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Abstract

Isothermic surfaces are surfaces which allow a conformal curvature line parametrisation.
They form an integrable system, and Darboux transforms of isothermic surfaces obey Bianchi
permutability: for two distinct spectral parameters, the corresponding Darboux transforms
have a common Darboux transform which can be computed algebraically. In this paper, we
discuss two-step Darboux transforms with the same spectral parameter, and show that these
are obtained by a Sym-type construction: All two-step Darboux transforms of an isothermic
surface are given, without further integration, by parallel sections of the associated family of
the isothermic surface, either algebraically or by differentiation against the spectral parameter.

1 Introduction

First defined by Bour in [3] as surfaces which admit conformal curvature lines, isothermic
surfaces have enjoyed massive interest in the late 19th and early 20th century. Darboux
showed in [11] that given an isothermic surface f : M — R3 from a Riemann surface
M into the 3-sphere, one can construct a second isothermic surface via a Ribaucour sphere
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congruence that depends on a spectral parameter, a transformation which we refer to as
Darboux transformation.

Then Bianchi, [1], showed that Darboux transformations admit permutability: starting
from an isothermic surface f and constructing two Darboux transforms f7 and f, using
spectral parameters o1 and >, respectively, one can always find a fourth surface fi, that
is both a Darboux transform of f; and f> with respect to spectral parameters o> and oj.
Demoulin further showed in [12] that these four surfaces in the permutability enjoy a rela-
tionship characterised by cross-ratios:

c(f, f1, fiz, f2) = (1.1)

)
or’
Generally, one needs integration to find Darboux transforms of a given isothermic surface;
however, the cross-ratio equation (1.1) coming from permutability enables one to find succes-
sive Darboux transforms algebraically after an initial integration. The cross-ratio equation
(1.1) shows that the fourth surface fi, is identical to the given starting surface f if the spectral
parameters are equal. Therefore, permutability gives algebraic methods to find non-trivial
successive Darboux transforms as long as the spectral parameters are pairwise distinct.

Note however that one can always integrate twice to find non-trivial two-step Darboux
transforms: the condition in Bianchi permutability that the spectral parameters need to be
distinct is only essential to obtain non-trivial successive Darboux transforms algebraically.

The aim of this paper is to eliminate the assumption in Bianchi permutability and obtain
all successive Darboux transforms without further integration, even in the case when the
spectral parameters are equal. Rather than using Bianchi permutability, we obtain two-step
Darboux transforms with the same spectral parameter by a Sym-type method, [22], that is,
by differentiation with respect to the spectral parameter.

The existence of spectral parameters, transformations, and permutability suggested that
the class of isothermic surfaces constitutes an integrable system, an approach taken in [10]
which renewed modern interest in isothermic surfaces. Various characterisations of Darboux
transformations have been obtained since Darboux transformation can be described in terms
of a Riccati-type equation [18]; Darboux pairs of isothermic surfaces can be viewed as a
curved flat using the Minkowski model [9] or using the quaternionic model [15] of conformal
geometry. In fact, isothermic surfaces can be characterised via the existence of a closed 1-
form or, equivalently, a one-parameter family of flat connections [5, 14, 19], and one can
view Darboux transformations as the parallel sections of the flat connections [16, 17]. In
addition, many of the aforementioned works have investigated the various transformations
of isothermic surfaces and their relationships: for example, the T -transforms, also known as
Calapso transforms, can be obtained algebraically from the Darboux transforms, while the
Christoffel dual can be obtained via a Sym-type formula from either the 7 -transforms or the
Darboux transforms.

In this paper, we use the quaternionic model and describe Darboux transform by parallel
sections of the associated family of flat connections of the isothermic surface. A short review
of isothermic surfaces, the associated family d) and Bianchi permutability in this setting, is
given in Sect. 2 to setup the notations and tools for our main result.

Then, we tackle the problem to eliminate the need for a second integration for finding
two-step Darboux transforms in Sect. 3. For this, we use the fact that Darboux transforms of
isothermic surfaces are indeed given by a simple factor dressing. In particular, the associated
family of flat connections d i of a Darboux transform f; with spectral parameter o is given by
an explicit gauge r;, which depends smoothly on the spectral parameter and has a simple pole
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at g, of the associated family d, of f. Although the gauge has a pole, the family d/{ =r-d,
extends into o, and we give an explicit form of the associated family.

With this at hand, we obtain the parallel sections ¢; = r; (¢) of f1 by applying the gauge
matrix to parallel sections ¢ given by the isothermic surface f, for spectral parameter away
from the pole o of r; . This way, we recover the parallel sections used for Bianchi permutability,
the Bianchi-type parallel sections, explicitly as projections of parallel sections ¢. In the case
when the spectral parameter coincide, there is a quaternionic one-dimensional space arising
from this construction: To obtain further parallel sections, we have to consider limits of
parallel sections for spectral parameter A when A tends to the pole o. We show that these
limits, the Sym-type parallel sections, are given by differentiation of a family of dj -parallel
sections with respect to the spectral parameter.

Indeed, we can conclude that all parallel sections of the associated family of a Darboux
transform are either Bianchi- or Sym-type. In particular, we obtain all non-trivial two-step
Darboux transforms with same spectral parameter without need for a second integration, a
principle we call generalised Bianchi permutability.

Given an isothermic surface f : M — R3, the Darboux transformation is initially a
local construction: the used parallel sections exist globally only on the universal cover of
the Riemann surface M. Since all two-step parallel sections are given algebraically or by a
Sym-type method, we discuss closing conditions for one- and two-step Darboux transforms
by investigating the holonomy of the family of flat connections d;, of f only.

We conclude the paper by demonstrating our construction in the explicit example of the
round cylinder. In particular, we give explicit formulae for all parallel sections and obtain a
complete description of the set of all closed Darboux transforms of a cylinder. Depending on
the spectral parameter, four cases can occur: there is exactly one closed Darboux transform,
which is the cylinder, there are two distinct Darboux transforms, which are again cylinders,
there is a CP!-worth of Darboux transforms which are rotation surfaces, or there is a HP!-
worth of (possibly singular) Darboux transforms which are rotation surfaces or isothermic
bubbletons. We then use the parallel sections to give explicit formulae for Sym-type Darboux
transforms, including two-step bubbletons. !

Since the main ingredients for our construction are the associated family and the simple
factor dressing, we expect our results to be templates for similar results for other surface
classes allowing simple factor dressing, such as CMC surfaces in space forms, and completely
integrable differential equations. This should allow to construct new surfaces and, more
generally, new solutions to differential equations given by complete integrability.

2 Background

In this section, we will give a short summary of results and methods used in this paper. For
details on the quaternionic formalism and isothermic surfaces, we refer to [4, 8, 13, 16, 18].

2.1 Conformal immersions and quaternions

In this paper, we will identify 4-space by the quaternions R* = HI, and 3-space by the
imaginary quaternions R3 = Im H where H = spang{l,i, j, k} and 2= =k=ijk=
—1. For imaginary quaternions, the product in the quaternions links to the inner product (-, -)

! The figures in this paper were drawn using the software Mathematica.
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and the cross-product in R3 by
ab=—{a,b)+axb, a,belmH.
Here, we identify H=ReH @ ImH =R & R3. In particular, we see
$?={neImH | n®>=—1}.

Thus, if f : M — R3isanimmersion then its Gaussmap N : M — S2 is a complex structure
N% = —1 on R* = H. Moreover, if (M, Jry) is a Riemann surface, then f:M— R3 is
conformal if and only if

xdf = Ndf = —dfN,

where * denotes the negative Hodge star operator, that is, x*w(X) = o(Jry X) for X € TM,
w € Q1 (M). More generally, if f : M — R* is a conformal immersion from a Riemann
surface into 4-space, the Gauss map is given by a pair of complex structures

(N,R): M — §? x §? = Gra(RY
such that
xdf = Ndf = —dfR.

