝑡𝑝 + 𝑓𝑝 (16) 

 

In order that the original CMCR formula of the multiclass case (13) yields a value between zero 

and one, a classifier must predict at least one entry to the cluster “obvious relations” and at 

least one entry to the clusters “rare partial supply” or “inconspicuous relations”. If the classifier 

fails to do so, the CMCR is not defined, and the Python implementation of the formula returns 

“NaN”. To counteract this behavior, the CMCR2 is defined as shown in (17). 

 𝐶𝑀𝐶𝑅2 =
{  
  
  𝑂𝑁𝑂 + 𝑂𝑃 + 𝑂𝐼 + 𝑂𝑁 , 𝑃 + 𝑃𝑂 + 𝑃𝐼 + 𝑃𝑁 + 𝐼 + 𝐼𝑂 + 𝐼𝑃 + 𝐼𝑁 = 0  𝑃𝑁 + 𝐼𝑁𝑃 + 𝑃𝑂 + 𝑃𝐼 + 𝑃𝑁 + 𝐼 + 𝐼𝑂 + 𝐼𝑃 + 𝐼𝑁 , 𝑂 + 𝑂𝑃 + 𝑂𝐼 + 𝑂𝑁 = 0  𝐶𝑀𝐶𝑅, otherwise

 (17) 

 

Due to this alteration, the custom misclassification rate can also be computed for cases where 

the multiclass classifier does not predict at least one entry to the cluster “obvious relations” 

and at least one entry to the clusters “rare partial supply” or “inconspicuous relations”. The only 

case in which the CMCR2 metric cannot be computed and its Python implementation would 

yield “NaN” is the case where all entries are predicted to the cluster “no relations”. As the 

intention of the custom misclassification rate is that it shall give an indication of how many of 

the predictions to all clusters besides “no relations” are from the cluster “no relations”, this 

behavior is acceptable. Such a case can be considered as “the method failed to detect any 

relationships between the energy meters”. 

During the analysis of the predictions that the classifiers made for the validation data, some 

misclassifications occurred that can be considered a correct prediction and a misclassification 

at the same time: The classifiers sometimes identified the main meter’s superior meter, and in 

some rare cases they even identified the superior meter of the main meter’s superior meter. 

To take this special type of misclassifications into account, another metric was set up, namely 

CMCR2C. It is simply the CMCR2 metric, but all misclassifications that were made between a 

meter and its main meter’s superior meter or even the superior meter of the main meter’s 

superior meter were excluded from the calculation of the metric. 

Tab. 15 gives an overview of all evaluation metrics used in this work. All metrics were 

calculated for all validation cases, but to keep the presentation of the results short, primarily 

CACC2 and CMCR2C are used to discuss the method’s performance. 
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Tab. 15: Overview of the original classification evaluation metrics and the adjusted evaluation metrics. 

metric description 

custom accuracy 

CACC the number of the correctly predicted main meter-submeter relationships set in relation 
to the number of main meter-submeter relationships that were not filtered out 

CACC2 the number of the correctly predicted main meter-submeter relationships set in relation 
to the total number of main meter-submeter relationships 

custom 
misclassification rate 

CMCR 
the weighted average of the misclassifications from the cluster "no relations" to the other 
clusters; in the case of the case study data, the anticipated PV and blind misclassifications 
are excluded 

CMCR2 
CMCR adjusted for the case that the multiclass classifier does not predict at least one 
entry to the cluster “obvious relations” and at least one entry to the clusters “rare partial 
supply” or “inconspicuous relations” 

CMCR2C CMCR2, but the misclassifications to the main meter's superior meter and the superior 
meter of the main meter's superior meter are excluded 

 

Even though in the custom misclassification rate metrics, there are several exclusions of 

certain misclassifications, these misclassifications can be seen in alternative depictions of the 

results, e.g., in the network graphs. These are presented and explained at the end of the 

following subchapters 5.2 and 5.3. 

5.2 Case study data from other time slots 

As described in section 4, the method was developed, and the classifiers trained with the case 

study’s energy monitoring data from a 5-week time slot from the fall of 2017. The case study’s 

energy monitoring data from the entire year of 2018 is used as the basis for the first part of the 

validation of the method – 19 time slots with varying lengths and from varying seasons were 

chosen from it. Fig. 40 illustrates both the 5-week time slot used for training and the 19 time 

slots from 2018 that were chosen for the validation. 

 
Fig. 40: The time slots of the case study data which were used for the training and the performance evaluation of 

the candidates for the best multiclass and binary classifiers. 
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As the energy measured by some of the energy meters – mostly heat meters – is dependent 

on the season, most of the time slots were chosen according to the four seasons. To evaluate 

the impact of different lengths of the time slots, the time slots have lengths of 1 week, 2 weeks, 

5 weeks, 3 months, 6 months, and the entire year. The 5-week training time slot was also 

included in the entire validation process. As all classifiers were trained with 80% of the data 

from these five weeks, the results for this time slot give an indication of the peak prediction 

performance that could be achieved by the method. 

To be able to evaluate different time resolutions, the data from each of these 20 time slots 

were resampled to the time resolutions the respective classifiers were trained for. Hence, the 

method was validated with 100 different datasets that originated from the 20 mentioned time 

slots and have time resolutions of 5 min, 10 min, 15 min, 30 min, and 60 min. 

Smoothing, feature extraction, cleaning, and clustering steps – as described in sections 4.4 to 

4.6.2 – were conducted with each of these 100 datasets. The result is 100 new datasets 

suitable to be used as input for the classifiers: Each of them consists of the 55 features for 

each possible meter combination, provided the combination was not automatically filtered out. 

All candidates for the best multiclass and binary classifiers were then applied to these 100 new 

datasets, regardless of the time resolution, the classifiers were trained with. 

The results for the CACC2 and CMCR2C metrics that each classifier achieved for the 100 

datasets are presented in Appendix D. Due to the sheer number of results, the metrics for 

datasets that have the same time slot length and time resolution were averaged; e.g., the 

metrics for a time slot length of 5 weeks are the mean of the metrics for the time slots “5 weeks 

winter”, “5 weeks spring”, “5 weeks summer” and “5 weeks fall”. Fig. 41 and Fig. 42 illustrate 

the results by using one of the classifiers as an example. 

Fig. 41 illustrates the accuracy metric CACC2 of the classifier 05min_CP_18-30 when used on 

the datasets that were calculated out of the monitoring data with 5 min time resolution. As 

expected, the classifier achieves the highest CACC2 value when applied to the training data: 

Approximately 0.63, which means that 63% of the real main meter-submeter relations of the 

case study were correctly detected by the method. This value is substantially higher than the 

values that were achieved with the other datasets with CACC2 values between 0.18 and 0.3, 

meaning that approximately 25% of the real main meter-submeter relations were identified. 

The average values for each time slot length indicate that with decreasing time slot length, the 

CACC2 also slightly decreases. 
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Fig. 41: CACC2 values achieved by the classifier 05min_CP_18-30 when providing it with case study data with 

5 min time resolution and varying time slot length. 

To correctly evaluate the method's prediction performance, the classifier's misclassification 

rate was also investigated. Fig. 42 shows the CMCR2C metric for the same case that was 

shown in Fig. 41. 

 
Fig. 42: CMCR2C values achieved by the classifier 05min_CP_18-30 when providing it with case study data with 

5 min time resolution and varying time slot length. 

As the CMCR2C metric excludes misclassifications between certain identical consumers 

(blinds and PV) and misclassifications between submeters and the meters superior to their 

main meters, the metric presents an indicator for real misclassifications where there is no 

obvious cause for the misclassification. Later in this section, the following section, and in 

appendix E, these excluded misclassifications are also displayed and discussed. 
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Fig. 42 shows that for the training dataset and the datasets based on monitoring data from 

time slots with a 1-year or 6-month length, there were no real misclassifications. For the 

datasets based on time slot lengths of 3 months, 5 weeks, or 2 weeks, the mean CMCR2C is 

approximately 0.03, which can be interpreted as 3% of the main meter-submeter relationships 

indicated by the classifier are misclassifications. In the case of the time slot length of 1 week, 

this rate is approximately twice as high. An investigation of the underlying single CMCR2C 

values that are the basis for the mean CMCR2C reveals that the misclassification rate can vary 

significantly from case to case. 

A detailed analysis of the CACC2 and CMCR2C metrics of all classifier candidates when used 

on the 100 datasets from the case study (see also appendix D), revealed the following findings: 

• Regardless of the time resolution, the peak accuracy metric CACC2 that can be 

observed when using the classifier candidates on the dataset from the 5-week training 

time slot is almost always approximately 0.6. 

• A classifier should only be used on datasets that were calculated out of the monitoring 

data that has the same time resolution that the classifier was trained with. In some 

cases, classifiers with a higher time resolution than the dataset achieve higher CACC2 

values than classifiers with the same time resolution as the dataset. The downside of 

this is that with the higher CACC2 values, there are also higher CMCR2C values. As 

misclassifications shall be avoided, these cases are deemed worse than the cases with 

fitting time resolution. 

• Binary classifiers generally achieve higher CACC2 values than multiclass classifiers. 

Again, the downside is that there are higher CMCR2C values. As misclassifications 

shall be avoided, the binary classifiers are deemed worse than the multiclass 

classifiers. 

• Classifiers using features that were calculated using both available sources, the 

counter values and the instantaneous power values (CP), performed better than 

classifiers using only features calculated out of the counter values (C). 

• A higher number of features used by a classifier leads to better prediction performance. 

• Reducing the maximum tree depth does not improve the prediction performance. 

Classifiers with higher maximum tree depth generally show better prediction 

performance. 

• Providing data from time slots with a higher time slot length leads to better prediction 

performance. 
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• Given that the dataset has the same time resolution as the classifier, the higher the 

time resolution, the better the prediction performance. 

• For each time resolution, there is at least one classifier candidate with the same time 

resolution that achieves a CMCR2C value below 0.1 and a CACC2 value above 0.15, 

given the time slot length is long enough. If a misclassification rate of approximately 

10% (CMCR2C = 0.1) is considered an acceptable error rate, this result can be 

interpreted that the method basically works for all investigated time resolutions. This 

interpretation was later proven wrong with the second set of validation data, see the 

following section 5.3 or the second half of the appendix D. Considering both sets of 

validation data, only classifiers with a time resolution of 5 min, 10 min, or 15 min 

achieve acceptable prediction performances in both cases. This issue is elaborated 

further in section 5.3. 

In appendix D, some classifiers are highlighted in red. These are the classifier candidates that 

were chosen as the six final best classifiers – one for each time resolution and data source 

setting (CP or C): 

• 05min_CP_18-30 

• 05min_C_7-30 

• 10min_CP_55-30 

• 10min_C_28-30 

• 15min_CP_55-30 

• 15min_C_28-30 

They were chosen according to the performance that they showed when used on the validation 

data from the case study and the validation data from the synthetically generated data. As can 

be seen, by their designation, all of them are multiclass classifiers, and they all use the highest 

value of the allowed maximum tree depth, namely 30. Besides the classifiers that were trained 

with the 5 min data, all of them use the maximum number of features available for each data 

source setting. 

Fig. 43 and Fig. 44 illustrate the prediction performance achieved by these final best classifiers 

when used on the validation data of the case study. The figures show the influence of the time 

slot length of the datasets on the CACC2 and CMCR2C metrics. 

Fig. 43 shows that the classifiers achieve a CACC2 value of approximately 0.6 when used on 

the data that the classifiers were trained with. For all other cases, the CACC2 stays between 

0.2 and 0.27 at an almost constant level. For the CP classifiers, there is a slight drop from 



88 Validation 

 

5 weeks to 2 weeks and from 2 weeks to 1 week. Besides the fact that the CP classifiers have 

slightly higher CACC2 metrics than the C classifiers, there is little difference between the six 

final classifiers. More differences can be observed when investigating the CMCR2C metrics, 

see Fig. 44. 

 
Fig. 43: Mean CACC2 values achieved by the six final classifiers when providing them with case study data with 

varying time slot length – the time resolution of the provided data fitting to the resolution that the models were 
trained for. 

 
Fig. 44: Mean CMCR2C values achieved by the six final classifiers when providing them with case study data with 

varying time slot length – the time resolution of the provided data fitting to the resolution that the models were 
trained for. 
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Fig. 44 shows the trend that the smaller the time slot length, the worse the CMCR2C. While 

the CMCR2C is zero or almost zero for the cases of the training data, the time slot with a length 

of 1 year, or the time slots with a length of 6 months, the metric increases for data from time 

slots with smaller time slot lengths. For data from time slots with a length of 3 months, 5 weeks, 

or 2 weeks the CMCR2C value lies at 0.04 or below, which can be interpreted as a maximum 

of 4% of the cases with indicated main meter-submeter relationship are misclassifications. 

When the time slot length drops to 1 week, for most cases, higher misclassification rates must 

be expected. 

Surprisingly, the classifiers with the highest time resolution of 5 min have the highest CMCR2C 

values at time slot lengths of 2 weeks or 1 week. As one week’s worth of data in a higher time 

resolution encompasses more data points than one week worth of data with a lower time 

resolution, there is more information in the data with a higher time resolution. Thus, it would 

have been expected that the classifiers would achieve the best performance with the highest 

time resolution, i.e., the 5 min data. 

An investigation of the underlying single CMCR2C values of the separate cases from each 

season revealed no obvious reasons for that. It is suspected that the reason for this behavior 

is the monitoring data from the energy meters with low meter resolutions, i.e., primarily the 

heat meters. 

To this point, the prediction performance of the classifiers has only been discussed based on 

the CACC2 and CMCR2C metrics. Fig. 45 and Fig. 46 display the results in another, more 

detailed way. Both figures illustrate the number of correctly identified main meter-submeter 

relationships and the misclassifications that wrongfully indicate a main meter-submeter 

relationship. Again, the average results that the six final classifiers achieve are presented for 

each of the investigated time slot lengths. 

The misclassifications are split into different categories to enable a more detailed analysis. 

Contrary to the misclassification rate metric CMCR2C, the misclassifications between certain 

identical consumers (blinds and PV) and between submeters and the meters superior to their 

main meters are not excluded. Instead, they are displayed as separate categories. 

As can be seen in Fig. 45, all classifiers could, on average, at least correctly identify 37 of the 

real main meter-submeter relationships – regardless of the time slot length. The number of 

correctly identified main meter-submeter relationships is slightly higher in the case of the CP 

classifiers than in the case of the C classifiers.  
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Fig. 45: Average number of cases classified to the clusters "obvious relations", "rare partial supply" and 

"inconspicuous relations" when using the method on case study data from other time slots. 
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Moreover, Fig. 45 shows that the CP classifiers lead to fewer misclassifications than the C 

classifiers. The difference can mostly be attributed to the misclassifications between two PV 

electricity meters. This observation indicates that the features calculated with the 

instantaneous power values load profiles carry additional information that aids in preventing 

misclassifications between electricity meters that measure similar PV supply. 

The misclassifications that can be attributed to the similar electricity consumption of the case 

study’s automatic blinds are surprisingly low. They only occur in the predictions of the classifier 

05min_CP_18-30. 

Misclassifications between similar consumers are a category of misclassifications between 

consumers that are of the same type and have the same size in terms of energy consumption. 

E.g., the case study’s two positive pressure ventilation systems or the two parts of the safety 

lighting system. Naturally, in this category, there are only misclassifications between energy 

meters of the same type, i.e., between two electricity meters or two heat meters. 

In the category “misclassifications between consumers with similar usage profiles”, the 

consumers have different types or different sizes, but they are used at the same time due to 

user presence or interaction; e.g., the heat consumption of the air curtains at the ground floor 

and the electricity consumption of the lecture hall, which is accessed by walking through the 

air curtains. In this category, misclassifications between any energy meter – regardless of the 

type – are possible. 

Each of the final classifiers has, at least in some cases, misclassifications that fall into these 

two categories. Interestingly, in the case of the C classifiers, the number of these 

misclassifications seems to decrease with increasing time resolution. Still, in the case of the 

CP classifiers, the number seems to increase with increasing time resolution. An investigation 

of the underlying cases did not reveal any obvious reason for that. 

Another category with very few cases is the category “misclassifications between related 

electricity and heat meter”. E.g., the electricity consumption of a laboratory room and the 

thermal power of the room’s cooling system. Misclassifications of this category occurred almost 

exclusively in the predictions of the classifier 05min_CP_18-30.  

Misclassifications of the category “misclassifications to the real main meter’s superior meter” 

can primarily be observed in the results of the classifier 10min_C_28-30. There they occur at 

every time slot length. In the results of the other classifiers, they mostly occur at time slot 

lengths of 2 weeks or 1 week. The classifier 10min_CP_55-30 only has misclassifications of 

this category at the time slot length of a full year, and the classifier 15min_CP_55-30 does not 

have them at all. 
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While there are some causal relationships in the misclassification categories that were 

discussed until now, this is not the case for the category “misclassification without obvious 

reason”. All misclassifications where there seems to be no causal relationship are put into this 

category. Hence, this category can be considered as some sort of general indicator for the 

quality of the method. If the number of entries in this category is too high, the method might be 

unsuitable for the given case. As the goal of the method is to detect real main meter-submeter 

relationships by comparing the meter’s load profiles, misclassifications without obvious reason 

are a danger to the usefulness of the method. If there are misclassifications that cannot be 

attributed to similarities in the load profiles, the classifiers seem to be trained to detect 

something besides the similarities. Considering that most of the misclassifications without 

obvious reason occurred in the cases where there is a time slot length of 1 week, this would 

be an argument against the use of the method in such cases. It can be concluded that the 

method should only be used when there is monitoring data from at least 2 weeks. 

In the case of the 15min_CP_55-30 classifier, there is not even one misclassification of this 

category. Overall, this classifier shows extremely low numbers of misclassifications while the 

number of detected real main meter-submeter relations remains relatively high. 

Fig. 45 illustrates the prediction results according to the nature of the underlying classification 

problem, namely in a binary way. Classifications of detected real main meter-submeter 

relations to the clusters “obvious relations”, “rare partial supply”, and “inconspicuous relations” 

are considered correct predictions – even if they were misclassified in between those three 

clusters. Only misclassifications from the cluster “no relations” to these three other clusters are 

considered real misclassifications. As the goal of using multiclass classifiers for the method 

was to have a cluster where the predictions to this cluster can be considered especially 

trustworthy, it must be evaluated whether it was reached or not. Fig. 46 is an adjusted version 

of Fig. 45, where the results are only presented for the cluster “obvious relations”. 

Fig. 46 clearly shows that the goal was reached: There are almost no misclassifications in the 

cluster “obvious relations”. Most of the few misclassifications are from the categories of the 

expected misclassifications between PV electricity meters or due to similar blinds 

consumptions. As these misclassifications are caused by the fundamental issue that 

consumers with identical or almost identical load profiles are practically impossible to 

distinguish from each other by their load profiles only, these misclassifications must be 

expected within the method’s results. 
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Fig. 46: Average number of cases classified to the cluster "obvious relations” when using the method on case 

study data from other time slots. 
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Regarding the influence of the time slot length, there is no clear pattern that can be observed 

in the results depicted in Fig. 46. In the case of the classifier 10min_CP_55-30, the number of 

detected real main meter-submeter relations increases with increasing time slot length, but in 

the case of the classifier 05min_C_7-30, the number decreases with increasing time slot 

length. The results of the other classifiers do not show a clear trend. 

Except for the classifier 10min_C_28-30, there is a general trend that with increasing time 

resolution, the number of detected real main meter-submeter relations increases too. 

Until now, the prediction results of the classifiers have been presented in a condensed way: 

Either the average values of several cases were shown, or the results were illustrated by 

metrics. In the network diagram in Fig. 47, the prediction results that one single classifier 

achieves in one single case are presented. In appendix E, there are further examples of the 

results that the six final best classifiers achieved in different cases. These examples are 

approximately one-third of all the evaluated cases. They visualize the prediction performance 

of the method that can be expected when it is provided with monitoring data, which is like the 

monitoring data of the case study. 

The basis for the network graph in Fig. 47 is the network graph that was already presented in 

section 3.1 in Fig. 12: The nodes represent the energy meters on different levels of the 

hierarchy, and the connecting grey lines represent real main meter-submeter relationships. 

The colored lines represent the correctly identified main meter-submeter relationships and the 

misclassifications between two meters without main meter-submeter relationship. The coloring 

scheme and the categories are identical to those used in Fig. 45 and Fig. 46. By using three 

different line styles, it is indicated in which cluster the classifier predicted each meter 

combination pair. The visualization cannot depict which of the two meters is the assumed main 

meter and which is the assumed submeter. In the case of correct predictions and 

misclassifications over two different meter hierarchy levels, the assumed main meter is 

generally the one on the higher level, and thus, the assumed submeter is the one on the lower 

level. 

In the top area of the network graph, all relevant information about the classifier and the 

underlying data is presented. Further, all classification evaluation metrics, as described in 

sections 4.7.1 and 5.1, are shown. 

The correct predictions to the cluster “no relations” are not illustrated. Their number can be 

estimated by subtracting the number of the filtered-out cases (7,609) and the number of real 

main meter-submeter relations (180) from the number of possible meter combinations 

(24,492). 
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Fig. 47: Network diagram illustrating the prediction performance of the classifier 05min_CP_18-30 when providing 

it with case study data from the time slot “5 weeks fall” with 5 min time resolution. 
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Misclassifications of a submeter to its main meter’s superior meter, provided the real main 

meter-submeter relationship was detected as well, are not directly illustrated in the network 

graph in  Fig. 47. Such misclassifications can easily be identified by comparing the average 

power level of the two meters that were indicated as main meters. The meter with a lower 

power level will be the real main meter, and the one with a higher power level will be the main 

meter’s superior meter. The number of the misclassifications that were not visualized is 

indirectly shown in the top area under the parameter “misclassifications”: It is the difference 

between the visualized misclassifications – the number outside of the brackets – and the total 

number of misclassifications – the number in the brackets. 

An analysis of the results of the case presented in Fig. 47 shows that approximately 28% of 

the real main meter-submeter relations were correctly detected by the method. All of these 

correctly detected relations were between electricity meters. The method failed to detect real 

relations between heat meters. The relatively low counter resolution of the heat meters and 

the thermal inertia of the heating and cooling system explains this. Further, the method also 

failed to detect real relations between the electrical emergency supply and its submeters. This 

is not surprising, as the emergency supply is only active for a few hours during the year. If the 

relations between the emergency supply and its submeters (29 relations) and the relations 

between heat meters (33 relations) are excluded, the rate of correctly identified relations 

increases to 42%. 

Setting up the method with multiclass classifiers partially works as intended: The predictions 

to the cluster “obvious relations” are free of misclassifications – the misclassifications occurred 

only in the cluster “inconspicuous relations”. Meanwhile, there is not one single prediction to 

the cluster “rare partial supply”. As all entries of this cluster are meter combinations between 

the electrical emergency supply and its submeters, the reason for that is, again, that the 

emergency supply is only active for a few hours during the whole year. 

An investigation of the misclassifications reveals that, besides the three misclassifications 

between two PV electricity meters, there is only one misclassification between the electricity 

meters. Contrasting these misclassifications with the fact that the method could correctly 

identify 50 real main meter-submeter relations between electricity meters, the method can be 

considered successful – at least in the case of electricity meters. 

All other misclassifications occurred between heat meters. As the method failed to predict any 

real main meter-submeter relations between the heat meters, misclassifications between them 

do neither contribute to nor endanger the method's usefulness for the identification of the 

hierarchy of heat meters. 
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The case presented in Fig. 47 is a good example of the average prediction performance of the 

method. Appendix E shows the full range of cases – some cases with slightly better prediction 

performance and some with slightly worse prediction performance. 

A detailed analysis of all example cases of the case study in appendix E leads to similar 

findings that can be summarized as follows: 

• The method basically works for electricity meters. 

• The method basically fails for heat meters. Only in very few cases the method correctly 

predicted a main meter-submeter relationship between heat meters. 

• Predictions to the cluster “obvious relations” are more trustworthy than predictions to 

the cluster “inconspicuous relations”, as there are fewer misclassifications in the cluster 

“obvious relations” than in the other one. 

• Only when provided with the original training data the method can detect real main 

meter-submeter relations that belong to the cluster “rare partial supply”. Otherwise, 

there is not one single case where a real main meter-submeter relation was predicted 

to that cluster. As in only one single case, there is a misclassification to this cluster, the 

total removal of this cluster from the method would not endanger the prediction 

performance of the whole method. 

• Classifiers that utilize features derived from both data sources, counter values, and 

instantaneous power values (CP), perform better than classifiers that utilize only 

features derived from the counter values (C). In the case of the C classifiers, there are 

significantly more misclassifications between two PV electricity meters. 

• With increasing time slot length, the prediction performance of the method increases 

slightly. For the case of a time slot length of 1 week, the number of misclassifications 

significantly rises. 

5.3 Synthetically generated data 

The second part of the method is conducted by using all candidates for the best classifiers on 

data that is derived from the synthetically generated data. As described in section 3.2, the 

synthetical data was generated by combining random pieces from measured load profiles. 

Thus, the synthetically generated data lacks seasonal differences. Fig. 48 depicts how the 

validation data time slots were chosen from the one year of synthetically generated data. 
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Fig. 48: The time slots of the synthetically generated data which were used for the performance evaluation of the 

candidates for the best multiclass and binary classifiers. 

The selection of the time slots was conducted in the same manner as with the validation data 

chosen from the case study’s monitoring data. The only differences between the case study 

(Fig. 40) and the synthetically generated data (Fig. 48) are that the time slots are not named 

according to seasons and that there is no training data time slot. Thus, in the case of the 

synthetically generated data, there are only 19 time slots instead of 20. 

