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ABSTRACT We investigate a fleet scheduling problem arising when a company has to manage its own
fleet of electric vehicles. Aim is to assign given usage reservations to these vehicles and to devise a suitable
charging plan for all vehicles while minimizing a cost function. We formulate the problem as a compact
mixed integer linear program, which we strengthen in several ways. As this model is hard to solve in practice,
we perform a Benders decomposition, which separates the problem into a master problem and a subproblem
and solves them iteratively in an alternating manner. We perform the decomposition in two different ways.
First we follow a more classical way, then we enrich the master problem making it stronger but also more
complex and the subproblem smaller and simpler to solve. To improve the overall performance, we propose
a problem-specific General Variable Neighborhood Search metaheuristic for solving the master problem in
earlier iterations. Experimental results show that directly solving the complete mixed integer linear program
usually performs well for small to some medium sized problem instances. For larger instances, however,
it is not able to find any reasonable primal solutions anymore, while the Benders decomposition scales
much better. Especially the variant with the heuristic delivers high quality solutions in reasonable time. The
Benders decomposition with the more complex master problem also yields reasonable dual bounds and thus
practically relevant quality guarantees for the larger instances.

INDEX TERMS Electric vehicles, fleet scheduling, mathematical programming, Benders decomposition,
heuristic algorithms.

I. INTRODUCTION
In many companies employees have to perform business
trips on a regular basis, e.g., to visit customers. Usually the
company provides a fleet of vehicles that are used for these
trips. To utilize these vehicles well, they are most commonly
shared among the employees, i.e., not every employee gets
his or her own dedicated vehicle. As the overall costs per
kilometer of electric cars dropped below the costs of cars
with combustion engines [1], it seems reasonable to have a
fleet that is primarily composed of electric vehicles. Also the
reduction of carbon dioxide, which is targeted by more and
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more companies, speaks for an electrification of a company’s
vehicle fleet.

By having own charging stations and generating energy
on-site at the company, e.g., with a photovoltaic system, it is
possible to reduce the costs further. Nowadays, the return of
investment for photovoltaic systems can be as low as three
years, if providing the energy to the grid [2]. Using the
generated energy to at least partly charge the own vehicles
can further speed up the return of investment.

Long charging times, however, pose a challenge for the
scheduling of vehicles within a carsharing system that relies
on electric vehicles (EVs). Variable on-site energy generation
and time-of-use tariffs for the energy from the grid, i.e.,
where the energy price is time-dependent, make an effective
scheduling even harder. Advanced algorithmic approaches
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are necessary to schedule the charging of a fleet of EVs
together with its usage in the sketched context in order to
minimize cost while maximizing the availability of the EVs.

We formulate and investigate the EV Fleet Charging and
Allocation Problem (EVFCAP) that arises in the carsharing
context with EVs and optional on-site energy generation.
In this problem we consider a discretized finite time horizon.
Given is a fleet of identical EVs and a set of reservations
for trips, each having a departure and an arrival time from
and back to the site, respectively, and an estimated energy
demand. Aim is to assign reservations to vehicles and to
determine a feasible charging plan for each vehicle, while
minimizing a cost function. It is also possible to leave reser-
vations unassigned, however this is associated with additional
cost, e.g., for fulfilling this demand with conventional vehi-
cles with combustion engines or to lend vehicles. In practice
the solution methods for the problem can be utilized in a
receding horizon approach, in which the scheduling is done
for all currently known reservations and a rescheduling is
performed whenever a new reservation comes in or there are
other changes in the problem input.

Charging can be performed with energy from the grid or
surplus energy from the on-site energy generation. For the
grid energy a variable time-of-use tariff is assumed. Contrary
to grid energy, surplus energy is assumed to not cause any
costs as it is the case, e.g., with a photovoltaic system. How-
ever only a time-dependent limited amount of surplus energy
is available. For simplicity, we do not consider any limit on
the maximum power that may be used from the grid or the
number of vehicles that can be charged at the same time.
However, a respective extension of our models and solution
approaches would be straight-forward.

We assume that the time-dependent surplus energy and the
energy price are known in advance. Energy prices in time-
of-use tariffs are often made public beforehand. If using a
photovoltaic plant, the surplus energy can be forecasted using
the weather prediction. We consider a myopic scheduling
approach, which only considers reservations currently avail-
able. If new reservations come in, a rescheduling is supposed
to be done.

As we will show later, the problem is NP-hard as well as
challenging to solve in practice. As the main contribution
of this work we develop several approaches to solve the
formalized problem exactly as well as heuristically. We first
formulate the problem as Mixed Integer Linear Program
(MILP), strengthen it with valid inequalities and, as it turns
out to be challenging to solve for larger instances directly,
derive a Benders decomposition [3] from this formulation.
It is, to our knowledge, the first time a Benders decomposition
approach is considered for a problem of this kind. Benders
decomposition decomposes a MILP into a master problem
(MP) and a subproblem (SP), and both, the MP and the SP
are solved iteratively in an alternating fashion. For solving
the MP approximately in a faster way, we further propose
a heuristic based on General Variable Neighborhood Search
(GVNS). For the last iterations, we finally switch from the

GVNS to a MILP solver for solving the MP to ensure exact-
ness of the overall approach. We further investigate a second
variant of the Benders decomposition. In the classic Benders
decomposition the MP contains all integer variables and all
other variables are handled in the SP. In the alternative variant
we move some variables from the SP to the MP. This way we
can also move some of the constraints of the SP to the MP,
which strengthens theMP. As a result, the number of required
iterations is reduced, but on the downside, using the GVNS
for the MP is not possible anymore, so the MP is solved with
the MILP solver in all iterations.

We experimentally compare the two Benders decomposi-
tion approaches with the original MILP solved by a state-
of-the-art solver on a set of artificially generated benchmark
instances. The benchmark instances range from small size
with up to 5 vehicles and 80 reservations via medium size
with up to 20 vehicles and 320 reservations through to large
size with up to 100 vehicles and 1600 reservations. While
for small and medium-sized instances the direct solving of
the MILP performs well and instances with up to 5 vehi-
cles and 80 reservations can be solved to optimality within
one hour, for large instances the Benders decompositions
in general perform significantly better. On the one hand,
especially the Benders decomposition with the GVNS heuris-
tic is able to find sooner much better heuristic solutions
for these instances. For instances with 100 vehicles and
800 reservations the gaps to the best known dual bounds are
around 7.5% for the Benders decomposition with heuristic,
but around 180%when directly solvingwith theMILP. On the
other hand, the variant of the Benders decomposition with
the extended MP is able to identify significantly better dual
bounds than the original MILP for our largest instances being
up to a factor of 10 lower. This article is based on the first
author’s master thesis [4], to which we also refer for further
details on the implementation and evaluation.

To increase the readability we summarize the most impor-
tant acronyms and symbols used in this article in Table 1.

The remainder of this article is organized as follows.
The next section introduces the EVFCAP in a formal way
and states it as MILP. Section III discusses related work.
In Section IV the EVFCAP is proven to be NP-hard.
Section V derives a class of strengthening inequalities. The
two variants of the Benders decomposition are presented
in Section VI. Section VII introduces the General Variable
Neighborhood Search for solving the MP heuristically in a
faster way. Subsequently, Section VIII discusses and com-
pares experimental results of the different approaches on
artificial benchmark instances. Finally, Section IX concludes
everything and gives an outlook on promising future work.

II. PROBLEM FORMALIZATION AND MILP MODEL
In the EV Fleet Charging and Allocation Problem (EVFCAP)
we are given

• a discretized planning time horizon T = {1, . . . , tmax}

with each time step having the same length 1t;
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TABLE 1. Acronyms and symbols.

• a set V = {1, . . . , n} of n uniform EVs with maximal
possible charging power Pmax > 0 and battery capacity
Ecap > 0, and for each vehicle v ∈ V the subset of time
steps T avail

v ⊆ T at which the vehicle is available and the
initial energy level Ev,0 ∈ [0,Ecap];

• a set R = {1, . . . , rmax} of reservations of vehi-
cles, with the set of consecutive time steps T res

r =

{tstartr , . . . , tendr } ⊆ T in which a vehicle is needed for
a trip and the expected energy E res

r ≥ 0 that will be
(approximately) consumed during the reservation for
each r ∈ R; note that this energy demand E res

r can be
estimated based on a planned route of the trip or, if the
destination is unknown, crudely on the duration of the
reservation;

• the grid’s costs for electricity ct > 0 per unit of energy
during each time step t ∈ T ;

• a predicted maximum surplus energy Esurmax
t ≥ 0 avail-

able during each time step t ∈ T , for example from a
photovoltaic system;

• and costs cuncov > 0 for covering each unit of energy
required by unassigned reservations, for example by cars
with combustion engines.

