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Abstract
Isothermic surfaces are surfaces which allow a conformal curvature line parametrisation.
They form an integrable system, andDarboux transforms of isothermic surfaces obeyBianchi
permutability: for two distinct spectral parameters, the corresponding Darboux transforms
have a common Darboux transform which can be computed algebraically. In this paper, we
discuss two-step Darboux transforms with the same spectral parameter, and show that these
are obtained by a Sym-type construction: All two-step Darboux transforms of an isothermic
surface are given, without further integration, by parallel sections of the associated family of
the isothermic surface, either algebraically or by differentiation against the spectral parameter.

1 Introduction

First defined by Bour in [3] as surfaces which admit conformal curvature lines, isothermic
surfaces have enjoyed massive interest in the late 19th and early 20th century. Darboux
showed in [11] that given an isothermic surface f : M → R

3 from a Riemann surface
M into the 3-sphere, one can construct a second isothermic surface via a Ribaucour sphere
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congruence that depends on a spectral parameter, a transformation which we refer to as
Darboux transformation.

Then Bianchi, [1], showed that Darboux transformations admit permutability: starting
from an isothermic surface f and constructing two Darboux transforms f1 and f2 using
spectral parameters �1 and �2, respectively, one can always find a fourth surface f12 that
is both a Darboux transform of f1 and f2 with respect to spectral parameters �2 and �1.
Demoulin further showed in [12] that these four surfaces in the permutability enjoy a rela-
tionship characterised by cross-ratios:

cr( f , f1, f12, f2) = �2

�1
. (1.1)

Generally, one needs integration to find Darboux transforms of a given isothermic surface;
however, the cross-ratio equation (1.1) coming from permutability enables one to find succes-
sive Darboux transforms algebraically after an initial integration. The cross-ratio equation
(1.1) shows that the fourth surface f12 is identical to the given starting surface f if the spectral
parameters are equal. Therefore, permutability gives algebraic methods to find non-trivial
successive Darboux transforms as long as the spectral parameters are pairwise distinct.

Note however that one can always integrate twice to find non-trivial two-step Darboux
transforms: the condition in Bianchi permutability that the spectral parameters need to be
distinct is only essential to obtain non-trivial successive Darboux transforms algebraically.

The aim of this paper is to eliminate the assumption in Bianchi permutability and obtain
all successive Darboux transforms without further integration, even in the case when the
spectral parameters are equal. Rather than using Bianchi permutability, we obtain two-step
Darboux transforms with the same spectral parameter by a Sym-type method, [22], that is,
by differentiation with respect to the spectral parameter.

The existence of spectral parameters, transformations, and permutability suggested that
the class of isothermic surfaces constitutes an integrable system, an approach taken in [10]
which renewed modern interest in isothermic surfaces. Various characterisations of Darboux
transformations have been obtained since Darboux transformation can be described in terms
of a Riccati-type equation [18]; Darboux pairs of isothermic surfaces can be viewed as a
curved flat using theMinkowski model [9] or using the quaternionic model [15] of conformal
geometry. In fact, isothermic surfaces can be characterised via the existence of a closed 1-
form or, equivalently, a one-parameter family of flat connections [5, 14, 19], and one can
view Darboux transformations as the parallel sections of the flat connections [16, 17]. In
addition, many of the aforementioned works have investigated the various transformations
of isothermic surfaces and their relationships: for example, the T -transforms, also known as
Calapso transforms, can be obtained algebraically from the Darboux transforms, while the
Christoffel dual can be obtained via a Sym-type formula from either the T -transforms or the
Darboux transforms.

In this paper, we use the quaternionic model and describe Darboux transform by parallel
sections of the associated family of flat connections of the isothermic surface. A short review
of isothermic surfaces, the associated family dλ and Bianchi permutability in this setting, is
given in Sect. 2 to setup the notations and tools for our main result.

Then, we tackle the problem to eliminate the need for a second integration for finding
two-step Darboux transforms in Sect. 3. For this, we use the fact that Darboux transforms of
isothermic surfaces are indeed given by a simple factor dressing. In particular, the associated
family of flat connections d1λ of a Darboux transform f1 with spectral parameter � is given by
an explicit gauge rλ, which depends smoothly on the spectral parameter and has a simple pole
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at �, of the associated family dλ of f . Although the gauge has a pole, the family d1λ = rλ · dλ

extends into �, and we give an explicit form of the associated family.
With this at hand, we obtain the parallel sections ϕ1 = rλ(ϕ) of f1 by applying the gauge

matrix to parallel sections ϕ given by the isothermic surface f , for spectral parameter away
from thepole� of rλ. Thisway,we recover the parallel sections used forBianchi permutability,
the Bianchi-type parallel sections, explicitly as projections of parallel sections ϕ. In the case
when the spectral parameter coincide, there is a quaternionic one-dimensional space arising
from this construction: To obtain further parallel sections, we have to consider limits of
parallel sections for spectral parameter λ when λ tends to the pole �. We show that these
limits, the Sym-type parallel sections, are given by differentiation of a family of dλ-parallel
sections with respect to the spectral parameter.

Indeed, we can conclude that all parallel sections of the associated family of a Darboux
transform are either Bianchi- or Sym-type. In particular, we obtain all non-trivial two-step
Darboux transforms with same spectral parameter without need for a second integration, a
principle we call generalised Bianchi permutability.

Given an isothermic surface f : M → R
3, the Darboux transformation is initially a

local construction: the used parallel sections exist globally only on the universal cover of
the Riemann surface M . Since all two-step parallel sections are given algebraically or by a
Sym-type method, we discuss closing conditions for one- and two-step Darboux transforms
by investigating the holonomy of the family of flat connections dλ of f only.

We conclude the paper by demonstrating our construction in the explicit example of the
round cylinder. In particular, we give explicit formulae for all parallel sections and obtain a
complete description of the set of all closed Darboux transforms of a cylinder. Depending on
the spectral parameter, four cases can occur: there is exactly one closed Darboux transform,
which is the cylinder, there are two distinct Darboux transforms, which are again cylinders,
there is a CP1-worth of Darboux transforms which are rotation surfaces, or there is a HP

1-
worth of (possibly singular) Darboux transforms which are rotation surfaces or isothermic
bubbletons.We then use the parallel sections to give explicit formulae for Sym-type Darboux
transforms, including two-step bubbletons.1

Since the main ingredients for our construction are the associated family and the simple
factor dressing, we expect our results to be templates for similar results for other surface
classes allowing simple factor dressing, such asCMCsurfaces in space forms, and completely
integrable differential equations. This should allow to construct new surfaces and, more
generally, new solutions to differential equations given by complete integrability.

2 Background

In this section, we will give a short summary of results and methods used in this paper. For
details on the quaternionic formalism and isothermic surfaces, we refer to [4, 8, 13, 16, 18].

2.1 Conformal immersions and quaternions

In this paper, we will identify 4-space by the quaternions R
4 = H, and 3-space by the

imaginary quaternions R3 = ImH where H = spanR{1, i, j, k} and i2 = j2 = k2 = i jk =
−1. For imaginary quaternions, the product in the quaternions links to the inner product 〈·, ·〉

1 The figures in this paper were drawn using the software Mathematica.
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and the cross-product in R3 by

ab = −〈a, b〉 + a × b, a, b ∈ ImH .

Here, we identify H = ReH ⊕ ImH = R ⊕ R
3. In particular, we see

S2 = {n ∈ ImH | n2 = −1} .

Thus, if f : M → R
3 is an immersion then itsGaussmap N : M → S2 is a complex structure

N 2 = −1 on R
4 = H. Moreover, if (M, JT M ) is a Riemann surface, then f : M → R

3 is
conformal if and only if

∗d f = Nd f = −d f N ,

where ∗ denotes the negative Hodge star operator, that is, ∗ω(X) = ω(JT M X) for X ∈ T M ,
ω ∈ �1(M). More generally, if f : M → R

4 is a conformal immersion from a Riemann
surface into 4-space, the Gauss map is given by a pair of complex structures

(N , R) : M → S2 × S2 = Gr2(R
4)

such that

∗d f = Nd f = −d f R .

Note that N = R in the case when f is a surface in 3-space.
Since the theory of isothermic surfaces is conformal, it is useful to also consider conformal

immersions into the 4-sphere by identifying S4 = HP
1. Then, a map f : M → S4 = HP

1

can be identified with a line subbundle L ⊂ H
2 = M × H

2 of the trivial H2-bundle over M
via

f (p) = L p .

Therefore, the group of oriented Möbius transformations is in this setup given by GL(2,H).
The derivative of L is given by δ = πLd where πL : H2 → H

2/L denotes the canonical
projection. Then, an immersion f is conformal if and only if there are complex structures
JL on L and JV /L on H

2/L such that

∗δ = JV /Lδ = δ J .

In particular, if f : M → R
k , k = 3, 4, is an immersion from a Riemann surface into 3-

or 4-space we will consider f as a map into the 4-sphere by setting

L = ψH, ψ =
(
f
1

)
.

