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Simple Summary: Acute myeloid leukemia (AML) is the second most frequent leukemia entity in
children and adolescents, and definitely the most aggressive variant. Multiparameter flow-cytometry
is one of the methodologies most useful to monitor the number of remaining leukemic cells in
bone marrow (minimal residual disease, MRD) in AML patients, because it is widely available
and applicable to most patients. However, AML flow cytometry data show very complex patterns
and identifying leukemic cells in the data is subjective, time-consuming and requires experienced
operators who are not available world-wide. In this paper, we approach automatic assessment of
AML flow cytometry samples with a novel semi-supervised machine learning model, leveraging
implicit expert knowledge stored in a collection of manually assessed samples. Because AML data
exhibit a high degree of variability in the patterns of blast cell populations that is difficult to model,
the model detects anomalies starting from the appearance of normal cell populations.

Abstract: Leukemia is the most frequent malignancy in children and adolescents, with acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AML) as the most common subtypes.
Minimal residual disease (MRD) measured by flow cytometry (FCM) has proven to be a strong prog-
nostic factor in ALL as well as in AML. Machine learning techniques have been emerging in the field
of automated MRD quantification with the objective of superseding subjective and time-consuming
manual analysis of FCM-MRD data. In contrast to ALL, where supervised multi-class classification
methods have been successfully deployed for MRD detection, AML poses new challenges: AML is
rarer (with fewer available training data) than ALL and much more heterogeneous in its immunophe-
notypic appearance, where one-class classification (anomaly detection) methods seem more suitable.
In this work, a new semi-supervised approach based on the UMAP algorithm for MRD detection
utilizing only labels of blast free FCM samples is presented. The method is tested on a newly gathered
set of AML FCM samples and results are compared to state-of-the-art methods. We reach a median
F1-score of 0.794, while providing a transparent classification pipeline with explainable results that
facilitates inter-disciplinary work between medical and technical experts. This work shows that
despite several issues yet to overcome, the merits of automated MRD quantification can be fully
exploited also in AML.

Keywords: acute myeloid leukemia; anomaly detection; UMAP; set-transformer; self-attention; flow
cytometry; minimal residual disease; automated gating

1. Introduction

Leukemia accounts for one-third of malignancy in children and adolescents, resulting
in the most frequent childhood cancer (<18 years) [1]. The most common sub-types are
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acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), accounting for
approximately 75% and 20%, respectively, [2]. Throughout the past decades, there has been
a significant improvement of outcome for both ALL and AML, which is mostly attributable
to improvements in diagnostic techniques and treatment protocols, superior risk-group
stratified therapy, enhanced salvage at relapse, international collaboration as well as ad-
vances in supportive care. Despite the overall advancements, AML has a less favorable
prognosis than ALL; the long-term survival rate for ALL has risen to approximately 90%,
whereas for AML the survival rate is currently above 70% in Europe [1,3,4]. In addition,
the relapse probability is higher for AML and chances of survival for relapsed patients
remain at 30–40% [5–7]. A strong prognostic factor for treatment outcome and relapse
risk is the minimal residual disease (MRD), which is defined as the fraction of remaining
leukemic cells (blasts) at specific timepoints of treatment. MRD is an important measure
to monitor treatment response, guide risk stratification and tailor treatment plans to indi-
vidual disease patterns in order to provide the best possible outcome while minimizing
toxicity of therapy [8,9].

A well established technique for MRD assessment is the detection of leukemia-
associated immunophenotypes by multi-parameter flow cytometry (FCM-MRD) [10,11].

The amount of cells (events) per FCM-MRD sample varies from 104 to 106 and the
proportion of blasts can be as low as 0.001%, turning MRD detection into searching for the
needle in a haystack. Manual analysis of FCM-MRD data is based on gating, a process in
which FCM experts select groups of events (i.e., cell populations) by drawing polygons
around them in 2D scatter plots. For the assessment of one sample several different
scatter plots are analysed, each showing a projection of the same sample onto different
combinations of two features of the multi-dimensional data space. In order to identify
the target populations multiple selections have to be combined by Boolean operations.
Manual gating is resource-intensive, and subject to possible inconsistencies [12]. If cell
populations exhibit a high degree of heterogeneity as in the case of AML, where the blasts
vary in terms of shape, location and density between patients or even between different
blast populations of the same patient (see Figure 1), manual gating becomes a very complex
and error prone task.

Patient B

Patient A

Other

Blast

Figure 1. FCM-MRD data of two different patients. FCM data are typically visualized for manual
gating by multiple 2D plots with different parameters as axis. Each dot represents the measurement
vector of a single cell measured with a flow cytometer. Red dots denote leukemic cells and grey dots
healthy cell populations. The Cluster of Differentiation (e.g., CD45) indicate antigens while SSC-A
and FSC-A display the cell’s side and forward scatter. Note that the blast population varies in location
and density between the different patients.

In the background of the technological advancements of flow cytometers, capable
of producing FCM data with more and more parameters resulting in high dimensional
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data spaces with complex distributions of events, numerous machine learning (ML) ap-
proaches have been developed to automate FCM data analysis, while manual gating is
restricted to 3 features that can be visualized at once, automated gating can utilize the full
multidimensional parameter space. Holistic approaches that take a whole sample as input
are able to capture the spatial relation of cell populations to each other within the sample.
These methods have been shown to be superior over classification methods learning fixed
decision boundaries applicable to different samples [13,14]. A high degree of inter-sample
variance in the shape and positions of sub-populations seems to be the reason for these
results. An overview of state-of-the-art methods is given in Appendix A.

However, with AML data there are additional challenges to overcome. AML is less
common than ALL, which limits the use of supervised methods due to the scarcity of
training data. Moreover, blast populations are much more heterogeneous than in ALL (see
Figure 2). In addition to the standard staining panel (markers), sample or patient-specific
drop-in markers are often required to correctly distinguish healthy from leukemic cells.
Therefore the data spaces of AML samples are generally not restricted to the same set of
features and the largest common set of features is not always sufficient to identify the blast
population.

AML

ALL

Blast

Other

Figure 2. This figure shows the Gaussian kernel density estimation of events pooled together from
randomly chosen FCM samples of ALL and AML patients. The density estimation of blasts is shown
in red, for normal healthy cell populations grey is used. Blasts are a heterogeneous cell population
with varying levels of heterogeneity for different acute leukemia sub-types. In AML samples the
blast populations have a larger variance than in ALL.

In this paper, a novel one-class classification approach based on Uniform Manifold
Approximation and Projection (UMAP) [15] is presented for automated MRD assessment
in FCM data of AML patients. It addresses the challenges mentioned above by omitting
the training process and directly predicting leukemic blasts without the requirement of a
pre-trained model. The core idea is to mix events of an FCM sample to be classified with
randomly selected events of control samples, i.e., samples without blasts, and apply UMAP
to separate cell populations into clusters. Clusters with little to no events of control samples
are declared as blast clusters. Consequently, no labelled FCM data with leukemic cells are
necessary, only labels of normal cell populations in control samples are used.

The Set-Transformer model [16], which is based on the self-attention mechanism,
is suitable to model event distributions in higher dimensional data spaces. It can be
considered as a supervised holistic approach and has been employed in our experiments as
a successor model of [13,14]. We compare our proposed model with the Set-Transformer
based model and outperform it by more than 300% (details of the Set-Transformer based
classification on ALL data can be found in [17]).
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UMAP has proven to find and preserve meaningful clusters in cell data while embed-
ding the data in a lower dimensional space, where the multidimensional information is in-
corporated [18–20]. The low dimensional embedding allows for visual inspections through-
out the prediction process leading to a transparent classification pipeline and explainable
results that facilitate inter-disciplinary work between medical and technical experts.