A solution comprises
• a partial assignment from reservations to vehicles, mod-
eled by variables xr,v ∈ {0, 1} for r ∈ R, v ∈ V ,
indicating with value one that reservation r is to be
fulfilled by vehicle v, and

• a charging plan, modeled by variables pv,t ≥ 0 indicat-
ing the power by which vehicle v ∈ V is charged during
time step t ∈ T .

The objective is to minimize the costs spent for grid energy
and uncovered reservations as well as expected future costs.
Expected future costs are formulated as the amount of energy
that would be needed to fully charge all vehicles after the last
time step weighted with a factor of α ≥ 0. These future costs
arise from expected reservations after the time horizon that
cannot be covered due to a low State-of-Charge (SoC) of the
vehicles.

The EVFCAP can be expressed by the MILP (1)–(15). The
total amount of energy consumed from the grid during time
step t is modeled by variables Egrid

t and the total amount of
surplus energy consumed during time step t by variables Esur

t .
Moreover, to keep the model clear we use additional variables
yr , which indicate if reservation r ∈ R is uncovered (yr = 1)
or covered (yr = 0). Note that these variables can be kept
continuous in themodel as theywill automatically get integral
values due to equalities (2). By T starts and T ends we denote
the sets of time steps in which reservations start and end,
respectively, i.e.,

T starts
:=

{
tstartr | r ∈ R

}
, T ends

:=

{
tendr | r ∈ R

}
.

min
∑
t∈T

ctE
grid
t + cuncov

∑
r∈R

E res
r yr

+ α
∑
v∈V

(
Ecap
− Ev,tmax

)
(1)

s.t.
∑
v∈V

xr,v + yr = 1 r ∈ R (2)

xr,v = 0 v ∈ V , r ∈ R | T res
r 6⊆ T avail

v (3)

pv,t = 0 v ∈ V , t ∈ T \ T avail
v (4)

pv,t ≤ Pmax
· (1−

∑
r∈R|t∈T res

r

xr,v)

v ∈ V , t ∈ T (5)

Ev,tmax = Ev,0 +1t
∑
t∈T

pv,t −
∑
r∈R

E res
r xr,v

v ∈ V (6)

Ev,0+1t
t∑

k=1

pv,k−
∑

r∈R|tendr ≤t−1

E res
r xr,v≤Ecap

v ∈ V , t ∈ T ends
∪ {tmax} (7)

Ev,0 +1t
t−1∑
k=1

pv,k −
∑

r∈R|tstartr ≤t

E res
r xr,v ≥ 0

v ∈ V , t ∈ T starts (8)

Egrid
t + Esur

t = 1t
∑
v∈V

pv,t t ∈ T (9)

105788 VOLUME 10, 2022



J. Varga et al.: Computational Methods for Scheduling the Charging and Assignment of an On-Site Shared EV Fleet

Egrid
t ≥ 0 t ∈ T (10)

0 ≤ Esur
t ≤ E

surmax
t t ∈ T (11)

0 ≤ Ev,tmax ≤ E
cap v ∈ V (12)

xr,v ∈ {0, 1} v ∈ V , r ∈ R (13)

0 ≤ yr ≤ 1 r ∈ R (14)

0 ≤ pv,t ≤ Pmax v ∈ V t ∈ T (15)

The meaning of the constraints is as follows. Equations (2)
prohibit the assignment of a reservation r to multiple EVs,
and it forces yr = 1 if reservation r is not assigned to a
vehicle. Due to (3), reservations cannot be assigned to EVs
that are not available in a time step of the reservation interval.
Constraints (4) and (5) prevent charging EVs in time steps
in which they are not available or are used in reservations.
Here the symbol ‘‘\’’ denotes the set difference operator,
i.e., T \ T avail

v represents all time steps in T that are not in
T avail
v . If overlapping reservations are assigned to a vehicle,

the right hand side of (5) becomes negative for the time steps
in which the reservations overlap. As this is not possible with
the domain of pv,t , constraints (5) also prevent the assignment
of overlapping reservations to a vehicle. Note that splitting
up the two aspects of (5) into two types of constraints would
yield a weaker formulation. Equations (6) define the SoC
Ev,tmax of each vehicle after the last time step. Inequalities
(7) and (8) determine the SoC of each vehicle for each time
step and ensure that it stays in [0,Ecap]. It is irrelevant for
the correctness of the formulation whether the energy of a
reservation is subtracted at the start or at the end of the
reservation interval or somewhere in between. In order to
make the inequalities stronger, we use the end for (7) and
the start for (8). Moreover, in (7), pv,t was added, further
strengthening the constraint. Analogously, pv,t has been omit-
ted in (8). If for some time step the SoC cannot exceed the
battery capacity and no reservation ends at this time step,
then the SoC also cannot exceed the battery capacity for
the previous time step. Therefore it is sufficient to limit the
SoC only in time steps before a reservation ends and at the
last time step. The SoC can only drop when the energy of
a reservation is subtracted. Therefore, (8) is only needed for
time steps in which a reservation starts. Equations (9) link
the power pv,t by which the EVs are charged at each time
step with the variables for the energy used from the grid Egrid

t
and the used surplus energyEsur

t . Finally, all variable domains
are defined in (10) to (15). Note that we use continuous
values for the charging rates pv,t as most modern charging
infrastructures give this flexibility. In contrast, former work
such as [5] often restricts charging to only one or very few
power levels, which can ease the mathematical modeling but
restricts the possibilities in the scheduling severely. With the
larger flexibility of continuously selectable charging rates,
we may expect better solutions.

III. RELATED WORK
We are aware of only two papers addressing problems that
are closer related to the EVFCAP. These works are discussed

at the end of this section. Common problems in the literature
that are similar to the EVFCAP are Vehicle Scheduling Prob-
lems (VSPs). In these a set of trips, each having a start and end
location and a time for departure and arrival, is given [6]. The
aim is to find a feasible assignment from trips to vehicles that
minimizes costs. Vehicles start and end at depots. Problem
variants either consider a single depot or multiple depots. The
traditional single-depot VSP is solvable in polynomial time,
e.g. by using a network flow formulation [7]. When consid-
ering multiple depots however, the VSP gets NP-hard [8].
Recently a new variant of the VSP arose that considers an
electric fleet of vehicles. The electric VSP has been solved
exactly by utilizing MILP solvers [9], [10], [11], and with
various heuristics such as Adaptive Large Neighborhood
Search [12], GRASP and a memetic algorithm [13]. The
EVFCAP can be seen as a variant of the electric VSP with
a single depot, where all trips start and end at the depot and
charging is only possible at the depot. Note however that the
availability of surplus energy and the possibility that trips are
not covered have not been considered in works to the electric
VSP we are aware of. Furthermore having multiple locations
substantially restricts the solution space, since vehicles have
to start the next trip where the previous one ended. Thus VSPs
are quite different from our problem and solution methods
and results can hardly be compared.

Different kinds of works regarding EVs concentrate on the
charging process of a vehicle fleet. On the one hand this con-
cerns smart charging of a vehicle fleet in the context of smart
grids, see, e.g., [14] or [15] for a survey from the algorithmic
perspective and [16] for a review that additionally considers
photovoltaic power production. A variety of problems arise
in this context from the different perspectives of the grid
operator, the aggregator and the EV user. Proposed algo-
rithms are often distributed to increase scalability and reduce
communication overhead. On the other hand non-linearities
of the charging process have been considered and investi-
gated. For instance and in particular when considering fast
charging, the maximum power that can be used to charge a
vehicle depends significantly on its current SoC. This is, for
example, considered for the following charging problem from
the literature. A single vehicle or a fleet of vehicles is given.
Each vehicle has a current SoC, a minimum required SoC,
an SoC-dependent maximal charging power, and possibly a
departure time. Aim is to find a charging schedule, s.t. the
vehicles reach the required SoCs by their departure times
or the end of the planning horizon, respectively. Applied
solving approaches are the cutting plane method for convex
maximal charging power functions [17], [18], different MILP
formulations [18], [19], as well as mixed integer nonlinear
programming [20].

Although the EVFCAP has overlaps with the above prob-
lems, we are only aware of two strongly related works. The
following paragraphs give an overview on these.

