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Abstract: Fractional calculus has gained a lot of attention in the last couple of years. Researchers
have discovered that processes in various fields follow fractional dynamics rather than ordinary
integer-ordered dynamics, meaning that the corresponding differential equations feature non-integer
valued derivatives. There are several arguments for why this is the case, one of which is that fractional
derivatives inherit spatiotemporal memory and/or the ability to express complex naturally occurring
phenomena. Another popular topic nowadays is machine learning, i.e., learning behavior and
patterns from historical data. In our ever-changing world with ever-increasing amounts of data,
machine learning is a powerful tool for data analysis, problem-solving, modeling, and prediction. It
has provided many further insights and discoveries in various scientific disciplines. As these two
modern-day topics hold a lot of potential for combined approaches in terms of describing complex
dynamics, this article review combines approaches from fractional derivatives and machine learning
from the past, puts them into context, and thus provides a list of possible combined approaches and
the corresponding techniques. Note, however, that this article does not deal with neural networks,
as there is already extensive literature on neural networks and fractional calculus. We sorted past
combined approaches from the literature into three categories, i.e., preprocessing, machine learning
and fractional dynamics, and optimization. The contributions of fractional derivatives to machine
learning are manifold as they provide powerful preprocessing and feature augmentation techniques,
can improve physically informed machine learning, and are capable of improving hyperparameter
optimization. Thus, this article serves to motivate researchers dealing with data-based problems, to
be specific machine learning practitioners, to adopt new tools, and enhance their existing approaches.

Keywords: fractional derivative; fractional calculus; machine learning; artificial intelligence;
complexity; regression analysis

1. Introduction

Machine learning and fractional calculus are tools capable of dealing with and describ-
ing complex real-life phenomena and its relation to its inherent nonlinear properties.

Whereas machine learning dynamically learns complex behavior from data in most
cases, the framework of fractional calculus was previously used to describe complex
phenomena by statically modeling them. The issue of a fractional derivative first came up
in a letter from de l’Hopital to Leibniz in 1695, i.e., what one would obtain from a derivative
of non-integer order n, e.g., n = 1

2 . Leibniz’s famous response to this day was: “It will lead
to a paradox from which one day useful consequences will be drawn” [1].

Nowadays, both frameworks feature a multitude of applications in various disciplines.
The applications of fractional calculus range from physics, wherein one can describe

anomalous diffusion in complex liquids or frequency-dependent acoustic wave propa-
gation, to, e.g., image processing, where one can use fractional derivatives as filters or
to enhance images [2]. Another area of research in which fractional calculus is used to
describe various phenomena is that of the environmental sciences. Here, fractional cal-
culus is applied to interpret hydrological cycles or analyze underground water chemical
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reactions [2,3]. As discussed by Du et al. [4], fractional calculus introduces memory into
modeling processes, which in turn is required for specific approaches in, e.g., biology or
psychology. Thus, the researchers suggested interpreting the fractional order of a process
as a degree of memory of this process [4].

This article aimed to find overlaps between machine learning and fractional calculus,
specifically fractional derivatives. Furthermore, we sought to discuss these overlaps or
combined applications and put them into a bigger context and finally, give some recom-
mendations on using fractional derivatives to enhance machine learning approaches. At
this point, we need to clarify that, when employing the popular term machine learning
and narrowing down the scope of this article, we only talk about supervised non-neural-
network machine learning applications. The reason for not including neural networks is
that there already is an excellent article on the combined approaches of neural networks and
fractional calculus. Thus, we are not going to discuss this topic again but instead, refer the
reader to the article by Viera et al. [5]. Still, we want to highlight two articles from this review
to motivate the topic. Khan et al. [6], presented a fractional backpropagation algorithm for
training neural networks. Furthermore, the work in Ref. [7] showed the applicability of a
particle swarm optimization algorithm with a fractional order neural network.

We also want to clarify that the scope of this article is to provide additional tools from
fractional calculus to the experienced machine learning practitioner rather than introducing
people familiar with fractional calculus to the realm of machine learning. Thus, the outcome
of this article is a focused list of possible combined applications of machine learning and
fractional derivatives and, based on the discussed literature, a discussion on the context of
the combination of these two tools as well as recommendations for future research.

This article is structured as follows:
Section 2 describes how this review was performed, the employed search, and the

exclusion criteria. Section 3 briefly introduces fractional calculus and describes the different
types of fractional derivatives. Section 4 introduces supervised machine learning. Then,
we present the results of our literature review in Section 5. We discuss our findings and
put them into context in Section 6 and conclude this article in Section 7. We further added
Appendix A, which provides a table containing all reviewed articles.

2. Methodology

For this review, we performed an online search on (google scholar) https://scholar.
google.com/. We searched for the keywords listed in the following list:

• Machine learning fractional calculus
• Machine learning fractional derivatives
• Support vector fractional calculus
• Support vector fractional derivatives
• Decision tree fractional calculus
• Decision tree fractional derivative
• Random forest fractional calculus
• Random forest fractional derivative
• XGBoost fractional calculus
• XGBoost fractional derivative

• Regression fractional calculus
• Regression fractional derivative
• Ridge regression fractional calculus
• Ridge regression fractional derivative
• Lasso regression fractional calculus
• Lasso regression fractional derivative
• Logistic regression fractional calculus
• Logistic regression fractional derivative
• Naive Bayes fractional calculus
• Naive Bayes fractional derivative

• KNN fractional calculus
• KNN fractional derivative
• Nearest neighbor fractional calculus
• Nearest neighbor fractional derivative
• LightGBM fractional calculus
• LightGBM fractional derivative
• Extreme learning fractional calculus
• Extreme learning fractional derivative
• Extreme boosting fractional calculus
• Extreme boosting fractional derivative

We acknowledge that this list is incomplete; further, it can never be a complete list.
This is because of the somewhat recently popularized blurry use of the term machine
learning and lingo and the ever-changing landscape of new algorithms and ideas in the
field. Here, we want to refer to two homepages [8,9], which are both glossaries that keep
up with the fast-changing machine learning terminology. Thus, the previous list contains
popular machine learning algorithms, prevalent machine learning, and fractional calculus
keywords, and occasionally some more niche keywords, which are included because of the
authors’ domain knowledge.

Furthermore, the authors added some articles that did not appear in the mentioned
search queries but were deemed to be a relevant addition to this article based on the authors’
domain knowledge.

https://scholar.google.com/
https://scholar.google.com/
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As we usually found articles fitting our exclusion criteria within the first ten results,
we prioritized our search and analysis to the first 20 results for each search query.

As already mentioned, we employed a range of exclusion criteria to keep this review
focused and to reduce the number of featured articles. Thus, we used the following exclu-
sion criteria:

• We excluded articles primarily targeting and/or only targeting neural networks.
This was done because there already exists an excellent review of neural networks
and fractional calculus [5]. Nonetheless, we will peripherally mention neural network
applications or feature articles that include neural networks along with other machine
learning algorithms.

• We excluded articles dealing with control problems.
This criterion was employed to keep this review focused, as including control prob-
lems would have unnecessarily blown up the discussed methodology and made it
harder to identify key takeaways for hybrid applications of fractional calculus and
machine learning.

• We discarded everything related to grey models.
Grey models do not coincide with the classic supervised learning approaches we are
looking for in this review.

