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Kurzfassung

Das Bedingungserfüllungsproblem, kurz CSP, einer vorgegebenen relationalen Sprache, eine
Menge mit hier endlich vielen Relationen, ist ein Entscheidungsproblem. Es fragt, ob Varia-
blen eine Wertebelegung zulassen, sodass gewisse, aus der Sprache gebildete Bedingungen
erfüllt sind. Die Schwierigkeit eines solchen Entscheidungsproblems wird festgelegt durch
die Polymorphismen der entsprechenden relationalen Sprache, das sind Homomorphismen
von endlichen Potenzen der Sprache auf sich selbst. Diese Arbeit soll eine mehrheitlich
eigenständig lesbare Charakterisierung endlicher relationaler Sprachen bieten, deren CSP
sich bereits durch das Überprüfen auf lokale Konsistenz lösen lässt. Die Terminologie
inhaltlich relevanter Veröffentlichungen wird in dieser Arbeit vereinheitlicht und Beweise
werden möglichst ausführlich erklärt.
Wir definieren die Begriffe der Breite und der relationalen Breite einer endlichen Sprache.

Falls eine Sprache beschränkte relationale Breite hat, geben beide Ausdrücke grob gespro-
chen die Anzahl an Variablen an, für die konsistente Belegungen existieren müssen, damit
eine Instanz des CSP lösbar ist. Wir beweisen, dass jede endliche relationale Sprache genau
dann beschränkte relationale Breite hat, wenn sie in gewissem Sinne nicht das Lösen von li-
nearen Gleichungen über einem endlichen Primkörper simulieren kann. In diesem Fall kann
das entsprechende CSP einer endlichen Sprache bereits durch Betrachtung der zulässigen
Belegungen von nur jeweils drei Variablen gleichzeitig gelöst werden. Endliche Sprachen
mit beschränkter relationaler Breite können auch durch die Existenz von Polymorphismen
charakterisiert werden, welche gewisse, nicht-triviale Gleichungen erfüllen. Dies ermöglicht
in weiterer Folge Aussagen über die Entscheidbarkeit der Klasse aller endlicher relationaler
Sprachen mit beschränkter relationaler Breite.



Abstract

The constraint satisfaction problem, short CSP, of a given constraint language, a set to-
gether with finitely many relations, is a decision problem. It asks whether variables can
be assigned values such that constraints built from the constraint language are satisfied.
The hardness of this decision problem is determined by the homomorphisms from finite
powers of the constraint language to itself, called polymorphisms. This thesis aims to
unify terminology of relevant papers and explain proofs in detail to provide a mostly self-
contained characterization of finite constraint languages that give rise to CSPs solvable by
local consistency methods.
To that end, we define the notions of width and of relational width of a finite constraint

language. For languages of bounded relational width, both notions indicate the number of
variables upon which consistency must be enforced at a time to solve the corresponding CSP.
We prove that a finite constraint language has bounded relational width iff it cannot, in
some sense, simulate the problem of solving linear equations over a finite prime field. In that
case, the CSP over a finite constraint language is already solvable by local propagation by
considering only three variables at a time. Lastly, we show that finite constraint languages
of bounded relational width are characterized by the existence of polymorphisms that
satisfy certain non-trivial identities. This provides insight to the meta-question of deciding
bounded relational width for finite constraint languages.
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1 Introduction

Let D be a constraint language, i.e., a non-empty set D, called the domain, together with
finitely many relations (RD)R∈τ on D. The constraint satisfaction problem over D, short
CSP(D), is the decision problem that asks whether given variables can be assigned ele-
ments from D such that finitely many constraints built from relations of D are satisfied.
This framework can be utilized to describe a broad field of problems which are varying in
complexity depending on the constraint language. Three examples shall demonstrate this.

Example 1.0.1. Let D = ({0, 1}; =,=). An instance of CSP(D) could consist of the
constraints

x1 = x2, x2 = x3, x3 = x1.

Clearly, this particular instance is not satisfiable since transitivity of = in {0, 1} immediately
yields the contradiction x1 = x1 which is false for any value of x1 in {0, 1}. Any instance of
CSP(D) can be decided considering three variables at a time and propagating restrictions
upon these variables, basically enforcing transitivity of =. This problem is said to be
solvable by local consistency methods.