We will identify eH = H
2/L via the isomorphism πL |eH : eH → H

2/L where eH = ∞ is
the point at infinity with

e =
(
1
0

)
.

Then, N , R : M → S2 induce the complex structures JL on the line bundles L and JV /L on
H

2/L by setting JLψ = −ψR and JV /Le = eN : since δψ = ed f , we obtain indeed

∗δψ = JV /Lδψ = δ JLψ .
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2.2 Isothermic surfaces and Darboux transforms

Classically, an isothermic surface is considered as a surface in 3-space which allows a confor-
mal curvature line parametrisation (away from umbilic points). In our setting, it is convenient
to view an isothermic surface as a quaternionic line bundle with an associated closed 1-form
( [4,Theorem 2.3], [16,§5.3.19], [19,Definition 3.1]):

Definition 2.1 A conformal immersion f : M → S4 is called isothermic if there exists a
non-trivial closed 1-form η ∈ �1(End(H2)), the retraction form, such that

Im η ⊂ L ⊂ ker η .

Remark 2.2 This definition immediately shows that the notion of isothermicity is conformally
invariant, that is, if f : M → S4 is isothermic so are its Möbius transforms: given the
line bundle L corresponding to f , L̃ = AL for A ∈ GL(2,H) is isothermic with 1-form
η̃ = AηA−1.

This definition links with the Christoffel transformation of an isothermic surface when f
is a surface in 3- or 4-space: since im η ⊂ L ⊂ ker η we can write

η =
(
f ω − f ω f
ω −ω f

)
(2.1)

for a 1-form ω with values in H. But then dη = 0 shows that dω = 0, so locally there exists
a (possibly branched) immersion f d with d f d = ω. Additionally, we see from d f ∧ ω =
ω ∧ d f = 0 that f d is conformal with Gauss map (Nd , Rd) = (−R,−N ): f d is indeed a
Christoffel transform or dual surface of f . If z = x + iy is an isothermic coordinate (and f
does not map into the round sphere), then up to scaling, d f d = f −1

x dx− f −1
y dy. Conversely,

away from umbilics the isothermic coordinate can be constructed from η (see [4,p. 28]).
In particular, the definitionwe are using immediately allows to introduce a spectral param-

eter � ∈ R, see e.g. [5,Theorem 15.4], [6,Proposition 3.6], andwe obtain an associated family
of flat connections: since dλ = d + λη, λ ∈ R, has curvature

Rλ = R + λdη + λ2η ∧ η = 0

we see that the associated family dλ of f is flat for all λ ∈ R. The converse holds as well:

Theorem 2.3 If η ∈ �1(End(H2)) is non-trivial with η2 = 0 and

dλ = d + λη

is flat for all λ ∈ R then ker η can be extended to a quaternionic line bundle L and L is
isothermic with retraction form η.

Proof We follow the arguments in [7,Theorem 3.1], and only give a short outline how the
argument there can be adapted to our situation. Let I be the complex structure on H2 which
is given by right multiplication by the quaternion i . Let η1,0 be the (1, 0)-part of η and
E = ker η1,0. Since η is quaternionic, ker η = E ⊕ E j . In [7,Theorem 3.1] it is shown that
d induces a holomorphic structure on �(K End(C4)) when identifying sections in �(K̄ K )

with 2-rforms in �2(M). Since dλ is flat we see that dη = 0, so that also dη1,0 = 0. Thus,
η1,0 is holomorphic and E = ker η1,0 extends holomorphically across the zeros of η1,0, and
so does ker η = EH. ��
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Recall that an isothermic surface f : M → R
3 can be locally characterised as a surface

which allows a sphere congruence that conformally envelops f and a second surface f̂ where
f (p) 
= f̂ (p) for all p. Then, f̂ is called a Darboux transform of f .
In the framework we set up, the Darboux transformation can be formulated in terms of

parallel sections of H̃
2
of the associated family of flat connections, see e.g. [16,§5.4.8]. Here,

H̃
2
denotes the trivial H2 bundle H̃

2 = M̃ × H
2 over the universal cover M̃ of M . In this

situation, the resulting Darboux transform is in general an isothermic surface in the 4-sphere
and is defined on the universal cover of M , and is a surface in the 3-sphere only for suitable
initial conditions. We will identify, in abuse of notation, a surface f : M → S4 with the
canonical lift f : M̃ → S4.

Definition 2.4 Let f : M → S4 be isothermic. Then, f̂ : M̃ → S4 is called a Darboux
transform of f with respect to the parameter � ∈ R∗ = R \ {0} if L̂ = ϕ�

H, where

ϕ� ∈ �(H̃
2
) is a d�-parallel section, and L(p) 
= L̂(p) for all p ∈ M̃ .

Remark 2.5 In the case when the assumption L(p) 
= L̂(p) is not satisfied for all p ∈ M ,
the surface f̂ is called a singular Darboux transform of f , see [2]. If f , f̂ : M → R

3 are
surfaces in 3-space, this means that the enveloping sphere congruence degenerates to a point
for p ∈ M with f̂ (p) = f (p) and f̂ becomes a branched conformal immersion.

To simplify notations, we will abbreviate ϕ = ϕ� if it is clear from the context that ϕ is a
d�-parallel section, and use the superscript only if we want to emphasise the parameter in
the family of flat connections that we use. Similarly, we will call the associated surface a
Darboux transform, and only refer to it as �-Darboux transform or Darboux transform with
respect to the parameter � for emphasis of a specific spectral parameter.

We now investigate the closing conditions for Darboux transforms, see [2]. Let us recall
the notion of sections with multiplier.

Definition 2.6 Given a parallel section ϕ ∈ �(H̃
2
) a multiplier is a group homomorphism

h : π1(M) → H∗ such that

γ ∗ϕ = ϕ ◦ γ
 = ϕhγ , for all γ ∈ π1(M)

whereγ
 is the deck transformation of M̃ associated toγ . A sectionwithmultiplier is a parallel
section for which multipliers exist. A spectral parameter � ∈ R∗ is called a resonance point
if every d�-parallel section is a section with multiplier.

Since a Darboux transform of an isothermic surface f : M → S4 is given by f̂ = ϕH

where ϕ = ϕ� is a parallel section of d� for some � ∈ R∗, we see that f̂ is closed if and
only if ϕ is a section with multiplier. In this paper, we consider the “closure condition” to
mean that the Darboux transform is defined on the same Riemann surface of the original
immersion.

Since for h ∈ H∗ there exists m ∈ H∗ with m−1hm ∈ C∗ we can assume without loss
of generality that hγ ∈ C∗ by changing ϕ to ϕm in case of an abelian fundamental group.
Note that since d� is quaternionic, we see that if ϕ is d�-parallel with multiplier h then ϕ j
is d�-parallel with multiplier h̄, so that multipliers come in pairs (h, h̄) which give both rise
to the same surface f̂ . In particular, in the case when h is real, the corresponding space of
parallel sections with multiplier h is at least quaternionic one-dimensional, whereas in the
case of h /∈ R, the space of parallel sections with multiplier h is not quaternionic.
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Example 2.7 In the case of a surface of revolution f : M → R
3, the holonomy of d� is for all

spectral parameter � ∈ R \ {0, �0} diagonalisable and has at most two distinct multipliers, h
and h−1, see [20] and Proposition 4.4 in the case of a round cylinder. The spectral parameter
�0 ∈ R∗ is determined by the choice of dual surface: scaling of f d by some factor will result
in a scale of �0. In the case when f (x, y) = i p(x) + jq(x)e−iy with smooth real-valued
functions p, q satisfying p′2+q ′2 = q2 is a conformally parameterised surface of revolution
in the conformal coordinate z = x + iy and d f d = f −1

x dx − f −1
y dy we have �0 = − 1

4 .