The data from these 19 time slots were also resampled to the time resolutions that the 

classifiers were trained for. Hence, the method was validated with 95 different datasets that 

come from the 19 mentioned time slots and have a time resolution of 5 min, 10 min, 15 min, 

30 min, and 60 min. 

The method’s steps for smoothing, feature extraction, cleaning, and clustering – as described 

in sections 4.4 to 4.6.2 – were conducted with each of these 95 different datasets. The result 

is 95 new datasets suitable to be used as input for the classifiers: Each of them consists of the 

55 features for each possible meter combination, provided the combination was not 

automatically filtered out. All candidates for the best multiclass and binary classifiers were then 

applied to these 95 new datasets, regardless of the time resolution, the classifiers were trained 

with. 

The results for the CACC2 and CMCR2C metrics that each classifier achieved for the 95 

datasets are presented after the results of the case study in appendix D, i.e., in the second 

half. Fig. 49 and Fig. 50 illustrate the results of one classifier as an example. 
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Fig. 49: CACC2 values achieved by the classifier 05min_CP_18-30 when providing it with synthetically generated 

data with 5 min time resolution and varying time slot length. 

Fig. 49 shows CACC2 metrics that are quite like the CACC2 metrics that the same classifier 

achieved when applied to the case study data – see Fig. 41 – but on a higher level and in a 

narrower band. The CACC2 values are in a band between 0.35 and 0.44. Similar to the case 

of the case study data, the values seem to slightly decrease with decreasing time slot length. 

The higher level is because the synthetically generated data is exclusively from electricity 

meters. The lower CACC2 level in the graph of the case study, Fig. 41, can be explained by 

the main meter-submeter relations of heat meters that the method failed to identify. If the heat 

meter combinations would be removed from the calculation of the CACC2, the CACC2 values 

achieved with the case study data would increase to around 0.4, which means that 

approximately 40% of the real main meter-submeter relations would have been correctly 

detected. 

Regarding the misclassification metric CMCR2C, the graph of the synthetically generated data, 

see Fig. 50, looks quite different from the case study graph displayed in Fig. 42. For datasets 

derived from monitoring data with a time slot length of 3 months, 5 weeks, or 2 weeks there 

were practically no misclassifications – the CMCR2C value is either exactly zero or at least 

near zero. For the case of the case study data, the value was around 0.03. On the other hand, 

for time slot lengths of 1 week, the mean CMCR2C value of around 0.18 is much higher than 

the value achieved with the case study data, which was around 0.06. 

When analyzing the results in the second half of appendix D, the same can be observed with 

the other cases: The method achieves relatively low CMCR2C values at time slot lengths larger 

than 1 week and relatively high CMCR2C values at time slot lengths of 1 week. 
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Fig. 50: CMCR2C values achieved by the classifier 05min_CP_18-30 when providing it with synthetically 

generated data with 5 min time resolution and varying time slot length. 

Further, as already indicated during the selection of the six final best classifiers in section 5.2, 

the prediction results that the classifier candidates achieved with the synthetically generated 

validation data with a time resolution of 30 min and 60 min are relatively poor. In most of the 

cases, the accuracy metric CACC2 is below 0.1, i.e., less than 10% of the real main meter-

submeter relations were detected by the method. 

Even though some of the 30 min and 60 min classifiers achieved CMCR2C values like those 

displayed in Fig. 50, the low CACC2 metrics are deemed unacceptable. Thus, the six final best 

classifiers were selected from those that were trained with data that has a time resolution of 

5 min, 10 min, or 15 min. 

Fig. 51 and Fig. 52 illustrate the prediction performance achieved by these final best classifiers 

when used on the validation data derived from the synthetically generated data. The figures 

show the influence of the time slot length of the datasets on the CACC2 and CMCR2C metrics. 

A comparison of Fig. 51 with its counterpart, the graph of the CACC2 metrics achieved with 

the case study data, Fig. 43, reveals that there are significant differences: For the case study 

data, the CACC2 values are on a similar level, in case of the synthetically generated data, they 

are not. 
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Fig. 51: Mean CACC2 values achieved by the six final classifiers when providing them with synthetically 
generated data with varying time slot length – the time resolution of the provided data fitting to the resolution that 

the models were trained for. 

While the CACC2 values of all six classifiers stayed almost constant in a band between 0.2 

and 0.27 in the case of the case study, Fig. 51 shows that the values stay almost constant at 

very distinct levels in the case of the synthetically generated data. The classifier 05min_CP_18-

30 shows values around 0.4, while 15min_C_28-30 stays slightly above values of 0.15. All 

other classifiers have almost constant values on levels in between those two extremes. 

This very significant difference between the two sources of validation data indicates that the 

classifiers are somewhat biased towards the case study data. An investigation of the CMCR2C 

metrics, displayed in Fig. 52 indicates that the bias does not render the method useless for 

other data besides the case study data. Except for the case of data from time slots with a 

length of 1 week, the six best classifiers achieved even lower and thus better CMCR2C metrics 

with the synthetically generated validation data than with the case study validation data. 

Fig. 52 presents that the CMCR2C metrics of the two 5 min classifiers and classifier 

15min_C_28-30 show a similar pattern as in Fig. 50: Low or near zero CMCR2C values at time 

slot lengths larger than 1 week and relatively high CMCR2C values at time slot lengths of 

1 week. The other three classifiers also achieved relatively low CMCR2C values for the 1-week 

time slot. 
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Fig. 52: Mean CMCR2C values achieved by the six final classifiers when providing them with synthetically 

generated data with varying time slot length – the time resolution of the provided data fitting to the resolution that 
the models were trained for 

That the method can generally achieve CACC2 values above zero while the CMCR2C metrics 

remain practically zero for most of the cases can be interpreted as proof that the method 

basically works. This means that the method correctly predicts main meter-submeter relations 

with a reasonably low chance that the predictions are misclassifications. 

Similar to the presentation of the classifier performance in the case of the case study data in 

Fig. 45 and Fig. 46, the classifier performance in case of the synthetically generated data is 

shown in Fig. 53 and Fig. 54. Apart from the cases where the time slot length is 1 week, there 

are almost no major misclassifications, as was also indicated by the near-zero CMCR2C 

metric. The only misclassifications that occurred in a noteworthy number of cases are the 

misclassifications to the main meter’s superior meter. In the case of the 5 min classifiers there 

are several of them – independent of the time slot length. 

Nevertheless, the number of misclassifications is much lower than the correctly identified real 

main meter-submeter relations. A general tendency can be observed that with increasing time 

resolution, the number of correctly identified real main meter-submeter relations increases too. 

This observation is different than the one that was made during the analysis of the results of 

the case study that were presented in Fig. 45 in the same manner. In Fig. 45, the number of 

identified real relations stayed quite constant for all cases of time resolution and time slot 

length. 
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Fig. 53: Average number of cases classified to the clusters "obvious relations", "rare partial supply" and 

"inconspicuous relations" when using the method on the synthetically generated data. 
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Fig. 54: Average number of cases classified to the cluster "obvious relations" when using the method on the 

synthetically generated data. 
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The reason for this difference appears to be the bias towards the case study data. Especially 

the classifiers with lower time resolution – 10 min and 15 min – seem to benefit from the bias. 

In the case of the case study data, it enables them to detect more real main meter-submeter 

relations and thus helps to push their CACC2 metrics towards the level of the 5 min classifiers. 

Fig. 54 is an adjusted version of Fig. 53, where the results are only presented for the cluster 

“obvious relations”. When comparing those two graphs, it becomes obvious that most of the 

real main meter-submeter relations detected by the 5 min classifiers were predicted to the 

cluster “obvious relations”. This observation is valid for all different time slot lengths. 

In the case of the 10 min and 15 min classifiers, there is a notable difference between the 

numbers of the detected real main meter-submeter relations. With the knowledge that there 

are practically no correct classifications to cluster “rare partial supply”, this means that some 

of them were classified to cluster “inconspicuous relations”. 

As the misclassifications in Fig. 54 are almost the same as in Fig. 53, the intended increased 

trustworthiness of cluster “obvious relations” was not observed for the case of the synthetically 

generated validation data. Nevertheless, the number of correctly detected real main meter-

submeter relations is relatively high compared to the number of misclassifications – especially 

when considering that the misclassifications to the main meter’s superior meter are somewhat 

debatable misclassifications. 

Fig. 55 presents the prediction results that one classifier achieved in one case. It is based upon 

the network graph of the synthetically generated data that was presented in Fig. 17 in section 

3.2. The formatting of Fig. 55 is identical to the one of Fig. 47 – the results of the same classifier 

when used on one case of the case study validation data. 

It can be seen in Fig. 55 that the classifier could correctly predict approximately 39% of the 

real main meter-submeter relations. Besides several misclassifications to a main meter’s 

superior meter, there is not one single misclassification. 10 of the 33 misclassifications to the 

main meter’s superior meter are visible in the network graph. The other 23 misclassifications 

are not displayed as the corresponding real main meter-submeter relationship was detected 

as well, and thus these misclassifications can easily be identified and filtered out. 
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Fig. 55: Network diagram illustrating the prediction performance of the classifier 05min_CP_18-30 when providing 

it with synthetically generated data from the time slot “5 weeks fourth quarter year” (equivalent to time slot 
“5 weeks fall” from the case study data) with 5 min time resolution. 



Validation 107 

 

Even though these cases can easily be dealt with, they impact certain classification evaluation 

metrics. In the top area of Fig. 55, the metrics CMCR and CMCR2 are relatively high, while the 

CMCR2C metric is exactly zero. The reason for that is that some of the misclassifications 

between a submeter and its main meter’s superior meter were classified to the cluster 

“inconspicuous relations”. As in the presented case, there are no detected real main meter-

submeter relations classified to this cluster, the impact of a cluster full of misclassifications on 

the CMCR and CMCR2 metrics is significant. Respectively, the misclassification metrics 

should have been set up in another way. Due to their actual setup, they are prone to such 

numerical issues. 

In the second half of appendix E, there are further examples of the prediction performance of 

the six final best classifiers for some cases of the synthetically generated validation data. The 

prediction performance of the classifiers generally behaves as presented in Fig. 51 and Fig. 

52: There are almost no misclassifications for cases where the time slot length is larger than 

1 week, and the number of detected real main meter-submeter relations decreases with 

decreasing time resolution. Further, C classifiers perform worse than CP classifiers. 
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6 Conclusion 

This thesis presents a method that can detect main meter-submeter relationships solely by 

analyzing the main energy monitoring data from energy meters: Measured counter values and 

instantaneous power values. The method is based on the machine learning method “random 

forest”. It is shown how the energy monitoring data must be processed to be suitable to be 

used as input for random forests. Moreover, it is shown how the random forests must be trained 

to fulfill the objective of detecting main meter-submeter relationships. 

There are already methods that fulfill a similar purpose, but they differ from the method 

developed in this thesis in various aspects: Either the methods use voltage measurements to 

infer main meter-submeter relationships, or they require that there are no unmetered 

consumers in the meter hierarchy. 

The method presented in this thesis uses the time series of counter values and instantaneous 

power values to infer main meter-submeter relationships, and it allows for some consumers to 

be unmetered. It does not directly evaluate the load profiles of the energy meters. Instead, it 

derives characterization indicators, so-called features, from the load profiles of two energy 

meters, where one is assumed to be the main meter and the other one to be the submeter. 

These features are then used as input for random forest classification. 

The method was developed based on the monitoring data of a case study, the Plus-Energy 

Office High-Rise Building – a highly efficient office building used by TU Wien. Additional, 

previously unused data from this case study and synthetically generated data were used to 

validate the method and estimate its application limits. The findings of the development and 

the validation of the method can be summarized as follows: 

• The method’s main application is the detection of main meter-submeter relations 

between electricity meters. It is not suitable for the detection of main meter-submeter 

relations between heat meters. 

• As the method focuses on detecting similar changes in load profiles, the prediction 

performance heavily depends on the situation in which the method is applied. If there 

are not enough changes in the load profiles, the method is bound to fail. 

• As the method is built to infer main meter-submeter relationships solely from monitoring 

data without additional knowledge about the meter hierarchy, it considers all possible 

meter combinations. For the case of 𝑛 energy meters, there are 𝑛 ∙ (𝑛 − 1) possible 

combinations, and features are calculated for all of them. Therefore, the calculation of 

features gets relatively compute-intensive in the case of large numbers of energy 

meters. 
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• Random forests for multiclass classification are the method’s main component. They 

classify to four clusters: “obvious relations”, “rare partial supply”, “inconspicuous 

relations”, and “no relations”. Cluster “no relations” encompasses all meter 

combinations where there is no real main meter-submeter relationship. As this is the 

case for most combinations, this cluster is by far the largest cluster. The other three 

clusters encompass the cases where there are real main meter-submeter relationships. 

Cluster “rare partial supply” includes entries where there is such a relationship, but only 

during short periods of time, e.g., a secondary power supply that is not always active. 

The method failed to correctly classify entries to this cluster. Respectively, the cluster 

could have been left out and its entries assigned to the other clusters. The other two 

clusters, “obvious relations” and “inconspicuous relations”, contain all other cases 

where there is a real main meter-submeter relationship. Predictions to the cluster 

“obvious relations” can be considered more trustworthy than those to the cluster 

“inconspicuous relations”, as there are generally fewer misclassifications to cluster 

“obvious relations”. 

• The method was developed for two different cases: 

1. Time series data from both the counter values as well as the instantaneous 

power values of energy meters are available. 

2. Only time series data of the counter values of the energy meters are available. 

• It was found that the method’s prediction performance is better in the first case – the 

one where more data is available. 

• Monitoring data in five different time resolutions were investigated: 5 min, 10 min, 

15 min, 30 min, and 60 min. Generally, it can be stated that the higher the time 

resolution, the better the prediction performance. 

• Monitoring data from time slots with six different time slot lengths were investigated: 

1 year, 6 months, 3 months, 5 weeks, 2 weeks, and 1 week. The larger the time slot 

length, the better the prediction performance. 

• Given an electricity meter hierarchy and monitoring data similar to the one of the case 

study, it can be expected that approximately 40% of the hierarchy can be inferred by 

the method while there are almost zero real misclassifications. The prerequisite for this 

is that both time series data from the counter values and the instantaneous power 

values are available, the time resolution is 5 min, and the time slot length is at least 

2 weeks. In the cases of 10 min and 15 min time resolution, the rate drops to 

approximately 34% and 26%. With the same prerequisites fulfilled, the method 
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detected only a few parts of the case study’s heat meter hierarchy – in most cases, 

only one main meter-submeter relationship out of 33. 

• The method showed a bias towards the case study’s monitoring data. This bias became 

obvious while analyzing the impact of different time resolutions for both validation data 

sources. Specifically, the results achieved with the validation data from other time slots 

of the case study’s monitoring data indicated that different time resolutions have almost 

no impact on the prediction performance. The results achieved with the synthetically 

generated validation data indicated that different time resolutions do significantly 

influence the prediction performance. As the validation results mainly differ in having 

no classifications to the cluster “inconspicuous relations” in the case of the synthetically 

generated data, it was concluded that the bias is primarily present in this cluster. For 

both validation data sources, practically all predictions to the cluster “obvious relations” 

were correct, and there were almost no misclassifications to this cluster. 

• Considering the bias towards monitoring data from the case study, the impact of 

different time resolutions on the prediction performance must be evaluated by 

analyzing only the results achieved with the synthetically generated validation data. 

These results indicate that the method should only be used for time resolutions equal 

to or higher than 15 min – specifically, 5 min, 10 min, and 15 min. For the cases of 

30 min and 60 min time resolution, less than 10% of the electricity meter hierarchy 

could be correctly identified, which is deemed too low to be useful. 

• The final output of the development of the method constituted a guide on how to 

develop classifiers for monitoring data with 5 min, 10 min, and 15 min time resolution 

out of the case study’s monitoring data from a specific 5-week time slot. As these 

classifiers are developed for two cases, (i) the case where both the counter values as 

well as the instantaneous power values of energy meters are available, and (ii) the 

case where only the meter’s counter values are available, there are six final best 

classifiers. 

Compared to the prediction performance of other, already existing, similar methods [26–30], 

the prediction performance of the method developed in this thesis is low. The other methods 

can detect between 75% and 100% of the electricity meter hierarchy, while the developed 

method achieves approximately 40% in the case of monitoring data with a 5 min time 

resolution. As the other methods were developed and evaluated under different circumstances, 

the lower prediction performance of the new method does not void its usefulness. As explained 

in section 2.5, none of the existing methods works with energy measurement data instead of 

voltage measurement data and allows for unmetered consumers. That this new method can 

do so is its unique feature. This unique feature enables the method to be the key element for 
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a process to accelerate the validation of energy monitoring systems. It can be the basic building 

block for a set of methods that aids in the tasks of generating an overview of the real energy 

meter hierarchy and identifying errors. 
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7 Outlook 

In this work it was shown that the method, which uses random forest classifiers to infer main 

meter-submeter relationships out of energy monitoring data, basically works. The prediction 

performance that can be expected from it has been evaluated for several different settings and 

cases. Besides using the method, as intended, as the key element for the envisioned process 

of accelerating the validation of energy monitoring systems, there are several further 

development steps that can be taken. Most of them aim to improve the method or extend its 

application field. 

As a first step, a more detailed analysis of the bias towards the monitoring data from the case 

study should be conducted. As a bias is generally something that might cause unexpected 

behavior, it should be avoided. It could lead to the situation that the method produces 

misclassifications because some calculated features coincidentally match the features of some 

cases of the training data. 

Another improvement step could be the revision of the decision process for the best classifier 

candidates. Especially the classification evaluation metric “custom misclassification rate” 

(CMCR) used in this process should be reworked. As this metric led to several cases where it 

was undefined due to a division by zero, the resulting heat maps have some blind spots. During 

the model selection, these blind spots appeared to be reasonable as they indicated models 

that did not fully replicate the desired multiclass classification, but during the validation, it 

became apparent that this does not necessarily mean that these models produce worse 

prediction results than other models. Maybe models hidden in these blind spots would have 

shown a better prediction performance. 

The method proved unsuitable for the classification of heat meters. One possible explanation 

is the thermal inertia and losses of the piping systems, which lead to the situation that a 

consumption change measured by a submeter will not be immediately registered by the main 

meter or that it is registered with a different magnitude. Dynamic time warping [43] might be 

an approach to tackle this issue. 

One general issue is that the computation time of the method increases exponentially with the 

number of energy meters. To reduce the computation time, an algorithm to filter out meter 

combinations that are very unlikely to have a main meter-submeter relationship could be 

implemented. E.g., the general power levels of the meters could be used to decide whether 

the meter combination should be filtered out or not. 

Even though the suggested further development steps can be considered optional, they would 

increase the method’s usefulness. Especially the reduction of the computation time would be 

beneficial when the method is used, as intended, as the key element for the envisioned process 
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of accelerating the validation of energy monitoring systems. It would allow an automatic search 

for wrongfully parameterized current transformer values in electricity meters, which was one 

of the main errors encountered in the Plus-Energy Office High-Rise Building’s energy 

monitoring system. 
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9 Appendix A: Structure and topology of the case study’s energy meters 
Overview of the structure and topology of the (Plus-)Plus-Energy Office High-Rise Building’s 

energy meters. The connecting lines indicate the main meter-submeter relationships. Except 

for the meters of the PV inverters, the meters attached to the right side of a connecting line 

can be considered as submeters of the meter attached to the left side of the connecting line. 

Meters with two counters are marked by *. 
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or
de

r data resolution: 5 min 
classifier type: multiclass 
used data sources: CP 

data resolution: 5 min 
classifier type: multiclass 
used data sources: C 

data resolution: 5 min 
classifier type: binary 
used data sources: CP 

data resolution: 5 min 
classifier type: binary 
used data sources: C 

1 c_d2_slope c_d2_slope c_d2_slope c_d2_spearman 
2 p_d1_kendall c_d2_spearman p_d1t_kendall c_d2_slope 
3 c_d2_spearman c_d1_profile_relation_neg c_d2_spearman c_d2t_spearman 
4 c_d1_profile_relation_neg c_d2t_spearman c_d1_profile_relation_neg c_d1_profile_relation_neg 
5 c_d2t_spearman c_d1_profile_relation c_d2t_spearman c_d2t_kendall 
6 p_d1t_kendall c_d2t_kendall p_m_profile_relation c_d1_profile_relation 
7 c_d1_profile_relation c_d2t_pearson p_d1_kendall c_d2t_pearson 
8 c_d2t_intercept_to_std_ln c_d2t_intercept_to_std_ln c_d2t_intercept_to_std_ln c_d2t_intercept_to_std_ln 
9 c_d2t_kendall c_d2t_deviation_slope_1_ln c_d2t_pearson c_d2_kendall 

10 p_m_profile_relation_neg c_d2_kendall c_d2t_kendall c_d2_pearson 
11 c_d2_pearson c_d2_pearson c_d1_profile_relation c_d2t_deviation_slope_1_ln 
12 p_d1_r_squared_sub c_d2_deviation_slope_1 p_d1t_spearman c_d2_deviation_slope_1 
13 p_m_profile_relation c_d2t_intercept_to_std c_d2_kendall c_d2_r_squared 
14 c_d2_kendall c_d2_r_squared p_d1_r_squared c_d2t_intercept_to_std 
15 c_d2t_deviation_slope_1_ln c_d2t_deviation_slope_1 p_m_profile_relation_neg c_d2t_r_squared_sub 
16 p_d1t_spearman c_d2t_r_squared_sub_ln c_d2_pearson c_d2t_r_squared_sub_ln 
17 c_d2_deviation_slope_1 c_d2_r_squared_sub p_d1_deviation_slope_1 c_d2_r_squared_sub 
18 p_d1_spearman c_d2t_slope p_d1_spearman c_d2t_slope 
19 p_d1_deviation_slope_1 c_d2t_r_squared c_d2t_diff_sm_mm c_d2t_diff_sm_mm 
20 c_d2t_pearson c_d2_intercept_to_std p_d1t_diff_sm_mm c_d2_intercept_to_std 
21 c_d2t_intercept_to_std c_d2t_r_squared_sub c_d2t_intercept_to_std c_d2t_r_squared 
22 c_d2t_deviation_slope_1 c_d2t_diff_sm_mm c_d2_r_squared_sub c_d2t_deviation_slope_1 
23 p_d1_r_squared c_d2t_pearson_sub_ln p_d1_r_squared_sub c_d2t_pearson_sub_ln 
24 c_d2_r_squared c_d2t_kendall_sub_ln c_d2_deviation_slope_1 c_d2t_kendall_sub_ln 
25 p_d1t_diff_sm_mm c_d2t_spearman_sub_ln p_d1t_deviation_slope_1_ln c_d2t_diff_sm_mm_ln 
26 p_d1t_deviation_slope_1_ln c_d2t_diff_sm_mm_ln c_d2_r_squared c_d2t_spearman_sub_ln 
27 c_d2_r_squared_sub c_d2t_threshold_to_std c_d2t_r_squared c_d2t_threshold_to_std 
28 c_d2t_slope smoothed c_d2t_slope smoothed 
29 c_d2t_diff_sm_mm   c_d2t_deviation_slope_1_ln   
30 p_d1t_pearson   p_d1_pearson   
31 c_d2t_r_squared   c_d2_intercept_to_std   
32 p_d1t_deviation_slope_1   p_d1t_deviation_slope_1   
33 c_d2_intercept_to_std   c_d2t_diff_sm_mm_ln   
34 p_d1_pearson   p_d1t_diff_sm_mm_ln   
35 p_d1t_diff_sm_mm_ln   c_d2t_deviation_slope_1   
36 c_d2t_r_squared_sub_ln   p_d1t_pearson   
37 p_d1_slope   c_d2t_r_squared_sub_ln   
38 p_d1t_pearson_sub_ln   p_d1_slope   
39 p_d1t_intercept_to_std_ln   c_d2t_r_squared_sub   
40 c_d2t_r_squared_sub   p_d1t_pearson_sub_ln   
41 p_d1_intercept_to_std   p_d1t_threshold_to_std   
42 c_d2t_diff_sm_mm_ln   c_d2t_pearson_sub_ln   
43 p_d1t_threshold_to_std   p_d1_intercept_to_std   
44 p_d1t_intercept_to_std   p_d1t_intercept_to_std_ln   
45 p_d1t_kendall_sub_ln   p_d1t_spearman_sub_ln   
46 c_d2t_pearson_sub_ln   c_d2t_kendall_sub_ln   
47 p_d1t_r_squared_sub_ln   p_d1t_intercept_to_std   
48 c_d2t_kendall_sub_ln   p_d1t_r_squared_sub_ln   
49 p_d1t_spearman_sub_ln   p_d1t_kendall_sub_ln   
50 p_d1t_slope   c_d2t_spearman_sub_ln   
51 c_d2t_spearman_sub_ln   p_d1t_slope   
52 c_d2t_threshold_to_std   c_d2t_threshold_to_std   
53 p_d1t_r_squared   p_d1t_r_squared   
54 p_d1t_r_squared_sub   p_d1t_r_squared_sub   
55 smoothed   smoothed   
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or
de

r data resolution: 10 min 
classifier type: multiclass 
used data sources: CP 

data resolution: 10 min 
classifier type: multiclass 
used data sources: C 

data resolution: 10 min 
classifier type: binary 
used data sources: CP 

data resolution: 10 min 
classifier type: binary 
used data sources: C 

1 c_d2_slope c_d2_slope c_d2_slope c_d2_slope 
2 p_d1_spearman c_d2_pearson p_d1_spearman c_d2t_pearson 
3 p_d1t_spearman c_d2t_slope p_d1t_spearman c_d2t_slope 
4 c_d2t_slope c_d2_spearman c_d2t_slope c_d2_pearson 
5 c_d1_profile_relation_neg c_d1_profile_relation_neg p_d1t_kendall c_d2_spearman 
6 p_d1t_kendall c_d2t_spearman c_d2_pearson c_d2t_spearman 
7 p_d1_kendall c_d1_profile_relation p_m_profile_relation_neg c_d1_profile_relation_neg 
8 p_m_profile_relation_neg c_d2t_intercept_to_std_ln p_d1_kendall c_d1_profile_relation 
9 c_d2t_intercept_to_std_ln c_d2t_pearson c_d1_profile_relation_neg c_d2t_intercept_to_std_ln 

