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Qualitative Choice Logic (QCL) and Conjunctive Choice Logic (CCL) are formalisms for 
preference handling, with especially QCL being well established in the field of AI. So 
far, analyses of these logics need to be done on a case-by-case basis, albeit they share 
several common features. This calls for a more general choice logic framework, with QCL 
and CCL as well as some of their derivatives being particular instantiations. We provide 
such a framework, which allows us, on the one hand, to easily define new choice logics 
and, on the other hand, to examine properties of different choice logics in a uniform 
setting. In particular, we investigate strong equivalence, a core concept in non-classical 
logics for understanding formula simplification, and computational complexity. Our analysis 
also yields new results for QCL and CCL. For example, we show that the main reasoning 
task regarding preferred models of choice logic formulas is �P

2 -complete for QCL and CCL, 
while being �P

2 -complete for a newly introduced choice logic. The complexity of preferred 
model entailment for choice logic theories ranges from coNP to �P

2 .
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Representing preferences and reasoning about them is a key challenge in many areas of AI research. One of the most 
fruitful approaches to preference representation has been the use of logic-based formalisms [19,33]. Two closely related 
examples from the literature are Qualitative Choice Logic (QCL) [11] and Conjunctive Choice Logic (CCL) [10]. Especially QCL
has proven to be a useful preference formalism, with applications ranging from logic programming [12] to alert correlation 
[3] to database querying [31]. However, several key computational properties of QCL and CCL have not been studied yet. 
This includes strong equivalence, a tool to understand formula simplification, and the computational complexity of main 
reasoning tasks.

QCL extends classical propositional logic with a non-classical connective �× called ordered disjunction. Intuitively, F �×G
means that it is preferable to satisfy F but, if that is not possible, satisfying G is also acceptable. More specifically, in-
terpretations ascribe a number, called satisfaction degree, to QCL-formulas. The preferred models are those interpretations 
that satisfy the formula to the least degree. Preferences or soft constraints that can be modeled by QCL and similar logics 
naturally occur in many knowledge representation contexts. Consider for example a product configuration system for a car 
[37,24]. Now assume a user of the system is interested in the sports version of the car and wants an automatic transmission. 
Moreover, the user would like to have either cruise control or a lane assistant, but cruise control is more important to them. 
Such a query could be formalized in QCL as follows:
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sport ∧ automatic ∧ (cruise �×lane).

Without other information, this formula has the following preferred models {sport,automatic, cruise} and {sport,automatic,
cruise, lane}, both resulting in a satisfaction degree of 1 under QCL-semantics. On the other hand, the interpretation {sport,
automatic, lane} results in a degree of 2, meaning that it also satisfies the formula, but not optimally. But what if the 
knowledge base of the system contains the information that it is not possible to have the sport version of the car with 
cruise control? In that case, {sport,automatic, lane} becomes the preferred model since the interpretations that previously 
resulted in a degree of 1 no longer satisfy the formula together with the knowledge base. In practice, such configuration 
specifications can be much larger. It is evident that choice logics can serve as a formal tool to analyze such specifications, 
e.g. to determine which are the common elements in all models that meet the user’s requirements best.

Similarly to ordered disjunction, CCL introduces ordered conjunction ( ��), where the intended meaning of F ��G is that 
it is preferable to satisfy both F and G , but satisfying only F is also acceptable. However, the two types of preferences 
expressed by QCL and CCL are certainly not the only ones. One could, for example, think of a more fine-grained choice 
connective: given F ◦ G , it would be best to satisfy both F and G , second best to satisfy only F , and third best to satisfy 
only G . This natural preference cannot be succinctly represented in QCL and CCL. One could also desire a connective with 
the same basic behavior as �× in QCL, but in which satisfaction degrees are handled in a different way. There is a multitude 
of interesting logics related to QCL and CCL that have yet to be defined, and which may very well prove to be as useful as 
QCL.

In this paper, we propose a general framework for choice logics that, on the one hand, makes it easy to define new choice 
logics by specifying one or more choice connectives and, on the other hand, allows us to settle open questions regarding 
the computational properties of QCL and CCL in a uniform way. In detail, our main contributions are as follows:

• We formally define a framework that captures both QCL and CCL, as well as infinitely many new related logics. To 
showcase the versatility of our framework we explicitly introduce two such new logics called Lexicographic Choice 
Logic (LCL) and Simple Conjunctive Choice Logic (SCCL).

• We characterize strong equivalence via simpler equivalence notions for large classes of choice logics. This further enables 
us to analyze properties related to strong equivalence more easily, and also provides valuable insights into the nature 
of choice logics.

• We analyze the computational complexity of choice logics in detail.1 For example, we show that the complexity of the 
main decision problem regarding preferred models of choice logic formulas ranges from NP- to �P

2 -completeness with 
QCL and CCL being located in between (�P

2 -complete). Depending on the choice logic and on how preferred models 
of theories are defined, the complexity of preferred model entailment for theories ranges from coNP to �P

2 , with 
some problems being complete for �P

2 , �P
2 , and even �P

2 [O(log2 n)]. The complexity of checking for strong equivalence 
follows from our characterization via simpler equivalence notions for large classes of choice logics.

Related work QCL and CCL are not the only logic-based preference representation formalisms. Other prominent examples 
include the preference logics introduced by von Wright [39] and van Benthem et al. [5]; for a more complete overview, see 
the surveys by Domshlak et al. [19] and Bienvenu et al. [9]. Most of these formalisms differ from choice logics in that they 
only represent preferences, while QCL and CCL integrate the representation of truth and preference in one formalism. One 
exception is recent work by Charalambidis et al. [15], which is conceptually closely related to our LCL, but differs in that 
formulas are assigned lists of truth values instead of satisfaction degrees.

From a technical standpoint, many non-monotonic logics are closely related to QCL, as they are inherently connected 
to preferences [36]. This is particularly true for propositional circumscription and possibilistic logic [11]. However, unlike 
choice logics, these formalisms are not primarily designed to represent preferences and often rely on constructs outside of 
the logical language (circumscription policy, possibility distribution) to represent knowledge. It is also worth noting that 
choice logics are technically very different from traditional infinite-valued logics [25] as, for example, choice logics use 
classical interpretations that make atoms either true or false.

There are also systems that are based on QCL’s ordered disjunction, but do not fit into our framework. For instance, Jiang 
et al. [26] introduce a modal logic that contains a binary connective with a similar meaning to ordered disjunction, while 
Zhang & Thielscher [40] state that they took inspiration from QCL for their prioritized disjunction, which is used to reason 
about game strategies.

The original semantics of ordered disjunction in so-called Logic Programs with Ordered Disjunction (LPODs) [12] is 
based directly on the semantics of QCL. Strong equivalence in this context was investigated [22]. Furthermore, an alternative 
semantics for LPODs has been laid out recently [16].

The remainder of the paper is structured as follows: Section 2 contains the definition of our framework, examples for 
logics that can be defined within it, and a result on the expressiveness of choice logics. The notion of strong equivalence 
is examined in Section 3, and the complexity of choice logic formulas is analyzed in Section 4. In Section 5 we investigate 
the notion of preferred model entailment with respect to logical properties and computational complexity. Finally, Section 7

1 The complexity of some decision problems pertaining to QCL was conjectured by Lang [29] but never formally investigated.
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contains a summary of our results and pointers to future work. This paper is an extended version of [8], containing full 
proofs for all propositions as well as new results on choice logic theories (Section 5).

2. Choice logic framework

In this section, we introduce a framework for choice logics which generalizes QCL and CCL. We then give examples of 
logics belonging to this framework and provide a result on the expressiveness of choice logics. In what follows, PL stands 
for classical propositional logic, U denotes the alphabet of propositional variables, and an interpretation I is defined as a 
set of propositional variables such that a ∈ I if and only if a is set to true by I . If I satisfies a classical formula F , we write 
I |= F .

2.1. Syntax and semantics

A choice logic has two types of connectives: classical connectives (here we use ¬, ∧, and ∨), and binary choice connec-
tives, with which preferences can be expressed.

Definition 1. The set of choice connectives CL of a choice logic L is a finite set of symbols such that CL ∩ {¬, ∧, ∨} = ∅. 
The set FL of formulas of L is defined inductively as follows:

1. a ∈FL for all a ∈ U ;
2. if F ∈FL , then (¬F ) ∈FL;
3. if F , G ∈FL , then (F ◦ G) ∈FL for ◦ ∈ ({∧, ∨} ∪ CL).

var(F ) denotes the set of all variables in a formula F ∈FL .

For example, CQCL = { �×}, CCCL = { ��}, and CPL = ∅. Formulas that do not contain a choice connective are classical formu-
las. The semantics of a choice logic is given by two functions, satisfaction degree and optionality. The satisfaction degree of 
a formula given an interpretation is either a natural number or ∞. The lower this degree, the more preferable the interpre-
tation. The optionality of a formula describes the maximum finite satisfaction degree that this formula can be ascribed. As 
we will see in Section 2.2, optionality is used to penalize less preferable interpretations.

Definition 2. The optionality of a choice connective ◦ ∈ CL in a choice logic L is given by a function opt◦L : N2 → N such 
that opt◦L(k, �) ≤ (k + 1) · (� + 1) for all k, � ∈N . The optionality of an L-formula is given via optL : FL →N with

1. optL(a) = 1, for every a ∈ U ;
2. optL(¬F ) = 1;
3. optL(F ∧ G) = max(optL(F ), optL(G));
4. optL(F ∨ G) = max(optL(F ), optL(G));
5. optL(F ◦ G) = opt◦L(optL(F ), optL(G)), ◦ ∈ CL .

Classical formulas have an optionality of 1, meaning that they will always be satisfied to a degree of either 1 or ∞. For 
any choice connective ◦, the optionality of F ◦ G is bounded such that optL(F ◦ G) ≤ (optL(F ) +1) · (optL(G) +1). The reason 
for this is that there are optL(F ) many finite degrees that could be ascribed to F , plus the infinite degree ∞. Likewise for 
G . Thus, there are at most (optL(F ) + 1) · (optL(G) + 1) possibilities when combining the degrees of F and G . Next, we 
define the satisfaction degree of choice logic formulas given an interpretation. In the following, we write N for (N ∪ {∞}).

Definition 3. The satisfaction degree of a choice connective ◦ ∈ CL in a choice logic L is given by a function 
deg◦

L : N2 ×N
2 →N where either deg◦

L(k, �, m, n) ≤ opt◦L(k, �) or deg◦
L(k, �, m, n) = ∞ holds for all k, � ∈ N and all 

m, n ∈N . The satisfaction degree of an L-formula under an interpretation is given via degL : 2U ×FL →N with

1. degL(I, a) =
{

1 if a ∈ I,

∞ otherwise,
for every a ∈ U ;

2. degL(I, ¬F ) =
{

1 if degL(I, F ) = ∞,

∞ otherwise;
3. degL(I, F ∧ G) = max(degL(I, F ), degL(I, G));
4. degL(I, F ∨ G) = min(degL(I, F ), degL(I, G));
5. degL(I, F ◦ G) = deg◦ (optL(F ), optL(G), degL(I, F ), degL(I, G)), ◦ ∈ CL .
L
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We also write I |=L
m F for degL(I, F ) = m. If m < ∞, we say that I satisfies F (to a finite degree), and if m = ∞, then 

I does not satisfy F . If F is a classical formula, then I |=L
1 F ⇐⇒ I |= F and I |=L∞ F ⇐⇒ I � |=F . The symbols � and 

⊥ are shorthand for the formulas (a ∨ ¬a) and (a ∧ ¬a), where a can be any variable. We have optL(�) = optL(⊥) = 1, 
degL(I, �) = 1 and degL(I, ⊥) = ∞ for any interpretation I in every choice logic L.

The semantics of the classical connectives are fixed and are the same as for QCL and CCL. F ∧ G is assigned the maximum 
degree of F and G because both formulas need to be satisfied. Conversely, we use the minimum degree for F ∨ G since 
satisfying either option suffices, and we do not need to concern ourselves with the less preferable option. Observe that it 
is still necessary to define optL(F ∨ G) = max(optL(F ), optL(G)), as the case that either option is not satisfied has to be 
allowed for. Regarding negation, note that ¬F can only assume the degrees 1 or ∞. Therefore, ¬ can be seen as classical 
negation when applied to a classical formula, and as a tool to neutralize satisfaction degrees otherwise. In order to define a 
form of negation that results in different degrees of satisfaction, we would need to keep track of degrees of dissatisfaction. 
We observe that the semantics of the classical connectives used here are not the only possible ones. See also the brief 
discussion on PQCL and QCL+ in Section 2.2.

A classical connective that is not considered in choice logics is that of implication (→). One could of course, as in 
classical logic, see the formula A → B as shorthand for ¬A ∨ B , with the result that if A is not satisfied then ¬A ∨ B is 
satisfied to a degree of 1, and if A is satisfied (to some finite degree) then ¬A ∨ B is satisfied to the same degree as B . 
In our opinion, this is a sensible interpretation of A → B in the context of choice logics. If A is true, then B must also be 
satisfied (to some finite degree). Whether A is satisfied optimally is not relevant in this case. However, if one so wishes, 
alternative semantics for implication, possibly in the spirit of certain many-valued logics, can be added to logics of our 
framework via additional choice connectives.

