Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Unterschrift (Betreuer)

TECHNISCHE

| UNIVERSITAT
I W IEN

VIENNA

VIENNA UNIVERSITY OF

TECHNOLOGY

DIPLOMARBEIT

Computer-Assisted Localization of Mice Organs
in Micro Positron Emission Tomography

ausgefiihrt am

Institut fiir Festkorperphysik
der Technischen Universitat Wien

und
Austrian Research Centers, Seibersdorf

unter der Anleitung von

Ao. Univ.-Prof. DI. Dr. Norbert Gurker
und
DI. Dr. Claudia Kuntner

durch

Robert Kremslehner
Waidhofnerstral3e 65
3300 Amstetten

Wien, August 2007

Unterschrift (Student)

Abstract

MicroPET (Positron Emission Tomography) is an imaging method used for small animals.
It is a small scale equivalent to PET applied in medical diagnosis. The major drawback of
PET is, that it does not provide precise anatomical information, because it just shows the
distribution of the injected radio labeled molecules and no further body structure.

In order to gain quantitative information about the distribution of the tracer in organs,
ROIs (Regions of Interest) have to be defined. Due to observing the measured activity
in ROIs for a series of time frames, the time dependent distribution of the tracer can be
calculated. Normally the ROIs have to be manually defined. Unfortunately the selected
regions greatly depend on the user defining them, and selecting the regions may also be
quite time consuming.

The software developed during this thesis simplifies and objectivizes the selection of ROIs
of reconstructed PET images for mice. First, the user selects one or more clearly visible
organs. On the basis of these user defined regions, the software calculates the positions of
the remaining organs. This is done by adjusting the PET image to the digital map of an
“average mouse” derived from microMRT (Magnetic Resonance Tomography). Therefore
the organs provided by this mouse phantom are rescaled and rotated, until the organs reach
their best overlap with the actual PET image. Thereby the location of the remaining organs
can be estimated.

This document starts with a short introduction into the aim of the work. Chapter 2
provides a general survey of PET and a short review of tracer production. In Chapter 3
the developed software is introduced, and its functional principles are discussed in detail.
In Section 4.1 the microPET-instrument and measurement preparations are presented, and
in Section 4.2 software-based results are summarized and compared to those resulting from
user-defined selection. In Chapter 5 a concluding discussion is given. Finally, in Chapter 6
possible further use and development of the software is outlined.

Kurzfassung

MikroPET (Positron Emission Tomography) ist ein Abbildungsverfahren fiir Kleintiere. Es
stellt ein verkleinertes Aquivalent zu der in der Humanmedizin gebriuchlichen PET dar.
Der grofite Nachteil von PET ist, dass es keine genauen anatomischen Informationen liefert,
sondern nur die Verteilung der radioaktiv markierten Molekiile und keine Korperstrukturen
darstellen kann.

Um eine quantitative Analyse der Verteilung eines Radiopharmakons zu ermoglichen,
miissen ROIs (Regions of Interest) ausgewahlt werden. Indem man die in den ROIs
gemessene Aktivitéit iiber einen grofleren Zeitraum beobachtet, kann man die zeitabhangige
Verteilung des Tracers errechnen. Normalerweise miissen die ROIs héndisch markiert wer-
den. Ungliicklicherweise hiangt diese Art, Regionen zu markieren, stark von der Person
ab, die diese Regionen einzeichnet. Zudem ist das Auswéhlen der ROI manchmal sehr
zeitaufwéndig.

Die Software, die im Zuge dieser Diplomarbeit entwickelt wurde, vereinfacht und objek-
tiviert das Definieren von ROIs in PET-Bildern von Méusen. Zuerst muss der Benutzer ein
oder mehrere gut sichtbare(s) Organ(e) auswéhlen. Auf dieser Grundlage kann die Software
die Position der tibrigen Organe errechnen. Dies wird durch einen Abgleich des PET-Bildes
mit einem digitalen Modell einer “Durchschnittsmaus”, welches von MikroMRT (Magnetic
Resonance Tomography) Bildern abgeleitet wurde, gewéhrleistet. Dazu werden die Or-
gane des Mausphantoms der Grofle nach angepasst und rotiert, bis sie bestmoglich mit
dem PET-Bild iiberlappen. Daraus kann die Position der iibrigen Organe errechnet wer-
den.

Das Dokument beginnt mit einer kurzen Einleitung tber die Zielsetzung der Diplomar-
beit. Kapitel 2 bietet einen kurzen Uberblick iiber PET und einen kurzen Auszug iiber
die Herstellung von Tracern. In Kapitel 3 wird das Programm im Detail vorgestellt. In
Abschnitt 4.1 werden das MikroPET-System und Messvorkehrungen besprochen. Die au-
tomatisiert erzielten Messergebnisse werden dann in Abschnitt 4.2 prasentiert und mit je-
nen verglichen, die aus einer benutzerdefinierten Auswertung folgen. Anschlieffend werden
die Messergebnisse im Kapitel 5 noch néher analysiert. Schlussendlich wird in Kapitel 6
die weitere Verwendung und Weiterentwicklung des Programms diskutiert.

Contents

1 Introduction

1.1 Problem Formulation
1.2 AIM
2 General Survey of PET
2.1 Principle
2.1.1 PET in Human Medicine
2.1.2 Small Animal PET
2.2 Radioactive Tracer i
2.2.1 Production of Radionuclide
2.2.2 Synthesis of Radiopharmacon
2.3 Measurement Technique
2.3. 1 Detectors ...t
2.3.2 Coincidence Detection
2.4 Correction Methods
2.4.1 Normalization
2.4.2 Decay Correctiont
2.4.3 lIsotope Branching Fraction
2.4.4 Attenuation Correction
2.45 Dead-time correction
2.4.6 Scatter Correction
2.5 Reconstruction
2.5.1 Filtered Back Projection
2.5.2 Numerical Methods
3 Software Details
3.1 Data Types Used
3.1.1 PET Data ..o
3.1.2 Phantom ...
3.2 Fitting Process
3.2.1 Defining Organs
3.2.2 Extract Phantom Organs
3.2.3 Resizing Organs
3.2.4 Rescaling Distancies
3.25 Determine Angles
3.2.6 Affiliate Organs
3.3 Output ...
3.3.1 Saving Organ Maps
3.3.2 Generating TAC Files
3.4 Image Processing
341 2D SHces ..o
342 3D Projection

w R o T ve B - B

Software Evaluation

4.1 Materials and Methods

4.1.1 Positron Emission Tomograph Used

4.1.2 Evaluation Software
413 AnimalsUsed
4.2 Results
421 Correlation
4.2.3 Indirect Correlation
4.2.2 Reproducibility

Measurement Discussion

5.1 Discussion on Correlation ...

5.2 Discussion on Indirect Correlation

5.3 Discussion on Reproducibility
Conclusion & Outlook
References

Abbreviations

Figures

Tables

Acknowledgements

47
47
47
47
47
48
50
93
o7

59
59
59
59

61
63
65
67
69
71

Introduction

1 Introduction

1.1 Problem Formulation

Positron Emission Tomography (PET) (introduced in detail in Chapter 2 “General Survey
of PET”) has established as an imaging method next to Computer Tomography (CT) and
Magnetic Resonance Tomography (MRT). PET is commonly used to diagnose tumors,
metastases or metabolic dysfunctions. The fabrication of the used tracers is illustrated in
Section 2.2.

The major drawback of PET is, that the measured data usually does not provide anatomical
information. In order to gain anatomical information CT or MRT are often used. Therefore
CT or MRT images are often merged with the PET data, providing the location of the
applied dose.

CT has the advantage, that it is less expensive than MRT, but CT only provides useful
anatomical information, if adjacent body regions have different attenuation coefficients.
Another disadvantage is, that CT exposes animals to significant additional radiation dose,
which can distort metabolism or time evolution of tumors.

In MRT one can even distinguish between regions, which have the same X-ray density (as
for instance parts of the brain) and it does not affect metabolism, but instrumentation
costs are very high.

If neither CT nor MRT are used to grant anatomical information, ROIs (Region of Interest)
have to be selected by hand. This procedure is quite time consuming and subjective.
Therefore a semiautomated softwarelll was developed at the UCLA®, which provides an
alternative to CT and MRT. This computer program computes the remaining organs on
the basis of the user defined ones. Afterwards it can calculate the TACs (Time Activity
Curves), which show the time dependent distribution of the tracer, of each organ. The

anatomical information for this software is provided by a digital mouse phantom 2],

1.2 Aim

The aim of this thesis was to fasten and to improve the semiautomated software, written by
Adam Kesner et al. But instead of adapting the source code of this computer program, a
new approach was taken, and so a completely new software was written. The new software’s
algorithm is both simpler and faster as well as more stable. A detailed description of this
computer program will be presented in “Software Details”.

L abbr., University of California, Los Angeles

General Survey of PET

2 General Survey of PET

2.1 Principle

Positron Emission Tomography (PET) is an imaging technique in nuclear medicine. Its
principle is shown in Fig. 2.1. PET is based on imaging radio labeled substances within
living organisms. Therefore these substances are labeled with radioactive isotopes with
a [T-decay (positron emission), such as @, 18F or 1241 These proton rich nuclei de-
cay, emitting positrons, which travel through matter, till they reach thermal energies and
annihilate by recombining with electrons. Each annihilation process is followed by two
back-to-back 511 keV gamma photons. Partially these photons are scattered and absorbed
on the way to the detectors. A coincidence processing (see Subsection 2.3.2) unit separates
real coincidences from scattered photons. This coincidences provide the information of the
original location of the annihilation, because the source of radiation must be situated in a
straight line between the two detectors (also known as Line of Response (LOR)).

PET uses two different recording modes. The 2D (two-dimensional) mode only allows
coincidences along one detector ring (photons emitted in radial direction), whereas 3D
(three-dimensional) mode allows coincidencies over all detector rings. The advantage of
2D mode is, that it reduces random events, but at the cost of a highly reduced sensitivity.
The collected data is acquired in listmode format. Therein the time of each counting event
and the detector cell, which absorbed the photon, is stored. The listmode data is saved on
hard disk and is used for dynamic image reconstruction (see Section 2.5).

Coincidence
Processing Unit

—

—>

Sinogram/
Listmode Data

Annihilation Image Reconstruction

Figure 2.1 Scheme of Positron Emission Tomography[3]

General Survey of PET

In preclinical research PET is used in three main areas: for the development of new tracers
for nuclear medicine, to follow treatment therapies and direct labeling of new promising
drugs. The major drawback of PET is, that it “only” provides physiological information
of organs, where the radio labeled molecules accumulate but no anatomical information.
Therefore PET is often supported by Computer Tomography (CT), which allows to localize
the measured activity more accurately.

2.1.1 PET in Human Medicine

In human medicine PET is among the most expensive imaging methods. Commonly a
PET investigation takes about one to two hours. Because of the ephemerality of the used
radionuclides, the radioactive isotopes have to be produced just in time and can only
be transported on short distances. Therefore next to a PET-facility a cyclotron, which
produces the radionulides, has to be established, hence associated with high initial and
maintenance costs. A typical PET facility is shown in Fig. 2.2.

Figure 2.2 Human PET facility[4]

In modern medicine, PET is mainly used in oncology, neurology and cardiology. It helps
to diagnose and locate tumors, metastases or metabolic dysfunctions. The radiopharma-
con 8F-Fluor-Deoxyglucose (FDG) accumulates in many malignant tumors (metabolic
trapping) and helps to diagnose the course of cancer. FDG is also used for imaging the
metabolic activity of the brain or for detection of minor perfused heart regions.

2.1.2 Small Animal PET

Usually laboratory animals like rodents (mice or rats) are used for preclinical studies. The
positron emission tomographs (shown in Fig. 2.3) developed for small animals (often also
referred to as microPET) normally use a smaller ring of detectors, because it improves
sensitivity. In miscellaneous studies promising therapies or new drugs are tested. The
biodistribution of radio labeled drugs can be recorded in real time, which allows to draw a
conclusion on the drug’s effectivity. This method reduces the quantity of animals needed
and is more cost efficient and faster than dissecting several animals’ organs at a given time.

10

General Survey of PET

Figure 2.3 Small animal PET facility in
ARC (Austrian Research Centers), Seibersdorf

2.2 Radioactive Tracer

There are many tracers, that serve different purposes. In Table 2.1 commonly used isotopes,
their half life and some compounds carrying this isotope are shown. The chemical structure
lends each radiopharmacon different metabolic effects. 1¥F-Fluor-Deoxyglucose (FDG) for
instance is used to highlight glucose metabolism, whereas the fluoride ion is enriched in
bones. In living organisms the radio labeled molecules are exposed to decomposition.
Metabolism cracks up compounds, freeing for example the radioactive fluor from FDG.
This is called biological half life and leads to unwanted side effects, which have to be
taken into account in the final evaluation. It may happen, that a ?4I-labeled molecule
separates from 241, which enriches in the thyroid afterwards. At that point the track of
these previous, radio labeled molecules is lost, but it looks, as if the molecule accumulates
in the thyroid. If not taken into consideration, this may result in wrong conclusions.

isotope half life | compound diagnostic usage
e 20.3 min HC-Choline prostate cancer
HC-Pittsburgh compound B | Alzheimer’s disease
13N 9.97 min I3N-L-Glutamate acid amino acid metabolism
13N-Ammonia myocardial perfusion
150 2.03 min | PO-Water blood circulation
150, oxygen metabolism
18 109.8 min | 8F-Fluor-Deoxyglucose glucose metabolism
I8F_Fluoride bone metabolism
I8F_6-Fluoro-DOPA dopamine metabolism
1241 13.27 h 1241 thyroid function

Table 2.1 Examples of radioactive tracers[®l

11

General Survey of PET

2.2.1 Production of Radionuclide

There exist several kinds of production facilities for radionuclides. The most common
ones are cyclotrons, reactors and generators (6], In the following only the cyclotron will be
discussed briefly.