Sassi and Oulamara [5] consider a problem variant that dif-
fers from our EVFCAP setting primarily in the optimization
objective. First, they maximize the distance that is traveled
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with EVs. Then the charging costs are minimized, s.t. the
distance stays constant on its optimal value. Another differ-
ence is that the number of alternative vehicles that can be
used for uncovered reservations, e.g., cars with combustion
engines, is limited. Moreover, there are also some differences
regarding the charging process: Surplus energy is not con-
sidered, i.e., all the energy is taken from the grid. However
the grid is limited in the total power it can deliver, so the
charging processes of different EVs must also be optimized
together. Additionally to the maximum power of the grid and
the maximum charging power for each EV, there also exists a
lower power limit for charging. Thus, an EV is either charged
within its lower and upper power limits or not charged.

The authors propose two heuristics to solve their prob-
lem, which they name Sequential Heuristic (SH) and Global
Heuristic (GH). The SH repeats the following steps for
each EV:

• Select a subset of reservations that are non-conflicting
s.t. the driven distance is as large as possible and assign
them to the EV.

• Find a charging schedule for the EV that minimizes
charging costs.

Afterwards, uncovered reservations are assigned to the alter-
native vehicles. The GH works basically the same way but
calculates a charging schedule for all vehicles at once after
all reservations have been assigned to vehicles. These two
heuristics were experimentally compared to a MILP on ran-
dom instances. Both, GH and SH, outperformed the MILP on
these instances in terms of the quality of heuristic solutions.
Compared to SH, GH in general found feasible solutions on
more instances and better solutions on the instances where
both heuristics found solutions. However, SH was signifi-
cantly faster.

Betz et al. [21] consider a problem variant that differs
from our EVFCAP by considering a limited number of avail-
able chargers. These chargers can have different character-
istics and are located at specific parking lots. If necessary,
relocations of vehicles between parking lots are possible but
cause additional cost. Betz et al. also formulate their problem
as a MILP and solve it using the MATLAB integrated MILP
solver. The hardest instance that they could solve within two
hours included 30 requests and eight vehicles. Moreover, the
authors also investigate the effect on operational costs and
environmental impact when using a fleet of EVs compared to
a fleet of vehicles with combustion engines.

IV. NP-HARDNESS OF THE EVFCAP
Sassi andOulamara [5] tried to prove the NP-hardness of their
problem variant which they called Electric Vehicle Schedul-
ing and Charging Problem (EVSCP). As the EVFCAP is
similar to the EVSCP, the basic idea of their proof can be
adopted for the EVFCAP. However, we found that the proof
in [5] contains a severe error because the reduction from the
used partition problem may result in an exponentially large
EVSCP instance as the size of the time horizon T depends on

the input values of the partition problem. In the following we
correct this issue and adapt the proof for the EVFCAP.

In our proof, we reduce the partition problem, which is
known to be NP-complete [22], to the decision variant of the
EVFCAP. The decision variant of the EVFCAP asks whether
or not there is a solution that has an objective value less than
or equal to a given cmax.
The partition problem can be stated as follows.
PARTITION PROBLEM
Input:
A multiset P = {a1, . . . , am} of positive integers that
sum up to 2s with s ∈ N.

Question:
Is there a partition {M1,M2} of {1, . . . ,m} s.t.∑

i∈M1
ai = s =

∑
i∈M2

ai?
Theorem 1: The EVFCAP is NP-hard.
Proof: Given an instance of the partition problem, an

instance of the decision variant of the EVFCAP is constructed
as follows.
• For each integer in P there is a time step.
• There are two EVs. Both EVs have a battery capacity
and an initial energy level of s, no charging capabilities
and an unlimited availability.

• For each integer in P there is a reservation. All reserva-
tions are non-overlapping and the energy consumption
of reservation r is ar .

• There are only costs for uncovered reservations.
• The costs has to be less than or equal to zero.
• No surplus energy is available.
Assume we have a solution for this problem instance. This

solution cannot have uncovered reservations as they would
increase the objective value to a positive value. Therefore,
the two EVs have to cover all reservations. The total energy
consumption of all reservations is 2s. Both vehicles have
an initial energy level of s and no recharging possibilities.
Therefore the energy level of both vehicles is zero after time
step m, and the energy consumptions of the reservations
served by a single vehicle sum up to s. This gives a solution
for the corresponding partition problem which is

Mv := {i | xi,v = 1, i = 1, . . . ,m} v ∈ V . (16)

Given a solution to the partition problem, a corresponding
solution to the EVFCAP is constructed by assigning the reser-
vations corresponding toMv to vehicle v for both v ∈ V . Due
to a similar reasoning as above, the solution to the EVFCAP
has to be feasible.

Overall, there is a solution to the partition problem, iff
there is a solution to the corresponding EVFCAP. As all the
described transformations can be done in polynomial time,
it follows that the EVFCAP is NP-hard. �

V. STRENGTHENING INEQUALITIES FOR CONFLICTING
RESERVATIONS
We now introduce strengthening inequalities for the MILP
model (1)–(15) for the EVFCAP, which prevent the assign-
ment of sets of reservations to a vehicle if those reservations
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cannot be assigned together to the vehicle due to charging
constraints. Let R′ ⊆ R be a set of non-overlapping reserva-
tions and assume that these reservations are considered for
joined assignment to vehicle v ∈ V . The maximal achievable
energy level Emax

v,t (R′) of vehicle v for t ∈ T ∪ {0} in
dependence of R′ can be calculated by

Emax
v,t (R′) =



Ev,0
if t = 0

min(Emax
v,t−1(R

′)+ Pmax1t,Ecap)

if t ∈ T avail
v \

⋃
r∈R′

T res
r

Emax
v,t−1(R

′)−
∑

r∈R′|t=tstartr
E res
r

otherwise.

(17)

If Emax
v,t (R′) is negative at a time step, not all reservations

of R′ can be assigned together to vehicle v. In other words at
least one reservation in R′ may not be assigned to vehicle v in
this case, which yields the inequality∑

r∈R′
xr,v ≤ |R′| − 1. (18)

This kind of inequality in general strengthens the MILP, i.e.,
there are solutions to the linear programming (LP) relaxation
of the model that do not fulfill (18). Take for example the
problem instance with one vehicle of capacity and initial
SoC 3 and two reservations 1 and 2 requiring energy of
E res
1 = E res

2 = 2 in time steps T res
1 = {1} and T res

2 = {2},
respectively. Then the LP relaxation of the MILP has a solu-
tion with x1,1 = x2,1 = 0.75. However, Emax

1,2 ({1, 2}) = −1 is
less than zero and inequality 18 is violated for R′ = {1, 2}.
Its addition to the MILP therefore indeed strengthens the LP
relaxation.

Clearly, the number of these inequalities in general is
exponentially large in |R|. Therefore we consider the dynamic
separation of such inequalities in a branch-and-cut approach.
The respective separation problem can be stated for a specific
vehicle v ∈ V as follows.

SEPARATION PROBLEM
Input:
Let xLPr,v be the values of variables xr,v in the solution
of the LP relaxation for all r ∈ R. Moreover, we use
E res
r , T res

r , Pmax, 1t , Ecap, Ev,0 and T avail
v .

Question:
Does there exist a non-overlapping set of reservations
R′ ⊆ R with

⋃
r∈R′ T

res
r ⊆ T avail

v , s.t. Emax
v,t (R′) < 0

for some t ∈ T \ {1} and
∑

r∈R′ x
LP
r,v > |R

′
| − 1?

For the special case of Pmax
= 0, Ecap sufficiently large,

and unlimited availabilities (T avail
v = T ), themaximal achiev-

able energy can be calculated in an easy way by

Emax
v,t (R′) = Ev,0 −

∑
r∈R′|tstartr ≤t

E res
r . (19)

The conditionEmax
v,t (R′) < 0 then becomes

∑
r∈R′ E

res
r > Ev,0

as it is sufficient to check for t = tmax. If no reservations in R
overlap with each other, the separation problem corresponds

to (the decision version of) the 0–1 knapsack problem with
item weights 1 − xLPr,v, capacity one, and item values E res

r .
Therefore the separation problem is NP-hard.
One way to deal with the separation problem in practice is

to discretize all values xLPr,v and to apply dynamic program-
ming over

∑
r∈R′ (1 − x

LP
r,v) with the reservations ordered by

their start times, maximizing Emax
v,t (R′) for each intermediate

result. Alternatively, one could discretize the energy and min-
imize

∑
r∈R′ (1− x

LP
r,v).