From Definitions 2 and 3 it follows that the satisfaction degree of a choice logic formula is bounded by its optionality, 
as intended:

Lemma 1. Let L be a choice logic. For all interpretations I and all L-formulas F , either degL(I, F ) ≤ optL(F ) or degL(I, F ) = ∞.

Proof. By structural induction. Let L be a choice logic and I an interpretation.
Base case: if a ∈ U , then either degL(I, a) = 1 = optL(a) or degL(I, a) = ∞.
Step case: let F and G be L-formulas with optL(F ) = k, optL(G) = �, degL(I, F ) = m, and degL(I, G) = n. By the 

I.H., either m ≤ k or m = ∞. Likewise, n ≤ � or n = ∞. The case for ¬F is analogous to the base case. For F ∧ G , either 
degL(I, F ∧G) = max(m, n) ≤ max(k, �) = optL(F ∧G) or degL(I, F ∧G) = ∞. Analogous for F ∨G . For any choice connective 
◦ ∈ CL , we have that optL(F ◦ G) = opt◦L(k, �) and degL(I, F ◦G) = deg◦

L(k, �, m, n). By Definition 3, either deg◦
L(k, �, m, n) ≤

opt◦L(k, �) or deg◦
L(k, �, m, n) = ∞. �

Moreover, note that only those variables that actually occur in a formula F can influence the optionality and satisfaction 
degree of F , meaning that we can assume I ⊆ var(F ) for any interpretation I:

Lemma 2. Let L be a choice logic, I an interpretation, and F an L-formula. Let J = I ∩ var(F ). Then degL(I, F ) = degL(J , F ).

Proof. Follows directly from the fact that the semantics of all connectives in a choice logic are given by functions over the 
optionalities and satisfaction degrees of their operands. �

An interpretation that satisfies a formula to a finite degree will be referred to as a model of that formula. However, often 
we are more interested in the most preferable models of a formula, i.e., the models with the lowest satisfaction degree. We 
call these the preferred models of a fomula.

Definition 4. Let L be a choice logic, F an L-formula, and I an interpretation. I is a model of F , written as I ∈ ModL(F ), 
if degL(I, F ) < ∞. I is a preferred model of F , written as I ∈ PrfL(F ), if I ∈ ModL(F ) and, for all interpretations J , 
degL(I, F ) ≤ degL(J , F ).

By the above definition, PrfL(F ) = ∅ if and only if degL(I, F ) = ∞ for all interpretations I . We observe that, while the 
model relation is monotonic, the preferred model relation is generally non-monotonic (see e.g. Example 1).

2.2. Examples of choice logics

To define a choice logic L, it suffices to specify the choice connectives CL of that logic, and to provide the optionality-
and satisfaction degree functions of every ◦ ∈ CL . The simplest example for a choice logic is classical propositional logic, 
with CPL = ∅. Since there are no choice connectives in PL, all formulas are built using ¬, ∧, and ∨. From the way the classical 
connectives handle satisfaction degrees and optionality (cf. Definitions 2 and 3), we can conclude that, for all PL-formulas 
F , I |=PL

1 F ⇐⇒ I |= F and I |=PL∞ F ⇐⇒ I �|= F . Thus, I ∈ Prf PL(F ) ⇐⇒ I |= F .
QCL can be expressed in our framework as follows:
4
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Table 1
The classical connectives ∧, ∨ and the choice connectives 
�× (QCL), �� (CCL), �� (LCL), and �� (SCCL) applied to atoms.

I a ∧ b a ∨ b a �×b a ��b a��b a ��b

∅ ∞ ∞ ∞ ∞ ∞ ∞
{b} ∞ 1 2 ∞ 3 ∞
{a} ∞ 1 1 2 2 2
{a,b} 1 1 1 1 1 1

Definition 5. QCL is the choice logic such that CQCL = { �×} and, if k = optQCL(F ), � = optQCL(G), m = degQCL(I, F ), and n =
degQCL(I, G), then

optQCL(F �×G) = opt �×
QCL(k, �) = k + �, and

degQCL(I, F �×G) = deg �×
QCL(k, �,m,n) =

⎧⎪⎨
⎪⎩

m if m < ∞;
n + k if m = ∞,n < ∞;
∞ otherwise.

In the above definition we can see how optionality is used to penalize non-satisfaction: if F is satisfied, then 
degQCL(I, F �×G) = degQCL(I, F ) ≤ optL(F ); if F is not satisfied, but G is, then degQCL(I, F �×G) = degQCL(I, G) + optL(F ) >
optL(F ). Thus, any interpretation which satisfies F is automatically more preferable than one that does not.

Consider the simple formula a �×b. Then, {a} and {a, b} are assigned degree 1, while {b} is assigned degree 2 and ∅ is 
assigned degree ∞ (see also Table 1). From there, we can infer that {a} and {a, b} are preferred models of a �×b, while ∅ and 
{b} are not. Let us now consider a somewhat more involved example.

Example 1. Let F = (a �×c) ∧ (b �×c). Consider the interpretation {a, b}. Then degQCL({a, b}, a �×c) = degQCL({a, b}, b �×c) = 1. 
Hence, degQCL({a, b}, F ) = max

(
degQCL({a,b},a �×c),degQCL({a,b},b �×c)

) = 1.
Analogously, degQCL({a, b, c}, F ) = 1. For {a, c} we have degQCL({a, c}, a �×c) = 1 and degQCL({a, c}, b �×c) = 2. There-

fore degQCL({a, c}, F ) = 2. Similarly, we have degQCL(I ′, F ) = 2 for I ′ ∈ {{c}, {b, c}}. Finally, degQCL(I ′′, F ) = ∞ for I ′′ ∈
{∅, {a}, {b}}. Thus, {a, b}, {a, b, c} ∈ Prf QCL(F ).

Consider now that we obtain the additional information that a and b can not be satisfied simultaneously, i.e., 
F ′ = (a �×c) ∧ (b �×c) ∧ ¬(a ∧ b). Then degQCL(J , F ′) = 2 for J ∈ {{c}, {a, c}, {b, c}} and degQCL(J ′, F ′) = ∞ for J ′ ∈
{∅, {a}, {b}, {a, b}, {a, b, c}}. In fact, F ′ can not be satisfied to a degree of 1, and we have that {c}, {a, c}, {b, c} ∈ Prf QCL(F ′).

From Brewka et al. [11] it is known that �× is associative, meaning that given arbitrary QCL-formulas A, B , and C the 
formulas ((A �×B) �×C) and (A �×(B �×C)) always have the same optionality and satisfaction degrees. We can therefore write 
F1 �×F2 . . . �×Fn to express that we prefer F1 to F2, F2 to F3, and so on. For variables a1, . . . , an with ai �= a j for all i �= j, we 
have that {ai} |=QCL

i (a1 �×a2 . . . �×an).
Next, we formally define CCL. However, our function for the satisfaction degree of �� differs from the one given by 

Boudjelida & Benferhat [10]. In fact, the original definition of CCL, although it can be expressed in our framework if desired, 
fails to capture the intended meaning of ordered conjunction.2 From now on, when defining a choice logic, we will write 
optL(F ◦ G) = f (k, �) instead of optL(F ◦ G) = opt◦L(k, �) = f (k, �) for the sake of brevity. Analogously for degL(F ◦ G).

Definition 6. CCL is the choice logic such that CCCL = { ��} and, if k = optCCL(F ), � = optCCL(G), m = degCCL(I, F ), and n =
degCCL(I, G), then

optCCL(F ��G) = k + �, and

degCCL(I, F ��G) =

⎧⎪⎨
⎪⎩

n if m = 1,n < ∞;
m + � if m < ∞ and (m > 1 or n = ∞);
∞ otherwise.

Intuitively, given F ��G , it is best to satisfy both F and G , while satisfying only F is less preferable, but still acceptable. 
As intended, �� is associative under this new semantics for CCL. This will be shown formally in Section 3 (see Lemma 11). 
For a series of distinct propositional variables, we have that {a1, . . . , a(n−i+1)} |=CCL

i (a1 ��a2 . . . ��an).

2 Under the semantics described in Definition 8 of the original CCL-paper [10], a formula F ��G will always be ascribed a degree of either ∞ or 1: 
if degCCL(I, F ) = ∞ then degCCL(I, F ��G) = ∞; if degCCL(I, F ) = 1 then degCCL(I, F ��G) = degCCL(I, G); if 1 < degCCL(I, F ) < ∞ then degCCL(I, F ��G) =
degCCL(I, F ) + optCCL(G). However, the last case never applies since classical formulas can only assume degrees ∞ or 1.
5
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Example 2. Let F = (a ��c) ∧ (b ��c). Consider the interpretation {a, b, c}. Then degCCL({a, b, c}, a ��c) = degCCL({a, b, c}, b ��c) =
1. It follows that degCCL({a, b, c}, F ) = max

(
degCCL({a,b, c},a ��c),degCCL({a,b, c},b ��c)

) = 1.
Now, for {a, b} we have degCCL({a, b}, a ��c) = 2 and degCCL({a, b}, b ��c) = 2. Hence, degCCL({a, b}, F ) = 2. For {a, c} we 

have degCCL({a, c}, a ��c) = 1 and degCCL({a, c}, b ��c) = ∞. Therefore degCCL({a, c}, F ) = ∞. Similarly, it can be verified that 
degCCL(I, F ) = ∞ for I ∈ {∅, {a}, {b}, {c}, {b, c}}. Thus, {a, b, c} ∈ Prf CCL(F ).

While QCL and CCL feature only a single choice connective, our framework now easily allows to define a choice logic 
with the choice connectives of both QCL and CCL, i.e. CQCCL = { �×, ��}, opt �×

QCCL = opt �×
QCL, deg �×

QCCL = deg �×
QCL, and likewise for 

CCL and ��. In this way, a choice logic with several choice connectives can always be seen as the combination of other 
choice logics.

We now introduce a new logic, called Lexicographic Choice Logic (LCL), whose choice connective allows us to deal with 
satisfaction degrees in a more fine-grained manner.

Definition 7. LCL is the choice logic such that CLCL = {��} and, if k = optLCL(F ), � = optLCL(G), m = degLCL(I, F ), and n =
degLCL(I, G), then

optLCL(F ��G) = (k + 1) · (� + 1) − 1, and

degLCL(I, F ��G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(m − 1) · � + n if m < ∞,n < ∞;
k · � + m if m < ∞,n = ∞;
k · � + k + n if m = ∞,n < ∞;
∞ otherwise.

Given F ��G it is best to satisfy both F and G , second best to satisfy only F , and third best to satisfy only G . Satisfying 
neither F nor G is not acceptable.

Example 3. Let F = (a��(b��c)). The only interpretation that ascribes a degree of ∞ to F is ∅. The remaining 7 interpretations 
applicable to F each result in a different degree, ranging from 1 to 7: {a, b, c} |=LCL

1 F , {a, b} |=LCL
2 F , {a, c} |=LCL

3 F , {a} |=LCL
4 F , 

{b, c} |=LCL
5 F , {b} |=LCL

6 F , and {c} |=LCL
7 F .

In QCL, the same information must be encoded by explicitly ranking the individual interpretations, i.e., by the formula 
F ′ = (a ∧ b ∧ c) �×(a ∧ b) �×(a ∧ c) �×a �×(b ∧ c) �×b �×c.

As exemplified above, LCL, in contrast to QCL (or CCL), enables us to succinctly encode lexicographic orderings over 
variables. This will be important when analyzing the computational complexity of LCL in Sections 4 and 5.

It is also possible to define a choice logic that does not use optionality. We call the following new logic Simple Conjunc-
tive Choice Logic (SCCL).

Definition 8. SCCL is the choice logic such that CSCCL = { ��} and, if k = optSCCL(F ), m = degSCCL(I, F ), and n = degSCCL(I, G), 
then

optSCCL(F ��G) = k + 1, and

degSCCL(I, F ��G) =

⎧⎪⎨
⎪⎩

m if m < ∞,n < ∞;
m + 1 if m < ∞,n = ∞;
∞ otherwise.

SCCL is similar to CCL in that the intended meaning of F ��G is the same as that of F ��G , i.e., satisfying F and G is 
most preferable, but satisfying only F is also acceptable. However, SCCL does not use optionality to penalize less preferable 
interpretations. Instead, the degree of such interpretations is simply incremented by 1. As we will see in the next example, 
this can lead to questionable behavior. In fact, we define SCCL mainly for technical reasons, namely to highlight a choice 
logic in which optionality is not used.

Example 4. Consider F = (a ��(b ��c)). Then both {a, b} and {a, b, c} ascribe a degree of 1 to F . The fact that (b ��c) is not 
optimally satisfied by {a, b} is irrelevant in this case. This is in contrast to CCL, where (a ��(b ��c)) would be satisfied to a 
degree of 2 by {a, b}. Note that �� is not associative, since {a, b} ascribes a degree of 1 to F but a degree of 2 to ((a ��b) ��c).