10 c_d2t_pearson c_d2_kendall c_d2t_intercept_to_std_ln c_d2_kendall 
11 p_m_profile_relation c_d2t_kendall c_d2t_pearson c_d2t_kendall 
12 c_d2t_spearman c_d2t_intercept_to_std p_m_profile_relation c_d2_r_squared 
13 p_d1_r_squared_sub c_d2_r_squared c_d2_spearman c_d2t_intercept_to_std 
14 c_d1_profile_relation c_d2t_deviation_slope_1_ln p_d1_r_squared c_d2t_deviation_slope_1_ln 
15 p_d1_slope c_d2_intercept_to_std c_d1_profile_relation c_d2_intercept_to_std 
16 c_d2_pearson c_d2t_r_squared p_d1_slope c_d2_r_squared_sub 
17 c_d2_spearman c_d2_r_squared_sub c_d2t_spearman c_d2t_r_squared 
18 p_d1_r_squared c_d2_deviation_slope_1 p_d1_r_squared_sub c_d2t_pearson_sub_ln 
19 p_d1t_kendall_sub_ln c_d2t_r_squared_sub p_d1t_kendall_sub_ln c_d2_deviation_slope_1 
20 c_d2t_intercept_to_std c_d2t_deviation_slope_1 c_d2_r_squared c_d2t_r_squared_sub 
21 c_d2t_kendall c_d2t_pearson_sub_ln c_d2t_intercept_to_std c_d2t_spearman_sub_ln 
22 p_d1_deviation_slope_1 c_d2t_spearman_sub_ln c_d2_kendall c_d2t_diff_sm_mm 
23 c_d2_r_squared c_d2t_kendall_sub_ln p_d1_deviation_slope_1 c_d2t_deviation_slope_1 
24 p_d1t_r_squared_sub_ln c_d2t_r_squared_sub_ln p_d1t_r_squared_sub_ln c_d2t_kendall_sub_ln 
25 c_d2_kendall c_d2t_diff_sm_mm c_d2_r_squared_sub c_d2t_r_squared_sub_ln 
26 p_d1t_pearson c_d2t_threshold_to_std c_d2t_kendall c_d2t_diff_sm_mm_ln 
27 c_d2_r_squared_sub c_d2t_diff_sm_mm_ln p_d1_pearson c_d2t_threshold_to_std 
28 c_d2t_deviation_slope_1_ln smoothed p_d1t_spearman_sub_ln smoothed 
29 c_d2_intercept_to_std   c_d2_intercept_to_std   
30 p_d1_pearson   c_d2t_diff_sm_mm   
31 p_d1t_spearman_sub_ln   p_d1t_pearson   
32 p_d1t_slope   p_d1t_slope   
33 p_d1_intercept_to_std   p_d1t_deviation_slope_1   
34 p_d1t_deviation_slope_1   c_d2t_deviation_slope_1_ln   
35 p_d1t_threshold_to_std   p_d1t_threshold_to_std   
36 c_d2t_diff_sm_mm   c_d2t_diff_sm_mm_ln   
37 c_d2_deviation_slope_1   c_d2t_r_squared   
38 c_d2t_r_squared   p_d1_intercept_to_std   
39 p_d1t_intercept_to_std_ln   c_d2_deviation_slope_1   
40 p_d1t_pearson_sub_ln   p_d1t_pearson_sub_ln   
41 c_d2t_r_squared_sub   c_d2t_r_squared_sub   
42 c_d2t_deviation_slope_1   p_d1t_intercept_to_std   
43 p_d1t_intercept_to_std   c_d2t_pearson_sub_ln   
44 c_d2t_pearson_sub_ln   p_d1t_intercept_to_std_ln   
45 c_d2t_diff_sm_mm_ln   p_d1t_r_squared_sub   
46 p_d1t_r_squared_sub   p_d1t_deviation_slope_1_ln   
47 p_d1t_deviation_slope_1_ln   c_d2t_r_squared_sub_ln   
48 c_d2t_spearman_sub_ln   p_d1t_r_squared   
49 p_d1t_r_squared   c_d2t_deviation_slope_1   
50 c_d2t_r_squared_sub_ln   c_d2t_spearman_sub_ln   
51 c_d2t_kendall_sub_ln   c_d2t_kendall_sub_ln   
52 p_d1t_diff_sm_mm   p_d1t_diff_sm_mm   
53 c_d2t_threshold_to_std   c_d2t_threshold_to_std   
54 p_d1t_diff_sm_mm_ln   p_d1t_diff_sm_mm_ln   
55 smoothed   smoothed   
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or
de

r data resolution: 15 min 
classifier type: multiclass 
used data sources: CP 

data resolution: 15 min 
classifier type: multiclass 
used data sources: C 

data resolution: 15 min 
classifier type: binary 
used data sources: CP 

data resolution: 15 min 
classifier type: binary 
used data sources: C 

1 p_d1_spearman c_d2_slope p_d1_spearman c_d2_slope 
2 c_d2_slope c_d2t_kendall c_d2_slope c_d2t_kendall 
3 p_d1t_spearman c_d1_profile_relation p_d1t_spearman c_d1_profile_relation 
4 p_m_profile_relation c_d2t_slope p_m_profile_relation c_d2_kendall 
5 p_d1t_kendall c_d2_kendall p_d1t_kendall c_d2t_slope 
6 c_d2t_slope c_d1_profile_relation_neg p_d1_kendall c_d2_spearman 
7 p_d1_kendall c_d2_spearman c_d2t_slope c_d1_profile_relation_neg 
8 c_d1_profile_relation_neg c_d2t_intercept_to_std_ln c_d1_profile_relation_neg c_d2t_intercept_to_std_ln 
9 p_m_profile_relation_neg c_d2t_spearman c_d2t_kendall c_d2t_spearman 

10 c_d2_kendall c_d2_intercept_to_std c_d2t_intercept_to_std_ln c_d2t_r_squared 
11 c_d1_profile_relation c_d2_pearson c_d1_profile_relation c_d2_pearson 
12 c_d2t_intercept_to_std_ln c_d2t_deviation_slope_1_ln c_d2_kendall c_d2t_intercept_to_std 
13 c_d2t_kendall c_d2t_pearson p_d1_deviation_slope_1 c_d2t_pearson 
14 p_d1_deviation_slope_1 c_d2t_intercept_to_std p_d1_r_squared c_d2t_pearson_sub_ln 
15 p_d1_r_squared c_d2t_r_squared p_m_profile_relation_neg c_d2_intercept_to_std 
16 c_d2_spearman c_d2_r_squared c_d2_spearman c_d2t_r_squared_sub 
17 c_d2t_intercept_to_std c_d2t_r_squared_sub c_d2t_intercept_to_std c_d2_r_squared 
18 p_d1_r_squared_sub c_d2t_deviation_slope_1 p_d1_slope c_d2t_deviation_slope_1_ln 
19 p_d1_slope c_d2_r_squared_sub c_d2t_spearman c_d2_r_squared_sub 
20 c_d2t_spearman c_d2t_pearson_sub_ln p_d1_r_squared_sub c_d2t_deviation_slope_1 
21 c_d2t_r_squared_sub c_d2_deviation_slope_1 p_d1t_kendall_sub_ln c_d2t_r_squared_sub_ln 
22 c_d2_intercept_to_std c_d2t_r_squared_sub_ln c_d2t_r_squared c_d2_deviation_slope_1 
23 c_d2_deviation_slope_1 c_d2t_kendall_sub_ln c_d2_intercept_to_std c_d2t_kendall_sub_ln 
24 p_d1t_kendall_sub_ln c_d2t_spearman_sub_ln c_d2t_r_squared_sub_ln c_d2t_spearman_sub_ln 
25 p_d1t_deviation_slope_1 c_d2t_diff_sm_mm p_d1t_pearson c_d2t_threshold_to_std 
26 p_d1t_pearson c_d2t_threshold_to_std p_d1t_spearman_sub_ln c_d2t_diff_sm_mm 
27 c_d2_pearson c_d2t_diff_sm_mm_ln c_d2_pearson c_d2t_diff_sm_mm_ln 
28 c_d2t_deviation_slope_1_ln smoothed p_d1_pearson smoothed 
29 c_d2t_pearson   c_d2t_r_squared_sub   
30 p_d1_pearson   p_d1t_intercept_to_std   
31 p_d1_intercept_to_std   c_d2t_pearson   
32 p_d1t_spearman_sub_ln   p_d1t_deviation_slope_1   
33 c_d2t_deviation_slope_1   c_d2_deviation_slope_1   
34 c_d2_r_squared   c_d2_r_squared   
35 c_d2t_r_squared   p_d1t_r_squared   
36 p_d1t_slope   p_d1t_slope   
37 p_d1t_intercept_to_std   p_d1_intercept_to_std   
38 c_d2_r_squared_sub   c_d2_r_squared_sub   
39 p_d1t_r_squared_sub   c_d2t_pearson_sub_ln   
40 c_d2t_r_squared_sub_ln   c_d2t_deviation_slope_1   
41 p_d1t_intercept_to_std_ln   p_d1t_intercept_to_std_ln   
42 p_d1t_deviation_slope_1_ln   p_d1t_r_squared_sub   
43 p_d1t_pearson_sub_ln   c_d2t_deviation_slope_1_ln   
44 c_d2t_pearson_sub_ln   p_d1t_pearson_sub_ln   
45 p_d1t_r_squared   c_d2t_spearman_sub_ln   
46 p_d1t_threshold_to_std   p_d1t_deviation_slope_1_ln   
47 c_d2t_kendall_sub_ln   c_d2t_kendall_sub_ln   
48 p_d1t_r_squared_sub_ln   p_d1t_threshold_to_std   
49 c_d2t_spearman_sub_ln   p_d1t_r_squared_sub_ln   
50 c_d2t_diff_sm_mm   c_d2t_threshold_to_std   
51 c_d2t_threshold_to_std   p_d1t_diff_sm_mm   
52 p_d1t_diff_sm_mm   c_d2t_diff_sm_mm   
53 smoothed   smoothed   
54 c_d2t_diff_sm_mm_ln   p_d1t_diff_sm_mm_ln   
55 p_d1t_diff_sm_mm_ln   c_d2t_diff_sm_mm_ln   
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or
de

r data resolution: 30 min 
classifier type: multiclass 
used data sources: CP 

data resolution: 30 min 
classifier type: multiclass 
used data sources: C 

data resolution: 30 min 
classifier type: binary 
used data sources: CP 

data resolution: 30 min 
classifier type: binary 
used data sources: C 

1 c_d2_slope c_d2_slope p_d1_kendall c_d2_spearman 
2 p_d1_kendall c_d2_spearman c_d2_slope c_d2_slope 
3 p_m_profile_relation c_d2t_spearman p_m_profile_relation c_d1_profile_relation 
4 p_d1t_kendall c_d1_profile_relation_neg p_d1t_kendall c_d2t_spearman 
5 c_d2t_kendall c_d2t_intercept_to_std_ln c_d2t_kendall c_d2_pearson 
6 c_d1_profile_relation_neg c_d2t_slope p_d1t_spearman c_d2t_intercept_to_std_ln 
7 p_d1t_spearman c_d2t_kendall c_d1_profile_relation_neg c_d2t_kendall 
8 c_d2t_slope c_d1_profile_relation c_d2t_intercept_to_std_ln c_d1_profile_relation_neg 
9 c_d2t_intercept_to_std_ln c_d2_pearson c_d2t_slope c_d2t_slope 

10 p_d1_spearman c_d2_kendall p_d1_slope c_d2_kendall 
11 c_d1_profile_relation c_d2t_intercept_to_std c_d2_kendall c_d2t_pearson 
12 c_d2_kendall c_d2t_pearson c_d1_profile_relation c_d2t_intercept_to_std 
13 p_d1_slope c_d2_intercept_to_std p_d1_spearman c_d2t_r_squared_sub_ln 
14 p_m_profile_relation_neg c_d2t_spearman_sub_ln c_d2t_pearson c_d2_intercept_to_std 
15 c_d2_pearson c_d2t_deviation_slope_1 p_m_profile_relation_neg c_d2t_r_squared_sub 
16 c_d2t_intercept_to_std c_d2_r_squared c_d2t_intercept_to_std c_d2_r_squared 
17 c_d2t_spearman c_d2t_r_squared_sub c_d2_spearman c_d2t_spearman_sub_ln 
18 p_d1t_kendall_sub_ln c_d2t_deviation_slope_1_ln p_d1t_kendall_sub_ln c_d2_r_squared_sub 
19 p_d1t_slope c_d2_r_squared_sub p_d1t_slope c_d2_deviation_slope_1 
20 c_d2t_pearson c_d2_deviation_slope_1 c_d2_pearson c_d2t_r_squared 
21 p_d1t_intercept_to_std c_d2t_kendall_sub_ln c_d2t_spearman c_d2t_kendall_sub_ln 
22 c_d2_spearman c_d2t_r_squared p_d1t_intercept_to_std c_d2t_deviation_slope_1 
23 c_d2_intercept_to_std c_d2t_r_squared_sub_ln c_d2t_r_squared_sub_ln c_d2t_pearson_sub_ln 
24 p_d1t_spearman_sub_ln c_d2t_pearson_sub_ln c_d2_intercept_to_std c_d2t_deviation_slope_1_ln 
25 p_d1t_intercept_to_std_ln c_d2t_threshold_to_std p_d1t_spearman_sub_ln c_d2t_threshold_to_std 
26 c_d2t_r_squared_sub_ln c_d2t_diff_sm_mm p_d1_pearson c_d2t_diff_sm_mm 
27 p_d1t_pearson c_d2t_diff_sm_mm_ln p_d1t_intercept_to_std_ln c_d2t_diff_sm_mm_ln 
28 c_d2t_deviation_slope_1 smoothed p_d1t_pearson smoothed 
29 p_d1t_pearson_sub_ln   c_d2_r_squared   
30 p_d1_pearson   p_d1t_pearson_sub_ln   
31 c_d2_deviation_slope_1   c_d2_deviation_slope_1   
32 c_d2_r_squared   c_d2t_deviation_slope_1   
33 c_d2t_deviation_slope_1_ln   c_d2_r_squared_sub   
34 c_d2_r_squared_sub   c_d2t_spearman_sub_ln   
35 p_d1_r_squared   p_d1t_deviation_slope_1_ln   
36 p_d1t_threshold_to_std   c_d2t_r_squared_sub   
37 p_d1_intercept_to_std   p_d1_r_squared_sub   
38 p_d1_r_squared_sub   c_d2t_deviation_slope_1_ln   
39 c_d2t_spearman_sub_ln   p_d1_r_squared   
40 c_d2t_r_squared   p_d1t_r_squared_sub_ln   
41 p_d1t_deviation_slope_1   p_d1t_deviation_slope_1   
42 c_d2t_r_squared_sub   p_d1_intercept_to_std   
43 p_d1t_deviation_slope_1_ln   c_d2t_r_squared   
44 p_d1t_r_squared_sub_ln   c_d2t_pearson_sub_ln   
45 c_d2t_kendall_sub_ln   p_d1_deviation_slope_1   
46 p_d1_deviation_slope_1   c_d2t_kendall_sub_ln   
47 c_d2t_pearson_sub_ln   p_d1t_r_squared_sub   
48 c_d2t_threshold_to_std   p_d1t_threshold_to_std   
49 p_d1t_r_squared   p_d1t_r_squared   
50 c_d2t_diff_sm_mm   smoothed   
51 p_d1t_r_squared_sub   c_d2t_threshold_to_std   
52 smoothed   c_d2t_diff_sm_mm   
53 c_d2t_diff_sm_mm_ln   c_d2t_diff_sm_mm_ln   
54 p_d1t_diff_sm_mm_ln   p_d1t_diff_sm_mm_ln   
55 p_d1t_diff_sm_mm   p_d1t_diff_sm_mm   
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or
de

r data resolution: 60 min 
classifier type: multiclass 
used data sources: CP 

data resolution: 60 min 
classifier type: multiclass 
used data sources: C 

data resolution: 60 min 
classifier type: binary 
used data sources: CP 

data resolution: 60 min 
classifier type: binary 
used data sources: C 

1 p_d1_kendall c_d2_spearman c_d2_spearman c_d2_spearman 
2 p_m_profile_relation c_d1_profile_relation p_d1_kendall c_d2t_pearson 
3 c_d2_spearman c_d2t_pearson c_d1_profile_relation c_d1_profile_relation 
4 p_d1_slope c_d2_slope c_d2_pearson c_d2t_spearman 
5 c_d2t_spearman c_d2t_spearman p_d1_slope c_d2_pearson 
6 p_d1t_kendall c_d2_pearson c_d2t_spearman c_d2t_r_squared_sub_ln 
7 c_d1_profile_relation_neg c_d1_profile_relation_neg p_d1t_kendall c_d2_kendall 
8 c_d2t_pearson c_d2_kendall p_m_profile_relation c_d1_profile_relation_neg 
9 c_d1_profile_relation c_d2t_intercept_to_std_ln c_d2t_pearson c_d2_r_squared 

10 c_d2_r_squared c_d2_r_squared p_d1t_slope c_d2_slope 
11 p_d1t_slope c_d2t_kendall c_d2t_intercept_to_std_ln c_d2t_kendall 
12 c_d2_kendall c_d2t_r_squared_sub_ln c_d2t_kendall c_d2t_intercept_to_std_ln 
13 p_d1t_spearman c_d2_r_squared_sub c_d2_r_squared c_d2_r_squared_sub 
14 c_d2t_intercept_to_std_ln c_d2t_slope p_d1_spearman c_d2t_r_squared 
15 c_d2t_kendall c_d2t_r_squared c_d1_profile_relation_neg c_d2t_r_squared_sub 
16 p_m_profile_relation_neg c_d2t_intercept_to_std p_d1t_spearman_sub_ln c_d2t_intercept_to_std 
17 c_d2_pearson c_d2t_pearson_sub_ln c_d2_kendall c_d2t_slope 
18 p_d1_spearman c_d2_intercept_to_std c_d2_r_squared_sub c_d2t_pearson_sub_ln 
19 c_d2_slope c_d2t_spearman_sub_ln p_d1t_spearman c_d2_deviation_slope_1 
20 p_d1t_spearman_sub_ln c_d2t_r_squared_sub c_d2_slope c_d2t_spearman_sub_ln 
21 p_d1t_intercept_to_std_ln c_d2_deviation_slope_1 c_d2t_r_squared_sub c_d2t_kendall_sub_ln 
22 c_d2_r_squared_sub c_d2t_kendall_sub_ln p_d1t_deviation_slope_1_ln c_d2_intercept_to_std 
23 c_d2t_r_squared c_d2t_deviation_slope_1 c_d2t_intercept_to_std c_d2t_deviation_slope_1 
24 p_d1t_kendall_sub_ln c_d2t_deviation_slope_1_ln p_d1t_r_squared c_d2t_deviation_slope_1_ln 
25 c_d2_deviation_slope_1 c_d2t_threshold_to_std p_m_profile_relation_neg c_d2t_threshold_to_std 
26 p_d1t_pearson smoothed c_d2_deviation_slope_1 c_d2t_diff_sm_mm 
27 p_d1t_intercept_to_std c_d2t_diff_sm_mm c_d2t_r_squared smoothed 
28 c_d2t_intercept_to_std c_d2t_diff_sm_mm_ln p_d1t_intercept_to_std_ln c_d2t_diff_sm_mm_ln 
29 c_d2t_r_squared_sub   c_d2t_pearson_sub_ln   
30 p_d1t_deviation_slope_1_ln   p_d1t_pearson   
31 c_d2t_spearman_sub_ln   p_d1_intercept_to_std   
32 c_d2_intercept_to_std   c_d2t_spearman_sub_ln   
33 p_d1_pearson   p_d1t_deviation_slope_1   
34 p_d1t_pearson_sub_ln   p_d1t_kendall_sub_ln   
35 p_d1_intercept_to_std   p_d1t_intercept_to_std   
36 c_d2t_pearson_sub_ln   p_d1t_r_squared_sub   
37 c_d2t_slope   p_d1_pearson   
38 p_d1t_r_squared_sub_ln   p_d1_deviation_slope_1   
39 p_d1t_deviation_slope_1   p_d1t_pearson_sub_ln   
40 c_d2t_r_squared_sub_ln   c_d2t_slope   
41 p_d1_r_squared   c_d2t_r_squared_sub_ln   
42 c_d2t_kendall_sub_ln   c_d2_intercept_to_std   
43 p_d1_deviation_slope_1   c_d2t_kendall_sub_ln   
44 p_d1t_r_squared   p_d1_r_squared   
45 p_d1_r_squared_sub   p_d1t_r_squared_sub_ln   
46 p_d1t_r_squared_sub   p_d1_r_squared_sub   
47 p_d1t_threshold_to_std   c_d2t_deviation_slope_1   
48 c_d2t_deviation_slope_1   p_d1t_threshold_to_std   
49 c_d2t_threshold_to_std   c_d2t_deviation_slope_1_ln   
50 c_d2t_deviation_slope_1_ln   c_d2t_threshold_to_std   
51 smoothed   c_d2t_diff_sm_mm_ln   
52 c_d2t_diff_sm_mm   smoothed   
53 c_d2t_diff_sm_mm_ln   c_d2t_diff_sm_mm   
54 p_d1t_diff_sm_mm_ln   p_d1t_diff_sm_mm_ln   
55 p_d1t_diff_sm_mm   p_d1t_diff_sm_mm   
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11 Appendix C: Selection of the best classifier candidates 
data resolution:  5 min 
classifier type:  multiclass 

used data sources:  CP (features derived from both counter values 
and instantaneous power values are used) 
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data resolution:  5 min 
classifier type:  binary 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  5 min 
classifier type:  multiclass 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  5 min 
classifier type:  binary 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  10 min 
classifier type:  multiclass 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 

 

 



132 Appendix C: Selection of the best classifier candidates 

 

data resolution:  10 min 
classifier type:  binary 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  10 min 
classifier type:  multiclass 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  10 min 
classifier type:  binary 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  15 min 
classifier type:  multiclass 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  15 min 
classifier type:  binary 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  15 min 
classifier type:  multiclass 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  15 min 
classifier type:  binary 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  30 min 
classifier type:  multiclass 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  30 min 
classifier type:  binary 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  30 min 
classifier type:  multiclass 

used data sources:  C (only features derived from counter values are used) 

 

 



142 Appendix C: Selection of the best classifier candidates 

 

data resolution:  30 min 
classifier type:  binary 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  60 min 
classifier type:  multiclass 

used data sources:  CP (features derived from both counter values 
and instantaneous power values are used) 
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data resolution:  60 min 
classifier type:  binary 

used data sources:  CP (features derived from both counter values and 
instantaneous power values are used) 
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data resolution:  60 min 
classifier type:  multiclass 

used data sources:  C (only features derived from counter values are used) 
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data resolution:  60 min 
classifier type:  binary 

used data sources:  C (only features derived from counter values are used) 
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12 Appendix D: Classification performance of the best classifier candidates 
The tables in this appendix show the values for the CMCR2C and CACC2 metrics that were 

achieved by the best classifier candidates when provided with data from different time slots or 

with different time resolutions. For the time slots with the same time slot length, their CMCR2C 

and CACC2 metrics are averaged (e.g., the metrics for a time slot length of 5 weeks are the 

mean of the time slots “5 weeks winter”, “5 weeks spring”, “5 weeks summer”, and “5 weeks 

fall”). Cells without value indicate that at least one of the averaged CMCR2C values was “NaN”, 

which was caused by zero correctly identified main meter-submeter relations. 