• We excluded publications that dealt with fractional integrals rather than with fractional
derivatives.

• We excluded publications that featured fractional complexity measures, e.g., fractional
entropy measures.
Nonetheless, we briefly mention them in our discussion if they provide valuable
insights into hybrid applications.

• We excluded unsupervised and reinforcement learning approaches.
Thus, we are only dealing with supervised learning.

3. Fractional Derivatives

Fractional derivatives are a generalization of integer-ordered derivatives such that
they allow for derivatives of the order of n = 1

2 instead of only integer-valued derivatives,
i.e., n = 1, 2, 3, . . . .

Contrary to integer order derivatives, they do not behave locally, i.e., the fractional
derivative of a function f (t) depends on all values of the same function, thus inducing
memory about every point of a signal into the derivative.

Furthermore, there are many ways to define a fractional derivative; thus, many re-
searchers proposed their version of the fractional derivative, sometimes explicitly tailored
to match a particular problem/application. To further illustrate this idea and to give the
reader a grasp on the multitude of possible fractional derivatives, we give the list from
https://en.wikipedia.org/wiki/Fractional_calculus (Wikipedia) [10]: the listed fractional
derivatives are the Grünwald–Letnikov derivative, the Sonin–Letnikov derivative, the Liou-
ville derivative, the Caputo derivative, the Hadamard derivative, the Marchaud derivative,
the Riesz derivative, the Miller–Ross derivative, the Weyl derivative, the Erdélyi–Kober
derivative, the Coimbra derivative, the Katugampola derivative, the Hilfer derivative,
the Davidson derivative, the Chen derivative, the Caputo-Fabrizio derivative, and the
Atangana–Baleanu derivative.

Because of this arbitrariness of choosing a fractional derivative, we stick to those
fractional derivatives relevant in our literature review, briefly explain them, and refer-
ence sources for a discussion on them. Thus, the discussed fractional derivatives are the
Grünwald–Letnikov, the Reisz, the Caputo, and the Riemann–Liouville fractional derivatives.
Furthermore, we need to differentiate between left- and right-sided derivatives for many of
these fractional derivatives. The following list is based on the reviews by de Oliveira et al.
and Aslan [11,12], which we refer the reader to for an in-depth discussion of the topic. Fur-
thermore, for a discussion on the discrete version of the fractional derivatives, we refer

https://en.wikipedia.org/wiki/Fractional_calculus
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to [13,14]. The featured applications combining fractional derivatives and machine learning
use the following list of fractional derivatives:

• The Grünwald–Letnikov fractional derivative

left-sided: D[ f (x)]αa+ = lim
h→0

1
hα

bnc

∑
k=0

(−1)k Γ(α + 1) f (x− kh)
Γ(k + 1)Γ(α− k + 1)

, nh = x− a

right-sided: D[ f (x)]αb− = lim
h→0

1
hα

bnc

∑
k=0

(−1)k Γ(α + 1) f (x− kh)
Γ(k + 1)Γ(α− k + 1)

, nh = b− x

(1)

• The Caputo Fractional Derivative

left-sided: Dα
a+ [ f (x)] =

1
Γ(n− α)

∫ x

a
(x− ζ)n−α−1 dn

dζn [ f (ζ)]dζ, x ≥ a

right-sided: Dα
b− [ f (x)] =

1
Γ(n− α)

∫ b

x
(x− ζ)n−α−1 dn

dζn [ f (ζ)]dζ, x ≤ b
(2)

• The Riemann–Liouville fractional derivative

left-sided: Dα
a+ [ f (x)] =

1
Γ(n− α)

dn

dxn

∫ x

a
(x− ζ)n−α−1 f (ζ)dζ, x ≥ a

right-sided: Dα
b− [ f (x)] =

1
Γ(n− α)

dn

dxn

∫ b

x
(x− ζ)n−α−1 f (ζ)dζ, x ≤ b

(3)

• The Riesz Fractional Derivative

Dα
x[ f (x)] = − 1

2 cos
(

απ
2
) 1

Γ(α)
dn

dxn

(∫ x

−∞
(x− ζ)n−α−1 f (ζ)dζ +

∫ ∞

x
(ζ − x)n−α−1 f (ζ)dζ

)
(4)

Remark 1.

• α denotes the order of the fractional derivative. Whereas α ∈ C : R ∈ (n− 1, n], n ∈ N.
Thus, n defines the integer proximity of α. R(·) denotes the real part of a complex number.
Furthermore, as defined here, alpha can be complex. However, every single reviewed article (see
Appendix A for the summary table) featuring a combined application of fractional derivatives
and machine learning uses a real or at least rational value for α.

• n− 1 and n as n− 1 ≤ R(α) < n.
• [a, b] is a finite interval in R and k ∈ N. Furthermore, f (0) ≡ f (0+)− f (0−).
• ζ is an auxiliary variable used for integration.
• Γ(·) is the gamma function [15].
• b·c denotes the floor function, i.e., bxcmax{z ∈ Z : z ≤ x}
• The previously mentioned "memory" is induced by the summation over k in the case of

the Grünwald–Letnikov derivative and by the integration over ζ for the other mentioned
derivatives.

4. Supervised Machine Learning

Supervised machine learning is the practice of using a set of input variables, such as
blood metabolite, gene expression, or environmental conditions, to predict a quantitative
output, such as diseases in humans or crop yields [16]. Thus, aiming to categorize data
from prior information via an algorithm trained from labeled data [17,18].

There are numerous supervised learning algorithms, such as linear regression, support
vector machines, decision trees, and random forests, to name a few.

One can further partition supervised machine learning into classification and regres-
sion tasks. In classification tasks, the algorithm predicts categorical variables such as types
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of diseases. In contrast, in regression, the algorithm predicts continuous numerical outputs
such as wheat yields in, e.g., Hg/Ha.

We will not further discuss supervised learning for several reasons. First, this review
aimed to educate machine learning practitioners about the possible applications of frac-
tional derivatives, thus assuming that the reader is somehow familiar with supervised
learning. Second, supervised learning and machine learning, in general, constitute a popu-
lar multidisciplinary area of research nowadays. Therefore, it suffers from a fast-changing
and ever-increasing landscape of algorithms, terminology, and approaches. Third, there is
a vast amount of literature and tutorials available that we cannot cover here. Nonetheless,
we want to recommend the books by Jason Brownlee for a tutorial-heavy introduction to
the topic [19–21].

5. Results: Combined Approaches of Fractional Derivatives and Machine Learning

Given the previously defined methodology (Section 2), we found 60 relevant publica-
tions. We then separated this list of publications in this section into three main categories on
how to combine machine learning and fractional derivatives, i.e., preprocessing, machine
learning and fractional modeling and optimization. In the following, we will elaborate on
these categories separately and further divide them into subcategories wherever necessary.

5.1. Preprocessing

In this section, we discuss the applications of fractional derivatives for data prepro-
cessing in machine learning applications. Part of this discussion is data pre-treatment in
general, additional features based on fractional derivatives, and feature extraction based
on fractional derivatives. These ideas, though distinct, often overlap, especially when
discussing additional features and feature extraction. All these techniques have in common
that they are applied before the actual machine learning, e.g., the training process. Thus,
we named this Section preprocessing.

We sort relevant publications by their type of application, e.g., fractional derivatives
used for preprocessing in spectroscopy. In this process, we focus on three categories of
applications, i.e., spectroscopy, biomedical and engineering applications.