Note that N = R in the case when f is a surface in 3-space.

Since the theory of isothermic surfaces is conformal, it is useful to also consider conformal
immersions into the 4-sphere by identifying S* = HP!. Then, amap f : M — S* = HP!
can be identified with a line subbundle L C H? = M x H? of the trivial H2-bundle over M
via

f(p):Lp~

Therefore, the group of oriented M&bius transformations is in this setup given by GL(2, H).
The derivative of L is given by § = m;d where 7y, : ﬂz — ﬂz /L denotes the canonical
projection. Then, an immersion f is conformal if and only if there are complex structures
Jpon L and Jy, on EZ/L such that

*§ = JV/L8 =4J.

In particular, if f : M — RK, k = 3, 4, is an immersion from a Riemann surface into 3-
or 4-space we will consider f as a map into the 4-sphere by setting

L = yH, w:({).

We will identify eH = H?/L via the isomorphism 7y |op : eH — H?/L where eH = 00 is
the point at infinity with
o 1
=1,

Then, N, R : M — S? induce the complex structures J; on the line bundles L and Jy,z on
EQ/L by setting Jpy = —y¥ R and Jy,; e = eN: since 6y = edf, we obtain indeed

*(Sw = JV/L(Slﬂ = (SJLw.
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2.2 Isothermic surfaces and Darboux transforms

Classically, an isothermic surface is considered as a surface in 3-space which allows a confor-
mal curvature line parametrisation (away from umbilic points). In our setting, it is convenient
to view an isothermic surface as a quaternionic line bundle with an associated closed 1-form
( [4,Theorem 2.3], [16,§5.3.19], [19,Definition 3.1]):

Definition 2.1 A conformal immersion f : M — S§* is called isothermic if there exists a
non-trivial closed 1-form n € Q! (End(H?)), the retraction form, such that

Imn C L Ckern.

Remark 2.2 This definition immediately shows that the notion of isothermicity is conformally
invariant, that is, if f : M — 4 ~is isothermic so are its Mdbius transforms: given the
line bundle L corresponding to f, L = AL for A € GL(2, H) is isothermic with 1-form
f=AnA—L.

This definition links with the Christoffel transformation of an isothermic surface when f
is a surface in 3- or 4-space: since imn C L C ker n we can write

77=<fw —fwf> 2.1

o —of

for a 1-form w with values in H. But then dn = 0 shows that dw = 0, so locally there exists
a (possibly branched) immersion f¢ with df? = w. Additionally, we see from df A w =
w Adf = 0that £ is conformal with Gauss map (N, R?) = (=R, —N): f? is indeed a
Christoffel transform or dual surface of f.1f z = x 4 iy is an isothermic coordinate (and f
does not map into the round sphere), then up to scaling, df¢ = fx_ldx — fy_ld y. Conversely,
away from umbilics the isothermic coordinate can be constructed from 7 (see [4,p. 28]).

In particular, the definition we are using immediately allows to introduce a spectral param-
eter o € R, seee.g. [5,Theorem 15.4], [6,Proposition 3.6], and we obtain an associated family
of flat connections: since d), = d + An, A € R, has curvature

Ry=R+rdn+1*nAn=0
we see that the associated family d;, of f is flat for all A € R. The converse holds as well:

Theorem 2.3 Ifn € Q' (End(H?)) is non-trivial with n* = 0 and
dA =d+ )»7’}

is flat for all . € R then ker n can be extended to a quaternionic line bundle L and L is
isothermic with retraction form .

Proof We follow the arguments in [7,Theorem 3.1], and only give a short outline how the
argument there can be adapted to our situation. Let I be the complex structure on H? which
is given by right multiplication by the quaternion i. Let n'¥ be the (1, 0)-part of 7 and
E = ker n*9. Since 7 is quaternionic, kern = E @ Ej. In [7,Theorem 3.1] it is shown that
d induces a holomorphic structure on I'(K End(C*)) when identifying sections in ['(KK)
with 2-rforms in 2(M). Since d, is flat we see that di = 0, so that also dn'-? = 0. Thus,
n"0 is holomorphic and E = ker ¥ extends holomorphically across the zeros of 7', and
so does kern = EH. O
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Recall that an isothermic surface f : M — R3 can be locally characterised as a surface
which allows a sphere congruence that conformally envelops f and a second surface f where
f(p) # f(p) for all p. Then, f is called a Darboux transform of f.

In the framework we set up, the Darboux transformation can be formulated in terms of

parallel sections of ﬂz of the associated family of flat connections, see e.g. [16,§5.4.8]. Here,

ﬂz denotes the trivial H? bundle ﬂz = M x H? over the universal cover M of M. In this
situation, the resulting Darboux transform is in general an isothermic surface in the 4-sphere
and is defined on the universal cover of M, and is a surface in the 3-sphere only for suitable
initial conditions. We will identify, in abuse of notation, a surface f : M — S* with the
canonical lift f : M — S*.

Definition 2.4 Let f : M — S* be isothermic. Then, f : M — S* is called a Darboux
transform of f with respect to the parameter o € R, = R\ {0} if L = ¢°H, where

¢ € F(ﬁz) is a d,-parallel section, and L(p) # i(p) forall p € M.

Remark 2.5 In the case when the assumption L(p) # ﬁ( p) is not satisfied for all p € M,
the surface f is called a singular Darboux transform of f, see [2]. If f, f M — R3 are
surfaces in 3-space, this means that the enveloping sphere congruence degenerates to a point
for p € M with f (p) = f(p) and f becomes a branched conformal immersion.

To simplify notations, we will abbreviate ¢ = ¢? if it is clear from the context that ¢ is a
dp-parallel section, and use the superscript only if we want to emphasise the parameter in
the family of flat connections that we use. Similarly, we will call the associated surface a
Darboux transform, and only refer to it as o-Darboux transform or Darboux transform with
respect to the parameter o for emphasis of a specific spectral parameter.

We now investigate the closing conditions for Darboux transforms, see [2]. Let us recall
the notion of sections with multiplier.

Definition 2.6 Given a parallel section ¢ € F(ﬂz) a multiplier is a group homomorphism
h : m (M) — H, such that

Yo =9oy;=¢h,, forall yem (M)

where y; is the deck transformation of M associated to y. A section with multiplier is a parallel
section for which multipliers exist. A spectral parameter ¢ € Ry is called a resonance point
if every d,-parallel section is a section with multiplier.

Since a Darboux transform of an isothermic surface f : M — S*is given by f =gH
where ¢ = ¢ is a parallel section of d, for some ¢ € Ry, we see that f is closed if and
only if ¢ is a section with multiplier. In this paper, we consider the “closure condition” to
mean that the Darboux transform is defined on the same Riemann surface of the original
immersion.