2. Materials and Methods

In this work, a semi-supervised anomaly detection method for automated AML MRD
quantification is presented using labels of healthy cell populations in blast-free samples
only. Its main building blocks are UMAP and Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) [21]. Our method is compared to the supervised
approach based on self-attention blocks which is successfully applied to ALL data in [17].
The Set-Transformer, UMAP and HDBSCAN are introduced in Appendix B, where their
suitability for our problem setting is discussed. An overview of the proposed classification
pipeline and experimental setup is given in the following sections.

In Appendix B.6 we discuss the clustering of several well-established clustering meth-
ods within flow cytometry as an alternative to the clustering of UMAP and HDBSCAN.

2.1. UMAP-HDBSCAN Classification Pipeline

The method proposed is able to predict blasts in AML FCM data by using blast free
samples (control samples) only. Blast detection is a binary classification task: each event of
a sample is assigned either the label blast or non-blast. The presented classification pipeline
is divided into four steps (as depicted in Figure 3):

1. A randomly selected subset of events coming from multiple MRD free control samples
is mixed to the input FCM sample, which is to be assessed. The result is a mixed set
of events.

2. The UMAP embedding of the mixed set is created. In this step, possible differences
in the appearance of healthy cell populations in the control samples and the input
sample are reduced by exploiting UMAP properties as explained in Appendix B.2.

3. Clusters are identified in the low-dimensional UMAP representation with HDBSCAN.
4. The clusters formed from cancer cells should not contain any or only a few events

from control samples, as control samples do not contain blasts. Hence, clusters with
a very low amount of control-events are most likely blast clusters. An empirical
evaluation on hold-out samples led to a threshold of 5%. Test-events in those clusters
are labelled as blasts, all others as non-blasts.

For a detailed description of the sampling strategy for control-events in the first step
and reasoning for all parameters used see Appendix B.5.2.

2.2. Experimental Setup

In this section, the experimental setup is described. First, the data set and evaluation
criteria are introduced and finally a brief overview of the experiments conducted is given.

2.2.1. Data Set

Sampling and research was approved by local Ethics Committees, and informed
consent was obtained from patients or patient’s parents or legal guardians according to the
Declaration of Helsinki. Sample preparation and staining was done essentially according to
international guidelines [9]. Per sample, a number of 5× 105 cellular events was acquired.
For a detailed statistics on the number of cellular events per sample see Table A5.

The following data sets were used.
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Figure 3. Schematic illustration of the method proposed for automated MRD detection in AML
FCM data.

VIE MRD-Test Data

The data were collected between 2016 and 2021 at St. Anna Children’s Cancer Research
Institute (CCRI) in Vienna using a Navios (Beckman Coulter, Brea CA, USA) flow cytometer.
The samples were stained using customized dried format tubes (DuraCloneTM, Beckman
Coulter, Brea, CA, USA) and a dual tube approach. Both tubes contain eight fluorochrome-
conjugated antibodies of which 5 are shared by both tubes (“backbone markers”: CD34,
CD117, CD33, HLA-DR and CD45). The “leukemia associated immunophenotype- (“LAIP”)-
tube” consisted of the following antibodies CD15 FITC/ CD34 ECD/ CD117 PC5.5/ CD33
PC7/ CD11b APC-Alexa750/ CD14 APC-Alexa700/ HLA-DR Pacific Blue/ CD45 Krome
Orange plus patient specific drop-ins in PE and APC. Patient specific markers for optimal
discrimination of leukemic blasts from normal regenerating cells are determined at the
time of diagnosis and used in the follow-up for MRD detection and quantification [11].
The “colony formation unit (“CFU”)-tube” consisted of the following antibodies: CD38
FITC/ CD34 ECD/ CD117 PC5.5/ CD33 PC7/ CD45RA APC-Alexa750/ CD123-APC
Alexa700/ HLA-DR Pacific Blue/ CD45 Krome Orange. For drop in markers in the CFU
tube, CD371 PE and CD99 APC were used. For full details on antibodies see Table A1.
We used a total of 66 data files (LAIP, n = 37; CFU, n = 29) from 10 patients with positive
MRD levels from different timepoints of therapy. For a full listing of timepoints of therapy
present in the data set see Table A2. Tables A3 and A4 give details on clinical and biological
patient characteristics as well as the LAIPs identified per patient.

VIE Control-Control Data

To obtain MRD negative control samples, we stained bone marrow (BM) samples of
pediatric patients without any history of myeloid malignancy. In addition we used BM
samples from pediatric patients with AML at a later stage of therapy and with proven MRD
negativity (via flow cytometry and/or molecular methodology (RT-PCR)). The data were
collected between 2015 and 2021 at St. Anna Children’s Cancer Research Institute. Samples
were stained as indicated above using LAIP and CFU tubes. We used a total of 80 data files
(LAIP, n = 43; CFU, n = 37).

The events of all samples in the two data sets were labelled using manual gating by at
least two experts to obtain objective and reliable ground-truth data. Whenever available,



Cancers 2022, 14, 898 6 of 27

results were confirmed using an independent molecular methodology (RT-PCR). Kaluza
2.0 software (Beckman Coulter, Brea, CA, USA) was used for manual data analysis. All
obtained samples are manually gated following the same procedure. First the events are
filtered by excluding non-viable cells, debris and doublets. Remaining events (cells) are
selected based on expression of CD45 in a gate called Denominator and contain both, normal
healthy cells as well as blasts (if present in the sample). Based on expression of the stem cell
marker CD34, blasts can be divided in CD34 positive or CD34 negative blasts. The latter
are further defined as events with low side scatter (SSC) properties and as such fall in the
so called bermude area on the CD45/SSC bi-dimensional plot. Cells within the bermude
area are further categorized in monocytes, granulocytes, proerythrocytes or promyeloctyes,
after exlusion of basophiles, plasmacytic dendritic cells, mast cells and plasma cells.

The resulting output of a sample analysed by FCM is a matrix E ∈ RN×m, where each
row corresponds to a single cell (event). The number of rows N denotes the number of
measured events, which can be different for every sample, and the number of columns m
denotes the number of features extracted. Each sample is compensated and transformed
with a logical transformation in a pre-processing step.

For LAIP tubes drop-in markers are sample- (patient-) specific and mostly not present
in control samples. Those have to be omitted, as the input vectors need to be of same length
and corresponding to the same features for the experiments in this paper. On the contrary,
for CFU-tubes drop-ins are fixed and can therefore be included.

2.2.2. Evaluation

For the evaluation of experiments precision p, recall r and F1-score F1 are calculated
on a single event basis for every FCM sample in the test set:

p =
TP

TP + FP
, r =

TP
TP + FN

, F1 =
2TP

2TP + FP + FN
,

with TP as number of true positive events (blasts identified as blasts), FP as false positive,
and FN as false negative events in the classification of a FCM sample. The final scores used
for comparison between experiments are determined by taking the mean and median of
precision p, recall r and F1-score F1 over the samples of the test set. If the number of blast
cells nblasts in a sample is below a threshold, the sample is considered as MRD negative.
According to international standards this threshold is 50 in the case of AML-MRD. If the
method predicts nblasts < 50 cells in a MRD negative sample precision, recall and F1-score
are set to 1.

2.2.3. Experiments

Four different experiments for MRD quantification in FCM data of AML patients are
conducted. First, we apply the supervised method based on the self-attention mechanism
of the Set-Transformer. Then the method proposed is tested and the impact of pre-filtering
of events as well as variations of control samples is explored. A detailed description of all
experiments conducted is given in Appendix B.5.

3. Results

In this section, the results of the experiments are presented. Average precision (p),
average recall (r), average F-Score (avg F1), and median F-Score (med F1) are used for
comparison as explained in Section 2.2.2. Results for experiments, where tube-specific
marker were used, are given seperatly for CFU and LAIP as well as combined (CFU and
LAIP).