5.1.1. Spectroscopy

An important area of research for the combined approaches of fractional derivatives
and machine learning is spectroscopy. Here, fractional derivatives are used as a prepro-
cessing step to enhance the spectral data and thus, improve the accuracy of the machine
learning algorithm. We can again differ between two main categories, i.e., visual and
near-infrared (Vis-NIR) spectroscopy and hyperspectral analysis.

Regarding visual and near-infrared spectroscopy, we find a range of agricultural appli-
cations. In [22], the researchers estimate organic matter content in arid soil from Vis-NIR
spectral data. Here, the Grünwald–Letnikov fractional derivative is used as a pretreatment for
the spectral data, i.e., the fractional derivative is applied to the obtained spectral data to
improve the accuracy of the employed machine learning algorithms, random forest, and
partial least squares regression. Similar to this approach is the approach in [23], where
fractional derivatives are again used as a pretreatment to augment the Vis-NIR data to
estimate the soil organic content. Here, additionally to the previously used algorithms, the
researchers also used memory-based learning.

The same idea, i.e., to augment Vis-NIR data using the G-L derivative to improve
machine learning estimates, is used in both [24,25] to estimate the nitrogen content of rubber
tree cultivations and in [26] for cotton farming. The employed machine learning algorithms
range from partial least squares regression, extreme learning machines, convolutional
neural networks, and support vector machines.

For another application in agriculture, Bhadra et al. employed the Grünwald–Letnikov
fractional derivative to augment Vis-NIR data to quantify the leaf chlorophyll in sorghum
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using various machine learning algorithms such as, again, partial least squares regression,
random forest, support vector machines, and extreme learning machines [27].

Urbanization and industrialization are putting a lot of stress on the environment and
further polluting agricultural land with, e.g., various metals. Here [28–30] provided ideas
to identify zinc lead and other heavy metals from Vis-NIR spectra by, again, employing
data augmentation based on the Grünwald–Letnikov fractional derivative to improve the
accuracy of machine learning algorithms such as random forest, XGBoost, extreme learning
machines, support vector machines, and partial least squares regression.

Finally, the Grünwald–Letnikov fractional derivative is also used to improve the
discussed Vis-NIR data to improve the estimation of soil salinity, soil salt, and other water-
soluble ions in [31,32]. Here, again, the researchers used the Grünwald–Letnikov fractional
derivative to augment the spectral data and/or obtain spectral indices. Again, various ML
algorithms were employed, such as partial least squares regression, random forests, and
extreme learning machines.

When it comes to hyperspectral data, we find similar approaches to the discussed
Vis-NIR spectral applications, i.e., the spectral data were preprocessed using the Grünwald–
Letnikov fractional derivative and afterward a measured observable such as, e.g., soil
organic matter is predicted using a machine learning algorithm such as, e.g., partial least
squares regression [33]. In [34], estimates on top soil organic carbon were given using a
Grünwald–Letnikov fractional derivative and random forest.

Furthermore, the (soil) salt content can be estimated using hyperspectral data and a
range of ML algorithms, as performed in [31,35,36]. Another agricultural application is to
assess the nitrogen content in apple tree canopies via support vector machines, random
forest algorithms, and fractional-derivative-augmented hyperspectral data [37].

Cheng et al. predicted the photosynthetic pigments in apple leaves using fractional
derivatives to augment the data and range of machine learning algorithms, i.e., support
vector machines, k-nearest neighbor, random forest, and neural networks [38]. In [39], it is
shown that a similar approach using a different algorithm, XGBoost, can be used to estimate
the moisture content of agricultural soil. Furthermore, in [40], XGBoost, LightGBM, random
forests, and other algorithms were used to predict the soil electrical conductivity from
hyperspectral data using fractional-derivative-augmented data. Although related, but not
necessarily an agricultural application, the use of augmented hyperspectral data to estimate
the clay content in desert soils using partial least squares regression was discussed in [41].

Furthermore, these ideas of using fractional derivatives to preprocess hyperspectral
data to improve ML approaches are not restricted to only using the remotely sensed data of
soils. These ideas were applied to water in both [42,43]. In [42], fractional derivatives were
used to improve the prediction of total nitrogen in water using XGBoost and random forest,
whereas in [43], a similar approach was used for estimating the total suspended matter in
water using random forest.

5.1.2. Biomedical Applications

We also find various applications when it comes to the biomedical applications of
fractional derivatives combined with ML.

Starting with the classification of EEG signals, we find three publications that com-
bine machine learning and fractional derivatives. Ref. [44] proposed to the classification
of electroencephalography (EEG) signals into ictal and seizure-free signals by employing a
fractional linear prediction from a fractional order system to model the signals, and/or parts
of the signal, and to then use the thus-obtained parameters as features for a support vector
machine classification approach. Similar to this is the approach taken by AAruni et al. [45],
wherein EEG signals were modeled using the transfer function of a fractional order system.
In contrast to the previous publication, the researchers used the error and signal energy as
features for support vector machines to differentiate between ictal and seizure-free signals.
The third publication dealing with this subject, i.e., modeling EEG signals using fractional
transfer functions and classifying between different categories of EEG signals, e.g., seizure
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and seizure-free, is [46]. Here, similarly to the two previously referenced publications, the
fractional modeling transfer function was used to obtain the error and signal energy to be
fed into a k-nearest neighbor classifier.

Furthermore, similar approaches can be used to analyze electrocardiography (ECG)
signals. Again, in [47], a fractional order transfer function was applied to the QRS complex
signal (from ECG measurements) to obtain six parameters which are then fed into a k-
nearest neighbor classifier for person identification. Ref. [48] described an approach to do
the same to obtain five parameters from a QRS complex signal to differentiate between
healthy and three types of arrhythmic signals using a k-nearest neighbor classifier.

Given the results shown in [49], one can use the same approach, e.g., fractional transfer
functions in combination with a k-nearest neighbor classifier, to analyze the respiratory
properties of humans. In this process, three model parameters are used as features to
classify respiratory diseases.

In [50], the researchers used the Grünwald–Letnikov fractional derivative to preprocess
online handwriting data. Afterward, these preprocessed data were fed into a support
vector machine and random forest algorithms to detect/classify Parkinson’s disease from a
person’s handwriting.

In contrast to all previously listed publications in this section, in [51], a discrete
fractional mask was used to preprocess the CT images and to improve the identification
of tumors using support vector machines, random forest, J48, and simple cart machine
learning models.

5.1.3. Engineering

Apart from the two previously discussed categories, we found three publications
that did not fit into spectroscopical or biomedical applications. Instead, we consider these
publications to be engineering approaches.

In [52], the researchers used histogram peak distributions and the Grünwald–Letnikov
fractional derivative to preprocess the images of solar panels to then identify defective
solder joints via extreme learning machines.

Ref. [53] used the Reisz fractional derivative to preprocess spectral data obtained
from a fiber Bragg grating sensor. Afterwards, these data were fed into three machine
learning algorithms, i.e., random forest, linear regression, decision trees, and a multi-layer
perceptron, to detect the temperature peaks on solar panels from the FBG spectrum.