With such choices, for the unique spectral parameter � = − 1
4 with non-diagonalisable

holonomy there is exactly one parallel section with multiplier h (up to quaternionic scaling),
which indeed is h = −1, and the corresponding Darboux transform is a rotation of f , see
Theorem 4.5 in the case when f is a round cylinder and Remark 4.6 for the general case.

f
ϕ

− 1
4

f̂

For � < − 1
4 , there are exactly two distinct real multipliers h, h−1 ∈ R, and twoH-linearly

independent d�-parallel sections ϕ
�
1 , ϕ

�
2 with multiplier h and h−1, respectively. These give

two distinct Darboux transforms of f which are both rotations of f . Since ϕ
�

1 j, ϕ
�

2 j have the
same real multipliers as ϕ

�

1 and ϕ
�

2 , respectively, there are no further Darboux transforms,
see Theorem 4.5 and Remark 4.6.

f1

f

ϕ
�
1

ϕ
�
2

f2

For � > − 1
4 , � 
= k2−1

4 , k ∈ Z, k ≥ 1, there are exactly two complex multipliers
h ∈ S1 \ {±1}, and two H-linearly independent d�-parallel sections ϕ

�
1 , ϕ

�
2 with multiplier

h. Since any complex linear combination ϕϕ = ϕ
�
1m1 + ϕ

�
2m2, m1,m2 ∈ C, is a d�-parallel

section with multiplier h, we obtain a CP
1 family of closed (possibly singular) Darboux

transforms, giving in case of the round cylinder general rotation surfaces, see Theorem 4.5
and Remark 4.6. Since ϕ� j has multiplier h̄ = h−1 and ϕ�

H = ϕ� jH, we obtain no further
Darboux transforms in this case.

f1

f

ϕ
�
1

ϕ
�r
2

ϕ�,mi∈C
f̂

f2

In the case of a surface of revolution, the only other casewhich can occur is that the spectral
parameter is a resonance point: every d�r -parallel section ϕ�r is a section with multiplier,
that is, every Darboux transform with parameter �r is a closed Darboux transform.
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Fig. 1 Darboux transforms of an unduloid for � ∈ R∗, � 
= k2−1
4 , k > 1, k ∈ Z, are rotation surfaces

Fig. 2 Darboux transforms in 3-space of an unduloid at a resonance point for k = 2, 3 are unduloids, CMC
bubbletons, surfaces of revolution or isothermic bubbletons

Put differently, given a basis {ϕ�r
1 , ϕ

�r
2 } of d�r -parallel sections at a resonance point �r

every d�r -parallel section, and thus, every (possibly singular) �r -Darboux transform, is given
by ϕ�r = ϕ

�r
1 m1 + ϕ

�r
2 m2, m1,m2 ∈ H:

f1

f

ϕ
�r
1

ϕ
�r
2

ϕ�r ,mi∈H
f̂

f2

Note that this shows that all d�-parallel sections at a resonance point � ∈ R∗ have the
same multiplier h, and since multipliers appear as pairs (h, h̄), we also see that h ∈ R.

The corresponding Darboux transforms in case of a surface of revolution are rotation

surfaces or isothermic bubbletons: in this case resonance points �r = k2−1
4 are parametrised

by positive integers k ∈ Z, k > 1, such that the corresponding Darboux transforms have
k lobes. Special initial conditions give, in the case of a Delaunay surface, again Delaunay
surfaces and CMC bubbletons, see Proposition 4.4 for the case of a round cylinder.

Given two Darboux transforms f1, f2 of f with respect to parameter �1, �2 ∈ R, there
is a common Darboux transform of both f1, f2 which can be computed from the parallel
sections without further integration.

Theorem 2.8 (Bianchi permutability, [1], [16,§5.6.6], [21]) Let f : M → S4 be an
isothermic surface. Let �1, �2 ∈ R∗ and fi be the Darboux transforms given by d�i -parallel

sections ϕi = ϕ
�i
i ∈ �(H̃

2
). If f1(p) 
= f2(p) for all p ∈ M then

ϕ12 = ϕ2 − ϕ1χ
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Fig. 3 Common Darboux transforms of two bubbletons

gives a �2-Darboux transform of f1 and a �1-Darboux transform of f2 on the universal cover
M̃ of M by

f12 = ϕ12H .

Here χ : M̃ → H is given by dϕ2 = dϕ1χ .

Remark 2.9 Note that the condition d�i ϕi = 0 shows that dϕi ∈ �1(L), and thusχ : M̃ → H

is well-defined. The classical case can be extended to allow �1 = �2 in which case the parallel
section ϕ12 ∈ �(L) is a section in L = ker η: since dϕ2 = dϕ1χ and d�ϕi = 0, we see that
ηϕ2 = ηϕ1χ and thus ηϕ12 = 0.

In particular, the Darboux transform f12 is f : in contrast to the case when �1 
= �2, we do
not get all Darboux transforms of f1 with parameter �1 = �2 by this construction. We will
discuss how to obtain all Darboux transforms by a Sym-type argument in the next section.

We also know [20] that ϕ12 = ϕ
�2
12 is a parallel section of the family of flat connections of

f1 for spectral parameter �2, and ϕ21 = ϕ
�1
21 := ϕ12χ

−1 is a parallel section of the family of
flat connections of f2 at �1. In particular, f12 = ϕ12H = ϕ21H = f21:

f1
ϕ

�2
12

f

ϕ
�1
1

ϕ
�2
2

f12 = f̂1 = f̂2 = f21

f2

ϕ
�1
21

3 Generalised Bianchi permutability

Given an isothermic surface f with associated family dλ and aDarboux transform f1 given by
spectral parameter �1 ∈ R and d�1 -parallel section ϕ1 = ϕ

�1
1 , Bianchi permutability allows

to compute Darboux transforms of f1 for all spectral parameter �2 
= �1 by solely knowing
the parallel sections of the family of flat connections of f and performing an algebraic
operation. However, in the case when � := �1 = �2 we only obtain one Darboux transform
of f1 via Bianchi permutability, namely f12 = f . In this section, we show that we still obtain
all Darboux transforms of f1 without integration by the parallel sections of the associated
family of f . The Darboux transform in this case is not given algebraically but by a Sym-type
argument: we will differentiate parallel sections with respect to the spectral parameter.
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3.1 Simple factor dressing

Let f : M → S4 be an isothermic surface with associated family dλ and let f̂ = f1 be
a Darboux transform given by a d�-parallel section ϕ. To find all parallel sections of the
associated family d̂λ = d1λ of f̂ at λ = � in terms of parallel sections of dλ we need to
understand d̂λ at �. To this end, we recall the so-called simple factor dressing: it is known
that a suitable λ-dependent gauge matrix rλ with a simple pole given by � gives via gauging
the associated family d̂λ = rλ · dλ of a �-Darboux transform.

Theorem 3.1 (Simple Factor Dressing, [6,Definition 3.7]) Let f : M → S4 be isothermic

with associated family dλ = d + λη, λ ∈ R. Let � ∈ R∗ and let ϕ ∈ �(H̃
2
) be a d�-parallel

section with corresponding Darboux transform f̂ : M̃ → H given by L̂ = ϕH. Denote by π̂

and π the projections onto L̂ and L, respectively, along the splittingH2 = L̂ ⊕ L and define

r(λ) = r L̂� (λ) = π̂ + σ�(λ)π (3.1)

with

σ�(λ) = �

� − λ
.

Then, d̂λ = r(λ) · dλ is the family of flat connections of the Darboux transform f̂ . Moreover,
d̂λ = d + λη̂ with

η̂ = −π̂ ◦ d ◦ π
1

�
.

Proof Since the Darboux transform L̂ = ϕH is an isothermic surface, we can consider its
family of flat connections d̂λ = d + λη̂, λ ∈ R, with im η̂ = ker η̂ = L̂ . We first show that

rλ · dλ = d̂λ for all λ ∈ R \ {�} .

Since L is a Darboux transform of L̂ with parameter �, there exists a d̂�-parallel section
ˆϕ ∈ �(L). Since H2 = L ⊕ L̂ = ˆϕH⊕ ϕH it is enough to show that the connections rλ · dλ

and d̂λ coincide on ϕ and ϕ̂.
Since r−1

λ = π̂ + πσ�(λ)−1, d�ϕ = 0 and η̂ϕ = 0 we have

(rλ · dλ)ϕ = rλ(dϕ + ηϕλ) = rλ(ηϕ(λ − �)) = −ηϕ� = dϕ = d̂λϕ .

Similarly, we see that d̂�ϕ̂ = 0 and ηϕ̂ = 0 give

(rλ · dλ)ϕ̂ = rλ(dλϕ̂
� − λ

�
) = rλ(dϕ̂

� − λ

�
) = rλ(η̂ϕ̂)(λ − �) = η̂ϕ̂(λ − �) = d̂λϕ̂, .

Thus, rλ · dλ = d + λη̂ for λ 
= � and rλ · dλ extends to λ = �. We observe that

rλ · d = π̂◦d ◦ π̂ + π ◦ d ◦ π + π̂ ◦ d ◦ π
� − λ

�
+ π ◦ d ◦ π̂

�

� − λ

and

Ad(rλ)η = π ◦ η ◦ π̂
�

� − λ
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since η|L = 0, im η ⊂ L . Therefore, the claim now follows from

η̂ = lim
λ→∞

1

λ
rλ · dλ = −π̂ ◦ d ◦ π

1

�
.

Note that indeed η̂2 = 0 and im η̂ = ker η̂ = L̂ . ��

In particular, the family of flat connections d̂λ = rλ · dλ extends into the pole � of rλ.
We will now investigate parallel sections of d̂λ at λ = � and their corresponding Darboux
transforms in terms of parallel sections of dλ.

3.2 Bianchi-type and Sym-type parallel sections

Let f1 be the Darboux transform of an isothermic surface f : M → S4 which is given by
� ∈ R∗ and a d�-parallel sectionϕ1 = ϕ

�

1 , and d
1
λ its associated family of flat connections. For

λ 
= � all parallel sections of d1λ are given by Bianchi permutability.We are now investigating
parallel sections of d1λ at λ = �.