A cyclotron is a particle accelerator. It accelerates electrically charged particles. Com-
monly protons (H), deuterons (2H) and a-particles (3He) are used. It consists of two
D-shaped chambers, so called Dees. Between the two Dees there is a gap, wherein the
charged particle is accelerated by an electric field. A magnetic field (Lorentz-force) keeps
charged particles on a circular path. For each full rotation, the particle passes the electric
field twice and therefore polarity of this field has to be reversed twice for each full rotation.
The schema of a cyclotron is shown in Fig. 2.4.

Cyclotron

(Scheme)
0,

[Dee

I Ion Source

(a) Scheme of a cyclotronl”] (b) Picture of the cyclotron
used at ARC, Seibersdorf

Figure 2.4 lllustration of a Cyclotron

Cyclotrons are used to produce "C, 13N, %0, 18F and '?41. Therefore the accelerated
particles are targeted at nuclei like for instance 4N, which grabs an accelerated proton,
emits an a-particle and becomes 1 C.

2.2.2 Synthesis of Radiopharmacon

Figure 2.5 Pictures of the synthesis unit and hot laboratory facilities at ARC, Seibersdorf

For the production of '8F-Fluor-Deoxyglucose commonly electrophile addition or nucle-
ophile substitution is used. In electrophile addition a pi-bound is replaced by two covalent
bounds (see Fig. 2.6).

12

General Survey of PET

Cc—=C + X—Y — H

X—O—I
<—0O—I
T

Figure 2.6 Electrophile addition[®l

In nucleophile substuition the group X (see Fig. 2.7) is separated from the compound. Now
an electron rich nucleophile uses the vacant position to recombine with the compound.

It is important to keep in mind, that the synthesis of the radionuclide with a molecule may
determine its biological half life.

R R
Nu O
/k//?(/\V)\@ + X > &
R R R" R AL

Figure 2.7 Nucleophile substitution (¥

2.3 Measurement Technique

2.3.1 Detectors

For the detection of y-rays scintillating crystals coupled to a Photomultiplier Tube (PMT)
are used. Scintillators are materials like Nal(T1) (thallium doped sodium iodide), BaFy
(barium fluoride), BGO (bismuth germanate) and LSO(Ce) (cerium doped lutetium
oxyortho—silicate)[lo]. They are excited by ~-rays or charged particles passing through
it. Afterwards the resulting excitation energy is emitted by multiple photons with longer
wavelength. These photons are usually in the UV range and their number is proportional
to the energy of the absorbed particle. As Fig. 2.8 shows, every resulting light photon
excites an electron in the photo cathode. These electrons are accelerated to a dynode,
releasing several electrons for every electron. The resulting electrons are accelerated to the
next dynode and so on, till the electrons finally reach the anode, resulting in a measurable
current, which is proportional to the absorbed particle’s energy.

Several scintillating crystals and photo multipliers are grouped to a detector block. These
blocks now form several concentric detector rings (as shown in Figs. 2.1 and 2.9).
2.3.2 Coincidence Detection

There exist several ways the emitted photons can reach the detectors (as shown in
Fig. 2.10). A “true” coincidence occurs, when two back-to-back photons, which both

13

General Survey of PET

Photocathode Anode
Electrons .
Incident Electrical
photon ~, connectors
’\/\ Scintillator \
N A :\\ —]
Il K —
”, - \O\O 1
\fo =
Light
photon z(l)eccutsr:)ndge Dy“°de .
Photomultiplier tube (PMT)

Figure 2.8 Scintillating crystal coupled to a PMTY

Photo
Multiplier

Scintillator
Crystals

Detector Rings

Detector Block

Figure 2.9 PET detector system[12]

emerge from an electron-positron-annihilation, reach the detectors without being scat-
tered. “Random” events take place, if two photons, having two different origins, reach
the detectors incidentally within the same time window. If only one photon reaches the
detector, within a time frame, it is called “single”. “Scatter” coincidences appear, if both
photons descend from a common origin, but one or both of them are scattered before they
reach the detector.

As it is well known, image reconstruction in CT is based on line informations. In CT
and SPECT (Single Photon Emission Computed Tomography) these lines are defined by
collimators, whereas in PET these lines are found by coincidence counting. Therefore PET
is only interested in “true” coincidences. These coincidences events provide the information
of the original location of the annihilation, because the source of radiation must be situated
along a straight line between the two detectors (also known as Line of Response (LOR)).
“Singles”, “randoms” and “scatter” events are just unwanted side effects that should be
avoided. And so detected “singles” are discarded. “Randoms” and “scatter” events are
similar to “trues” and can easily be mistaken for “trues”. In order to avoid “randoms”,
the coincidence time frame can be reduced. “Scattered” events are reduced by limiting the
energy window for coincidence detection (Compton effect).

14

General Survey of PET

R

“Trues” “Randoms”
“Singles” “Scatter”

Figure 2.10 Different types of coincidencesl13: 14, 15, 16]

2.4 Correction Methods

There are some physical effects, that result in a discrepancy between the measured and
the real radioactive activity. These effects have to be numerically corrected before image
reconstruction. In the following the most important correction steps will be presented.

2.4.1 Normalization

The sensitivity of LOR is influenced by the angle between the LOR and the axis of the
detector ring as well as by the detectors’ sensitivities. Each detector block consists of several
unique scintillator crystals and slightly different PMTs. This causes different response of
the detectors, which can also change in time. Additionally geometric effects!7) have to be
taken into account (as shown in Fig. 2.11). Coincidences of the red source of radiation can
only be detected by a few detector blocks, whereas coincidences of the green source can
be monitored by all detectors resulting in a disproportional high detection of the green
source of radiation. The process of conditioning the sensitivities of all LORs is called
normalization. For each LOR one Normalisation Coefficient (NC) is calculated. These
NCs are used to correct for the sensitivities of all LORs. Fig. 2.12 illustrates normalization
correction with the help of three sinograms. A sinogram consists of several rows. Each row
represents the number of measured coincidences (the more coincidences the brighter) at
every angle of acquisition (eg. row 1 = 1°, row 2 = 2°, ...). In Fig. 2.12a the sinogram of a
homogeneous cylinder filled with a '8F-water solution in the central field of view without
normalization is shown. A correction mask (shown in Fig. 2.12b) equalizes the sensitivities
of the LORs by multiplying the unnormalized sinogram with the correction mask, which
leads to the normalized sinogram, shown in Fig. 2.12c.

2.4.2 Decay Correction

During measurement the radioactive isotopes decay. This results in a decrease of measured
activity. But in PET mainly the distribution of the radiopharmacon is important, and
therefore the measured activity is decay corrected, which keeps the measured dose constant.
This approach enables the comparison of absorbed doses in organs.

15

General Survey of PET

Figure 2.11 Different sensitivities due
to geometric effects in 3D model8!

(a) Unnormalized (b) Correction Mask (c) Normalized

Figure 2.12 lllustrating the effect of normalization

2.4.3 Isotope Branching Fraction

Isotopes may have different decay channels, but in PET only $1-decays (positron-decays)
are measured by detecting coincidences. In order to compute the actual dose (including all
other decay channels), the measured activity has to be divided by the probability of the
nuclide’s 3*-decay.

2.4.4 Attenuation Correction

The photons created during the positron-electron-annihilation are subject to attenuation
processes such as scattering or absorption. The level of attenuation varies, because the
photons have to travel along different distances through the imaged object, until they
reach the detectors. If the origin of the photons lies deeper within the imaged object,
fewer photons will reach the detectors (as shown in Fig. 2.13). In small animal PET this
effect is considerably smaller than in human PET, but for quantitative analysis these effects
cannot be neglected. There are several attenuation correction methods!19):

16

General Survey of PET

e Scaling method: This very simple method assumes, that the imaged object is a
homogeneous cylinder filled with water. By calculating the estimated attenuation the
measured data can be adapted to this values.

e PET-transmission method: The PET itself is used as a CT. A radiation source (eg.

BGe or 57Co) is rotated around the imaged object. Thereby the attenuation can be
directly measured.

e (CT-transmission method: in principle just the same as PET-transmission, with the
advantage of a higher resolution.

0,001

activity tomogram of a cylinder cross section values (without correction)
with no attenuation correction

@

attenuation corrected activity cross section values (corrected)

tomogram of a cylinder

Figure 2.13 Attenuation correction for cylinder filled with 500 ml I8F_water solution

2.4.5 Dead-time correction

Every detection system has a certain dead time. This is the time span within two indepen-
dent detection events cannot be resolved. If two events occur within the dead time, it leads
to a pulse pileup in a PMTIOl. Too big pulse amplitudes may exceed the defined energy
frame and may be discarded. These losses are called dead time losses. They become sig-
nificant at higher count rates. In order to reduce these losses, detectors with shorter dead
time can be used. Additionally the percentage of overloaded detectors can be estimated
to extrapolate the actually detected counts.

17

General Survey of PET

2.4.6 Scatter Correction

Scatter correction tries to minimize the scattering events caused by Compton scattering.
There exist several different schemes and techniques to calculate scattered events. The
methods range from the Gaussian fit technique over Monte Carlo simulations to single
scatter simulation algorithms[m.

2.5 Reconstruction

In 1917 Radon2 formed the mathematical bases for reconstructing objects from mea-
sured projection data (sinogram). There exists a wide range of different reconstruction
methods2l. A rather fast reconstruction method is the Filtered Back Projection (FBP).
Iterative numerical methods are superior to filtered back projection, but also more time
consuming. In the following the principles of these reconstruction methods will be shown
very briefly.

2.5.1 Filtered Back Projection

FBP is by far the best known reconstruction method. An object, measured through several
angles, can be reconstructed by back projecting the measured projections to the image
plane. This approach is similar to mathematical shadow casting. But if the measured
projections are directly projected into the image plane, the resulting image will be blurry
(see Fig. 2.14a). In order to eliminate this smearing effects the resulting object has to
be deconvoluted. As a replacement for deconvolution high-pass filters are used. Due to
convolution of the projections with an appropriate filter function the reconstructed image
is sharpened and negative values at edges may occur (Fig. 2.14b).

(a) Unfiltered Back Projection (BP) (b) FBP using a bandlimiting-filter

Figure 2.14 lllustrating the use of filters in FBP (mircoCT image of a nut[22])

18

General Survey of PET

2.5.2 Numerical Methods

Numerical reconstruction methods are based on sets of linear equations. The projected
values along several angles (sinogram) are known. By an iterative process the unknown
matrice’s elements have to be calculated. The estimated matrice’s elements are adjusted,
till the projections through the reconstructed matrix equal the measured projection values.

A very simple iterative method, called Algebraic Reconstruction Technique (ART)[Q?’}, is
illustrated in Fig. 2.15. During this iterative process the matrice’s elements (A’, B’, C’, D)
are adjusted to match the measured projection values. This is done for every projection
angle. After having compared all angles, the first iteration has finished. This iteration
process has to be done several times till the matrice’s elements converge.

\=C'=0+(5-0)/2 |2.5[3.5

AI_CI_0+(5 0)/2 A'=2.5+(3-6)/2

B'=D'=0+(7-0)/2[> 5|3.5 B'=3.5+(3-6)/2
’ —

should be: 5 7 2.53.5!% 6 3@ 1

5 7 is:0 O

2.513.5/% 6 94| 4|5

4 4 4 4
3@ AlB olo C'=2.5+(9-6)/2
D'=3.5+4+(9-6)/2

o@|C|D 00

A=B=C=D=?

Figure 2.15 lllustration of the ART algorithm

Though this method is very descriptive it converges fairly slow. Other methods like Ex-
pectation Maximization 24 (EM) are more efficient. Ordered Subset Expectation Maxi-
mization 25 (OSEM) provides the same results as EM and converges more quickly. Two
other commonly used variants of EM are: the Maximum Likelihood Expectation Maxi-
mization24 (MLEM) and the Maximum a Posteriori2? (MAP) algorithm.

19

20

Software Details

3 Software Details

The software is completely written in IDL (Interactive Data Language), an object oriented,
vectorized programming language, whose syntax is related to Fortran and C.

In Fig. 3.1 the GUI (Graphical User Interface) of the computer program, which has been
called “Mouse Fitter 2007”, is shown. It consists of three major, vertically aligned blocks.
At the top the image of the loaded PET data, in the middle the phantom file and at the
bottom the selected ROI are displayed. Each block is divided into a set of two-dimensional
(2D) images, which are made up of coronal, sagital and axial planes and a three-dimensional
(3D) projection.

Organ selection takes place by choosing the desired region in the “Organ Selection” combo
box and selecting the organ’s maximum with a left mouse and the minimum with a right
mouse click. Pressing the button “Add Organ” now defines the organ mask.