Lastly, we want to discuss two variants of QCL introduced by Benferhat & Sedki [4] called PQCL and QCL+. Both of these 
logics define �× in the same way as standard QCL, but differ in how classical connectives deal with satisfaction degrees. 
6
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The alternative conjunctions and disjunctions featured in PQCL and QCL+ can be implemented in our framework as choice 
connectives, if desired. In fact, some behave more like choice connectives than classical connectives, as, for example, the 
conjunction of PQCL favors interpretations that ascribe a lower satisfaction degree to the first operand rather than the 
second. The semantics of �� in LCL is built on this principle, and is actually an extension of ∧ in PQCL. Now, in contrast to 
the semantics of QCL, negation in PQCL and QCL+ is decomposable, e.g., the formula ¬(a �×b) is defined to be equivalent to 
¬a �×¬b. This behavior cannot directly be simulated in our framework. However, by restricting ourselves to formulas where 
negations appear only in front of atoms PQCL and QCL+ can be captured by our framework as fragments.

2.3. Expressiveness

It can be shown that any logic defined in our framework is powerful enough to express arbitrary assignments of satis-
faction degrees to interpretations by a formula as long as the degrees are obtainable in the following sense:

Definition 9. A degree m ∈ N is called obtainable in a choice logic L if there exists an interpretation I and an L-formula 
F such that degL(I, F ) = m. By DL we denote the set of all degrees obtainable in a choice logic L.

For example, DPL = {1, ∞} and DL =N for L ∈ {QCL, CCL, LCL, SCCL}. As soon as a degree m is obtainable, any interpre-
tation can be assigned this degree via a suitable formula.

Lemma 3. Let m ∈DL for some choice logic L. Then there is an L-formula F such that degL(I, F ) = m for every interpretation I .

Proof. Let L be a choice logic, and let I be any interpretation. Let m ∈ DL . Since m is obtainable in L, there is a formula 
G such that degL(J , G) = m for some interpretation J . We obtain F = T (G) by transforming G as follows:

1. T (a) =
{

� if a ∈J
⊥ otherwise

2. T (¬A) = ¬T (A)

3. T (A ◦ B) = T (A) ◦ T (B), where ◦ ∈ {∧, ∨} ∪ CL .

The above transformation takes G and replaces every variable a that is contained in J by �. If a is not contained in J , 
then it will be replaced by ⊥. It is easy to see that degL(I, F ) = degL(J , G) = m since

degL(I, T (a)) =
{

degL(I,�) if a ∈ J
degL(I,⊥) otherwise

=
{

1 if a ∈ J
∞ otherwise

= degL(J ,a). �
With the above lemma we can tackle the issue of formula synthesis:

Proposition 4. Let L be a choice logic. Let V be a finite set of propositional variables, and let s be a function s : 2V →DL . Then there 
is an L-formula F such that for every I ⊆ V , degL(I, F ) = s(I).

Proof. Let GJ be the classical formula that characterizes some interpretation J ⊆ V , i.e.

GJ = ( ∧
a∈J

a
) ∧ ( ∧

a∈(V \J )

¬a
)
.

Observe that J |= GJ , but J ′ �|= GJ for all J ′ ⊆ V such that J ′ �= J . From Lemma 3, we know that for every J ⊆ V , 
there is an L-formula SJ such that degL(J , SJ ) = s(J ). Furthermore, let

F =
∨
J⊆V

(GJ ∧ SJ ).

Let I ⊆ V be an arbitrary interpretation, and let C be an arbitrary clause in F , i.e. C = (GJ ∧ SJ ) for some J ⊆ V . We 
distinguish two cases:

1. I =J . Then degL(I, GJ ) = 1 and degL(I, SJ ) = s(I), which implies that degL(I, C) = s(I).
2. I �=J . Then degL(I, GJ ) = ∞ and therefore degL(I, C) = ∞.

By construction, there is exactly one clause in F such that I = J . Since this clause is satisfied with degree s(I) by I , and 
all other clauses are ascribed a degree of ∞ by I , we have that degL(I, F ) = s(I). �
7
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Observe that Proposition 4 also speaks about interpretations I that are no subsets of V : since var(F ) ⊆ V , degL(I, F ) =
degL(I ∩ V , F ) = s(I ∩ V ).

3. Strong equivalence

In this section we investigate strong equivalence, a concept which has received extensive attention in logic programming 
[32,21,22] and knowledge representation in general [23,2]. Two choice logic formulas are strongly equivalent if they can 
be substituted for each other in a larger context without affecting preferred models. In the following, F [A/B] denotes the 
substitution of an occurrence of A in F by B .

Definition 10. Two formulas A and B of a choice logic L are strongly equivalent, written as A ≡L
s B , if PrfL(F ) =

PrfL(F [A/B]) for all L-formulas F .

Strong equivalence is a crucial notion towards formula simplification, as it allows us to replace subformulas by simpler 
but strongly equivalent formulas. Unfortunately, to check whether two formulas are strongly equivalent using the definition 
above requires us to go through infinitely many formulas. Thus a characterization of strong equivalence that avoids this is 
needed. We show that strong equivalence often can be decided via simpler equivalence notions.

Definition 11. Two formulas A and B of a choice logic L are degree-equivalent, written as A ≡L
d B , if degL(I, A) =

degL(I, B) for all interpretations I .

Lemma 5. Let L be a choice logic. If A ≡L
d B, then PrfL(A) = PrfL(B).

Proof. Assume A ≡L
d B . Then

I ∈ PrfL(A) ⇐⇒ degL(I, A) �= ∞ and degL(I, A) ≤ degL(J , A) for all J
⇐⇒ degL(I, B) �= ∞ and degL(I, B) ≤ degL(J , B) for all J
⇐⇒ I ∈ PrfL(B). �

The converse of Lemma 5 is not true: a and (a �×b) have the same preferred models in QCL, but {b} |=QCL∞ a, while {b} |=QCL
2

(a �×b). Since the satisfaction degree of a formula might also depend on optionality, the notion of degree-equivalence is not 
strong enough in many cases; we thus also consider the following notion, which actually appears under the name of strong 
equivalence in the original QCL-paper [11].

Definition 12. Two L-formulas A and B of a choice logic L are fully equivalent, written as A ≡L
f B , if A ≡L

d B and optL(A) =
optL(B).

Lemma 6. Let L be a choice logic. Then A ≡L
f B if and only if F ≡L

f F [A/B] for all L-formulas F .

Proof. Assume that A ≡L
f B . Then, since the optionality- and degree-functions of any connective in a choice logic are 

functions over the optionalities and satisfaction degrees of the immediate subformulas, the fact that F ≡L
f F [A/B] holds for 

any L-formula F can be shown easily by structural induction.
For the converse direction, assume that A �≡L

f B . Choose F = A. Then F [A/B] = B , and therefore F �≡L
f F [A/B]. �

The above lemma states that two formulas are fully equivalent if and only if they can be substituted for each other 
without affecting satisfaction degree or optionality. This is even stronger than strong equivalence which only demands that 
substitution does not affect preferred models.

Proposition 7. A ≡L
f B =⇒ A ≡L

s B =⇒ A ≡L
d B for any choice logic L and all L-formulas A, B.

Proof. A ≡L
f B =⇒ A ≡L

s B follows from Lemma 6. It remains to show that A ≡L
s B =⇒ A ≡L

d B: assume A �≡L
d B . We 

want to show that there is a formula F such that PrfL(F ) �= PrfL(F [A/B]).
Since A �≡L

d B , there exists an interpretation I such that I |=L
m A and I |=L

n B with m �= n. Let k = min(m, n). Due to 
Proposition 4, we know that there are formulas G and H such that the minimum degree that satisfies G and H is k. Thus, 
there are interpretations IG , IH such that IG |=L

k G and IH |=L
k H . We can assume that G and H are variable disjoint from 

each other as well as from A and B , since we can always rename variables if necessary. Thus, by Lemma 2, we can assume 
I ∩ IG = ∅, I ∩ IH = ∅, and IG ∩ IH = ∅. We now construct
8
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F = (A ∧ G) ∨ (a ∧ H),

where a is a fresh variable that does not occur in A, B , G or H . We can therefore also assume that a is not contained in I , 
IG , or IH .

Observe that the minimal degree with which F (or F [A/B]) can possibly be satisfied is k, as either G or H need to be 
satisfied. Furthermore, IH ∪ {a} |=L

k F and IH ∪ {a} |=L
k F [A/B]. This means that any preferred model of F must satisfy F

with a degree of k. The same is true for preferred models of F [A/B]. Also observe that since a is not contained in I or IG , 
I ∪ IG |=L∞ (a ∧ H). We distinguish two cases:

1. k = m. Then I |=L
k A, and therefore I ∪ IG |=L

k (A ∧ G). This implies I ∪ IG |=L
k F , i.e. I ∪ IG ∈ PrfL(F ). Anal-

ogously, since I |=L
n B , we have that I ∪ IG |=L

n (B ∧ G). Therefore, I ∪ IG |=L
n F [A/B]. Since n > k, we have 

I ∪ IG /∈ PrfL(F [A/B]).
2. k = n. Analogous to (1), but with I ∪ IG /∈ PrfL(F ) and I ∪ IG ∈ PrfL(F [A/B]).

It can be concluded that PrfL(F ) �= PrfL(F [A/B]), i.e. A �≡L
s B . �

In general, all three equivalence notions are different. For example, in SCCL, a and (a ��a) are not fully equivalent, since 
they differ in optionality, but they are strongly equivalent, since optionality does not impact satisfaction degrees in SCCL. 
On the other hand, in QCL, a and (a �×a) are degree-equivalent and F = (((a �×b) ∨ (c �×d)) ∧ ¬a ∧ ¬c) has {b} as a preferred 
model, but replacing the first occurrence of a in F by a �×a means {b} is no longer preferred. However, for natural classes of 
choice logics strong equivalence coincides with either degree-equivalence or full equivalence.

Definition 13. A choice logic L is called optionality-ignoring if for all ◦ ∈ CL , degL(I, F ◦ G) = degL(I, F ′ ◦ G ′) whenever 
degL(I, F ) = degL(I, F ′) and degL(I, G) = degL(I, G ′).

It is easy to see that PL and SCCL are optionality-ignoring, while QCL, CCL, and LCL are not.

Proposition 8. Let L be an optionality-ignoring choice logic. For all L-formulas A, B we have that A ≡L
s B iff A ≡L

d B.

Proof. The only-if-direction follows directly from Proposition 7. For the if-direction, we can prove that if A ≡L
d B , then 

F ≡L
d F [A/B] for all L-formulas F , which implies that PrfL(F ) = PrfL(F [A/B]) for all L-formulas F . This can be done 

by structural induction, analogous to Lemma 6. The critical difference here is that L is optionality-ignoring, and therefore 
optionality can not influence degrees when substituting B for A. �

Similar to the above result, we can characterize strong equivalence by full equivalence in choice logics where, as soon 
as two formulas differ in optionality, they can no longer be safely substituted for each other without affecting satisfaction 
degrees.

Definition 14. A choice logic L is called optionality-differentiating if for all L-formulas A and B with optL(A) �= optL(B), 
there is an L-formula F such that F �≡L

d F [A/B].

PL, QCL, CCL, and LCL are optionality-differentiating (while SCCL is not). We show this for QCL: Consider any A, B such 
that optQCL(A) �= optQCL(B). Then F = ((A ∧ ⊥) �×a) has the desired property: (A ∧ ⊥) can never be satisfied, and since 
optQCL(A ∧ ⊥) = optQCL(A), F is satisfied by {a} with a degree of optQCL(A) + 1. Likewise, F [A/B] is satisfied by {a} with a 
degree of optQCL(B) + 1. The cases of CCL and LCL are similar.

On the other hand, SCCL is clearly not optionality-differentiating: while optSCCL(a) �= optSCCL(a ��a) we have that F ≡SCCL
d

F [a/(a ��a)] for all SCCL-formulas F , since optionality has no impact on satisfaction degree in SCCL.

Proposition 9. Let L be an optionality-differentiating choice logic. For all L-formulas A, B we have that A ≡L
s B iff A ≡L

f B.

Proof. The if-direction follows directly from Proposition 7. For the only-if-direction, assume that A ≡L
s B . Then, from Propo-

sition 7, we know that A ≡L
d B . It remains to show that optL(A) = optL(B).

Towards a contradiction, assume that optL(A) �= optL(B). This means that, since L is optionality-differentiating, there 
exists an L-formula A′ such that A′ �≡L

d A′[A/B]. Observe that therefore A must occur in A′ . Let B ′ = A′[A/B]. Then A′ �≡L
d

B ′ . By the contrapositive of Proposition 7, there exists a formula F such that PrfL(F ) �= PrfL(F [A′/B ′]). By the construction 
of F in the proof for Proposition 7, we can assume that A′ occurs only once in F , and that A only occurs in A′ . Therefore, 
replacing A′ by A′[A/B] in F is the same as simply replacing A by B in F , i.e. F [A′/B ′] = F [A′/A′[A/B]] = F [A/B]. Thus, 
PrfL(F ) �= PrfL(F [A/B]). But then A �≡L

s B . Contradiction. �

9
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In fact, strong equivalence and full equivalence are interchangeable only for optionality-differentiating choice logics.