Proposition 3.2 Assume that ϕ2 = ϕ
�

2 is d�-parallel and independent of ϕ1 over H. Then,

ϕ12 = πϕ2

is a parallel section of the flat connection

d1� = d − π1 ◦ d ◦ π

of f1. Here, π and π1 are the projections onto L and L1 respectively along the splitting
H

2 = L1 ⊕ L. We call ϕ12 a Bianchi-type section. The associated Darboux transform of f1
is f12 = f .

Proof Consider the d1�-parallel section ϕ̃ given by Bianchi permutability by

ϕ̃ = ϕ2 − ϕ1χ

with dϕ2 = dϕ1χ . By Remark 2.9, we know that ϕ̃ ∈ �(L) is a section in L . Therefore,

ϕ̃ = π(ϕ2 − ϕ1χ) = πϕ2 = ϕ12 .

��

Since all d1�-parallel sections arising from Bianchi permutability are sections in L and

therefore quaternionic multiples of ϕ12, we know that there exist d1�-parallel sections on the

universal cover M̃ of M which do not arise from Bianchi permutability since d1� is a flat

connection on H2. We now investigate these.
Recall that away from λ = �, we have d1λ = rλ · dλ where

rλ = π1 + σ�(λ)π, σ�(λ) = �

� − λ

is the simple factor dressing matrix given by the bundle L1 and the pole �.
Moreover, if ϕλ

1 are dλ-parallel sections with ϕ1 = ϕ
λ=�

1 , which depend smoothly on λ,
then ϕλ

11 = rλϕλ
1 is d

1
λ-parallel away from λ = �. At λ = �, the dressing matrix rλ has a pole.
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Fig. 4 Sym-type Darboux transform of an unduloid f . In the first case the one-step Darboux transform f1 of
f is a surface of revolution, in the second case f1 is a CMC bubbleton

However, by L’Hôpital’s rule the limit ϕ11 = limλ→� ϕλ
11 at � exists since limλ→� πϕλ

1 = 0,
and we obtain

ϕ11 = ϕ1 − �π(
∂

∂λ
ϕλ
1 )|λ=� .

Indeed, ϕ11 is parallel with respect to d1� = d − π̂ ◦ d ◦ π : since dλϕ
λ
1 = 0, we first have

0 = ∂

∂λ
(πdλϕ

λ
1 )|λ=� = π

∂

∂λ
(dϕλ

1 + ληϕλ
1 )|λ=� = π(d�(

∂

∂λ
ϕλ
1 )|λ=� + ηϕ1) ,

so that

ηϕ1 = −π(d�(
∂

∂λ
ϕλ
1 )|λ=�) = −π(d�π(

∂

∂λ
ϕλ
1 )|λ=�) .

Here, we used that im η ∈ L and that L1 is d�-stable so that π ◦ d� ◦ π = π ◦ d�. Together
with η|L = 0 and πϕ1 = 0, we now see that

d1�ϕ11 = dϕ1 − �dπ((
∂

∂λ
ϕλ
1 )|λ=�) + �π1dπ(

∂

∂λ
ϕλ
1 )|λ=� = dϕ1 − �πdπ((

∂

∂λ
ϕλ
1 )|λ=�)

= dϕ − �πd�π((
∂

∂λ
ϕλ
1 )|λ=�) = d�ϕ1 = 0 .

Thus,we have shown thatϕ11 gives aDarboux transform f11 of f1. Sinceπ1ϕ11 = ϕ1 
= 0,
we see that f11 
= f , and thus, f11 is not a Darboux transform given byBianchi permutability.
We summarise:

Theorem 3.3 Let f : M → S4 be isothermic and dλ its associated family of flat connections.

Let � ∈ R∗ be fixed, ϕ1 = ϕ
�

1 ∈ �(H̃
2
) a d�-parallel section, and f1 the corresponding

Darboux transform. Given dλ-parallel sections ϕλ
1 near � which depend smoothly on � with

ϕ
λ=�

1 = ϕ1, the section

ϕ11 = ϕ
λ=�
1 − �π(

∂

∂λ
ϕλ
1 )|λ=�

is d1�-parallel where d
1
λ = d − λ

�
π1 ◦ d ◦ π is the family of flat connections of f1. We call

the ϕ11 as Sym-type (parallel) section and its associated Darboux transform f11 a Sym-type
(two-step) Darboux transform of f .

Remark 3.4 Note that the Sym-type parallel section ϕ11, and thus the Sym-type Darboux
transform f11 depends on the choice of the extension ϕλ

1 .
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3.3 A generalisation of Bianchi permutability

Combining previous results, we are now in the position to give a generalisation of Bianchi
permutability: we obtain for all � ∈ R∗ all two-step Darboux transforms of an isothermic
surface f : M → S4 by parallel sections of the associated family of f without further
integration.

Theorem 3.5 Let f : M → S4 be an isothermic surface and let dλ be the associated family
of f . Let � ∈ R∗ be a spectral parameter and f1 be a Darboux transform of f given by a

d�-parallel section ϕ1 = ϕ
�

1 ∈ �(H̃
2
). Then any parallel section of the flat connection d1� in

the associated family of f1 is either a Sym-type or a Bianchi-type parallel section.

Proof Choose a smooth extension ϕλ
1 of ϕ1 near λ = � and let ϕ11 = ϕ1 −�π( ∂

∂λ
ϕλ
1 )|λ=� be

the corresponding Sym-type parallel section. Moreover, let ϕ2 be a d�-parallel section with
ϕ12 = πϕ2 
= 0. Since π1ϕ11 = ϕ1 
= 0, we see that ϕ11, ϕ12 are H-independent parallel
sections of d1� .

Now let ϕ̂ ∈ �(H̃
2
) be an arbitrary d1�-parallel section. We first show that ϕ̂ is a Bianchi-

type parallel section if π1ϕ̂ = 0. In this case, ˆϕ ∈ �(L) and since both ϕ̂ and ϕ12 are
non-vanishing d1�-parallel sections of the line bundle L , we have

ϕ̂ = ϕ12m, m ∈ H∗ ,

But then ϕ̂ = π(ϕ2m) is a Bianchi-type parallel section. We can therefore now assume that
π1ϕ̂ 
= 0 so that

π1ϕ̂ = ϕ1m,m ∈ H∗ .

We aim to show that ϕ̂ is a Sym-type Darboux transform of f . Therefore, we have to find a
smooth extension ϕ̃λ

1 near λ = � so that ϕ̂ is its associated Sym-type parallel section, that is,

ϕ̂ = ϕ̃11 = ϕ̃
λ=�
1 − �π(

∂

∂λ
ϕ̃λ
1 )|λ=� .

Since ϕ11, ϕ12 are linearly independent over H, we can write

ϕ̂ = ϕ11m1 + ϕ12m2, m1,m2 ∈ H .

Since πϕ̂ = ϕ1m and πϕ11 = ϕ1 we see that m1 = m. Extend ϕ2 to dλ-parallel sections ϕλ
2

which depend smoothly on λ near λ = � and put

ϕ̃λ
1 = ϕλ

1m + ϕλ
2m2

� − λ

�
.

Then, ϕ̃λ
1 depends smoothly on λ near λ = �. Moreover, since ϕλ

1 , ϕλ
2 are dλ-parallel and

�−λ
�

∈ C is constant for fixed λ, we see that ϕ̃λ
1 is dλ-parallel. At λ = �, we have

ϕ̃
�

1 = ϕ1m

and the associated Sym-type parallel section is

ϕ̃11 = ϕ̃
λ=�

1 − �π(
∂

∂λ
ϕ̃λ
1 )|λ=�

= ϕ1m − �π
(
(

∂

∂λ
ϕλ
1 )|λ=�m − ϕ2m2

1

�
+ (

∂

∂λ
ϕλ
2 )m2

� − λ

�
|λ=�

)

123



812 Annals of Global Analysis and Geometry (2022) 61:799–829

=
(
ϕ

λ=�
1 − �π(

∂

∂λ
ϕλ
1 )|λ=�

)
m + πϕ2m2 = ϕ11m + ϕ12m2

= ϕ̂.

This concludes the proof. ��

This immediately gives a generalisation of Bianchi permutability, Theorem 2.8:

Theorem 3.6 (generalised Bianchi permutability) Let f : M → S4 be isothermic and f1
be a Darboux transform of f given by the spectral parameter �1 ∈ R∗ and the d�1 -parallel

section ϕ1 ∈ �(H̃
2
). Then, all Darboux transforms of f1 are either Sym-type or Bianchi-type

two-step Darboux transforms of f .

In particular, all Darboux transforms are given by parallel sections ϕλ ∈ �(H̃
2
) of the

associated family dλ of f via algebraic operations and differentiation with respect to the
spectral parameter λ.