7l Mouse Fitter 2007 - 060510_M1_em_FDG_bolus_2D-OSEM_att_Z_v1

File Set Caleulate Info
Sagital Coronal Axial
‘ A JE Min (%) fi] Min(%) [025]
Max (%) 35 Max (%) |35
Potenz 0.5 Potenz 05
Color Table 3D Quality |1
EosB -
]
kil
. ot .
60 69
Rl [LKl d
Sagital Caronal Axial
Min (%)] Min (%) 0
Max (%) 100 Max (%) [100
Potenz 1 Potenz 1
Color Table 3D Quality |1
EosB hd
89 99 76
Al [Ky [[R 2
Sagital Coronal Axial 3D Projection
[. o b O Threshold [select | D Qualty [I
Thresh. Min |0.225788 Add Organ
Thresh. Max (0.336031 e
Smoothing |1 -
Fit Mouse
Mebhod [opimes =] # —
Organ Selection
. *_Lef_Kidney -
M
[[} [B [

Figure 3.1 Program’s GUI

After having defined all desired ROIs, the software calculates the most likely positions
of the remaining organs. In combo box “Method” two reconstruction methods can be
selected. The method “optimize” determines the angle between phantom and PET image,
that guarantees the best possible overlap, whereas method “customize” lets the user choose
the right angle.

21

Software Details

In order to simplify organ selection the perceptibility can be enhanced by changing the
color table or by adjusting the minimum and maximum values of the image to be displayed.
By clicking into a 3D projection, while keeping the left mouse button pressed, and dragging
the mouse, the 3D projection can freely be rotated around the z-axis (axial).

3.1 Data Types Used

In the following PET and phantom file formats will be discussed and it is shown how they
are imported into the computer program.

3.1.1 PET Data

The PET data are stored in concorde file format. This is a two file format and consists of a
raw data file (img-file) and a header file (img.hdr-file) in ASCII (American Standard Code
for Information Interchange) format. The header file can be edited in a normal text editor,
which allows to easily change settings. In the header file lines are commented with “#”.
Each setting is made up of setting description and setting_value using the following
format: “setting_description setting_value” (eg. “number_of_dimensions 3”). An
extract of a typical header file is shown below.

(R

Number of dimensions in data set (integer)
Order from fastest to slowest is XYZW
#

number_of_dimensions 3

#

Size of X dimension in data set (integer)
#

x_dimension 128

#

Size of Y dimension in data set (integer)
#

y_dimension 128

#

Size of Z dimension in data set (integer)
#

z_dimension 95

- J

The raw data file consists of one to several time frames. Each frame is made up of
a three dimensional array of 32 bit floats. Before the raw data file can be imported,
the header file has to be read in, to be able to import the raw data correctly. The
most important passages of function readHdrFile are shown below. In a WHILE-loop
each line is imported with READF. If the line’s first character is not equal to “#”, the
first part of the line’s contents is compared to the setting description (as for in-
stance “x_dimension”) and its setting_value is saved. Not all settings in the header
file are important for the software. The necessary settings are: the PET file’s dimen-
sions (x_dimension, y_dimension, z_dimension), the number of frames (total_frames),

22

Software Details

the voxel sizes (pixel_size), the injected dose (dose, dose_units), the mouse weight
(subject_weight, subject_weight_units) and additional calibration factors (calibra-
tion_factor, calibration_units, isotope_branching fraction).

After the WHILE-loop the imported values are adapted to computer program units, which
are mCi (millicurie), g (gram) and cc (cubic centimeter) (lines 25 and 26). This prevents
a mix up of different units within the software.

(R
1 FUNCTION readHdrFile, path, fileName
2 ce
3 WHILE (~ EOF(inLun)) AND (endOfHeaderCounter NE 0) DO BEGIN
4 READF, inLun, inFileData
5 IF (STRMID(inFileData,0,1) NE "#") THEN BEGIN
6 inFileDataArray = STR_SEP(inFileData, " ")
7 CASE inFileDataArray(0) OF
8 "x_dimension": dimensions(0) = inFileDataArray(1)
9 "z_dimension": dimensions(l) = inFileDataArray(1)
10 "total_frames": dimensions(2) = inFileDataArray(1)
11 "dose": cInjectedDose = inFileDataArray (1)
12 "dose_units":
13 "subject_weight": cMouseWeight = inFileDataArray (1)
14 "subject_weight_units":
15 "end_of_header": endOfHeaderCounter = endOfHeaderCounter - 1
16 "pixel_size": magnificationXY = inFileDataArray(1)
17 "calibration_factor":
18 "calibration_units":
19 "isotope_branching_fraction":
20 ELSE:
21 ENDCASE
22 END
23 END
24 Ce
25 calibration.injectedDose = cInjectedDose * units(0)
26 calibration.mouseWeight = cMouseWeight * units(1)
27 ...
28 END
-)

After having read out the dimensions from the header file, the petFile-struct is defined,
because arrays cannot be rescaled in IDL. This struct stores all imported PET data (pet-
File.cache) and other important variables.

4 I
petFile = {fileName:’’, path:’’,$
magnification:FLTARR(2), dim:INTARR(3),$
cache:FLTARR(dimensions(0), dimensions(0),$
dimensions(1), dimensions(2)),$
isCached:INTARR(dimensions(2)), type:’img’,$
frameDuration:FLTARR(dimensions(2)),$
scaleFactor:FLTARR(dimensions(2)),$

isotopeBranchingFraction:1.}
= J

00 N O O WN

Each frame has a different frame duration (frame_duration) and a different scaling factor
(scale_factor). Both have to be imported from the header file and are stored in the

23

Software Details

previous defined petFile struct. This is done in a WHILE loop, which aborts if the end of
the header file is encountered or the frame counter, called end0fHeaderCounter, reaches
the absolute number of time frames (dimensions(2)).

(R
1 WHILE (~ EOF(inLun)) AND (endOfHeaderCounter LT dimensions(2)) $
2 DO BEGIN
3 READF, inLun, inFileData
4 IF (STRMID(inFileData,0,1) NE "#") THEN BEGIN
5 inFileDataArray = STR_SEP(inFileData, " ")
6 CASE inFileDataArray(0) OF
7 "frame_duration": petFile.frameDuration(endOfHeaderCounter) = §
8 inFileDataArray(1)
9 "scale_factor": petFile.scaleFactor(endOfHeaderCounter) = $
10 inFileDataArray (1)
11 "end_of_header": endOfHeaderCounter = endOfHeaderCounter + 1
12 ELSE:
13 ENDCASE
14 END
15 END
N\ J

Now procedure readImgFile reads in the current frame of the img-file (lines 6-9). The
variable offset equals the offset in bytes of the opened file, because not the whole img-
file is read but just the current frame. The raw data of each frame has to be multiplied
with the frame’s scale_factor and the global isotope_branching fraction (for more
information on the isotope branching fraction see Subsection 2.4.3).

(R
1 PRO readImgFile, frame
2 e
3 inFileData = FLTARR(petFile.dim(0) ,petFile.dim(0) ,petFile.dim(1))
4 offset = SIZE(inFileData, /N_ELEMENTS)*framex4ULL
5 Ce
6 OPENR, inLun, inFile, /GET_LUN
7 POINT_LUN, inLun, offset
8 READU, inLun, inFileData
9 CLOSE, inLun, /ALL
10 .
11 FOR i=0,2 DO IF calibration.flipPetFile(i) THEN
12 inFileData = REVERSE(inFileData, i+1, /OVERWRITE)
13 petFile.cache(*,*,*, frame) =
14 inFileData(*,*,*) * petFile.scaleFactor(frame) /
15 petFile.isotopeBranchingFraction
16 petFile.isCached(frame) = 1
17 END
- J

3.1.2 Phantom

The phantom file is in raw data format. It consists of a three dimensional array of 16 bit
integers. The function readBinFile shows, how the data is read out. In equivalence to
struct petFile, a new struct phantomn file is defined, which stores all phantom data.

24

Software Details

(R
1 FUNCTION readBinFile
2 .
3 dimensions = INTARR(3)
4 dimensions = [190, 190, 1]
5 ...
6 phantom = {fileName:’BFnormalmap_act_av’, path:’.\Phantom\’,$
7 magnification:FLTARR(2), dim:INTARR(3),$
8 cache:BYTARR(dimensions(0), dimensions(0),$

9 dimensions(1), dimensions(2)),$
10 isCached:INTARR(dimensions(2)), type:’bin’}
11 phantom.dim = dimensions

13 inFileData = BYTARR(phantom.dim(0), phantom.dim(0), phantom.dim(1))
14 OPENR, inLun, inFile, /GET_LUN, /COMPRESS

15 READU, inLun, inFileData

16 CLOSE, inLun, /ALL

18 phantom.cache(*,*,%*,0) = inFileData
19 phantom.isCached(0) = 1

20 RETURN, O

21 END

3.2 Fitting Process

By the help of Fig. 3.2, the main principle of the software is demonstrated. First of all the
user has to select a certain organ by clicking at the minimum and the maximum intensity
value of the organ region. The difference between these values is taken as threshold.
The computer program now determines, if the value of the current pixel compared to the
maximum value, lies within the selected threshold (Subsection 3.2.1). The phantom data
consists of discrete values (eg. heart = 28, Bladder = 12, ...), providing an anatomical map.
With the phantom data the software creates a mask of each organ (Subsection 3.2.2).

@1/ s
SO0 e | =
~
© A @
$
COM > /8 C%
! =

Figure 3.2 Functional principle of the fitting process

25

2

3

Software Details

Then calculation begins, and the phantom and PET masks are compared to each other.
The organ masks defined by the phantom enlarge or shrink, till they have reached the same
volumes as the selected PET organ (2) (Subsection 3.2.3). Then the distances between
the center of mass (COM) and the phantom masks are adapted to the defined PET organs
(3) (Subsection 3.2.4). The remaining organs are rescaled by the mean relative change
of distance. Because the orientation of the mouse slightly differs, the organs are rotated
around the x-,y- and z-axis (4) (Subsection 3.2.5), until the phantom and PET organ masks
meet their best possible overlap.

When the calculation is finished, the masks (the originally selected and the calculated ones)
are affiliated with the PET data as shown in (5) (Subsection 3.2.6). By knowledge of the
most likely position of each organ the accumulated dose in each organ can be calculated.

The dynamic PET data consists of several time frames. Every frame represents the mea-
sured activity in predefined time intervals. With the help of these frames, it is possible
to gain knowledge about the biodistribution of the injected radioactive tracer. Afterwards
the distribution can be visualized in TACs (6) (Time Activity Curves) (Subsection 3.3.2).

3.2.1 Defining Organs

In order to select an organ, the organ’s maximum
has to be selected by a left mouse button click. Af-
terwards the organ’s minimum has to be selected
by a right mouse button click. In procedure se-
lectPetOrgan the difference between these two val-
ues is called threshold. The referenceValue
represents the value of the organ’s defined maxi-
mum. pos represents the current position. or-
gan(organSelected) .mask(pos) is the selected or-
gan’s mask (shown in Fig. 3.3). Voxel values are set
to zero, if they do not belong to this organ, and set
to one, if they are part of the organ.

Figure 3.3 Defining Organs

Procedure selectPetOrgan is called recursively. If the current voxel (pos) of the or-
gan mask is already part of the organ, do nothing and exit. Otherwise this voxel
is set to be part of the organ and its neighbours® are tested. If the adjacent posi-
tion is valid® and “|referenceValue — left/right neighbour| < threshold” then se-
lectPetOrgan is called recursively with this new adjacent position (eg. scaled-
Data3D(pos(0)+1,pos(1),pos(2))).

Because of simplicity, only adjacent voxels in x-direction are shown below. For the y and z-direction it is
nearly the same.
i.e. if all the coordinates lie within the dimensions of the PET file.

26

Software Details

(R
1 PRO selectPetOrgan, referenceValue, pos, scaledData3D, threshold
2 .
3 organ(organSelected) .mask(pos(0), pos(1), pos(2)) =1
4 IF (pos(0) LT (petFile.dim(0)-1)) THEN BEGIN
5 IF ABS(referenceValue - scaledData3D(pos(0)+1, pos(1l), pos(2))) $
6 LT threshold THEN BEGIN
7 selectPetOrgan,referenceValue,pos+[1,0,0],scaledData3D,threshold
8 END
9 ENDIF

10 IF (pos(0) GT 0) THEN BEGIN
11 IF ABS(referenceValue - scaledData3D(pos(0)-1, pos(1l), pos(2))) $
12 LT threshold THEN BEGIN

13 selectPetOrgan,referenceValue,pos-[1,0,0],scaledData3D, threshold
14 END
15 ENDIF
16 R
17 END
& J

3.2.2 Extract Phantom Organs

The phantom data consists of discrete values, which
are shown in Table 3.1. IDL provides a specially opti-
mized function WHERE (as shown below), which allows
to find regions, that have a certain value (shown in
Fig. 3.4). Therefore organ allocation can quickly be
done. It is useful to additionally define groups of or-
gans. These defined organ groups are shown in Ta-
ble 3.2. They are not part of the phantom file, they
are just arbitrarily set up to ease organ selection and
consist of several organs provided by the phantom file.

With a FOR-loop over all defined organs, wherein Figure 3.4 Extract Phantom Organs
organ(i) .value accord to the values shown in Ta-

bles 3.1 and 3.2, the location of each organ (organLocationPhantom) is computed using
function WHERE. If an organ group is selected, several organs are chosen (lines 9-20). The
function’s output, organLocationPhantom, is a list containing every voxel the selected
organ consists of. “phantomMask(organLocationPhantom) = 1” sets every organ voxel to
one, the rest remains zero. In order to save time and memory each phantomMask is cut
to a minimal cuboid. For not losing track of the overall picture, the vector to the organ’s
COM (Center of Mass) has to be stored in phantomMaskLocation. Therefore the built-in
function ARRAY INDICES is used, which returns the x, y and z-coordinate of the organ
voxels. Then the minimum and maximum x, y and z-coordinates are calculated and the
organ mask is cut and stored in *ptrPhantomMask.