Proposition 10. Let L be choice logic that is not optionality-differentiating. Then there are L-formulas A and B such that A ≡L
s B but 

A �≡L
f B.

Proof. If L is not optionality-differentiating then, by definition, there are L-formulas A and B such that optL(A) �= optL(B)

while F ≡L
d F [A/B] holds for all L-formulas F . Clearly, A �≡L

f B . However, F ≡L
d F [A/B] implies PrfL(F ) = PrfL(F [A/B]), 

i.e., A ≡L
s B . �

In Section 2.2, we discussed associativity of �× in QCL. A matching strong equivalence result can now be achieved for CCL
as well, and it is easily proven using Proposition 9.

Corollary 11. The choice connective �� ∈ CCCL is associative, meaning that ((F ��G) ��H) ≡CCL
s (F ��(G ��H)) for any F , G, H ∈FCCL .

Proof. For readability, we write opt instead of optCCL and deg instead of degCCL in this proof. First of all, by Definition 6, 
opt((F ��G) ��H) = opt(F ��(G ��H)). We further show that ((F ��G) ��H) ≡CCL

d (F ��(G ��H)). Let I be an arbitrary interpretation. 
Let dA = deg(I, A) for A ∈ {F , G, H}. We distinguish the following cases:

• dF = 1, dG = 1, and dH < ∞. Then deg(I, F ��G) = 1, deg(I, G ��H) = dH . This implies deg(I, (F ��G) ��H) = dH =
deg(I, F ��(G ��H)).

• dF = 1, dG = 1, and dH = ∞. Then deg(I, F ��G) = 1, deg(I, G ��H) = 1 + opt(H). We can conclude that deg(I,

(F ��G) ��H) = 1 + opt(H) = deg(I, F ��(G ��H)).
• dF = 1 and 1 < dG < ∞. Then deg(I, F ��G) = dG , deg(I, G ��H) = dG + opt(H). This entails that deg(I, (F ��G) ��H) =

dG + opt(H) = deg(I, F ��(G ��H)).
• dF = 1 and dG = ∞. Then deg(I, F ��G) = 1 + opt(G), deg(I, G ��H) = ∞. This further implies deg(I, (F ��G) ��H) =

1 + opt(G) + opt(H) = deg(I, F ��(G ��H)).
• 1 < dF < ∞. Then deg(I, F ��G) = dF + opt(G), which entails that deg(I, (F ��G) ��H) = dF + opt(G) + opt(H) =

deg(I, F ��(G ��H)).
• dF = ∞. Then deg(I, F ��G) = ∞, which implies deg(I, (F ��G) ��H) = ∞ = deg(I, F ��(G ��H)). �

To conclude, knowing whether a choice logic is optionality-ignoring (e.g. SCCL) or optionality-differentiating (e.g. QCL, 
CCL, LCL) is useful, since it allows to decide strong equivalence via degree- or full equivalence. However, note that choice 
logics which are neither optionality-ignoring nor -differentiating do exist. One could, for example, define a choice connective 
◦ where the satisfaction degree of F ◦ G depends on the optionality of G , but only in some cases, e.g. when optL(G) = 3.

4. Computational complexity for choice logic formulas

Next, we examine the computational complexity of some decision problems pertaining to choice logic formulas. We 
assume familiarity with basic complexity theoretical concepts such as the classes P, coNP, and NP, as well as computation 
using NP-oracles. Additionally, we will encounter the following complexity classes in this paper:

Definition 15. Let Q be a decision problem.

• Q is in �P
2 if it can be decided in polynomial time by an algorithm with access to an NP-oracle [28].

• Q is in �P
2 , also called �P

2 [O(logn)], if it can be decided in polynomial time by an algorithm which is allowed O(log n)

number of calls to an NP-oracle, where n is the size of the input [38].
• Q is in �P

2 [O(log2 n)] if it can be decided in polynomial time by an algorithm which is allowed O(log2 n) number of 
calls to an NP-oracle, where n is the size of the input [13].

• Q is in �P
2 if it can be decided in nondeterministic polynomial time by an algorithm with access to an NP-oracle [1].

• Q is in �P
2 if the complement of Q is in �P

2 .

So far we have imposed only few restrictions on optionality- and degree functions, which means that there are choice 
logics whose semantics are given by computationally expensive or even undecidable functions. For reasons of practicality, 
we focus on so-called tractable choice logics.

Definition 16. A choice logic L is called tractable if the optionality- and degree functions of every choice connective in L
are polynomial-time computable.

All logics presented in this paper are tractable in the above sense. In this section, we consider the following problems:
10
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Definition 17. Given a choice logic L we define the following decision problems:

• L-DegreeChecking: given an L-formula F , an interpretation I , and a satisfaction degree k ∈ N , does degL(I, F ) ≤ k
hold?

• L-DegreeSat: given an L-formula F and a satisfaction degree k, is there an interpretation I such that degL(I, F ) ≤ k
holds?

• L-PMChecking: given an L-formula F and an interpretation I , does I ∈ PrfL(F ) hold?
• L-PMContainment: given an L-formula F and a propositional variable x, is there an interpretation I ∈ PrfL(F ) such 

that x ∈ I?
• L-DegreeEquiv (resp. L-FullEquiv): given two L-formulas A and B , does A ≡L

d B (resp. A ≡L
f B) hold?

L-DegreeChecking and L-DegreeSat are concerned with satisfaction degrees. Indeed, they are straightforward gen-
eralizations of model checking and satisfiability for classical propositional logic. Reformulating the problems in terms of 
preferred models yields L-PMChecking and L-PMContainment. Note that L-PMContainment lets us analyze the complex-
ity of finding a specific preferred model: given a formula F over variables x1, . . . , xn we can first ask whether x1 is in a 
preferred model of F . If yes (resp. no), we obtain F ′ by replacing all occurrences of x1 by � (resp. ⊥) and then ask whether 
x2 is contained in a preferred model of F ′ . Thus, we can find a preferred model of F by solving L-PMContainment exactly 
n times.

Note that we can define the problem L-StrongEquiv analogously to L-DegreeEquiv and L-FullEquiv. By our char-
acterizations from Section 3 we can then obtain the complexity of L-StrongEquiv via results for L-FullEquiv (resp. 
L-DegreeEquiv) when dealing with optionality-differentiating (resp. optionality-ignoring) choice logics.

We now investigate the complexity of the above problems. A summary of the results can be found at the end of this 
section in Table 2.

Proposition 12. L-DegreeChecking is in P for any tractable choice logic L.

Proof. The degree of F under I can be computed by applying degL to I and F (see Definition 3). For tractable L this 
procedure clearly runs in polynomial time. Now it remains to simply check whether degL(I, F ) ≤ k. �
Proposition 13. L-DegreeSat is NP-complete for any tractable choice logic L.

Proof. Regarding NP-membership, given an L-formula F and a satisfaction degree k, it suffices to guess an interpretation 
I ⊆ var(F ) and check whether degL(I, F ) ≤ k. Since L-DegreeChecking is in P (cf. Proposition 12) this check can be done 
in polynomial time.

For NP-hardness, we provide a reduction from Sat. Let F be an arbitrary classical formula. Then, for any interpretation 
I it holds that I |= F ⇐⇒ I |=L

1 F ⇐⇒ degL(I, F ) ≤ 1. Thus, there is an interpretation I such that I |= F if and only if 
there is an interpretation I such that degL(I, F ) ≤ 1. �

Let us now consider L-PMChecking, which is, in general, harder than L-DegreeChecking.

Proposition 14. L-PMChecking is in coNP for any tractable choice logic L.

Proof. We show that the complementary problem is in NP: given an L-formula F and an interpretation I , guess an 
interpretation J ⊆ var(F ) and check whether degL(J , F ) < degL(I, F ). If yes, then I /∈ PrfL(F ), i.e., (F , I) is a yes-instance 
of co-L-PMChecking. Note that degL(J , F ) < degL(I, F ) can be checked in polynomial time since L is tractable. �

We observe that PL-PMChecking and PL-DegreeChecking are identical, since I ∈ Prf PL(F ) ⇐⇒ I |=PL
1 F . Hence, we can-

not expect coNP-hardness in general, but we show the result for all logics where degrees other than 1 and ∞ are obtainable, 
and thus for QCL, CCL, SCCL, and LCL.

Proposition 15. L-PMChecking is coNP-complete for any tractable choice logic L for which DL �= {1, ∞}.

Proof. coNP-membership is by Proposition 14. Regarding hardness, recall that Unsat is the problem of deciding whether a 
given classical formula F is unsatisfiable. We provide a reduction from an arbitrary instance F of Unsat. Let m ∈DL \{1, ∞}, 
and let a be a variable that does not occur in F . By Proposition 4, there exists an L-formula G such that I |=L

m G if a ∈ I
and I |=L∞ G if a /∈ I for all interpretations I . Note that the size of G is constant with respect to the size of F . We now 
construct an instance (F ′, {a}) of L-PMChecking, where

F ′ = (F ∨ G) ∧ ¬(F ∧ G).
11



M. Bernreiter, J. Maly and S. Woltran Artificial Intelligence 311 (2022) 103755
It remains to prove that F is a yes-instance of Unsat if and only if (F ′, {a}) is a yes-instance of L-PMChecking:
“ =⇒ ”: Assume F is a yes-instance of Unsat. Then there is no interpretation J such that J |= F , i.e. degL(J , F ) = ∞

for all J . Since degL({a}, G) = m, we have that degL({a}, F ′) = m. Indeed, F ′ can not be satisfied to a degree lower than m
since F is unsatisfiable and since m is the lowest degree with which G can be satisfied. Thus, {a} ∈ PrfL(F ′).

“ ⇐= ”: We proceed by contrapositive. Assume F is a no-instance of Unsat. Then there is an interpretation J such 
that J |= F . Because a does not occur in F , we can assume that a /∈ J , and therefore J |=L∞ G . Thus, J |=L

1 (F ∨ G) and 
J |=L

1 ¬(F ∧ G), which implies that J |=L
1 F ′ . Recall that {a} |=L

m G . We distinguish two cases:

1. {a} |= F . Then {a} |=L
1 (F ∨ G), {a} |=L∞ ¬(F ∧ G), and therefore {a} |=L∞ F ′ .

2. {a} �|= F . Then {a} |=L
m (F ∨ H), {a} |=L

1 ¬(F ∧ H), and therefore {a} |=L
m F ′ .

In any case, degL({a}, F ′) > degL(J , F ′) which implies {a} /∈ PrfL(F ′). �
We now turn to L-PMContainment. In order to show �P

2 containment for this problem, we first need to prove the 
following lemma which gives an upper bound for the optionality of choice logic formulas relative to their size. In the 
following, |F | denotes the total number of variables occurrences in F , e.g. |(x ∧ x ∧ y)| = 3.

Lemma 16. Let L be a choice logic. Then, for every L-formula F it holds that optL(F ) < 2(|F |2) .

Proof. By structural induction over FL .

• Base case. F = a, where a is a propositional variable. Then |F | = 1 and optL(F ) = 1 < 2(|F |2) .
• Step case. As our I.H., let G and H be L-formulas such that optL(G) < 2(|G|2) and optL(H) < 2(|H |2) . We distinguish the 

following cases:
1. F = (¬G). Then |F | = |G| ≥ 1 and optL(F ) = 1 < 2(|F |2) .
2. F = (G ∧ H) or F = (G ∨ H). Then |F | = |G| + |H | and

optL(F ) = max(optL(G),optL(H)) < max(2(|G|2),2(|H|2)) < 2(|F |2).

3. F = (G ◦ H), where ◦ ∈ CL . Then |F | = |G| + |H |. Of course, optL(G) < 2(|G|2) is the same as optL(G) ≤ 2(|G|2) − 1. 
Likewise for H . Thus,

optL(F ) ≤ (optL(G) + 1) · (optL(H) + 1)

≤ ((2(|G|2) − 1) + 1) · ((2(|H|2) − 1) + 1) = 2(|G|2) · 2(|H|2)

= 2(|G|2)+(|H|2) < 2((|G|+|H|)2) = 2(|F |2). �
The above upper bound for the optionality of a formula is likely not a tight bound, but it is good enough for our 

purposes.

Proposition 17. L-PMContainment is in �P
2 and NP-hard for any tractable choice logic L.

Proof. NP-hardness follows from Sat. �P
2 -membership: let (F , x) be an instance of L-PMContainment. We provide a de-

cision procedure which runs in polynomial time with respect to |F |, makes O(|F |2) calls to an NP-oracle, and determines 
whether (F , x) is a yes-instance of L-PMContainment:

Conduct a binary search over (1, . . . , optL(F ), ∞). In each step of the binary search, we call an NP-oracle that decides 
L-DegreeSat to check whether there is an interpretation I such that degL(I, F ) ≤ k, where k is the mid-point of the 
current step in the binary search. In the end, we will find the minimum k such that degL(J , F ) = k for some J , i.e., every 
preferred model of F must satisfy F with degree k. By Lemma 16, optL(F ) < 2(|F |2) . Since binary search runs in logarithmic 
time, we require at most O(log(optL(F ))) =O(log(2(|F |2))) =O(|F |2) oracle calls for this procedure.