Example 1.0.2. Let D = (Zp; {0}, R0, R1), where Rd = {(a, b, c) ∈ (Zp)
3 : a+ b+ c = d}

for d ∈ Zp. Then an instance of CSP(D) could be

x1 = 0, x3 = 0, x2 + x3 + x4 = 0, x1 + x3 + x4 = 1, x1 + x4 + x5 = 1.

CSP(D) corresponds to solving a given system of linear equations in Zp. While this is
still solvable in polynomial time, Theorem 3.1.1 proves that it is not solvable using local
consistency methods.

Example 1.0.3. Let D = ({0, 1};R0,0,0, R1,0,0, R0,1,0, . . . , R1,1,1), where for all i, j, k ∈
{0, 1}, we define Ri,j,k = {0, 1}3 \ {(i, j, k)}. Since, e.g., i∨¬j ∨ k equals 1 in the 2-element
Boolean algebra iff (i, j, k) ∈ R0,1,0, an instance of CSP(D) can be interpreted as a set of
clauses, e.g.,

x1 ∨ x2 ∨ ¬x3, x2 ∨ ¬x4 ∨ x5, ¬x1 ∨ ¬x2 ∨ x4

which have to be satisfied simultaneously. Hence CSP(D) is exactly the problem 3-SAT
that is well-known to be NP-complete.

Which features of a constraint language D determine the complexity of CSP(D)? This
question seems of natural interest to any theoretical computer scientist. In the past years a
beautiful Galois connection lead to great success in answering this question. An operation

1



1 Introduction

f on D is called a polymorphism of D if it preserves every relation R of D:

a11
a21
...

an1


 ,



a12
a22
...

an2


 , . . . ,



a1k
a2k
...

ank


 ∈ R ⇒



f(a11, . . . , a1k)
f(a21, . . . , a2k)

. . .
f(an1, . . . , ank)


 ∈ R.

The smaller the set of relations of D, the bigger is its corresponding set of polymorphisms,
Pol(D). The fact that the complexity of CSP(D) is determined by Pol(D) enabled the use
of Universal Algebra. In particular, the complexity of CSP(D) depends on the identities
satisfied by the polymorphisms. In the case of Example 1.0.3 the only polymorphisms of
D are projections. For the constraint language D in Example 1.0.2, there exists at least
one weak near unanimity (WNU) polymorphism w, i.e., a polymorphism w satisfying the
equations

w(y, x, . . . , x) = w(x, y, x, . . . , x) = · · · = w(x, . . . , x, y)

for all x, y in the domain of D. For the constraint language in Example 1.0.1, there even
exist WNU polymorphisms of all arities k ≥ 3.

Zhuk [Zhu20] and Bulatov [Bul17] independently solved a central problem regarding
CSPs, originally stated by Feder and Vardi. Today its solution is known as the finite-
domain dichotomy theorem.

Theorem 1.0.4. Let D be a finite constraint language. If there exists a WNU polymorphism
of D, then CSP(D) can be solved in polynomial time. Otherwise, CSP(D) is NP-complete.

While the assumption P = NP implies the existence of intermediate problems within
NP by Ladner’s theorem [Lad75], such problems do not occur as finite-domain CSPs by
above dichotomy theorem.

This thesis will focus on characterizing finite constraint languages with CSPs in P that
can be solved by decision procedures considering only a fixed number of variables at a time.
Such languages will be said to have bounded relational width. The constraint language from
Example 1.0.1 has bounded relational width. The main contribution of this work is to give
a largely self-contained introduction to the notion of relational width including important
results of the past years and providing extensive proofs. We aim to unify terminology and
notation, e.g., for the CSP framework or the definition of relational width, which is varying
within the original papers cited in this thesis. In particular, some older papers do not
use terminology from [BOP15] such as pp-constructions and minion homomorphisms, see
Definition 2.1.33 and Definition 2.1.39.

A summary of the most important findings covered in this thesis is given in Corol-
lary 6.1.8. It includes the following characterization of finite-domain constraint languages
with bounded relational width via weak near unanimity operations which follows from
[MM08] and [BK14]. We will give a proof using results from [Bar14].

Theorem 1.0.5. Let D be a finite constraint language. Then D has bounded relational
width iff there exist WNU polymorphisms of all arities k ≥ 3 for D.