27

Software Details

28

organname value organname value
Body 1 Skull 17
Liver 2 Ventrical Space 18
Lungs 3 Neocortical White 19
Stomach 5 Neocortical Gray 20
Pancreas 7 Cerebellum White 21
Spleen 9 Cerebellum Gray 22
Small Intestine 10 Thalamus 24
Large Intestine 11 Hippocampus 25
Bladder 12 Thyroid 26
Spermatic Duct 13 Heart 28
Testes 14 Right Kidney 35
Ribs & Legs 15 Left Kidney 36
Spine 16

Table 3.1 Some organs and values defined by phantom file

organgroup | values included | value
Everything 0-36 100
Kidneys 35,36 101
Brain 18-25 102
Bones 15-17 103

Table 3.2 Additionally defined organgroups

Software Details

(R
1 ptrPhantomMask = PTRARR(N_ELEMENTS(organ))
2 ..
3 phantomMaskLocation = FLTARR(N_ELEMENTS(organ), 3)
4 ...
5 phantomMask =$
6 BYTARR (phantom.dim(0), phantom.dim(0), phantom.dim(1))
7 FOR i = 1, N_ELEMENTS(Organ)—l DO BEGIN
8 phantomMask (*,*,*) = 0
9 CASE organ(i).value OF
10 1: organLocationPhantom=WHERE (phantom.cache (*,*,%,0),$
11 organSizePhantom)
12 101: organLocationPhantom=WHERE((phantom.cache(*,*,*,0) EQ 35)$
13 OR (phantom.cache(*,*,*,0) EQ 36), organSizePhantom)
14 102: organLocationPhantom=WHERE ((phantom.cache(*,*,*,0) GE 18)$
15 AND (phantom.cache(*,*,*,0) LE 25), organSizePhantom)
16 103: organLocationPhantom=WHERE ((phantom.cache(*,*,*,0) GE 15)$
17 AND (phantom.cache(*,*,*,0) LE 17), organSizePhantom)
18 ELSE: organLocationPhantom=WHERE (phantom.cache (*,*,*,0)$
19 EQ organ(i).value, organSizePhantom)
20 ENDCASE
21 phantomMask(organLocationPhantom) = 1
22 organLocationPhantomIndices = $
23 ARRAY_INDICES(phantom.cache(*,*,*,0), organLocationPhantom)
24 Fig:Resizing_OrgansminX = MIN(organLocationPhantomIndices(0, *))
25 maxX = MAX(organLocationPhantomIndices(0, *))
26 minY = MIN(organLocationPhantomIndices(1l, *))
27 ce
28 FOR ii=0,2 DO $
29 phantomMaskLocation(i,ii)=MEAN(organLocationPhantomIndices(ii,*))
30 (*ptrPhantomMask (i)) =phantomMask (minX:maxX,minY:maxY,minZ:maxZ)
31 END
& J

3.2.3 Resizing Organs

Before the actual resizing takes place (as illustrated in

Fist, only the selected organ voxels* are summed up in
a FOR loop (lines 3-6). Then the COM of each PET
file organ is calculated and stored in the array petFile-

Fig. 3.5), the COM of all selected organs is computed. "\ 1 LW
&0 -
7/

Pa

MaskLocation. This is done by averaging over all voxels
x-,y- and z-coordinates separately. Then the COM of all selected organs for both phan-
tom (phantomCoM) and pet file (petFileCoM) are computed. Therefore the mask location
vectors are weighted by the mask sizes and summed up, providing the COMs (one for the
PET and one for the phantom file) of all organs (lines 12-15).

1
e

Figure 3.5 Resizing Organs

The calculation of the COMs is done, because in a final step phantomCoM and petFileCoM
will be positioned on top of each other, providing a starting point for the reconstructed
organs.

4 (organ(i).defined= ’*_’) is true for selected organs only (see Table 3.3).

29

Software Details

(R
1 FOR i = 1, N_ELEMENTS(organ)-1 DO BEGIN
2 IF organ(i).defined EQ ’*_’ THEN BEGIN
3 organLocationPetFile=WHERE (organ(i) .mask,organSizePetFile)
4 organLocationPhantom=WHERE ((*ptrPhantomMask(i)) ,organSizePhantom)
5 summedOrganSizePetFile=summedOrganSizePetFile+organSizePetFile
6 summedOrganSizePhantom=summedOrganSizePhantom+organSizePhantom
7 organLocationPetFileIndices = $
8 ARRAY_INDICES(organ(i) .mask,organlocationPetFile)
9 FOR ii=0,2 DO BEGIN
10 petFileMaskLocation(i, ii) = $
11 MEAN (organLocationPetFileIndices(ii, *))
12 petFileCoM(ii) = petFileCoM(ii) + $
13 petFileMaskLocation(i, ii)*organSizePetFile
14 phantomCoM(ii) = phantomCoM(ii) + $
15 phantomMaskLocation(i, ii)*organSizePhantom
16 END
17 END
18 END
19 ooo
20 petFileCoM = petFileCoM/summedOrganSizePetFile
21 phantomCoM = phantomCoM/summedOrganSizePhantom
- J

Before the organ sizes between the PET and phantom file can be compared, they have to
be rescaled. This has to be done, because the phantom and PET file voxels have different
dimensions. The phantom data consists of cubical voxels, whereas the PET file voxels are
cuboids. scaleXY and scaleZ are defined as shown below, to get the ratio between xy
and z dimensions. The overall scalingFactor, scaleXY and scaleZ will be used to resize
organ and organ location vectors afterwards.

scale =1.#MIN([petFile.magnification(0),petFile.magnification(1)])

scaleXY =1./(petFile.magnification(0)/scale)

scaleZ =1./(petFile.magnification(1)/scale)

scalingFactor = (1.*summedOrganSizePetFile/ $
(summedOrganSizePhantom*scaleXY 2*scaleZ))~ (1./3)

(S SOV O R

In the following FOR loop the actual resizing takes place. First the size, the mask should
be resized to (maskSize), is calculated. maskSize is a three dimensional integer array. A
new temporary pointer tmpPtrPhantomMask to a byte array of maskSize’s size is defined.
If maskSize is too small, a flag in the binary array toSmallOrgans is set®. With function
CONGRID each phantom mask (*ptrPhantomMask(i)) is resized to maskSize and the re-
sulting mask is stored in *tmpPtrPhantomMask. Afterwards the unscaled phantom mask
is deleted with PTR_FREE and ptrPhantomMask (i) is set to point at the resized organ.

5 see Table 3.3

30

Software Details

FOR i = 1, N_ELEMENTS(organ)-1 DO BEGIN
maskSize = ROUND(SIZE((*ptrPhantomMask(i)), /DIMENSIONS) * $
[scaleXY, scaleXY, scaleZ] * scalingFactor)
tempPtrPhantomMask = PTR_NEW(BYTARR(maskSize))
FOR ii=0,2 DO IF maskSize(ii) LT 2 THEN toSmallOrgans(i) = 1
(*tempPtrPhantomMask) = ROUND($
CONGRID(1.* (*ptrPhantomMask(i)), $
maskSize(0), maskSize(1), maskSize(2)))
PTR_FREE, ptrPhantomMask(i)
0 ptrPhantomMask(i) = tempPtrPhantomMask
1 END

= = O 00 N0 O WwN -

3.2.4 Rescaling Distancies

Before resizing the vectors to the COMs of all organs (phantomMaskLocation) (shown in
Fig. 3.6) and to the COM of all selected organs (phantomCoM), they have to be rescaled to
be comparable to the PET file vectors. Therefore scaleXY, scaleZ and scalingFactor
(as shown in Subsection 3.2.3) are used.

(R

FOR i = 1, N_ELEMENTS(organ)-1 DO BEGIN

phantomMaskLocation(i,*) = phantomMaskLocation(i,*)* $
[scaleXY,scaleXY,scaleZ]*scalingFactor

END

phantomCoMScaled = phantomCoM* [scaleXY,scaleXY,scaleZ]l* $

scalingFactor
= J

DO WN

The variable 1lengthOrganToCoM is used to rescale distances between or-

gans. In a FOR loop all distances between the COM of all selected organs /
and the COM of each organ, both for PET (lengthOrganToCoMPetFile)

and phantom masks (lengthOrganToCoMPhantom), are calculated. The !
mean ratio between lengthOrganToCoMPetFile and lengthOrganTo-

CoMPhantom is stored in lengthOrganToCoM. If only one organ is de-

fined, there is no need to calculate lengthOrganToCoM, because in this COM ~
case the vectors phantomCoM and phantomMaskLocation are the same I

and therefore lengthOrganToCoM is set to one.

Figure 3.6 Rescaling
Now all organ vectors starting from phantomCoM to the organ’s COM will Distancies

be multiplied with lengthOrganToCoM. Normally the lengthOrganToCoM

factor should be close to one. If lengthOrganToCoM equals one, the investigated mouse
corresponds to a rescaled phantom mouse, keeping all proportions. But for mice, whose
distances between the organs are above-average, compared to the organ size, (eg. fat mice)
the factor lengthOrganToCoM will slightly be greater than one.

31

Software Details

(" M)
1 lengthScaleOrganToCoM = O.
2 IF definedOrgans NE 1 THEN BEGIN
3 FOR i=1, N_ELEMENTS(organ)-1 DO BEGIN
4 IF organ(i).defined EQ ’*_’ THEN BEGIN
5 lengthOrganToCoMPhantom = 0.
6 lengthOrganToCoMPetFile = 0.
7 FOR ii=0,2 DO BEGIN
8 lengthOrganToCoMPhantom = lengthOrganToCoMPhantom + §
9 (phantomCoMScaled(ii) - phantomMaskLocation(i, ii))~2
10 lengthOrganToCoMPetFile = lengthOrganToCoMPetFile + §
11 (petFileCoM(ii) - petFileMaskLocation(i, ii))~2
12 END
13 lengthScaleOrganToCoM = lengthScaleOrganToCoM + $
14 (lengthOrganToCoMPetFile/lengthOrganToCoMPhantom) ~(1./2)
15 END
16 END

17 END ELSE BEGIN

18 lengthScaleOrganToCoM = 1.

19 END

20 lengthScaleOrganToCoM = lengthScaleOrganToCoM/definedOrgans

3.2.5 Determine Angles

Normally the investigated mouse does not have the same orientation as
the phantom mouse. In order to provide a better overlap between the
reconstructed masks and the defined masks, the phantom masks are rotated
- around the x, y and z-axis (shown in Fig. 3.7). In three nested FOR loops
each angle is varied in an interval of ten degrees ([-5,+5]) with a step width
of one degree®. The overlap of each position is measured and stored in
variable overallQuality. Then the angle settings that provide the best
overlap are used to move all organs into their most likely position. Therefore
the organ masks and their location vectors are rotated around the COM.

~

>

Figure 3.7 De- All organ masks are rotated, resized and brought into the correct position.
termine Angles Then the overlap of the reconstructed masks with the user defined organs

is calculated. overallQuality is defined as an array of floats. It keeps the
mean overlap of the selected organ masks (organ(i) .mask) and the reconstructed organ
masks (tempOrganMask) for every angle combination.

organ (i) .mask and tempOrganMask are binary. Their values are zero, if a voxel is not part
of this organ, or one, if a voxel is part of this organ. So each element of organ (i) .mask just
has to be multiplied with tempOrganMask to get the total overlap (lines 12-13). With the
help of function TOTAL all values in an array are summed up, thus giving us the quantity
of all overlapping organ’s voxels. After dividing through the organ sizes and the number of
organs, overallQuality equals the percental overlap. overallQuality is calculated for
all combinations of different angles. Finally the desired angle (desiredAngle) is found by
locating the maximum value of overallQuality.

6 The starting angles can be defined by the user.

32

Software Details

(R
1 overallQuality = FLTARR(11, 11, 11)
2 .
3 FOR angleX = -5,5 DO BEGIN
4 FOR angleY = -5,5 DO BEGIN
5 FOR angleZ = -5,5 DO BEGIN
6 FOR i=1, N_ELEMENTS(organ)-1 DO BEGIN
7 IF organ(i).defined EQ ’*_’> THEN BEGIN
8 ..
9 ;; ROTATING MASKS AND VECTORS
10 ;5 RESIZE MASKS AND VECTORS
11 ce
12 quality = TOTAL(organ(i).mask * tempOrganMask)/ $
13 ((TOTAL (organ(i) .mask) + TOTAL(tempOrganMask))/2)
14 overallQuality(angleX+5, angleY+5, angleZ+5) = §
15 overallQuality(angleX+5, angleY+5, angleZ+5) + quality
16 500
17 END
18 END
19 END
20 END
21 END

22 overallQuality = overallQuality/definedOrgans
23 maximumQuality = MAX(overallQuality, location)

24 desiredAngle = ARRAY_INDICES(overallQuality, location) - [5,5,5]
K J

Before calculating overallQuality the organs have to be turned into the correct position.
The organ masks are rotated using the rotateMask function, which is shown below. Before
rotation, the mask that exactly fits the organ has to be enlarged, so that there is enough
space to turn the mask around without touching the array’s borders. Therefore the array
is enlarged to serve the worst case, where the mask exactly lies diagonally in the mask’s
array cuboid. The bigger mask (tempMask), which temporarily stores the mask, is a cube
with a side length as long as the diagonal of the old mask (mask). The rotation of tempMask
is done by the optimized, IDL-function ROT. After rotation, the mask is cut to a minimal
cuboid (lines 16-20) and stored into *ptrMask. Finally function rotateMask returns the
pointer ptrMask to the rotated mask.