Finally, we conduct a last NP-oracle call to guess an interpretation I and check whether degL(I, F ) = k and I |= x. �
The complexity results of Proposition 17 are tight bounds in the sense that there are choice logics for which 

L-PMContainment is �P
2 -complete (Proposition 21) and choice logics for which it is NP-complete (just take L = PL). How-

ever, there are also choice logics for which the complexity lies between these two classes. The key is to restrict optionality.

Proposition 18. L-PMContainment is in �P
2 for tractable choice logics L in which optL(F ) ∈O(|F |c) holds for some constant c and 

all L-formulas F .
12
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Proof. Analogous to the proof of Proposition 17, except that we require at most O(log(optL(F ))) = O(log(|F |c)) =
O(log(|F |)) oracle calls. �

Recall that the optionality of A �×B in QCL is defined as optQCL(A)+optQCL(B). Now, since a formula F has at most |F | −1
occurrences of �×, optQCL(F ) ≤ |F | for all QCL-formulas F . The same argument can be made for CCL, where the optionality 
of A ��B is given by optCCL(A) + optCCL(B), and SCCL, where the optionality of A ��B is given by optSCCL(A) + 1. Together 
with the above proposition this implies that L-PMContainment is in �P

2 for L ∈ {QCL, CCL, SCCL}. In fact, these logics are 
�P

2 -complete. We show this by a reduction from the following �P
2 -complete problem [18]:

Definition 18. LogLexMaxSat is the decision problem where, given a PL-formula F and an ordering x1 > · · · > xn over n of 
the variables in F with n ≤ log(|F |), we ask whether xn is true in the lexicographically largest interpretation J ⊆ {x1, . . . , xn}
that can be extended to a model of F .

Proposition 19. L-PMContainment is �P
2 -complete for L ∈ {QCL,CCL,SCCL}.

Proof. �P
2 -membership is established in Proposition 18. Regarding hardness, consider an arbitrary instance (F , (x1, . . . , xn))

of LogLexMaxSat. We construct an instance (F ′, xn) of QCL-PMContainment as follows: Let Ji be the lexicographically i-th 
largest interpretation over x1 > · · · > xn . For example, J1 = {x1, . . . , xn}, J2 = {x1, . . . , xn−1}, and J(2n) = ∅. We characterize 
each of those interpretations by a formula, namely

Ai =
( ∧

x∈Ji

x
)

∧
( ∧

x∈{x1,...,xn}\Ji

¬x
)
.

Then, for any interpretation I , we have that I |= Ai ⇐⇒ I ∩ {x1, . . . , xn} =Ji . Now let

F ′ = F ∧ (A1 �×A2 �× · · · �×A(2n)).

Observe that this construction is polynomial in |F |, as n ≤ log(|F |), and therefore 2n ≤ |F |. It remains to show that 
(F , (x1, . . . , xn)) is a yes-instance of LogLexMaxSat iff (F ′, xn) is a yes-instance of QCL-PMContainment.

“ =⇒ ”: Let (F , (x1, . . . , xn)) be a yes-instance of LogLexMaxSat. Then there exists an interpretation I such that xn ∈ I , 
I |= F , and such that Jk = I ∩ {x1, . . . , xn} is the lexicographically largest interpretation over x1 > · · · > xn that can be 
extended to a model of F . Observe that I |= Ak , but I �|= Ar for any r �= k. Therefore, by the semantics of ordered disjunction 
in QCL, degQCL(I, F ′) = k. Let I ′ be any interpretation other than I . If I ′ �|= F , then degQCL(I ′, F ′) = ∞. If I ′ |= F , then it 
can not be that Jk′ = I ′ ∩ {x1, . . . , xn} is lexicographically larger than Jk with respect to x1 > · · · > xn . Thus, k ≤ k′ . By the 
same reasoning as above, degQCL(I ′, F ′) = k′ . This means that there is no interpretation that satisfies F ′ to a smaller degree 
than I , i.e. I ∈ Prf QCL(F ′). Since also xn ∈ I , we can conclude that (F ′, xn) is a yes-instance of QCL-PMContainment.

“ ⇐= ”: Let (F ′, xn) be a yes-instance of QCL-PMContainment. Then there is an interpretation I such that xn ∈ I and 
I ∈ Prf QCL(F ′). By the construction of F ′ , we have that I |= F . Towards a contradiction, assume there is an interpretation I ′
such that I ′ |= F , and such that Jk′ = I ′ ∩ {x1, . . . , xn} is lexicographically larger than Jk = I ∩ {x1, . . . , xn} with respect to 
x1 > · · · > xn . Then k′ < k. But by the same argument as in the only-if-direction, we can conclude that degQCL(I, F ′) = k and 
degQCL(I ′, F ′) = k′ , i.e. degQCL(I, F ′) < degQCL(I ′, F ′). But then I is not a preferred model of F ′ . Contradiction. This means 
that Jk is the lexicographically largest interpretation with respect to (x1, . . . , xn) that can be extended to a model of F . 
Therefore, (F , (x1, . . . , xn)) is a yes-instance of LogLexMaxSat. �

In contrast, the optionality of LCL can grow exponentially with the formula size. Therefore, we can not use the argument 
above to show that LCL-PMContainment is in �P

2 . Indeed, it turns out that LCL-PMContainment is �P
2 -complete. In order 

to prove this, we observe that LCL allows us to represent the lexicographic order with an exponentially smaller formula 
than QCL, CCL, and SCCL.

Lemma 20. Let x1 > · · · > xn be an ordering over n propositional variables. Let Ik ⊆ {x1, . . . , xn} be the lexicographically k-th largest 
interpretation over this ordering, and let Fn = (x1��(x2��(· · · (xn−1��xn)))). Then

degLCL(Ik, Fn) =
{

k if k < 2n

∞ if k = 2n

Proof. First, we show optLCL(Fn) = 2n − 1 by induction over n:

• Base case: n = 1. Then optLCL(Fn) = optLCL(x1) = 1 = 2n − 1.
13
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• Step case: n > 1. Then Fn = (x1��A), where A = (x2��(· · · (xn−1��xn))). By our I.H., optLCL(A) = 2n−1 − 1, and thus

optLCL(Fn) = optLCL(x1��A)

= (optLCL(x1) + 1) · (optLCL(A) + 1) − 1

= (1 + 1) · ((2n−1 − 1) + 1) − 1

= (2 · 2n−1) − 1 = 2n − 1.

Now we proceed with the main proof, again by induction over n:

• Base case: n = 1. Then Fn = x1, I1 = {x1}, and I2 = ∅. Clearly, degLCL(I1, Fn) = 1 and degLCL(I2, Fn) = ∞, as required.
• Step case: n > 1. Then Fn = (x1��A), where A = (x2��(· · · (xn−1��xn))). Let J� be the lexicographically �-th largest inter-

pretation over x2 > · · · > xn . By our I.H., degLCL(J�, A) = � if � < 2n−1, and degLCL(J�, A) = ∞ if � = 2n−1. We can obtain 
the k-th largest interpretation Ik over x1 > · · · > xn as follows:
1. If k ≤ 2n−1, then Ik =Jk ∪ {x1}. Therefore, degLCL(Ik, x1) = 1. There are two cases:

(a) degLCL(Jk, A) < ∞. Then degL(Ik, Fn) = degL(Jk, A) = k.
(b) degLCL(Jk, A) = ∞. Then k = 2n−1. Thus,

degL(Ik, Fn) = optLCL(A) + 1 = (2n−1 − 1) + 1 = 2n−1 = k.
2. If k > 2n−1, then Ik =J(k−2n−1) . Therefore, degLCL(Ik, x1) = ∞. There are two cases:

(a) degLCL(J(k−2n−1), A) < ∞. Then degL(Ik, Fn) = optLCL(A) +1 +degL(J(k−2n−1), A) = (2n−1 −1) +1 +(k −2n−1) = k.
(b) degLCL(J(k−2n−1), A) = ∞. Then k − 2n−1 = 2n−1, and therefore k = 2n . Furthermore, degL(Ik, Fn) = ∞, as re-

quired. �
For LCL, we can thus drop the condition n ≤ log(|F |) in the construction above (Proposition 19), yielding a reduction 

from the �P
2 -complete problem LexMaxSat [18].

Definition 19. LexMaxSat is the decision problem where, given a PL-formula F and an ordering x1 > · · · > xn over all vari-
ables in F , we ask whether xn is true in the lexicographically largest model of F .

Proposition 21. LCL-PMContainment is �P
2 -complete.

Proof. �P
2 -membership is established in Proposition 17. Regarding hardness, let (F , (x1, . . . , xn)) be an arbitrary instance of

LexMaxSat. We construct an instance (F ′, xn) of LCL-PMContainment, where

F ′ = F ∧ (x1��(x2��(· · · (xn−1��xn)))).

It remains to show that (F , (x1, . . . , xn)) is a yes-instance of LexMaxSat if and only if (F ′, xn) is a yes-instance of 
LCL-PMContainment.

“ =⇒ ”: Let (F , (x1, . . . , xn)) be a yes-instance of LexMaxSat. Then there exists an interpretation I such that I |= F , 
xn ∈ I , and I is the lexicographically largest model of F with respect to the ordering x1 > · · · > xn . Let J be any in-
terpretation other than I . If J �|= F , then degLCL(J , F ′) = ∞, and J is not a preferred model of F ′ . If J |= F , then 
J must be lexicographically smaller than I . By Lemma 20, we can directly infer that degLCL(I, x1��(· · · (xn−1��xn))) <
degLCL(J , x1��(· · · (xn−1��xn))), and therefore degLCL(I, F ′) < degLCL(J , F ′). This means that I ∈ Prf LCL(F ′). Since also xn ∈ I , 
we have that (F ′, xn) is a yes-instance of LCL-PMContainment.

“ ⇐= ”: Let (F ′, xn) be a yes-instance of LCL-PMContainment. Then there is an interpretation I such that xn ∈ I and 
I ∈ Prf LCL(F ′). Towards a contradiction, assume that there is an interpretation J such that J |= F , and such that J is lex-
icographically larger than I with respect to x1 > · · · > xn . But, by Lemma 20, this means that degLCL(J , F ′) < degLCL(I, F ′), 
which implies that I /∈ Prf LCL(F ′). Contradiction. Thus, I is the lexicographically largest model of F . Since xn ∈ I , we have 
that (F , (x1, . . . , xn)) is a yes-instance of LexMaxSat. �

Finally, we consider L-FullEquiv, the problem of deciding whether A ≡L
f B holds for given L-formulas A and B , as well 

as the analogously defined problems L-DegreeEquiv and L-StrongEquiv.

Proposition 22. For any tractable choice logic L, (1) L-FullEquiv and L-DegreeEquiv are coNP-complete; (2) L-StrongEquiv is 
coNP-complete if L is optionality-ignoring or -differentiating.

Proof. We prove NP-membership of co-L-FullEquiv: given two L-formulas A and B , guess an interpretation I ⊆ var(A) ∪
var(B) and check whether degL(I, A) �= degL(I, B) or optL(A) �= optL(B). These checks can be done in polynomial time 
for tractable L.
14



M. Bernreiter, J. Maly and S. Woltran Artificial Intelligence 311 (2022) 103755
Table 2
Summary of complexity results for choice logic formulas.

Tract. PL QCL/CCL/SCCL LCL

L-DegreeChecking in P in P in P in P
L-DegreeSat NP-c NP-c NP-c NP-c
L-PMChecking in coNP in P coNP-c coNP-c
L-PMContainment NP-h/in �P

2 NP-c �P
2 -c �P

2 -c
L-DegreeEquiv coNP-c coNP-c coNP-c coNP-c
L-FullEquiv coNP-c coNP-c coNP-c coNP-c

As for coNP-hardness of L-FullEquiv, let F be an arbitrary instance of Unsat. We construct an instance (A, B) of 
L-FullEquiv with A = F and B = ⊥. Observe that optL(A) = optL(B) = 1, since F is a classical formula. Additionally, A and 
B are degree-equivalent if and only if I �|= A for all I , which is the case if and only if F = A is a yes-instance of Unsat.

The proof for L-DegreeEquiv is analogous. Furthermore, the results for L-StrongEquiv follow from our characterizations 
in Section 3 (Propositions 8 and 9). �

Table 2 summarizes our complexity results for formulas of tractable choice logics, thus including all specific logics studied 
so far. The most interesting results are arguably those for L-PMContainment: for an arbitrary tractable choice logic, we have 
a lower bound in the form of NP-hardness and an upper bound in the form of �P

2 -membership. Our results for individual 
choice logics show that our framework allows for instantiations located at the lower bound (e.g. PL being NP-complete), the 
upper bound (e.g. LCL being �P

2 -complete), and in-between (e.g. QCL being �P
2 -complete). Note that a complexity analysis 

of non-tractable logics may be conducted in a similar way by using oracles for the optionality- and satisfaction degree 
functions. Observe that the complexity of L-StrongEquiv was not considered for choice logics that are neither optionality-
ignoring nor -differentiating.