data: case study data time slot: original training data 
  mean CMCR2C mean CACC2 

time resolution 5 min 10 min 15 min 30 min 60 min 5 min 10 min 15 min 30 min 60 min 

be
st

 cl
as

sif
ie

r c
an

di
da

te
s 

05min_CP_55-30 0.000 0.075 0.221 0.595 0.853 0.593 0.343 0.320 0.355 0.401 
05min_CP_18-30 0.000 0.082 0.295 0.711 0.877 0.628 0.297 0.302 0.349 0.430 
05min_CP_18-10 0.000 0.124 0.314 0.713 0.875 0.535 0.302 0.302 0.343 0.453 
05min_CP_9-30 0.000 0.145 0.328 0.689 0.873 0.622 0.308 0.326 0.390 0.471 
05min_CP_9-14 0.000 0.135 0.321 0.677 0.863 0.616 0.308 0.314 0.390 0.471 
05min_CP_7-30 0.000 0.098 0.252 0.684 0.858 0.616 0.279 0.326 0.378 0.465 
05min_CP_7-14 0.000 0.098 0.260 0.691 0.864 0.610 0.279 0.314 0.378 0.459 
05min_CP_b_55-30 0.000 0.123 0.319 0.681 0.873 0.610 0.372 0.372 0.430 0.483 
05min_CP_b_27-30 0.000 0.167 0.374 0.744 0.884 0.628 0.378 0.360 0.453 0.529 
05min_CP_b_27-13 0.000 0.167 0.384 0.741 0.886 0.622 0.378 0.355 0.448 0.523 
05min_CP_b_4-30 0.000 0.228 0.429 0.747 0.844 0.610 0.256 0.279 0.343 0.436 
05min_CP_b_4-13 0.000 0.279 0.442 0.751 0.846 0.599 0.256 0.279 0.337 0.442 
05min_C_28-30 0.000 0.057 0.323 0.768 0.894 0.593 0.331 0.349 0.395 0.483 
05min_C_7-30 0.000 0.112 0.256 0.751 0.891 0.616 0.279 0.326 0.395 0.471 
05min_C_7-13 0.000 0.112 0.243 0.745 0.893 0.587 0.279 0.331 0.395 0.459 
05min_C_5-30 0.000 0.122 0.308 0.767 0.888 0.622 0.256 0.302 0.331 0.395 
05min_C_5-14 0.000 0.122 0.311 0.775 0.892 0.622 0.256 0.302 0.320 0.401 
05min_C_b_28-30 0.000 0.197 0.318 0.786 0.885 0.593 0.331 0.349 0.424 0.512 
05min_C_b_9-30 0.000 0.192 0.479 0.819 0.908 0.610 0.343 0.360 0.453 0.529 
05min_C_b_9-15 0.000 0.194 0.475 0.822 0.909 0.610 0.337 0.360 0.453 0.529 
05min_C_b_7-30 0.000 0.183 0.380 0.797 0.895 0.622 0.337 0.360 0.442 0.523 
05min_C_b_7-17 0.000 0.183 0.376 0.795 0.892 0.628 0.337 0.366 0.442 0.523 
10min_CP_55-30 0.012 0.000 0.035 0.245 0.678 0.180 0.599 0.297 0.349 0.413 
10min_CP_40-30 0.111 0.000 0.033 0.283 0.661 0.174 0.599 0.314 0.343 0.424 
10min_CP_40-10 0.013 0.000 0.032 0.289 0.699 0.174 0.581 0.320 0.360 0.436 
10min_CP_17-30 0.043 0.000 0.228 0.595 0.755 0.174 0.593 0.355 0.419 0.459 
10min_CP_17-15 0.043 0.000 0.228 0.593 0.755 0.174 0.593 0.349 0.419 0.459 
10min_CP_12-30 0.299 0.000 0.159 0.612 0.805 0.180 0.605 0.343 0.384 0.465 
10min_CP_12-9 0.367 0.000 0.145 0.617 0.826 0.169 0.523 0.331 0.384 0.436 
10min_CP_b_55-30 0.030 0.000 0.131 0.492 0.769 0.186 0.599 0.308 0.378 0.465 
10min_CP_b_53-8 0.030 0.000 0.121 0.475 0.761 0.186 0.453 0.297 0.366 0.459 
10min_CP_b_26-5 0.063 0.000 0.123 0.459 0.772 0.174 0.256 0.291 0.343 0.453 
10min_CP_b_2-11 0.143 0.000 0.386 0.723 0.900 0.140 0.512 0.250 0.227 0.262 
10min_C_28-30 0.023 0.004 0.052 0.452 0.904 0.180 0.599 0.279 0.331 0.413 
10min_C_7-22 0.165 0.004 0.194 0.555 0.841 0.192 0.599 0.308 0.355 0.430 
10min_C_5-23 0.254 0.004 0.200 0.647 0.852 0.174 0.593 0.302 0.343 0.436 
10min_C_3-30 0.051 0.000 0.147 0.481 0.845 0.076 0.552 0.192 0.145 0.180 
10min_C_3-15 0.051 0.000 0.163 0.486 0.814 0.076 0.552 0.186 0.145 0.180 
10min_C_b_28-30 0.086 0.010 0.136 0.422 0.717 0.186 0.593 0.297 0.343 0.436 
10min_C_b_8-16 0.108 0.009 0.182 0.523 0.762 0.192 0.622 0.314 0.360 0.448 
10min_C_b_4-22 0.050 0.000 0.319 0.667 0.832 0.110 0.564 0.186 0.192 0.267 
10min_C_b_3-30 0.059 0.000 0.163 0.522 0.808 0.093 0.558 0.209 0.192 0.198 
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data: case study data time slot: original training data 

  mean CMCR2C mean CACC2 

time resolution 5 min 10 min 15 min 30 min 60 min 5 min 10 min 15 min 30 min 60 min 
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15min_CP_55-30 0.000 0.000 0.004 0.169 0.693 0.163 0.169 0.593 0.308 0.349 
15min_CP_53-5 0.000 0.000 0.000 0.043 0.590 0.151 0.163 0.262 0.297 0.314 
15min_CP_45-5 0.000 0.000 0.000 0.038 0.587 0.151 0.163 0.256 0.297 0.320 
15min_CP_25-13 0.000 0.000 0.004 0.174 0.667 0.163 0.169 0.599 0.331 0.372 
15min_CP_25-4 0.000 0.000 0.000 0.050 0.869 0.151 0.163 0.209 0.273 0.302 
15min_CP_13-21 0.000 0.000 0.004 0.321 0.821 0.169 0.186 0.581 0.308 0.337 
15min_CP_8-8 0.000 0.000 0.000 0.233 0.719 0.140 0.169 0.349 0.227 0.198 
15min_CP_b_55-30 0.000 0.000 0.010 0.263 0.703 0.169 0.180 0.593 0.326 0.407 
15min_CP_b_18-4 0.033 0.000 0.045 0.238 0.672 0.169 0.163 0.244 0.279 0.349 
15min_CP_b_7-10 0.069 0.061 0.000 0.203 0.636 0.157 0.180 0.483 0.273 0.250 
15min_CP_b_2-30 0.143 0.156 0.000 0.391 0.837 0.105 0.157 0.581 0.227 0.192 
15min_C_28-30 0.000 0.000 0.007 0.200 0.808 0.157 0.180 0.587 0.326 0.360 
15min_C_3-22 0.000 0.000 0.004 0.343 0.861 0.145 0.186 0.587 0.273 0.343 
15min_C_b_28-30 0.000 0.031 0.019 0.296 0.738 0.169 0.180 0.593 0.331 0.384 
15min_C_b_24-2 0.000 0.000 0.000 0.048 0.333 0.029 0.105 0.105 0.116 0.140 
15min_C_b_8-19 0.063 0.000 0.028 0.378 0.677 0.174 0.186 0.610 0.326 0.378 
15min_C_b_3-3 0.000 0.000 0.000 0.163 0.441 0.116 0.134 0.157 0.209 0.221 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.368 0.081 0.140 0.157 0.570 0.291 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.419 0.099 0.134 0.157 0.587 0.285 
30min_CP_27-15 0.000 0.000 0.000 0.000 0.517 0.099 0.128 0.145 0.605 0.302 
30min_CP_20-20 0.000 0.042 0.013 0.004 0.603 0.116 0.134 0.151 0.610 0.320 
30min_CP_8-29 0.000 0.042 0.013 0.000 0.758 0.081 0.134 0.151 0.587 0.308 
30min_CP_5-7 0.000 0.000 0.000 0.000 0.294 0.099 0.128 0.145 0.320 0.279 
30min_CP_b_55-30 0.000 0.000 0.000 0.000 0.396 0.099 0.151 0.163 0.616 0.320 
30min_CP_b_45-30 0.000 0.000 0.000 0.000 0.417 0.099 0.151 0.157 0.622 0.326 
30min_CP_b_45-18 0.000 0.000 0.000 0.000 0.417 0.099 0.151 0.157 0.622 0.326 
30min_CP_b_34-30 0.000 0.000 0.000 0.000 0.438 0.099 0.145 0.157 0.628 0.314 
30min_C_28-28 0.000 0.000 0.000 0.000 0.757 0.058 0.122 0.151 0.564 0.267 
30min_C_28-17 0.000 0.000 0.000 0.000 0.757 0.058 0.122 0.151 0.564 0.267 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.383 0.070 0.134 0.157 0.587 0.291 
30min_C_b_15-30 0.000 0.000 0.000 0.000 0.344 0.041 0.128 0.157 0.587 0.244 
30min_C_b_15-12 0.000 0.000 0.036 0.000 0.364 0.047 0.134 0.157 0.570 0.244 
30min_C_b_13-12 0.000 0.000 0.069 0.000 0.384 0.035 0.134 0.157 0.576 0.262 
60min_CP_3-30 0.000 0.000 0.000 0.000 0.000 0.023 0.081 0.081 0.099 0.581 
60min_CP_3-15 0.000 0.000 0.000 0.000 0.000 0.023 0.081 0.081 0.099 0.576 
60min_CP_b_55-30   0.000 0.000 0.000 0.000 0.000 0.093 0.116 0.122 0.599 
60min_CP_b_37-30   0.000 0.000 0.000 0.000 0.000 0.087 0.122 0.122 0.605 
60min_CP_b_37-20   0.000 0.000 0.000 0.000 0.000 0.087 0.122 0.122 0.605 
60min_CP_b_16-30   0.000 0.000 0.000 0.000 0.000 0.070 0.128 0.134 0.610 
60min_CP_b_16-14   0.000 0.000 0.000 0.000 0.000 0.076 0.122 0.134 0.610 
60min_C_4-27 0.000 0.000 0.000 0.000 0.000 0.052 0.076 0.099 0.116 0.558 
60min_C_4-14 0.000 0.067 0.000 0.000 0.000 0.052 0.081 0.099 0.116 0.558 
60min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.047 0.099 0.110 0.134 0.570 
60min_C_b_22-14 0.000 0.000 0.000 0.000 0.000 0.047 0.099 0.110 0.134 0.581 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.000 0.052 0.064 0.110 0.110 0.552 
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data: case study data time resolution: 5 min 

  mean CMCR2C mean CACC2 
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05min_CP_55-30 0.000 0.004 0.010 0.011 0.005 0.007 0.308 0.302 0.289 0.283 0.251 0.234 
05min_CP_18-30 0.000 0.000 0.027 0.029 0.028 0.058 0.262 0.265 0.260 0.257 0.243 0.225 
05min_CP_18-10 0.009 0.005 0.026 0.026 0.027 0.054 0.267 0.265 0.257 0.257 0.244 0.224 
05min_CP_9-30 0.000 0.013 0.015 0.024 0.047 0.113 0.262 0.256 0.250 0.240 0.241 0.219 
05min_CP_9-14 0.000 0.017 0.015 0.021 0.048 0.106 0.256 0.259 0.249 0.240 0.237 0.221 
05min_CP_7-30 0.000 0.013 0.015 0.020 0.045 0.086 0.267 0.267 0.247 0.247 0.240 0.230 
05min_CP_7-14 0.000 0.013 0.015 0.022 0.050 0.093 0.267 0.267 0.249 0.249 0.237 0.227 
05min_CP_b_55-30 0.000 0.009 0.023 0.029 0.015 0.029 0.314 0.326 0.310 0.307 0.286 0.269 
05min_CP_b_27-30 0.000 0.009 0.031 0.065 0.050 0.076 0.308 0.328 0.323 0.313 0.291 0.279 
05min_CP_b_27-13 0.000 0.009 0.031 0.070 0.046 0.087 0.308 0.326 0.320 0.311 0.291 0.275 
05min_CP_b_4-30 0.021 0.031 0.049 0.086 0.081 0.191 0.267 0.267 0.253 0.249 0.257 0.227 
05min_CP_b_4-13 0.021 0.032 0.044 0.086 0.080 0.205 0.267 0.262 0.253 0.249 0.257 0.225 
05min_C_28-30 0.000 0.033 0.005 0.027 0.019 0.057 0.267 0.259 0.243 0.249 0.238 0.230 
05min_C_7-30 0.000 0.000 0.003 0.022 0.042 0.113 0.250 0.238 0.231 0.222 0.222 0.215 
05min_C_7-13 0.000 0.000 0.007 0.022 0.042 0.106 0.256 0.238 0.234 0.224 0.227 0.215 
05min_C_5-30 0.000 0.000 0.003 0.012 0.045 0.106 0.262 0.244 0.238 0.233 0.225 0.215 
05min_C_5-14 0.000 0.000 0.003 0.012 0.045 0.104 0.262 0.244 0.237 0.235 0.224 0.218 
05min_C_b_28-30 0.021 0.012 0.018 0.032 0.053 0.160 0.273 0.265 0.256 0.263 0.246 0.243 
05min_C_b_9-30 0.000 0.000 0.035 0.060 0.088 0.203 0.267 0.247 0.247 0.253 0.249 0.237 
05min_C_b_9-15 0.000 0.000 0.040 0.060 0.093 0.211 0.267 0.247 0.247 0.254 0.249 0.237 
05min_C_b_7-30 0.000 0.000 0.024 0.049 0.097 0.192 0.262 0.247 0.246 0.257 0.251 0.237 
05min_C_b_7-17 0.000 0.000 0.024 0.049 0.092 0.192 0.262 0.244 0.246 0.257 0.251 0.237 

10min_CP_55-30 0.000 0.000 0.033 0.015 0.019 0.024 0.081 0.110 0.132 0.158 0.170 0.156 
10min_CP_40-30 0.000 0.000 0.042 0.079 0.027 0.032 0.116 0.128 0.135 0.161 0.167 0.157 
10min_CP_40-10 0.000 0.000 0.033 0.046 0.027 0.032 0.110 0.122 0.134 0.160 0.166 0.157 
10min_CP_17-30 0.000 0.000 0.045 0.019 0.042 0.050 0.169 0.174 0.164 0.172 0.182 0.177 
10min_CP_17-15 0.000 0.000 0.045 0.019 0.042 0.050 0.169 0.169 0.164 0.172 0.182 0.177 
10min_CP_12-30 0.012 0.006 0.009 0.057 0.062 0.191 0.169 0.172 0.166 0.163 0.173 0.172 
10min_CP_12-9 0.012 0.006 0.009 0.057 0.063 0.166 0.169 0.169 0.166 0.161 0.170 0.167 
10min_CP_b_55-30 0.000 0.000 0.008 0.036 0.060 0.074 0.081 0.105 0.145 0.174 0.182 0.174 
10min_CP_b_53-8 0.000 0.000 0.008 0.037 0.068 0.075 0.076 0.096 0.138 0.166 0.177 0.169 
10min_CP_b_26-5 0.000 0.000 0.017 0.063 0.076 0.087 0.169 0.172 0.163 0.167 0.174 0.163 
10min_CP_b_2-11 0.067 0.301 0.282 0.225 0.328 0.333 0.081 0.084 0.090 0.121 0.096 0.105 
10min_C_28-30 0.000 0.000 0.016 0.018 0.023 0.031 0.163 0.148 0.156 0.166 0.173 0.169 
10min_C_7-22 0.000 0.000 0.085 0.162 0.344 0.478 0.174 0.172 0.169 0.173 0.173 0.167 
10min_C_5-23 0.000 0.000 0.085 0.156 0.350 0.417 0.163 0.163 0.164 0.167 0.172 0.161 
10min_C_3-30 0.000 0.000 0.163 0.227 0.235 0.181 0.035 0.023 0.038 0.049 0.054 0.044 
10min_C_3-15 0.000 0.000 0.087 0.220 0.239 0.171 0.035 0.023 0.039 0.049 0.052 0.045 
10min_C_b_28-30 0.000 0.000 0.048 0.067 0.095 0.104 0.128 0.154 0.164 0.179 0.185 0.180 
10min_C_b_8-16 0.000 0.000 0.061 0.094 0.187 0.207 0.174 0.183 0.179 0.190 0.190 0.179 
10min_C_b_4-22 0.250 0.258 0.354 0.358 0.431 0.406 0.035 0.044 0.077 0.086 0.106 0.100 
10min_C_b_3-30 0.000 0.056 0.354 0.308 0.350 0.377 0.035 0.041 0.051 0.073 0.080 0.065 
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data: case study data time resolution: 5 min 
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15min_CP_55-30 0.000 0.000 0.000 0.000 0.004 0.004 0.134 0.125 0.118 0.132 0.138 0.138 
15min_CP_53-5 0.000 0.000 0.000 0.000 0.004 0.004 0.064 0.064 0.084 0.112 0.125 0.118 
15min_CP_45-5 0.000 0.000 0.000 0.000 0.005 0.004 0.093 0.087 0.093 0.116 0.121 0.115 
15min_CP_25-13 0.000 0.000 0.000 0.010 0.012 0.008 0.163 0.128 0.119 0.129 0.138 0.140 
15min_CP_25-4 0.000 0.000 0.000 0.000 0.008 0.016 0.145 0.110 0.109 0.116 0.121 0.113 
15min_CP_13-21 0.000 0.000 0.000 0.007 0.011 0.025 0.163 0.148 0.144 0.145 0.150 0.141 
15min_CP_8-8 0.000 0.021 0.019 0.005 0.106 0.013 0.047 0.052 0.068 0.086 0.090 0.092 
15min_CP_b_55-30 0.000 0.000 0.000 0.000 0.011 0.028 0.093 0.110 0.118 0.140 0.142 0.145 
15min_CP_b_18-4 0.000 0.000 0.009 0.019 0.047 0.062 0.163 0.163 0.157 0.150 0.148 0.145 
15min_CP_b_7-10 0.059 0.125 0.151 0.104 0.121 0.128 0.093 0.081 0.089 0.099 0.121 0.119 
15min_CP_b_2-30 0.167 0.204 0.195 0.197 0.203 0.229 0.058 0.073 0.081 0.073 0.065 0.070 
15min_C_28-30 0.000 0.000 0.000 0.005 0.007 0.011 0.163 0.134 0.118 0.141 0.148 0.145 
15min_C_3-22 0.000 0.000 0.010 0.021 0.049 0.084 0.151 0.145 0.141 0.141 0.137 0.124 
15min_C_b_28-30 0.000 0.000 0.010 0.011 0.028 0.028 0.163 0.140 0.135 0.147 0.156 0.150 
15min_C_b_24-2     0.000 0.000 0.167 0.000 0.000 0.000 0.004 0.013 0.007 0.016 
15min_C_b_8-19 0.000 0.000 0.034 0.066 0.106 0.107 0.180 0.163 0.164 0.166 0.161 0.156 
15min_C_b_3-3 0.000 0.000 0.000 0.000 0.014 0.000 0.116 0.116 0.106 0.099 0.102 0.092 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.025 0.000 0.006 0.012 0.025 0.042 0.061 0.058 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.021 0.000 0.012 0.020 0.033 0.061 0.070 0.068 
30min_CP_27-15 0.000 0.000 0.000 0.000 0.021 0.000 0.035 0.035 0.057 0.070 0.070 0.070 
30min_CP_20-20 0.000 0.000 0.000 0.016 0.185 0.031 0.081 0.067 0.076 0.081 0.083 0.089 
30min_CP_8-29 0.000 0.000 0.000 0.019 0.046 0.044 0.099 0.093 0.090 0.086 0.094 0.086 
30min_CP_5-7 0.000 0.000 0.000 0.000 0.026 0.015 0.105 0.105 0.097 0.084 0.102 0.083 
30min_CP_b_55-30 0.000 0.000 0.000 0.000 0.019 0.000 0.017 0.023 0.039 0.064 0.073 0.070 
30min_CP_b_45-30 0.000 0.000 0.000 0.000 0.019 0.000 0.017 0.023 0.036 0.062 0.071 0.070 
30min_CP_b_45-18 0.000 0.000 0.000 0.000 0.019 0.000 0.017 0.023 0.036 0.062 0.071 0.070 
30min_CP_b_34-30 0.000 0.000 0.000 0.000 0.019 0.025 0.023 0.035 0.057 0.074 0.074 0.073 
30min_C_28-28   0.000 0.000 0.000 0.036 0.000 0.000 0.015 0.023 0.042 0.036 0.035 
30min_C_28-17   0.000 0.000 0.000 0.036 0.000 0.000 0.015 0.023 0.044 0.036 0.035 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.031 0.000 0.006 0.023 0.028 0.057 0.047 0.042 
30min_C_b_15-30 0.000 0.000 0.000 0.000 0.042 0.000 0.006 0.017 0.033 0.041 0.035 0.029 
30min_C_b_15-12 0.000 0.000 0.000 0.000 0.036 0.000 0.006 0.017 0.041 0.044 0.035 0.031 
30min_C_b_13-12 0.000 0.000 0.000 0.000 0.028 0.000 0.006 0.017 0.033 0.042 0.045 0.035 
60min_CP_3-30 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.009 0.022 0.038 0.032 0.020 
60min_CP_3-15 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.012 0.023 0.036 0.031 0.022 
60min_CP_b_55-30         0.083 0.000 0.000 0.000 0.000 0.000 0.012 0.013 
60min_CP_b_37-30         0.056 0.000 0.000 0.000 0.000 0.000 0.015 0.016 
60min_CP_b_37-20         0.056 0.000 0.000 0.000 0.000 0.000 0.015 0.016 
60min_CP_b_16-30     0.000 0.000 0.092 0.000 0.000 0.000 0.006 0.013 0.019 0.019 
60min_CP_b_16-14     0.000 0.000 0.092 0.000 0.000 0.000 0.006 0.012 0.019 0.019 
60min_C_4-27   0.000 0.125 0.000 0.077 0.167 0.000 0.003 0.019 0.033 0.035 0.022 
60min_C_4-14     0.125 0.000 0.073 0.167 0.000 0.000 0.017 0.033 0.036 0.022 
60min_C_b_28-30     0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.019 0.039 0.028 
60min_C_b_22-14     0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.020 0.042 0.029 
60min_C_b_6-30 0.000   0.000 0.000 0.000 0.000 0.006 0.000 0.010 0.019 0.031 0.023 
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data: case study data time resolution: 10 min 

  mean CMCR2C mean CACC2 
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05min_CP_55-30 0.008 0.030 0.022 0.052 0.098 0.057 0.302 0.328 0.328 0.320 0.304 0.291 
05min_CP_18-30 0.016 0.059 0.074 0.095 0.139 0.187 0.297 0.311 0.304 0.294 0.283 0.270 
05min_CP_18-10 0.015 0.060 0.068 0.101 0.143 0.180 0.308 0.311 0.310 0.294 0.285 0.281 
05min_CP_9-30 0.043 0.053 0.100 0.125 0.200 0.260 0.297 0.308 0.307 0.291 0.297 0.283 
05min_CP_9-14 0.028 0.050 0.094 0.135 0.201 0.246 0.291 0.305 0.305 0.289 0.297 0.283 
05min_CP_7-30 0.035 0.046 0.087 0.118 0.170 0.224 0.291 0.305 0.304 0.292 0.283 0.281 
05min_CP_7-14 0.028 0.047 0.090 0.115 0.156 0.222 0.291 0.308 0.302 0.294 0.288 0.282 
05min_CP_b_55-30 0.047 0.066 0.095 0.122 0.176 0.217 0.355 0.369 0.374 0.359 0.352 0.350 
05min_CP_b_27-30 0.057 0.085 0.134 0.196 0.256 0.344 0.384 0.375 0.387 0.369 0.369 0.352 
05min_CP_b_27-13 0.058 0.078 0.131 0.194 0.260 0.337 0.378 0.378 0.385 0.366 0.368 0.352 
05min_CP_b_4-30 0.080 0.082 0.189 0.197 0.309 0.379 0.267 0.262 0.273 0.267 0.263 0.249 
05min_CP_b_4-13 0.060 0.089 0.192 0.197 0.310 0.381 0.273 0.267 0.273 0.266 0.265 0.250 
05min_C_28-30 0.000 0.030 0.071 0.117 0.178 0.251 0.308 0.328 0.324 0.302 0.308 0.307 
05min_C_7-30 0.018 0.034 0.089 0.119 0.236 0.306 0.285 0.288 0.297 0.285 0.289 0.275 
05min_C_7-13 0.018 0.026 0.088 0.112 0.241 0.277 0.285 0.291 0.297 0.286 0.289 0.279 
05min_C_5-30 0.019 0.022 0.101 0.144 0.273 0.306 0.279 0.288 0.283 0.269 0.269 0.263 
05min_C_5-14 0.019 0.017 0.100 0.144 0.278 0.324 0.273 0.288 0.286 0.270 0.269 0.266 
05min_C_b_28-30 0.018 0.065 0.136 0.169 0.295 0.381 0.314 0.334 0.337 0.321 0.321 0.324 
05min_C_b_9-30 0.068 0.105 0.202 0.296 0.404 0.520 0.320 0.317 0.327 0.307 0.318 0.323 
05min_C_b_9-15 0.068 0.118 0.216 0.297 0.407 0.518 0.320 0.317 0.328 0.310 0.320 0.323 
05min_C_b_7-30 0.037 0.093 0.184 0.261 0.378 0.496 0.302 0.311 0.330 0.315 0.321 0.326 
05min_C_b_7-17 0.037 0.093 0.180 0.249 0.374 0.496 0.302 0.311 0.330 0.314 0.321 0.324 
10min_CP_55-30 0.000 0.005 0.002 0.011 0.019 0.030 0.238 0.256 0.257 0.253 0.250 0.235 
10min_CP_40-30 0.000 0.005 0.002 0.014 0.020 0.044 0.238 0.262 0.263 0.257 0.250 0.247 
10min_CP_40-10 0.000 0.005 0.002 0.010 0.024 0.046 0.238 0.259 0.265 0.266 0.247 0.251 
10min_CP_17-30 0.009 0.011 0.015 0.027 0.053 0.069 0.250 0.282 0.281 0.283 0.263 0.260 
10min_CP_17-15 0.009 0.011 0.015 0.029 0.050 0.109 0.250 0.282 0.281 0.282 0.263 0.260 
10min_CP_12-30 0.010 0.013 0.011 0.040 0.148 0.187 0.227 0.259 0.267 0.270 0.253 0.259 
10min_CP_12-9 0.010 0.009 0.012 0.033 0.129 0.165 0.227 0.253 0.251 0.263 0.241 0.250 
10min_CP_b_55-30 0.000 0.010 0.020 0.043 0.071 0.117 0.250 0.267 0.278 0.279 0.266 0.270 
10min_CP_b_53-8 0.000 0.011 0.027 0.046 0.081 0.134 0.244 0.259 0.265 0.263 0.259 0.253 
10min_CP_b_26-5 0.000 0.011 0.049 0.061 0.099 0.146 0.233 0.253 0.249 0.253 0.238 0.230 
10min_CP_b_2-11 0.208 0.250 0.209 0.295 0.422 0.413 0.244 0.209 0.221 0.209 0.189 0.199 
10min_C_28-30 0.000 0.004 0.014 0.014 0.026 0.044 0.221 0.244 0.237 0.246 0.222 0.219 
10min_C_7-22 0.000 0.004 0.024 0.031 0.128 0.167 0.238 0.256 0.251 0.244 0.237 0.234 
10min_C_5-23 0.000 0.013 0.048 0.041 0.126 0.188 0.244 0.253 0.244 0.240 0.235 0.234 
10min_C_3-30 0.014 0.028 0.104 0.064 0.270 0.345 0.157 0.154 0.153 0.140 0.135 0.141 
10min_C_3-15 0.017 0.031 0.081 0.068 0.277 0.305 0.140 0.148 0.153 0.138 0.134 0.141 
10min_C_b_28-30 0.000 0.013 0.044 0.056 0.074 0.123 0.221 0.244 0.247 0.259 0.241 0.234 
10min_C_b_8-16 0.000 0.022 0.080 0.094 0.132 0.221 0.244 0.265 0.262 0.263 0.256 0.250 
10min_C_b_4-22 0.143 0.138 0.261 0.280 0.566 0.759 0.174 0.180 0.189 0.179 0.170 0.164 
10min_C_b_3-30 0.114 0.080 0.161 0.205 0.386 0.553 0.180 0.166 0.172 0.161 0.157 0.154 
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data: case study data time resolution: 10 min 