In [54], the researchers identified construction equipment activity from image/video
data using a combination of a fractional derivative and a range of machine learning algo-
rithms. The employed machine learning algorithms were random forest, neural networks
(a multi-layer perceptron), and support vector machines. The fractional derivative em-
ployed was the Riemann–Liouville fractional derivative, and it was used to preprocess the
images, which were fed into the algorithms at a later step.

5.2. Machine Learning and Fractional Dynamics

In this section, we discuss publications where fractional dynamics and the corre-
sponding modeling via fractional differential equations has been used in combination with
machine learning. There are several ways to do this, e.g., fractional modeling and after
employing machine learning for a regression or classification using features obtained from
the modeling approach or using machine learning to improve the identification of fractional
models/equations from data.

Although the publications by [44–49] have already been categorized as preprocessing,
they also serve as a hybrid machine learning and fractional dynamics approach. Specifically,
as the authors employed the transfer function from a fractional order model, first a a signal
was modeled to obtain the functions parameters or the corresponding error and signal
energy of the model as features for classification.

When identifying the correct transfer function and the underlying dynamics, i.e.,
with the corresponding fractional differential operators, we found an excellent exemplary
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application in [55]. Here, the employed machine learning technique was a Gaussian process
regression, whereas the unknown equation parameters are treated as the hyperparameters
of a physics-informed Gaussian process kernel. This framework was used to identify a
linear space-fractional differential equations from data and its applicability is shown for
stock market data, e.g., S&P 500 stock data.

In [56], similar ideas were employed to model general damping systems. Here, k-
means was employed to first differ between viscous and hysteretic damping. Next, the
viscous damping dynamics were recovered using a linear regression approach, and after-
wards, the hysteretic damping was identified using a sparse regression approach. This
framework also allows for fractional-order models, and its applicability was shown for,
e.g., a fractional-order viscoelastic damper.

We further found an application for machine learning to identify fractional-order
population growth models from data, as performed in [57]. The researchers developed a
least squares support vector machine with an orthogonal kernel for simulating this equation.
This orthogonal kernel consists of fractional rational Legendre functions.

In [58], the researchers employed ridge regression as a numerical boundary treatment
for the fractional KdV-Burgers equation. Another application for identifying fractional
models was given by [59], where the researchers used a Gaussian process regression to
identify a fractional chaotic model in finance from data. Furthermore, as the extrapolation
of the thus-identified model does not perform well, the researchers suggested employing a
neural network to improve prediction accuracy.

In [60], both a fractional order model and a first-order resistor–capacitor model were
employed to describe the electrical behavior of battery cells with external short circuit
faults. Afterwards, a random forest classifier was fed with features from the so-obtained
fractional order model to classify whether a battery cell incurs leakage.

5.3. Optimization

In this section, we differ between derivative-free and gradient-based methods within
the optimization context. This is also to say that the derivative-free algorithms, e.g.,
particle swarm algorithms, still employ fractional derivatives in the form of, e.g., fractional
velocities. The featured derivative-free algorithms include bio-inspired algorithms such as,
e.g., the fractional bee colony algorithm and the fractional particle swarm algorithm.

5.3.1. Fractional Gradient-Based Optimization

When discussing the optimization, the first big topic is gradient-based algorithms.
Here, the basic idea is to alter the gradient-based approach by switching to a fractional
gradient. One benefit of doing so is that these algorithms do not fall into the trap of
the local minimum problem as much as regular gradient-based algorithms (find a good
citation here).

Regarding the actual applications where fractional derivatives are used for optimiza-
tion in combination with machine learning algorithms, we find a range of fractional gradient
descent applications. We want to point out that all the discussed combined approaches
employ the Caputo-fractional derivative but use different algorithms and datasets. In [61],
the researchers used ridge regression in combination with fractional gradient descent on
the testing environment and datasets provided by [62]. The same testing environment
is used in [63]. However, in this publication, the researchers used logistic regression in-
stead of ridge regression. In both cases, the researchers reported improvements to basic
(non-fractional) implementations.

Two more applications of fractional gradient descent are found in [64,65]. In these
publications, the researchers combined fractional gradient descent with support vector
machines for two classic datasets, i.e., the Iris and the Rainfall datasets.

Contrary to the previous modeling approaches are the ideas presented in [66]; here, a
multilinear regression is modified using a fractional derivative based on the input features
to the linear regression. Thus, obtaining the derivative and, consequently, the fractional
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derivative from the minimum of the slope means setting it to zero. This idea is used to
predict the gross domestic product in Romania. It is shown that models not considering frac-
tional derivatives can be outperformed using the presented concepts. Awadalla et al. [67]
presented a similar approach where the same idea is used for fractional linear and fractional
squared regression, i.e., the derivatives to derive the minimum are fractionalized. This
approach also shows the applicability of the proposed ideas to standard datasets.

5.3.2. Fractional Gradient-Free Optimization

Particle swarm optimization algorithms are some of the most popular gradient-free
optimization techniques. In this section, we further differed between regular and Dar-
winian particle swarm algorithms. All particle swarm algorithms feature a velocity compo-
nent, which is an attempt to make the algorithms fractional, is changed to a non-integer
derivative-based velocity [68].

Apart from gradient-based algorithms, we find a range of bio-inspired gradient-free
algorithms. The following discussion includes a fractional particle swarm, fractional
Darwinian particle swarm, and fractional bee colony algorithms.

We are starting with the work of Chou et al. [69], which presents a fractional order
particle swarm optimization to improve the classification of heart diseases via an XGBoost
classifier. Furthermore [70] presented an improved fractional particle swarm optimization
algorithm and shows its applicability to optimize support vector machine and K-Means
algorithms. As used in the same domain, the researchers used a dataset where the task is to
classify heart diseases.

An extension on the regular particle swarm optimization is the Darwinian particle swarm
optimization algorithm, introduced in 2005 by Tillet et al. [71]. Couceiro et al. [72] introduced a
fractional version of this algorithm. Ghamisi et al. later used these ideas in combination with
random forest for classifying spectral images [73]. It is used in [74] again for spectral images,
i.e., for the multilevel segmentation of spectral images later to be processed by support
vector machines. Of course, we could also list these tasks in preprocessing, but since particle
swarm is a classical optimization technique, we decided to use them in this category, i.e.,
optimization. Another application is discussed by Wang et al. in [75], where the researchers
used a fractional Darwinian particle swarm optimization algorithm to optimize the feature
selection for extreme learning machines. Another example to use an optimization procedure
for preprocessing is found in [76], where the researchers used a fractional order Darwinian
particle swarm algorithm to delineate cancer lesions. In a later step, these CT scan images
are classified using decision trees. In both [77,78], the fractional-order Darwinian particle
swarm is employed to segment MRI brain scans, which are then analyzed for strokes
using random forest and support vector machines. Two further biomedical applications
for fractional order Darwinian particle swarm are found in [79,80]. In both publications,
the researchers used the discussed optimization algorithm to segment medical images, i.e.,
for detecting brain tumors and foot ulcers, respectively. Both publications then employ a
supervised ML algorithm for classification, whereas the former uses Naive Bayes and a
tree classifier, and the latter a fuzzy c-means classifier.

A different approach for optimizing machine learning approaches was taken in [81],
where the researchers predicted the water quality using a fractional order artificial bee
colony algorithm and decision trees. Another example for combining fractional order
artificial bee colony algorithms and ML is given in [82] for predicting the nonperforming
loans using a nonlinear regression model.