5. Preferred model entailment

So far, we considered the properties of single choice logic formulas. However, a comprehensive analysis requires us to 
study choice logic theories as well. Given a choice logic L, an L-theory T is simply a set of L-formulas. Especially interesting 
in this regard is the notion of preferred model entailment, where a theory T entails a classical formula F , written as T |∼ F , 
if and only if F is true in all preferred models of T . The preferred models of choice logic theories can be determined in 
numerous ways, with Brewka et al. [11] most notably introducing lexicographic and inclusion-based semantics.

In this section, we will investigate preferred model entailment with regards to logical properties such as cautious 
monotony (Section 5.1) and computational complexity (Section 5.2). Our analysis will be conducted for large classes of 
choice logics, and several preferred model semantics, including the lexicographic and inclusion-based approaches as well as 
newly introduced semantics. First, we introduce a simple yet previously not considered approach where a finite L-theory 
T = {A1, . . . , An} can intuitively be seen as the formula A1 ∧ · · · ∧ An .

Definition 20. Let L be a choice logic, I an interpretation, and T an L-theory. I is a model of T , written as I ∈ ModL(T ), 
if I ∈ ModL(F ) for all F ∈ T . I is a minmax preferred model of T , written as I ∈ Prf mm

L (T ), if I ∈ ModL(T ) and 
max{degL(I, F ) | F ∈ T } ≤ max{degL(J , F ) | F ∈ T } for all other interpretations J .

Lexicographic and inclusion-based semantics are defined as follows:

Definition 21. Let L be a choice logic, I an interpretation, and T an L-theory. Ik
L(T ) denotes the set of formulas in T

satisfied to a degree of k by I , i.e., Ik
L(T ) = {F ∈ T | degL(I, F ) = k}.

• I is a lexicographically preferred model of T , written as I ∈ Prf lex
L (T ), if I ∈ ModL(T ) and if there is no J ∈ ModL(T )

such that, for some k ∈N and all l < k, |Ik
L(T )| < |J k

L(T )| and |Il
L(T )| = |J l

L(T )| holds.

• I is an inclusion-based preferred model of T , written as I ∈ Prf inc
L (T ), if I ∈ ModL(T ) and if there is no J ∈ ModL(T )

such that, for some k ∈N and all l < k, Ik
L(T ) ⊂ J k

L(T ) and Il
L(T ) =J l

L(T ) holds.

In contrast to the minmax approach, the lexicographic approach considers satisfaction degrees in a bottom-up way, i.e., 
it is most important to maximize the number of formulas satisfied to a degree of 1, second-most important to maximize 
the number of formulas satisfied to a degree of 2, and so on. Similarly for the inclusion-based approach. Let us provide an 
example for the various preferred model semantics.

Example 5. Consider the QCL-theory T = {a �×c, b �×c, ¬(a ∧ b)}, and note that if we see T as the conjunction of it’s formulas 
we get F ′ = (a �×c) ∧ (b �×c) ∧ ¬(a ∧ b) from Example 1. From there, we can infer that {c}, {a, c}, {b, c} ∈ Prf mm

QCL(T ). Now 
observe that
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{c}1
QCL(T ) = {¬(a ∧ b)} and {c}2

QCL(T ) = {a �×c,b �×c},
{a, c}1

QCL(T ) = {a �×c,¬(a ∧ b)} and {a, c}2
QCL(T ) = {b �×c},

{b, c}1
QCL(T ) = {b �×c,¬(a ∧ b)} and {b, c}2

QCL(T ) = {a �×c}.
Thus, {c} satisfies less formulas to a degree of 1 than {a, c} or {b, c}. Formally, |{c}1

QCL(T )| = 1, |{c}2
QCL(T )| = 2, 

|{a, c}1
QCL(T )| = |{b, c}1

QCL(T )| = 2, and |{a, c}2
QCL(T )| = |{b, c}1

QCL(T )| = 1. Thus, {a, c}, {b, c} ∈ Prf lex
QCL(T ) but {c} /∈ Prf lex

QCL(T ). 
For the inclusion-based semantics it can be checked in a similar way that {a, c}, {b, c} ∈ Prf inc

QCL(T ) but {c} /∈ Prf inc
QCL(T ).

Note that under the minmax semantics the ranking of an interpretation depends only on a single formula, namely 
that with the highest degree under the given interpretation. In contrast, under the lexicographic and inclusion-based 
semantics all formulas in a theory may influence an interpretation’s ranking. We will now propose a preferred model 
semantics that constitutes a middle ground in this matter: given an L-theory T = {A1, . . . , An} and an interpretation I , 
f (n)-many formulas, with 1 ≤ f (n) ≤ n, may influence the ranking of I . For example, if we set f (n) = 3, then the three 
lowest (or highest) degrees obtained in T under I could be lexicographically compared to the three lowest (or highest) 
degrees obtained by another interpretation. For our complexity analysis, considering f (n) = log(n) is especially interest-
ing.

Definition 22. Let L be a choice logic and T = {A1, . . . , An} a finite L-theory. The log-worst formulas of T relative to an 
interpretation I are given by a set LIL(T ) such that |LIL(T )| = �log(n)� and such that, for all A ∈ T \ LIL(T ), degL(I, A) ≤
min{degL(I, B) | B ∈ LIL(T )}. An interpretation I is a log-lexicographically preferred model of T , written as I ∈ Prf log

L (T ), 
if I ∈ ModL(T ) and if there is no J ∈ ModL(T ) such that, for some k ∈ N and all l > k, |Ik

L(LIL(T ))| > |J k
L(LJL (T ))| and 

|Il
L(LIL(T ))| = |J l

L(LJL (T ))| holds.

In the log-lexicographic approach, satisfaction degrees are considered in a top-down manner, i.e., we strive to minimize 
the number of formulas satisfied to high degrees. As a result, I ∈ Prf log

L (T ) implies I ∈ Prf mm
L (T ), meaning that the log-

lexicographic semantics is a refinement of the minmax semantics.
Moreover, note that LIL(T ) from Definition 22 is not necessarily unique for a given T . However, for the log-lexicographic 

semantics it is of no importance which exact LIL(T ) is considered, as we only care about how many formulas are satisfied 
to certain degrees, not which formulas.

Example 6. Let T = {a �×c, b �×c, ¬(a ∧ b)}, just as in Example 5. Note that �log2(3)� = 2, i.e., given an interpretation, using 
the log-lexicographic semantics we are only interested in those two formulas that are satisfied to a maximal degree. For {c}
this is L{c}

QCL(T ) = {a �×c, b �×c} with both formulas satisfied to a degree of 2. For {a, c} this can be L{a,c}
QCL (T ) = {¬(a ∧ b), b �×c}

or L{a,c}
QCL (T ) = {a �×c, b �×c} with b �×c satisfied to a degree of 2 but ¬(a ∧ b) and a �×b satisfied to a degree of 1. Analogously 

for L{b,c}
QCL (T ). Thus, {a, c}, {b, c} ∈ Prf log

QCL(T ) but {c} /∈ Prf log
QCL(T ).

Now that we introduced some ways to determine the preferred models of a choice logic theory, we formally define the 
notion of preferred model entailment:

Definition 23. Let L be a choice logic, T an L-theory, F a classical formula, and σ a preferred model semantics, e.g., 
σ ∈ {mm, lex, inc, log}. Then T |∼σ

L F if and only if I ∈ PrfσL(T ) implies I |= F .

5.1. Logical properties of preferred model entailment

First, we show that preferred model entailment is non-monotonic for all preferred model semantics considered here 
(mm, lex, inc, log), and for all choice logics in which more than two satisfaction degrees can be obtained (which of course 
includes QCL, CCL, LCL, and SCCL).

Proposition 23. Let L be a choice logic such that DL �= {1, ∞} and let σ ∈ {mm, lex, inc, log}. The preferred model entailment |∼σ
L

is non-monotonic, i.e., T |∼σ
L B does not necessarily imply T ∪ {A} |∼σ

L B.

Proof. Let k ∈ DL \ {1, ∞}. Let a be a propositional variable. By Proposition 4 we know that there is an L-formula F such 
that degL(I, F ) = 1 if a ∈ I and degL(I, F ) = k if a /∈ I . Then under all considered semantics I is a preferred model of F if 
and only if it contains a. Therefore, we have {F } |∼σ

L a. Now consider {F } ∪ {¬a}. We observe that I ∈ ModL({F } ∪ {¬a}) if 
and only if a /∈ I . It follows that for all preferred model semantics {F } ∪ {¬a} � |∼σ a. �
L
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Non-monotonic inference relations of numerous formalisms have been studied previously, and desirable properties have 
been laid out by Kraus et al. [27]. One such property is that of cautious monotony, where T |∼ A and T |∼ B implies 
T ∪ {A} |∼ B . In the original QCL-paper [11] it was shown that |∼lex

QCL satisfies this property. In fact, cautious monotony is 
satisfied by all choice logics under all preferred model semantics considered in this paper:

Proposition 24. Let L be a choice logic and σ ∈ {mm, lex, inc, log}. The inference relation |∼σ
L satisfies cautious monotony for finite 

theories, i.e., T |∼σ
L A and T |∼σ

L B implies T ∪ {A} |∼σ
L B for all finite L-theories T and all classical formulas A, B.

Proof. Assume T |∼σ
L A and T |∼σ

L B . Note that A and B are classical formulas. Let I ∈ PrfσL(T ∪ {A}). Then I ∈ ModL(T )

and degL(I, A) = 1. Towards a contradiction, assume I /∈ PrfσL(T ). Since I ∈ ModL(T ), and since T is finite, there must be 
J ∈ PrfσL(T ) that is more preferable than I with respect to T . By T |∼σ

L A also degL(J , A) = 1. We claim that then J is 
more preferable than I for T ∪ {A} for all considered semantics, which is a contradiction:

• For the minmax semantics, we observe that max{degL(I, F ) | F ∈ T } = max{degL(I, F ) | F ∈ T ∪ {A}}. The same holds 
for J .

• For the lexicographic and the inclusion-based semantics, observe that for l �= 1 we have Il
L(T ∪ {A}) = Il

L(T ) and for 
l = 1 we have I1

L(T ∪ {A}) = I1
L(T ) ∪ {A}. The same holds for J .

• For the log-lexicographic semantics there exists a k ∈ N such that for all l > k, |Ik
L(LIL(T ))| > |J k

L(LJL (T ))| and 
|Il

L(LIL(T ))| = |J l
L(LJL (T ))|. As |LIL(T )| = |LJL (T )| it is not possible that k = 1. Therefore, we must have |Ik

L(LIL(T ∪
{A}))| > |J k

L(LJL (T ∪ {A}))| and |Il
L(LIL(T ∪ {A}))| = |J l

L(LJL (T ∪ {A}))| for all l > k.

Thus, I ∈ PrfσL(T ) and by T |∼σ
L B also I |= B . �

Note that we only considered finite theories in Proposition 24. Brewka et al. [11] did not explicitly make this assumption 
when investigating |∼lex

QCL, but we believe it was implicitly assumed. In fact, |∼lex
QCL does not satisfy cautious monotony if 

infinite theories are allowed. The following result can likely be generalized for other preferred model semantics and choice 
logics, but we do not consider this here.

Proposition 25. The inference relation |∼lex
QCL does not satisfy cautious monotony for infinite theories, i.e., there is an infinite QCL-

theory T and classical formulas A, B such that T |∼lex
QCL A, T |∼lex

QCL B, but T ∪ {A} � |∼lex
QCL B.

Proof. In the following, by �i we denote i occurrences of � connected by �×. For example, �1 = �, �2 = ��×�, and 
�3 = ��×��×�. For i ∈N , let

Ai = {ai �×�1,ai �×�2, . . . ,ai �×�i}.
The additional occurrences of � are added simply to duplicate the formula ai �×�. Observe that {ai} satisfies all i formulas in 
Ai to a degree of 1, and that an interpretation that sets ai to false satisfies all i formulas in Ai to a degree of 2. Furthermore, 
we define

R = {⊥�×¬(ai ∧ a j) | i, j ∈N, i �= j}
and finally

T = R ∪
⋃
i∈N

Ai .

The formulas in R can at best be satisfied to a degree of 2. Furthermore, R enforces that, if i �= j, then ai and a j can not 
be set to true by the same interpretation. For any i ∈ N , the interpretation {ai} satisfies all formulas in T to some finite 
degree. Moreover, |{ai}1

QCL(T )| = i. This means that, for any i ∈ N , {ai} is not a preferred model of T since there is always 
j > i such that |{ai}1

QCL(T )| < |{a j}1
QCL(T )|. In fact, T has no preferred models, since if some I does not satisfy any ai , then 

|I1
QCL(T )| = 0. Thus, T |∼lex

QCL a1 and T |∼lex
QCL a2 hold vacuously.