3.1. Set-Transformer

The approach based on the self-attention mechanism (see [16]) works well for MRD
detection in ALL [17]. For AML, however, results are rather disappointing (Table 1).
Restricting the marker panel to the 5-color backbone (BB) panel in order to increase training
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data yields worse results than exploiting the 8-color CFU (+ drop-ins) and LAIP tube panel.
When looking at the results for the tubes separately no big difference is noticeable. The low
scores could be attributed to a data problem as very little training and validation data are
available (see Table A6), though in [17] it is shown that for ALL the approach works for
training and validation sets as small as 10 samples. This highlights the additional challenges
present in AML MRD quantification, namely a more limited data availability in combination
with a more heterogeneous target population. Besides, while for the experiments in [17]
data from the same timepoint (day 15 after induction therapy) were taken, the scarcity of
AML FCM data demands to include FCM samples from different stages during and after
therapy leading to additional varieties of healthy cell populations.

Table 1. Experimental results for the supervised approach based on the Set-Transformer (ST) [17].
A patient cross validation was performed and thus the train and validation set change per patient.
Experiments were conducted for the backbone marker (BB) as well as the full 8-color LAIP and
CFU panel.

Experiment N-Test p r Avg F1 Med F1

ST-LAIP 37 0.392 0.468 0.356 0.155
ST-CFU 29 0.404 0.448 0.357 0.186

ST-CFU and LAIP 66 0.398 0.459 0.356 0.177
ST-BB 66 0.335 0.465 0.330 0.107

3.2. UMAP-HDBSCAN Classification Pipeline

With only 15 control samples, the proposed classification pipeline, reaches a 1.44 times
better performance than the Set-Transformer approach with respect to average F1-score; the
median F1-score triples. When looking at the results for CFU and LAIP tubes separately, it is
revealed that LAIP tube samples perform worse (Table 2). Figure 4 shows the sample-wise
results of the proposed classification pipeline in B compared to the Set-Transformer in A.

Table 2. Results of the proposed classification pipeline. For CFU and LAIP tubes separately and
combined.

Experiment N-Test N-Control p r Avg F1 Med F1

UMAP-LAIP 37 15 0.563 0.462 0.443 0.253
UMAP-CFU 29 15 0.572 0.812 0.607 0.880

UMAP-CFU and LAIP 66 15/15 0.567 0.612 0.514 0.595

Due to the transparency of our method samples can be inspected at any stage of the
pipeline. We take advantage of this property and examine samples that score F1 ≤ 0.5.
The main issue identified is the lack of drop-in markers. In some cases blasts cannot be
sufficiently separated from non-blasts in the embedding space without taking into account
those additional markers. Figure 5 shows the UMAP embedding of test samples using back-
bone markers only, tube-specific markers and tube-specific + drop-in markers. Based on the
examination of those plots, approximately 25% of all LAIP samples require the additional
drop-in markers to separate blasts from non-blasts in the UMAP embedding space. For CFU
samples the drop-ins are fixed and can thus be included as explained in Section 2.2.1. This
explains the performance differences between LAIP and CFU tube samples.
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A

B D

C

Figure 4. F1-scores and predicted MRD values of automatic assessment compared to the manually
obtained ground truth. Each dot represents a single sample, the position encodes the MRD values
and the color the F1-score of a sample. Predictions that are within the range of either less than 3 times
or more than 1/3 of the true MRD are considered as acceptable (correct) predictions [22]. These
so called concordance margin is visualized as gray lines around the first median. The plots are
partitioned into four quadrants by the threshold of 0.1% (thin vertical and horizontal lines), which is
the lower clinically relevant resolution. Each plot shows the results of a different experiment using the
8-color tube-specific panels plus drop-ins for CFU samples (A): Set-Transformer (Table 1), (B): UMAP-
HDBSCAN Classification Pipeline (Table 2), (C): UMAP-HDBSCAN Classification Pipeline with
Pre-Filtering (Table 3), (D): UMAP-HDBSCAN Classification Pipeline—Variation of Control Samples
(Table 4). Samples that are considered as negative (less than 50 Blast events) are located at the
origin of coordinates and occur in following quantity: (A): 3 (B): 1 (C): 2 (D): 2. The samples where
the automatic assessment failed to detect any MRD despite an MRD of >0.01% are samples of the
LAIP-panel and thus lack of patient-specific drop-in markers. Those drop-in markers are important
for those samples to separate blasts from non-blasts. Consequently, the blasts are not separated
from normal, healthy cells in the UMAP embedding and do not get assigned their own cluster by
HDBSCAN.
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Other

BlastA B C

Figure 5. UMAP embedding of a MRD positive FCM sample using (A) 5-color backbone panel, (B)
the 8-color LAIP panel, and (C) the full panel (LAIP plus drop-in markers). UMAP can only properly
separate blasts in the embedding space given the drop-in markers. We cross-checked several UMAP
embeddings with medical experts in cases where UMAP has a very clear separation of blast clusters
but some remaining blasts mixed together with healthy cells. The blast gates of manual gating often
were drawn through very dense areas, where slight shifts can have a big effect in terms of absolute
numbers of blasts. In most cases (such as in (C)), subsequently correcting the gates also resulted in
more coherent clusters consistent with UMAP.

Table 3. Results of the proposed classification pipeline with pre-filtered events for CFU and LAIP
tubes separately as well as combined.

Experiment N-Test N-Control p r Avg F1 Med F1

UMAP-LAIP 37 15 0.624 0.562 0.526 0.680
UMAP-CFU 29 15 0.630 0.763 0.599 0.730

UMAP-CFU and LAIP 66 15/15 0.627 0.649 0.557 0.680

Table 4. Results of the proposed classification pipeline for varying number of control samples.

Experiment N-Test N-Control p r Avg F1 Med F1

UMAP-LAIP 37 15 0.563 0.462 0.443 0.253
UMAP-LAIP 37 30 0.570 0.538 0.514 0.793
UMAP-LAIP 37 43 0.593 0.525 0.505 0.794

UMAP-CFU 29 15 0.572 0.812 0.607 0.880
UMAP-CFU 29 30 0.566 0.765 0.596 0.785
UMAP-CFU 29 37 0.552 0.774 0.587 0.805

UMAP-CFU and LAIP 66 15/15 0.567 0.612 0.514 0.595
UMAP-CFU and LAIP 66 30/30 0.568 0.636 0.549 0.793
UMAP-CFU and LAIP 66 37/43 0.575 0.632 0.540 0.794

Other issues identified are false positive clusters when healthy cell populations are not
sufficiently covered by control-events. Since drop-in markers are included for CFU samples,
for most samples blasts form a seperated cluster in the UMAP embedding space and are
correctly identified as blasts. However, additional false positive clusters arise, which is
also noticeable in the low precision p = 0.572 but high recall r = 0.812. False positive
clusters can arise in combination with microclusters, where HDBSCAN predicts several
smaller clusters of one cell population. Microclusters are no problem in general as long
as control-events are well distributed. However the smaller the clusters, the more likely
it is to miss out on control-events and hence to have false positive clusters. Additionally,
we found that for samples where blasts form a clear, separated cluster in the embedding
space, the threshold of 5% control-events used to predict blast clusters can be a source
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for false negatives. An example of each issue identified as well as an example for perfect
classification is given in Figure 6.

Sample Composition HDBSCAN Clusters Ground Truth Prediction

A

B

C

D

OtherOther

Figure 6. Each row corresponds to one FCM sample that is analysed. The first column shows the
composition of test- and control-events, the second the clusters detected by HDBSCAN (each color
defines one cluster), the third column shows the embedding of the test sample only and the blasts
found by manual gating (arrowheads point at blasts) and finally, the last column the detected blasts
by the method proposed, while sample (A) is a prime example, where blasts form a separate cluster
that is correctly detected, (B–D) are examples for the issues identified. (B) shows a sample, where
blasts form a separated cluster, yet it was not detected as the percentage of control-events in this
cluster was a bit above the 5% threshold. (C) is an example for false positive clusters. The blast
cluster was correctly identified but others as well due to poor coverage of healthy cells and a finer
HDBSCAN clustering. Finally, (D) is a sample where blasts are not well separated in the embedding
space due to missing drop-in markers and hence blasts are not detected as single cluster.