Since for h € H, there exists m € H, with m~'hm € C, we can assume without loss
of generality that h, € C, by changing ¢ to ¢m in case of an abelian fundamental group.
Note that since d, is quaternionic, we see that if ¢ is d,-parallel with multiplier & then ¢ j
is d,-parallel with multiplier h, so that multipliers come in pairs (k, #) which give both rise
to the same surface f. In particular, in the case when £ is real, the corresponding space of
parallel sections with multiplier % is at least quaternionic one-dimensional, whereas in the
case of 1 ¢ R, the space of parallel sections with multiplier /4 is not quaternionic.
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Example 2.7 In the case of a surface of revolution f : M — R3, the holonomy of d, is for all
spectral parameter o € R\ {0, oo} diagonalisable and has at most two distinct multipliers, &
and =1, see [20] and Proposition 4.4 in the case of a round cylinder. The spectral parameter
00 € R, is determined by the choice of dual surface: scaling of f¢ by some factor will result
in a scale of gg. In the case when f(x, y) = ip(x) + jq(x)e’i»" with smooth real-valued
functions p, ¢ satisfying p” 21 4?% =¢4%isa conformally parameterised surface of revolution
in the conformal coordinate z = x + iy and df? = fx_ldx - fv_]dy we have g9 = —%.
With such choices, for the unique spectral parameter o = —% with non-diagonalisable
holonomy there is exactly one parallel section with multiplier / (up to quaternionic scaling),
which indeed is 7 = —1, and the corresponding Darboux transform is a rotation of f, see
Theorem 4.5 in the case when f is a round cylinder and Remark 4.6 for the general case.

Forp < —%, there are exactly two distinct real multipliers £, h~! € R, and two H-linearly
independent d,-parallel sections wlg, <p§ with multiplier # and h~!, respectively. These give
two distinct Darboux transforms of f which are both rotations of f. Since <pf J, <p§ Jj have the
same real multipliers as <pf and gog , respectively, there are no further Darboux transforms,
see Theorem 4.5 and Remark 4.6.

f1
/
f
o
f2

For o > —%, o # ’%T_l, k € Z,k > 1, there are exactly two complex multipliers
h e S'\ {#£1}, and two H-linearly independent d,-parallel sections <pf, (p§ with multiplier
h. Since any complex linear combination ¢¥ = gofml + (pg ma, my, my € C, is ad,-parallel
section with multiplier &, we obtain a CP! family of closed (possibly singular) Darboux
transforms, giving in case of the round cylinder general rotation surfaces, see Theorem 4.5
and Remark 4.6. Since ¢@ j has multiplier 7 = A~ and ¢2H = ¢2 jH, we obtain no further
Darboux transforms in this case.

bil

o7

|
I
|
e
f @2, ,m;eC {
|
k

In the case of a surface of revolution, the only other case which can occur is that the spectral
parameter is a resonance point: every d,, -parallel section ¢ is a section with multiplier,
that is, every Darboux transform with parameter o, is a closed Darboux transform.

|
f2
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999 YOOI

2
Fig. 1 Darboux transforms of an unduloid for o € Ry, 0 # ]‘4—_1, k > 1,k € Z, are rotation surfaces

v v

> Q09 K-GO VOIS

Fig. 2 Darboux transforms in 3-space of an unduloid at a resonance point for k = 2, 3 are unduloids, CMC
bubbletons, surfaces of revolution or isothermic bubbletons

Put differently, given a basis {<pf’, (pgr} of d,, -parallel sections at a resonance point o,
every d,, -parallel section, and thus, every (possibly singular) ¢,-Darboux transform, is given
by ¢ = gof’ml —I—gog’mz, mip, my € H:

i

w7

i

f @er m; eH ‘J‘[
or I

#2 I
1

Note that this shows that all d,-parallel sections at a resonance point ¢ € R, have the
same multiplier /2, and since multipliers appear as pairs (4, i), we also see that i € R.

The corresponding Darboux transforms in case of a surface of revolution are rotation
surfaces or isothermic bubbletons: in this case resonance points o, = I# are parametrised
by positive integers k € Z, k > 1, such that the corresponding Darboux transforms have
k lobes. Special initial conditions give, in the case of a Delaunay surface, again Delaunay

surfaces and CMC bubbletons, see Proposition 4.4 for the case of a round cylinder.

Given two Darboux transforms fi, f> of f with respect to parameter o1, 02 € R, there
is a common Darboux transform of both fi, f> which can be computed from the parallel
sections without further integration.

Theorem 2.8 (Bianchi permutability, [1], [16,§5.6.6], [21]) Let f : M — S* be an
isothermic surface. Let 01, 02 € Ry and f; be the Darboux transforms given by d, -parallel

sections ¢; = (piQi € F(ﬂz). If fi(p) # f2(p) forall p € M then

P12 =92 —P1X
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e

Fig.3 Common Darboux transforms of two bubbletons

gives a 02-Darboux transform of fi and a ¢1-Darboux transform of f» on the universal cover
M of M by

Sf12 = poH.

Here x : M — His given by dgpr = doi .

Remark 2.9 Note that the condition d,, ¢; = 0 shows thatdg; € Q(L),and thus x : M —H
is well-defined. The classical case can be extended to allow o1 = @7 in which case the parallel
section @12 € I'(L) is a section in L = ker n: since dg, = dg1 x and dy¢; = 0, we see that
ng2 = N1 x and thus ngz = 0.

In particular, the Darboux transform fi; is f: in contrast to the case when o1 # g2, we do
not get all Darboux transforms of f; with parameter o1 = @2 by this construction. We will
discuss how to obtain all Darboux transforms by a Sym-type argument in the next section.

We also know [20] that 912 = (p% is a parallel section of the family of flat connections of
f1 for spectral parameter 02, and g2 = <p§ 11 =X “lisa parallel section of the family of
flat connections of f> at ;. In particular, fio = @2H = ¢o1H = fo1:

S

wfl N
f fia=fi=fr=fa
¢§2 %
f2

3 Generalised Bianchi permutability

Given an isothermic surface f with associated family dj and a Darboux transform f given by
spectral parameter 91 € R and d,, -parallel section ¢; = gofl , Bianchi permutability allows
to compute Darboux transforms of fj for all spectral parameter g2 # o1 by solely knowing
the parallel sections of the family of flat connections of f and performing an algebraic
operation. However, in the case when o := o1 = 0> we only obtain one Darboux transform
of f1 via Bianchi permutability, namely f1» = f. In this section, we show that we still obtain
all Darboux transforms of f; without integration by the parallel sections of the associated
family of f. The Darboux transform in this case is not given algebraically but by a Sym-type
argument: we will differentiate parallel sections with respect to the spectral parameter.
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3.1 Simple factor dressing

Let f : M — S* be an isothermic surface with associated family d) and let f = fibe
a Darboux transform given by a d,-parallel section ¢. To find all parallel sections of the
associated family cf,\ = d){ of f at . = p in terms of parallel sections of d; we need to
understand c?,\ at . To this end, we recall the so-called simple factor dressing: it is known
that a suitable A-dependent gauge matrix r; with a simple pole given by o gives via gauging
the associated family ﬁx =r, - d, of a p-Darboux transform.

Theorem 3.1 (Simple Factor Dressing, [6,Definition 3.7]) Let f : M —> S* be isothermic
with associated family d,, = d + An, . € R. Let [ Ry and let ¢ € FL ) be a d,-parallel

section with corresponding Darboux transform f M — H given by L= @H. Denote by 7
and 1 the projections onto LandL, respectively, along the splitting H H?> =L &L and define

r0) =rk) = # + 0,00 (3.1)

with
Q

O‘g()\.) = Qj .

Then, d, = r(X) - dy, is the family of flat connections of the Darboux transform f . Moreover,
dy, = d + 1) with
1

n=-ntodomw—.
[

Proof Since the Darboux t{ansform L= ¢H is an isothermic surfacg, we can consider its
family of flat connections dy, = d + A7), » € R, with im /) = ker 7 = L. We first show that

r}\'dkzd’\)L for all )\.ER\{Q}

Since L is a Darboux transform of L with parameter o, there exists a ﬁg—parallel section
10 e ['(L).Since H> = L & L= goH @ ¢H it is enough to show that the connections r), - dj,
and c?,\ commde on ¢ and .

Since rA =" 470, ! dop = 0 and 1 = 0 we have

(r3. - )¢ = ra(dg + ner) = r (e — 0)) = —npe = do = ds.¢p .