Denoting by f11 the Sym–Darboux transform given by a Sym-type parallel section ϕ11

and by f12 a Darboux transform given by Bianchi permutability by a Bianchi-type parallel
section ϕ12, we see the following picture:

f11

f1
ϕ

�2
12

ϕ
�1
11

f

ϕ
�1
1

ϕ
�2
2

f12 = f21

f2

ϕ
�1
21

Remark 3.7 Note that the previous theorem now allows to construct all Darboux transforms
(of any order) of an isothermic surface f from parallel sections of the associated family dλ

of f without further integration.

3.4 Closing conditions

We now investigate the closing condition for a two-step Darboux transform of an isothermic
surface f : M → S4.

For �i ∈ R, i = 1, 2, let ϕi = ϕ
�i
i be d�i -parallel sections of the associated family of flat

connections dλ of f . Assume that ϕi have multipliers hi ∈ C, that is, γ ∗ϕi = ϕi hi (γ ) for all
γ ∈ π1(M). Then, both associated Darboux transforms fi : M → S4 are closed surfaces.
The function χ defined by dϕ2 = dϕ1χ satisfies χ∗ = h−1

1 χh2 so that

ϕ12 = ϕ2 − ϕ1χ

has multiplier h2. In particular, we see that the two-step Darboux transforms, which are
obtained by Bianchi permutability from closed Darboux transforms, are closed too.
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Proposition 3.8 Let f : M → S4 be an isothermic surface and fi : M → S4, i = 1, 2, be
closed Darboux transforms of f , with f1(p) 
= f2(p) for all p. Then, the common Darboux
transform of f1 and f2 is closed too.

Remark 3.9 This result holds trivially when �1 = �2: in this case the Bianchi-type two-step
Darboux transforms are f = f12 = f21.

Consider now the remaining case when � := �1 = �2 and the Darboux transform f11 of
f1 is given by a Sym-type parallel section, that is, it is given by ϕ11 = ϕ1 − �π( ∂

∂λ
ϕλ
1 )|λ=�

where ϕλ
1 is dλ-parallel near λ = � and ϕ

λ=�

1 = ϕ1. If ϕλ
1 is a section with multiplier hλ

1 for
all λ near � then

γ ∗π(
∂

∂λ
ϕλ
1 )|λ=� = π((

∂

∂λ
ϕλ
1 )|λ=�h

λ=�

1 + ϕ1(
∂

∂λ
hλ
1)|λ=�) = π(

∂

∂λ
ϕλ
1 )|λ=�h1

and thus ϕ11 = ϕ1−π( ∂
∂λ

ϕλ
1 )|λ=� has the samemultiplier h1 as ϕ1. In particular, the resulting

Darboux transform f11 of f1 is closed.
We summarise:

Theorem 3.10 Let f : M → S4 be isothermic and f1 : M → S4 a Darboux transform given
by the d�-parallel section ϕ1. A Sym-type Darboux transform f11 given by an extension ϕλ

1
of ϕ1 is closed if ϕλ

1 is a section with multiplier near λ = �.

We now investigate cases where we can guarantee existence of closed two-step Darboux
transforms in terms of the behaviour of the holonomy of dλ.

Corollary 3.11 Let f : M → S4 be isothermic anddλ its associated family of flat connections.
If � ∈ R∗ is a spectral parameter such that there are four distinct complex multipliers of the
holonomy of d�, then every closed Darboux transform f1 has exactly two closed Darboux
transforms with parameter �.

Remark 3.12 Homogeneous tori are examples of isothermic surfaces which have exactly four
distinct complex multipliers: we will return to this topic in a future paper.

Proof If one of the multipliers is real, then there exist two complex independent parallel
sections ϕ, ϕ j with the same multiplier which contradicts the assumption that the holonomy
has four distinct eigenvalues with complex one-dimensional eigenspaces.

Since complex multipliers appear as pairs of conjugate complex multipliers, we have
exactly two d�-parallel sections ϕ1, ϕ2 with complex multiplier h1 and h2, h1 
= h2, respec-
tively, which are H-independent. Thus, all multipliers are given by {h1, h̄1, h2, h̄2}.

Since f1 is closed, it is given by one of these parallel sections, say ϕ1. The multipliers
depend smoothly on the spectral parameter and since there are four distinct multipliers for
λ near �, we can extend ϕ1 around � to a smooth family of dλ-parallel sections ϕλ

1 with
multipliers hλ

1 . Then, the Sym-type formula shows that ϕ11 is a section with multiplier h1
and f11 is closed. Since f11 
= f , we obtain the second closed Darboux transform from
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Bianchi permutability and the parallel section ϕ2. Since h1 
= h2, we cannot have further
closed Darboux transforms of f1. ��

f11

f1

(ϕ
�
12,h2)

(ϕ
�
11,h1)

f

(ϕ
�
1 ,h1)

(ϕ
�
2 ,h2)

f = f12 = f21

f2

Corollary 3.13 Let f : M → S4 be isothermic anddλ its associated family of flat connections.
Assume that there are two H-independent ϕλ

1 , ϕλ
2 with multipliers hλ = hλ

1 = hλ
2 ∈ C \ R

for λ near � ∈ R∗. Then, every closed Darboux transform f1 of f with parameter � has a
CP

1-worth of closed Darboux transforms.

Proof Since h = hλ=� /∈ R, we see that � is not a resonance point. Let ϕ1 be a d�-parallel
section with multiplier and f1 the Darboux transform given by ϕ1. Since multipliers come in
pairs of complex conjugates, we know that the holonomyof dλ is diagonalisablewith complex
two-dimensional, dλ-stable eigenspaces Eλ = spanC{ϕλ

1 , ϕλ
2 } and Eλ j with multipliers h

and h̄. Therefore, we can assume without loss of generality that the d�-parallel section
ϕ1 has multiplier h by replacing ϕ1 by ϕ1 j if necessary. Moreover, we can write ϕ1 =
ϕ

λ=�

1 m1 + ϕ
λ=�

2 m2, m1,m2 ∈ C, and thus can also assume without loss of generality that

ϕ1 = ϕ
λ=�

1 by replacing ϕλ
1 by ϕλ

1m1 + ϕλ
2m2 if necessary.

The Sym-type parallel section

ϕ11 = ϕ1 − �π(
∂

∂λ
ϕλ
1 )|λ=�

has multiplier h since γ ∗( ∂
∂λ

ϕλ
1 )|λ=� = ( ∂

∂λ
ϕλ
1 )|λ=�h + ϕ1(

∂
∂λ
hλ)|λ=�. Here, π is the pro-

jection onto L along the splitting H
2 = L ⊕ L1.

On the other hand, the Bianchi-type Darboux transform f12 of f1 is given ϕ12 = πϕ
λ=�

2
which is also a section with multiplier h. Thus, any C-linear combination of ϕ11, ϕ12 is
a d�-parallel section with multiplier h, and thus we have a CP

1 worth of closed Darboux
transforms. Since � is not a resonance point, parallel sections with multipliers h̄ give the
same surfaces. ��

123



Annals of Global Analysis and Geometry (2022) 61:799–829 815

Fig. 5 Closed Sym-type Darboux transforms of an unduloid for a non-resonance spectral parameter � > − 1
4

f11

f1

(ϕ
�
12,h)

(ϕ
�
11,h)

(ϕ�,h),mi∈C
f̂

f
(ϕ

�
1 ,h1)

(ϕ
�
2 ,h)

f = f12 = f21

f2

Example 3.14 This case appears for surfaces of revolution in 3-space: If � > − 1
4 , � 
= 0, is

not a resonance point, then a closed Darboux transform f1 with parameter � in 3-space is a
surface of revolution and so is every Darboux transform with parameter � of f1 in 3-space.

At resonance points �r , it is possible that a Darboux transform f1 has �r as a resonance
point.

Theorem 3.15 Let �r ∈ R∗ is a resonance point of an isothermic surface f and f1 be a
closed Darboux transform of f given by a d�r -parallel section ϕ1 with multiplier h1. If ϕ1

extends to dλ-parallel sections ϕλ
1 with multiplier hλ

1 near λ = �r , then �r is a resonance
point of f1.

Proof By Theorem 3.5, every parallel section of the family of flat connections of f1 is either
a Sym-type or a Bianchi-type parallel section. Every Bianchi-type parallel section ϕ12 gives
rise to theDarboux transform f12 = f and is given by a parallel sectionϕ2 with realmultiplier
h2 = h1 since �r is a resonance point.

By Theorem 3.10, we know that a Sym-type Darboux transform is closed if ϕ1 can be
extended by a dλ-parallel sections ϕλ

1 with multiplier hλ
1. In this case, ϕ11 has multiplier

h1 and ϕ12 and ϕ11 have the same real multiplier. Since any parallel section ϕ̂ is a linear
combination

ϕ̂ = ϕ11m1 + ϕ12m2

withm1,m2 ∈ Hwe see that every parallel section has multiplier h1. Thus, �r is a resonance
point of f1. ��
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Fig. 6 Sym-type Darboux transforms of an unduloid at resonance points �k = k2−1
4 , k = 2, 3

f11

f1

(ϕ
�
12,h)

(ϕ
�
11,h)

(ϕ�,h),mi∈H
f̂

f
(ϕ

�
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(ϕ
�
2 ,h)

f = f12 = f21

f2

Example 3.16 Surfaces of revolution f : M → R
3 are examples of isothermic surfaces with

resonance points. All Darboux transforms f1 with respect to a resonance point �r ∈ R∗
which are surfaces of revolution have �r as a resonance point too and thus a HP

1-family of
closed (possibly singular) Darboux transforms.