In practice it seems reasonable to apply a fast greedy
heuristic to possibly identify a violated inequality and the
more complex dynamic programming approach only when
the heuristic does not succeed. We implemented a greedy
heuristic and tested it with the MILP solved by Gurobi1

in version 9.1. However this did not lead to a speedup in
practice, most likely due to the strong generic cuts Gurobi
already considers. Therefore we did not use this approach in
further steps.
Alternatively, one can initially check all pairs of

non-overlapping reservations and provide respective valid
inequalities already from the beginning instead of later sep-
arating them dynamically. We also tried this approach but
again could not observe a practically relevant speedup.

VI. BENDERS DECOMPOSITION
Benders decomposition is a general approach to tackleMILPs
of a certain structure and was proposed almost six decades
ago by Benders [3]. It works by splitting up the problem into
a master problem (MP) and a subproblem (SP). For details
regarding the Benders decomposition in general, variants of
it as well as different speedup strategies and extensions we
refer to the review by Rahmaniani et al. [23].
First we apply the Benders decomposition to our problem

in a more classical way. Afterwards we strengthen the MP by
moving variables from the SP to theMP. In order to ultimately
have the whole objective function in this extendedMP, we use
a reformulated but equivalent objective function. To derive
this reformulation from the original objective function (1) the
following steps are performed besides basic simplifications:
• Replace Ev,tmax according to (6).
• Replace1t

∑
v∈V pv,t with E

grid
t +E

sur
t according to (9).

• Replace
∑

v∈V xr,v with 1− yr according to (2).
This leads to the expression∑
t∈T

(ct − α)E
grid
t + (cuncov − α)

∑
r∈R

E res
r yr − α

∑
t∈T

Esur
t

+α
∑
v∈V

(Ecap
− Ev,0)+ α

∑
r∈R

E res
r . (20)

As the last two terms are constant, we abbreviate them by

c̃const := α
∑
v∈V

(Ecap
− Ev,0)+ α

∑
r∈R

E res
r , (21)

further introduce the new cost factors

c̃t := ct − α and c̃uncov := cuncov − α, (22)

1https://www.gurobi.com/
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and arrive at the reformulated objective function

min
∑
t∈T

c̃tE
grid
t +c̃

uncov
∑
r∈R

E res
r yr−α

∑
t∈T

Esur
t +c̃

const.

(23)

Variables Ev,tmax are not needed anymore when using this
reformulation and can therefore be removed together with
their defining equation (6).

A. BASIC BENDERS DECOMPOSITION
The following master problem (MP) only considers the
assignment variables xr,v, r ∈ R, v ∈ V and yr , r ∈ R and
abstracts from the actual charging details. The latter will only
be dealt with in the subproblem. The subproblem, however,
yields feasibility cuts and optimality cuts which are added to
the MP over time to ultimately account for the charging.

(MP)

min c̃uncov
∑
r∈R

E res
r yr + µ+ c̃const (24)

s.t.
∑
v∈V

xr,v + yr = 1 r ∈ R (25)

xr,v = 0 v ∈ V , r ∈ R | T res
r * T avail

v (26)∑
r∈R|t∈T res

r

xr,v ≤ 1 v ∈ V , t ∈ T (27)

∑
r∈R

γc,rxr,v + γ ′c ≤ 0 v ∈ V , c ∈ C feas
v (28)∑

r∈R

∑
v∈V

βc,r,vxr,v + β ′c ≤ µ c ∈ Copt (29)

µ ≥
∑

t∈T |c̃t<0

c̃t n1t Pmax
− α

∑
t∈T

Esurmax
t (30)

xr,v ∈ {0, 1} (31)

0 ≤ yr ≤ 1 (32)

Feasibility cuts (28) are formulated independently for each
vehicle and thus the set of feasibility cutsC feas

=
⋃

v∈V C
feas
v

is partitioned into smaller sets, each dedicated to one vehicle.
A feasibility cut is represented by the vehicle v it is dedicated
to, a vector γc of coefficients for x, and a constant γ ′c . In (29),
each optimality cut c ∈ Copt is represented by a coefficient
matrix βc of x and a constant β ′c. Hereby, variable µ rep-
resents additional costs for the charging that are to be con-
tributed by the optimality cuts (29). Initially, C feas and Copt

are empty. Equation (30) prevents the MP to be unbounded
before optimality cuts have been added by providing a trivial
lower bound for µ.

The subproblem is determined for a given solution x̄ =
(x̄r,v)r∈R,v∈V to the MP. We define
• for each vehicle v ∈ V the set of time steps when the
vehicle is available and not reserved

T home
v := T avail

v \

⋃
r∈R|x̄r,v=1

T res
r (33)

• and for each vehicle v ∈ V the energy difference up to
time step t ∈ T caused by assigned reservations. The

energy of a reservation may be subtracted at the start or
the end of the reservation interval, leading to the two
definitions

E res,start
v,t :=

∑
r∈R|t≤tstartr ∧x̄r,v=1

E res
r and (34)

E res,end
v,t :=

∑
r∈R|t≤tendr ∧x̄r,v=1

E res
r . (35)

The primal subproblem SP(x̄) can now be stated as the fol-
lowing LP.

(SP(x̄))

min
∑
t∈T

c̃tE
grid
t − α

∑
t∈T

Esur
t (36)

s.t. pv,t = 0 v ∈ V , t ∈ T \ T home
v (37)

Ev,0 +1t
t∑

k=1

pv,k − E
res,end
v,t−1 ≤ E

cap

v ∈ V , t ∈ T ends
∪ {tmax} (38)

Ev,0 +1t
t−1∑
k=1

pv,k − E
res,start
v,t ≥ 0

v ∈ V , t ∈ T starts (39)

Egrid
t + Esur

t =
∑
v∈V

1t pv,t t ∈ T (40)

Egrid
t ≥ 0 t ∈ T (41)

0 ≤ Esur
t ≤ E

surmax
t t ∈ T (42)

0 ≤ pv,t ≤ Pmax v ∈ V , t ∈ T (43)

Further feasibility cuts (28) and optimality cuts (29) are
determined by solving the dual SP for specific reservation
assignments x̄ = (x̄r,v)r∈R,v∈V of a current solution to theMP.
More specifically, feasibility cuts are inferred from extreme
rays of the dual SP in case this problem is unbounded.
Since feasibility cuts can be formulated independently for
each vehicle, identifying such cuts is more efficient due
to the smaller problem size. Optimality cuts are inferred
from extreme points of the dual subproblem. For the dual
subproblem and the mathematical derivation of the cuts see
Appendix A.
We further remark that it is also possible to formu-

late the SP as Minimum Cost Flow Problem. We did that
and compared the Minimum Cost Flow Problem formula-
tion solved with the network simplex implementation of
CPLEX2 in version 12.8. to the LP formulation solved by
Gurobi. As it turned out, the network simplex approach
was in practice not faster than solving the LP with Gurobi.
Therefore we use Gurobi to solve the SP in all further
steps.

B. EXTENSION OF THE MP
By adding meaningful information about the SP to the MP
from the beginning, we may expect to reduce the number of

2https://www.ibm.com/analytics/cplex-optimizer

105792 VOLUME 10, 2022



J. Varga et al.: Computational Methods for Scheduling the Charging and Assignment of an On-Site Shared EV Fleet

iterations and, as long as solving the MP does not become
substantially harder, the overall runtime. We do this by mov-
ing the variables Egrid

t and Esur
t , for all t ∈ T , from the SP

into the MP. The number of these variables is low enough
(in O(|T |)) to still keep the MP reasonably small, but now it
becomes possible to add further strengthening inequalities to
the MP that make use of Egrid

t and Esur
t .

Besides moving the variables Egrid
t and Esur

t from the SP
into the MP, the MP is updated as follows to the formulation
(44)–(56) shown in Figure 1.

• As Egrid
t and Esur

t and are available now, the extended
MP can use the complete reformulated objective func-
tion (23).

• Summing inequalities (7) and (8) over the vehicles yields
constraints, which do not contain pv,t anymore and
therefore can be added to the extended MP.

• Optimality cuts are not necessary anymore, as the objec-
tive function of the extended MP already comprises all
parts of the original objective.

• Feasibility cuts (52) also contain the variables Egrid
t and

Esur
t . Note however that now, they cannot be formulated

independently for each vehicle anymore.