Now we consider the extension of T by a1, i.e. T ∪ {a1}. To satisfy T ∪ {a1}, a1 must be set to true, but a1 can not be set 
to true at the same time as any other ai with i �= 1. Thus, {a1} is the only model of T ∪ {a1} (without loss of generality, we 
can assume I ⊆ {a1, a2, . . .} for all interpretations I we are dealing with). Therefore, {a1} is the single preferred model of 
T ∪ {a1} which means that T ∪ {a1} � |∼lex

QCL a2. �
Another important property is that of cumulative transitivity, which is known to hold for |∼lex

QCL. Again, we can generalize 
this result. Note that the following proposition holds for infinite theories, except for the log-lexicographic semantics which 
are only defined for finite theories.
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Proposition 26. Let L be a choice logic and σ ∈ {mm, lex, inc, log}. The inference relation |∼σ
L satisfies cumulative transitivity, i.e., 

T |∼σ
L A and T ∪ {A} |∼σ

L B implies T |∼σ
L B for all L-theories T and all classical formulas A, B.

Proof. Assume T |∼σ
L A and T ∪ {A} |∼σ

L B . Note that A and B are classical formulas. Let I ∈ PrfσL(T ). Then I ∈ ModL(T )

and, by T |∼σ
L A, degL(I, A) = 1. It is easy to see that I ∈ PrfσL(T ∪ {A}) which, by T ∪ {A} |∼σ

L B , implies I |= B . �
Lastly, Brewka et al. [11] also considered the property of rational monotony [30] and showed that it is satisfied by |∼lex

QCL. 
The result is achieved by transforming all formulas in a given QCL-theory into a normal form, and to then further transform 
the theory into a stratified knowledge base. We now show that rational monotony is satisfied in all choice logics and under 
all considered preferred model semantics except the inclusion-based approach.

Proposition 27. Let L be a choice logic and σ ∈ {mm, lex, log}. The inference relation |∼σ
L satisfies rational monotony, i.e., T ∪ {A} �

|∼σ
L B and T � |∼σ

L ¬A implies T � |∼σ
L B for all L-theories T and all classical formulas A, B.

Proof. Assume T ∪ {A} � |∼σ
L B and T � |∼σ

L ¬A. Then there is I ∈ PrfσL(T ∪ {A}) such that I �|= B and J ∈ PrfσL(T ) such 
that J |= A. Note that degL(I, A) = degL(J , A) = 1. Towards a contradiction, assume that I /∈ Prf σL(T ). Then J is more 
preferable than I for T , which also means that J is more preferable than I for T ∪{A}, i.e., I /∈ Prf σL(T ∪ {A}). Contradiction. 
Thus, I ∈ PrfσL(T ). Since I �|= B we have T � |∼σ

L B . �
Proposition 28. Let L be a choice logic such that DL �= {1, ∞}. The inference relation |∼inc

L does not satisfy rational monotony, i.e., 
there is an L-theory T and classical formulas A, B such that T ∪ {A} � |∼σ

L B, T � |∼σ
L ¬A, but T |∼σ

L B.

Proof. Let k ∈ DL \ {1, ∞}. Let a, b, c, be propositional variables. By Proposition 4 we know that there are L-formulas 
F , G, H over {a, b, c} such that

degL({a}, F ) = 1,degL({a}, G) = k,degL({a}, H) = k

degL({b}, F ) = k,degL({b}, G) = 1,degL({b}, H) = 1

degL({c}, F ) = k,degL({c}, G) = k,degL({c}, H) = 1,

and degL(I, F ) = degL(I, G) = degL(I, H) = ∞ for all other I ⊆ {a, b, c}. Let T = {F , G, H}, A = ¬b, and B = a ∨ b. It can 
be verified that Prf inc

L (T ) = {{a}, {b}} and Prf inc
L (T ∪ {A}) = {{a}, {c}}. Thus, T ∪ {A} � |∼σ

L B , T � |∼σ
L ¬A, but T |∼σ

L B . �
5.2. Complexity of preferred model entailment

We will now analyze the notion of preferred model entailment with respect to its computational complexity. To do so, 
we must also consider the problem of preferred model checking for choice logic theories.

Definition 24. Let L be a choice logic and σ a preferred-model semantics for L-theories, e.g., σ ∈ {mm, lex, inc, log}. We 
define the decision problems

• L-PMChecking[σ ]: Given a finite L-theory T and an interpretation I , decide whether I ∈ Prf σL(T );
• L-Entailment[σ ]: Given a finite L-theory T and a classical formula F , decide whether T |∼σ

L F .

A summary of results for the above problems can be found at the end of this section in Table 3. Regarding 
L-PMChecking[σ ] for choice logic theories, we see no complexity increase compared to L-PMChecking for single formulas.

Proposition 29. For all σ ∈ {mm, lex, inc, log}, L-PMChecking[σ ] is in P for L = PL and in coNP for any tractable choice logic L. 
L-PMChecking[σ ] is coNP-complete for any tractable choice logic L for which DL �= {1, ∞} holds.

Proof. P-membership for PL is straightforward. Furthermore, coNP-hardness for tractable choice logics with DL �= {1, ∞}
follows from results for single choice logic formulas (see Proposition 15). As for coNP-membership of tractable choice 
logics, it is easy to see that the complementary problem is in NP: given an L-theory T and an interpretation I , guess an 
interpretation J and check whether J is more preferred than I . This can be done in polynomial time for all preferred-
model semantics we are concerned with (σ ∈ {mm, lex, inc, log}). �

Note that in classical propositional logic the problems PL-Entailment[σ ] with σ ∈ {mm, lex, inc, log} are simply the prob-
lem of classical entailment. Thus, these problems are coNP-complete by well-known properties of PL. We now turn our 
attention to L-Entailment[mm] in the general case. For convenience, we write optL(T ) for max{optL(F ) | F ∈ T }.
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Proposition 30. L-Entailment[mm] is in �P
2 and coNP-hard for all tractable choice logics. L-Entailment[mm] is in �P

2 for a 
tractable choice logic L if for some constant c and all L-formulas F it holds that optL(F ) ∈O(|F |c).

Proof. coNP-hardness follows from coNP-hardness of PL. We show membership for the complementary problem, where 
we ask whether a classical formula F evaluates to false under some minmax preferred model of a given theory T =
{A1, . . . , An}: first, we conduct a binary search over (1, . . . , optL(T )), in each step using an NP-oracle to answer whether 
there is an interpretation I such that max{degL(I, A) | A ∈ T } ≤ k, where k is the current position of the binary search. 
In this way, we find the minimum m such that max{degL(J , A) | A ∈ T } = m for any interpretation J . If m = ∞, we al-
ready have a no-instance since Prf mm

L (T ) = ∅, i.e., F is true in all preferred models of T . If m < ∞, we conduct a final 
NP-oracle call in which we guess an interpretation I and ask whether max{degL(I, A) | A ∈ T } = m and whether I �|= F . 
This procedure runs in polynomial time, making use of O(log(optL(T ))) NP-oracle calls. �

Completeness results for specific choice logics follow directly by the above proposition as well as from known results for 
single formulas (cf. Table 2).

Proposition 31. L-Entailment[mm] is �P
2 -complete for L ∈ {QCL,CCL,SCCL} and �P

2 -complete for L = LCL.

Proof. Membership results follow from Proposition 30, hardness results from L-PMContainment (cf. Table 2): an instance 
(F , x) of L-PMContainment can be reduced to an instance ({F }, ¬a) of co-L-Entailment[mm]. Then x is true under some 
preferred model of F if and only if ¬a is false under some (minmax) preferred model of {F }. �

As the minmax semantics is equivalent to taking the conjunction of all formulas in the theory, it is not surprising that 
we see the same complexity landscape as for L-PMContainment. This is different for L-Entailment[lex], which can not be 
represented in terms of single formulas.

Proposition 32. L-Entailment[lex] is in �P
2 and coNP-hard for every tractable choice logic L.

Proof. coNP-hardness follows from coNP-hardness of PL. �P
2 -Membership of the complementary problem: given a theory 

T = {A1, . . . , An} and a classical formula F , we first conduct a binary search over (1, . . . , optL(T )) to find the smallest 
k1 such that some formula A ∈ T is satisfied by a model of T to a degree of k1. We then conduct a binary search over 
(1, . . . , n) to find the maximum number m1 such that |Ik1

L (T )| = m1 for some I ∈ ModL(T ). Observe that any J ∈ Prf lex
L (T )

must satisfy exactly m1 formulas in T to a degree of k1. The above procedure makes O (log(optL(T )) + log(n)) NP-oracle 
calls.

We proceed inductively: for i > 1, we conduct a binary search over (ki−1 +1, . . . , optL(T )) to find the minimum degree ki

with ki > ki−1 such that degL(I, A) = ki for some A ∈ T and I ∈ ModL(T ) with |Ik j

L (T )| = m j for all j < i. Then we conduct 
a binary search over (1, . . . , n − ∑i−1

j=1 m j) to find the maximum number mi such that |Iki
L(T )| = mi for some I ∈ ModL(T )

with |Ik j

L (T )| = m j for all j < i. Again, this requires O (log(optL(T )) + log(n)) NP-oracle calls.
The above procedure has to be executed at most n times to find the ‘degree-profile’ for preferred models of T , i.e., every 

preferred model of T must satisfy exactly m j formulas in T to a degree of k j . Thus, O (n · (log(optL(T )) + log(n))) NP-oracle 
calls are required so far.

Lastly, we make a final NP-oracle call to guess an interpretation I and, using k j and m j , check whether I ∈ Prf lex
L (T )

and I �|= F . �
Proposition 33. L-Entailment[lex] is �P

2 -complete for L ∈ {QCL,CCL,SCCL, LCL}.

Proof. Membership for each L ∈ {QCL, CCL, SCCL, LCL} follows from Proposition 32. Hardness for LCL follows from 
LCL-PMContainment (cf. Table 2 and the proof of Proposition 31). We show hardness for the complementary problem 
and L = QCL: let (F , (a1 . . . , an)) be an instance of LexMaxSat. For every 1 ≤ i ≤ n we construct an L-formula Ai such that, 
for any interpretation I , degL(I, Ai) = i if ai ∈ I and degL(I, ai) = n + 1 if ai /∈ I .:

Ai = ⊥�× . . . �×⊥�×ai �×⊥�× . . . �×⊥�×�,

where ⊥ occurs i − 1 times before ai and n − i times after ai . For example, if n = 4, then A1 = a1 �×⊥�×⊥�×⊥�×�, A2 =
⊥�×a2 �×⊥�×⊥�×�, and so on. We now construct an instance (T , ¬an) of co-L-Entailment[lex] with T = {F , A1, . . . , An}. It 
remains to show that an is true in the lexicographically maximal model of F with respect to a1 > · · · > an if and only if ¬an
is false in some lexicographically preferred model of T .

Assume an is true in the lexicographically maximal model I of F with respect to a1 > · · · > an . Since each Ai is always 
satisfied to some degree, and since I |= F , we have I ∈ ModL(T ). Moreover, there can be no other J ∈ ModL(T ) such that, 
for some k, |Ik (T )| < |J k (T )| and, for all l < k, |Il (T )| = |J l (T )|. Otherwise, there would be some variable ak such that 
L L L L
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J |= ak , I �|= ak , and J |= al ⇐⇒ I |= al for all l < k. But then I would not be the lexicographically maximal model of F . 
Thus, I ∈ Prf lex

L (T ). Furthermore, I �|= ¬an .
Assume an is not true in the lexicographically maximal model of F . If F is not satisfiable, then neither is T , i.e., T has 

no preferred model and we have a no-instance of co-L-Entailment[lex]. If F is satisfiable, then, by the same argument as 
above, I ∈ Prf lex

L (T ) for the lexicographically largest model I of F with respect to a1 > · · · > an . In fact, I is the unique 
lexicographically preferred model of T . Furthermore, I |= ¬an . �

The proofs for log-lexicographic semantics are similar to those of regular lexicographic semantics. However, the com-
plexity for choice logics with polynomially-bounded optionality is actually located inbetween �P

2 and �P
2 , namely in 

�P
2 [O(log2 n)]. The only truly natural �P

2 [O(log2 n)]-complete problem we are aware of is model checking for a specific 
temporal logic [34]. A less natural, but useful �P

2 [O(log2 n)]-complete problem is Log
2

LexMaxSat, which is defined analo-
gously to LogLexMaxSat (cf. Definition 18) except that we are given a lexicographic order over log2(n) variables [35].

Proposition 34. L-Entailment[log] is in �P
2 and coNP-hard for all tractable choice logics. L-Entailment[log] is in �P

2 [O(log2 n)]
for tractable L if for some constant c and all L-formulas F it holds that optL(F ) ∈O(|F |c).

Proof. coNP-hardness follows from coNP-hardness of PL. Regarding membership, we can determine the degree-profile of 
T ’s log-lexicographically preferred models analogously to the proof of Proposition 32, except that we do not need to execute 
the binary searches n times. In fact, by the definition of the log-lexicographic preferred model semantics, we need to execute 
the binary searches only O(log(n)) times, giving us a decision procedure that in total makes use of O(log(n) ·(log(optL(T )) +
log(n))) NP-oracle calls. �
Proposition 35. L-Entailment[log] is �P

2 [O(log2 n)]-complete for L ∈ {QCL,CCL,SCCL} and �P
2 -complete for L = LCL.