Similarly, we see that 3ng3 = 0and ng = 0 give

) 0—h 0—2 . . .
(3 - di)§ = ra(ds p°—2) = rx<d¢““’7> = P — 0) = np(h — 0) = di. -

Thus, ), - dy, = d + A7) for A # g and r;, - d; extends to & = ¢. We observe that

— A
r)L-d—]TOdOT(+JTOdOJT+7TOd07TQ7+7TOdOT[L)L
o o —

and

Ad(rk)n_nononL
o—A
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since 17|y = 0,im n C L. Therefore, the claim now follows from

1
n= lim —ry-d),=—-Aodom—.
n Ai)oo)\rk A T o OT[Q
Note that indeed #2 = 0 and im ) = ker ) = L. O

In particular, the family of flat connections c?,\ = r) - d, extends into the pole o of r;.
We will now investigate parallel sections of d, at A = ¢ and their corresponding Darboux
transforms in terms of parallel sections of d,.

3.2 Bianchi-type and Sym-type parallel sections

Let f| be the Darboux transform of an isothermic surface f : M — S* which is given by
0 € R, and ad,-parallel section ¢ = gaf, and d/{ its associated family of flat connections. For
A # o all parallel sections of d /{ are given by Bianchi permutability. We are now investigating
parallel sections of d)t at A = o.

Proposition 3.2 Assume that @3 = <p§ is dy-parallel and independent of ¢| over H. Then,
P12 =7P2
is a parallel section of the flat connection
dy=d—modon

of f1. Here, m and 1y are the projections onto L and L respectively along the splitting
H?> =L, & L. We call @12 a Bianchi-type section. The associated Darboux transform of fi

is fiz=f.

Proof Consider the d é -parallel section ¢ given by Bianchi permutability by

Q=02 —P1X
with dgy = dgj x. By Remark 2.9, we know that ¢ € T'(L) is a section in L. Therefore,

Q=m(p2—Q1X) =TP2 = Q12.

m}

Since all d; -parallel sections arising from Bianchi permutability are sections in L and
therefore quaternionic multiples of @2, we know that there exist d;-parallel sections on the
universal cover M of M which do not arise from Bianchi permutability since dé is a flat

connection on H?. We now investigate these.
Recall that away from A = o, we have d/{ =r, - d) where

Q

=m +o,(Mm, A) = ——

Iy 1 g( ) UQ( ) 0—2

is the simple factor dressing matrix given by the bundle L and the pole o.

Moreover, if go{‘ are d, -parallel sections with ¢ = (pi;g, which depend smoothly on X,
then goi‘l = rMp{‘ is d/{ -parallel away from A = p. At A = g, the dressing matrix r; has a pole.
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Fig.4 Sym-type Darboux transform of an unduloid f. In the first case the one-step Darboux transform f] of
f is a surface of revolution, in the second case f| is a CMC bubbleton

However, by L'Hopital’s rule the limit g1 = lim;_,, ¢}, at o exists since limy_., 7¢} =0,
and we obtain

Y11 =9 — Q7T( §01)|Ag

Indeed, ¢1 is parallel with respect to dgy =d — 7 odom:since dup{‘ = 0, we first have

9
0= (7Td/\¢’1)|/\ o =Tor (dqol + Ao}z = 7 (d, ( <p1)lx o +1¥1),

so that

ne1 = —n(d, ( <ﬂ1)|x o) = —7m(dy n( qol)lx o) -

Here, we used that im € L and that L is d,-stable so that 7 o d, o m = 7 o d,. Together
with |, = 0 and w1 = 0, we now see that

d d d
dopr1 = do1 = 0dn (9] i=p) + 0mdT (9] imp = do1 — @TdT(5-¢D)i=o)

0
=dy— Qﬂdgﬂ((ajw%)h:g) =dpp1 =0.

Thus, we have shown that @1 gives a Darboux transform f11 of f1.Since 11 = ¢1 # 0,
we see that f11 # f,and thus, f1 is not a Darboux transform given by Bianchi permutability.
We summarise:

Theorem 3.3 Let f : M — S* be isothermic and dy, its associated family of flat connections.

Let o € Ry be fixed, 1 = (pf € F(ﬂz) a dy-parallel section, and f\ the corresponding
Darboux transform. Given d, -parallel sections (pi‘ near o which depend smoothly on o with

A= .
¥ ¢ = ¢y, the section

_ A=0 _ i X
P11 =9 o (- ¢1)lr=¢

is dé -parallel where d){ =d — %7y od o x is the family of flat connections of f,. We call
the @11 as Sym-type (parallel) section and its associated Darboux transform fi; a Sym-type

(two-step) Darboux transform of f.

Remark 3.4 Note that the Sym-type parallel section ¢, and thus the Sym-type Darboux
transform fi; depends on the choice of the extension gai‘.
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3.3 A generalisation of Bianchi permutability

Combining previous results, we are now in the position to give a generalisation of Bianchi
permutability: we obtain for all o € R, all two-step Darboux transforms of an isothermic
surface f : M — S* by parallel sections of the associated family of f without further
integration.

Theorem 3.5 Let f : M — S* be an isothermic surface and let dy, be the associated family
of f. Let o € R, be a spectral parameter and fi be a Darboux transform of [ given by a

dy-parallel section ¢ = gof S F@z). Then any parallel section of the flat connection dgl in
the associated family of f is either a Sym-type or a Bianchi-type parallel section.

Proof Choose a smooth extension ¢? of ¢ near A = g and let 11 = ¢ — Qﬂ(a%gﬂi\)h:g, be
the corresponding Sym-type parallel section. Moreover, let ¢, be a d,-parallel section with
o120 = ey # 0. Since w1911 = @1 # 0, we see that ¢11, @12 are H-independent parallel
sections of dél}.

Now let ¢ € F(ﬂz) be an arbitrary dé -parallel section. We first show that ¢ is a Bianchi-

type parallel section if 7;¢ = 0. In this case, ¢ € I'(L) and since both ¢ and ¢;» are
non-vanishing d; -parallel sections of the line bundle L, we have

¢ =¢iom, meH,,

But then ¢ = 7 (¢pm) is a Bianchi-type parallel section. We can therefore now assume that
719 # 0 so that

mQ =@m,m € H,.
We aim to show that ¢ is a Sym-type Darboux transform of f. Therefore, we have to find a
smooth extension (Z){‘ near A = g so that ¢ is its associated Sym-type parallel section, that is,
~ ~ ~A=0 a ~A
= = —on(— o -
=011 =9 o (- P1)li=¢
Since @11, @12 are linearly independent over H, we can write
¢ = gumi +@iamy, my,my € H.

Since 7 = ¢ym and 7| = ¢ we see that m; = m. Extend ¢ to dj -parallel sections <p§
which depend smoothly on A near A = ¢ and put

~ o —
gt = otm + ohm,

Then, ¢f depends smoothly on A near A = p. Moreover, since (pf, go% are d, -parallel and
Q%\ € C is constant for fixed A, we see that (,5{‘ is d -parallel. At A = g, we have

@7 = @im

and the associated Sym-type parallel section is
~ ~A=0
P11 = ¢ —Qﬂ(—wl)l,\ =0

9
=q@m— Q7T<(

! o-
Do — ¢2m2—+( ehm = *me)
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d
¢— Q”(ﬁfﬂ%)lhg)m + mpomy = prim + @romy

This concludes the proof. O
This immediately gives a generalisation of Bianchi permutability, Theorem 2.8:

Theorem 3.6 (generalised Bianchi permutability) Let f : M — S* be isothermic and f)
be a Darboux transform of f given by the spectral parameter 9| € Ry and the dy, -parallel

section ¢ € F@z). Then, all Darboux transforms of f| are either Sym-type or Bianchi-type
two-step Darboux transforms of f.