These changes in the MP cause also some changes in the
subproblem and the derivation of the feasibility cuts for which
we refer again to Appendix A. Also note that it is still possible
to add the feasibility cuts (51) of the basic Benders decompo-
sition, which we will also do in our experiments. Recall that
the feasibility cuts of the basic Benders decomposition can
be formulated independently for each vehicle, which is not
possible after extending the MP. Thus the feasibility cuts of
the basic Benders decomposition are not necessarily weaker
than the feasibility cuts of the Benders decomposition with
the extended MP.

C. SOLVING THE MP
In the classical Benders decomposition approach, the MP is
solved with aMILP solver to optimality in each iteration. The
process of iteratively solving the MP, the dual SP, and adding
derived Benders cuts to theMP eventually stops with a proven
optimal solution to the original problem when no further cuts
can be derived, given sufficient time and memory. During
each iteration, the dual bound derived from the solution to
the MP is only valid also for the original problem if the MP
was solved to optimality. Solving the MP always to proven
optimality is in general time consuming and, at least in earlier
iterations, unnecessary, if afterwards a cut is added, especially
as in practice typically a large portion of the time is required
to prove the optimality of a found solution. We examine two
different strategies to speed up the overall Benders decompo-
sition approach.

On the one hand we turn the classical scheme into a
Branch-and-Check approach. Here, the MP is only solved
once by a MILP solver, but whenever a new feasible solu-
tion is found within this search, the respective SP is solved
for this solution and obtained feasibility/optimality cuts are

dynamically added to the MP. For more information on
Branch-and-Check we refer to [24].

On the other hand we speed up the classical Benders
decomposition approach by solving the MP first in an inexact
way and only switch to an exact approach at a later point when
no further cuts can be found by the respective SPs. In this
way, the whole procedure stays exact in the end. This idea
has already successfully been applied in the literature multi-
ple times, see for example [25] or [26]. In our first inexact
approach, we solve the MP by the MILP solver terminating
early when a solution is obtained with an optimality gap
within a certain specified limit. We will see that, although
a speedup is achieved for the individual iterations, this ulti-
mately does not lead to substantially better final optimality
gaps as more iterations are required. We therefore also con-
sider a metaheuristic approach for solving the MP, which is
described in the following section.

VII. GENERAL VARIABLE NEIGHBORHOOD SEARCH
HEURISTIC
We suggest a General Variable Neighborhood Search
(GVNS) [27] as a heuristic to solve the MP. The GVNS
metaheuristic combines basic Variable Neighborhood Search
based on shaking moves in larger neighborhoods with Vari-
able Neighborhood Descent (VND). Variable Neighborhood
Descent is a generalization of local search that utilizes a
sequence of multiple neighborhood structures. Upon finding
a better solution in one neighborhood, VND restarts with
the first neighborhood, otherwise it continues with the next
neighborhood. The eventually returned solution thus is a local
optimum w.r.t. all used neighborhood structures. In the outer
Variable Neighborhood Search, a shaking operator takes a
random solution from a typically larger neighborhood Nk ∈
{N1, . . . ,Nkmax} of the current solution. Algorithm 1 shows a
pseudo code of GVNS.

Algorithm 1: General Variable Neighborhood Search

x ← initial solution;
repeat

k ← 1;
repeat

x ′← random element in Nk (x);
x ′′← VND(x ′);
if x ′′ better than x then

x ← x ′′;
k ← 1;

else
k ← k + 1

end
until k > kmax;

until stopping criteria satisfied ;
return x

The specific components of our GVNS for the MP are
described in the following. Note that this metaheuristic is
dedicated only to the first Benders decomposition variant
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FIGURE 1. Extended master problem after moving the variables Egrid and Esur from the SP to the MP.

whose MP (24)–(32) contains the variables xr,v and yr only.
This is because only then it is possible to reasonably speed
up searching the neighborhoods with delta evaluation. Delta
evaluation computes the objective value of a neighbor by
efficiently computing the difference to the objective value of
the current solution based on the move that was used to obtain
the neighbor. Due to the possibility to apply delta evalution
we expect the GVNS heuristic to work well for the MP.

A. MP INSTANCES
Remember that an instance of the MP consists of

• the instance of the EVFCAP as well as
• a set of feasibility cuts and
• a set of optimality cuts.

For each optimality cut the factors βc of x and the con-
stant β ′c are stored. Since the matrix βc usually is dense, all
coefficients of the matrix are stored. The same is done for
feasibility cuts, with the difference that each cut is targeted
to a specific vehicle v and therefore also the vehicle has to be
stored besides the factors γc and the constant γ ′c .

B. SOLUTION REPRESENTATION
Solutions of the MP are represented by the assignment of
reservations to vehicles. Within the GVNS, such an assign-
ment is stored as vector (ar )r∈R ∈ (V ∪ {ε})|R|, where ar

indicates the vehicle by which reservation r is to be fulfilled
or ε if no EV is assigned to this reservation. Note that this
representation is more compact and efficient to use than the
binary representation with the xr,v and yv variables from the
MILP formulation.

To make delta evaluation possible, the GVNS stores addi-
tional data for its candidate solutions. In particular

• the objective value that corresponds to the assignment,
• for each optimality and each feasibility cut the value
in which the left hand side of the respective inequality
results, and

• for each vehicle the set of time steps in which the vehicle
is used in reservations

are stored. Suppose an MP solution a and another solution a′

that only differs from a in the assignment of one reservation
are given. Utilizing the additionally stored data for solution
a it is possible to decide the feasibility and calculate the
objective value of solution a′ in timeO(|C feas

|+|Copt
|+|T |).

C. VND NEIGHBORHOOD STRUCTURES
The VND starts with the trivial solution that does not assign
any reservations and uses two different neighborhood struc-
tures, based on the following moves.

1) Change the assignment of any single reservation.
This neighborhood can, for a given solution a,
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be written as

N1(a) = {a′ ∈ F | 1(a, a′) = 1}, (57)

where 1 refers to the hamming distance between the
two vectors. Set F contains all feasible assignments,
i.e., assignments that neither assign overlapping reser-
vations to the same vehicle nor invalidate Benders cuts.
Note that also ar = ε or a′r = ε is possible for the
reservation r ∈ R whose assignment is changed. The
size of this neighborhood is in |N1(a)| = O(|R| · |V |).

2) Swap the assignments of any single pair of reservations:

N2(a) = {a′ ∈ F | a′ = a ◦ σrr ′ , r, r
′
∈ R}, (58)

where permutation σrr ′ ∈ SR swaps r with r ′ and leaves
all other elements at their positions, and F denotes
the set of feasible assignments again. The size of this
neighborhood is in |N2(a)| = O(|R|2).

For the instances we considered |N2(a)| is generally larger
than |N1(a)|, and therefore we apply N2 after N1 in the VND.
A more general version of the second neighborhood that
considers more than two reservations was also considered but
turned out to be too time consuming for larger instances and
did not yield substantially better results. Therefore we did not
use it further.

All moves can be decomposed into alterations of single
assignments of a reservation. Thus efficient delta evaluation
can be applied to search the neighborhoods that result from
the given moves.

D. SHAKING
Shaking is used to escape local optima and to diversify the
search. In our case, shaking deletes assignments of a number
of reservations, i.e., sets the respective ar variables to ε. This
allows the VND afterwards to in general converge to a differ-
ent solution. Which assignments are deleted is determined in
two different ways. In the first shakingmethod a fixed number
of reservations is selected randomly and all their assignments
are deleted, and in the second shaking method a fixed number
of vehicles is selected randomly and all assignments to these
are deleted.

In preliminary experiments we found that the following
three shaking configurations, in this order, are performing
generally well on the kind of instances we used in our tests.
• Deleting five random assignments from reservations to
vehicles.

• Deleting ten random assignments from reservations to
vehicles.

• Deleting all assignments to one random vehicle.
We therefore used these in all further experiments.

VIII. EXPERIMENTS AND RESULTS
We first describe how we created artificial benchmark
instances as actual real world instances were not available to
us. Then, the results of solving the original MILP as well as
the different Benders decomposition variants are presented
and compared.

A. BENCHMARK INSTANCES
The benchmark instances were created randomly, with prop-
erties of a real-world application at the Honda Research
Institute in mind. We consider the following combinations of
the number of time steps tmax and the number of EVs n:
• tmax = 32 and n ∈ {1, 2, 5}
• tmax = 192 and n ∈ {5, 10, 20}
• tmax = 768 and n ∈ {20, 50, 100}

For each of these combinations we consider rmax ∈

{4n, 8n, 16n} reservations. The other input values are set as
follows.
• 1t = 15min, i.e., T corresponds to 8 hours, 2 days, or
8 days.