The only closed Darboux transforms f1 of f which are not surfaces of revolution are
(isothermic) bubbletons. In this case, the spectral parameter�r gives only one closedDarboux
transform of f1, namely the original surface of revolution f .

4 Sym-type Darboux transforms of the round cylinder

In this section, we will demonstrate explicitly the construction of Sym-type Darboux trans-
forms in the example of a conformally parametrised round cylinder (referred to simply as
cylinder, hereafter). We will first show that the Darboux transform of a real-analytic surface
of revolution, which does not have constant mean curvature, has constant mean curvature if
and only if the Darboux transform is again a surface of revolution. This will allow to rule
out later that closed surfaces obtained by Sym-type Darboux transforms are constant mean
curvature surfaces.
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We then will give all Darboux transforms of a cylinder explicitly by computing all parallel
sections of the family of flat connections. With this at hand, we will consider the case when
the one-step Darboux transform is a surface of revolution but not CMC. In this case, we
give two surprisingly explicit examples of Sym-type transforms, one which is a surface of
revolution and one which is not.

4.1 Darboux transforms of a surface of revolution

We first discuss curvature properties of Darboux transforms of a surface of revolution which
is not a Delaunay surface. Given an isothermic surface f : M → R

3 recall that the associated
family dλ gives rise to a dual surface f d via (2.1) by d f d = ω. Writing a d�-parallel section

ϕ = eα + ψβ ∈ �(H̃
2
), � ∈ R∗, where

e =
(
1
0

)
, ψ =

(
f
1

)

we obtain the Riccati equation

dT = −d f + Td f d�T (4.1)

for T = αβ−1 in the case when T : M̃ → R
3. In this case, the Darboux transform given by

ϕ can be written in affine coordinates as f̂ = f + T so that d f̂ = �Td f dT .
Next, we recall that for an isothermic surface f : M → R

3 the mean curvature of a
Darboux transform f̂ = f + T in 3-space is given in terms of the mean curvature of a dual
surface f d of f .

Lemma 4.1 ( [18,Eq. 58]) Let f : M → R
3 be an isothermic surface in 3-space with

Gauss map N and dual surface f d . Then, the mean curvature of a Darboux transform
f̂ = f + T : M̃ → R

3 of f with parameter � is given by

Ĥ = − 1

|T |2 (
Hd

�
− 2〈T , N 〉) , (4.2)

where Hd is the mean curvature of the dual surface f d of f .

Similar to the case when f is CMC in [8], one can now derive a necessary condition for
a Darboux transform of an isothermic surface to have constant mean curvature:

Lemma 4.2 Let f : M → R
3 be an isothermic surface and f̂ = f + T : M̃ → R

3 a
Darboux transform of f . If f̂ has constant mean curvature Ĥ , then

(H − Ĥ)〈d f , T 〉 + dHd

2�
= 0 ,

where H and Hd are the mean curvatures of f and its dual surface f d , respectively.

Proof From −Hd f = 1
2 (dN − N ∗ dN ), see [8,Sec. 7.2], and Nd = −N , we know that

dN = Hdd f d − Hd f . Since Ĥ is constant, we can differentiate Eq. (4.2)

1

2
Ĥ |T |2 + Hd

2�
− 〈T , N 〉 = 0
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to obtain, using the Riccati equation, that

0 = Ĥ〈dT , T 〉 + dHd

2�
− 〈dT , N 〉 − 〈T , dN 〉

= Ĥ〈−d f + Td f d�T , T 〉 + dHd

2�
− 〈Td f d�T , N 〉 − 〈T , Hdd f d − Hd f 〉

= (H − Ĥ)〈d f , T 〉 + dHd

2�
+ 〈Td f d�T , ĤT − N 〉 − 〈T , Hdd f d〉 .

It remains to show that

0 = 〈Td f d�T , ĤT − N 〉 − 〈T , Hdd f d〉 .

Since 〈a, b〉 = − 1
2 (ab + ba) for a, b ∈ ImH = R

3, we get

〈Td f d�T , T 〉 = −�|T |2〈T , d f d〉
so that

〈Td f d�T ,ĤT − N 〉 − 〈T , Hdd f d〉
= −(�|T |2 Ĥ + Hd)〈T , d f d〉 − �〈Td f dT , N 〉
= −2�〈T , N 〉〈T , d f d〉 − �〈Td f dT , N 〉
= �

2
(−(T N + NT )d f dT − Td f d(T N + NT ) + Td f dT N + NTd f dT )

= 0

where we used equation (4.2) and Nd f d = −d f d N . ��
We can now use the previous lemma to discuss the mean curvature of Darboux transforms

of surfaces of revolution.

Theorem 4.3 Let f : M → R
3 be a real-analytic conformal surface of revolution in 3-space.

If a Darboux transform f̂ : M̃ → R
3 of f has constant mean curvature in 3-space then

f̂ : M → R
3 is a surface of revolution or f is CMC, that is, at least one of f̂ or f is a

Delaunay surface.

Proof Since f is conformally parametrised, we can write f (x, y) = i p(x)+ jq(x)e−iy with
smooth real-valued functions p, q satisfying p′2 + q ′2 = q2.

Let f̂ : M̃ → R
3 be a Darboux transform in 3-space with parameter �, that is f̂ = f + T

where T satisfies the Riccati equation (4.1). Since both f and its dual f d are surfaces of
revolution the mean curvatures H and Hd of both surfaces are independent of y. Thus,
Lemma 4.2 gives

0 = (Ĥ − H)〈 fy, T 〉 = (Ĥ − H)〈− j iqe−iy, T 〉 .

If Ĥ = H , then f has constant mean curvature, and we are done. Now, assume that Ĥ 
= H .
Since f is real-analytic so is H , and thus Ĥ − H has only isolated zeros. Then, 〈 fy, T 〉 = 0
away from the isolated zeros of Ĥ − H . Since f and T are smooth, we conclude that
〈 fy, T 〉 = 0 on M . This shows that

T = in + jme−iy
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where m, n are real valued functions. On the other hand, Hd and thus also Hd
x only depend

on x , so that

〈 fx , T 〉 = 〈i p′ + jq ′e−iy, in + jme−iy〉 = p′n + q ′m

only depends on x . Now, dT = −d f + Td f d�T shows

Ty = − fy − 1

| fy |2 T fy�T .

Since

T fyT = fy |T |2 − 2〈T , fy〉T = fy |T |2

we have Ty = fy(−1 − �|T |2
| fy |2 ). Therefore, Ty = iny + j(my − im)e−iy is a scale of

fy = kqe−iy by a real-valued function, and thus ny = 0. Since 〈 fx , T 〉, p′, q ′ only depend
on x this shows that also my = 0. Therefore, we have shown that f̂ is a surface of revolution
if Ĥ 
= H . ��

4.2 Darboux transforms of a cylinder

Wewill compute all Darboux transforms of a conformally parametrised cylinder, of constant
mean curvature H = 1

f (x, y) = 1

2
(i x + je−iy) .

Consider the dual surface f d given, up to translation, by d f d = f −1
x dx− f −1

y dy. We choose

f d(x, y) = −2(i x − je−iy) and observe that the dual surface has constant mean curvature
Hd = − 1

4 .
To find all d�-parallel sections, � 
= 0, we recall (2.1) that

d� = d + �

(
f d f d − f d f d f
d f d −d f d f

)
.

Since L ⊕ eH = H
2 where L = ψH,

ψ =
(
f
1

)
, e =

(
1
0

)
,

we can write a d�-parallel section ϕ = ϕ� ∈ �(H̃
2
) as

ϕ = eα + ψβ ,

with α = α�, β = β� : M̃ → H. If ϕ = ϕ� is d�-parallel, we thus see that

dα = −d f β, dβ = −d f dα� .

From this, we observe that ϕ has complex multiplier h if and only if α has also multiplier h.
Differentiating the above equations again, we obtain in the isothermic coordinate z =

x + iy, the differential equation

αyy − iαy + α� = 0 , (4.3)
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which has, in the case � 
= − 1
4 , the solutions

α = e
iy
2 (c+e

ity
2 + c−e− i t y

2 )

where c± are H-valued functions, independent of y, and t = √
1 + 4�.

Thus, for � 
= − 1
4 the section ϕ = eα + ψβ is a section with multiplier if and only if

c+ = 0, c− = 0 or � is a resonance point. In particular, the multiplier is h± = −e±iπ t . Note

that if � is a resonance point, that is, if h+ = h−, then � = k2−1
4 , k ∈ Z, k > 1.