2



1 Introduction

Let us end this introduction by giving a hint at the content of the following chapters.
In Chapter 2 basic definitions that are used throughout the thesis will be introduced. We

then give a formal definition of CSPs and we introduce the notions of (bounded) width and
(bounded) relational width using a game and algorithms. Constraint languages with a CSP
solvable by such methods are preserved by certain constructions. In particular, we prove
that pp-constructions do not change the complexity of the CSP of a language significantly,
see Theorem 2.4.9.

Chapter 3 shall explain why the CSP from Example 1.0.2 and any language with a CSP
that can simulate solving linear equations over Zp for some prime p, does not have bounded
relational width. A similar result was originally shown in [FV98]. We give full details,
besides some graph theoretic results, of a proof from [Bod21] using the game introduced in
Chapter 2 instead. Theorem 3.2.5 describes languages that do not have bounded relational
width.

In Chapter 4 we will prove that the inability of a constraint language to simulate solving
linear equations already implies that this language does have bounded relational width.
This was proved in [BK14] and the result was improved in [Bar14]. The CSP given in Ex-
ample 1.0.1 is solvable by looking at three variables at a time and propagating information.
This is no coincidence. Whenever D has bounded relational width it is always sufficient to
consider three variables at once in order to solve CSP(D), see Corollary 4.0.6. We follow
the proof in [Bar14].

Chapter 5 concludes the proof that the CSP over any finite constraint language can either
be solved by local propagation considering only one variable at a time, by local propagation
considering only three variables at a time, or the language does not have bounded relational
width at all. We follow and adapt the argumentation from [Dal09].

In Chapter 6 we show that a finite constraint language D has bounded relational width
iff WNU polymorphisms of D of all arities k ≥ 3 exist, or equivalently, if WNU polymor-
phisms v, w of D of arity 3 and 4 exist which additionally satisfy the equations v(y, x, x) =
w(y, x, x, x) for all x, y in the domain of D.
We summarize equivalent properties to bounded relational width for finite constraint

languages in Corollary 6.1.8. Finally, we can state an algorithm that decides whether a
core constraint language, i.e., one whose unary polymorphisms are bijective, has bounded
relational width in polynomial time and show that this decision problem is NP-complete if
it is extended to arbitrary finite constraint languages.
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2 Basic Definitions and Results

2.1 Relational Structures and Polymorphism Clones

Definition 2.1.1. A signature τ is a set of relation and function symbols with associated
finite arities. A τ -structure D or structure over τ is a set D, the domain or universe of D,
together with a relation RD ⊆ Dk for each relation symbol R of τ of arity k and a function
fD : Dk → D for each function symbol f of τ of arity k. We will use the same characters
R and f for symbols and their respective relations or functions when there is no danger of
confusion.
Signatures only containing function symbols are called functional signatures and struc-

tures over a functional signature are called algebras. Signatures only containing relation
symbols are relational signatures and structures over relational signatures are relational
structures. In the context of CSPs we will call relational structures over finite relational
signatures constraint languages. Any kind of structure is said to be finite if its domain is
finite.

Notation 2.1.2. We will use different fonts to distinguish different kinds of structures; cap-
ital letters D in Fraktur typeface for arbitrary structures, capital letters D in bold typeface
for algebras, and capital letters D in Blackboard bold typeface for relational structures.
Unless otherwise stated the corresponding normal font letter D denotes the domain of the
structure D,D or D.

Remark 2.1.3. The signature of a structure will not always be of importance or can be cho-
sen arbitrarily. It will sometimes be convenient to write D = (D;RD

1 , R
D
2 , . . . , f

D
1 , fD

2 , . . . )
or (D,Γ,O) for the structure with the domain D, the relations RD

1 , R
D
2 , . . . and the func-

tions fD
1 , fD

2 , . . . , or relations given by the set Γ and functions given by the set O.

Definition 2.1.4. Let D be a τ -structure and E be a τ -structure with τ ⊆ τ such that
both structures have the same domain and for every function symbol f of τ and every
relation symbol R of τ , we have fD = fE and RD = RE. Then D is the τ -reduct or simply
a reduct of E and E is a τ -expansion or simply an expansion of D. A τ -structure D is
said to be of finite type if its signature τ is finite. The reducts of finite type of a relational
structure are constraint languages.