• The maximum charging power is Pmax
= 3.3 kW and

the battery capacity is Ecap
= 20 kWh.

• For each vehicle v ∈ V , T avail
v = T and Ev,0 is selected

uniformly at random from [0,Ecap].
• For each reservation r ∈ R the reservation energy E res

r is
selected uniformly at random from [0,Ecap]. To deter-
mine the reservation interval its length is selected uni-
formly at random from [1, tmax

4 ] then the time interval
is placed randomly within the bounds 1 and tmax; actual
starting and ending time steps are obtained by rounding
down and up, respectively.

• Data on energy prices and surplus energies came from
the Honda Research Institute. They were also randomly
generated but according to models mimicking some real
expectations such as a day-night-cycle and the usage
of a photovoltaic system. The available surplus energy
is scaled according to the number of vehicles to obtain
meaningful instances.

• Costs for uncovered reservations and the factor α in
the objective function are set to cuncov = 150 Yen

kWh and
α = 75 Yen

kWh .
Thirty instances were created for each combination of tmax,

n, and rmax, yielding 810 instances in total, and wemade them
available online.3 Some of the more specific tests were per-
formed on a reduced instance set consisting of only the first
ten instances of each instance size to keep the computational
requirements reasonable. This will be indicated by referring
to the reduced instance set.

B. IMPLEMENTATION AND COMPUTING ENVIRONMENT
We used the MILP solver Gurobi 9.14 [28], which is a
leading commercial product. The models as well as the
Benders decomposition approach were implemented in Julia
1.65 [29]. The Julia package JuMP was used as interface to
the Gurobi [30]. Each experiment was performed on a single
core of an Intel Xeon E5-2640 v4 with a time limit of one
hour. We furthermore imposed a memory limit of 36GB. The
time given to the GVNS heuristic is limited to the time that
was needed to solve the SP in the previous iteration.

3https://www.ac.tuwien.ac.at/research/problem-instances/#evfcap
4https://www.gurobi.com
5https://julialang.org
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FIGURE 2. Difference in the objective values of solutions obtained from GVNS and ILS. A negative value means that the objective value of the GVNS is
lower (better) than the value of the ILS.

We solved the test instances with the introduced
approaches in different configurations. These configurations
and the results are presented in the following.

C. SOLVING THE MP
Before coming to results directly concerning the Benders
decomposition we compare our GVNS to an Iterated Local
Search (ILS), which uses the same neighborhood structures
as the GVNS for the local search but replaces the more
advanced shaking of the GVNS with a perturbation operation
that always removes the assignment of 70 reservations in the
perturbation step. The value of 70 was determined as a robust
choice by a preliminary experimental tuning on independent
problem instances. To generate instances for the comparison
we solved all instances of the EVFCAP with BDH and of
each run we selected one MP instance.

The results of the comparison for a selection of instance
sizes are shown in Figure 2. We gave the heuristics five, ten,
and 50 seconds for the sizes (tmax, n) = (192, 20), (tmax, n) =
(768, 20), and (tmax, n) = (768, 50), respectively, similar to
the time they would have when running as part of the Benders
decomposition. Each boxplot shows the differences between
the final objective values obtained by the GVNS and the
ILS. Negative values mean that the objective value from the
GVNS is lower and therefore better. As can be seen theGVNS
performs slightly better on almost all the instance sizes with
a median difference in the objective value of around 2500 for
(tmax, n, rmax) = (768, 20, 320). But as we will see later,
these are still rather minor differences – both approaches can
be said to perform reasonably well.

D. IMPACTS OF INDIVIDUAL IMPROVEMENTS
For the rest of this section we will refer to the Benders
decomposition with BD if the MP is solved to optimality in
each iteration, with BDG if the MP is solved by Gurobi only
up to a certain gap limit in the first iterations, and withBDH if
the MP is solved by the GVNS heuristic in the first iterations.
Concerning BDG, we remark that in our implementation the
constant offset c̃const in the reformulated objective function
was not considered as it does not affect the search space and
the feasibility and optimality of solutions; thus, the gap-limit

for the early termination was determined with c̃const = 0.
However, in all results listed in the following, the correct
values for c̃const as calculated from the original instances are
taken into account. Superscripts to BD, BDG, or BDH denote
the following:

• ext: the extended MP is used
• cuts: the inequalities from Section V for pairs of vehicles
are added from the beginning to the MP

• bnch: Branch-and-Check was used instead of the classi-
cal Benders decomposition scheme

We first evaluate for BDGext the impact on the number of
solved instances, i.e. instances for which a feasible solution
was found by the approach, and final optimality gaps when
allowing different gap-limits for solving the MP in the begin-
ning. The results for the reduced test set and two selected
instance sizes are shown in Figure 3. Note that if the gap is
zero the approach is identical to BD. As can be seen, only
one instance out of ten can be solved with BD for the large
instance size, but more than five instances out of ten can be
solved for any of the other evaluatedMP gaps. The number of
solved instances increases slightly with the used gap, rising
from six solved instances for 0.5% MP gap to nine solved
instances for 10% MP gap. Contrary to this, the final gap
gets worse with an increased MP gap for smaller instance
sizes. As a compromise we select anMP gap of 2% for further
experiments.

Next we compare BDGext to BDGext,cuts, BDGext,bnch,
BDG, and BDH . All experiments were conducted on the
reduced test set. A comparison of the number of iterations
respectively number of solved instances between BDGext and
BDGext,cuts on a small, medium-sized, and large instance size
can be seen in Figure 4. The number of iterations on the
small instances is up to 15% lower for BDGext,cuts and this
also leads to a lower runtime. However the version that does
not add static cuts in the beginning is able to solve more
instances of large size. Especially for size (tmax, n, rmax) =
(768, 100, 1600) BDGext can solve eight instances out of
ten while BDGext,cuts cannot solve any instance. We are
more interested in the performance on large instances and
therefore we chose to not add these cuts for the further
experiments.
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FIGURE 3. Numbers of solved instances and final gaps for different MP gap-limits in BDGextfor instances of two sizes.

FIGURE 4. Comparison of BDGext with and without additionally adding the static cuts from Section V.

Figure 5 shows a comparison of runtime, final gap, num-
ber of iterations respectively callback calls, and the number
of solved instances between BDGext and BDGext,bnch. Note
that the number of callback calls in BDGext,bnch correspond
to the number of so far feasible solutions for which the
respective dual SP was solved in order to possibly obtain
further cuts. We can see that the number of callback calls
in BDGext,bnch is significantly higher than the number of
iterations in BDGext for most of the instances. While for
small instances BDGext,bnch is faster than BDGext by a fac-
tor of two to three, the gap is larger by a factor of up to
four on some of the medium-sized instances and no large
instances with rmax ≥ 800 were solved by BDGext,bnch

whereas BDGext is able to solve most of these instances.

The reason for the worse performance of BDGext,bnch on
larger instances is that the SP needs to be solved much more
often and with many inferior solutions, which wastes more of
time.

We now investigate the impact on the dual bound when
shifting the variables Egrid and Esur from the SP to the MP as
done in the extended MP. Figure 6 compares the dual bounds
produced by BDGext and BDG on some selected instance
sizes. Since the objective function is minimized, the higher
the dual bound the better. While the dual bounds are similar
for smaller instances, BDGext gives significantly better dual
bounds for larger instances, especially when the ratio between
rmax and n is large. For rmax ≥ 400 BDG is only able to
give negative dual bounds, which are not reasonable because
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FIGURE 5. Comparison of BDGext with the branch-and-check variant BDGext,bnch.

FIGURE 6. Comparison of the dual bounds obtained from BDGext and BDG.

the original objective function (1) cannot yield values less
than zero. Recall that the Benders decomposition is based on
the reformulated objective function (23), and the trivial dual
bound for theMPwith this objective function can be negative.
The variant BDGext is able to find positive dual bounds on
these instances and we will see in the next subsection that
these bounds are nearly optimal.