In particular, all Darboux transforms are given by parallel sections ¢ € F(ﬂz) of the
associated family d, of f via algebraic operations and differentiation with respect to the
spectral parameter A.

Denoting by fi; the Sym—Darboux transform given by a Sym-type parallel section ¢
and by f12 a Darboux transform given by Bianchi permutability by a Bianchi-type parallel
section @12, we see the following picture:

fi
y
fi
(ﬂ@l wx
f fiz=fa
k %
f2

Remark 3.7 Note that the previous theorem now allows to construct all Darboux transforms
(of any order) of an isothermic surface f from parallel sections of the associated family d,
of f without further integration.

3.4 Closing conditions

We now investigate the closing condition for a two-step Darboux transform of an isothermic
surface f : M — S*.

Forp; e R, i =1,2,lety; = gol.Qi be d,, -parallel sections of the associated family of flat
connections d; of f. Assume that ¢; have multipliers i; € C, thatis, y*¢; = ¢;h;(y) for all
y € m1(M). Then, both associated Darboux transforms f; : M — S% are closed surfaces.
The function x defined by dg» = dgy x satisfies x* = hl_] x h2 so that

P12 =92 —P1X

has multiplier />. In particular, we see that the two-step Darboux transforms, which are
obtained by Bianchi permutability from closed Darboux transforms, are closed too.
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Proposition 3.8 Let f : M — S* be an isothermic surface and f; - M — S* i = 1,2, be
closed Darboux transforms of f, with fi1(p) # f2(p) for all p. Then, the common Darboux
transform of f1 and f is closed too.

Remark 3.9 This result holds trivially when o; = g3: in this case the Bianchi-type two-step
Darboux transforms are f = f12 = fo1.

Consider now the remaining case when o := 01 = g7 and the Darboux transform f1; of
f1 1s given by a Sym-type parallel section, that is, it is given by ¢11 = ¢1 — Qﬂ(%(pi\)hzg

0

where ¢ is d,-parallel near A = ¢ and go;\: = ¢1. If ¢f is a section with multiplier 4} for

all A near o then
ad A a A A=0 d A 3 A
V*”(afpl )|A=Q = 77((5% )|A=gh1 + (Pl(ahl)h:g) = ”(a% )|A=Qh1
and thus 1] = ¢ —n(%gof) |n=o has the same multiplier /11 as ¢. In particular, the resulting

Darboux transform f1; of fi is closed.
‘We summarise:

Theorem 3.10 Let f : M — S* be isothermic and fy : M — S* a Darboux transform given
by the d,-parallel section 1. A Sym-type Darboux transform f11 given by an extension <p{\
of g1 is closed if(pf is a section with multiplier near A = o.

We now investigate cases where we can guarantee existence of closed two-step Darboux
transforms in terms of the behaviour of the holonomy of d,..

Corollary 3.11 Ler f : M — S* beisothermic and d,, its associated family of flat connections.
If 0 € Ry is a spectral parameter such that there are four distinct complex multipliers of the
holonomy of d,, then every closed Darboux transform f| has exactly two closed Darboux
transforms with parameter .

Remark 3.12 Homogeneous tori are examples of isothermic surfaces which have exactly four
distinct complex multipliers: we will return to this topic in a future paper.

Proof If one of the multipliers is real, then there exist two complex independent parallel
sections ¢, ¢; with the same multiplier which contradicts the assumption that the holonomy
has four distinct eigenvalues with complex one-dimensional eigenspaces.

Since complex multipliers appear as pairs of conjugate complex multipliers, we have
exactly two d,-parallel sections ¢y, 2 with complex multiplier 1 and k>, hy # hy, respec-
tively, which are H-independent. Thus, all multipliers are given by {&, Iy, ha, ha).

Since f is closed, it is given by one of these parallel sections, say ¢;. The multipliers
depend smoothly on the spectral parameter and since there are four distinct multipliers for
A near o, we can extend ¢ around o to a smooth family of d,-parallel sections <p{‘ with
multipliers h)l\ . Then, the Sym-type formula shows that ¢ is a section with multiplier 7
and f1; is closed. Since fij; # f, we obtain the second closed Darboux transform from
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Bianchi permutability and the parallel section ¢;. Since h| # hy, we cannot have further

closed Darboux transforms of fi. O
S
(@) h1)
A
(¢ 1)
((ﬂfzshZ)
f f=fiz=fa
(95 .h2)
)

Corollary 3.13 Ler f : M — S* beisothermic and d,, its associated family of flat connections.
Assume that there are two H-independent goi”, (p%‘ with multipliers h* = h)f = h%” e C\R
Jor X near o € Ry. Then, every closed Darboux transform fi of f with parameter o has a
CP'-worth of closed Darboux transforms.

Proof Since h = h*=¢ ¢ R, we see that ¢ is not a resonance point. Let ¢; be a d,-parallel
section with multiplier and f; the Darboux transform given by ¢;. Since multipliers come in
pairs of complex conjugates, we know that the holonomy of d;, is diagonalisable with complex
two-dimensional, d)-stable eigenspaces E* = spanC{go{\, go%‘} and E*j with multipliers A
and /. Therefore, we can assume without loss of generality that the dy-parallel section
@1 has multiplier 4 by replacing ¢; by ¢;j if necessary. Moreover, we can write ¢ =
¢1A:Qm1 + <p§=gm2, mp, my € C, and thus can also assume without loss of generality that
Y= (pi"zg by replacing (plx by <pfm1 + (p%mg if necessary.
The Sym-type parallel section

= ( i D]
— o —on (2 _
g1 =¢1 — o (=9 li=0

has multiplier /& since y*(%go{‘)lng = (%(pi\)b\:é,h + gol(a%h)‘)hzg. Here, 7 is the pro-
jection onto L along the splitting H> = L & L.

On the other hand, the Bianchi-type Darboux transform fi, of f is given @12 = mp; =@
which is also a section with multiplier 4. Thus, any C-linear combination of ¢11, @12 is
a d,-parallel section with multiplier 4, and thus we have a CP! worth of closed Darboux
transforms. Since o is not a resonance point, parallel sections with multipliers / give the
same surfaces. O
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Fig.5 Closed Sym-type Darboux transforms of an unduloid for a non-resonance spectral parameter o > — %

fu
(1)) ;
\

" mmee ]
I
() (CP0) |

f f=ri=rfu
(@5 .h)
12
Example 3.14 This case appears for surfaces of revolution in 3-space: If 0 > —1, 0 # 0, is

not a resonance point, then a closed Darboux transform f; with parameter o in 3-space is a
surface of revolution and so is every Darboux transform with parameter o of f] in 3-space.

At resonance points o, it is possible that a Darboux transform f; has g, as a resonance
point.

Theorem 3.15 Let o, € R, is a resonance point of an isothermic surface f and f| be a
closed Darboux transform of f given by a d,, -parallel section @1 with multiplier hy. If ¢;
extends to dy-parallel sections <p{‘ with multiplier h)l‘ near . = oy, then o, is a resonance

point of fi.

Proof By Theorem 3.5, every parallel section of the family of flat connections of fi is either
a Sym-type or a Bianchi-type parallel section. Every Bianchi-type parallel section ¢j2 gives
rise to the Darboux transform f1» = f andis given by a parallel section ¢, with real multiplier
hy = hy since g, is a resonance point.