  mean CMCR2C mean CACC2 
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15min_CP_55-30 0.000 0.000 0.000 0.003 0.003 0.003 0.192 0.203 0.188 0.193 0.180 0.180 
15min_CP_53-5 0.000 0.000 0.000 0.000 0.004 0.000 0.169 0.172 0.164 0.164 0.157 0.157 
15min_CP_45-5 0.000 0.000 0.000 0.000 0.004 0.003 0.169 0.169 0.164 0.161 0.157 0.153 
15min_CP_25-13 0.000 0.000 0.003 0.012 0.011 0.006 0.186 0.206 0.190 0.190 0.185 0.189 
15min_CP_25-4 0.000 0.000 0.000 0.003 0.006 0.007 0.163 0.166 0.163 0.161 0.160 0.151 
15min_CP_13-21 0.000 0.000 0.003 0.017 0.029 0.044 0.186 0.201 0.195 0.198 0.190 0.177 
15min_CP_8-8 0.000 0.000 0.003 0.038 0.030 0.022 0.174 0.169 0.164 0.161 0.154 0.141 
15min_CP_b_55-30 0.000 0.000 0.000 0.027 0.030 0.022 0.180 0.203 0.196 0.205 0.189 0.198 
15min_CP_b_18-4 0.000 0.000 0.000 0.031 0.023 0.055 0.180 0.186 0.176 0.182 0.182 0.176 
15min_CP_b_7-10 0.147 0.041 0.100 0.162 0.208 0.141 0.169 0.183 0.182 0.174 0.158 0.154 
15min_CP_b_2-30 0.152 0.159 0.130 0.229 0.236 0.260 0.163 0.169 0.161 0.153 0.140 0.147 
15min_C_28-30 0.000 0.000 0.021 0.015 0.017 0.015 0.198 0.192 0.193 0.195 0.192 0.185 
15min_C_3-22 0.000 0.006 0.019 0.020 0.043 0.066 0.186 0.177 0.180 0.185 0.183 0.176 
15min_C_b_28-30 0.000 0.000 0.075 0.049 0.047 0.046 0.203 0.203 0.205 0.211 0.208 0.199 
15min_C_b_24-2 0.000 0.000 0.000 0.015 0.031 0.021 0.105 0.099 0.087 0.083 0.092 0.081 
15min_C_b_8-19 0.000 0.000 0.032 0.071 0.110 0.096 0.203 0.218 0.218 0.208 0.198 0.199 
15min_C_b_3-3 0.000 0.000 0.041 0.019 0.038 0.010 0.140 0.134 0.131 0.128 0.128 0.128 
30min_CP_55-30 0.000 0.000 0.000 0.011 0.007 0.000 0.128 0.134 0.126 0.126 0.134 0.131 
30min_CP_41-30 0.000 0.000 0.000 0.011 0.008 0.004 0.128 0.131 0.129 0.126 0.129 0.131 
30min_CP_27-15 0.000 0.000 0.000 0.021 0.021 0.007 0.134 0.137 0.134 0.124 0.125 0.129 
30min_CP_20-20 0.000 0.000 0.000 0.020 0.007 0.004 0.140 0.142 0.135 0.137 0.131 0.131 
30min_CP_8-29 0.000 0.000 0.000 0.029 0.022 0.015 0.140 0.140 0.138 0.135 0.125 0.125 
30min_CP_5-7 0.000 0.000 0.000 0.010 0.043 0.035 0.122 0.122 0.121 0.128 0.118 0.116 
30min_CP_b_55-30 0.000 0.000 0.000 0.010 0.020 0.000 0.145 0.142 0.142 0.137 0.137 0.140 
30min_CP_b_45-30 0.000 0.000 0.000 0.010 0.021 0.000 0.140 0.142 0.140 0.137 0.131 0.132 
30min_CP_b_45-18 0.000 0.000 0.000 0.010 0.021 0.000 0.140 0.142 0.140 0.137 0.131 0.131 
30min_CP_b_34-30 0.000 0.000 0.000 0.020 0.021 0.010 0.134 0.145 0.141 0.137 0.131 0.142 
30min_C_28-28 0.000 0.000 0.000 0.000 0.014 0.000 0.122 0.116 0.119 0.116 0.112 0.113 
30min_C_28-17 0.000 0.000 0.000 0.000 0.014 0.000 0.122 0.116 0.121 0.119 0.113 0.115 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.031 0.019 0.134 0.137 0.129 0.128 0.124 0.128 
30min_C_b_15-30 0.000 0.000 0.000 0.011 0.024 0.000 0.134 0.128 0.126 0.119 0.116 0.115 
30min_C_b_15-12 0.000 0.000 0.000 0.011 0.023 0.000 0.145 0.134 0.128 0.121 0.119 0.113 
30min_C_b_13-12 0.000 0.000 0.000 0.020 0.034 0.023 0.145 0.140 0.135 0.126 0.122 0.121 
60min_CP_3-30 0.000 0.000 0.042 0.042 0.190 0.056 0.041 0.041 0.060 0.062 0.047 0.042 
60min_CP_3-15 0.000 0.000 0.042 0.042 0.190 0.056 0.041 0.041 0.060 0.061 0.048 0.044 
60min_CP_b_55-30 0.000 0.000 0.000 0.000 0.025 0.000 0.029 0.035 0.054 0.052 0.055 0.055 
60min_CP_b_37-30 0.000 0.000 0.000 0.031 0.042 0.021 0.035 0.032 0.058 0.051 0.058 0.054 
60min_CP_b_37-20 0.000 0.000 0.000 0.031 0.042 0.021 0.035 0.032 0.058 0.051 0.058 0.054 
60min_CP_b_16-30 0.000 0.000 0.000 0.021 0.042 0.021 0.064 0.067 0.068 0.068 0.063 0.054 
60min_CP_b_16-14 0.000 0.000 0.000 0.021 0.042 0.019 0.058 0.067 0.068 0.070 0.064 0.055 
60min_C_4-27 0.000 0.000 0.021 0.106 0.076 0.021 0.099 0.087 0.073 0.052 0.070 0.067 
60min_C_4-14 0.000 0.000 0.021 0.064 0.076 0.021 0.105 0.093 0.073 0.057 0.071 0.070 
60min_C_b_28-30 0.000 0.000 0.000 0.000 0.016 0.000 0.099 0.105 0.081 0.083 0.087 0.080 
60min_C_b_22-14 0.000 0.000 0.000 0.015 0.028 0.000 0.105 0.102 0.084 0.084 0.087 0.074 
60min_C_b_6-30 0.000 0.000 0.000 0.023 0.056 0.021 0.099 0.096 0.074 0.055 0.057 0.060 
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data: case study data time resolution: 15 min 
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05min_CP_55-30 0.042 0.084 0.121 0.209 0.227 0.270 0.326 0.340 0.344 0.331 0.318 0.311 
05min_CP_18-30 0.108 0.192 0.199 0.265 0.329 0.432 0.314 0.294 0.311 0.317 0.301 0.278 
05min_CP_18-10 0.095 0.205 0.193 0.250 0.322 0.407 0.337 0.311 0.313 0.320 0.307 0.298 
05min_CP_9-30 0.155 0.195 0.199 0.296 0.415 0.444 0.297 0.317 0.330 0.331 0.326 0.310 
05min_CP_9-14 0.148 0.191 0.197 0.281 0.392 0.438 0.297 0.323 0.326 0.331 0.331 0.308 
05min_CP_7-30 0.139 0.161 0.180 0.225 0.338 0.425 0.297 0.317 0.315 0.323 0.311 0.292 
05min_CP_7-14 0.132 0.154 0.184 0.232 0.358 0.438 0.297 0.320 0.321 0.327 0.315 0.295 
05min_CP_b_55-30 0.176 0.176 0.273 0.353 0.405 0.476 0.355 0.366 0.387 0.394 0.376 0.372 
05min_CP_b_27-30 0.291 0.334 0.402 0.428 0.516 0.588 0.355 0.387 0.398 0.398 0.392 0.387 
05min_CP_b_27-13 0.294 0.335 0.406 0.431 0.513 0.590 0.349 0.387 0.397 0.398 0.392 0.385 
05min_CP_b_4-30 0.384 0.397 0.438 0.396 0.518 0.571 0.262 0.282 0.282 0.282 0.270 0.260 
05min_CP_b_4-13 0.378 0.379 0.437 0.395 0.518 0.587 0.267 0.285 0.282 0.283 0.278 0.263 
05min_C_28-30 0.135 0.199 0.177 0.289 0.433 0.560 0.343 0.346 0.353 0.350 0.344 0.331 
05min_C_7-30 0.111 0.173 0.225 0.300 0.452 0.556 0.291 0.317 0.327 0.321 0.314 0.308 
05min_C_7-13 0.106 0.176 0.216 0.303 0.457 0.542 0.291 0.311 0.327 0.320 0.315 0.311 
05min_C_5-30 0.105 0.166 0.221 0.338 0.475 0.571 0.297 0.305 0.311 0.295 0.291 0.267 
05min_C_5-14 0.105 0.163 0.221 0.339 0.472 0.572 0.297 0.314 0.314 0.299 0.297 0.270 
05min_C_b_28-30 0.259 0.284 0.305 0.393 0.539 0.621 0.349 0.358 0.359 0.359 0.355 0.349 
05min_C_b_9-30 0.402 0.423 0.452 0.484 0.641 0.719 0.337 0.352 0.358 0.353 0.356 0.350 
05min_C_b_9-15 0.412 0.426 0.458 0.488 0.642 0.721 0.331 0.352 0.360 0.355 0.358 0.349 
05min_C_b_7-30 0.313 0.355 0.402 0.442 0.604 0.699 0.331 0.349 0.356 0.352 0.356 0.349 
05min_C_b_7-17 0.296 0.358 0.398 0.438 0.600 0.693 0.331 0.349 0.356 0.352 0.356 0.349 

10min_CP_55-30 0.000 0.004 0.019 0.035 0.045 0.062 0.262 0.291 0.298 0.299 0.288 0.279 
10min_CP_40-30 0.000 0.004 0.039 0.040 0.062 0.107 0.267 0.294 0.305 0.301 0.291 0.286 
10min_CP_40-10 0.000 0.004 0.041 0.041 0.065 0.114 0.267 0.291 0.307 0.305 0.297 0.291 
10min_CP_17-30 0.133 0.095 0.135 0.171 0.233 0.302 0.308 0.317 0.324 0.321 0.314 0.308 
10min_CP_17-15 0.133 0.095 0.135 0.171 0.231 0.301 0.308 0.317 0.324 0.321 0.312 0.308 
10min_CP_12-30 0.008 0.053 0.080 0.162 0.186 0.362 0.291 0.302 0.314 0.311 0.298 0.297 
10min_CP_12-9 0.008 0.053 0.084 0.162 0.182 0.344 0.291 0.291 0.304 0.301 0.291 0.294 
10min_CP_b_55-30 0.000 0.018 0.083 0.127 0.171 0.228 0.291 0.320 0.324 0.324 0.326 0.313 
10min_CP_b_53-8 0.000 0.019 0.077 0.119 0.158 0.229 0.279 0.302 0.314 0.314 0.318 0.295 
10min_CP_b_26-5 0.000 0.011 0.092 0.157 0.169 0.239 0.256 0.279 0.289 0.292 0.294 0.289 
10min_CP_b_2-11 0.278 0.341 0.349 0.384 0.430 0.519 0.227 0.238 0.246 0.266 0.257 0.235 
10min_C_28-30 0.000 0.004 0.017 0.040 0.101 0.104 0.238 0.244 0.265 0.269 0.262 0.259 
10min_C_7-22 0.008 0.008 0.074 0.206 0.316 0.398 0.262 0.270 0.282 0.288 0.267 0.273 
10min_C_5-23 0.008 0.103 0.063 0.098 0.353 0.432 0.256 0.267 0.283 0.288 0.266 0.279 
10min_C_3-30 0.056 0.146 0.207 0.141 0.284 0.612 0.186 0.189 0.180 0.164 0.150 0.135 
10min_C_3-15 0.057 0.130 0.212 0.137 0.281 0.607 0.180 0.192 0.179 0.161 0.150 0.134 
10min_C_b_28-30 0.022 0.031 0.073 0.139 0.211 0.319 0.262 0.270 0.279 0.288 0.273 0.267 
10min_C_b_8-16 0.039 0.048 0.133 0.216 0.301 0.418 0.285 0.288 0.302 0.305 0.285 0.288 
10min_C_b_4-22 0.213 0.283 0.345 0.307 0.673 0.759 0.215 0.212 0.205 0.180 0.160 0.180 
10min_C_b_3-30 0.179 0.208 0.232 0.205 0.490 0.636 0.186 0.203 0.209 0.199 0.158 0.160 
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data: case study data time resolution: 15 min 

  mean CMCR2C mean CACC2 

time slot 

fu
ll_

ye
ar

 

6_
m

on
th

s 

3_
m

on
th

s 

5_
w

ee
ks

 

2_
w

ee
ks

 

1_
w

ee
k 

fu
ll_

ye
ar

 

6_
m

on
th

s 

3_
m

on
th

s 

5_
w

ee
ks

 

2_
w

ee
ks

 

1_
w

ee
k 

be
st

 cl
as

sif
ie

r c
an

di
da

te
s 

15min_CP_55-30 0.000 0.000 0.004 0.009 0.005 0.008 0.238 0.241 0.262 0.256 0.235 0.217 
15min_CP_53-5 0.000 0.000 0.002 0.009 0.006 0.003 0.192 0.201 0.208 0.221 0.203 0.195 
15min_CP_45-5 0.000 0.000 0.007 0.011 0.006 0.010 0.203 0.201 0.209 0.215 0.202 0.193 
15min_CP_25-13 0.000 0.000 0.010 0.024 0.012 0.027 0.238 0.233 0.256 0.267 0.249 0.215 
15min_CP_25-4 0.000 0.000 0.006 0.014 0.016 0.027 0.198 0.198 0.208 0.212 0.195 0.185 
15min_CP_13-21 0.000 0.000 0.013 0.051 0.068 0.115 0.244 0.247 0.249 0.249 0.230 0.218 
15min_CP_8-8 0.023 0.032 0.037 0.065 0.069 0.085 0.192 0.206 0.203 0.193 0.186 0.158 
15min_CP_b_55-30 0.000 0.000 0.025 0.035 0.021 0.051 0.250 0.259 0.269 0.278 0.250 0.238 
15min_CP_b_18-4 0.000 0.000 0.029 0.076 0.065 0.117 0.209 0.218 0.234 0.234 0.221 0.214 
15min_CP_b_7-10 0.132 0.149 0.157 0.174 0.155 0.234 0.192 0.218 0.217 0.214 0.201 0.173 
15min_CP_b_2-30 0.156 0.216 0.226 0.262 0.214 0.347 0.221 0.212 0.193 0.203 0.192 0.148 
15min_C_28-30 0.000 0.000 0.017 0.029 0.024 0.048 0.233 0.218 0.240 0.254 0.238 0.225 
15min_C_3-22 0.000 0.005 0.013 0.035 0.039 0.043 0.233 0.230 0.238 0.238 0.219 0.209 
15min_C_b_28-30 0.000 0.000 0.046 0.083 0.091 0.153 0.238 0.230 0.254 0.269 0.253 0.241 
15min_C_b_24-2 0.000 0.000 0.013 0.000 0.026 0.054 0.105 0.105 0.102 0.103 0.102 0.097 
15min_C_b_8-19 0.000 0.000 0.042 0.119 0.190 0.230 0.238 0.241 0.262 0.267 0.253 0.243 
15min_C_b_3-3 0.000 0.000 0.000 0.055 0.029 0.083 0.145 0.148 0.140 0.147 0.138 0.134 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.004 0.006 0.140 0.142 0.141 0.151 0.151 0.141 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.003 0.010 0.140 0.145 0.144 0.145 0.148 0.140 
30min_CP_27-15 0.000 0.000 0.000 0.012 0.007 0.017 0.145 0.142 0.137 0.141 0.147 0.144 
30min_CP_20-20 0.000 0.000 0.004 0.018 0.014 0.017 0.145 0.142 0.144 0.154 0.145 0.145 
30min_CP_8-29 0.000 0.000 0.007 0.105 0.043 0.043 0.157 0.157 0.157 0.154 0.144 0.131 
30min_CP_5-7 0.000 0.000 0.020 0.023 0.030 0.068 0.145 0.140 0.137 0.141 0.135 0.118 
30min_CP_b_55-30 0.000 0.000 0.000 0.007 0.010 0.027 0.151 0.154 0.154 0.167 0.161 0.157 
30min_CP_b_45-30 0.000 0.000 0.010 0.015 0.010 0.016 0.151 0.151 0.150 0.163 0.161 0.156 
30min_CP_b_45-18 0.000 0.000 0.010 0.015 0.010 0.016 0.151 0.151 0.150 0.163 0.161 0.156 
30min_CP_b_34-30 0.000 0.000 0.000 0.033 0.018 0.034 0.145 0.151 0.157 0.172 0.163 0.164 
30min_C_28-28 0.000 0.000 0.012 0.003 0.011 0.007 0.140 0.140 0.137 0.141 0.138 0.131 
30min_C_28-17 0.000 0.000 0.012 0.003 0.011 0.007 0.145 0.140 0.137 0.142 0.138 0.132 
30min_C_b_28-30 0.000 0.000 0.010 0.009 0.018 0.026 0.163 0.157 0.150 0.153 0.147 0.148 
30min_C_b_15-30 0.000 0.000 0.011 0.009 0.019 0.038 0.151 0.148 0.144 0.145 0.145 0.141 
30min_C_b_15-12 0.000 0.000 0.011 0.009 0.020 0.019 0.157 0.148 0.144 0.148 0.144 0.141 
30min_C_b_13-12 0.000 0.000 0.009 0.018 0.038 0.043 0.169 0.151 0.156 0.153 0.148 0.148 
60min_CP_3-30 0.000 0.000 0.000 0.051 0.174 0.064 0.076 0.087 0.076 0.067 0.067 0.057 
60min_CP_3-15 0.000 0.000 0.000 0.051 0.188 0.063 0.076 0.076 0.074 0.067 0.065 0.058 
60min_CP_b_55-30 0.000 0.000 0.000 0.000 0.021 0.000 0.076 0.078 0.074 0.076 0.080 0.074 
60min_CP_b_37-30 0.000 0.000 0.000 0.014 0.036 0.042 0.064 0.078 0.071 0.077 0.084 0.076 
60min_CP_b_37-20 0.000 0.000 0.000 0.014 0.036 0.042 0.064 0.078 0.071 0.077 0.084 0.076 
60min_CP_b_16-30 0.000 0.000 0.000 0.033 0.032 0.053 0.093 0.093 0.083 0.087 0.096 0.083 
60min_CP_b_16-14 0.000 0.000 0.000 0.033 0.032 0.053 0.093 0.096 0.081 0.087 0.094 0.084 
60min_C_4-27 0.000 0.000 0.000 0.000 0.060 0.095 0.105 0.096 0.099 0.090 0.094 0.086 
60min_C_4-14 0.000 0.000 0.000 0.000 0.060 0.095 0.093 0.096 0.102 0.092 0.094 0.086 
60min_C_b_28-30 0.000 0.000 0.000 0.000 0.013 0.015 0.110 0.110 0.105 0.105 0.103 0.096 
60min_C_b_22-14 0.000 0.000 0.013 0.000 0.013 0.030 0.110 0.110 0.108 0.106 0.103 0.092 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.034 0.076 0.099 0.093 0.097 0.094 0.093 0.087 
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data: case study data time resolution: 30 min 
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05min_CP_55-30 0.407 0.470 0.601 0.650 0.661 0.708 0.320 0.352 0.359 0.340 0.343 0.324 
05min_CP_18-30 0.634 0.627 0.652 0.715 0.727 0.760 0.355 0.363 0.343 0.328 0.344 0.327 
05min_CP_18-10 0.621 0.622 0.651 0.722 0.732 0.770 0.355 0.369 0.347 0.324 0.349 0.328 
05min_CP_9-30 0.631 0.666 0.678 0.714 0.734 0.775 0.407 0.392 0.395 0.368 0.374 0.340 
05min_CP_9-14 0.611 0.643 0.659 0.693 0.718 0.767 0.413 0.398 0.397 0.369 0.374 0.340 
05min_CP_7-30 0.582 0.589 0.643 0.688 0.719 0.752 0.407 0.395 0.387 0.362 0.363 0.342 
05min_CP_7-14 0.599 0.601 0.658 0.705 0.728 0.760 0.407 0.398 0.390 0.363 0.365 0.343 
05min_CP_b_55-30 0.712 0.697 0.706 0.743 0.763 0.781 0.390 0.413 0.427 0.413 0.419 0.410 
05min_CP_b_27-30 0.754 0.748 0.748 0.789 0.808 0.831 0.419 0.439 0.442 0.422 0.439 0.437 
05min_CP_b_27-13 0.756 0.750 0.749 0.785 0.807 0.832 0.419 0.433 0.439 0.422 0.436 0.430 
05min_CP_b_4-30 0.756 0.739 0.719 0.749 0.756 0.788 0.337 0.358 0.374 0.347 0.349 0.314 
05min_CP_b_4-13 0.752 0.741 0.721 0.750 0.758 0.794 0.349 0.355 0.374 0.350 0.353 0.320 
05min_C_28-30 0.673 0.685 0.717 0.771 0.797 0.836 0.343 0.358 0.391 0.398 0.382 0.368 
05min_C_7-30 0.653 0.694 0.694 0.756 0.802 0.826 0.384 0.390 0.395 0.378 0.375 0.353 
05min_C_7-13 0.622 0.676 0.686 0.745 0.796 0.822 0.384 0.390 0.398 0.375 0.374 0.347 
05min_C_5-30 0.626 0.690 0.710 0.763 0.795 0.825 0.308 0.314 0.330 0.313 0.311 0.294 
05min_C_5-14 0.644 0.696 0.722 0.765 0.793 0.825 0.326 0.323 0.327 0.317 0.320 0.299 
05min_C_b_28-30 0.706 0.748 0.758 0.812 0.836 0.860 0.378 0.375 0.408 0.401 0.404 0.385 
05min_C_b_9-30 0.794 0.819 0.812 0.841 0.863 0.883 0.419 0.401 0.423 0.413 0.407 0.406 
05min_C_b_9-15 0.796 0.819 0.813 0.841 0.863 0.884 0.419 0.401 0.423 0.416 0.408 0.407 
05min_C_b_7-30 0.769 0.790 0.793 0.826 0.853 0.872 0.413 0.404 0.422 0.411 0.407 0.401 
05min_C_b_7-17 0.772 0.793 0.792 0.825 0.853 0.871 0.413 0.401 0.422 0.411 0.406 0.400 