Finally we also investigate the impact of using the GVNS
heuristic for the MP in the first iterations. Figure 7 compares
BDH with BDGext on different instance sizes. On most of
the small instances with tmax = 32 the runtime for BDH
is by 50 to 100 % larger than for BDGext. Contrary to this,
both, the number of solved instances and the objective values

are in general significantly better for larger instances. For
(tmax, n) = (192, 20), e.g., BDGext is not able to solve any
instances with rmax ≥ 160 while BDH solves them all.
Also the objective values obtained by BDGext for instances
with (tmax, n) = (768, 50) are up to a factor of nine higher
than the ones obtained by BDH . In other words Gurobi
is not able to find any reasonable solutions for the MP
for these large instances, while the GVNS performs quite
well.

Of all the considered improvements, the ones discussed
in the previous two paragraphs are most notable. Moving
the variables Egrid and Esur from the SP to the MP seems
to significantly improve the resulting dual bound on large
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FIGURE 7. Comparison of BDGext and BDH .

FIGURE 8. Comparison of final objective values and dual bounds of the different methods for three selected instance sizes. Trivial primal bounds are
obtained from the solutions that leave all reservations unassigned. The trivial dual bounds in 8b and 8c are calculated by the right hand side
expression in (30).

instances. Similarly using the heuristic for the MP seems to
significantly improve the objective value for large instances.
Therefore, in the following we will compare in more detail
the two approaches BDGext and BDH with each other and
with the MILP formulation (1)–(15) directly solved by
Gurobi.

E. COMPARISON OF THE MILP AND THE BENDERS
DECOMPOSITION APPROACHES
As we saw in the previous section, especially the Benders
decomposition variants BDGext and BDH are most promis-
ing. We therefore evaluate and compare these with the direct
solving of the original MILP, however, also using the refor-
mulated objective (23) to get rid of the variablesEv,tmax , on the
whole benchmark instance set. For short we abbreviate the
latter direct MILP solving just by MILP. Detailed results
are given in Table 2. These results are visualized for three
selected instance sizes in Figure 8. Each boxplot represents
the final objective values respectively dual bounds for a
specific approach applied to the test instances of the given
size. Let us first look at Figure 8a, where the approaches
are compared for the medium sized instances with ten EVs
and 40 reservations. The MILP outperforms the two Ben-
ders decomposition approaches for these instances with a
median gap of 0.1% compared to median gaps of 3.3%
and 13.5%, respectively. This changes for larger instance
sizes as can be seen in Figure 8b and Figure 8c, where the

approaches are compared on instances with 100 EVs and
400 and 800 reservations, respectively. Here BDH provides
excellent solutions with gaps to the dual bounds found by
BDGext around 15%while the other two approaches only find
solutions that are not much better than the trivial solutions
that leave all reservations unassigned. These insights coin-
cide with those of Sassi and Oulamara [5]. They also find
that the MILP formulation solved by a solver does not lead
to (reasonable) solutions for large instances, whereas their
heuristic is able to find good solutions for these instances.
BDGext gives good dual bounds while BDH finds worse or
no dual bounds. The original MILP only yields a meaningful
dual bound for some of the instances, while for others like
the ones with rmax = 800 it only finds poor trivial dual
bounds. When looking at the detailed results in the table, they
confirm that for large instances BDH finds the best solutions,
while BDGext finds the best dual bounds. One exception are
the largest instances with (tmax, n, rmax) = (768, 100, 1600)
where BDH does not find feasible solutions. The reason is
that not enough iterations are performed to get to anMP solu-
tion that is also feasible in respect to the charging constraints.
BDGext performs better here because the MP solutions are
worse but already feasible with charging constraints from the
beginning.

We also want to point out that the fraction between rmax
and n, which indicates whether the system is overbooked, has
a high influence on the runtime and gap. This can be seen
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TABLE 2. Comparison of the MILP, BDGextand BDH . The number of feasibly solved instances / optimally solved instances, the median final objective
values, and the median dual bounds are listed. Bold numbers indicate the best values among the three compared approaches.

TABLE 3. Mean objective values of solutions obtained by BDH and their composition in respect of the three terms of the objective function (1).

particularly well forBDGext for the instances with n = 10 and
n = 20. Here, solutions to almost all instanceswith rmax = 4n

could be found, but not many solutions for rmax = 8n and
none for rmax = 16n.

105800 VOLUME 10, 2022



J. Varga et al.: Computational Methods for Scheduling the Charging and Assignment of an On-Site Shared EV Fleet

FIGURE 9. Final SoC of EVs for some selected instance sizes.

FIGURE 10. Impact of changing 1t on the objective value and the solving time when directly applying the MILP solver.

Last but not least, Table 3 breaks the mean objective values
down into the values of its terms, i.e., the costs for energy
taken from the grid, the costs for uncovered reservations and
future costs. The solutions of BDH were taken for that pur-
pose, since they are consistently near optimal. Naturally the
costs for uncovered reservations dominate the two other terms
if rmax = 16n since then the system is overbooked and most
of the reservations cannot be served with the available EVs.

Furthermore the larger the instances get, the lower gets the
ratio of costs for uncovered reservations versus other costs,
provided that the ratio between rmax and n stays the same.
While for instances with (tmax, n, rmax) = (768, 100, 400)
these costs are zero, for instances with (tmax, n, rmax) =
(32, 1, 4) costs for uncovered vehicles are roughly four times
the other costs together. We believe the reason for this behav-
ior is that in larger instances random fluctuations become
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less relevant and there are more possibilities to compensate
for them and thus more reservations can be assigned to EVs.
In practice this means that a larger system reaches a higher
utilization of EVs. It should also be mentioned that in gen-
eral, future costs do not rise in proportion to the number
of EVs. For example, set rmax = 8n; then the average
future costs are 1056 for n = 1, 4575 for n = 10 and
11899 for n = 100. A larger system therefore also tends
to be able to leave the EVs at a higher SoC at the end of
the time horizon. This can also be seen in more detail in
Figure 9, where each boxplot represents the final SoCs of all
vehicles of solutions to instances of a specific instance size,
when solved with BDH . The vehicles in the solutions to all
instances with tmax = 192 or tmax = 768 have a median
final SoC of more than half of the battery capacity and can
therefore be considered well prepared to serve reservations
of the next time horizon when expecting a similar demand
of requests. In a schedule of the next time horizon EVs can
already serve reservations at the beginning leading to a higher
utilization of the EVs. We furthermore observe that a higher
ratio between the number of reservations and the number of
vehicles leads to a lower final SoC, which is an expected
behavior.

F. IMPACT OF CHANGING THE DEGREE OF TIME
DISCRETIZATION
Finally we investigated the impact on the solution qual-
ity and hardness of the instances when using coarser time
steps. To obtain a coarser instance from an existing instance
we arranged the time steps in blocks of 2, 4, 8, and
16 time steps, respectively, and merged the time steps of
each block into one. Reservation intervals and vehicle avail-
abilities are extended to span whole blocks, surplus ener-
gies of time steps in a block are added up, and for the
electricity cost the mean value of the cost of the individ-
ual time steps in the block is used. The derived problem
instances are more restrictive in the sense that solutions
to them can be transformed into feasible solutions to the
original instance but not vice versa. Therefore these coarser
instances have worse or equally good solutions while being
smaller.

Experimental results are shown in Figure 10. As expected
the coarser instances are easier to solve, with a factor on
the median running time of up to 100 for the instance size
(tmax, n, rmax) = (192, 5, 80) when having blocks of 16 time
steps. However merging the time steps increases the median
optimal objective value by more than 50% for the instance
size (tmax, n, rmax) = (192, 5, 20) and still by more than 22%
for the instance size (tmax, n, rmax) = (192, 5, 80). While
the reduced running time for the coarser instances looks
promising, the optimal objective value of these instances is
significantly worse.

IX. CONCLUSION
We considered a fleet scheduling problem that was not
addressed in the scientific literature so far. After the formal

definition we proved the problem to be NP-hard. We formu-
lated the problem as aMixed Integer Linear Program (MILP),
taking care in the details to achieve a strong linear program-
ming relaxation. Moreover, we suggested an additional class
of problem-specific strengthening inequalities, although it
turned out that in practice they do only have a minor impact
when using a modern MILP solver.

As an alternative to directly solving this MILP, we pro-
posed a Benders decomposition for the problem. The basic
variant of this Benders decomposition was enhanced by mul-
tiple measures. For one of these measures the variables relat-
ing to the energy consumption at each time step were moved
from the subproblem (SP) to the master problem (MP). This
allowed to also move related inequalities from the SP to the
MP making the linear programming relaxation of the MP
stronger. Moreover, we proposed a heuristic based onGeneral
Variable Neighborhood Search (GVNS). The heuristic is used
to solve the MP in the first iterations only approximately
but significantly faster. By switching to an exact method for
the MP afterwards the approach ultimately still yields an
optimal solution, given enough time and memory. Further-
more, we investigated the effect on the performance when
using Branch-and-Check, which solves theMP only once and
adds Benders cuts as lazy constraints, instead of the classic
iterative approach.