By Theorem 3.10, we know that a Sym-type Darboux transform is closed if ¢; can be
extended by a d) -parallel sections (p{‘ with multiplier h? In this case, @11 has multiplier
hi and @12 and ¢ have the same real multiplier. Since any parallel section ¢ is a linear
combination

@ = @rimi + @iomy

withmy, my € H we see that every parallel section has multiplier /1. Thus, g, is a resonance
point of fi. O
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Fig.6 Sym-type Darboux transforms of an unduloid at resonance points o = ~——,k =2,3
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Example 3.16 Surfaces of revolution f : M — R are examples of isothermic surfaces with
resonance points. All Darboux transforms f; with respect to a resonance point o, € R,
which are surfaces of revolution have g, as a resonance point too and thus a HP'-family of
closed (possibly singular) Darboux transforms.

The only closed Darboux transforms f; of f which are not surfaces of revolution are
(isothermic) bubbletons. In this case, the spectral parameter o, gives only one closed Darboux
transform of f1, namely the original surface of revolution f.

4 Sym-type Darboux transforms of the round cylinder

In this section, we will demonstrate explicitly the construction of Sym-type Darboux trans-
forms in the example of a conformally parametrised round cylinder (referred to simply as
cylinder, hereafter). We will first show that the Darboux transform of a real-analytic surface
of revolution, which does not have constant mean curvature, has constant mean curvature if
and only if the Darboux transform is again a surface of revolution. This will allow to rule
out later that closed surfaces obtained by Sym-type Darboux transforms are constant mean
curvature surfaces.

@ Springer



Annals of Global Analysis and Geometry (2022) 61:799-829 817

We then will give all Darboux transforms of a cylinder explicitly by computing all parallel
sections of the family of flat connections. With this at hand, we will consider the case when
the one-step Darboux transform is a surface of revolution but not CMC. In this case, we
give two surprisingly explicit examples of Sym-type transforms, one which is a surface of
revolution and one which is not.

4.1 Darboux transforms of a surface of revolution

We first discuss curvature properties of Darboux transforms of a surface of revolution which
is not a Delaunay surface. Given an isothermic surface f : M — R recall that the associated
family d,, gives rise to a dual surface f¢ via (2.1) by df? = w. Writing a d,-parallel section

p=ca+ypecl'MH )QGR*,where
() =00

dT = —df + Tdf%oT (4.1)

we obtain the Riccati equation

for T = «f~! in the case when T : M — R3.In this case, the Darboux transform given by
¢ can be written in affine coordinates as f f + T sothatd f = oTdf4T

Next, we recall that for an isothermic surface f : M — R3 the mean curvature of a
Darboux transform f = f 4 T in 3-space is given in terms of the mean curvature of a dual
surface f9 of f.

Lemma4.1 ( [I8Eq. 58]) Let f : M — R3 be an isothermic surface in 3-space with
Gauss map N and dual surface f?. Then, the mean curvature of a Darboux transform
f f+T: M — R3 of f with parameter @ is given by

1 HY

H=———(— —2(T,N)), 42
Fp(g AT D 4.2)

where H? is the mean curvature of the dual surface < of f.

Similar to the case when f is CMC in [8], one can now derive a necessary condition for
a Darboux transform of an isothermic surface to have constant mean curvature:

Lemmad.2 Let f : M — R3 be an isothermic surface and f = f+T: M — R3a
Darboux transform of f. If f has constant mean curvature H, then

d

. dH
(H—H)(df,T)+ —— =0,
20

where H and H? are the mean curvatures of f and its dual surface f¢, respectively.

Proof From —Hdf = %(dN — N % dN), see [8,Sec. 7.2], and N9 = —N, we know that
dN = Hedf¢ — Hdf. Since H is constant, we can differentiate Eq. (4.2)

1F1|T|2+Hd (T,N)=0
2 20 T
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to obtain, using the Riccati equation, that

. dH?
0=H({T,T)+ - (dT,N) — (T,dN)
0

d
= H(—df + Tdf%T,T) + dzig —(Tdf%T, Ny — (T, HYdf? — Hdf)

Y de d 2 d d
=(H—H)<df,T>+$+<Tdf oT, HT — N) — (T, HYdf?) .

It remains to show that
0= (Tdf%T,HT — N) — (T, Hdf?%) .
Since (a, b) = —1(ab + ba) fora, b € ImH = R3, we get
(Tdf%eT, T) = —o|T (T, df")
so that
(Tdf%T,HT — N) — (T, Hdf?)
= —(QITI*H + H'\(T,df") — o(Tdf"T, N)
= —20(T, N)\(T,df") — o(Tdf"T, N)
= %(—(TN + NTYdfeT — Tdf*(TN + NT) + Tdf'TN + NTdfT)
=0
where we used equation (4.2) and Ndf? = —df?N. O

We can now use the previous lemma to discuss the mean curvature of Darboux transforms
of surfaces of revolution.

Theorem 4.3 Let f : M — R be a real-analytic conformal surface of revolution in 3-space.
If a Darboux transform f ‘M - R3 of [ has constant mean curvature in 3-space then
f : M — R3 is a surface of revolution or f is CMC, that is, at least one off or fisa
Delaunay surface.

Proof Since f is conformally parametrised, we can write f(x, y) = ip(x) + jq(x)e™ with
smooth real-valued functions p, ¢ satisfying p’? + ¢'> = ¢>.

Let f : M — R3 be a Darboux transform in 3-space with parameter o, that is f=f+T
where T satisfies the Riccati equation (4.1). Since both f and its dual f 4 are surfaces of
revolution the mean curvatures H and H? of both surfaces are independent of y. Thus,
Lemma 4.2 gives

0= (H—H)(fy,T) = (H — H)(—jiqge ™, T).

ItH=H , then f has constant mean curvature, and we are done. Now, assume that bii #* H.
Since f is real-analytic so is H, and thus H — H has only isolated zeros. Then, (f,, T) =0

away from the isolated zeros of H — H. Since f and T are smooth, we conclude that
(fy, T) = 0on M. This shows that
iy

T =in+ jme”
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where m, n are real valued functions. On the other hand, H¢ and thus also H¢ only depend
on x, so that

(fo T) = (ip' + jq'e™ in+ jme™) = p'n + q'm
only depends on x. Now, dT = —df + Tdf?oT shows

Ty=~fy TfyoT .

1
| fyl?
Since
THT = [T = 2T, f,)T = f,IT|?

olT?
: IAE
fy = kge™" by a real-valued function, and thus n, = 0. Since (fy, T'), p’, ¢’ only depend
on x this shows that also m, = 0. Therefore, we have shown that f is a surface of revolution
ifH +# H. O

we have Ty, = f,(—1 — ). Therefore, Ty, = iny, + j(m, — im)e™™ is a scale of

4.2 Darboux transforms of a cylinder

We will compute all Darboux transforms of a conformally parametrised cylinder, of constant
mean curvature H = 1

1 4
S y)=Zx+ je .

Consider the dual surface f¢ given, up to translation, by d f d — f;ldx — fy’ld y. We choose
f d(x, y) = —2(ix — je™™) and observe that the dual surface has constant mean curvature
H! = -1

To find all d,,-parallel sections, ¢ # 0, we recall (2.1) that

d d _ d d
w=d+o (e it )

Since L @ eH = H? where L = yH,

()0

we can write a d,-parallel section ¢ = ¢¢ € F(ﬂz) as
o =catyp.
witha =, B =0 : M — H.If ¢ = @2 is d,-parallel, we thus see that
do = —dfB,dB = —dfao.