10min_CP_55-30 0.202 0.255 0.294 0.252 0.322 0.349 0.343 0.349 0.355 0.333 0.323 0.318 
10min_CP_40-30 0.351 0.270 0.350 0.269 0.384 0.411 0.337 0.358 0.356 0.331 0.330 0.321 
10min_CP_40-10 0.317 0.313 0.363 0.275 0.402 0.407 0.343 0.360 0.359 0.334 0.333 0.321 
10min_CP_17-30 0.503 0.551 0.587 0.549 0.603 0.606 0.384 0.381 0.382 0.369 0.360 0.352 
10min_CP_17-15 0.503 0.559 0.592 0.553 0.611 0.610 0.384 0.381 0.382 0.369 0.360 0.352 
10min_CP_12-30 0.507 0.603 0.620 0.559 0.640 0.636 0.378 0.366 0.375 0.360 0.349 0.349 
10min_CP_12-9 0.473 0.607 0.620 0.582 0.620 0.646 0.372 0.366 0.368 0.352 0.343 0.344 
10min_CP_b_55-30 0.421 0.391 0.452 0.457 0.524 0.571 0.360 0.363 0.371 0.358 0.356 0.340 
10min_CP_b_53-8 0.378 0.357 0.432 0.443 0.504 0.550 0.355 0.360 0.365 0.352 0.349 0.333 
10min_CP_b_26-5 0.355 0.395 0.482 0.491 0.528 0.563 0.349 0.352 0.352 0.347 0.342 0.327 
10min_CP_b_2-11 0.667 0.658 0.699 0.698 0.752 0.751 0.262 0.253 0.270 0.256 0.237 0.244 
10min_C_28-30 0.082 0.092 0.129 0.231 0.324 0.377 0.326 0.326 0.333 0.318 0.320 0.308 
10min_C_7-22 0.363 0.433 0.485 0.601 0.460 0.602 0.314 0.323 0.337 0.324 0.326 0.318 
10min_C_5-23 0.519 0.490 0.494 0.661 0.647 0.693 0.314 0.326 0.337 0.318 0.317 0.313 
10min_C_3-30 0.400 0.247 0.522 0.432 0.525 0.608 0.180 0.177 0.166 0.166 0.151 0.157 
10min_C_3-15 0.381 0.272 0.529 0.428 0.543 0.602 0.163 0.180 0.166 0.166 0.151 0.156 
10min_C_b_28-30 0.241 0.292 0.388 0.456 0.516 0.592 0.349 0.337 0.349 0.321 0.318 0.310 
10min_C_b_8-16 0.437 0.491 0.541 0.585 0.656 0.696 0.337 0.352 0.347 0.327 0.327 0.321 
10min_C_b_4-22 0.585 0.630 0.660 0.672 0.724 0.812 0.198 0.180 0.186 0.176 0.172 0.160 
10min_C_b_3-30 0.421 0.491 0.584 0.547 0.588 0.689 0.192 0.192 0.174 0.173 0.156 0.166 
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data: case study data time resolution: 30 min 
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15min_CP_55-30 0.027 0.065 0.105 0.137 0.220 0.205 0.302 0.308 0.308 0.302 0.283 0.278 
15min_CP_53-5 0.032 0.064 0.043 0.108 0.154 0.203 0.250 0.262 0.272 0.283 0.263 0.259 
15min_CP_45-5 0.023 0.016 0.038 0.141 0.147 0.205 0.256 0.262 0.260 0.276 0.259 0.256 
15min_CP_25-13 0.019 0.082 0.118 0.167 0.229 0.240 0.302 0.302 0.298 0.302 0.286 0.285 
15min_CP_25-4 0.034 0.022 0.048 0.059 0.079 0.186 0.262 0.250 0.262 0.260 0.249 0.240 
15min_CP_13-21 0.033 0.084 0.242 0.210 0.256 0.337 0.285 0.305 0.301 0.302 0.288 0.275 
15min_CP_8-8 0.020 0.129 0.149 0.156 0.138 0.341 0.198 0.201 0.186 0.193 0.183 0.187 
15min_CP_b_55-30 0.083 0.155 0.219 0.280 0.331 0.346 0.320 0.328 0.331 0.321 0.315 0.308 
15min_CP_b_18-4 0.164 0.152 0.215 0.220 0.288 0.308 0.267 0.288 0.291 0.292 0.275 0.267 
15min_CP_b_7-10 0.184 0.245 0.296 0.308 0.320 0.344 0.233 0.233 0.222 0.240 0.222 0.218 
15min_CP_b_2-30 0.478 0.449 0.494 0.494 0.541 0.607 0.203 0.209 0.195 0.190 0.180 0.160 
15min_C_28-30 0.096 0.088 0.116 0.173 0.254 0.402 0.267 0.291 0.294 0.292 0.288 0.276 
15min_C_3-22 0.376 0.432 0.288 0.243 0.322 0.372 0.262 0.270 0.266 0.256 0.251 0.249 
15min_C_b_28-30 0.275 0.253 0.372 0.412 0.495 0.555 0.291 0.302 0.310 0.307 0.304 0.292 
15min_C_b_24-2 0.000 0.000 0.059 0.106 0.126 0.204 0.110 0.110 0.115 0.118 0.124 0.118 
15min_C_b_8-19 0.286 0.289 0.379 0.414 0.477 0.549 0.291 0.299 0.305 0.304 0.292 0.288 
15min_C_b_3-3 0.108 0.142 0.264 0.242 0.241 0.250 0.192 0.192 0.190 0.185 0.174 0.174 
30min_CP_55-30 0.000 0.000 0.010 0.022 0.026 0.098 0.163 0.174 0.195 0.208 0.188 0.179 
30min_CP_41-30 0.000 0.000 0.008 0.024 0.021 0.052 0.163 0.174 0.205 0.212 0.196 0.193 
30min_CP_27-15 0.011 0.000 0.015 0.031 0.035 0.060 0.174 0.186 0.208 0.214 0.202 0.201 
30min_CP_20-20 0.000 0.000 0.014 0.024 0.030 0.092 0.203 0.198 0.218 0.221 0.212 0.202 
30min_CP_8-29 0.011 0.000 0.053 0.024 0.120 0.119 0.192 0.180 0.202 0.217 0.206 0.182 
30min_CP_5-7 0.000 0.083 0.016 0.045 0.054 0.027 0.174 0.189 0.205 0.195 0.182 0.170 
30min_CP_b_55-30 0.000 0.000 0.024 0.069 0.058 0.054 0.192 0.203 0.217 0.228 0.230 0.228 
30min_CP_b_45-30 0.000 0.000 0.052 0.063 0.061 0.059 0.186 0.203 0.215 0.227 0.237 0.241 
30min_CP_b_45-18 0.000 0.000 0.052 0.063 0.061 0.059 0.186 0.203 0.215 0.227 0.237 0.241 
30min_CP_b_34-30 0.000 0.015 0.056 0.079 0.072 0.097 0.186 0.201 0.227 0.240 0.244 0.251 
30min_C_28-28 0.000 0.000 0.010 0.047 0.017 0.043 0.151 0.166 0.177 0.188 0.167 0.157 
30min_C_28-17 0.000 0.000 0.010 0.044 0.017 0.043 0.151 0.169 0.182 0.189 0.167 0.158 
30min_C_b_28-30 0.000 0.000 0.026 0.076 0.060 0.068 0.163 0.180 0.199 0.201 0.186 0.179 
30min_C_b_15-30 0.000 0.000 0.048 0.062 0.092 0.103 0.169 0.177 0.198 0.201 0.180 0.177 
30min_C_b_15-12 0.000 0.000 0.062 0.080 0.097 0.103 0.169 0.180 0.192 0.199 0.180 0.177 
30min_C_b_13-12 0.000 0.000 0.060 0.074 0.085 0.120 0.163 0.186 0.201 0.195 0.185 0.183 
60min_CP_3-30 0.000 0.000 0.042 0.062 0.114 0.088 0.064 0.058 0.073 0.071 0.077 0.073 
60min_CP_3-15 0.000 0.000 0.040 0.062 0.113 0.103 0.064 0.055 0.074 0.071 0.077 0.073 
60min_CP_b_55-30 0.000 0.000 0.000 0.000 0.036 0.028 0.099 0.105 0.103 0.118 0.118 0.125 
60min_CP_b_37-30 0.000 0.000 0.000 0.000 0.038 0.026 0.105 0.102 0.100 0.110 0.119 0.124 
60min_CP_b_37-20 0.000 0.000 0.000 0.000 0.038 0.026 0.105 0.102 0.100 0.110 0.119 0.124 
60min_CP_b_16-30 0.000 0.000 0.010 0.016 0.054 0.046 0.093 0.105 0.109 0.115 0.128 0.126 
60min_CP_b_16-14 0.000 0.000 0.011 0.014 0.054 0.046 0.099 0.105 0.108 0.121 0.128 0.128 
60min_C_4-27 0.000 0.044 0.010 0.067 0.194 0.088 0.116 0.128 0.116 0.118 0.108 0.105 
60min_C_4-14 0.000 0.044 0.010 0.067 0.194 0.093 0.122 0.128 0.115 0.118 0.108 0.108 
60min_C_b_28-30 0.000 0.000 0.010 0.020 0.030 0.022 0.122 0.128 0.131 0.135 0.129 0.122 
60min_C_b_22-14 0.000 0.000 0.010 0.020 0.050 0.031 0.128 0.128 0.135 0.131 0.129 0.125 
60min_C_b_6-30 0.000 0.021 0.043 0.084 0.092 0.078 0.122 0.131 0.125 0.121 0.113 0.112 
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data: case study data time resolution: 60 min 
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05min_CP_55-30 0.740 0.794 0.844 0.868 0.851 0.870 0.401 0.384 0.379 0.375 0.371 0.366 
05min_CP_18-30 0.841 0.859 0.897 0.891 0.903 0.922 0.372 0.378 0.387 0.371 0.363 0.376 
05min_CP_18-10 0.827 0.855 0.893 0.897 0.901 0.926 0.384 0.375 0.382 0.372 0.374 0.385 
05min_CP_9-30 0.871 0.886 0.898 0.899 0.912 0.916 0.436 0.422 0.426 0.410 0.398 0.413 
05min_CP_9-14 0.869 0.880 0.892 0.893 0.906 0.912 0.436 0.424 0.429 0.408 0.401 0.416 
05min_CP_7-30 0.847 0.862 0.885 0.891 0.908 0.911 0.413 0.413 0.416 0.400 0.391 0.404 
05min_CP_7-14 0.858 0.865 0.888 0.892 0.910 0.912 0.401 0.413 0.413 0.400 0.387 0.407 
05min_CP_b_55-30 0.861 0.874 0.888 0.899 0.907 0.908 0.488 0.471 0.474 0.455 0.446 0.459 
05min_CP_b_27-30 0.886 0.892 0.903 0.910 0.920 0.925 0.488 0.471 0.490 0.475 0.462 0.496 
05min_CP_b_27-13 0.886 0.890 0.903 0.910 0.920 0.925 0.483 0.474 0.487 0.474 0.464 0.493 
05min_CP_b_4-30 0.863 0.860 0.879 0.878 0.885 0.895 0.395 0.407 0.401 0.395 0.387 0.384 
05min_CP_b_4-13 0.863 0.863 0.879 0.879 0.888 0.899 0.401 0.407 0.408 0.401 0.392 0.390 
05min_C_28-30 0.868 0.883 0.918 0.915 0.923 0.935 0.419 0.422 0.429 0.430 0.416 0.446 
05min_C_7-30 0.904 0.911 0.920 0.923 0.933 0.933 0.424 0.410 0.430 0.398 0.387 0.423 
05min_C_7-13 0.905 0.915 0.919 0.920 0.931 0.932 0.419 0.407 0.430 0.397 0.385 0.416 
05min_C_5-30 0.873 0.895 0.912 0.919 0.931 0.932 0.395 0.375 0.381 0.336 0.323 0.347 
05min_C_5-14 0.870 0.897 0.914 0.920 0.931 0.933 0.407 0.375 0.385 0.340 0.327 0.355 
05min_C_b_28-30 0.887 0.898 0.913 0.922 0.932 0.938 0.453 0.451 0.464 0.443 0.433 0.462 
05min_C_b_9-30 0.917 0.920 0.927 0.931 0.937 0.944 0.465 0.453 0.469 0.451 0.446 0.481 
05min_C_b_9-15 0.917 0.920 0.926 0.931 0.937 0.943 0.465 0.453 0.472 0.452 0.448 0.484 
05min_C_b_7-30 0.906 0.912 0.921 0.926 0.934 0.940 0.471 0.448 0.465 0.451 0.439 0.480 
05min_C_b_7-17 0.908 0.915 0.921 0.926 0.934 0.940 0.471 0.442 0.464 0.449 0.439 0.478 

10min_CP_55-30 0.520 0.561 0.573 0.588 0.670 0.668 0.372 0.369 0.398 0.385 0.388 0.398 
10min_CP_40-30 0.460 0.509 0.623 0.638 0.670 0.744 0.390 0.384 0.411 0.394 0.387 0.394 
10min_CP_40-10 0.504 0.563 0.622 0.659 0.680 0.724 0.390 0.384 0.417 0.395 0.397 0.403 
10min_CP_17-30 0.764 0.744 0.740 0.757 0.771 0.796 0.407 0.401 0.429 0.407 0.427 0.419 
10min_CP_17-15 0.764 0.744 0.753 0.755 0.772 0.795 0.407 0.401 0.429 0.407 0.427 0.419 
10min_CP_12-30 0.720 0.792 0.839 0.855 0.837 0.876 0.395 0.384 0.413 0.408 0.424 0.422 
10min_CP_12-9 0.718 0.816 0.852 0.838 0.837 0.885 0.378 0.381 0.406 0.404 0.420 0.419 
10min_CP_b_55-30 0.749 0.763 0.794 0.824 0.841 0.852 0.407 0.401 0.426 0.410 0.410 0.424 
10min_CP_b_53-8 0.754 0.759 0.790 0.816 0.832 0.841 0.390 0.398 0.422 0.400 0.406 0.419 
10min_CP_b_26-5 0.800 0.806 0.820 0.830 0.847 0.855 0.390 0.390 0.403 0.397 0.394 0.404 
10min_CP_b_2-11 0.910 0.914 0.905 0.914 0.921 0.925 0.273 0.259 0.286 0.275 0.279 0.272 
10min_C_28-30 0.706 0.485 0.702 0.451 0.491 0.540 0.343 0.340 0.369 0.368 0.366 0.385 
10min_C_7-22 0.711 0.745 0.817 0.811 0.806 0.795 0.355 0.349 0.390 0.397 0.379 0.400 
10min_C_5-23 0.666 0.716 0.781 0.802 0.812 0.826 0.349 0.349 0.390 0.392 0.381 0.403 
10min_C_3-30 0.736 0.740 0.857 0.839 0.859 0.884 0.169 0.172 0.173 0.176 0.160 0.167 
10min_C_3-15 0.719 0.739 0.854 0.838 0.855 0.884 0.169 0.172 0.173 0.174 0.163 0.164 
10min_C_b_28-30 0.719 0.746 0.782 0.801 0.834 0.859 0.366 0.352 0.384 0.371 0.374 0.385 
10min_C_b_8-16 0.800 0.813 0.830 0.838 0.868 0.887 0.355 0.360 0.394 0.397 0.382 0.404 
10min_C_b_4-22 0.768 0.793 0.834 0.847 0.877 0.876 0.227 0.224 0.233 0.222 0.208 0.227 
10min_C_b_3-30 0.688 0.723 0.807 0.822 0.839 0.847 0.198 0.195 0.186 0.179 0.176 0.183 
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data: case study data time resolution: 60 min 

  mean CMCR2C mean CACC2 
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15min_CP_55-30 0.439 0.514 0.508 0.617 0.701 0.727 0.331 0.326 0.339 0.330 0.334 0.337 
15min_CP_53-5 0.427 0.446 0.402 0.516 0.648 0.643 0.302 0.294 0.320 0.312 0.315 0.320 
15min_CP_45-5 0.194 0.410 0.348 0.535 0.656 0.639 0.320 0.302 0.320 0.317 0.314 0.314 
15min_CP_25-13 0.380 0.487 0.595 0.648 0.695 0.706 0.337 0.328 0.347 0.337 0.350 0.356 
15min_CP_25-4 0.548 0.734 0.604 0.597 0.560 0.477 0.302 0.297 0.317 0.304 0.308 0.304 
15min_CP_13-21 0.627 0.683 0.762 0.745 0.772 0.737 0.337 0.331 0.337 0.311 0.315 0.315 
15min_CP_8-8 0.446 0.557 0.712 0.706 0.761 0.806 0.221 0.198 0.195 0.199 0.192 0.170 
15min_CP_b_55-30 0.665 0.687 0.730 0.754 0.769 0.780 0.355 0.346 0.369 0.358 0.363 0.371 
15min_CP_b_18-4 0.676 0.675 0.706 0.724 0.726 0.733 0.337 0.334 0.356 0.340 0.344 0.343 
15min_CP_b_7-10 0.669 0.624 0.688 0.701 0.746 0.792 0.273 0.265 0.247 0.256 0.240 0.211 
15min_CP_b_2-30 0.841 0.835 0.850 0.856 0.872 0.891 0.215 0.221 0.209 0.205 0.206 0.183 
15min_C_28-30 0.242 0.747 0.539 0.619 0.711 0.797 0.326 0.317 0.343 0.330 0.333 0.331 
15min_C_3-22 0.883 0.844 0.845 0.820 0.848 0.854 0.279 0.288 0.317 0.299 0.288 0.294 
15min_C_b_28-30 0.744 0.765 0.794 0.811 0.849 0.862 0.331 0.323 0.358 0.344 0.346 0.346 
15min_C_b_24-2 0.107 0.118 0.234 0.208 0.247 0.431 0.145 0.148 0.145 0.150 0.158 0.166 
15min_C_b_8-19 0.714 0.737 0.752 0.763 0.786 0.814 0.343 0.328 0.358 0.334 0.342 0.352 
15min_C_b_3-3 0.433 0.359 0.480 0.472 0.513 0.564 0.221 0.218 0.221 0.215 0.203 0.206 
30min_CP_55-30 0.047 0.202 0.170 0.190 0.369 0.390 0.256 0.259 0.270 0.259 0.243 0.244 
30min_CP_41-30 0.170 0.231 0.187 0.117 0.354 0.403 0.256 0.265 0.279 0.269 0.244 0.246 
30min_CP_27-15 0.266 0.252 0.242 0.254 0.476 0.568 0.273 0.273 0.285 0.281 0.273 0.272 
30min_CP_20-20 0.750 0.624 0.248 0.399 0.491 0.609 0.279 0.282 0.282 0.266 0.270 0.257 
30min_CP_8-29 0.606 0.558 0.642 0.558 0.701 0.672 0.256 0.262 0.257 0.247 0.237 0.238 
30min_CP_5-7 0.753 0.501 0.435 0.267 0.475 0.392 0.233 0.221 0.227 0.225 0.221 0.215 
30min_CP_b_55-30 0.226 0.261 0.355 0.415 0.486 0.466 0.279 0.279 0.297 0.291 0.286 0.282 
30min_CP_b_45-30 0.230 0.271 0.370 0.429 0.512 0.520 0.273 0.273 0.297 0.295 0.282 0.281 
30min_CP_b_45-18 0.230 0.271 0.370 0.429 0.512 0.520 0.273 0.273 0.297 0.295 0.282 0.281 
30min_CP_b_34-30 0.246 0.292 0.415 0.467 0.541 0.549 0.285 0.294 0.301 0.305 0.294 0.289 
30min_C_28-28 0.089 0.023 0.122 0.096 0.254 0.494 0.238 0.241 0.256 0.247 0.227 0.205 
30min_C_28-17 0.089 0.023 0.124 0.098 0.263 0.494 0.238 0.244 0.257 0.249 0.227 0.205 
30min_C_b_28-30 0.120 0.149 0.320 0.355 0.430 0.451 0.256 0.265 0.276 0.267 0.251 0.241 
30min_C_b_15-30 0.269 0.184 0.338 0.366 0.407 0.463 0.221 0.250 0.260 0.243 0.225 0.231 
30min_C_b_15-12 0.273 0.193 0.341 0.372 0.400 0.463 0.233 0.250 0.259 0.246 0.228 0.234 
30min_C_b_13-12 0.291 0.229 0.378 0.380 0.432 0.503 0.227 0.244 0.253 0.246 0.234 0.241 
60min_CP_3-30 0.025 0.042 0.267 0.151 0.229 0.379 0.157 0.134 0.161 0.148 0.137 0.126 
60min_CP_3-15 0.025 0.049 0.255 0.157 0.219 0.369 0.163 0.134 0.164 0.150 0.138 0.129 
60min_CP_b_55-30 0.000 0.000 0.055 0.081 0.113 0.162 0.163 0.186 0.177 0.208 0.201 0.187 
60min_CP_b_37-30 0.032 0.046 0.100 0.109 0.131 0.170 0.174 0.186 0.172 0.198 0.196 0.193 
60min_CP_b_37-20 0.032 0.046 0.100 0.109 0.131 0.170 0.174 0.186 0.172 0.198 0.196 0.193 
60min_CP_b_16-30 0.081 0.063 0.130 0.136 0.159 0.242 0.198 0.212 0.205 0.219 0.217 0.199 
60min_CP_b_16-14 0.105 0.064 0.130 0.138 0.167 0.242 0.198 0.209 0.205 0.217 0.217 0.199 
60min_C_4-27 0.000 0.013 0.079 0.144 0.110 0.269 0.157 0.148 0.161 0.158 0.151 0.141 
60min_C_4-14 0.000 0.014 0.065 0.109 0.108 0.272 0.151 0.142 0.163 0.158 0.153 0.138 
60min_C_b_28-30 0.000 0.016 0.066 0.080 0.112 0.112 0.174 0.163 0.185 0.185 0.182 0.174 
60min_C_b_22-14 0.000 0.016 0.121 0.073 0.161 0.179 0.169 0.166 0.192 0.188 0.182 0.167 
60min_C_b_6-30 0.000 0.031 0.190 0.136 0.188 0.256 0.145 0.163 0.166 0.167 0.161 0.131 
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data: synthetically generated data time resolution: 5 min 

  mean CMCR2C mean CACC2 
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05min_CP_55-30 0.000 0.000 0.000 0.034 0.100 0.185 0.472 0.473 0.465 0.459 0.452 0.423 
05min_CP_18-30 0.000 0.000 0.000 0.004 0.004 0.181 0.434 0.427 0.422 0.403 0.388 0.373 
05min_CP_18-10 0.000 0.000 0.000 0.004 0.004 0.142 0.430 0.424 0.422 0.403 0.386 0.376 
05min_CP_9-30 0.000 0.000 0.000 0.000 0.042 0.348 0.304 0.310 0.307 0.316 0.326 0.314 
05min_CP_9-14 0.000 0.000 0.000 0.000 0.042 0.327 0.304 0.309 0.306 0.316 0.324 0.314 
05min_CP_7-30 0.000 0.000 0.000 0.000 0.167 0.272 0.310 0.315 0.312 0.324 0.330 0.319 
05min_CP_7-14 0.000 0.000 0.000 0.000 0.181 0.282 0.313 0.313 0.311 0.324 0.331 0.321 
05min_CP_b_55-30 0.000 0.000 0.000 0.013 0.095 0.259 0.487 0.476 0.477 0.469 0.465 0.446 
05min_CP_b_27-30 0.000 0.000 0.002 0.023 0.099 0.260 0.487 0.486 0.480 0.469 0.458 0.429 
05min_CP_b_27-13 0.000 0.000 0.002 0.028 0.099 0.260 0.487 0.489 0.480 0.469 0.458 0.430 
05min_CP_b_4-30 0.000 0.000 0.002 0.008 0.044 0.189 0.383 0.369 0.373 0.372 0.361 0.356 
05min_CP_b_4-13 0.000 0.000 0.006 0.008 0.054 0.196 0.373 0.367 0.368 0.369 0.358 0.350 
05min_C_28-30 0.000 0.000 0.000 0.000 0.019 0.113 0.430 0.422 0.415 0.401 0.387 0.379 
05min_C_7-30 0.000 0.000 0.000 0.000 0.012 0.172 0.316 0.313 0.317 0.320 0.328 0.317 
05min_C_7-13 0.000 0.000 0.000 0.000 0.014 0.182 0.316 0.315 0.316 0.321 0.329 0.318 
05min_C_5-30 0.000 0.000 0.000 0.000 0.222 0.335 0.310 0.310 0.309 0.316 0.327 0.322 
05min_C_5-14 0.000 0.000 0.000 0.000 0.167 0.334 0.310 0.310 0.309 0.317 0.330 0.323 
05min_C_b_28-30 0.000 0.000 0.000 0.000 0.007 0.088 0.446 0.443 0.437 0.426 0.422 0.400 
05min_C_b_9-30 0.000 0.000 0.000 0.000 0.014 0.130 0.329 0.326 0.328 0.334 0.347 0.343 
05min_C_b_9-15 0.000 0.000 0.000 0.000 0.014 0.134 0.329 0.328 0.328 0.335 0.349 0.345 
05min_C_b_7-30 0.000 0.000 0.000 0.000 0.009 0.096 0.326 0.326 0.326 0.335 0.347 0.346 
05min_C_b_7-17 0.000 0.000 0.000 0.000 0.004 0.091 0.326 0.326 0.326 0.335 0.347 0.345 
10min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.026 0.316 0.310 0.320 0.329 0.333 0.316 
10min_CP_40-30 0.000 0.000 0.000 0.000 0.000 0.028 0.313 0.315 0.321 0.328 0.331 0.320 
10min_CP_40-10 0.000 0.000 0.000 0.000 0.000 0.023 0.304 0.309 0.320 0.328 0.328 0.315 
10min_CP_17-30 0.000 0.000 0.000 0.000 0.001 0.023 0.332 0.331 0.332 0.328 0.325 0.315 
10min_CP_17-15 0.000 0.000 0.000 0.000 0.001 0.021 0.332 0.331 0.331 0.328 0.325 0.314 
10min_CP_12-30 0.000 0.000 0.000 0.000 0.003 0.025 0.339 0.332 0.332 0.330 0.327 0.319 
10min_CP_12-9 0.000 0.000 0.000 0.000 0.001 0.022 0.332 0.326 0.328 0.328 0.324 0.316 
10min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.044 0.351 0.348 0.351 0.358 0.366 0.354 
10min_CP_b_53-8 0.000 0.000 0.000 0.000 0.000 0.033 0.348 0.347 0.345 0.351 0.356 0.343 
10min_CP_b_26-5 0.000 0.000 0.000 0.000 0.000 0.015 0.320 0.315 0.321 0.324 0.321 0.306 
10min_CP_b_2-11 0.140 0.134 0.124 0.147 0.338 0.512 0.253 0.215 0.218 0.214 0.191 0.185 
10min_C_28-30 0.000 0.000 0.000 0.000 0.000 0.006 0.291 0.293 0.288 0.282 0.270 0.245 
10min_C_7-22 0.000 0.000 0.000 0.000 0.000 0.001 0.215 0.217 0.214 0.218 0.219 0.222 
10min_C_5-23 0.000 0.000 0.002 0.009 0.027 0.032 0.256 0.245 0.251 0.251 0.240 0.240 
10min_C_3-30 0.028 0.020 0.035 0.037 0.074 0.086 0.073 0.084 0.085 0.074 0.073 0.062 
10min_C_3-15 0.020 0.000 0.029 0.012 0.037 0.050 0.085 0.090 0.088 0.078 0.074 0.065 
10min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.003 0.320 0.321 0.320 0.316 0.318 0.278 
10min_C_b_8-16 0.000 0.000 0.000 0.000 0.000 0.011 0.307 0.307 0.301 0.296 0.300 0.286 
10min_C_b_4-22 0.042 0.000 0.093 0.119 0.155 0.191 0.073 0.079 0.067 0.064 0.077 0.074 
10min_C_b_3-30 0.022 0.021 0.037 0.024 0.066 0.070 0.139 0.149 0.142 0.128 0.113 0.110 
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data: synthetically generated data time resolution: 5 min 