3.3. UMAP-HDBSCAN Classification Pipeline with Pre-Filtering

As stated in Section 2.2.1 the bermude area is not a single cell population but is
comprised of various different cell populations defined by small side scatter properties
and rather dim to medium CD45 expression. This implies that the bermude area is much
more heterogeneous than a single cell population such as the CD34 positive cells. This
is reflected in the F1-scores of the pre-filtering; predicting CD34 positive cells with the
Set-Transformer architecture yields higher results than predicting events in the bermude
area. When comparing the outcome obtained with tube-specific markers and backbone
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markers, it is revealed that for this classification backbone marker are sufficient. In the case
of predicting events in the bermude area, more training data provide better results than
more markers (Table 5).

Table 5. Results of predicting CD34 positive events and those in the bermude area (CD34 neg) with
the Set-Transformer (ST). For tube-specific results, using the 8-color LAIP and CFU (+drop-ins) panels
the number of test and training samples are given separately. 20% of the training data are used
for evaluation.

Experiment N-Test N-Train p r Avg F1 Med F1

ST-CD34 pos BB 66 80 0.890 0.918 0.889 0.914
tube-specific 29/37 37/43 0.927 0.874 0.884 0.914

ST-bermude BB 66 80 0.687 0.890 0.742 0.779
tube-specific 29/37 37/43 0.632 0.896 0.702 0.720

When applying the proposed method to the distilled test sample overall mean and
median F1-score improve in comparison to the unfiltered experiments. Looking at the tube
results separately, we can see an increase for LAIP samples, whereas for CFU samples
a slight decrease is noticeable (Table 3). The performance increase for LAIP samples is
attributable to the fact that pre-filtering reduces variations of healthy cells and hence
counteracts false positive clusters. The remaining samples for which MRD prediction
fails are mainly those, where blast are not sufficiently separated from non-blasts in the
embedding space due to missing drop-in markers. With respect to CFU samples, precision
has improved as false positive clusters have decreased. The slight performance drop is
explained by the additional layer of potential error added by the pre-filtering process.
On average the prediction of CD34 positve events and those in the bermude area is worse
for CFU than LAIP samples and the additional layer of error has thus more effect on CFU
samples. Figure 4C shows the sample-wise results of the proposed classification pipeline
with pre-filtered events.

3.4. UMAP-HDBSCAN Classification Pipeline-Variation of Control Samples

One way to cope with variations of healthy cell populations is to reduce them before-
hand in a pre-processing step like in the previous experiment. Another way would be to
improve the coverage of possible variations by using more control samples. We test our
method for double as many (30) and all control samples available. The performance for
LAIP samples increases using 30 control samples instead of 15 but stagnates when adding
more. For CFU samples we see a slight drop when increasing the number of control sam-
ples. When examining the results for each element in the test set separately, it is revealed
that the samples that yield the lowest scores are the same as with 15 control samples with
minor fluctuation. Looking at the results for both tubes combined adding more control
samples shows a similar result as the pre-filtering experiment above, with a lower mean
F1-score but higher median F1-score.

With respect to the question whether capturing more variety within one sample or
between samples is of bigger importance, the results indicate that it is more beneficial to
include less events from more control samples than vice versa. Nevertheless, we observed
that with increasing number of control samples the control-events additionally transformed
into the embedding space tend to be more spread between existing clusters, which is
explicable by the following. The number of events selected per sample decreases when
more control samples are added. If a cell population is rather heterogeneous within one
sample, the additionally selected events run risk to be too different and to not adhere to the
healthy cell populations already embedded similar to as demonstrated in Figure A3. This
can lead to false positive clusters as well as false negative clusters if those “lost” control-
events contaminate blast clusters and hence can have a slight reverse effect than intended.
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Figure 4 shows the MRD detected with the methods above versus MRD determined
by manual gating for each test sample (CFU and LAIP).

4. Discussion

In this work, a novel method based on UMAP and HDBSCAN for MRD detection
in AML FCM samples is introduced. The approach does not require model-training and
only uses control samples that do not contain leukemic cells. It falls in the category of
one-class classification approaches, since only labels of healthy cell populations in control
samples are utilized. We compare our method to a supervised approach based on the
Set-Transformer that has proven to be successful for ALL data [17]. With only 15 control
samples our approach reaches an average F1-score of 0.514 and median F1-score of 0.595.
Those results outperform the Set-Transformer approach by more than 40% and 200%,
respectively. The low scores of the Set-Transformer (avg F1 = 0.356, med F1 = 0.177) are an
indication that one-class classification methods are more suitable than supervised methods
for MRD detection in AML due to data scarcity and heterogeneity of blast populations. By
removing events from the test sample in a pre-processing step, the search for blasts can be
narrowed down, which further improves performance reaching an average F1 = 0.557 and
median F1 = 0.680. The main issue identified was that sample-specific drop-in markers
are omitted, which can be crucial for separation of blast and non-blasts in the UMAP
embedding. When exploring the impact of additional control samples it was found that
selecting events from a bigger pool of control samples can counteract the prediction of false
positive cluster by covering more inter-sample variations of healthy cell populations but
should be used with caution as it can lead to an opposite effect due to the sampling strategy.
Overall, it yields performance improvements similar to reducing possible variations by
pre-filtering. A core functionality of UMAP is visualizing high-dimensional data, though
in this work it is a crucial part of the classification pipeline proposed. The visualization,
however, is a pleasant side aspect that makes the whole classification process transparent
and interpretable. The resulting classification of events is comprehensible and facilitate
inter-disciplinary work between medical and technical experts.

4.1. Limitations

The method presented is subject to some limitations that we outline in this section.
Since the sampling of control-events is a random procedure and UMAP as well as

HDBSCAN are non-deterministic algorithms, results can differ slightly from run to run.
The variability of results can be reduced by setting a seed-value or repeating experiments
several times and looking at the average of results.

As discussed in Section 3.2 and depicted in Figure 5 drop-in markers are necessary in
some samples to facilitate blast separation in an UMAP embedding. It is assumed that the
drop-in markers entail additional information for blast separation in high dimension and
are therefore useful beyond their application in 2D gating scatter plots. Drop-in markers
are utilized in the manual gating process, not using them in an automated process neglects
helpful information and is therefore a major limitation of the proposed approach.

4.2. Future Work

Given that UMAP is a graph-based algorithm and given its potential to form bio-
logical meaningful clusters, Graph Neural Networks (GNN) seem worthwhile exploring.
The graph constructed by UMAP, which is an approximation of and thus inherits informa-
tion of the manifold the data relies on, could be used as input of a node classification or
anomalous subgraph detection task. This would be an holistic approach since not only the
feature vectors but also the relation of cell populations within one sample are taken into
account through the node connectivity matrix of the graph.

As mentioned in Appendix B.5.2 and Section 3.4, the proposed method relies on
effective sampling from a data base of control-events. The main goal is to sample events
of the control cases, such that the resulting event pool is as representative as possible
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describing all possible data variations. This objective is tried to be fulfilled by sampling a
fixed relative amount of events per labeled cell population from each sample. However,
such sampling strategies still over present the dense regions of each cell population and are
therefore not optimal regarding data variation. Sampling with respect to maximum mean
discrepancy (MMD) as described in [23] could be one way to enhance the sampling process.
Selecting events from a sample while minimizing the squared MMD yields selected events
whose distribution approximates the sample’s data distribution.

Currently, the fixed global threshold of the proportion of control-events to detect blast
clusters represents a limitation of the method. It could be beneficial to use an adaptive
sample specific threshold determined by the statistics of the control-events proportion of
all clusters of a sample.