In the case when � = − 1
4 , the general solution to the differential equation (4.3) is given

by

α = e
iy
2 (c1 + yc2)

with c1, c2 quaternionic valued functions depending on x only. From this, we see that ϕ =
eα + ψβ is a section with multiplier if and only if c2 = 0. Thus, to find sections with

multipliers we can restrict to finding solutions α of the form α = e
iy
2 (c+e

ity
2 + c−e− i t y

2 ) for
t = √

1 + 4�, � 
= 0 .
We write c± = c±

0 + jc±
1 with complex valued function c±

0 , c±
1 . Then, β = − f −1

y αy

gives

β = e
iy
2

((
c+
1 (t − 1) + jc+

0 (1 + t)
)
e
ity
2 −

(
c−
1 (1 + t) + jc−

0 (t − 1)
)
e

−i t y
2

)
.

It remains to find the complex-valued functions c±
i . Since dα = −d f β, we see that

∗dα = Ndα where N = − je−iy is the Gauss map of f . Therefore, we can find c± by
solving the differential equation αy = Nαx which gives the linear system

(c±
0 )′ = − i(−1 ± t)

2
c±
1

(c±
1 )′ = i(1 ± t)

2
c±
0 .

The solutions of this system are given by

c±
0 (x) = −2i

√
�(m±

0 e
√

�x − m±
1 e

−√
�x )

c±
1 (x) = (1 ± t)(m±

0 e
√

�x + m±
1 e

−√
�x )

with m±
i ∈ C. Thus, we have now computed all parallel sections of a cylinder explicitly. We

summarise:

Proposition 4.4 Let f (x, y) = 1
2 (i x + je−iy) be the round cylinder and � ∈ R∗. Then,

ϕ± = eα± + ψβ± ∈ �(H̃
2
) are d�-parallel sections with multipliers h± = −e±iπ t , where

α± = e
iy
2 (c±

0 + jc±
1 )e± i t y

2

β± = e
iy
2

(
c±
1 (±t − 1) + jc±

0 (1 ± t)
)
e± i t y

2

with t = √
1 + 4ρ and

c±
0 (x) = c±

0 (x,m±
0 ,m±

1 ) = −2i
√

�(m±
0 e

√
�x − m±

1 e
−√

�x )

c±
1 (x) = c±

1 (x,m±
0 ,m±

1 ) = (1 ± t)(m±
0 e

√
�x + m±

1 e
−√

�x ) , m±
0 ,m±

1 ∈ C .

Moreover, every d�-parallel section, � 
= − 1
4 , is given by ϕ = ϕ+ + ϕ− ∈ �(H̃

2
).
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Finally, the resonance points of the cylinder are given by

�k = k2 − 1

4
, k ∈ Z, k > 1 .

In this case, every d�k -parallel section has multiplier hk = (−1)k+1.

From the explicit form of the parallel sections, we have now complete information about
the set of closed Darboux transforms:

Theorem 4.5 Let f : M → R
3 be given by f (x, y) = 1

2 (i x + je−iy). Then for � ∈ R∗, � 
=
k2−1
4 , k ∈ Z, each multiplier h± = −e±iπ

√
1+4� has a complex two-dimensional space E±

of parallel sections with multiplier h±. Moreover,

• if � = − 1
4 , then there is exactly one closed Darboux transform, which is the rotation of

f with angle θ = π in the jk-plane, i.e. f̂ (x, y) = 1
2 (i x − je−iy) is a cylinder.

• If � < − 1
4 , then there are exactly two closed Darboux transforms which are the rotations

of f with the angles ±θ in the jk-plane where eiθ = − 1+√
1+4�

1−√
1+4�

, i.e. both Darboux

transforms are cylinders.

• If � > − 1
4 , � 
= k2−1

4 , k ∈ Z, k ≥ 1, then there is a CP
1-worth of closed Darboux

transforms which are rotation surfaces.

• If � = k2−1
4 , k ∈ Z, k > 1, then � is a resonance point. In this case, all Darboux

transforms are closed and are either rotation surfaces or isothermic “bubbletons” with
k lobes.

Proof We first show that the sections ϕ± from Proposition 4.4 give closed (non-singular)
Darboux transforms. If ϕ±(p) ∈ �(L) for some p ∈ M then

α±(p) = 0

which implies m±
0 = m±

1 = 0. Therefore, ϕ± 
= 0 give Darboux transforms which are not
singular and are closed since ϕ± are sections with multipliers.

We now observe that each multiplier h± = −e±iπ t , t = √
1 + 4�, has a complex two-

dimensional space E± of parallel sections with multiplier h±, parametrised by the pairs
(m±

0 ,m±
1 ) ∈ C

2.
For non-resonance points � > − 1

4 , the multipliers h± = −e±iπ t ∈ S1 \ {±1} are not real
with h+ = h− and thus E+ j = E−. Therefore, we obtain a CP1-worth of closed Darboux
transforms by

L+ = ϕ+H,

(
m+

0
m+

1

)
C ∈ CP

1 ,

and every closed Darboux transform arises this way. Writing ϕ+ = eα+ + ψβ+ the corre-
sponding Darboux transform f̂ = f + T is given by our explicit formulae as

T = α+β−1+ = i p̂ + je−iy q̂

where p̂ (resp. q̂) is complex-valued (resp. real-valued) function in x . Thus, every closed
Darboux transform is a rotation surface for non-resonance points � > − 1

4 .
In the case when � < − 1

4 , the two parallel sections ϕ± have real multipliers h± ∈ R and
the eigenspaces of the multipliers h± are quaternionic. Therefore, in this case ϕ+H and ϕ−H
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Fig. 7 At non-resonance points all Darboux transforms are cylinders or more general rotation surfaces

Fig. 8 At a resonance point �k = k2−1
4 additionally CMC bubbletons or isothermic bubbletons can occur,

here for k = 2, 3 lobes

give two closed Darboux transforms f± = f + T±. Our explicit expressions give

T± = α±β−1± = − j
1

1 ∓ t
eiy

and both surfaces f± = f +T± = 1
2 (i x + je±iθe−iy) are cylinders where eiθ = − 1+t

1−t ∈ S1

since t ∈ iR.
In the case when � = − 1

4 , we have real multiplier h+ = h− = −1 and ϕ+H = ϕ−H
gives one closed Darboux transform. Since there is no other section with multiplier, there
are no other closed Darboux transforms in this case. The same computation as in the case
� < − 1

4 shows that the surface is a cylinder (with t = √
1 + 4ρ = 0).

Finally, if � = k2−1
4 , k ∈ Z, k > 1, is a resonance point then h+ = h− ∈ R and

every parallel section is a section with multiplier. The closed Darboux transforms given by
L± = ϕ±H are non-singular and give rotation surfaces. The closed Darboux transforms
with ϕ = ϕ+ + ϕ−, ϕ± 
= 0, give isothermic bubbletons which may be singular Darboux
transforms. ��

Examples of all possible types of closed Darboux transforms in 3-space of a cylinder can
be seen in the following figures:
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Fig. 9 One-step Darboux
transform f̂ in 3-space

Remark 4.6 We should note that similar arguments as in Proposition 4.4 and Theorem 4.5
allow to investigate parallel sections with multiplier and Darboux transforms of surfaces of
revolution, see [20]. Although in general, the differential equations for c± cannot be solved
explicitly, the corresponding shape of the functions α, β is still enough to find all possible
multipliers and to conclude that all Darboux transforms are surfaces of revolution.

4.3 Sym-type Darboux transforms of a cylinder

Since now all parallel sections of d� are known, we can compute explicit examples of Sym-
type Darboux transforms.

Wewill consider the case when the one-step Darboux transform of the cylinder is a surface
of revolution but not CMC. Otherwise, the Darboux transform is again a cylinder, and all
of its Darboux transforms are already known, or an (isothermic) bubbleton which has the
original cylinder f as its only closed Darboux transform.

We will fix our spectral parameter as the resonance point � = 3
4 and choose, according

to Proposition 4.4, the parameter m+
0 = m+

1 = 1 and m−
0 = m−

1 = 0. Then, the d�-parallel
section is given by ϕ = eα + ψβ with

α = α+ = 2e
iy
2 (−i

√
3 sinh

√
3x

2
+ 3 j cosh

√
3x

2
)eiy

β = β+ = 6e
iy
2

(
cosh

√
3x

2
− j i

√
3 sinh

√
3x

2

)
eiy .

The resulting Darboux transform

f̂ = f + αβ−1 = i p̂ + j q̂e−iy (4.4)

is a surface of revolution in 3-space where

p̂(x) = x

2
+ 2

√
3 sinh(

√
3x)

3 − 6 cosh(
√
3x)

q̂(x) = 1

2 cosh(
√
3x) − 1

+ 1

2
.

In particular, f̂ is real-analytic, and we see by Theorem 4.3 that a Darboux transform ˆ̂f
of f̂ can only have constant mean curvature if ˆ̂f is a surface of revolution.