Proof. Membership for each L ∈ {QCL, CCL, SCCL, LCL} follows from Proposition 32. Hardness for LCL follows from 
LCL-PMContainment (cf. Table 2 and the proof of Proposition 31). We show hardness for co-L-Entailment[log] and L = QCL
by a reduction from Log

2
LexMaxSat, where we are given a classical formula F over variables X = {x1, . . . , xn} and an or-

dering x1 > . . . > xl over l = log2(n) variables. For every 1 ≤ i ≤ log(n) we construct a formula Ai such that degL(I, Ai) = k
iff I is the lexicographically k-th largest interpretation with respect to the ordering x(i−1)·log(n)+1 > · · · > xi·log(n) . Recall that 
we already know how to construct such a formula Ai from the proof of Proposition 19, and that |Ai | ∈ O(log(n) · 2log(n)) =
O(log(n) · n). Now, for every 1 ≤ i ≤ log(n), we construct Bi = ⊥�×· · · �×⊥�×Ai , where ⊥ appears (log(n) − i) · 2log(n) times 
before Ai . Observe that |Bi | ∈ O(log(n) · 2log(n) + |Ai |) = O(log(n) · n + |Ai |) for all Bi . Lastly, we construct n − log(n) − 1
formulas C j such that degL(J , C j) = 1 for all interpretations J . We can now define our L-theory

T = {F , B1, . . . , B log(n), C1, . . . , Cn−log(n)−1}.
Observe that T contains exactly n formulas. Moreover, B log(n) can be satisfied to a degree between 1 and 2log(n) , B log(n)−1

to a degree between 2log(n) + 1 and 2 · 2log(n) , and so on until finally B1 can be satisfied to a degree between (log(n) −
1) · 2log(n) + 1 and log(n) · 2log(n) . The formulas C j are always satisfied to a degree of 1 and therefore do not influence the 
log-lexicographically preferred models of T . Furthermore, the lexicographically largest model I of F with respect to the 
ordering x1 > · · · > xl satisfies B1 optimally among the models of F , and is therefore preferred in T to all models of F
that are lexicographically smaller regarding x1 > · · · > xlog(n) . I also satisfies B2 optimally among those models of F that 
satisfy B1 optimally. By extension, we can conclude that an interpretation J is a lexicographically maximal model of F with 
respect to x1 > · · · > xl if and only if J ∈ Prf log

L (T ). �
Lastly, we examine inclusion-based semantics. Here, we can not show �P

2 containment in general. Indeed, as it turns out 
L-Entailment[inc] is �P

2 -complete for all studied choice logic except PL.

Proposition 36. L-Entailment[inc] is in �P
2 and coNP-hard for every tractable choice logic L.

Proof. coNP-hardness follows from coNP-hardness of PL. It is fairly easy to see that the complementary problem of 
L-Entailment[inc] is in �P

2 : given a theory T = {A1, . . . , An} and a classical formula F , we guess an interpretation I and, 
in coNP, check whether I ∈ Prf inc

L (T ) and I �|= F . �
To show �P

2 -completeness for specific choice logics, we can make use of an already existing translation from proposi-
tional circumscription to QCL [11, Proposition 10]. In fact, this existing translation starts from prioritized circumscription. 
Our construction, however, considers unprioritized circumscription and is therefore slightly simpler. Note that entailment 
for propositional circumscription is known to be �P-complete [20].
2
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Table 3
Complexity of choice logic theories (σ ∈ {mm, lex, inc, log}).

Tract. PL QCL/CCL/SCCL LCL

L-PMChecking[σ ] in coNP in P coNP-c coNP-c

L-Entailment[mm] coNP-h/in �P
2 coNP-c �P

2 -c �P
2 -c

L-Entailment[log] coNP-h/in �P
2 coNP-c �P

2 [O(log2 n)]-c �P
2 -c

L-Entailment[lex] coNP-h/in �P
2 coNP-c �P

2 -c �P
2 -c

L-Entailment[inc] coNP-h/in �P
2 coNP-c �P

2 -c �P
2 -c

Definition 25. Let T be a classical propositional theory, F a classical formula, and (P ; R) a circumscription policy, where P
are atoms to be minimized, and R are fixed atoms with P ∩ R = ∅. A model I of T is (P ; R)-minimal for T if there is no 
other model J of T such that I ∩ R =J ∩ R and J ∩ P ⊂ I ∩ P .

CircEntailment is the decision problem where, given a classical theory T , a classical formula F , and a circumscription 
policy (P ; R), we ask whether F is true in all (P ; R)-minimal models of T .

Proposition 37. L-Entailment[inc] is �P
2 -complete for L ∈ {QCL,CCL,SCCL, LCL}.

Proof. Membership for each L ∈ {QCL,CCL,SCCL, LCL} follows from Proposition 36. We show hardness for L = QCL. Consider 
an arbitrary instance (T , F , (P ; R)) of CircEntailment. Let

T ′ = T ∪ {¬p �×p | p ∈ P } ∪ {r �×¬r,¬r �×r | r ∈ R}.
It remains to show that F is true in all (P ; R)-minimal models of T if and only if F is true in all Prf inc

L (T ′). We show this 
by proving that I is a (P ; R)-minimal model of T if and only if I ∈ Prf inc

L (T ′).
Assume I is a (P ; R)-minimal model of T . Then definitely I ∈ ModQCL(T ′), since all formulas in T ′ \ T are always 

satisfied, either to a degree of 1 or 2. Let J be any other model of T ′ . For any r ∈ R , if r ∈ I but r /∈ J , then I and J are 
incomparable with respect to the inc-semantics since degQCL(I, r �×¬r) = 1, degQCL(J , r �×¬r) = 2, degQCL(I, ¬r �×r) = 2, and 
degQCL(J , ¬r �×r) = 1. Likewise if r /∈ I but r ∈J . Thus, assume r ∈ I ⇐⇒ r ∈J for all r ∈ R . Then I ∩ P ⊆J ∩ P , since I
is (P ; R)-minimal. Therefore, for all p ∈ P , degQCL(I, ¬p �×p) ≤ degQCL(J , ¬p �×p). We can conclude that I ∈ Prf inc

QCL(T ′).
Assume I is not a (P ; R)-minimal model of T . If T is not satisfiable, then neither is T ′ , and we are done. If T is satisfi-

able, then there must be an interpretation J with J ∩ R = I ∩ R and J ∩ P ⊂ I ∩ P . By the same argument as above, for 
all p ∈ P , degQCL(J , ¬p �×p) ≤ degQCL(I, ¬p �×p). Furthermore, for at least one q ∈ P , degQCL(J , ¬q �×q) < degQCL(I, ¬q �×q). 
Thus, I /∈ Prf inc

QCL(T ′). �
Table 3 summarizes our complexity results for choice logic theories. Maybe the most interesting point here is that in 

entailment for QCL, CCL, and SCCL the complexity rises when going from minmax to (log-)lexicographic semantics. However, 
for LCL, all three problems are equally hard. Thus, the additional expressiveness of the (log-)lexicographic semantics makes 
entailment harder for choice logics with polynomially bounded optionality. For inclusion-based semantics we see an addi-
tional jump in complexity to �P

2 -completeness for all considered choice logics (except PL). We observe that there are two 
ways in which the complexity of L-Entailment[σ ] is determined: on the one hand by the choice logic (e.g. QCL vs. LCL), 
and on the other hand by the preferred model semantics (e.g. minmax vs. lexicographic vs. inclusion-based). Furthermore, 
with L-Entailment[log] (L ∈ {QCL, CCL, SCCL}) we introduced fairly natural �P

2 [O(log2 n)]-complete problems.3

6. Discussion

This section features some additional discussion on our choice logic framework. Firstly, as already pointed out, the 
framework was defined in a very general way, with little restrictions on the optionality and degree functions of choice 
connectives. Our motivation for this is that we are interested in the computational properties of choice logics, meaning 
logics in the spirit of QCL and CCL. Investigating these computational properties does not require all logics of our framework 
to be well-behaved. When investigating the framework with respect to logical properties, it could be interesting to impose 
additional restrictions. However, one needs to be careful how this is implemented. For instance, since choice connectives 
should express a preference, it might appear reasonable to require all choice connectives to be asymmetric and, given A ◦ B , 
prefer interpretations satisfying just A to those satisfying just B . The logics considered in this paper fulfill this condition. 
But this approach would exclude some interesting connectives. For example, one could interpret A ◦ B as “preferably A and 
B , but if not, then A and B are equally acceptable”.

3 We consider L-Entailment[log] to be at least as natural as the �P
2 -complete LogLexMaxSat and certainly more natural than Log

2
LexMaxSat.
21



M. Bernreiter, J. Maly and S. Woltran Artificial Intelligence 311 (2022) 103755
Moreover, we defined choice connectives as binary. In this way, our framework generalizes QCL and CCL in a straight-
forward way. Since QCL and CCL are associative, their connectives can also act as n-ary operators, expressing a choice over 
n options. Similarly, LCL allows us to encode a lexicographic ordering over n options (cf. Proposition 20), but brackets have 
to be chosen with care since the choice connective of LCL is not associative. It must be noted that not all choices over n
options can be reduced to a choice over two options, and thus to a binary choice connective.

Another aspect that needs to be highlighted is an implicit assumption of commensurability when computing option-
ality. Our framework allows for logics using several choice connectives, as exemplified via QCCL which combines ordered 
disjunction ( �×) from QCL with ordered conjunction ( ��) from CCL. For example, both the formulas a �×b and c ��d have an 
optionality of 2. Thus, it is implicitly assumed that the optionality of a �×b is commensurable to that of c ��d, i.e., that the 
two possible degrees of satisfaction in a �×b are comparable to the two possible degrees in c ��d. This is especially important 
when combining two choice connectives, e.g., in the formula (a �×b) ∧ (c ��d). However, note that this assumption is already 
made when only a single choice connective is used, since the optionalities of a �×b and c �×d are also assumed to be com-
mensurable even though they express preferences between different options. See Chang [14] for a more in-depth discussion 
of the question when and if preferences can be considered commensurable.

Lastly, we will discuss the mapping of choice logic formulas into other formalisms by the elimination of choice con-
nectives. Brewka et al. [11] shows several such transformations, including to stratified knowledge bases and propositional 
circumscription. Another example is work by Confalonieri & Nieves [17] who showed that, in the context of LPODs, ordered 
disjunction can be eliminated by transforming A �×B into A ∨ ((not A) ∧ B), where not denotes default negation. However, 
the resulting formula is not classical. Indeed, a purely syntactic yet concise transformation from A �×B into a classical for-
mula F may not be possible since it must be determined whether A is satisfiable in order to determine the actual best 
option.

7. Conclusion

We defined and investigated a general framework for choice logics that captures both QCL and CCL. Moreover, the 
framework allows us to easily define new logics as examplified via SCCL and LCL. We have shown that strong equivalence 
is interchangeable with degree-equivalence for optionality-ignoring choice logics (e.g. SCCL) and with full equivalence for 
optionality-differentiating choice logics (e.g. QCL, CCL, LCL). By definition, both degree and full equivalence require a similar 
behavior with respect to a finite number of models, while strong equivalence requires a similar behavior with respect to 
infinitely many formulas. Therefore, our characterization results provide an important tool for checking strong equivalence 
in practice.

Moreover, the computational complexity of tractable choice logics was investigated in detail. Here the complexity of 
L-PMContainment turned out to be of particular interest, as it depends on the expressiveness of the considered choice 
logic. Finally, for choice logic theories, we observed that the interaction between the expressiveness of the choice logic and 
the complexity of the preferred model semantics determines the complexity of entailment.

An initial definition of our framework and some further results regarding choice logics can be found in the master 
thesis of the first author [6]. This includes another choice logic not considered here called Exclusive Disjunctive Choice 
Logic (XCL), which is equipped to deal with preferences over mutually exclusive options. Moreover, encodings in Answer 
Set Programming that allow specifying and experimenting with new choice logics in a straightforward fashion have been 
provided by the authors [7].

Regarding future work, new choice logics may be defined explicitly with concrete use cases in mind. Furthermore, some 
properties of our framework have yet to be investigated. This includes a characterization of associativity and general con-
cepts towards normal forms (as examined for QCL and CCL by Brewka et al. [11] and Boudjelida & Benferhat [10]). Moreover, 
it could be studied in more detail how preferred model entailment for choice logics can fit into the framework of Kraus 
et al. [27] (examined for QCL by Brewka et al. [11] and to some extent in this paper in Section 5.1). An additional possibility 
for future work is to further restrict the semantics of choice connectives to ensure desirable behavior, and to extend our 
framework to allow n-ary choice connectives (cf. Section 6). Lastly, the complexity of checking for strong equivalence for 
choice logics that are neither optionality-ignoring nor optionality-differentiating remains open.
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