Another promising branch of future development is to utilize all drop-in markers of
a sample during processing. Utilizing all drop-in markers requires to take the relation
between events without drop-in markers (e.g., from control samples) to neighbouring
events with drop-in markers (e.g., from test samples) into account. A common way is
to predict an event’s unknown marker expression level by nearest neighbour imputation
based on the overlapping markers [24–28]. Such approaches assume that each event
is nearly identical to the nearest neighbouring events. Possible UMAP based solutions
could either merge two separately learnt embeddings (one using control- and test-events
with tube-specific markers, the other only test-events with all markers) or optimize one
embedding using both data compositions simultaneously. The later could be accomplished
by the semi-supervised capabilities of parametric UMAP [29].

5. Conclusions

We propose a method that only avails itself of healthy cell populations, is easy to imple-
ment and provides transparency and interpretability through out the classification process.

By exploring alternative clustering methods commonly used within flow cytometry
we found that the push-pull characteristic of UMAP together with its use of local distance
metric is crucial for the success of our pipeline.

Further, the low scores of the Set-Transformer are an indication that one-class classifi-
cation methods are more suitable than supervised methods for MRD detection in AML due
to data scarcity and heterogeneity of blast populations.

When looking at the results in combination with run-time we recommend pre-filtering
of the events prior to classification as presented in Section 3.3. While including more control
samples yields similar results, pre-filtering also brings the benefit of superior run-time.

We demonstrate that despite the challenging nature of MRD detection in AML, auto-
mated gating is not just a future dream but realistically feasible.

On a general note, we want to emphasize the importance of international and inter-
laboratory collaboration in combination with the establishment of standards for data
acquisition, marker panels, gating strategies and flow cytometry settings, in order to pro-
duce comparable FCM data across laboratories and countries. We believe that future steps
in this direction are crucial for increasing data availability and hence for the development
and maintenance of high quality automatic MRD detection methods.
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Appendix A. Related Work

Several approaches have been developed for automated FCM data analysis to replicate
or aid manual data analysis. A distinction can be made between discovery and targeted
analysis; while the first aims at discovering novel unknown cell populations, the latter
aims at detecting well-defined, known ones. Since MRD detection falls into the category of
targeted analysis, we focus on giving an overview of automated targeted FCM data analysis.
Additionally a brief summary of dimensionality reduction methods is given, since those
are not only used to aid visualization but also for feature extraction as pre-processing step
before targeted analysis. For a more comprehensive review of current trends in automated
FCM data analyis the reader is referred to [30].

Appendix A.1. FCM Analysis with Statistical Methods

In [31], FCM samples are represented as probability density functions which are then
matched to a set of reference samples. Other methods parametrize populations in FCM
samples with mixture models [13,14,32–35]. These methods model cell populations in
samples with mixture models and then compare the resulting distribution with a set of
reference samples where gating information is available. In [14], Gaussian Mixtures are
fitted to a sample population with expectation maximization. An improved version with a
closed form optimization in the fitting process is proposed in [13]. In SWIFT [33] Gaussian
Mixture Models are combined with a weighting sampling procedure to improve discrimi-
nation of rare sub-populations. BayesFlow [35] introduces a hierarchical Bayesian model
which allows expert knowledge to be incorporated through informative priors. Diffcyt [36]
uses unsupervised clustering in combination with supervised statistical analyses, namely
empirical Bayes moderated tests adapted from transcriptomics for differential analysis,
to detect cell populations. Another state-of-the-art approach is Citrus [37], which uses
hierarchical clustering and regularized regression to predict the endpoint of interest for
each sample.
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Appendix A.2. FCM Analysis with Neural Networks

Recently, methods that employ neural networks have been introduced to identify
populations in FCM data. In [38,39] recent developments in Convolutional Neural Net-
works (CNNs) are applied to imaging FCM applications. For non-imaging FCM data initial
works processed the samples cell-wise [40–42]. CellCNN [43] uses a 1D-convolution layer
to project the measurements of each cell to an embedding space then applies a pooling
layer to aggregate information in order to learn the associated phenotype from multi-cell
input. In [40,41], the problem is cast as a binary classification problem. In [42], Li et al.
check the similarity of a given sample with a set of reference samples and then train a four
layer network on the best match. However, these methods can only learn fixed decision
boundaries to separate biologically meaningful sub-populations and can not adapt to
variations between samples. A way to circumvent this and process whole samples instead
of single cells is proposed in [44]. Here self-organizing maps are employed to obtain a 2D
image from a given FCM sample. These images are then processed using CNNs, trained in
a supervised manner. Another method that allows processing full samples is presented
in [17] where a neural network based on the transformer architecture [45] is proposed, that
allows processing of a full sample in a single neural network forward pass.

Appendix A.3. Dimensionality Reduction for FCM Analysis

Initial work for general dimensionality reduction is typically based on linear transfor-
mations applied to the data to reduce correlations between features directions. In principle
component analysis (PCA) [46] features are projected onto a lower dimensional linear
subspace in which only high variance directions are retained. Besides PCA, many other
dimensionality reduction techniques have been proposed that allow nonlinear transforma-
tions. In t-SNE [47] high dimensional data are transformed into a lower dimensional space
by constructing a probability distribution over pairs and assigning a high probabilty to
similar and a low probability to dissimilar points. t-SNE has been shown to be capable of
stratifying general cellular lineages in mass cytometry data [48]. More recently, the uniform
manifold approximation and projection for dimension reduction (UMAP) algorithm has
been proposed [15]. UMAP creates qualitatively comparable dimensionality reduction
when compared to t-SNE with significantly reduced run times in most cases [15]. It has
been shown to work with single-cell data [18] and has been applied successfully to FCM
data in [20].

Appendix B. Methods

In this section, we introduce the Set-Transformer, UMAP and HDBSCAN; we discuss
why they are a reasonable fit for our problem setting. Additional information of the dataset
used is given and a detailed description of the experimental setup is provided. Finally,
technical and computational details are presented.

Appendix B.1. Set Transformer-Attention

The original transformer architecture was proposed in 2017 [45]. It allows to learn
from sequences (of variable length) without recurrence. The key novelty in this architecture
is the introduction of self-attention which allows capturing global contextual information
between elements in a sequence. However, the attention mechanism entails a quadratic
complexity in the input length O(n2) of both memory and time. Albeit processing a whole
sample at once and capturing global information are favorable properties, this is hardly
applicable for FCM data analysis, where samples contain up to 106 events (=sequence
length).

Fortunately, several models have emerged that aim to reduce complexity. The most re-
lated to the application of FCM data analysis are Set-Transformers proposed by Lee et al. [16]
that explicitly treat the input as an order-invariant set. This resonates with our problem
setting since the order of events in a sample is not relevant. Instead of standard multi-head
self-attention, Set-Transformers introduce the Induced Set Attention Block (ISAB) based
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on the idea of inducing points from the theory of Gaussian processes. With this modifi-
cation the complexity becomes linear in the sequence length O(N). For a more detailed
description of how the Set-Transformer can be applied to FCM data the reader is referred
to [17].

Appendix B.2. UMAP

Initially proposed by McInnes et al. [15], UMAP consists of two steps:

1. Under the use of a custom local distance metric a neighbourhood graph is constructed
to form a topological representation of the high dimensional data.

2. A low dimensional embedding of the data is obtained such that the representing
graph of the data points in the embedding is as structurally similar as possible to the
graph in high dimension.

The initial representation of the high dimensional data is formed by a weighted graph
in which the edge weights represents the likelihood that two data points are connected. The
process of graph construction makes use of tools from Riemannian geometry, which allows
to take computational efficient shortcuts at runtime and justifies chosen characteristics of
the algorithm. The constructed graph is then projected into the low dimensional space.
In contrast to the high dimensional space, where the edge weight are defined by the custom
local distance metric, in the embedding space the edge weights reflect the euclidean distance
between data points. The low dimensional projection is optimized via a force-directed
graph layout algorithm.