6. Discussion

Here, we summarize and discuss the performed literature analysis. We found a total
of 60 publications that fit the criteria defined in Section 2. In the previous section, we sepa-
rated all publications into three categories, i.e., preprocessing (Section 5.1), optimization
(Section 5.3), and machine learning and fractional dynamics. We further sub-sectioned pre-
processing and optimization because we found a variety of publications targeting similar
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problems in each of those categories. For preprocessing, we found three prominent types of
applications, i.e., spectroscopy, biomedical and engineering applications. Contrary to that,
we sorted all publications fitting into optimization into two categories. In contrast to pre-
processing, we did not choose the categories with respect to the application but regarding
the employed technique, whether it was a classic but then fractionalized gradient-based
optimization technique or a gradient-free method.

A table containing all publications from Section 5 is given in Appendix A.

6.1. Preprocessing

The results for preprocessing show that a majority of the analyzed publications fall
into the realm of spectroscopy. Here, researchers employed fractional derivatives to alter
spectral data at hand to improve the machine learning algorithm’s accuracy. Overall, all
of these approaches have in common that there is one or more good orders of fractional
derivatives that enhance the data-based learning approach. We want to highlight that
tree-based classifiers, e.g., random forest and XGBoost, are very common and perform well
for these applications. We want to point out that Ref. [42] used fractional derivatives to
preprocess hyperspectral data, which are then used to estimate the total nitrogen content in
water via different machine learning algorithms, e.g., random forest.

Regarding biomedical applications, we find that here, similarly to preprocessing
spectral data, researchers used fractional derivatives to preprocess their medical images, as
done in [51] for CT images. Another example is to preprocess EEG or ECG signals, used to
classify diseases or malfunctions as done in [46,48].

When it comes to engineering applications, we again found similar ideas, e.g., prepro-
cessing images and spectral data to identify the malfunctions of solar panels or detect the
status of construction equipment as performed in [53,54].

Overall, fractional derivatives can improve the accuracy of machine learning algo-
rithms when employed for preprocessing signals, images, or spectral data. Furthermore,
we find that there is a sweet spot, i.e., one or more orders of fractional derivatives that can
significantly improve the accuracy of the employed algorithm. We further want to point out
that, although fractional order preprocessing enhances the accuracy of machine learning
applications, it also introduces a new hyperparameter, the order of the fractional derivative.
Thus, it does not simplify the task at hand but instead provides a slight increase in accuracy
at the cost of optimizing another hyperparameter.

Furthermore, we found that every application in which an actual fractional derivative
was used for preprocessing involved the Grünwald–Letnikov fractional derivative.

Furthermore, we considered both data manipulation and feature extraction as prepro-
cessing. Here, one can differ between manipulating the original data using a fractional
derivative (e.g., [42]) and extracting features, i.e., error energy and parameters from the
original data (e.g., [48]).

The authors believed that the preprocessing step using fractional derivatives is es-
pecially useful for non-neural network machine learning algorithms. The reason for this
is that, given a deep neural network, the shallow layers of a neural network can make
preprocessing obsolete as a neural network is capable of learning a huge variety of data
manipulations. Thus, we suggest future research to test this hypothesis. Specifically,
one needs to test whether a neural network can perform any preprocessing based on
fractional derivatives.

Finally, an addition noteworthy to this discussion on fractional derivatives and pre-
processing is the fractional measures of (signal) complexity, which can be used as a pre-
processing step for machine learning applications. This is performed in [83], in which
the researchers employed a fractional entropy measure to improve the fault detection for
train doors.
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6.2. Machine Learning and Fractional Dynamics

Regarding possible combinations of fractional dynamics and machine learning, we
find that machine learning can be used to identify fractional order behavior from data, as
performed in [55] or [59]. Overall, this is the category where we found the least amount of
publications. This might be due to the fact that the fractional order modeling of dynamics
requires profound knowledge in both mathematics and machine learning. Furthermore, we
want to emphasize this category for its potential in the future. We suggest that researchers
use, e.g., fractional orthogonal kernels in kernel-based machine learning algorithms as, e.g.,
support vector machines or Gaussian process regression to model systems from data [84].

6.3. Optimization

Regarding optimization, we split our review into the two main sections, i.e., gradient-
based and gradient-free methods. The gradient-based optimization techniques feature
gradient descent approaches where the integer-order gradient is replaced with a fractional-
order gradient. For the gradient-free techniques, the idea is to replace, e.g., the velocity of a
particle swarm algorithm with a fractional velocity.

Here, we want to point out two exemplary applications by Hapsari et al. [64,65] on well-
known test-datasets, i.e., the Iris and the rainfall dataset, for the gradient-based optimization
of machine learning algorithms.

For the gradient-free optimization algorithms, we highlight the work performed by
Li et al. [70], where the researchers present an improved fractional particle swarm opti-
mization algorithm to improve a support vector machine and k-means-based classification
of heart diseases.

6.4. Bringing It All Together

This review’s motivation and the initial assumption is that combined approaches of
fractional derivatives and machine learning improve machine learning tasks. We identified
a total of three categories from the literature within our frame of keywords and criteria.
The applications include processing, optimizing, and modeling fractional dynamics via
machine learning. We discussed all of our findings in the previous sections. This section,
however, brings all our results together and puts them into a bigger context. Here, we
are taking into account the findings of the work of Niu et al. from 2021 [85], where the
researchers proposed a triangle consisting of machine learning, fractional calculus, and
the renormalization group. We depicted this triangle in Figure 1. The triangle suggests
overlaps and further shows where potential combined approaches of machine learning
and fractional calculus can be beneficial. Furthermore, we consider this triangle a closed
loop; thus, future research might employ all of the mentioned tools, i.e., machine learning,
fractional calculus, and the renormalization group, to tackle complex problems and describe
complex systems. Thus, we describe our findings in this context and consider the results
of another article by Niu et al. [86], entitled “Why Do Big Data and Machine Learning Entail
the Fractional Dynamics?” in which the researchers further discuss ideas on the overlap
between machine learning and fractional calculus, specifically for big data.

The following paragraphs discuss the overlaps shown by Niu et al., as depicted in
Figure 1, compare them to the results of our literature review, and further provide evidence
for a link between fractional calculus, machine learning, and the renormalization group.
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Figure 1. The triangle of machine learning, fractional calculus and the renormalization group as
introduced by [85]. The current article focuses on the connection between machine learning and
fractional calculus, i.e., the red double-arrow connecting the two blue boxes. This triangle is taken
from [85], but we adapted it to better fit this review.

6.4.1. Optimization

We start by discussing the most obvious of the mentioned overlaps/connections, i.e.,
optimization. Fractional derivatives and, subsequently, fractional calculus is a powerful
framework that can enhance optimization tasks, as fractionalized optimization algorithms
are less prone to getting stuck in local minima/optima [87]. Thus, it is an upgrade to
standard integer-derivative-based optimization tools for optimizing machine learning
models’ hyperparameters. These optimization tools are also valuable for preprocessing.
Here, we want to mention [77,78], these are exemplary applications in which this is used to
segment MRI brain scans, later to be applied as an input for a machine learning algorithm
to detect strokes.

6.4.2. Variability

Given the results of our literature review, we can link several publications and the
corresponding approaches to data variability, thus, providing evidence that fractional
calculus and machine learning combined are tools capable of dealing with variability
in data.