Fig. 3.8 shows an 2D example for rotateMask. The dark-red object represents the organ.
The box on the left and the dotted box at the right represent the old mask. The green line
is the diagonal length of the old mask. The dashed box is the temporary mask tempMask
and the solid frame shows the returned cut mask (*ptrMask).

Figure 3.8 The wost-case scenario for function rotateMask

33

Software Details

(. R
1 FUNCTION rotateMask, mask, degreeX, degreeY, degreeZ
2 maskDim = SIZE((mask), /DIMENSIONS)
3 tempMaskDim = CEIL((TOTAL((1.*maskDim)~2))~(1./2)) + 1.
4 tempMask = BYTARR(tempMaskDim, tempMaskDim, tempMaskDim)
5 offset = 1.*(tempMaskDim - maskDim)/2
6 tempMask(offset(0), offset(1l), offset(2)) = mask
7 ...
8 FOR i = 0, tempMaskDim-1 DO tempMask(i,*,*) = §
9 ROT(REFORM(tempMask(i,*,*)), degreeX)
10 FOR i = 0, tempMaskDim-1 DO tempMask(*,i,*) = §
11 ROT(REFORM(tempMask(*,i,*)), degreeY)
12 FOR i = 0, tempMaskDim-1 DO tempMask(*,*,i) = §
13 ROT(REFORM(tempMask(*,*,i)), degreeZ)
14 Ce
15 tempMaskNotZero = WHERE(tempMask)
16 tempMaskNotZeroIndices = ARRAY_INDICES(tempMask, tempMaskNotZero)
17 minX = MIN(tempMaskNotZeroIndices(0, *))
18 maxX = MAX(tempMaskNotZeroIndices(0, *))
19 minY = MIN(tempMaskNotZeroIndices(l, *))
20 .
21 ptrMask = PTR_NEW(BYTARR (maxX-minX+1, maxY-minY+1, maxZ-minZ+1))
22 (*#ptrMask) = tempMask(minX:maxX, minY:maxY, minZ:maxZ)
23 RETURN, ptrMask
24 END
& J

After having turned the organ masks, the vectors from the COM of all defined organs
to each organ’s COM are rotated. This task is done by function rotateVector. With a
simple rotation operator (rotationMatrix) these vectors easily can be rotated into the
right position.

(R
1 FUNCTION rotateVector, vec, degreeX, degreeY, degreeZ
2 VecX = vec(0)
3 VecY = vec(1)
4 VecZ = vec(2)
5 a = rotationMatrix(degreeX) ## [[VecY], [VecZ]l]
6 VecY = a(0)
7 VecZ = a(1)
8 a = rotationMatrix(degreeY) ## [[VecX], [VecZ]l]
9 VecX = a(0)
10 VecZ = a(1)
11 a = rotationMatrix(degreeZ) ## [[VecX], [VecY]]
12 VecX = a(0)
13 VecY = a(1)
14 RETURN, [VecX, VecY, VecZ]
15 END
& J

Function rotationMatrix is used by rotateVector and represents an euclidic, orthogonal,
two dimensional rotation matrix.

34

rotationMatrix () = (

cos(3 sinpf
—sinf8 cos (3

Software Details

FUNCTION rotationMatrix, a

b = ax!PI/180

RETURN, [[COS(b),SIN(b)],[-SIN(b),C0S(b)]]
END

D wWw N -

After mask- and vector rotation the masks have to be rescaled and resized as seen before
in Chapters 3.2.3 and 3.2.4. Then the masks with the maximum overlap are taken and the
rescaled and resized phantom organ masks are used to define the remaining non selected
organs. This is shown in Subsection 3.2.6.

3.2.6 Affiliate Organs

After having determined the optimal angle, resizing and
rescaling, the organ masks have to be put together (shown
in Fig. 3.9). How this is done, is shown below. All organ
masks are merged to organ masks with the dimensions of the
PET file. This is done for reasons of simplicity and perfor-
mance, because with this method all PET data referring to
an organ can be received by simply multiplying each PET
data matrix value with the organ’s mask (this will be shown
in Subsection 3.3.2 and Section 3.4).

In order to place the small organs, the coordinate offset in the -
bigger mask (PET file sized) must be known. The vectors Figure 3.9 Affiliate Organs
used to calculate the offset coordinates (coord) are shown

in Fig. 3.10.7 The vectors petFileCOM and phantomMaskLocation are know. The vector
center has to be calculated first and represents the COM of the small organ mask. By
simple vector addition one gets coord.

Because the organ might only be partially seen or even not be visible, it is necessary to
check, if the small mask fits into the PET file size mask. Protruding organ parts have to
be truncated and organ(i) .defined flags are set (the legend is shown in Table 3.3).

flag | meaning

? organ mask is not defined

organ mask has been defined and selected by the user
organ mask has been calculated and fits in entirely
organ mask has been calculated but does not fit entirely
- organ mask has been calculated but cannot be seen

Table 3.3 Legend of organ.defined-flags

7 The vectors named in Fig. 3.10 equal the syntax names to preserve consistence

35

Software Details

Figure 3.10 |Illustration of transforming the

phantom organ masks to globally used organ masks

Merging is done in a FOR loop over all organs. The temporary used PET sized mask
tempOrganMask is cleared before processing each organ. It stores the organ mask, until
the mask is passed over to organ(i) .mask. If the organ is big enough to be fitted®, the
COM of all small organ masks, that have not been defined by the user, are calculated (lines
6-9). Then the offset coordinates coord are computed in a vector addition (as illustrated in
Fig. 3.10). If the organ mask fits (lines 12-19) then the small organ mask *ptrPhantomMask
can easily be stored in organ(i) .mask using coord as offset. If it does not fit, the mask
has to be truncated (lines 25-36). Therefore the following IDL syntax is used:

Min . Max
Index * XIndex?)

tempOrganMask(Xo ¢ fset, ---) = *ptrPhantomMask(X

In order to ensure that (X Offset + X %gfx) does not exceed the x-dimension of tempOrgan-
Mask, X %ge‘rx has to be harmonized with the x-dimension of tempOrganMask.® This is done
using the arrays minX, maxX, minY and so on (see below). This avoids that tempOrganMask
exceeds positive or negative x-, y- or z-dimension.

8 Tt must at least be a three dimensional array.
9 Tt is the same for x-,y- and z-coordinate. Therefore explanation is limited to the x-coordinate.

36

Software Details

(R
1 FOR i = 1, N_ELEMENTS(organ)-1 DO BEGIN
2 tempOrganMask (*,*,%*) = 0
3 IF ~toSmallOrgans(i) THEN BEGIN
4 .
5 IF organ(i).defined NE ’*_’ THEN BEGIN
6 location = WHERE((*ptrPhantomMask(i)), maskSize)
7 locationIndices = ARRAY_INDICES((*ptrPhantomMask(i)), location)
8 FOR ii=0,2 DO center(ii) = MEAN(locationIndices(ii, *))
9 FOR i1i=0,2 DO coord(ii) = ROUND(petFileCoM(ii) + $
10 phantomMaskLocation(i, ii) - center(ii))
11 maskSize = SIZE((*ptrPhantomMask(i)), /DIMENSIONS)
12 IF $
13 (coord(0) GE 0) AND (coord(1) GE 0) AND (coord(2) GE 0) AND $
14 ((coord(0) + maskSize(0)) LT petFile.dim(0)) AND ... $
15 THEN BEGIN
16 tempOrganMask(coord(0), coord(1l), coord(2)) $
17 = (#ptrPhantomMask(i))
18 organ(i) .mask = tempOrganMask
19 organ(i).defined = ’+_°
20 END ELSE BEGIN
21 minX=([coord(0),0])
22 maxX=([maskSize(0)-1,MAX([petFile.dim(0)-coord(0)-1,0]1)1)
23 minY=([coord(1),0])
24 .
25 IF (-MIN(minX) GE MIN(maxX)) OR ... OR $
26 (MAX(minX) GE petFile.dim(0)) OR ... $
27 THEN BEGIN
28 organ(i) .mask = tempOrganMask
29 organ(i) .defined = ’-_’
30 END ELSE BEGIN
31 tempOrganMask (MAX(minX), MAX(minY), MAX(minZ)) = $
32 (*ptrPhantomMask (i)) (-MIN(minX) :MIN(maxX), $
33 -MIN(minY) :MIN(maxY) ,-MIN(minZ) :MIN (maxZ))
34 organ(i) .mask = tempOrganMask
35 organ(i) .defined = ’!_’
36 END
37 END
38 END
39 END ELSE BEGIN
40 organ(i) .mask = tempOrganMask
41 organ(i) .defined = ’-_°
42 END
43 END
- J
3.3 Output

The defined and reconstructed orgran maps can be saved to disk. The saving process will
be shown in Subsection 3.3.1. Afterwards the calculation of TACs (Time Activity Curves)
and how these TACs are saved, is shown Subsection 3.3.2.

37

Software Details

3.3.1 Saving Organ Maps

The calculated organ masks can be saved to continue working with the user defined or
calculated organ masks. They are stored in a file, which is named like the PET file, in
the progam’s subdirectory “Output”. If you click “File” — “Save Organ Masks” at the
menu bar procedure on_W_MENU_SAVEORGANMASKS will be called. This procedure executes
writeMaskFile and prompts a message, if saving has finished successfully.

PRO on_W_MENU SAVEORGANMASKS, Event

writeMaskFile, ".\Output\"+petFile.fileName+" .mask.gz"
dialog = DIALOG_MESSAGE("Masks saved successfully.", /INFORMATION)
END

D w N -

Procedure writeMaskFile uses the widely used GZIP!? format for compression. All organ
masks are binary files that consist just of “0” and “1” making compression highly efficient.
First the PET file’s name and dimension is stored. Then all organ masks are saved.

(R
PRO writeMaskFile, outFile

OPENW, outLun, outFile, /GET_LUN, /COMPRESS

WRITEU, outLun, STRING(petFile.fileName, FORMAT=’(A255)’)
WRITEU, outLun, petFile.dim

outFileData = organ

WRITEU, outLun, outFileData
CLOSE, outLun, /ALL
0 END

= O 00 N O Ok WN -

3.3.2 Generating TAC Files

TACs (Time Activity Curves) are used to follow time dependent biodistribution of the
radiopharmacon. Fig. 3.11 shows the tracer’s distribution in bladder, brain, heart and
left kidney within an interval of thirty minutes. In this example the TACs are measured
in Standardized Uptake Values (SUVs), which are explained below. The software is also
capable to calculate other common units like “mCi”, “mCi/cc”!, “MBq”, “MBq/cc” and
“%ID/g”12. Because all other units can more or less be calculated by conversion factors,
this Subsection just focuses on “SUVs”.

A SUV (Standardized Uptake Value) is the mean value of all organ voxels divided through
the injected dose and mulpiplied with the mouse’s weight.

10 See www.zlib.org for details.
11 ¢c means cubic centimeters.
12 percentage Injected Dose per gram

38

Software Details

TACs

15 —
o B Bladder
= | Brain
a 10 Heart
; E Left Kidney
+ i
2
et
B i
<

5 —

o T T T I T T T I T T T I

0 10 20 30
Time [min]

Figure 3.11 Time Activity Curves

By clicking “Calculate” — “TACs [SUVs|” at the menu bar, procedure on_W_MENU_TACS_SUVS
will be called. The procedure checks, if a PET image file is opened. If no file is opened,
it exits. The calculation itself is done by function calculateTACs, which returns a struct
consisting of TACs and organ sizes. The calculated TAC files are stored in a file, which is
named like the PET file plus ending “_ SUVs.txt”, in the progam’s subdirectory “Output”.
If everything was successful, “TAC Calculation finished.” is prompted.

(R
1 PRO on_W_MENU_TACS_SUVS, Event
2 R
3 IF ~petFileOpen() THEN RETURN
4 calculatedOrgan = calculateTACs("SUVs")
5 IF N_ELEMENTS(calculatedOrgan) EQ 1 THEN RETURN
6 writeTACFile, ".\Output\"+petFile.fileName+"_SUVs.txt", $
7 calculatedOrgan, "SUVs"
8 dialog = DIALOG_MESSAGE("TAC Calculation finished.",/INFORMATION)
9 END
- J

Function calculateTACs returns a struct (calculatedOrgan), which consits of the mea-
sured TAC and organ size (in voxel and cubical centimeters) for each organ. First all organ
sizes are computed using the IDL function WHERE, which provides the organ size in voxels.
Multiplying with the voxel’s dimensions the size in cubical centimeters is obtained.

The following calculation depends on which TAC unit has been selected. In the following
description SUVs are used. For each frame!3, the frame data is read in, if not already
cached. This is provided by function readFile. In a second FOR loop over all organs, all
measured voxel values of the current organ are summed up by TOTAL, multiplied with a

13 petFile.dim(2) equals the number of time frames.

39

Software Details

calibration factor!4, divided through the organ size, divided through the injected dose and
multiplied with the mouse’s weight.

After calculation the struct calculatedOrgan is returned to the calling procedure.