We now demonstrate in two examples how to explicitly construct Sym-type Darboux
transforms of f . The first one is obtained by extending ϕ near λ = � to dλ-parallel sections
ϕλ. Here,ϕ is the sectionwhich gives the aboveDarboux transform f̂ . To obtain the Sym-type
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parallel section, we then compute

ϕ̂ = ϕ − π(
∂

∂λ
ϕλ)|λ=��

where π is the projection along the splitting H
2 = L ⊕ L̂ , L̂ = ϕH.

Example 4.7 [Sym-type Darboux transform is a surface of revolution] We choose ϕλ =
eαλ + ψβλ where

αλ = e
iy
2 (c0 + jc1)e

ity
2

βλ = e
iy
2

(
c±
1 (t − 1) + jc±

0 (1 + t)
)
e
ity
2

with t = √
1 + 4λ and

cλ
0(x) = −4i

√
λ sinh(

√
λx)

cλ
1(x) = 2(1 + t) cosh(

√
λx) ,

so that indeed ϕλ=� = ϕ. Abbreviating the λ-derivative evaluated at � by a dot, we have

ϕ̇ = (
∂

∂λ
ϕλ)|λ=� = eα̇ + ψβ̇ .

We compute

ċ0 = −2i

(
2
√
3

3
sinh(

√
3x

2
) + x cosh(

√
3x

2
)

)

ċ1 = 2

(
cos(

√
3x

2
) + √

3x sinh(

√
3x

2
)

)

and thus

α̇ = − ie
3iy
2

3

(
6x cosh(

√
3x

2
) + √

3(4 + 3iy) sinh(

√
3x

2
)

)

+ j

2
e
1
2 (−√

3x+iy)
(
e
√
3x

(
2
√
3x + 3iy + 2

)
− 2

√
3x + 3iy + 2

)

β̇ = 1

2
e
1
2 (−√

3x+3iy)
(
e
√
3x

(
2
√
3x + 3iy + 8

)
− 2

√
3x + 3iy + 8

)

− 3 j ie
iy
2

(
2x cosh(

√
3x

2
) + √

3(2 + iy) sinh(

√
3x

2
)

)
.

Since e = ϕα−1 − ψβα−1, we obtain πϕ̇ = ψ(β̇ − βα−1α̇) so that

ϕ̂ = ϕ − πϕ̇� = eα + ψβ(1 + m)

with

m = (α−1α̇ − β−1β̇)�

= − 1
4

(
4
√
3x sinh(

√
3x)+3 cosh(

√
3x)

2 cosh(2
√
3x)+1

+ 2 + j i
e2iy

(√
3 sinh(

√
3x)−12x cosh(

√
3x)

)
2 cosh(2

√
3x)+1

)
.
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Fig. 10 Sym-type Darboux
transform of the round cylinder f

Thus, using (1 + m)−1 = 1 − m(1 + m)−1, we obtain

ˆ̂f = f + α(1 + m)−1β−1 = f + αβ−1 − αm(1 + m)−1β−1 = f̂ − αm(1 + m)−1β−1 ,

which gives ˆ̂f = f̂ + T̂ with

T̂ = 2i
(√

3 sinh(
√
3x)

(
48x2−8 cosh(2

√
3x)−7

)
+72x cosh(

√
3x)

)

3
(
2 cosh(

√
3x)−1

)(
48x2−16

√
3x sinh(

√
3x)−12 cosh(

√
3x)+8 cosh(2

√
3x)+7

)

+ j
e−iy

(
−48x2+16

√
3x sinh(2

√
3x)+4 cosh(2

√
3x)+5

)
(
2 cosh(

√
3x)−1

)(
48x2−16

√
3x sinh(

√
3x)−12 cosh(

√
3x)+8 cosh(2

√
3x)+7

)

In particular, ˆ̂f is again a surface of revolution in 3-space.

Since ˆ̂f is not a Delaunay surface, we see that ˆ̂f is isothermic but not CMC.
We now compute another Sym-type Darboux transform of the cylinder by using Theorem

3.5: all Darboux transforms ˆ̂f of f̂ are given by parallel sections which are quaternionic
linear combinations of ϕ̂ and of ϕ̂2 = πϕ2, where π is the projection to L along the splitting
L ⊕ L̂ , L̂ = ϕH, and ϕ2 is a d�-parallel section ϕ2 which is H-independent of ϕ.

Note that for the resonance point � = 3
4 all Darboux transforms obtained this way are

closed surfaces. Moreover, if ˆ̂f 
= f , then ˆ̂f is a Sym-type Darboux transform of f : recall
that by Theorem 3.6 a two-step Darboux transform is either Sym-type or Bianchi type; in the

latter case, it is the original cylinder ˆ̂f = f , whereas in the former ˆ̂f 
= f .

Example 4.8 (Closed Sym-type Darboux transform is not a surface of revolution) Let
c20 = c+

0 (x, i,−i) and consider the corresponding parallel section ϕ̃ which is quater-
nionic independent of ϕ by construction. To obtain a CMC bubbleton, see [20], we put
ϕ2 = ϕ + ϕ̃ j = eα2 + ψβ2 with

α2 = −2ie− iy
2

(
−3 + √

3e2iy
)
sinh(

√
3x

2
) + 2 je− 3iy

2

(√
3 + 3e2iy

)
cosh(

√
3x

2
)

β2 = 6e− iy
2

(
−√

3 + e2iy
)
cosh(

√
3x

2
) − 6 j ie− 3iy

2

(
1 + √

3e2iy
)
sinh(

√
3x

2
) .
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Fig. 11 CMC bubbleton f2

The resulting Darboux transform f2 of f can be explicitly computed as

f2(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
2 + 2 sinh

(√
3x

)

3 cos(2y)−2
√
3 cosh

(√
3x

)
cos(y)

2 + 3 cos(y)−cos(3y)

6 cos(2y)−4
√
3 cosh

(√
3x

)
sin y
2 + 1

2 sin y√
3 cosh(

√
3x)+3

cos(2y)+2 − 3
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and is indeed a CMC bubbleton.
To obtain a surface in 3-space from linear combinations of the two parallel sections ϕ̂ and

ϕ̂2 = πϕ2, we need to satisfy an initial condition: if we use

ϕ̂ + ϕ̂2ir

where r ∈ R is a free parameter, the resulting Darboux transforms ˆ̂f : M → R
3 of

f̂ : M → R
3 are surfaces in 3-space and Sym-type Darboux transforms of f since

π̂(ϕ̂ + ϕ̂2ir) = ϕ̂ 
= 0 ,

that is ˆ̂f 
= f .
The resulting Darboux transforms of f̂ can be computed explicitly. For example, for

r = 50, we obtain ˆ̂f = f̂ + T̂ with T̂ = (T̂1, T̂2, T̂3) where

T̂1 = 2

d

(
2 cosh(2

√
3x) + 1

) (√
3 sinh(

√
3x)48x2 − 8 cosh(2

√
3x)

+ 639993 + 72x cosh(
√
3x)

)

T̂2 = 1

d

(
4 cosh2(

√
3x) − 1

) (
−3A cos y − 3200

√
3(2 cosh(2

√
3x) + 1) sin3 y

)

T̂3 = − 1

d

(
2 cosh(2

√
3x) + 1

) (
3A sin y + 2400

√
3(2 cosh(2

√
3x) + 1) cos y

+ 800
√
3

(
2 cosh(2

√
3x) + 1

)
cos(3y)

)

where

A = 48x2 − 16
√
3x sinh(2

√
3x) − 4 cosh(2

√
3x) + 639995

and

d = 3
(
1 − 2 cosh(

√
3x)

)2(2 cosh(√3x) + 1
)
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Fig. 12 Sym-type Darboux
transform of f

Fig. 13 Sym-type Darboux transforms of a cylinder at resonance points �k = k2−1
4 , k = 2, 3

×
(
48x2 − 16

√
3x sinh(

√
3x) − 12 cosh(

√
3x) + 8 cosh(2

√
3x)

+1600
√
3
(
1 − 2 cosh(

√
3x)

)
sin(2y) + 640007

)
.

Despite the Sym-type Darboux transform ˆ̂f having a similar shape to CMC bubbletons,

the surface does not have constant mean curvature: for a Darboux transform ˆ̂f of the surface
of revolution f̂ to have constant mean curvature, ˆ̂f must be a surface of revolution.

Similarly, one can obtain other Sym-type Darboux transforms explicitly where k gives the
number of lobes:

To conclude this section, we observe that we also obtain all closed Darboux transform of
higher order of the cylinder f by information on the multipliers of parallel sections of the
associated family dλ of f , without further integration.
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Fig. 14 Triple Darboux transforms at a resonance point: the first one is obtained as a Darboux transform of
a Sym-type two-step transform surface of revolution at the resonance point �2, whereas the second one is
obtained by Bianchi permutability from a non-rotational Sym-type Darboux transform, using the two different
resonance points �2, �3
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