  mean CMCR2C mean CACC2 
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15min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.007 0.165 0.165 0.180 0.194 0.201 0.199 
15min_CP_53-5 0.000 0.000 0.000 0.000 0.000 0.000 0.142 0.141 0.148 0.147 0.155 0.158 
15min_CP_45-5 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.133 0.136 0.141 0.150 0.160 
15min_CP_25-13 0.000 0.000 0.000 0.000 0.000 0.015 0.155 0.153 0.169 0.191 0.210 0.208 
15min_CP_25-4 0.000 0.000 0.000 0.000 0.000 0.000 0.130 0.141 0.140 0.137 0.122 0.111 
15min_CP_13-21 0.015 0.008 0.000 0.003 0.006 0.046 0.171 0.168 0.166 0.172 0.178 0.176 
15min_CP_8-8 0.010 0.000 0.000 0.000 0.002 0.054 0.184 0.190 0.184 0.187 0.184 0.173 
15min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.022 0.187 0.207 0.233 0.243 0.241 0.244 
15min_CP_b_18-4 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.166 0.171 0.173 0.175 0.170 
15min_CP_b_7-10 0.019 0.010 0.005 0.004 0.014 0.125 0.168 0.160 0.161 0.166 0.165 0.153 
15min_CP_b_2-30 0.026 0.032 0.045 0.047 0.066 0.154 0.241 0.236 0.218 0.211 0.203 0.179 
15min_C_28-30 0.000 0.000 0.006 0.000 0.008 0.000 0.146 0.144 0.143 0.143 0.146 0.145 
15min_C_3-22 0.000 0.000 0.009 0.004 0.005 0.059 0.101 0.092 0.084 0.079 0.070 0.068 
15min_C_b_28-30 0.000 0.000 0.006 0.000 0.000 0.000 0.142 0.147 0.148 0.151 0.166 0.154 
15min_C_b_24-2       0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.002 
15min_C_b_8-19 0.000 0.000 0.000 0.000 0.000 0.074 0.165 0.165 0.164 0.157 0.150 0.135 
15min_C_b_3-3       0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.011 0.016 0.021 0.032 0.032 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.027 0.028 0.033 0.040 0.040 
30min_CP_27-15 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.022 0.023 0.028 0.030 0.036 
30min_CP_20-20 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.044 0.044 0.054 0.059 0.065 
30min_CP_8-29 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.041 0.044 0.042 0.046 0.061 
30min_CP_5-7 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.016 0.016 0.017 0.016 0.017 
30min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.046 0.057 0.069 0.076 0.089 
30min_CP_b_45-30 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.038 0.045 0.054 0.062 0.069 
30min_CP_b_45-18 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.038 0.046 0.054 0.062 0.069 
30min_CP_b_34-30 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.041 0.051 0.059 0.066 0.079 
30min_C_28-28 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.004 0.005 0.007 0.008 
30min_C_28-17 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.004 0.005 0.007 0.008 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.011 0.014 0.021 0.025 0.024 
30min_C_b_15-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.005 0.005 0.007 0.009 0.013 
30min_C_b_15-12 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.005 0.006 0.008 0.009 0.013 
30min_C_b_13-12 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.019 0.018 0.019 0.016 0.014 
60min_CP_3-30 0.000 0.063 0.050 0.000 0.000 0.000 0.025 0.021 0.019 0.015 0.017 0.019 
60min_CP_3-15 0.000 0.063 0.050 0.000 0.000 0.000 0.025 0.019 0.019 0.015 0.017 0.017 
60min_CP_b_55-30         0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.006 
60min_CP_b_37-30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.008 0.009 0.014 
60min_CP_b_37-20 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.008 0.009 0.014 
60min_CP_b_16-30 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.013 0.015 0.016 
60min_CP_b_16-14 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.011 0.014 0.016 
60min_C_4-27 0.667 1.000 0.792 0.750 0.375 0.673 0.003 0.000 0.003 0.002 0.005 0.004 
60min_C_4-14 0.500 0.667 0.550 0.526 0.333 0.664 0.006 0.005 0.008 0.007 0.006 0.005 
60min_C_b_28-30   0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.005 0.006 0.006 
60min_C_b_22-14   0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.006 0.006 0.004 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.014 0.012 0.012 0.010 0.011 
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data: synthetically generated data time resolution: 10 min 

  mean CMCR2C mean CACC2 

time slot 

fu
ll_

ye
ar

 

6_
m

on
th

s 

3_
m

on
th

s 

5_
w

ee
ks

 

2_
w

ee
ks

 

1_
w

ee
k 

fu
ll_

ye
ar

 

6_
m

on
th

s 

3_
m

on
th

s 

5_
w

ee
ks

 

2_
w

ee
ks

 

1_
w

ee
k 

be
st

 cl
as

sif
ie

r c
an

di
da

te
s 

05min_CP_55-30 0.000 0.000 0.005 0.019 0.111 0.236 0.497 0.492 0.487 0.478 0.456 0.425 
05min_CP_18-30 0.167 0.000 0.250 0.278 0.201 0.346 0.449 0.430 0.423 0.414 0.390 0.369 
05min_CP_18-10 0.000 0.000 0.139 0.163 0.180 0.321 0.456 0.434 0.423 0.413 0.395 0.371 
05min_CP_9-30 0.333 0.333 0.333 0.333 0.329 0.355 0.323 0.323 0.324 0.332 0.335 0.329 
05min_CP_9-14 0.333 0.333 0.333 0.333 0.331 0.358 0.326 0.323 0.324 0.332 0.334 0.331 
05min_CP_7-30 0.333 0.333 0.333 0.306 0.307 0.337 0.339 0.337 0.339 0.341 0.341 0.334 
05min_CP_7-14 0.333 0.333 0.333 0.306 0.310 0.335 0.335 0.334 0.338 0.341 0.342 0.339 
05min_CP_b_55-30 0.000 0.000 0.002 0.022 0.140 0.385 0.500 0.494 0.496 0.489 0.477 0.453 
05min_CP_b_27-30 0.000 0.006 0.015 0.042 0.169 0.454 0.506 0.502 0.501 0.490 0.472 0.447 
05min_CP_b_27-13 0.000 0.003 0.015 0.042 0.180 0.457 0.509 0.500 0.502 0.490 0.472 0.445 
05min_CP_b_4-30 0.024 0.023 0.037 0.047 0.175 0.426 0.389 0.402 0.395 0.370 0.373 0.354 
05min_CP_b_4-13 0.025 0.028 0.035 0.041 0.177 0.421 0.367 0.391 0.392 0.365 0.371 0.354 
05min_C_28-30 0.000 0.033 0.000 0.018 0.095 0.274 0.430 0.424 0.417 0.406 0.403 0.381 
05min_C_7-30 0.200 0.219 0.205 0.171 0.263 0.335 0.323 0.324 0.325 0.330 0.334 0.334 
05min_C_7-13 0.200 0.225 0.213 0.175 0.281 0.337 0.326 0.326 0.327 0.332 0.331 0.331 
05min_C_5-30 0.333 0.337 0.333 0.336 0.340 0.375 0.323 0.324 0.324 0.332 0.336 0.332 
05min_C_5-14 0.333 0.337 0.333 0.336 0.340 0.379 0.326 0.326 0.326 0.333 0.342 0.334 
05min_C_b_28-30 0.000 0.000 0.000 0.005 0.093 0.333 0.456 0.453 0.447 0.434 0.426 0.407 
05min_C_b_9-30 0.070 0.085 0.090 0.107 0.203 0.477 0.339 0.339 0.340 0.350 0.365 0.362 
05min_C_b_9-15 0.070 0.085 0.092 0.107 0.202 0.477 0.339 0.337 0.341 0.350 0.366 0.361 
05min_C_b_7-30 0.027 0.040 0.050 0.063 0.143 0.392 0.339 0.339 0.343 0.351 0.362 0.366 
05min_C_b_7-17 0.027 0.040 0.050 0.049 0.140 0.385 0.339 0.339 0.343 0.350 0.362 0.366 
10min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.007 0.329 0.329 0.339 0.346 0.349 0.331 
10min_CP_40-30 0.000 0.000 0.000 0.000 0.002 0.008 0.326 0.332 0.339 0.347 0.353 0.331 
10min_CP_40-10 0.000 0.000 0.000 0.000 0.000 0.007 0.326 0.331 0.339 0.348 0.354 0.331 
10min_CP_17-30 0.000 0.000 0.000 0.000 0.001 0.010 0.335 0.337 0.339 0.347 0.351 0.339 
10min_CP_17-15 0.000 0.000 0.000 0.000 0.001 0.010 0.335 0.337 0.339 0.347 0.351 0.339 
10min_CP_12-30 0.000 0.000 0.000 0.000 0.000 0.009 0.335 0.339 0.339 0.347 0.352 0.338 
10min_CP_12-9 0.000 0.000 0.000 0.000 0.000 0.003 0.335 0.337 0.336 0.343 0.350 0.332 
10min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.021 0.351 0.366 0.378 0.384 0.384 0.371 
10min_CP_b_53-8 0.000 0.000 0.000 0.000 0.000 0.011 0.348 0.361 0.367 0.372 0.372 0.358 
10min_CP_b_26-5 0.000 0.000 0.000 0.000 0.000 0.007 0.329 0.332 0.335 0.343 0.343 0.322 
10min_CP_b_2-11 0.096 0.113 0.100 0.151 0.254 0.414 0.269 0.263 0.263 0.244 0.226 0.194 
10min_C_28-30 0.000 0.000 0.000 0.000 0.003 0.005 0.301 0.299 0.303 0.294 0.278 0.244 
10min_C_7-22 0.000 0.000 0.000 0.000 0.000 0.003 0.234 0.247 0.248 0.254 0.251 0.234 
10min_C_5-23 0.000 0.003 0.001 0.006 0.023 0.029 0.278 0.275 0.276 0.280 0.273 0.253 
10min_C_3-30 0.000 0.027 0.000 0.010 0.047 0.051 0.092 0.078 0.075 0.067 0.064 0.063 
10min_C_3-15 0.000 0.018 0.000 0.000 0.019 0.045 0.095 0.095 0.079 0.071 0.065 0.061 
10min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.339 0.337 0.338 0.329 0.316 0.271 
10min_C_b_8-16 0.000 0.000 0.000 0.000 0.000 0.017 0.329 0.328 0.320 0.324 0.318 0.294 
10min_C_b_4-22 0.000 0.054 0.034 0.072 0.097 0.149 0.085 0.084 0.083 0.073 0.083 0.082 
10min_C_b_3-30 0.000 0.020 0.000 0.000 0.029 0.072 0.149 0.152 0.135 0.115 0.111 0.098 
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data: synthetically generated data time resolution: 10 min 

  mean CMCR2C mean CACC2 

time slot 
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15min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.005 0.218 0.258 0.263 0.260 0.250 0.231 
15min_CP_53-5 0.000 0.000 0.000 0.000 0.000 0.000 0.174 0.174 0.183 0.208 0.204 0.182 
15min_CP_45-5 0.000 0.000 0.000 0.000 0.000 0.000 0.155 0.161 0.168 0.191 0.196 0.180 
15min_CP_25-13 0.000 0.000 0.000 0.000 0.000 0.006 0.193 0.222 0.251 0.271 0.259 0.244 
15min_CP_25-4 0.000 0.000 0.000 0.000 0.000 0.000 0.123 0.127 0.133 0.134 0.127 0.119 
15min_CP_13-21 0.000 0.000 0.005 0.008 0.020 0.044 0.199 0.196 0.197 0.203 0.215 0.203 
15min_CP_8-8 0.000 0.000 0.000 0.000 0.000 0.007 0.215 0.220 0.206 0.210 0.214 0.185 
15min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.006 0.275 0.286 0.282 0.293 0.282 0.263 
15min_CP_b_18-4 0.000 0.000 0.000 0.000 0.000 0.000 0.212 0.212 0.202 0.204 0.204 0.191 
15min_CP_b_7-10 0.000 0.008 0.016 0.000 0.027 0.046 0.190 0.199 0.192 0.189 0.196 0.161 
15min_CP_b_2-30 0.034 0.024 0.024 0.028 0.046 0.105 0.269 0.255 0.253 0.245 0.224 0.188 
15min_C_28-30 0.000 0.000 0.007 0.005 0.000 0.019 0.152 0.150 0.157 0.165 0.161 0.142 
15min_C_3-22 0.000 0.000 0.000 0.000 0.070 0.117 0.082 0.082 0.089 0.079 0.069 0.070 
15min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.011 0.161 0.172 0.169 0.187 0.172 0.157 
15min_C_b_24-2         0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 
15min_C_b_8-19 0.000 0.000 0.000 0.000 0.024 0.183 0.168 0.165 0.161 0.165 0.159 0.147 
15min_C_b_3-3           0.000 0.000 0.000 0.000 0.000 0.000 0.002 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.009 0.021 0.030 0.034 0.040 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.024 0.036 0.040 0.044 0.042 
30min_CP_27-15 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.024 0.025 0.030 0.029 0.038 
30min_CP_20-20 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.038 0.047 0.047 0.051 0.055 
30min_CP_8-29 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.038 0.037 0.038 0.039 0.042 
30min_CP_5-7 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.014 0.013 0.011 0.010 0.012 
30min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.043 0.052 0.068 0.081 0.094 
30min_CP_b_45-30 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.036 0.043 0.047 0.057 0.074 
30min_CP_b_45-18 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.036 0.043 0.047 0.057 0.074 
30min_CP_b_34-30 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.040 0.047 0.052 0.060 0.077 
30min_C_28-28 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.005 0.007 0.007 
30min_C_28-17 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.005 0.007 0.008 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.009 0.017 0.021 0.023 
30min_C_b_15-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.008 0.009 0.010 0.011 
30min_C_b_15-12 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.007 0.009 0.009 0.013 
30min_C_b_13-12 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.016 0.016 0.016 0.017 0.016 
60min_CP_3-30 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.016 0.014 0.017 0.014 0.015 
60min_CP_3-15 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.016 0.014 0.016 0.014 0.015 
60min_CP_b_55-30     0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.004 0.005 
60min_CP_b_37-30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.007 0.007 0.009 0.013 
60min_CP_b_37-20 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.007 0.007 0.009 0.013 
60min_CP_b_16-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.008 0.010 0.012 0.011 0.014 
60min_CP_b_16-14 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.009 0.010 0.010 0.012 
60min_C_4-27 1.000 1.000 0.889 0.500 0.667 0.833 0.000 0.000 0.001 0.002 0.002 0.002 
60min_C_4-14 0.500 0.550 0.417 0.250 0.667 0.467 0.006 0.005 0.005 0.006 0.002 0.004 
60min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.005 0.004 0.005 
60min_C_b_22-14 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.005 0.004 0.005 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.013 0.012 0.009 0.009 0.009 
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data: synthetically generated data time resolution: 15 min 

  mean CMCR2C mean CACC2 
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05min_CP_55-30 0.236 0.213 0.221 0.212 0.268 0.368 0.491 0.483 0.483 0.472 0.463 0.445 
05min_CP_18-30 0.323 0.323 0.306 0.334 0.365 0.463 0.437 0.430 0.422 0.402 0.391 0.378 
05min_CP_18-10 0.322 0.309 0.294 0.310 0.335 0.453 0.434 0.422 0.423 0.401 0.403 0.385 
05min_CP_9-30 0.358 0.371 0.375 0.386 0.425 0.512 0.332 0.337 0.339 0.343 0.354 0.343 
05min_CP_9-14 0.358 0.372 0.375 0.388 0.426 0.507 0.332 0.332 0.339 0.342 0.353 0.344 
05min_CP_7-30 0.351 0.356 0.368 0.375 0.402 0.475 0.342 0.347 0.348 0.353 0.358 0.347 
05min_CP_7-14 0.357 0.350 0.370 0.381 0.409 0.489 0.342 0.347 0.350 0.351 0.358 0.349 
05min_CP_b_55-30 0.180 0.190 0.223 0.283 0.424 0.630 0.503 0.498 0.499 0.500 0.487 0.476 
05min_CP_b_27-30 0.258 0.255 0.269 0.309 0.475 0.707 0.509 0.503 0.502 0.496 0.481 0.472 
05min_CP_b_27-13 0.241 0.255 0.263 0.310 0.476 0.710 0.509 0.503 0.502 0.497 0.481 0.472 
05min_CP_b_4-30 0.256 0.254 0.254 0.272 0.462 0.663 0.405 0.402 0.390 0.386 0.379 0.352 
05min_CP_b_4-13 0.240 0.245 0.237 0.261 0.459 0.664 0.402 0.399 0.385 0.381 0.375 0.350 
05min_C_28-30 0.288 0.266 0.249 0.209 0.274 0.442 0.427 0.415 0.407 0.402 0.412 0.400 
05min_C_7-30 0.314 0.328 0.329 0.333 0.396 0.494 0.335 0.329 0.334 0.334 0.348 0.338 
05min_C_7-13 0.315 0.329 0.334 0.333 0.388 0.475 0.335 0.332 0.335 0.336 0.350 0.329 
05min_C_5-30 0.346 0.362 0.361 0.384 0.412 0.489 0.335 0.334 0.336 0.340 0.350 0.341 
05min_C_5-14 0.346 0.362 0.361 0.384 0.415 0.498 0.339 0.340 0.339 0.344 0.353 0.346 
05min_C_b_28-30 0.193 0.156 0.153 0.185 0.371 0.669 0.449 0.449 0.434 0.432 0.429 0.416 
05min_C_b_9-30 0.329 0.322 0.335 0.346 0.514 0.749 0.348 0.353 0.353 0.362 0.381 0.384 
05min_C_b_9-15 0.329 0.318 0.334 0.348 0.514 0.750 0.348 0.353 0.354 0.362 0.381 0.385 
05min_C_b_7-30 0.262 0.255 0.247 0.264 0.446 0.711 0.348 0.356 0.356 0.363 0.384 0.385 
05min_C_b_7-17 0.262 0.246 0.244 0.258 0.442 0.707 0.348 0.353 0.355 0.362 0.384 0.385 
10min_CP_55-30 0.000 0.000 0.000 0.000 0.008 0.037 0.345 0.342 0.345 0.345 0.349 0.332 
10min_CP_40-30 0.000 0.000 0.000 0.002 0.012 0.036 0.345 0.345 0.347 0.347 0.353 0.335 
10min_CP_40-10 0.000 0.000 0.000 0.005 0.012 0.036 0.345 0.345 0.347 0.349 0.353 0.339 
10min_CP_17-30 0.000 0.000 0.000 0.004 0.014 0.067 0.348 0.347 0.347 0.346 0.354 0.348 
10min_CP_17-15 0.000 0.000 0.000 0.005 0.014 0.067 0.348 0.347 0.346 0.345 0.353 0.348 
10min_CP_12-30 0.000 0.000 0.001 0.015 0.027 0.086 0.348 0.350 0.349 0.347 0.355 0.348 
10min_CP_12-9 0.000 0.000 0.001 0.002 0.011 0.061 0.348 0.350 0.347 0.344 0.351 0.343 
10min_CP_b_55-30 0.000 0.000 0.000 0.002 0.024 0.095 0.370 0.373 0.381 0.388 0.388 0.366 
10min_CP_b_53-8 0.000 0.000 0.000 0.000 0.018 0.075 0.358 0.361 0.365 0.374 0.376 0.359 
10min_CP_b_26-5 0.000 0.000 0.000 0.000 0.013 0.060 0.345 0.343 0.345 0.339 0.343 0.331 
10min_CP_b_2-11 0.082 0.097 0.106 0.175 0.318 0.547 0.285 0.278 0.255 0.226 0.233 0.206 
10min_C_28-30 0.000 0.000 0.000 0.000 0.007 0.035 0.316 0.323 0.315 0.301 0.284 0.237 
10min_C_7-22 0.000 0.000 0.001 0.000 0.010 0.047 0.285 0.271 0.277 0.276 0.267 0.252 
10min_C_5-23 0.000 0.000 0.003 0.005 0.029 0.100 0.316 0.307 0.294 0.291 0.284 0.260 
10min_C_3-30 0.013 0.000 0.026 0.008 0.040 0.196 0.104 0.089 0.084 0.071 0.061 0.066 
10min_C_3-15 0.000 0.000 0.019 0.010 0.022 0.173 0.108 0.098 0.088 0.073 0.066 0.068 
10min_C_b_28-30 0.000 0.000 0.000 0.000 0.015 0.078 0.348 0.339 0.338 0.336 0.316 0.277 
10min_C_b_8-16 0.000 0.000 0.002 0.000 0.029 0.113 0.335 0.335 0.328 0.330 0.325 0.296 
10min_C_b_4-22 0.031 0.000 0.040 0.061 0.095 0.403 0.098 0.108 0.091 0.085 0.090 0.083 
10min_C_b_3-30 0.038 0.010 0.031 0.013 0.051 0.254 0.158 0.160 0.148 0.121 0.109 0.104 
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data: synthetically generated data time resolution: 15 min 
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15min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.016 0.253 0.269 0.271 0.267 0.262 0.240 
15min_CP_53-5 0.000 0.000 0.000 0.000 0.000 0.024 0.171 0.188 0.209 0.217 0.213 0.195 
15min_CP_45-5 0.000 0.000 0.000 0.000 0.000 0.026 0.155 0.172 0.188 0.203 0.205 0.198 
15min_CP_25-13 0.000 0.000 0.000 0.000 0.000 0.024 0.203 0.236 0.267 0.278 0.276 0.252 
15min_CP_25-4 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.141 0.145 0.146 0.133 0.126 
15min_CP_13-21 0.000 0.005 0.002 0.008 0.025 0.061 0.209 0.214 0.218 0.232 0.218 0.206 
15min_CP_8-8 0.000 0.000 0.002 0.000 0.000 0.002 0.215 0.229 0.227 0.227 0.207 0.191 
15min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.014 0.291 0.293 0.297 0.291 0.286 0.266 
15min_CP_b_18-4 0.000 0.000 0.000 0.000 0.000 0.022 0.199 0.204 0.206 0.219 0.218 0.209 
15min_CP_b_7-10 0.000 0.014 0.011 0.018 0.020 0.061 0.212 0.220 0.215 0.206 0.188 0.171 
15min_CP_b_2-30 0.033 0.028 0.033 0.029 0.076 0.206 0.275 0.271 0.258 0.238 0.216 0.191 
15min_C_28-30 0.000 0.000 0.000 0.000 0.000 0.089 0.155 0.160 0.158 0.174 0.163 0.150 
15min_C_3-22 0.000 0.000 0.003 0.022 0.084 0.345 0.092 0.097 0.093 0.081 0.078 0.070 
15min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.071 0.168 0.177 0.177 0.193 0.187 0.172 
15min_C_b_24-2           0.000 0.000 0.000 0.000 0.000 0.000 0.001 
15min_C_b_8-19 0.000 0.000 0.000 0.014 0.139 0.380 0.171 0.168 0.171 0.168 0.161 0.146 
15min_C_b_3-3     0.000 0.000 0.000 0.438 0.000 0.000 0.001 0.002 0.002 0.004 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.021 0.023 0.034 0.047 0.042 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.028 0.030 0.036 0.050 0.036 
30min_CP_27-15 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.024 0.028 0.028 0.036 0.034 
30min_CP_20-20 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.038 0.045 0.046 0.057 0.052 
30min_CP_8-29 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.035 0.039 0.043 0.042 0.045 
30min_CP_5-7 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.013 0.013 0.011 0.013 0.015 
30min_CP_b_55-30 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.043 0.050 0.070 0.099 0.105 
30min_CP_b_45-30 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.030 0.043 0.047 0.072 0.089 
30min_CP_b_45-18 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.030 0.043 0.047 0.072 0.088 
30min_CP_b_34-30 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.036 0.044 0.053 0.073 0.084 
30min_C_28-28   0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.003 0.002 0.004 
30min_C_28-17   0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.003 0.003 0.004 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.010 0.015 0.015 0.020 
30min_C_b_15-30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.003 0.010 0.007 0.009 
30min_C_b_15-12 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.009 0.007 0.008 
30min_C_b_13-12 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.013 0.013 0.017 0.013 0.014 
60min_CP_3-30 0.000 0.000 0.000 0.083 0.000 0.000 0.009 0.011 0.010 0.009 0.008 0.009 
60min_CP_3-15 0.000 0.000 0.000 0.083 0.000 0.000 0.009 0.011 0.010 0.010 0.009 0.010 
60min_CP_b_55-30       0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.004 
60min_CP_b_37-30     0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.005 0.007 
60min_CP_b_37-20     0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.005 0.007 
60min_CP_b_16-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.005 0.006 0.006 0.006 0.008 
60min_CP_b_16-14 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.003 0.006 0.006 0.006 0.007 
60min_C_4-27 1.000 1.000 0.917 0.667 0.889 0.833 0.000 0.000 0.001 0.002 0.001 0.001 
60min_C_4-14 0.750 0.708 0.625 0.583 0.556 0.611 0.003 0.003 0.003 0.003 0.002 0.002 
60min_C_b_28-30   0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.003 0.004 
60min_C_b_22-14   0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.003 0.002 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.005 0.006 0.009 0.008 0.009 
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data: synthetically generated data time resolution: 30 min 