The varying notion of distance that was created to approximate the manifold on
which the data lies is translated into euclidean distance. This translation reveals the
inherent structure of the data in euclidean distance with respect to the global coordinate
system. In our setting, this behaviour of the algorithm is exploited to smooth out possible
inter-sample variances. The local connectivity of the manifold introduced by the custom
local metric makes sure no point is completely isolated, i.e., each point is connected to
at least one other point. This property in combination with the force-directed graph
layout algorithm pulls similar cell populations of different samples closer together in
the embedding space. This consequently improves clustering performance compared to
directly cluster unprocessed high dimensional data as empirically demonstrated on image
data in [49].

Appendix B.3. HDBSCAN

HDBSCAN [21] is an adaption of DBSCAN [50], which is a density based clustering
algorithm. Clusters are formed among data points in dense regions, while data points
in sparse areas are classified as noise. DBSCAN uses a density based distance metric
to build a single linkage clustering dendrogram. In order to obtain cluster assignments
the dendrogram is cut according to a distance parameter ε. HDBSCAN eliminates ε by
introducing min_cluster_size, which defines the minimum number of data points for a
single linkage split to be considered as a cluster. This allows to asses the stability of
clusters in the dendrogram, which can be used to cut the tree at varying heights resulting
in clusters with possible varying density. In addition min_cluster_size is designed to be
more intuitively pickable for the user.

We use HDBSCAN to identify clusters in the UMAP projection. The following aspects
indicate that HDBSCAN is a suitable clustering algorithm for the problem stated. Since
clusters are not necessarily spherical, density based clustering is a better fit than algorithms
like k-means [50]. Ideally, the clusters represent biological meaningful cell populations
and hence we want to be able to identify clusters of varying density. Further, HDBSCAN
does not require to specify the number of clusters in advance, which benefits its use in an
automated pipeline. In addition, HDBSCAN classifies data points in sparse areas as noise,
which can partly compensate artefacts produced by the UMAP.
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Appendix B.4. Data Set

Tables A1 and A2 give further details on the data set used with respect to antibodies of
the marker panels and timepoints of therapy, respectively. Detailed patient characteristics
and LAIPs identified are given in Tables A3 and A4. Table A5 gives an overview of the
amount of nucleated events as well as the MRD percentage per sample in the data set used.

Table A1. Full details on antibodies used.

Antigen Fluorochrome Clone Source

LAIP CD15 FITC 80H5 Beckman Coulter
(DuraCloneTM) CD34 ECD 581 Beckman Coulter

CD117 PC5.5 104D2D1 Beckman Coulter
CD33 PC7 D3HL60.251 Beckman Coulter
CD14 APC-Alexa700 RMO52 Beckman Coulter

CD11b APC-Alexa750 Bear1 Beckman Coulter
HLA-DR Pacific Blue IMMU-357.12 Beckman Coulter

CD45 Krome Orange J33 Beckman Coulter

CFU CD38 FITC T16 Beckman Coulter
(DuraCloneTM) CD34 ECD 581 Beckman Coulter

CD117 PC5.5 104D2D1 Beckman Coulter
CD33 PC7 D3HL60.251 Beckman Coulter

CD123 APC-Alexa700 SSDCLY107D2 Beckman Coulter
CD45RA APC-Alexa750 2H4LDH11LDB9 Beckman Coulter
HLA-DR Pacific Blue IMMU-357.12 Beckman Coulter

CD45 Krome Orange J33 Beckman Coulter

Drop-in CD7 PE MEM-186 Exbio
markers CD11a PE MEM25 Exbio

CD19 PE LT19 Exbio
CD56 PE LT56 Exbio

CD371 PE 50C1 BioLegend
NG2 PE 7.1 Beckman Coulter
CD13 APC WM15 Exbio
CD71 APC MEM-75 Exbio
CD99 APC 3B2/TA8 Exbio

Table A2. Details on different timepoints of therapy that are present in the data set used.

Timepoints VIE Control Abbreviation Therapy Protocol No. of Samples

after 1st Induction IND1/IND12 BFM-AML 1 6
after 2nd Induction IND2 BFM-AML 1 12

after Consolidation 1 CON1 BFM-AML 1 14
after Consolidation 2 CON2 BFM-AML 1 4
after Consolidation 3 CON3 BFM-AML 1 2

End of therapy End BFM-AML 1 4
Consolidation Block HR2 HR2 AIEOP-BFM ALL 6
Consolidation Block HR3 HR3 AIEOP-BFM ALL 7
Consolidation Block HR4 HR4 AIEOP-BFM ALL 1

DAY33 d33 AIEOP-BFM ALL 2
other timepoints other AIEOP-BFM ALL/ 22

BFM-AML
and others

Timepoints VIE MRD Abbreviation Therapy Protocol No. of Samples

after 1st Induction IND1/IND12 BFM-AML 19
after 2nd Induction IND2 BFM-AML 2

after Consolidation 1 CON1 BFM-AML 6
after Consolidation 2 CON2 BFM-AML 6

post stem cell pSCT BFM-AML 4
transplantation

other timepoints other BFM-AML 29
1 MRD negativity was proven using FCM-MRD as well as molecular methodologies (RQ-PCR, gDNA-PCR).
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Table A3. Detailed clinical and biological characteristics of patients present in the data set used.

Patient Type Gender Age Fab Type Genetics Mutations

A Relapse w 7y 1m M5a KMT2A- GATA2
MLLT1 KRAS NRAS

B Diagnosis m 3y 3m M7 CBFA2T3- GATA2
GLIS2

C Relapse m 8y 10m M7 DDX3X- WT1 ETV6
MLLT10 NRAS

D Diagnosis w 3y 9m M1 NK NPM1
FLT3-ITD

E Diagnosis m 0y 1m M5a KMT2A- nd
MLLT3

F Diagnosis m 17y 9m M4 NK FLT3-ITD

G Diagnosis m 1y 4m M7 NUP98- neg
KDM5A

H Relapse w 15y 3m M5b KMT2A- neg
MLLT3

I Diagnosis w 17y 9m sec. AML KMT2A- nd
MLLT3

J Diagnosis m 14y 11m M7 KMT2A- nd
MLLT4

Table A4. Details on the LAIPs identified in manual gating for the patients present in the data
set used.

Patient LAIP1 LAIP2 LAIP3

A CD33/CD56 co-expression ↑ HLA-DR
B ↓ HLA-DR ↓ CD38
C CD33/CD56 co-expression ↓ CD38
D ↑ CD99 ↓ HLA-DR
E expression of NG2+ ↑ CD99 ↑ HLA-DR
F CD33/CD7 co-expression ↑ CD99 expression of CD123
G ↓ CD11a ↓ CD38 ↓ CD371
H ↑ CD117 ↓ HLA-DR expression of CD123
I ↓ CD38 ↓ CD371 expression of CD123
J ↓ CD371

Table A5. Statistical summary of the amount of events and MRD percentage in the test data set used.
CD34+/bermude and CD34+/bermude-predicted denote the statistics for CD34 positive events and
events falling into the bermude area (CD34 neg) based on the ground truth and prediction by the
Set-Transformer, respectively.