(R
1 FUNCTION calculateTACs, unit
2 C
3 calculatedOrgan = ""
4 calculatedOrgan = CREATE_STRUCT(’TAC’ ,FLTARR(petFile.dim(2)), $
5 ’SizeVoxel’, LONARR(1), ’SizeCC’,FLTARR(1))
6 calculatedOrgan = REPLICATE(calculatedOrgan, N_ELEMENTS(organ))
7 FOR organNr = O, N_ELEMENTS(organ)-1 DO BEGIN
8 location = WHERE(organ(organNr) .mask, organSizeVoxel)
9 calculatedOrgan(organNr) .SizeVoxel = organSizeVoxel
10 calculatedOrgan(organNr) .SizeCC = §
11 calculatedOrgan(organNr) .SizeVoxel*petFile.magnification(0) ~2%$
12 petFile.magnification(1)
13 END
14 CASE unit OF
15 "mCi": 5
16 "mCi/cc":
17 "MBq":
18 "MBq/cc":
19 "SUVs": BEGIN
20 FOR frame = 0, petFile.dim(2)-1 DO BEGIN
21 IF readFile(petFile, frame) THEN RETURN, 1
22 FOR organNr = O, N_ELEMENTS(organ)-1 DO BEGIN
23 calculatedOrgan(organNr) .TAC(frame) = $
24 (1.*TOTAL (petFile.cache (*,*,*,frame)*organ(organNr) .mask) *$
25 calibration.factor/calculatedOrgan(organNr) .SizeVoxel)/ $
26 (calibration.injectedDose/calibration.mouseWeight)
27 END
28 END
29 END
30 "%ID/g":
31 ELSE: RETURN, 2
32 ENDCASE
33 RETURN, calculatedOrgan
34 END
- J

Procedure writeTACFile now saves all TAC data provided by calculateTACs. This is
quite a large procedure, so only the more important passages are shown. timeArray, which
is an array providing the absolute measurement times, is generated based on the frame
durations (petFile.frameDuration(i)).

First the file name is written by PRINTF. With “PRINTF, outLun, FORMAT=’(80("-"))’"
a horizontal line consisting of 80 “-” is printed. Then the calibration factor, the mouse

weight and the injected dose are stored. After another horizontal line the elements of

timeArray are fused to a solid string, using function STRJOIN and printed. The following
lines are filled with the SUVs of each organ.

14 The calibration factor transforms machine values to physical units.

40

Software Details

At the end of the file the organ sizes (in cubical centimeters and voxels) are written to the

file.1?
(R
1 PRO writeTACFile, outFile, calculatedOrgan, unit
2 timeArray = FLTARR(petFile.dim(2))
3 timeArray(0) = petFile.frameDuration(0)
4 FOR i=1, petFile.dim(2)-1 DO timeArray(i) = $
5 timeArray(i-1) + petFile.frameDuration(i)
6 OPENW, outLun, outFile, /GET_LUN
7 outString = petFile.fileName
8 PRINTF, outLun, "Filename: ", outString, FORMAT=’ (A0, A0)’
9 PRINTF, outLun, FORMAT=’(80("-"))’
10 outString = STRING(FORMAT=’(G15.7)’, calibration.factor*10.76)
11 PRINTF, outLun, FORMAT=’(AO, T30, A0, T60, A0)’, $
12 "Calibration_Factor", "([nCil/[ccl)/[PET-Units]", outString
13 50 0C
14 outString = STRJOIN(C $
15 STRING(FORMAT=’(G15.7)’, timeArray), /SINGLE)
16 PRINTF, outLun, FORMAT=’(AO, T30, AO, T60, A0)’, $
17 "Time", "[s]", outString
18 FOR i=0, N_ELEMENTS(organ)-1 DO BEGIN
19 outString = STRJOIN($
20 STRING(FORMAT="(G15.7)’, calculatedOrgan(i).TAC(*)), /SINGLE)
21 PRINTF, outLun, FORMAT=’(AO, T30, AO, T60, A0)’, $
22 organ(i) .defined+organ(i) .name, "["+unit+"]", outString
23 END
24 R
25 CLOSE, outLun, /ALL
26 END
- J
An example TAC is shown below.
(R
Filename: 060510_M1_em_FDG_bolus_dynamic_v1l
Calibration_Factor ([nCi]/[cc]l)/[PET-Units] 7437390.
Mouse_Weight (gl 33.50000
Injected_Dose [mCi] 0.5520000
Time [s] 10.00000 20.00000
?_choose [Suvs] 0.0008017067 0.0008581656
! _Body [Suvs] 0.001376659 0.001497061
+_Liver [Suvs] 0.001477350 0.001535296
Organ Volume [cc] Volume [Vox]
?_choose 198.2492 1556480.
! _Body 38.98878 306106.0
+_Liver 3.413012 26796.00
- J

15 This is not shown in the syntax extract.

41

Software Details

3.4 Image Processing

This Section gives a brief overview on how images are scaled and displayed in the thesis’
software. Not all graphical capabilities of the computer program will be covered here. 2D
and 3D images are drawn by the procedures draw2D and draw3D, which demand three
variables: baseNr, data and frame.

1 draw2D, baseNr, data, frame
2 draw3D, baseNr, data, frame

Draw widgets (as shown in Fig. 3.1) are horizontally aligned. The first row has baseNr “0”,
the second “17 and the third “2”. If baseNr is set to “1” the second row of draw widgets
will be filled with data at time frame number frame.

For both draw2D and draw3D data sets are rescaled first.'® This is done by the procedure
scaleDrawCache (as shown below). First the 3D data set’s minimal value is set to zero (the
modified data is stored in *scaledDrawData), because for some reconstruction algorithms
negative voxel values (doses) can occur. Then *scaledDrawData is divided by its maximum
value. Now all data values lie in between “0” and “1”. In the graphical user interface the
minimum and the maximum value (in percent of the (maximum — minimum) value), that
should be displayed, can be entered. Function BYTSCL assigns each value between MIN and
MAX a value between “0” and “255”, whereat values smaller than MIN are set to “0” and
values larger then MAX are set to “255”. Again *scaledDrawData is divided by its maximum
value. Finally each element of the rescaled data is raised to a user-set power. This is very
useful to discriminate regions with high values from those with lower ones.

(R
PRO scaleDrawCache, baseNr, is2Dor3D, unscaledData

IF ~PTR_VALID(scaledDrawData(baseNr, is2Dor3D)) THEN $
scaledDrawData(baseNr, is2Dor3D) = $

PTR_NEW(FLTARR(SIZE(unscaledData, /DIMENSIONS)))
*scaledDrawData(baseNr, is2Dor3D) = $

1.* unscaledData-MIN(unscaledData)
*scaledDrawData(baseNr, is2Dor3D) = $
9 xscaledDrawData(baseNr, is2Dor3D)/$

10 MAX (*scaledDrawData(baseNr, is2Dor3D))

11 *scaledDrawData(baseNr, is2Dor3D) = $

12 1.*BYTSCL (*scaledDrawData(baseNr, is2Dor3D), $

13 MIN=settings(0)/100., MAX=settings(1)/100., TOP=!D.TABLE_SIZE)
14 *scaledDrawData(baseNr, is2Dor3D) = $

15 *scaledDrawData(baseNr, is2Dor3D)/$

16 MAX (*scaledDrawData(baseNr, is2Dor3D))

17 *scaledDrawData(baseNr, is2Dor3D) = $

18 (*scaledDrawData(baseNr, is2Dor3D))~(settings(2))

19 scaledDrawIsCached(baseNr, is2Dor3D) = 1

0 N O Ok WN -

21 END

16 The scaled data (scaledDrawData) is only used for image display.

42

Software Details

3.4.1 2D Slices

Procedure draw2D (shown below) can be divided into three parts. First the procedure
checks, if the current data set has already been scaled. If not, procedure scaledDrawCache
is used to scale the data. Second the current cursor position, provided by the slider bars,
is read out. And third the 2D slices (sagital, coronal, axial) are drawn by drawSlice2D.

(R
1 PRO draw2D, baseNr, data, frame
2 .
3 IF ~scaledDrawIsCached(baseNr, 0) THEN $
4 scaleDrawCache, baseNr, 0, data.cache(*,*,*,frame)
5 ..
6 pos = INTARR(3)
7 FOR i=0,2 DO BEGIN
8 WIDGET_CONTROL, id.slider(baseNr, i), GET_VALUE=a
9 pos(i) = a
10 ENDFOR
11 ce
12 drawSlice2D, baseNr, 0, REFORM((*scaledDrawData(baseNr, 0))$
13 (pos(0), *, x)), data.dim(0), data.dim(1),$
14 data.magnification(0), data.magnification(1),$
15 pos(1), pos(2), offset(BaseNr,1), offset(BaselNr,2),$
16 windowSize.xy, windowSize.z, settings

17 drawSlice2D, baseNr, 1, ..
18 drawSlice2D, baseNr, 2, ...

19 END
- J

Procedure drawSlice2D (shown below) is used for drawing 2D slices. Because drawSlice2D
is quite unimaginative and difficult to understand, Fig. 3.12 is used to illustrate the pro-
cedure.

The unscaled data does not smoothly fit into the draw widget. It has to be rectified,
enlarged and centered in the draw widget (shown on the left hand side of Fig. 3.12). This
is done by drawSlice?2D.

First the procedure calculates how often the image will fit into the draw widget. This
is stored into scaleX and scaleY. A scaleX factor of “2” means that the draw widget’s
x-size is double the image’s x-size. windowX and windowY represent the width and height
of the draw widget (the black boxes in Fig. 3.12). dimX and dimY are the width and height
of the image. magX and magY represent the x- and y-dimension of every voxel’s orthogonal
projection along the displayed axis. Factor scale equals the minimum of scaleX and
scaleY. scale is the enlargement factor that has to be used to fit the image into the draw
widget. scalingOffset is a two dimensional array, that represents the needed drawing
offset to center rescaled image. zoom is a user defined zoom factor, that enables the user
to enlarge the picture.

paintingFactor is used to draw a frame in background color around the image (symbolized
by the dashed boxes on the right hand side of Fig. 3.12). This is done, because, if the
picture is zoomed or moved in the draw widget, the old picture fragments are overdrawn by
background color. The frame’s thickness is calculated by the paintingFactor multiplied

43

Software Details

by the x- and y-dimensions of the image and is stored in paintingOffset. The image
including the frame is stored in painting.

Then the final dimensions of the picture including the frame (dimPaintingWithFrame) is
computed. The IDL function CONGRID resizes painting. Afterwards a cursor is drawn,
showing the current cursor position (cursorX and cursorY). Then the draw widget, which
should be painted on, is selected by WIDGET CONTROL and by WSET, and finally the painting
is drawn by TVSCL using the calculated x- and y-offsets.!”

ﬂpaintingOffset(l)
A Z 2 L]
<=> Lk 1,
windowX =
< D 3
=
o
(o]
£
€
‘©
o
>
2
(e}
©
£
2 —
S
+
9]
(%]
b
o
(o))
£
©
(9]
2 H L
AV L \ e e W gt

Figure 3.12 lllustration of drawSlice2D

17 offsetX and offsetY are additional user defined offsets.

44

Software Details

[

PRO drawSlice2D, baseNr, drawNr, slice, dimX, dimY, magX, magY,$
cursorX, cursorY, offsetX, offsetY, windowX, windowY, settings

N

3 scaling0ffset=FLTARR(2)

4 scaleX = 1.*windowX/(dimX*magX)

5 scaleY = 1.*windowY/(dimY*magy)

6 scale = MIN([scaleX, scaleY])

7 scalingOffset (0)=(windowX - dimX*zoom(baseNr)*scale*magX)/2.
8 scalingOffset (1)=(windowY - dimY*zoom(baseNr)*scale*magY)/2.
9 paintingFactor = 0.2

10 paintingOffset = FLTARR(2)

11 painting = FLTARR(dimX*(paintingFactor*2+1),$

12 dimY*(paintingFactor*2+1))

13 paintingOffset(0) = dimX*paintingFactor

14 paintingOffset(1l) = dimY*paintingFactor

16 painting(paintingOffset(0), paintingOffset(1)) = slice

16 paintingOffset(0) = paintingOffset(0)*scaleX*magX

17 paintingOffset(l) = paintingOffset(1l)*scaleY+*magY

19 dimPaintingWithFrame = INTARR(2)

20 dimPaintingWithFrame(0) = $

21 ROUND ((1+paintingFactor#*2) *dimX*magX+*scale*zoom(baseNr))
22 dimPaintingWithFrame(1l) = $

23 ROUND ((1+paintingFactor*2)*dimY*magY*scalexzoom(baseNr))
24 painting = CONGRID(painting, dimPaintingWithFrame(0), $
25 dimPaintingWithFrame (1), /INTERP)

27 ;5 PAINT CURSOR

29 WIDGET_CONTROL, id.draw(baseNr, drawNr), GET_VALUE = index
30 WSET, index

31 TVSCL, painting,$

32 (scaling0ffset (0)*(paintingFactor*2+1))-paintingOffset (0)+$

33 offsetX*zoom(baseNr) *magX*dimX*scale, $
34 (scaling0ffset (1) *(paintingFactor*2+1))-paintingOffset (1)+$
35 offsetY+zoom(baseNr)*magY*dimY*scale
36 END
-)

3.4.2 3D Projection

The 3D projection is done by draw3D. First the current draw widget is selected by WID-
GET_CONTROL and WSET. Then the scale-factors scaleXY, scaleZ and scale are computed
(as shown in Subsection 3.4.1). Then scaleXY and scaleZ are divided through scale.