  mean CMCR2C mean CACC2 
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05min_CP_55-30 0.304 0.316 0.347 0.444 0.561 0.688 0.497 0.495 0.487 0.466 0.459 0.422 
05min_CP_18-30 0.432 0.431 0.476 0.531 0.640 0.738 0.421 0.403 0.392 0.381 0.371 0.344 
05min_CP_18-10 0.420 0.424 0.468 0.522 0.630 0.733 0.430 0.415 0.403 0.388 0.385 0.358 
05min_CP_9-30 0.647 0.672 0.675 0.698 0.738 0.835 0.348 0.353 0.354 0.359 0.364 0.355 
05min_CP_9-14 0.654 0.674 0.678 0.699 0.734 0.833 0.345 0.353 0.353 0.361 0.368 0.354 
05min_CP_7-30 0.611 0.613 0.627 0.651 0.695 0.795 0.348 0.356 0.354 0.354 0.358 0.344 
05min_CP_7-14 0.619 0.627 0.641 0.654 0.706 0.804 0.348 0.354 0.354 0.359 0.363 0.350 
05min_CP_b_55-30 0.613 0.640 0.670 0.709 0.799 0.880 0.491 0.495 0.505 0.489 0.483 0.475 
05min_CP_b_27-30 0.672 0.677 0.681 0.722 0.824 0.902 0.491 0.498 0.506 0.484 0.479 0.479 
05min_CP_b_27-13 0.669 0.674 0.682 0.722 0.825 0.903 0.491 0.498 0.503 0.484 0.479 0.475 
05min_CP_b_4-30 0.581 0.595 0.605 0.645 0.774 0.866 0.408 0.397 0.390 0.377 0.363 0.331 
05min_CP_b_4-13 0.584 0.598 0.597 0.638 0.773 0.866 0.389 0.384 0.389 0.374 0.363 0.336 
05min_C_28-30 0.318 0.347 0.380 0.433 0.577 0.730 0.440 0.426 0.422 0.410 0.426 0.427 
05min_C_7-30 0.596 0.602 0.618 0.638 0.701 0.818 0.335 0.331 0.338 0.342 0.350 0.325 
05min_C_7-13 0.569 0.579 0.594 0.618 0.689 0.801 0.329 0.328 0.337 0.339 0.343 0.320 
05min_C_5-30 0.582 0.590 0.607 0.627 0.667 0.786 0.335 0.332 0.333 0.337 0.340 0.316 
05min_C_5-14 0.587 0.601 0.613 0.632 0.676 0.792 0.335 0.334 0.336 0.339 0.342 0.324 
05min_C_b_28-30 0.528 0.548 0.579 0.649 0.790 0.902 0.449 0.448 0.445 0.432 0.444 0.441 
05min_C_b_9-30 0.668 0.666 0.675 0.709 0.839 0.920 0.373 0.381 0.379 0.384 0.399 0.411 
05min_C_b_9-15 0.671 0.669 0.675 0.707 0.839 0.920 0.373 0.380 0.378 0.386 0.399 0.413 
05min_C_b_7-30 0.649 0.646 0.657 0.690 0.824 0.912 0.377 0.384 0.380 0.388 0.400 0.411 
05min_C_b_7-17 0.646 0.644 0.654 0.687 0.821 0.911 0.377 0.383 0.380 0.386 0.400 0.411 
10min_CP_55-30 0.068 0.108 0.132 0.165 0.182 0.231 0.354 0.356 0.356 0.352 0.347 0.328 
10min_CP_40-30 0.104 0.123 0.145 0.175 0.193 0.267 0.370 0.361 0.359 0.355 0.353 0.331 
10min_CP_40-10 0.110 0.125 0.142 0.172 0.184 0.265 0.367 0.361 0.362 0.358 0.355 0.339 
10min_CP_17-30 0.130 0.132 0.140 0.150 0.216 0.380 0.370 0.362 0.361 0.364 0.364 0.366 
10min_CP_17-15 0.130 0.132 0.141 0.150 0.216 0.380 0.370 0.362 0.360 0.363 0.364 0.365 
10min_CP_12-30 0.136 0.141 0.146 0.165 0.241 0.397 0.370 0.361 0.362 0.364 0.362 0.368 
10min_CP_12-9 0.136 0.141 0.147 0.166 0.217 0.361 0.367 0.358 0.361 0.362 0.359 0.366 
10min_CP_b_55-30 0.123 0.199 0.241 0.300 0.408 0.590 0.383 0.384 0.384 0.395 0.392 0.373 
10min_CP_b_53-8 0.126 0.200 0.234 0.287 0.373 0.544 0.373 0.377 0.373 0.377 0.370 0.359 
10min_CP_b_26-5 0.278 0.294 0.306 0.341 0.423 0.581 0.345 0.347 0.351 0.348 0.350 0.343 
10min_CP_b_2-11 0.367 0.388 0.439 0.534 0.649 0.820 0.278 0.255 0.242 0.231 0.231 0.216 
10min_C_28-30 0.000 0.004 0.023 0.061 0.128 0.233 0.307 0.307 0.300 0.290 0.286 0.263 
10min_C_7-22 0.109 0.106 0.108 0.124 0.178 0.301 0.297 0.288 0.281 0.280 0.272 0.267 
10min_C_5-23 0.106 0.110 0.107 0.144 0.244 0.416 0.326 0.316 0.306 0.298 0.298 0.287 
10min_C_3-30 0.014 0.023 0.043 0.043 0.147 0.381 0.123 0.098 0.097 0.089 0.081 0.082 
10min_C_3-15 0.013 0.021 0.028 0.013 0.108 0.318 0.133 0.101 0.103 0.089 0.085 0.080 
10min_C_b_28-30 0.000 0.013 0.055 0.144 0.248 0.511 0.348 0.350 0.335 0.322 0.311 0.282 
10min_C_b_8-16 0.227 0.232 0.232 0.276 0.424 0.655 0.345 0.348 0.350 0.331 0.324 0.315 
10min_C_b_4-22 0.104 0.148 0.171 0.240 0.404 0.632 0.136 0.119 0.123 0.117 0.123 0.121 
10min_C_b_3-30 0.015 0.030 0.048 0.071 0.208 0.487 0.206 0.157 0.143 0.130 0.128 0.127 
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data: synthetically generated data time resolution: 30 min 

  mean CMCR2C mean CACC2 
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15min_CP_55-30 0.000 0.018 0.038 0.091 0.144 0.231 0.259 0.266 0.270 0.263 0.260 0.244 
15min_CP_53-5 0.000 0.000 0.013 0.036 0.101 0.194 0.187 0.217 0.227 0.228 0.217 0.204 
15min_CP_45-5 0.000 0.008 0.009 0.030 0.105 0.201 0.177 0.206 0.220 0.229 0.216 0.202 
15min_CP_25-13 0.044 0.074 0.075 0.119 0.141 0.231 0.256 0.272 0.282 0.278 0.282 0.263 
15min_CP_25-4 0.000 0.007 0.009 0.017 0.054 0.114 0.177 0.180 0.176 0.172 0.162 0.158 
15min_CP_13-21 0.102 0.112 0.119 0.136 0.156 0.238 0.259 0.258 0.252 0.258 0.245 0.232 
15min_CP_8-8 0.006 0.016 0.016 0.049 0.079 0.150 0.272 0.259 0.248 0.242 0.218 0.199 
15min_CP_b_55-30 0.000 0.010 0.027 0.086 0.169 0.384 0.285 0.291 0.285 0.285 0.289 0.278 
15min_CP_b_18-4 0.132 0.146 0.179 0.203 0.226 0.372 0.250 0.250 0.239 0.243 0.235 0.235 
15min_CP_b_7-10 0.000 0.050 0.076 0.142 0.228 0.449 0.259 0.242 0.230 0.222 0.206 0.191 
15min_CP_b_2-30 0.191 0.201 0.205 0.238 0.331 0.534 0.282 0.258 0.248 0.227 0.222 0.203 
15min_C_28-30 0.000 0.006 0.012 0.048 0.180 0.284 0.165 0.169 0.171 0.187 0.184 0.169 
15min_C_3-22 0.070 0.092 0.107 0.175 0.361 0.470 0.114 0.103 0.102 0.098 0.106 0.110 
15min_C_b_28-30 0.000 0.017 0.023 0.094 0.347 0.616 0.177 0.185 0.192 0.202 0.200 0.192 
15min_C_b_24-2       0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 
15min_C_b_8-19 0.127 0.165 0.187 0.332 0.571 0.707 0.196 0.195 0.191 0.191 0.191 0.184 
15min_C_b_3-3 0.000 0.000 0.000 0.000 0.593 0.849 0.025 0.025 0.020 0.018 0.015 0.013 
30min_CP_55-30 0.000 0.000 0.000 0.000 0.000 0.033 0.028 0.036 0.052 0.069 0.066 0.066 
30min_CP_41-30 0.000 0.000 0.000 0.000 0.000 0.028 0.041 0.046 0.066 0.074 0.068 0.060 
30min_CP_27-15 0.000 0.000 0.000 0.000 0.012 0.056 0.041 0.049 0.059 0.063 0.066 0.065 
30min_CP_20-20 0.000 0.000 0.000 0.000 0.004 0.055 0.066 0.070 0.077 0.085 0.088 0.085 
30min_CP_8-29 0.000 0.000 0.065 0.130 0.025 0.189 0.070 0.071 0.073 0.078 0.078 0.078 
30min_CP_5-7 0.000 0.000 0.000 0.175 0.019 0.309 0.025 0.027 0.031 0.031 0.035 0.028 
30min_CP_b_55-30 0.000 0.000 0.000 0.000 0.036 0.062 0.073 0.098 0.111 0.137 0.131 0.130 
30min_CP_b_45-30 0.000 0.000 0.000 0.000 0.049 0.108 0.060 0.073 0.088 0.115 0.122 0.122 
30min_CP_b_45-18 0.000 0.000 0.000 0.000 0.049 0.108 0.060 0.073 0.088 0.115 0.122 0.122 
30min_CP_b_34-30 0.000 0.000 0.000 0.008 0.063 0.121 0.066 0.070 0.083 0.110 0.119 0.121 
30min_C_28-28   0.000 0.000 0.000 0.000 0.063 0.000 0.005 0.006 0.013 0.011 0.007 
30min_C_28-17 0.000 0.000 0.000 0.000 0.000 0.063 0.006 0.005 0.007 0.014 0.012 0.007 
30min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.030 0.036 0.036 0.028 
30min_C_b_15-30 0.000 0.000 0.000 0.000 0.000 0.062 0.013 0.013 0.013 0.024 0.026 0.027 
30min_C_b_15-12 0.000 0.000 0.000 0.000 0.000 0.067 0.013 0.009 0.015 0.023 0.025 0.022 
30min_C_b_13-12 0.000 0.000 0.000 0.000 0.000 0.051 0.022 0.024 0.025 0.029 0.032 0.026 
60min_CP_3-30 0.000 0.000 0.000 0.000 0.000 0.056 0.009 0.006 0.009 0.008 0.008 0.010 
60min_CP_3-15 0.000 0.000 0.000 0.000 0.000 0.056 0.009 0.006 0.009 0.008 0.008 0.010 
60min_CP_b_55-30       0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.008 0.008 
60min_CP_b_37-30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.003 0.006 0.009 0.010 
60min_CP_b_37-20 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.003 0.006 0.009 0.010 
60min_CP_b_16-30 0.000 0.250 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.006 0.009 0.010 
60min_CP_b_16-14 0.000 0.250 0.000 0.000 0.000 0.000 0.003 0.003 0.002 0.006 0.009 0.009 
60min_C_4-27 1.000 1.000 1.000 0.792 1.000 0.833 0.000 0.000 0.000 0.002 0.000 0.002 
60min_C_4-14 1.000 1.000 1.000 0.760 0.556 0.708 0.000 0.000 0.000 0.002 0.002 0.002 
60min_C_b_28-30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.002 0.004 0.004 
60min_C_b_22-14 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.002 0.003 0.003 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.005 0.006 0.005 0.005 0.006 
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data: synthetically generated data time resolution: 60 min 

  mean CMCR2C mean CACC2 
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05min_CP_55-30 0.431 0.486 0.574 0.677 0.785 0.863 0.475 0.481 0.479 0.458 0.457 0.437 
05min_CP_18-30 0.630 0.664 0.693 0.733 0.806 0.881 0.383 0.372 0.366 0.347 0.347 0.332 
05min_CP_18-10 0.635 0.660 0.683 0.721 0.804 0.878 0.389 0.375 0.378 0.364 0.371 0.365 
05min_CP_9-30 0.820 0.823 0.835 0.845 0.893 0.934 0.373 0.381 0.376 0.381 0.377 0.388 
05min_CP_9-14 0.822 0.825 0.838 0.849 0.892 0.934 0.370 0.380 0.376 0.381 0.377 0.384 
05min_CP_7-30 0.780 0.783 0.793 0.810 0.863 0.915 0.367 0.367 0.365 0.362 0.356 0.356 
05min_CP_7-14 0.783 0.788 0.799 0.816 0.868 0.919 0.364 0.367 0.366 0.368 0.361 0.360 
05min_CP_b_55-30 0.822 0.827 0.839 0.877 0.919 0.947 0.478 0.479 0.485 0.475 0.488 0.491 
05min_CP_b_27-30 0.833 0.838 0.843 0.882 0.927 0.952 0.487 0.481 0.490 0.479 0.489 0.506 
05min_CP_b_27-13 0.831 0.837 0.843 0.883 0.927 0.952 0.487 0.484 0.488 0.478 0.488 0.506 
05min_CP_b_4-30 0.787 0.785 0.796 0.825 0.881 0.923 0.380 0.384 0.377 0.373 0.361 0.353 
05min_CP_b_4-13 0.791 0.792 0.802 0.830 0.886 0.925 0.383 0.380 0.373 0.369 0.358 0.355 
05min_C_28-30 0.522 0.581 0.620 0.703 0.811 0.880 0.421 0.416 0.424 0.422 0.445 0.472 
05min_C_7-30 0.781 0.787 0.799 0.825 0.873 0.922 0.358 0.362 0.359 0.350 0.357 0.358 
05min_C_7-13 0.781 0.789 0.799 0.823 0.868 0.918 0.361 0.359 0.357 0.346 0.351 0.353 
05min_C_5-30 0.764 0.772 0.786 0.802 0.847 0.903 0.326 0.334 0.326 0.323 0.323 0.324 
05min_C_5-14 0.769 0.778 0.786 0.808 0.852 0.906 0.339 0.337 0.339 0.329 0.334 0.328 
05min_C_b_28-30 0.809 0.818 0.828 0.870 0.925 0.954 0.440 0.438 0.442 0.438 0.460 0.488 
05min_C_b_9-30 0.850 0.851 0.855 0.877 0.932 0.957 0.399 0.402 0.403 0.414 0.434 0.474 
05min_C_b_9-15 0.851 0.852 0.856 0.877 0.932 0.958 0.399 0.402 0.404 0.415 0.436 0.475 
05min_C_b_7-30 0.854 0.852 0.855 0.874 0.929 0.954 0.392 0.402 0.402 0.415 0.431 0.474 
05min_C_b_7-17 0.852 0.850 0.852 0.872 0.928 0.954 0.392 0.402 0.402 0.415 0.431 0.473 
10min_CP_55-30 0.243 0.251 0.266 0.284 0.299 0.408 0.373 0.375 0.377 0.366 0.362 0.345 
10min_CP_40-30 0.245 0.265 0.275 0.298 0.337 0.485 0.380 0.378 0.381 0.369 0.362 0.346 
10min_CP_40-10 0.250 0.255 0.274 0.300 0.338 0.473 0.377 0.381 0.385 0.373 0.369 0.352 
10min_CP_17-30 0.375 0.406 0.411 0.488 0.556 0.662 0.392 0.389 0.390 0.382 0.388 0.384 
10min_CP_17-15 0.378 0.409 0.409 0.487 0.562 0.659 0.392 0.389 0.389 0.382 0.388 0.384 
10min_CP_12-30 0.371 0.406 0.414 0.482 0.568 0.686 0.396 0.394 0.391 0.384 0.388 0.388 
10min_CP_12-9 0.321 0.355 0.383 0.457 0.562 0.641 0.396 0.389 0.390 0.381 0.385 0.385 
10min_CP_b_55-30 0.668 0.685 0.707 0.741 0.800 0.880 0.383 0.394 0.396 0.388 0.396 0.382 
10min_CP_b_53-8 0.665 0.676 0.694 0.727 0.786 0.866 0.377 0.383 0.388 0.380 0.383 0.367 
10min_CP_b_26-5 0.692 0.704 0.719 0.746 0.803 0.877 0.373 0.378 0.382 0.369 0.372 0.366 
10min_CP_b_2-11 0.797 0.813 0.820 0.847 0.891 0.943 0.259 0.248 0.252 0.239 0.239 0.229 
10min_C_28-30 0.169 0.179 0.189 0.219 0.257 0.310 0.326 0.326 0.325 0.308 0.300 0.297 
10min_C_7-22 0.225 0.226 0.230 0.259 0.333 0.443 0.335 0.342 0.333 0.323 0.309 0.316 
10min_C_5-23 0.255 0.392 0.451 0.545 0.553 0.688 0.361 0.358 0.348 0.331 0.335 0.324 
10min_C_3-30 0.083 0.152 0.103 0.266 0.498 0.698 0.117 0.109 0.104 0.093 0.094 0.107 
10min_C_3-15 0.067 0.088 0.087 0.251 0.496 0.690 0.120 0.114 0.108 0.095 0.093 0.107 
10min_C_b_28-30 0.451 0.494 0.542 0.592 0.706 0.819 0.354 0.351 0.335 0.327 0.319 0.307 
10min_C_b_8-16 0.662 0.675 0.682 0.720 0.791 0.869 0.370 0.370 0.366 0.354 0.344 0.339 
10min_C_b_4-22 0.607 0.604 0.591 0.606 0.684 0.808 0.133 0.134 0.129 0.135 0.141 0.150 
10min_C_b_3-30 0.227 0.317 0.354 0.446 0.621 0.764 0.161 0.163 0.151 0.138 0.144 0.142 
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data: synthetically generated data time resolution: 60 min 
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15min_CP_55-30 0.249 0.250 0.262 0.280 0.319 0.475 0.247 0.269 0.271 0.275 0.275 0.262 
15min_CP_53-5 0.234 0.237 0.247 0.269 0.307 0.405 0.212 0.236 0.237 0.245 0.238 0.236 
15min_CP_45-5 0.239 0.242 0.255 0.273 0.318 0.412 0.206 0.234 0.236 0.246 0.238 0.230 
15min_CP_25-13 0.246 0.240 0.251 0.275 0.356 0.477 0.285 0.302 0.307 0.303 0.296 0.284 
15min_CP_25-4 0.210 0.210 0.214 0.224 0.239 0.260 0.196 0.207 0.204 0.216 0.207 0.212 
15min_CP_13-21 0.339 0.374 0.383 0.432 0.516 0.557 0.304 0.310 0.294 0.282 0.286 0.276 
15min_CP_8-8 0.205 0.265 0.306 0.326 0.485 0.536 0.288 0.285 0.258 0.241 0.227 0.214 
15min_CP_b_55-30 0.547 0.579 0.599 0.646 0.716 0.813 0.307 0.304 0.307 0.301 0.307 0.295 
15min_CP_b_18-4 0.608 0.617 0.626 0.644 0.712 0.789 0.282 0.282 0.274 0.273 0.268 0.269 
15min_CP_b_7-10 0.589 0.585 0.621 0.682 0.760 0.859 0.278 0.267 0.254 0.241 0.229 0.219 
15min_CP_b_2-30 0.565 0.593 0.614 0.664 0.751 0.863 0.266 0.255 0.248 0.232 0.217 0.208 
15min_C_28-30 0.228 0.234 0.240 0.268 0.304 0.372 0.190 0.188 0.196 0.214 0.217 0.214 
15min_C_3-22 0.622 0.723 0.764 0.767 0.784 0.801 0.127 0.123 0.127 0.136 0.146 0.152 
15min_C_b_28-30 0.623 0.623 0.617 0.695 0.786 0.849 0.190 0.203 0.222 0.237 0.234 0.235 
15min_C_b_24-2         0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 
15min_C_b_8-19 0.634 0.653 0.652 0.702 0.793 0.831 0.225 0.215 0.223 0.232 0.227 0.235 
15min_C_b_3-3 0.769 0.761 0.749 0.741 0.760 0.820 0.038 0.040 0.042 0.043 0.044 0.046 
30min_CP_55-30 0.224 0.229 0.227 0.221 0.227 0.289 0.057 0.071 0.085 0.103 0.112 0.119 
30min_CP_41-30 0.224 0.230 0.222 0.215 0.219 0.305 0.076 0.082 0.095 0.105 0.104 0.101 
30min_CP_27-15 0.225 0.226 0.232 0.272 0.320 0.397 0.076 0.084 0.098 0.108 0.125 0.131 
30min_CP_20-20 0.206 0.199 0.206 0.287 0.365 0.471 0.101 0.109 0.111 0.121 0.137 0.150 
30min_CP_8-29 0.431 0.390 0.464 0.584 0.593 0.573 0.104 0.119 0.120 0.123 0.136 0.146 
30min_CP_5-7 0.913 0.802 0.633 0.502 0.646 0.706 0.063 0.065 0.063 0.070 0.075 0.086 
30min_CP_b_55-30 0.479 0.475 0.482 0.468 0.493 0.564 0.120 0.125 0.143 0.172 0.180 0.178 
30min_CP_b_45-30 0.568 0.555 0.541 0.551 0.556 0.623 0.101 0.111 0.127 0.152 0.172 0.177 
30min_CP_b_45-18 0.568 0.555 0.541 0.550 0.556 0.622 0.101 0.111 0.127 0.152 0.172 0.177 
30min_CP_b_34-30 0.590 0.577 0.572 0.573 0.587 0.657 0.101 0.111 0.127 0.152 0.173 0.175 
30min_C_28-28 0.202 0.179 0.159 0.157 0.211 0.363 0.038 0.036 0.046 0.044 0.043 0.037 
30min_C_28-17 0.198 0.176 0.160 0.158 0.213 0.362 0.038 0.040 0.047 0.045 0.043 0.039 
30min_C_b_28-30 0.355 0.368 0.352 0.322 0.407 0.523 0.063 0.066 0.071 0.076 0.077 0.069 
30min_C_b_15-30 0.517 0.429 0.419 0.393 0.404 0.477 0.044 0.047 0.055 0.055 0.057 0.060 
30min_C_b_15-12 0.519 0.455 0.409 0.399 0.385 0.478 0.041 0.047 0.052 0.051 0.056 0.056 
30min_C_b_13-12 0.417 0.405 0.433 0.423 0.434 0.532 0.066 0.060 0.063 0.059 0.063 0.065 
60min_CP_3-30 0.667 0.424 0.605 0.637 0.744 0.736 0.025 0.027 0.028 0.029 0.028 0.031 
60min_CP_3-15 0.667 0.091 0.605 0.557 0.740 0.767 0.025 0.027 0.028 0.030 0.028 0.029 
60min_CP_b_55-30 0.000 0.000 0.000 0.021 0.094 0.175 0.003 0.009 0.011 0.025 0.030 0.035 
60min_CP_b_37-30 0.000 0.000 0.000 0.019 0.106 0.242 0.006 0.014 0.013 0.028 0.031 0.035 
60min_CP_b_37-20 0.000 0.000 0.000 0.019 0.106 0.242 0.006 0.014 0.013 0.028 0.031 0.035 
60min_CP_b_16-30 0.000 0.091 0.156 0.195 0.368 0.494 0.032 0.030 0.037 0.036 0.041 0.040 
60min_CP_b_16-14 0.000 0.091 0.143 0.198 0.378 0.505 0.032 0.028 0.037 0.035 0.038 0.039 
60min_C_4-27 0.600 0.536 0.613 0.492 0.563 0.514 0.006 0.009 0.006 0.006 0.005 0.006 
60min_C_4-14 0.600 0.536 0.564 0.467 0.604 0.510 0.006 0.009 0.006 0.006 0.005 0.007 
60min_C_b_28-30   0.000 0.000 0.000 0.000 0.125 0.000 0.003 0.002 0.003 0.006 0.005 
60min_C_b_22-14   0.000 0.000 0.000 0.000 0.125 0.000 0.003 0.004 0.004 0.005 0.004 
60min_C_b_6-30 0.000 0.000 0.000 0.000 0.175 0.558 0.016 0.011 0.012 0.013 0.008 0.009 
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