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Same-day delivery problems [6] are concerned with delivering orders placed
dynamically by customers on the same day. Delivery route planning and driver
dispatching have to be performed online within short time. We consider a prob-
lem variant [3] originating from a real-world online super market in Vienna,
where orders have to be delivered within either one or two hours and where de-
livery deadlines are soft, while every order has to be delivered. The optimization
goal is to minimize and balance the tardiness and the travel times.

Our current solution approach makes use of an Adaptive Large Neighbor-
hood Search (ALNS) [5] with a surrogate objective function [2]. It replaces a
computationally intense online scenario sampling/consensus function approach
[1] by an offline training phase, where we learn to estimate the quality of routes
which start in the future to account for the dynamic and stochastic aspect of
the problem. We observed that different surrogate models are superior both to
myopic optimization and the sampling approach on artificial instances and also
in real-world use as reported by practitioners. An explanation for the behavior
of the surrogate functions is that they favor routes which have larger slacks and
are more widespread over the delivery area. Routes might look inefficient in a
static context and would not be constructed considering only the myopic costs,
but are likely to be improved over time when new orders arrive. An extreme
example is a route containing exactly one far away but delayable order.

This approach is targeted at the so-called zero-tardiness regime, where we
have sufficient capacity to satisfy the demand to create routes with (almost) no
tardiness. There, we replaced the myopic travel distance with the aforementioned
surrogate function. When the demand exceeds the capacity, we move to the
tardiness regime, where the goal of the optimization is to reduce and balance the
unavoidable tardiness evenly among the customers. We observe that in this case
the performance decreases, since the travel times are only indirectly respected.
The approach focuses then only on the tardiness in the static context facilitated
by creating shorter routes with as many available vehicles as possible. Due to
the waste of driver resources, these inefficient routes might then result into even
more tardiness for later orders—a self-amplifying downward trend. This can be
addressed by willingly accepting additional tardiness. In Figure 1, we see on an
exemplary real-world instance the positive impact of the route efficiency when
allowing extra tardiness of a couple of minutes.
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Fig. 1. Planned routes in a high load situation of a real-world instance in Vienna.
Left: Myopic minimization of the tardiness, where many, partially inefficient, routes
are planned. Right: Fewer, more efficient routes are planned when we allow extra 5
minutes of tardiness per order, naturally resulting into more tardy orders (in orange).

In our current work, we formalize our problem as Markov Decision Process
to model explicitly the immediate reward R for an action (i.e., starting a route
with a certain tardiness) and the value V' of the resulting post-decision state
(i.e., how much remaining tardiness do we expect). Following [4], a neural net-
work is employed to create a value approximation 1% using temporal difference
learning in an offline training phase. Both reward and value are then used in the
objective function of the online optimization by the ALNS. Relevant features
for the network need to be investigated—the predicted route costs, the driver
capacity, remaining expected orders, and mean order delivery times are expected
to be relevant. The intuitive goal is to learn making clever sacrifices regarding
the current reward leading to less tardiness over the whole day.
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