In [22], for example, the researchers employed fractional derivatives to preprocess
Vis-NIR spectral data later to be used in a machine learning task to estimate organic
matter content in arid soil. Similar preprocessing approaches are collected in Section 5.1.1.
Thus, all of these articles deal with the spatial variability of the obtained spectral data.
Furthermore, we can interpret these approaches as coping with climate variability as well,
as they take into account or describe the components and interactions of the corresponding
climate system.

We also find several publications where fractional derivatives and machine learning
can deal with heart rate variability. This means that, in both [47,48], the researchers are
using ideas related to fractional derivatives to, e.g., classify arrhythmic ECG signal. This
also refers to human variability in general. We also refer to the work by Mucha et al. [50],
where the researchers classify Parkinson’s disease based on online handwriting data, which
were preprocessed using fractional derivatives.

According to the work of Niu et al. [86], variability is the central aspect of big data
where employing fractional calculus and machine learning can be beneficial. Thus, we
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recommend considering approaches combining fractional derivatives and machine learning
when dealing with variability in data and further recommend considering these for big
data approaches.As the topic of big data would unnecessarily complicate this discussion,
we refer the interested reader to [86,88].

6.4.3. Nonlocal Models

Section 5.2 provides evidence for applying fractional calculus together with machine
learning for nonlocal models. This means that all models based on fractional calculus are
considered to be nonlocal because of the derivatives’ inherent memory. Here, we want to
point out the work by [55], which provides a machine learning framework for identifying
linear space-fractional differential equations from data.

6.4.4. Renormalization Group

The renormalization group refers to a formal apparatus capable of dealing with problems
involving many length scales. The basic idea is to tackle the problems in steps, i.e., one step at
each length scale. For critical phenomena, the strategy is to carry out statistical averages over
thermal fluctuations on all size scales. Thus, the renormalization group approach integrates
all the fluctuations in sequence. This means starting on an atomic scale and moving step-by-
step to larger scales until fluctuations on all scales are averaged out. The reason for doing so
is that theorists have difficulties describing phenomena that involve many coupled degrees
of freedom. For example, it takes many variables to characterize a turbulent flow or the
state of a fluid near the critical point. Here, Kenneth and Wilson found the self-similarity of
dynamic systems near critical points, which can be described using the renormalization
group. Thus, the renormalization group is considered a powerful tool for studying the
scaling properties of physical phenomena through its treatment of the scaling properties of
complex and chaotic dynamics [89,90].

Thus, we want to discuss our findings in a bigger context together with renormal-
ization group methods. We list and discuss evidence from our literature review for the
proposed overlaps between fractional derivatives and machine learning with the renor-
malization group. Thus, can we find evidence for the keywords depicted in Figure 1?
This means that the scaling law, complexity, nonlinear dynamics, fractal statistics, mutual
information, feature extraction, and locality.

Again, we start our discussion with the most obvious, i.e., feature extraction. Regard-
ing the triangle in Figure 1 [85], the researchers argued that, e.g., deep neural networks and
their inherent feature extraction process, i.e., feeding and abstracting the input data from
one layer to the next, learn to ignore irrelevant features while keeping relevant ones, which
increases the efficiency of the learning process. The researchers further argue that this is
similar to renormalization group methods, where only the relevant features of a physical
system are extracted by integrating over short-scaled degrees of freedom to describe the
system at larger scales. Their assumption is based on the findings of [91], which provides a
mapping between the variational renormalization group and deep learning, whereas these
findings are based on the Ising model. Furthermore, they discuss that the renormalization
group is usually applied to physical systems with many symmetries. Contrary to that, deep
learning is typically applied to data with a limited structure. Thus, the connection between
the renormalization group and, in this case, deep neural networks, might not be generaliz-
able to machine learning applications at large. Nonetheless, when talking about feature
extraction, one can argue that fractional derivatives do just that in, e.g., [47,48]. These
articles describe the feature extraction such that new parameters, e.g., the error energy of
a signal when being modeled using a fractional transfer function, are found. This means
that smaller-scaled features, i.e., the dataset itself, are not fed into the machine learning
algorithm. Furthermore, we recommend using the fractional measures of complexity as
another fractional calculus-based technique for feature extraction [83].

The researchers [85] discussed locality as the similarity of grouping spins in the black-
spin renormalization group. Furthermore, they pointed out that this is similar to the
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shallow layers of a deep neural network in which the neurons are locally connected, e.g.,
without strong bonds, as described in [92]. Though this applies to deep neural networks,
we did not find evidence in the reviewed publications. The reason here is that fractional
derivatives behave nonlocally, i.e., spatio-temporal fractional derivatives have a certain
degree of memory in both space and time.

When dealing with complexity, we need to consider that there is no unified definition
for complexity yet. However, the researchers [85,90] argued that the overlap between
fractional calculus and renormalization group methods might give us this definition and
provide a framework to deal with complexity and thus answer the following two questions:

1. How can we characterize complexity?
2. What method should be used to analyze complexity to better understand real-world

phenomena?

We consider finding answers to these questions idealistic. Thus, we need to weaken the
statement to “partially answer this questions”. With much certainty, even when combined,
fractional calculus, the renormalization group, and machine learning will only partially
answer these questions, primarily because there are many different perspectives on the
complexity of, e.g., data. Nonetheless, this triangle of powerful tools might expand defini-
tions and find some definitions and characterizations for particular problems. To give an
(in the authors’ opinion) reasonable example: this triangle might provide insights into the
capability of machine learning to predict multifractal, chaotic, or stochastic time series data
by characterizing a datasets memory and which time series can or cannot be learned by
different machine learning algorithms.

Nonetheless, did we find evidence for complexity in our list of publications? We indeed
found that there are phenomena that are better described using fractional calculus rather
than integer-valued calculus, as described in [55]. Further in this work, the researchers used
fractional calculus and machine learning to describe, e.g., financial time series data, e.g., the
S&P500 index, which is widely accepted to be a complex phenomenon [93–95]. Furthermore,
in [96], the researchers used renormalization group methods for analyzing the S&P 500
index. Thus, we conclude that we found evidence for this connection. Additionally, in [93],
the researchers also found evidence for two universal scaling models/laws in finance.
Thus, we found a connection and a potential research area for all three of the discussed
techniques, i.e., the renormalization group, fractional calculus, and machine learning in
financial time series analysis. Nonetheless, the discussed work of Gulian et al. [55] deals
with linear space fractional differential equations and thus does not provide the framework
to deal with nonlinear dynamics.

However, nonlinear dynamics (and subsequently chaos) are discussed in [82], where a
fractional bee colony optimization algorithm is used to find the optimal parameters for a model
which describes the nonlinear behavior of nonperforming loans. We also need to mention the
work performed by Wang et al. [59], where fractional models for finance are parametrized
using Gaussian process regression and predicted using recurrent neural networks. Thus,
given this evidence, we suggest similar approaches to employ the renormalization group
methodology in future research.