Min Max Mean Median

total CFU 9502 440,160 204,544 190,463
LAIP 12,516 408,700 173,526 161,543

MRD CFU 0.0034% 45.61% 12.13% 2.96%
LAIP 0.012% 70.25% 12.69% 2.58%

CD34+/bermude CFU 2639 260,888 65,020 46,763
LAIP 6028 294,443 80,297 53,497

CD34+/bermude-predicted CFU 5341 325,342 90,058 71,075
LAIP 8597 321,073 89,711 63,474

Appendix B.5. Experiments

In this section, a detailed description of the four experiments conducted as well as
reasoning for the parameters chosen is given.
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Appendix B.5.1. Set-Transformer

The same network architecture and hyper-parameters as in [17] were used, namely a
sequence of three ISAB blocks with a row-wise linear layer on top, with i = 16 induced
points, a latent embedding dimension of d = 32 and 4 attention heads for each layer. This is
a supervised approach, hence a training and evaluation data set are required. Since samples
with blast cells are scarce, a cross-validation was performed to maximize the amount of
training and evaluation data. The model should be capable of detecting MRD in FCM
data of new patients, meaning for a fair assessment samples taken from one patient must
not be split up between the training, evaluation and test set. Therefore we conducted a
“patient-cross-validation”, where samples taken from one patient form the test set and
the rest of the patients are divided for training and evaluation so that the corresponding
samples split up in approximately the fractions of 0.8 and 0.2, respectively. The architecture
of the Set-Transformer can take a varying number of events per sample as input but requires
a fixed length of the feature vector. As mentioned above, for many samples the backbone
markers are not sufficient to successfully identify blasts and discriminate them from normal
regenerative cells. On the other hand using all markers of the 8-color tube-specific panel of
CFU (+drop ins) and LAIP tubes results in less training samples. Thus, there is a trade-off
between the number of training data and the number of markers used. We test this method
using only backbone markers as well as using tube-specific panel markers of CFU and LAIP
tubes separately. A detailed listing of the number of evaluation, train and test samples is
given in Table A6.

Table A6. Three experiments are performed separately, one with CFU data, one with LAIP data and
one with backbone (BB) data. Available data sets are splitted into training, evaluation and test set.
Each patient generates one split because the patients samples are hold out as test data (meaning
that the rightmost column corresponds to the number of CFU, LAIP and backbone samples of each
patient). All remaining samples from other patients are divided into training and evaluation set.

Patient Marker Train Eval Test

A CFU - - 0
LAIP 27 9 1

BB 52 13 1

B CFU 22 4 3
LAIP 27 8 2

BB 50 11 5

C CFU 18 8 3
LAIP 24 7 6

BB 44 13 9

D CFU 19 8 2
LAIP 29 6 2

BB 51 11 4

E CFU 21 6 2
LAIP 25 9 3

BB 50 11 5

F CFU 20 6 3
LAIP 23 6 8

BB 44 11 11

G CFU 17 3 9
LAIP 21 7 9

BB 37 11 18

H CFU 23 5 1
LAIP 26 10 1

BB 51 13 2

I CFU 22 6 1
LAIP 26 10 1

BB 53 11 2

J CFU 17 7 5
LAIP 25 8 4

BB 43 14 9
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Appendix B.5.2. UMAP-HDBSCAN Classification Pipeline

The essence of the method proposed is to mix events of healthy cell populations
(control-events) with the events to be classified (test-events) before UMAP is applied; it is
crucial that the graph, on which the UMAP embedding is based, is constructed with control-
and test-events pooled together. This way, differences of healthy cell populations between
control- and test-events are smoothed out by the combination of the local distance metric
with the push and pull characteristic of UMAP while optimizing the low dimensional
embedding as explained in Appendix B.2. Healthy cell populations exhibit only small
variations between patients; usually the location is stable and variations occur mainly in
density as shown in Figure A1. Figure A2 shows the variations of the cell populations of
the same patient at different time points of the therapy. The main differences are in the
density of the cell populations, as different stages of regeneration occur at different times
of therapy.

Our test set contains samples from different timepoints during and after therapy.
To account for possible variations, 15 control samples are randomly chosen such that each
timepoint is represented at least once (if available). Since for this method the number of
control samples needed is quite low, the trade off between data and marker richness as
discussed for the Set-Transformer above does not apply. Therefore, we use the 8-color
tube-specific panel of CFU (+ drop ins) and LAIP tubes. The steps conducted to predict
MRD in each test sample are described in detail in the next paragraphs.

Patient A

Patient B

Patient C

Promyelocytes Granulocytes Proerythrocytes Monocytes OtherCD34 progenitors

Figure A1. Healthy cell populations exhibit low variation between patients. Each row shows an
FCM sample of a blast-free patient taken at the same stage during therapy (after the third cycle of
consolidation therapy). Differences in density as well as minor shifts of locations are noticeable.
Colors of events falling into the bermude area represent promyelocytes (blue), granulocytes (brown),
proerythrocytes (purple), monocytes (green), CD34 progenitors (yellow).
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Induction Cycle 1

Induction Cycle 2

Consolidation Cycle 1

Promyelocytes Granulocytes Proerythrocytes Monocytes OtherCD34 progenitors

Figure A2. FCM samples of one patient from different stages during therapy are compared. Therapy
mainly affects the density of different cell populations. Colors of events falling into the bermude area
represent promyelocytes (blue), granulocytes (brown), proerythrocytes (purple), monocytes (green),
CD34 progenitors (yellow).

First control-events are mixed with the events of the test sample. The control-events
are sampled as follows:

1. Determine the total amount of events to be sampled from control samples.
The number of control-events ncontrol_total mixed with the test sample varies with
the number of its events ntest and is determined by ncontrol_total = ntest · control_ratio,
where the ratio control_ratio is a parameter that was set to 0.8.

2. Select events from all available control samples.
ncontrol_total is divided by the overall number of available control samples M to obtain
the number of events to be selected from each control sample, i.e., ncontrol_sample =
ncontrol_total/M. Using events from different control samples (in our case M = 15)
ensures a representative variety of phenotype expressions. Each control sample
should have an equal contribution.

3. Every cell population should be represented in the control-events.
Assuming we have cell population A, B and C with nA, nB and nC cells, respectively,
the proportion of events of each population sampled is

ncontrol_sample
nA+nB+nC

. The populations
as defined in Section 2.2.1 are selected for sampling: monocytes, granulocytes, proery-
throcytes, promyelocytes and CD34 positive cells. In addition, cells not belonging to
either of these categories but falling in the bermude area are also selected.

4. Concatenate all selected events and shuffle them.

After the control-events have been sampled and pooled together with the test sample
a 3D UMAP embedding is created. For this procedure default parameters settings are used
except for the parameter min_dist, which is set to min_dist = 0 allowing for denser packing
of cells in the embedding space. This is recommended by the authors of UMAP, if subse-
quent clustering is performed. It was opted for a 3D embedding space as it is the maximum
amount of dimensions that still provides the possibility of intuitive visualizations.

Once the events are embedded, clusters are detected with the HDBSCAN algorithm,
where again all parameters were left at default settings except for min_cluster_size, which
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determines the minimum amount of events that can form one cluster. It was set to
min_cluster_size = 50, since samples with less than 50 blasts are denoted as MRD negative.

UMAP and HDBSCAN allows to represent and process unseen data without altering
the learned mappings. This enables to transform new events into a previously learned
embedding space and to assign these new events to the previously determined clusters.
Due to UMAP properties, the embedding of unseen data into a fixed UMAP tends to
loose significance, if these unseen data are not close to data from which the UMAP was
generated. On the one hand, it is important that the UMAP is created with a reasonable
proportion of test sample events. On the other hand, if there are to few control-events
involved in the generation of the UMAP, these events will not lie close to the healthy
populations of the test-sample and will produce unknown clusters falsely classified as
blasts. Before predicting blasts based on the amount of control-events in each identified
cluster, we therefore make use of the transform function and add additional control-events
to the clusters in the embedding space. By doing so we maximize the ratio of control-events
in non-blast clusters and hence lower the sensibility to the threshold used for classifying
clusters as blast clusters. Those additional control-events are selected as described above,
the number is again defined by a ratio, which we call trans f orm_ratio to distinguish them
from the first round of control-events sampled. We set trans f orm_ratio = 1, meaning
that the same amount of events as present in the test sample are selected from the control
samples and added to the learned embedding and clustering. If control-events dominate,
blasts run the risk of adhering to non-blasts, which impedes identifying correct clusters as
shown by Figure A3.