The IDL procedure T3D is used to set up the right scaling for the draw widget. In order to
fit the image smoothly into the draw widget, the system arrays !X.S, !'Y.S and !Z.S are
set up as shown in lines 16-18. TRANSLATE=[-0.5,-0.5,-0.5] translates the middle of
the image to the origin. By ROTATE the image is rotated around the origin. After rotating
the image, it is translated to the user defined offset position (offset3D). SCALE rectifies
the image. With the help of TRANSLATE=[0.5,0.5,0.5] the picture is moved to its final
position. VOXEL PROJ now calculates the projected image, which is displayed by TVSCL.

45

Software Details

-
1 PRO draw3D, baseNr, data, frame
2 .
3 IF ~scaledDrawIsCached(baseNr, 1) THEN $
4 scaleDrawCache, baseNr, 1, data.cache(*,*, %, frame)
5 ...
6 WIDGET_CONTROL, id.draw(baseNr,3), GET_VALUE = index
7 WSET, index
8 .
9 scaleXY = 1.*windowSize.xy/(data.dim(0)*data.magnification(0))
10 scaleZ = 1.*windowSize.z/(data.dim(1)*data.magnification(1))
11 scale = MIN([scaleXY, scaleZ])
12 scaleXY = scaleXY/scale
13 scaleZ = scaleZ/scale
14 Ce
15 T3D, /RESET
16 1X.S = [0, 1.]1/(data.dim(0)-1)
17 1Y.S = [0, 1.]/(data.dim(0)-1)
18 1Z.S = [0, 1.]1/(data.dim(1)-1)
19 T3D, TRANSLATE=[-0.5,-0.5,-0.5]
20 T3D, ROTATE=[90,180+angle3D(baselNr),180]
21 T3D, TRANSLATE=[offset3D(baseNr,0),offset3D(baseNr,1), 0]
22 T3D, SCALE=zoom3D(baseNr)*[1./scaleXY,1./scaleZ,1.]
23 T3D, TRANSLATE=[0.5,0.5,0.5]
24 TVSCL, VOXEL_PROJ(BYTE(255* *scaledDrawData(baseNr, 1)), $
25 /MAXIMUM_INTENSITY, STEP=[1.,1.,1.]*quality, /INTERPOLATE)
26 END
.

46

Software Evaluation

4 Software Evaluation

In this Chapter the results of the mouse fitting software are evaluated. First all measure-
ment devices and the used software will be presented in Section 4.1. Then the evaluation
results will be presented in Section 4.2 and afterwards in Chapter 5 the outcome will be
interpreted.

4.1 Materials and Methods

In this Section the used PET instrument, the evaluation software and the animals used for
measurement are discussed.

4.1.1 Positron Emission Tomograph Used

For measurements a Siemens microPET Focus 220 scanner 26 (shown in Fig. 4.1) is used.
This is a dedicated small animal PET system with a resolution of 1.3 mm FWHM (Full
Width at Half Maximum) and an absolute sensitivity (is a measure for the system’s aper-
ture and represents the fraction of radioactive decays that produce a valid coincidence
event[m) of 3.4 % in the central field of view for an energy window of 250-750 keV and a
timing window of 10 ns. The scanner acquires data in three-dimensional list mode format
(explained in Section 2.1). Image Reconstruction is done by a dual core Pentium Xenon
computer with 2 GB main memory. The reconstruction software is provided by Siemens
and offers different reconstruction algorithms such as FBP, OSEM, MAP (see Section 2.5).

Because laboratory animals must not move during data acquisition, the mice are scanned
under constant isofluorane anesthesia in a temperature stabilized imaging chamber (as
shown in Fig. 4.2), which prevents the animals from cooling down in the air-conditioned
laboratory.

4.1.2 Evaluation Software

For software evaluation the open source software Amide?7 was used. With the help of
this software ROIs can be selected using simple geometric forms like cuboids, ellipsoids
and elliptical cylinders or 2D- and 3D-isocontours, which will add voxels to the ROI, if
the voxel values lie in between userdefined values. This allows to easily define ROIs. The
major drawback of this computer program is, that regions without sharp edges only can
be hardly and imprecisely selected. Therefore only well definable regions will be used to
grant a more precise evaluation.

4.1.3 Animals Used

About twenty mouse data sets recorded within August 2005 through to April 2007 were
used to evaluate the computer program developed in this thesis. Some mice originate from
different Transgenic (TG) breeds, the others are Wild Type (WT) mice used for relation.

47

Software Evaluation

Figure 4.1 Siemens microPET Focus 220 scanner

Figure 4.2 Mouse chamber used for measurements

4.2 Results

The presentation and evaluation of the measurement results is subdivided into three parts.
First in “Correlation” the software results for user selected organs will be compared to
the results provided by Amide. Second the reliability of organ acitvity calculated by the

48

Software Evaluation

computer program is presented in “Indirect Correlation”. Third in “Reproducibility” the
deviation of selecting the same organ multiple times with the software, developed in this
thesis, and Amide is shown.

49

Software Evaluation

4.2.1 Correlation

I8F_Fluoride enriches in bones and is excreeted over kidneys and bladder. It is used to
show bone metabolism. Therefore the time dependent activity of bladder and spine of
dynamically reconstructed data sets of three mice measured with MF2007 (“Mouse Fitter
20077 - software developed in this thesis) and Amide are compared to each other. In order
to get a quick overview on correlation Figs. 4.3 through 4.8 are shown in XY-plot. The
X-axis represents the weighted activity in %ID /g, which is explained below, measured by
MF2007 and the Y-axis the weighted activity measured by hand selection with Amide.
The closer the plotted values lie to function “x=y”, the more they correlate.

%ID/g is the mean value of all organ voxels divided through the injected dose. Fig. 4.3
shows the measured activity of fluoride in the bladder for all three mice (M1, M2, M3).
The number of mice used for measurement is shown in the caption of each Figure (i.e.
n=3). For both M1 and M2, the activity calculated by Amide is greater than the activity
computed by MF2007, whereas for mouse M3 there is perfect correlation.

18 :
F-Fluoride

150
) i * o
) °
£ i °
5 ® () *
— T o®
= 100 o°® *
a n o °
X i / . °
> - ° .-
5 - e ® Bladder M1
< _ o ® Bladder M2
5 50 L Bladder M3
2 T S R Xy
L
Ry 7
()
; -

0 T T T T T T T T T T T |

0 50 100 150
Weighted Activity [%ID/g] (MF2007)

Figure 4.3 Correlation between the manually and MF2007
defined bladder ROI in '®F-Fluoride microPET images (n=3)

Fig. 4.4 shows the measured activity of fluoride in the spine for all three mice. It shows
the same behavior for all three mice and nearly perfect correlation, but with increasing
activity the correlation gets weaker.

50

Software Evaluation

1 .
® F-Fluoride

20 —
) ®
:9 -
s - -
= p
s o -
a T o
S o0

o .
."? 1 ® Spine M1
'E 4 ® Spine M2
O Spine M3
- e
g
<
2 4
@
=

o T T T I T T T I

0 10 20
Weighted Activity [%ID/g] (MF2007)

Figure 4.4 Correlation between the manually and MF2007
defined spine ROI in '8F-Fluoride microPET images (n=3)

The activity in the spine of one mouse with a %3Ga-EDTMP injection is illustrated in
Fig. 4.5 and shows nearly perfect correlation. 58Ga-EDTMP is also used to gain information
about bone metabolism.

®8 Ga-EDTMP

4 -
) i
©]
E | .
< L] et
— 1 ’—'.'
5 K
X 1 e
el []
Py 2 °
> T
40‘ .
< i
8 1 - R ® Spine
< A R x=y
o i
(]
= i

o T T T I T T T I T T T I T T T I

0 1 2 3 4
Weighted Activity [%ID/g] (MF2007)

Figure 4.5 Correlation between the manually and MF2007
defined spine ROl in %®Ga-EDTMP microPET images (n=1)

Sodium lodide (Nal) enriches in thyroid and stomach. Fig. 4.6 shows perfect correlation
for the thyroid region. For the stomach region the activity calculated by Amide increases

51

Software Evaluation

compared to MF2007 for higher values. It is the same effect as for ®F-Fluoride shown
before.

Sodium lodide

60 —
fa i [)
© []
£ 8 °
< .
@ _
a 40 °
= I .
2 i ° ’
2 - ,."
Jd [] .".
< 20 = ® Thyroid
© 1 o ® Stomach
et e x=y
< _ v,'
o J"
(]
= 4

0 20 40 60
Weighted Activity [%ID/g] (MF2007)

Figure 4.6 Correlation between the manually and MF2007 defined
ROIs (thyroid and stomach) in 1241 Nal microPET images (n=1)

BE_FDG, which is one of the most frequently used tracers in PET, accumulates in heart
and brain and is excreeted over the kidneys. Three mice were evaluated. The resulting
comparison diagram is presented in Fig. 4.7.

Heart 1 8 F-FDG

Brain M1

Left Kidney M1 -
Right Kidney M1 o
Heart M2 a
Brain M2

Left Kidney M2 -
Right Kidney M2 m’
Heart M3 v
Brain M3 v
Left Kidney M3 -
Right Kidney M3 A
x=y -

25

20

H4P> O <> O

15

1
\
o.

10

Weighted Activity [%ID/g] (Amide)

0 5 10 15 20 25
Weighted Activity [%ID/g] (MF2007)

Figure 4.7 Correlation between the manually and
MF2007 defined ROIs in 18F-FDG microPET images (n=3)

52

Software Evaluation

4.2.3 Indirect Correlation

Due to the knowledge of the location of user defined organs the developed MFEF2007 cal-
culates the position of the other organs. In this Subsection the degree of reliance of the
calculated activity of the reconstructed organs is evaluated. Therefore the left and the right
kidney were selected by the user and the remaining organs were computed by MF2007. For
comparison the mean activities of heart, kidneys and brain were calculated with Amide.
The results of the indirect correlation are shown in Figs. 4.8 and the respective TACs are
displayed in 4.9 and 4.10. The results for the brain and the kidneys are equal for both
Amide and MF2007. The activity in the heart region diverges from perfect correlation.

Indirect Correlation

15
) i
°
E -
<] o
5 o’

— °
5 1 s
'E | . o’/‘,
% 5 "f““ PS ® Heart
8 | _‘ﬁ ® Brain
+ g Kidneys
: a”
o 7 x=y
o .
= 7 ,v'
»
0 —l!) T T T | T T T | T T T |
0 5 10 15
Weighted Activity [%ID/g] (MF2007)

Figure 4.8 Indirect correlation between the manually and reconstructed
organs calculated by MF2007 in 18FE_FDG microPET images (n=1)

In Figs. 4.9 and 4.10 we can see the perfusion peak in the heart’s TAC. While the activity
curves for the brain and the kidneys do not exhibit major differences, the manualy defined
heart’s TAC tends to be higher than the MF2007-TAC.

53

Software Evaluation

15 Heart
i Brain
Kidneys
= i
=~
a i
X 10
> 4
=
2 i
)
Q
< i
i)
I 5
L
o b
()]
; .
o I T T T I T T T I T T T I
0 10 15 20 25
Time [min]

Figure 4.9 TACs calculated by MF2007 in ®F-FDG microPET images (n=1)

Amide
15 Heart
a Brain
—_ Kidneys
(@)} -
~
(a)
S i
> 10
=
=]
whd
() .
<
'c -
[U]
-
= 5 —
o
o] i
; -
o I T T T I T T T I T T T I
0 10 15 20 25
Time [min]

Figure 4.10 TACs calculated by Amide in 18F_FDG microPET images (n=1)

If there is little contrast between the selected organ and its surroundings, regions defined
by hand selection are generally inaccurate. Particularly brain regions are elaborate and
improper to select. MF2007 offers a better alternative for defining ROIs. In Fig. 4.11
and Fig. 4.12 the uptake of the cerebellum, the hippocampus and the frontal cortex of
IBF_FDDNP is illustrated. The mean values of six TG and five WT mice are compared
to each other. The TACs evaluated by hand (Amide) exhibit much more spread than the
TACs calculated by MF2007.

54

Software Evaluation

Weighted Activity [%ID/g]

MF2007

===== TG Cerebellum
TG Hippocampus
TG Frontal Cortex
= WT Cerebellum
— WT Hippocampus
~~ WT Frontal Cortex

o — Ly

10 20 30
Time [min]

Figure 4.11 TACs calculated by MF2007 in
I8F_FDDNP microPET images (n(TG)=6, n(WT)=5)

Weighted Activity [%ID/g]

Amide

===== TG Cerebellum
TG Hippocampus
TG Frontal Cortex
[WT Cerebellum
— WT Hippocampus
~ WT Frontal Cortex

30
Time [min]

Figure 4.12 TACs calculated by Amide in
I8F_FDDNP microPET images (n(TG)=6, n(WT)=5)

55

Software Evaluation

1.8
i — ~ TG Hippocampus
£ 1.6 — — ~ TG Frontal Cortex
5 E WT Hippocampus
% B — WT Frontal Cortex
Q s 1 R Cerebellum
Y 14
7] i
o i
o i
)
o 1.2 —
) i
]
m -
1 -
0.8 T T T I T T T I T T T I T T T I T T T I T 1
q 10 20 30 40 50
Time [min]
Figure 4.13 TACs (in ratio to cerebellum) calculated by MF2007
in 18F-FDDNP microPET images (n(TG)=6, n(WT)=5)
Amide
1.8
— \ ~— ~ TG Hippocampus
g 16 (— ~ TG Frontal Cortex
) 1 I — WT Hippocampus
Ko) T I \ ~— WT Frontal Cortex
Q B N et Cerebellum
2 14 \
@ 1
O] \
g]
O 12
) i
Q
x -
_r N
1 —g----m-mmmme---S TR - ------ =SS T ——mm= oo m---------o-------oo-----oo
i AN __\—__ ___________
- ~N———— — e
0.8 T 1
0 10 20 30 40 50
Time [min]

Figure 4.14 TACs (in ratio to cerebellum) calculated by Amide
in 18F-FDDNP microPET images (n(TG)=6, n(WT)=5)

If the activity ratios between the brain regions to the cerebellum region calculated by
Amide and MF2007 are compared to each other, the ratio calculated by MF2007 almost
level off (shown in Fig. 4.13), whereas the ratio of Amide is subject to severe fluctuations
(Fig. 4.14).