However, we did not find the applications of mutual information in this review. In [85],
the researchers referred to the work by Koch-Janusz et al. [97] for the applicability of mutual
information for both machine learning and the renormalization group. The researchers
present a machine learning procedure to perform renormalization group tasks, thus, the
reported connection. Here, the mutual information is used as an objective or target function
where one of the employed neural networks aims to maximize the mutual information
between two random distributions to deal with the reduction in degrees of freedom as
the renormalization group would do. However, we did not find applications of mutual
information for fractional derivatives and machine learning in our literature review, so we
recommend future research to discuss the topic. For example, to what degree can machine
learning algorithms be used to perform renormalization group tasks? Furthermore, are
there non-model applications where these ideas can be used?
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Furthermore, we did not find approaches dealing with scaling laws in the featured
list of publications. Scaling laws, also known as power laws, are a description of the
scale invariance of natural phenomena. Some notable examples according to [90] are, e.g.,
Zipf’s inverse power law which describes the relative frequency of word usage within a
language [98].

Furthermore, finally, we also did not find an application of fractal statistics or fractals.
However, given the numerous evidence for fractal behavior and statistics in various fields,
e.g., in hydrology [99], rock mechanics [100] or finance [101], we still aim to provide a link.
Here, we consider the previous discussion on the potential applicability of the triangle
of machine learning, fractional calculus, and renormalization group on financial data.
Again, we found evidence for fractal statistics present in economic data, i.e., the S&P 500
index [101]. Thus, we recommend future research for analyzing stock market data to
employ ideas from fractional calculus, machine learning, and the renormalization group
and subsequently to analyze the fractal behavior of these datasets. Furthermore, we believe
that these ideas might be capable of analyzing, learning, and predicting a variety of complex
real-life datasets, e.g., environmental data.

6.5. Problems

The last part of this discussion is to name two problems we encountered whilst
conducting this literature review. This section should serve as a guideline on what to avoid
and how to improve the future research field.

Sometimes the fractional derivative is not discussed sufficiently: we found litera-
ture that used fractional derivatives without stating the exact approach, e.g., [40]. However,
as stated and referenced in [34], we assumed that the Grünwald–Letnikov fractional deriva-
tive is the employed fractional derivative.

We thus urge researchers to be specific about the employed fractional derivative,
the corresponding discretization, and/or the employed software package to improve the
transparency and reproducibility of their work. We further point out that hardly any article
discussing the combined applications of machine learning and fractional derivatives listed
in this review shows the employed discretization.

Incorrect usage of keywords: Some researchers assigned the term fractional calculus
and/or fractional derivatives to their articles and describe the fractional calculus frame-
work. However, in the end, they used a curve-fitting approach with fractional polynomial
exponents and no fractional derivatives and/or calculus.

7. Conclusions

This review analyzes the combined applications of fractional derivatives and su-
pervised non-neural network approaches. Our research shows that supervised machine
learning and fractional derivatives are valuable tools that can be combined to, e.g., im-
prove a machine learning algorithm’s accuracy. We found a total of three types of com-
bined applications, i.e., preprocessing, modeling fractional dynamics via machine learning,
and optimization.

We further found that most preprocessing applications are spectroscopical applications
where a fractional derivative of a specific order is applied to the spectral data to improve
the accuracy of the employed algorithm.

For optimization, we found two categories, gradient-based and gradient-free opti-
mization algorithms. For gradient-based optimization, one can replace an integer-order
gradient with a fractional-order gradient, thus obtaining a fractional gradient descent
optimization algorithm. For the gradient-free optimization, the velocity in, e.g., a particle
swarm algorithm, can be replaced by a fractional-derivative-based velocity. Hereby, one
obtains a fractional order particle swarm optimization algorithm.

For the third type of combined applications, i.e., using a machine learning to model
fractional dynamics, we found that machine learning and fractional derivatives, and subse-
quently fractional calculus are both techniques that deal with complex real-life phenomena,
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addressing the problem of complexity from different angles. Furthermore, this field im-
proves kernel-based machine learning algorithms, such as Gaussian process regression and
support vector machines, by providing kernels based on fractional derivatives to introduce
memory into the modeling approach.

When bringing all our results together, we find a third tool conceptually linked to both,
i.e., the renormalization group, which is a powerful approach for dealing with scaling laws,
complex phenomena, complex dynamics, and chaos [102]. Thus, these three techniques,
machine learning fractional calculus, and the renormalization group, form a triangle as
proposed by Niu et al. [85]. Our review provides evidence for the proposed keywords,
the corresponding connections, and thus the established links between machine learning,
fractional calculus and the renormalization group.

In the author’s opinion, it will still take some time until the renormalization group
will be part of mainstream computer science in combination with machine learning and
fractional calculus. However, it is important to make today’s researchers, especially ma-
chine learning practitioners, aware and familiar with these topics as (supervised) machine
learning is becoming popular in science in general. This means that, wherever there are
available data, scientists are eager to find modern machine learning approaches to analyze,
describe, and predict complex phenomena directly from data. Thus, machine learning is
changing science overall [103,104].

Furthermore, as pointed out in [105], machine learning is sometimes considered
an oracle that can learn any task from observations, i.e., predict chemical reactions and
particle physics experiments, but not necessarily giving the practitioner scientist a deeper
understanding of the process at hand. Thus, one might ask how and whether machine
learning can contribute to our scientific understanding. The researchers further point out
the multidisciplinary aspect of machine learning in general and that it will, because of this,
undoubtedly keep increasing in popularity and can increase our scientific understanding
of the studied processes. Thus, we propose that fractional calculus and the renormalization
group will provide powerful tools in this context. Together with machine learning, these
tools are able to bridge gaps between separated disciplines by improving numerical analysis,
providing insights into complex phenomena, and by unveiling the hidden (or macroscopic;
in the case of the renormalization group) mechanics governing these phenomena.

Regarding future research combining fractional derivatives and machine learning, we
recommend testing whether neural networks can perform any kind of data manipulation
that fractional derivatives can perform. This might be useful as it might avoid pointless
contributions on the topic, i.e., fractional-derivative-based preprocessing for neural networks.

Furthermore, future research combining fractional derivatives, the renormalization
group, and machine learning might give valuable insights into the learnability of machine
learning algorithms and the corresponding underlying dynamics of the data. Specifically,
one could connect ideas from the renormalization to a fractional derivative preprocessing
while analyzing the performance of the employed machine learning algorithm. This means
that finding the sweet spot of mandatory degrees of freedom and the corresponding order of
fractional derivatives might provide insights about the memory of the studied data/system.
Thus, providing the “minimal” representation of the data/system by optimal performance.
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Appendix A. Summary Table

Publication Employed Fractional Derivative Employed Machine Learning
Algorithms Research Area Category Comment

[22] Grünwald–Letnikov Random Forest, PLSR Agriculture Preprocessing Vis-NIRSpectroscopy, Organic Matter Content

[24] Grünwald–Letnikov PLSR Agriculture Preprocessing Vis-NIRSpectroscopy, Nitrogen Concentration

[31] Grünwald–Letnikov Random Forest, PLSR Agriculture Preprocessing Vis-NIRSpectroscopy, Soil Salinity

[28] Grünwald–Letnikov Random Forest Agriculture Preprocessing Vis-NIRSpectroscopy, Lead and Zinc Concentration

[23] Grünwald–Letnikov Memory Based Learning, PLSR,
Random Forest Agriculture Preprocessing Vis-NIRSpectroscopy, Soil Organic Matter

[26] Grünwald–Letnikov SVM Agriculture Preprocessing Vis-NIRSpectroscopy, Total Nitrogen Content

[27] Grünwald–Letnikov SVM, Random Forest PLSR, ELM Agriculture Preprocessing Vis-NIRSpectroscopy, Leaf Chlorophyll Concentration