From this, we observe that ¢ has complex multiplier 4 if and only if « has also multiplier 4.
Differentiating the above equations again, we obtain in the isothermic coordinate z =
X + iy, the differential equation

ayy —iay +ap =0, 4.3)
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which has, in the case ¢ # —%, the solutions

iy o4y iy
a=e2(cTe? +c e 2)

where ¢* are H-valued functions, independent of y, and r = /T + 4g.
Thus, for o # _le the section ¢ = e + B is a section with multiplier if and only if

¢t =0,¢” = 0or g is aresonance point. In particular, the multiplier is h* = —e®"’. Note
e . L 2_
that if o is a resonance point, that is, if »* = h~, then o = ]‘4—1, kelZ, k> 1.
In the case when o = —%, the general solution to the differential equation (4.3) is given
by

a=e2(c]+ yc2)

with ¢y, ¢; quaternionic valued functions depending on x only. From this, we see that ¢ =
ea + ¥p is a section with multiplier if and only if ¢; = O. Thus to ﬁnd sectlons with

multipliers we can restrict to finding solutions « of the form o« = e 7 (c+e b +cTe” e ) for

t=1+40,0#0.
We write ¢t = c(j)E +J C?: with complex valued function cO , c1 Then, g = — fy_lay
gives

B=e? ((cr(z — D+ jefa +t))e“7y — (cl_(l 0+ jeg (- 1))e%) .

It remains to find the complex -valued functions c . Since da = —df B, we see that
«do = Nda where N = —je™™ is the Gauss map of f. Therefore, we can find ¢* by
solving the differential equation oy = N, which gives the linear system

i(—1+£¢
="
2
(1 +1¢
ey =0

The solutions of this system are given by
ca—L(x) = —Zi@(mgefx —m e Vo)
cft(x) =(1 :I:t)(matefx +m e V)

with mljE € C. Thus, we have now computed all parallel sections of a cylinder explicitly. We
summarise:

Proposition4.4 Let f(x,y) = %(ix + je™) be the round cylinder and ¢ € Ry. Then,

ot =ea® +yYpt e F(ﬂz) are dy-parallel sections with multipliers hE = —e®7 where

+ L P g 04
at =e2(cy + jey)e 2

BE = (F(dt— 1)+ jef(1 £ 1) et T
witht = /T + 4p and
c(j)t(x) = c(j)t(x,m(jf,mf) = —2i@(m(j)tefx —m e Vox)
cli(x) = cli(x,m(jf,mli) =(1 :I:t)(m(j)[efx +m e Vexy m(j)[, mli eC.

Moreover, every d,-parallel section, o # — 4, is givenby o = o7 + ¢~ € F(]HI ).
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Finally, the resonance points of the cylinder are given by

-1
I

Ok = keZ,k>1.

In this case, every d,, -parallel section has multiplier hy = (—DkHL,

From the explicit form of the parallel sections, we have now complete information about
the set of closed Darboux transforms:

Theorem 4.5 Let f : M — R3 be given by f(x, y) = %(ix +je ™). Thenforo € Ry, 0 #

2_ .. i/ . .
]‘4—1, k € Z, each multiplier h* = —e™7V1+4¢ has a complex two-dimensional space E+

of parallel sections with multiplier h*. Moreover;

e ifo= —%, then there is exactly one closed Darboux transform, which is the rotation of
f with angle 6 = 7 in the jk-plane, i.e. f(x, y) = %(ix — je~)is a cylinder.
o Ifo<— %, then there are exactly two closed Darboux transforms which are the rotations

, . . io _ _ 1+J/1+40 .
of f with the angles 0 in the jk-plane where e'° = T—virag ¢ both Darboux
transforms are cylinders.
2
e Ifo > —%, o # %,k € Z,k > 1, then there is a CP'-worth of closed Darboux
transforms which are rotation surfaces.
2 . .
o Ifo = %, k € Z,k > 1, then o is a resonance point. In this case, all Darboux
transforms are closed and are either rotation surfaces or isothermic “bubbletons” with
k lobes.

Proof We first show that the sections ¢* from Proposition 4.4 give closed (non-singular)
Darboux transforms. If 9*(p) € I'(L) for some p € M then

af(p)=0

which implies m(jf = mf = 0. Therefore, ¢ # 0 give Darboux transforms which are not

singular and are closed since ¢ are sections with multipliers.

We now observe that each multiplier h* = —e™™! ¢ = /T + 4p, has a complex two-
dimensional space E+ of parallel sections with multiplier #*, parametrised by the pairs
(m(f, m;—L) e C2.

For non-resonance points 0 > —%, the multipliers 14+ = —e™™ € ST\ {#1} are not real
with i, = h_ and thus E, j = E_. Therefore, we obtain a CP!-worth of closed Darboux
transforms by

+
mg
+

L+:§0+H, (m )(CECIPI,

1
and every closed Darboux transform arises this way. Writing ¢4 = ea4 + B+ the corre-
sponding Darboux transform f = f + T is given by our explicit formulae as

T=afi! =ip+je™q

where p (resp. q) is complex-valued (resp. real-valued) function in x. Thus, every closed
Darboux transform is a rotation surface for non-resonance points o > —%.

In the case when o < —%, the two parallel sections ¢4 have real multipliers 7+ € R and
the eigenspaces of the multipliers .4 are quaternionic. Therefore, in this case ¢ H and ¢_H
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Fig.7 At non-resonance points all Darboux transforms are cylinders or more general rotation surfaces

e =
=

Fig. 8 At a resonance point o = addltlonally CMC bubbletons or isothermic bubbletons can occur,
here for k = 2, 3 lobes

give two closed Darboux transforms fi = f + T4. Our explicit expressions give

1 .
Ty = Sl Ly
r=oxfy I+
and both surfaces fi = f+ Tt = 4 (ix + je* ¢ ™) are cylinders where ¢/ = — 1 € §!
since t € iR.
In the case when o = —%, we have real multiplier 74 = h_ = —1 and ¢ H = ¢_H

gives one closed Darboux transform. Since there is no other section with multiplier, there
are no other closed Darboux transforms in this case. The same computation as in the case
0 < —1 shows that the surface is a cylinder (with r = /T +4p =

Finally, if o = kaT_l, k € Z,k > 1, is a resonance point then hy = h_ € R and
every parallel section is a section with multiplier. The closed Darboux transforms given by
L+ = ¢+H are non-singular and give rotation surfaces. The closed Darboux transforms
with ¢ = ¢4 + ¢_, ¢+ # 0, give isothermic bubbletons which may be singular Darboux
transforms. O

Examples of all possible types of closed Darboux transforms in 3-space of a cylinder can
be seen in the following figures:
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Fig.9 One-step Darboux
transform f in 3-space

Remark 4.6 We should note that similar arguments as in Proposition 4.4 and Theorem 4.5
allow to investigate parallel sections with multiplier and Darboux transforms of surfaces of
revolution, see [20]. Although in general, the differential equations for ¢* cannot be solved
explicitly, the corresponding shape of the functions «, g is still enough to find all possible
multipliers and to conclude that all Darboux transforms are surfaces of revolution.

4.3 Sym-type Darboux transforms of a cylinder

Since now all parallel sections of d, are known, we can compute explicit examples of Sym-
type Darboux transforms.

We will consider the case when the one-step Darboux transform of the cylinder is a surface
of revolution but not CMC. Otherwise, the Darboux transform is again a cylinder, and all
of its Darboux transforms are already known, or an (isothermic) bubbleton which has the
original cylinder f as its only closed Darboux transform.

We will fix our spectral parameter as the resonance point o = % and choose, according
to Proposition 4.4, the parameter m(J{ = mf“ = land m; = m| = 0. Then, the d,-parallel

section is given by ¢ = ea + ¥ with

V3x

iy 3 .
o =at =2e7(—iv/3sinh % + 3 cosh T)e”
iy 3 . 3 iy
B=pB"=06e2 (cosh % — jix/3sinh \€x> ev.
The resulting Darboux transform

f=f+ap™ =ip+jge™ (4.4)

is a surface of revolution in 3-space where

24/3 sinh(+/3x)

3 — 6 cosh(v/3x)
1 1

2cosh(v/3x) =1 2

p) =5 +

N =

G(x) =

In particular, f is real-analytic, and we see by Theorem 4.3 that a Darboux transform j‘
of f can only have constant mean curvature if f is a surface of revolution.