56

Software Evaluation

4.2.2 Reproducibility

In order to evaluate the reproducibility, when defining ROIs by hand (Amide) or with the
help of MF2007, the same organ of one mouse is selected independently several times. The
resulting Standard Deviation (SD) is used as a quality parameter. The smaller the degree
of deviation the more stable is the method for defining the organs. Fig. 4.15 shows, that
MF2007’s SDs as percentage of mean activity are clearly smaller than those determined
by hand evaluation.

Reproducibility
10
] Left Kidney Program
i — Right Kidney Program
8 - Left Kidney Amide
i — ~ Right Kidney Amide
c i
8 i
= 6 7]
X i
£ 7
o 4 7]
A i
2 -
o T T I T T T I T T T I T T T I T T T I
5 10 15 20 25
Time [min]

Figure 4.15 Reproducibility of defining a ROl by hand or with the help of MF2007

57

58

Measurement Discussion

5 Measurement Discussion

5.1 Discussion on Correlation

Fig. 4.3 shows, that the activity calculated by Amide is generally higher than for regions
selected by MF2007. This characteristics occurs, because the computed activity matches
the mean value of all selected voxels. In case the bladder has to be selected, the activity
decreases from its center like a Gauss error distribution curve. The selected volume in-
creases by 3. The outer layers mostly influence the volume and therefore the number of
the selected voxels. Because the activity decreases rapidly with increasing distance from
the bladders center, the mean voxel value highly depends on the radius of the selected
region. Since PET images do not show sharp edges it is difficult to decide, where the
bladder really ends. The smaller the selected region is (with its center round the highest
activity voxels), the disproportionately higher the resulting mean values are. When select-
ing regions manually, one tends to select undersized regions, thus resulting in higher mean
activity. The higher the mean voxels value gets, the higher this discrepancy will be (shown
in Figs. 4.3, 4.4 and 4.6). If the ROIs have been selected to large, MF2007 points to the
fact, that there is a mismatch between the distance and size of organs.

5.2 Discussion on Indirect Correlation

Fig. 4.8 illustrates, that the reconstructed organs like brain and kidneys equal the regions
manually selected, but the values for the heart show a great discrepancy. This is due to
the fact, that the heart, which is provided by the mouse phantom, is somehow illshaped.
It was suprising, that although the distance from the brain to the COM is large, such a
good correlation could be achieved.

The reconstructed organs rely on the distance to the COM of the user defined organs.
The farther the organs lie away from the COM the greater the discrepancies are. If the
mouse has a crooked back, this cannot be taken into account, and the position of a certain
organ might fail. In small regions the reconstructions used in Figs. 4.13 and 4.14 point out,
that the manual selection of brain regions is to imprecise and shows a strange behaviour,
whereas the ROI reconstructed by MF2007 present a constant ratio.

5.3 Discussion on Reproducibility

The reproducibility (shown in Fig. 4.15) for organs selected by MF2007 is significantly
higher than defining the same ROI by hand. This is only guaranteed, if the ROI matches
the dimensions of the mouse phantom. Organ TACs as for instance for the bladder, which
change size or location, are subject to broader fluctuations.

59

60

Conclusion & Outlook

6 Conclusion & QOutlook

Summarizing it can be concluded, that the software developed in this thesis offers a faster
as well as a more precise method for evaluating the activity in desired regions, reducing
subjective factors. The ROIs can be selected more accurately and more user-independently
compared to manual selection. ROIs can be selected more easily, thus saving time.

Due to the software’s modular structure the development of this computer program can be
continued and new features can be implemented, eg. in order to provide a better overlap
between the reconstructed and the PET file ROIs, the ROIs could be further rotated
around their own COM or their shape can be altered.

Additionally the program can easily be adopted to support different kinds of anatomical
phantoms (eg. for a rat phantom). For that purpose a binary rat phantom with discrete
organ values must be available. The software’s code has to be adopted to the rat phantoms
dimensions and the discrete values assigned to each organ must be changed. This only
requires about a dozen lines of code to be modified.

61

62

References

A References

1]

o)

—_

[SLETN
i B ALt AL e

Adam L. Kesner, Magnus Dahlbom, Sung-Cheng Huang, Wei-Ann Hsueh, Betty S.
Pio, Johannes Czernin, Michael Kreissl, Hsiao-Ming Wu and Daniel H. S. Silverman.
Semiautomated analysis of small-animal PET data. Journal of Nuclear Medicine,
47:1181-1186, 2006.

William P. Segars, Benjamin M. W. Tsui, Eric C. Frey, G. Allan Johnson and Stuart S.
Berr. Development of a 4-D digital mouse phantom for molecular imaging research.
Molecular Imaging and Biology, 6(3):149-159, 2004.

http://de.wikipedia.org/wiki/Bild:PET-schema.png.
http://de.wikipedia.org/wiki/Bild: ECAT-Exact-HR--PET-Scanner.jpg.

Robert R. Kinsey. The NUDAT/PCNUDAT program for nuclear data. 1996 Data
extracted from NUDAT database (Jan. 14/1999).

Simon R. Cherry, James A. Sorenson and Michael E. Phelps. Physics in Nuclear
Medicine. Saunders, third edition, 2003.

http://de.wikipedia.org/wiki/Bild:Zyklotron_Schema.gif.
http://en.wikipedia.org/wiki/Image:Ear.png.
http://de.wikipedia.org/wiki/Bild:Sn1_ Substitution.svg.

Claudia Kuntner. FEwvaluation of New Inorganic Scintillators for Application in a
Prototype Small Animal PET Scanner. PhD thesis, TU Vienna, 2003.

http://en.wikipedia.org/wiki/Image:Photomultipliertube.svg.
http://en.wikipedia.org/wiki/Image:PET-detectorsystem_ 2.png.
http://de.wikipedia.org/wiki/Bild: Trues.jpg.
http://de.wikipedia.org/wiki/Bild:Randoms.jpg.
http://de.wikipedia.org/wiki/Bild:Singles.jpg.
http://de.wikipedia.org/wiki/Bild:Scatter.jpg.

Michael E. Phelps. PET - Molecular Imaging and Its Biological Applications.
Springer, 2004.

http://de.wikipedia.org/wiki/Bild:PET 3D _ mode.jpg.

Patrick L. Chow, Fernando R. Rannou and Arion F. Chatziioannou. Attenuation

correction for small animal PET tomographs. Physics in Medicine and Biologie,
50(8):1837-1850, 2005.

J. Radon. Uber die Bestimmung von Funktionen lings gewisser Mannigfaltigkeiten.
Berichte der mathematisch-physikalischen Kl. der Sdchsischen Gesellschaft der Wis-
senschaften, 59, 1917.

Thorsten M. Buzug. Finfiihrung in die Computertomographie — Mathematisch-
physikalische Grundlagen der Bildrekonstruktion. Springer, 2005.

63

References

[22]
23]
[24]

[25]

[26]

[27]

64

N. Gurker, R. Nell, G. Seiler and J. Wallner. A tunable focusing beamline for desktop
x-ray microtomography. Review of Scientific Instruments, 70(7):2935-2949, 1999.

Philippe P. Bruyant. Analytic and iterative reconstruction algorithms in SPECT.
Journal of Nuclear Medicine, 43:1343-1358, 2002.

A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.

H. Malcolm Hudson and Richard S. Larkin. Accelerated image reconstruction using
ordered subsets of projection data. IEEE Transactions on Medical Imaging, 13(4):601-
609, 1994.

Yuan-Chuan Tai, Ananya Ruangma, Douglas Rowland, Stefan Siegel, Danny F. New-
port, Patrick L. Chow and Richard Laforest. Performance evaluation of the micropet
focus: A third-generation micropet scanner dedicated to animal imaging. Journal of
Nuclear Medicine, 46:455-463, 2005.

http://amide.sourceforge.net/.

Abbreviations

B Abbreviations

2D

3D
ARC
ART
ASCII
BP
COM
CT

EM
FBP
FDG
FWHM
GUI
IDL
LOR
MAP
MEF2007
MLEM
MRT
NC
OSEM
PET
PMT
ROI

SD
SPECT
SUV
TAC
TG
WT

two-dimensional

three-dimensional

Austrian Research Centers

Algebraic Reconstruction Technique

American Standard Code for Information Interchange
Back Projection

Center of Mass

Computer Tomography

Expectation Maximization

Filtered Back Projection
I8F_Fluor-Deoxyglucose

Full Width at Half Maximum

Graphical User Interface

Interactive Data Language

Line of Response

Maximum a Posteriori

“Mouse Fitter 2007” - software developed in this thesis
Maximum Likelihood Expectation Maximization
Magnetic Resonance Tomography

Normalisation Coefficient

Ordered Subset Expectation Maximization
Positron Emission Tomography

Photomultiplier Tube

Region of Interest

Standard Deviation

Single Photon Emission Computed Tomography
Standardized Uptake Value

Time Activity Curve

Transgenic

Wild Type

65

06

Figures

C

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
4.1
4.2
4.3

Figures

Scheme of Positron Emission Tomography Bl 9
Human PET facility A . 10
Small animal PET facility in ARC (Austrian Research Centers), Seibersdorf . 11
Mlustration of a Cyclotron 12
Pictures of the synthesis unit and hot laboratory facilities at ARC, Seibersdorf 12
Electrophile addition B 13
Nucleophile substitution O 13
Scintillating crystal coupled to a PMTEY 14
PET detector system[12] .. 14
Different types of coincidences(13 14, 15,16 15
Different sensitivities due to geometric effects in 3D mode18 . 16
[lustrating the effect of normalization, 16

Attenuation correction for cylinder filled with 500 ml '®F-water solution 17

Ilustrating the use of filters in FBP (mircoCT image of a nut [22]) 18
Hlustration of the ART algorithm 19
Program’s GUIL ... 21
Functional principle of the fitting process 25
Defining Organs 26
Extract Phantom Organs 27
Resizing Organs 29
Rescaling Distancies 31
Determine Angles 32
The wost-case scenario for function rotateMask 33
Affiliate Organs 35
[Mlustration of transforming the phantom organ masks to globally used

Organ MasKs 36
Time Activity Curves 39
Mlustration of drawS1ice2Dttt 44
Siemens microPET Focus 220 scanner i, 48
Mouse chamber used for measurements 48
Correlation between the manually and MF2007 defined bladder ROI in

I8F-Fluoride microPET images (N=3)cooviriniiraieanan... 50

67

Figures

4.4

4.5

4.6

4.7

4.8

4.9
4.10
4.11

4.12

4.13

4.14

4.15

68

Correlation between the manually and MF2007 defined spine ROI in

I8F-Fluoride microPET images (Nn=3)cooririiiraieanan... 51
Correlation between the manually and MF2007 defined spine ROI in
8Ga-EDTMP microPET images (n=1)cooviiiiraaein ... 51
Correlation between the manually and MF2007 defined ROIs (thyroid

and stomach) in '?*I-Nal microPET images (n=1) 52
Correlation between the manually and MF2007 defined ROIs in

BF.FDG microPET images (N=3)ooiririiii.. 52
Indirect correlation between the manually and reconstructed organs

calculated by MF2007 in '8F-FDG microPET images (n=1) 53
TACs calculated by MF2007 in ¥F-FDG microPET images (n=1) 54
TACs calculated by Amide in 'F-FDG microPET images (n=1) 54
TACs calculated by MF2007 in 'F-FDDNP microPET images

(M(TG)=6, n(WT)=D) e 55
TACs calculated by Amide in "F-FDDNP microPET images

(M(TG)=6, n(WT)=D) e 55
TACs (in ratio to cerebellum) calculated by MF2007 in *F-FDDNP

microPET images (n(TG)=6, n(WT)=5) 56
TACs (in ratio to cerebellum) calculated by Amide in '*F-FDDNP

microPET images (n(TG)=6, n(WT)=5) 56
Reproducibility of defining a ROI by hand or with the help of MF2007 57

Tables

D Tables

2.1
3.1
3.2
3.3

Examples of radioactive tracers 5 11
Some organs and values defined by phantom file 28
Additionally defined organgroups 28
Legend of organ.defined-flags 35

69

70

Acknowledgements

Acknowledgements

First of all, I want to thank everyone assisting me in writing my diploma thesis. In
particular DI. Dr. Claudia Kuntner for supervising me, for giving me the opportunity to
work in her group at Seibersdorf, for reviewing my thesis and for helping me designing
an awarded poster. I also want to thank Univ.-Prof. DI. Dr. Norbert Gurker, who
assisted me in writing my thesis and provided me a contact point for all my open questions.
Furthermore I want to thank Ing. Thomas Wanek, Mag. Dr. Oliver Langer and the entire
team of “Radiation Safety and Applications in Seibersdort” for supporting me.

Special thanks are due to my parents, Eva and Reinhard, who offered me the opportunity
to study physics, my siblings, Daniel and Ute, and Sabine for their social backup.

71

72

73