[32] Grünwald–Letnikov ELM Agriculture Preprocessing Vis-NIRSpectroscopy, Soil Salt, Water-Soluble Ions

[25] Grünwald–Letnikov SVM, ELM CNN, PLSR Agriculture Preprocessing Vis-NIRSpectroscopy, Nitrogen Content

[29] Grünwald–Letnikov PLSR, GRNN Agriculture Preprocessing Vis-NIRSpectroscopy, Soil Heavy Metal Estimation

[30] Grünwald–Letnikov SVM, Ridge Regression, PLSR,
Random ForestXGBoost, ELM Agriculture Preprocessing Vis-NIRSpectroscopy, Soil Heavy Metal Estimation

[31] Grünwald–Letnikov PLSR Agriculture Preprocessing HyperspectralSpectroscopy, Salt Content

[41] Grünwald–Letnikov PLSR Agriculture Preprocessing HyperspectralSpectroscopy, Soil Clay Content

[33] Grünwald–Letnikov PLSR Agriculture Preprocessing HyperspectralSpectroscopy, Soil Organic Matter

[35] Grünwald–Letnikov SVM Agriculture Preprocessing HyperspectralSpectroscopy, Soil Salt Content

[34] Grünwald–Letnikov Random Forest Agriculture Preprocessing HyperspectralSpectroscopy, Top Soil Organic Carbon

[37] Grünwald–Letnikov Random Forest, SVM Agriculture Preprocessing HyperspectralSpectroscopy, Canopy Nitrogen Content

[36] Grünwald–Letnikov PLSR Agriculture Preprocessing HyperspectralSpectroscopy, Soil Total Salt Content

[42] Grünwald–Letnikov Random Forest, XGBoost Environmental Preprocessing HyperspectralSpectroscopy, Total Nitrogen in Water

[39] Grünwald–Letnikov XGBoost Agriculture Preprocessing HyperspectralSpectroscopy, Soil Moisture Content

[38] Grünwald–Letnikov SVM, KNN Agriculture Preprocessing HyperspectralSpectroscopy, Leaf Photosynthetic
Pigment Content

[43] Grünwald–Letnikov Random Forest Environmental Preprocessing HyperspectralSpectroscopy, Total Suspended Matter in Water

[40] Grünwald–Letnikov

XGBoost, LightGBM, Random
Forest, Extremely Randomized

Trees, Decision Trees, Ridge
Regression

Agriculture Preprocessing HyperspectralSpectroscopy, Soil Electrical Conductivity

[44] Fractional Order Modeling SVM Biomedical Application Preprocessing EEG Signal Analysis, Seizure (Ictal) Detection

[45] Fractional Order Model=ling SVM Biomedical Application Preprocessing EEG Signal Analysis, Seizure(Ictal) Detection

[47] Fractional Order Modeling KNN Biomedical Application Preprocessing ECG Signal Analysis, Arrhythmia Detection

[48] Fractional Order Modeling KNN Biomedical Application Preprocessing ECG Signal Analysis, Arrhythmia Detection

[51] Discrete Fractional Mask SVM, RF, Simple Cart, J48 Biomedical Application Preprocessing CT Image Signal Analysis, Liver Tumor Detection

[49] Fractional Order Modeling KNN Biomedical Application Preprocessing Respiratory Impedance Analysis, Disease Detection

[50] Grünwald– Letnikov RN Biomedical Application Preprocessing Handwriting Analysis, Parkinson Disease Detection

[46] Grünwald– Letnikov KNN Biomedical Application Preprocessing EEG Signal Analysis, Abnormality Detection

[106] Discrete Fractional Derivative RF, XGBoost Biomedical Application Preprocessing Hemoglobin Analysis, Diabetes Detection

[107] Discrete Fractional Derivative SVM, Naive Bayes, Random
Forest AdaBoost, Bagging Biomedical Application Preprocessing Glucose and Insulin Analysis, Diabetes Detection

[52] Grünwald– Letnikov ELM, MLSR Engineering Preprocessing Solar Panel Analysis, Defective Solder Joint Detection

[53] Reisz ELM, MLSR Engineering Preprocessing Photovoltaic Panel Temperature Monitoring, Peak Detection

[54] Riemann–Liouville RF Engineering Preprocessing Activity Recognition of Construction Equipment

[55] Fractional Differential Equations Gaussian Process Regression Physics Fractional Dynamics Modeling of Fractional Dynamics from Data

[56] Fractional Differential Equations, Caputo
Derivative

K-Means, Linear Regression,
Sparse Regression Physics Fractional Dynamics Modeling Damping from Data

[57] Fractional Differential Equations, Caputo
Derivative SVM Applied Mathematics Fractional Dynamics Solving Fractional Differential Equations

[58] Fractional Differential Equations, Caputo
Derivative Ridge Regression Applied Mathematics Fractional Dynamics Modeling Boundaries of Fractional Differential Equations

[59] Fractional Differential Equations, , Caputo
Derivative

Gaussian Process Regression,
RNN Finance & Economy Fractional Dynamics Modeling a Fractional Order Financial System

[60] Fractional Differential Equations,
Grünwald–Letnikov Derivative RF Engineering Fractional Dynamics Modeling and Analyzing the Fractional Behavior of Batteries

[61] Caputo Ridge Regression Regression in General Optimization Fractional Gradient Descent on Testing Environment

[63] Caputo Logistic Regression Regression in General Optimization Fractional Gradient Descent on Testing Environment

[64] Caputo SVM Classification in General Optimization Fractional Gradient Descent Rainfall Data

[65] Caputo SVM Classification in General Optimization Fractional Gradient Descent Iris and Rainfall Data

[66] Caputo Fractional Linear Regression Regression Analysis in
Finance Optimization Multi Linear Regression with Fractional Derivatives Applied to

the Romanian GDP

[67] Caputo Fractional Linear Regression,
Fractional Quadratic Regression

Regression Analysis in
General Optimization Multi Regression with Fractional Derivatives

[69] Grünwald–Letnikov XGBoost Biomedical Application Optimization Classification of Heart Diseases via XGBoost and fractional PSO
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Publication Employed Fractional Derivative Employed Machine Learning
Algorithms Research Area Category Comment

[70] Grünwald–Letnikov SVM, K-Means Biomedical Application Optimization Optimizing K-Means and SVM via Improved
Fractional PSO

[73] Grünwald–Letnikov Random Forest Spectroscopy Optimization,
Preprocessing Optimizing a RF Classification for Spectral Bands

[74] Grünwald–Letnikov SVM Spectroscopy Optimization,
Preprocessing

Multilevel Image Segmentation for
SVM Classification

[75] Grünwald–Letnikov ELM, SVM, Relief, Regression in General Optimization,
Preprocessing

Optimizing Features for a range of Algorithms and
Datasets using FODPSO

[76] Grünwald–Letnikov Decision Trees Biomedical Application Optimization,
Preprocessing

Optimizing Liver cancer detection from CT scans
using Decision Trees and FODPSO

[77] Grünwald–Letnikov SVM, RF Biomedical Application Optimization,
Preprocessing

Optimizing Stroke Detection from MRI Brain Scans
Using Random Forest and FODPSO

[78] Grünwald–Letnikov SVM, RF Biomedical Application Optimization,
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