We now demonstrate in two examples how to explicitly construct Sym-type Darboux
transforms of f. The first one is obtained by extending ¢ near A = ¢ to dj-parallel sections
¢*. Here, ¢ is the section which gives the above Darboux transform f To obtain the Sym-type
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parallel section, we then compute
? (2 )
= — T (— —
=9 I @7 )r=00
where 7 is the projection along the splitting H H>=LoL,L= oHL

Example 4.7 [Sym-type Darboux transform is a surface of revolution] We choose ¢* =
ea + B* where

ot = %(c0+]c1)e 2

Br=eT (cE(t— 1)+ jeE(1+0)eT
with 1 = /T +4X and
ch(x) = —4iv/ A sinh(v/ax)
et (x) = 2(1 + 1) cosh(v/ax) ,

so that indeed ¢*=¢ = ¢. Abbreviating the A-derivative evaluated at o by a dot, we have

d .
¢ = (aw*ng =ei+Yp.

We compute
= 2 (2[ h(L) +x sh(\/gx)>
3 2
=2 <cos(\/2§x) ++/3x sinh(\/zgx)>
and thus
. ie?2
o =—

<6x cosh(@) + V34 + 3iy) sinh(‘/2§’6)>

+ %e%ﬁxﬂ'y) (eﬁx (2f3x +3iy + 2) —24/3x +3iy + 2)

. 1 ,
= Ee%<—ﬁx+3’>‘> (eﬁx (2«@x ¥ 3iy+ 8) —2/3x + 3iy + 8)
iy 3 3
—3jie? <2x cosh(%) + V32 +iy) sinh(\gx)) .

Since e = pa~! — YBa~!, we obtain 7¢ = ¥ (B — B~ &) so that
¢ =9 —npe =eax+ Yp(l+m)
with

m=(a"'a¢—p"'ho

1 4+/3x sinh(+/3x)+3 cosh(+v/3x)
2 cosh(2+/3x)+1

+2 4 ji

&2y (ﬁ sinh(+v/3x)—12x cosh(\/gx)) )
=—7 .

2 cosh(24/3x)+1
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Fig. 10 Sym-type Darboux
transform of the round cylinder f

Thus, using (1 +m)~! =1 —m(1 +m)~!, we obtain
F=fral+m g = ftap —am(+m) ' = f —am(1+m) g,
which gives f = f + T with

2i (ﬂ sinh(ﬂx) (48x2 —8 cosh (Zﬁx)—7)+72x cosh(ﬁx))

f =
3(2 cosh(ﬁx)—l) (48x2—16¢§x sinh(v/3x)—12 cosh(v/3x)+8 cosh(zﬂx)w)

el (—48x2+16ﬂx sinh(2+/3x)+4 cosh(2«/§x)+5)
4
J (2 cosh(+/3x)— 1) (48x2 —16+/3x sinh(v/3x)—12 cosh(+/3x)+8 cosh(2\/§x)+7)

In particular, fis again a surface of revolution in 3-space.

Since ]A‘ is not a Delaunay surface, we see that } is isothermic but not CMC.

We now compute another SAym-type Darboux transform of the cylinder by using Theorem
3.5: all Darboux transforms f of f are given by parallel sections which are quaternionic
linear combinations of ¢ and of ¢y = 7, where 7 is the projection to L along the splitting
L®L,L=g¢H andg isa dp-parallel section ¢, which is H-independent of ¢.

Note that for the resonance point o = % all Darboux transforms obtained this way are

closed surfaces. Moreover, if ;‘ # f, then ;‘is a Sym-type Darboux transform of f: recall
that by Theorem 3.6 a two-step Darboux transform is either Sym-type or Bianchi type; in the
latter case, it is the original cylinder f = f, whereas in the former }‘ #* f.

Example 4.8 (Closed Sym-type Darboux transform is not a surface of revolution) Let

cg = ca“ (x,i,—i) and consider the corresponding parallel section ¢ which is quater-

nionic independent of ¢ by construction. To obtain a CMC bubbleton, see [20], we put
¢? =@ +¢j =ea® +yB? with

iy i 3 3iy : 3

o = —2ie % (—3 n ﬁezly) sinh(%) f2je 7 (ﬁ + 3e2’Y) cosh(%)

iy . 3 i . 3
B =607 (_ﬁ+ eZIy> cosh(%) _gjie (1 n «@62’}') sinh(%) .
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Fig. 11 CMC bubbleton f»

The resulting Darboux transform f, of f can be explicitly computed as

x n 2 sinh(ﬁx)
273 cos(2y)—2+/3 cosh(+/3x

( ) _ cos(y) 3 cos(y)—cos(3y)
Ly =172 6cos(2y)—4/3 cosh(ﬁx) ’

sin y + % siny
2 «/gcosh(\/gx)+3 3
cos(2y)+2 -2

and is indeed a CMC bubbleton.
To obtain a surface in 3-space from linear combinations of the two parallel sections ¢ and
@2 = @y, we need to satisfy an initial condition: if we use

@+ @oir

where r € R is a free parameter, the resulting Darboux transforms }‘ M — R of
f + M — R3 are surfaces in 3-space and Sym-type Darboux transforms of f since

@+ oir) =9 #0,
thatis f # f. A
The resulting Darboux transforms of f can be computed explicitly. For example, for
r = 50, we obtain JA‘ = f + T withT = (fl, fg, f3) where
. 2
fi=2 (2c0sh(2v/3x) + 1) (V3 sinh(v/3x)48+% — 8 cosh(2v/3)

+ 639993 + 72x cosh(ﬁx))

|

.1
y = (4 cosh?(+v/3x) — 1) (—3A cos y — 32008/3(2 cosh(2/3x) + 1) sin® y)
1

f"3 = ~37 (2 cosh(2«/§x) + 1) <3A siny + 2400«/3(2 cosh(2«/§x) + 1)cosy
+ 800v/3 (2 cosh(2v/3x) + 1) cos(3y))
where
A = 48x% — 16+/3x sinh(2+/3x) — 4 cosh(2+/3x) + 639995

and

d =3(1 - 2cosh(v/3x))* (2 cosh(v/3x) + 1)
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Fig. 12 Sym-type Darboux
transform of f “

Fig. 13 Sym-type Darboux transforms of a cylinder at resonance points oy = ; =23

x (48x2 — 16+/3x sinh(v/3x) — 12 cosh(v/3x) + 8 cosh(2+v/3x)

+16008/3(1 — 2 cosh(v/3x)) sin(2y) + 640007) .

Despite the Sym-type Darboux transform f having a similar shape to CMC bubbletons,

the surface does not have constant mean curvature; for a Darboux transform f of the surface
of revolution f to have constant mean curvature, f must be a surface of revolution.
Similarly, one can obtain other Sym-type Darboux transforms explicitly where k gives the
number of lobes:
To conclude this section, we observe that we also obtain all closed Darboux transform of
higher order of the cylinder f by information on the multipliers of parallel sections of the
associated family d,, of f, without further integration.
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Fig. 14 Triple Darboux transforms at a resonance point: the first one is obtained as a Darboux transform of
a Sym-type two-step transform surface of revolution at the resonance point 07, whereas the second one is
obtained by Bianchi permutability from a non-rotational Sym-type Darboux transform, using the two different
resonance points 02, 03
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