B C DA

Other

Figure A3. UMAP embedding of a test sample mixed with control-events for a fixed
trans f orm_ratio = 1 but varying control_ratio ∈ {0, 0.5, 1, 1.5} (columns A–D). The first row shows
the embedding learned with increasing number of control-events mixed to the test sample. Blasts are
in red, non-blast events are grey. The second row shows the same respective UMAP representation
with the test-events (orange) where additional control-events (blue) are transformed into the embed-
ding space. For low value of control_ratio blast events are well separated but additionally projected
control-events are spread out between clusters (column A–B). For higher values of control_ratio
blasts adhere to healthy cell populations, which makes it harder to detect them as separate cluster,
but additionally projected control-events mix well with the clusters of healthy cell populations.

In general the ratios seem to not have a drastic effect as long as the test sample
dominates the learned embedding and the variations of healthy cell populations are roughly
covered by control-events. Therefore it was opted for a control_ratio a bit below 1 and a
trans f orm_ratio of 1 so that in total almost double as many control-events as test-events are
randomly selected. Finally, all clusters identified by HDBSCAN that consist of less than 5%
control-events are classified as blast clusters, meaning all events in this clusters are labelled
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as blasts and all others as non-blasts. In theory the blast clusters should exclusively contain
events from the test sample, since control samples are blast free. However, this is usually not
the case. If for example blasts are not entirely separated from healthy populations or due to
events transformed into the embedding space at a later stage, some contamination of blast
clusters with control-events can be observed. An empirical evaluation of hold-out samples
suggested an impurity-acceptance-rate of 5% to be reasonable. By assigning a threshold
rather than taking the cluster with the least control-events we open up the possibility of
having no blasts as well as more than one blast cluster. More than one blast cluster can
appear since blasts might differ in their CD34 expression or one biological meaningful blast
cluster might be separated by HDBSCAN.

Appendix B.5.3. UMAP-HDBSCAN Classification Pipeline with Pre-filtering

The proposed approach relies on covering variations of non-blast populations by
control samples. One way to reduce those variations beforehand is to distill test-events and
discard events that can easily be predicted as non-blasts. As mentioned in Section 2.2.1
blasts can either be in the CD34 positive gate or the CD34 negative bermude gate. By elim-
inating events that are neither within these gates the search for blasts can be narrowed
down. This is formulated as a supervised approach and realised with the Set-Transformer.
Two models are trained, one to predict CD34 positive events and another to predict events
in the CD34 negative bermude area. Since both types of cells are present in control samples
no additional data are necessary and the models can be trained on those. Further, this
classification task is not as demanding as predicting blasts and hence back bone markers
are sufficient. To underpin this assumption an evaluation of the data-marker trade-off de-
scribed above is given. The trained models are used to pre-filter the test sample where only
events that are predicted by either one of the model are further examined. The remaining
cells are classified as described in Appendix B.5.2. The pre-filtering adds another potential
source of prediction error but reduces the run-time at inference as less events are embedded
with UMAP.

Appendix B.5.4. UMAP-HDBSCAN Classification Pipeline-Variation of Control Samples

Even though the heterogeneity of healthy cell populations are not as severe as for
blasts, there are some variations present as can be seen in Figures A1 and A2. Initially only
15 control samples were chosen so that each stage of therapy is included roughly once.
When increasing the number of control samples used, the number of events selected per
sample decreases. The question is whether capturing more variety within one sample or
between samples is of bigger importance. This is assessed by repeating the experiments
of the proposed method above with double the amount N_control = 30 and all control
samples available.

Appendix B.6. Alternative Clustering Methods

Appendix B.6.1. FlowSOM

Given the success of FlowSOM [51] and its common use within flow cytometry, we
explore its clustering as an alternative to UMAP followed by HDBSCAN in our classification
pipeline. We use the same hyper-parameters and meta-clustering as proposed in [51]. Since
the goal is to predict rare cell populations we use a finer grid, namely a 20 × 20 grid instead
of the default 10 × 10 grid, as suggested in [51]. While examining the method we identified
the following issues. To detect blast clusters control-events need to be clustered together
with healthy cells of the test sample. The combination of the local distance metric used
by UMAP with the push and pull characteristic while optimizing the low dimensional
embedding can smooth out differences of healthy cell populations between control- and
test-events as explained in Appendix B.2. SOM, on the contrary, uses a global distance
metric during training and for assigning a best matching unit (BMU) of the grid to each
event in the high dimensional feature space. Hence, control-events, albeit mostly next to
the corresponding BMU of healthy cells of the test sample, tend to get assigned to separate
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BMUs. In the meta-clustering step of FlowSOM, where node centers are clustered, those
neighboring BMUs can be clustered together counteracting this issue. However, we noticed
that nodes representing blasts are likely to be consumed by neighboring nodes resulting
either in not being detected or increasing the false positives. Another solution is to use
a smaller grid, where healthy cells of control and test samples are forced to get assigned
to the same node, but then the issue of impure blast nodes arises since MRD can be as
low as 0.0034% in test samples (see Table A5). Further, we noticed that the impurity of
nodes corresponding to blasts leads to unsatisfactory results even if the node is correctly
detected as blast cluster. While FlowSOM has proven to be a successful tool for FCM data
visualization and exploratory data analysis that can aid manual gating, self-organizing
maps as a stand alone clustering and in combination with meta-clustering are not well
suited for our specific classification pipeline.

Appendix B.6.2. PhenoGraph

The runtime of PhenoGraph [52] was significantly higher than for UMAP + HDBSCAN:
to create a clustering for 400,000 events it took almost 40 min; in our classification pipline we
need to process more than 1Mio events (including control-events) if a sample is constitued
of 400,000 events, PhenoGraph was thus considered as impractical.

Appendix B.6.3. Stochastic Neighborhood Embedding (SNE)

UMAP offers some advantages over SNE methods (for example t-SNE [47]) such
as superior run-time and more intuitive hyper-parameters, with equal or better results.
See [15] for a comparison between UMAP and t-SNE. We chose UMAP as a representative
of recent manifold learning methods.

Appendix B.7. Technical Details

All our code is setup in python v3.8.10. For the Set-Transformer approach we used
pytorch v1.10.0 + cu102, for the classification pipeline we used the python packages umap-
learn v0.5.1, and hdbscan v0.8.27. For FlowSOM we adapted the implementation of the
python package cytopy v2.0.1 to our needs. Plots were created with the python package
matplotlib v3.4.1.

The classification pipeline experiments were all conducted on an in-house server with
28 cores and 128 GB RAM. The Set-Transformer models were trained on an GeForce GTX
TITAN X with 12 GB RAM.

Training for each Set-Transformer model in the context of patient cross validation
(Section 3.1) took between 20 and 30 min, predicting blasts approximately 10 seconds.
For the pre-filtering of test samples (Section 3.3) two Set-Transformer models were trained;
one for predicting events in the CD34 negative bermude area and one for predicting
CD34 positive events—the training duration was 5 h 41 m 43 s and 3 h 52 min 36 s,
respectively. Predicting the corresponding events took approximately 10 seconds. Training
the models is a one time necessity, at inference only the time needed for prediction is
relevant. The classification pipeline proposed omits this classical training phase; Table A7
shows the average run-time needed to predict blasts for separate parts of the pipeline. Pre-
filitering samples does not only improve performance but also speeds up the classification
process significantly.

Table A7. This table gives an overview of the average run-time per sample for the full sample and
for the pre-filtered sample.

Avg Avg Pre-Filtered

UMAP-fit 6 m 40 s 2 m 53 s
UMAP-transform 7 m 59 s 3 m 33 s

HDBSCAN-fit 25 s 9 s
HDBSCAN-transform 51 s 18 s

total 15 m 55 s 6 m 53 s (+10 s pre-filtering)
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