We experimentally compared the Benders decomposition
to solving the complete MILP on a set of artificial benchmark
instances and evaluated the effect of the different perfor-
mance improvement measures of the Benders decomposition.
It turned out that directly solving the MILP performs better
than the Benders decomposition on small to medium sized
instances. On large instances, however, the solving of the
original MILP fails to find reasonable solutions and mean-
ingful dual bounds. The Benders decomposition based on the
extended MP is here able to give better dual bounds and the
Benders decomposition with the GVNS finds better primal
solutions. Using Branch-and-Check and adding our strength-
ening inequalities did not improve the performance of the
Benders decomposition. Note that the GVNS heuristic does
not work for the extended MP and therefore it is not directly
possible to combine the Benders decomposition based on the
extended MP with the GVNS.

This aspect may be addressed in future work since such
an approach might yield both, good solutions and good dual
bounds at the same time. However, appropriately extending
the GVNS is not straight-forward. One possibility to solve the
issue would be a nested Benders decomposition, i.e., solving
the MP of the Benders decomposition with extended MP
by another Benders decomposition. While the outer Benders
decomposition is able to give good bounds, it is still possible
to use our heuristic to find good solutions to the MP of the
inner Benders decomposition.

Future work may also investigate a more fine-grained
approach for the amount of effort that is used to solve the MP
in the different phases of the whole optimization. It seems
reasonable to start with little effort and raising it whenever
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FIGURE 11. Primal subproblem.

the derived cut does not cut off or worsen the found MP
solution. Finally, the algorithm will again solve the MP
with the MILP solver to optimality to guarantee exactness
of the whole approach. When using the MILP solver for
the MP, one may adapt the allowed gap from higher to
lower values. For the heuristic the allowed runtime may be
adapted.

Last but not least, it would also be interesting to investigate
generalizations and extensions of the problem in future work.
Practically relevant aspects are to consider uncertainties, in
particular in the energy price or the available surplus energy,
or to consider non-linear maximal charging rates. Further
possible extensions are the consideration of also delivering
energy from the vehicles back to the grid, or to allow different
vehicle types. Vehicles could, e.g., have different battery
capacities or even specific characterics that may be required
by some of the reservations. In the original MILP model
vehicle-specific battery capacities can be directly considered
in a straight-forward way. Different further vehicle-specific
attributes, such as passenger capacities, can also be given for
the vehicles and respective constraints can be added. While
adapting the models in these ways is relatively easy, actual
running times for solving themmay differ significantly, either
in the negative or positive sense.

APPENDIX A
DERIVATION OF THE BENDERS CUTS
This part of the appendix deals with the derivation of the
Benders cuts. First feasibility and optimality cuts for the
basic Benders decomposition are derived. Afterwards we
derive feasibility cuts for the Benders decomposition with the
extended master problem.

A. BASIC BENDERS DECOMPOSITION
Benders cuts will be derived by solving the subproblem for
specific reservation assignments x̄ = (x̄r,v)r∈R,v∈V in a cur-
rent solution to the MP given by (24) to (32).

The primal subproblem SP(x̄) from Section VI is shown
again in Figure 11. To get feasibility and optimality cuts,
we have to derive the dual of this subproblem. In the primal
problem SP(x̄), the λ-variables in parentheses denote the dual
variables that correspond to each constraint. The resulting
dual subproblem is shown in Figure 12.

This dual subproblem can be simplified in multiple regards
as follows.
• Variable λ

p=0
v,t appears only once in (71) and is

unbounded. Therefore, it can always be chosen in a way
that the inequality is fulfilled. Thus, λp=0v,t as well as (71)
can be removed.

• Variables λsurt and λpv,t appear in the objective function
with positive coefficients and in two constraints that
only give upper limits. The value of such a variable
will always be the smaller upper limit in an optimal
solution.

This leads to the equivalent formulation given in Figure 13.
For reasons of clarity we define for a given solution to

DSP(x̄), denoted by λ̄Et , λ̄
lb
v,t and λ̄

ub
v,t ,

Cv,t := min

0, λ̄Et −
∑

k∈T ends∪{tmax}|k≥t

λ̄ubv,k −
∑

k∈T starts|k≥t+1

λ̄lbv,k

 .
(78)

1) FEASIBILITY CUTS
Feasibility cuts are inferred from extreme rays of the dual
subproblem in case this problem is unbounded. Let λ̄lbv,t ,
λ̄ubv,t , and λ̄

E
t represent such an extreme ray. We then have

to have λ̄Et ≤ 0 and the objective function without con-
stants (i.e., without α) has to be positive. The third term
of the objective function is zero in this case. Furthermore,
λ̄Et = 0 due to a similar argument as before. The formu-
lation can now be split into different parts for the different
vehicles, which are independent from each other. As the total
objective value is positive, some of these parts also have to
provide positive contributions and therefore also form rays.
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FIGURE 12. Dual subproblem.

FIGURE 13. Simplified dual subproblem.

Hence the problem of finding extreme rays can be decom-
posed into smaller problems, one for each vehicle. Using
the obtained rays, we get the following feasibility cuts for
vehicles v ∈ V .∑
t∈T ends∪{tmax}

(
Ecap
+ E res,end

v,t−1 − Ev,0
)
λ̄ubv,t

+

∑
t∈T starts

(
E res,start
v,t − Ev,0

)
λ̄lbv,t

+

∑
t∈T home

v

1tPmaxCv,t

=

∑
t∈T ends∪{tmax}

Ecap
+

∑
r∈R|tendr ≤t−1

E res
r xr,v − Ev,0

 λ̄ubv,t
+

∑
t∈T starts

 ∑
r∈R|tstartr ≤t

E res
r xr,v − Ev,0

 λ̄lbv,t

+

∑
t∈T avail

v

1tPmaxCv,t

1−
∑

r∈R|t∈T res
r

xr,v

 ≤ 0 (79)

The factors γc,r and the constant γ ′c can be obtained from
these cuts by comparison of the coefficients of x.

2) OPTIMALITY CUTS
Optimality cuts are inferred from extreme points of the dual
subproblem. Let λ̄1E

v,t and λ̄Et be such an extreme point.
Unlike for extreme rays, we cannot discard constants so the
above simplifications do not work here. The resulting cuts
are∑
v∈V

∑
t∈T ends∪{tmax}

Ecap
+

∑
r∈R|tendr ≤t−1

E res
r xr,v − Ev,0

 λ̄ubv,t
+

∑
v∈V

∑
t∈T starts

 ∑
r∈R|tstartr ≤t

E res
r xr,v − Ev,0

 λ̄lbv,t
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FIGURE 14. Dual subproblem after extending the MP.

FIGURE 15. Feasibility cuts after extending the MP.

+

∑
t∈T

Esurmax
t ·min

(
0,−α − λ̄Et

)

+

∑
v∈V

∑
t∈T avail

v

1tPmaxCv,t

1−
∑

r∈R|t∈T res
r

xr,v

 ≤ µ.
(84)

Again, βc,r,v and β ′c can be derived by comparison of coeffi-
cients.

B. EXTENSION OF THE MP
Starting point for the Benders cuts is now the MP given
by (44) to (56). The dual subproblem changes in some
regards compared to the dual subproblem of the basic Benders
decomposition.
• The term with λsurt in the objective drops because Esur

t is
no longer part of the subproblem.

• Esur
t and Egrid

t turn into constants, leading to a new term
in the objective function.

• The constraints corresponding to Esur
t and Egrid

t are
dropped.

After simplification the dual of the updated subproblem
can be stated as shown in Figure 14.

Note that there are no optimality cuts it this case as the
variables from the SP do not occur in the objective function
of the MP.

1) FEASIBILITY CUTS
Let λ̄pv,t , λ̄

ub
v,t and λ̄

lb
v,t be a solution to the above dual subprob-

lem that leads to a positive objective value. The feasibility

cuts can then be formulated as shown in Figure 15. Once
again, γ ext

c,r,v, γ
grid
c,t , γ sur

c,t and γ ′extc can be obtained by com-
parison of coefficients.
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