Definition 2.1.5. Let D and E be structures over the same signature τ . A homomorphism
from D to E is a map h : D → E such that for all integers n, all n-ary relation symbols R
and all n-ary function symbols f of τ , and all a1, . . . , an ∈ D, we have

• (h(a1), . . . , h(an)) ∈ RE whenever (a1, . . . , an) ∈ RD, and

• fE(h(a1), . . . , h(an)) = h(fD(a1, . . . , an)).

4



2 Basic Definitions and Results

We write D hom−→E if there exists a homomorphism from D to E. An embedding of D into
E is an injective homomorphism ι : D → E satisfying (ι(a1), . . . , ι(an)) ∈ RE if and only
if (a1, . . . , an) ∈ RD for every relation symbol R of τ . A surjective embedding is called an
isomorphism. An endomorphism of D is a homomorphism from D to D. The set of all
endomorphisms on D is denoted by End(D). An automorphism of D is an isomorphism
from D to D. The set of all automorphisms of D is denoted by Aut(D).

Definition 2.1.6. Two structures D and E are called isomorphic if there exists an iso-
morphism φ from D to E. The structures are homomorphically equivalent if there exist
homomorphisms from D to E and from E to D.

Definition 2.1.7. Let D and E be structures over the same signature τ with domains D
and E, respectively. We can define a τ -structure D× E with domain D × E by

((d1, e1), . . . , (dn, en)) ∈ RD×E iff (d1, . . . , dn) ∈ RD and (e1, . . . , en) ∈ RE

for every n-ary relation symbol R of τ and

fD×E((d1, e1), . . . , (dn, en)) = (fD(d1, . . . , dn), f
E(e1, . . . , en))

for every n-ary function symbol f of τ .
The product D × D is also denoted by D2, the k-fold product D × · · · × D, defined

analogously, is denoted by Dk. These structures are called powers of D.
More generally, let I be a non-empty index set and let (Di)i∈I be structures over the

same signature τ with the domains Di, respectively. We define the τ -structure C = i∈I Di

with domain i∈I Di by

((d
(i)
1 )i∈I , . . . , (d(i)n )i∈I) ∈ RC iff (d

(i)
1 , . . . , d(i)n ) ∈ RDi for every i ∈ I,

for every n-ary relation symbol R of τ , and

fC((d
(i)
1 )i∈I , . . . , (d(i)n )i∈I) = (fDi(d

(i)
1 , . . . , d(i)n ))i∈I

for every n-ary function symbol f of τ . If D = Di for every i ∈ I, we also write DI for

i∈I Di.

Definition 2.1.8. Let D and E be relational τ -structures. Then D∪E denotes the relational
τ -structure with domain D ∪ E and relations RD∪E := RD ∪ RE for every relation symbol
R of τ .

Definition 2.1.9. Let D be a relational τ -structure, E a nonempty set and h : D → E a
mapping. Then h(D) denotes the τ -structure with domain h(D) and relations

Rh(D) := {(h(d1), . . . , h(dk)) : (d1, . . . , dk) ∈ RD}

for every relation symbol R of τ . Clearly, h is a homomorphism from D to h(D).

5



2 Basic Definitions and Results

Definition 2.1.10. Let D and E be structures over the same signature τ with domains D
and E. The structure E is said to be a substructure of D, denoted by E ≤ D, if E ⊆ D,
RE = En ∩ RD for every n-ary relation symbol R ∈ τ and fE = (En × E) ∩ fD for every
n-ary function symbol f ∈ τ . A set E ⊆ D which is the domain of a substructure of D is
called a subuniverse. A substructure A ≤ Dk of a power of D is called a subpower. The
universe of a subpower is called an invariant under D, an invariant relation under D, or
also a subpower of D.

Definition 2.1.11. Let D be an algebra. An equivalence relation ∼⊆ D × D is a con-
gruence of D if ∼ is a subuniverse of D2. A congruence is called maximal if it is properly
contained only in the trivial congruence D2.

Remark 2.1.12. The diagonal {(a, a) : a ∈ D} is always a congruence and hence every finite
algebra with at least two elements has a maximal congruence.

Definition 2.1.13. Let τ be a functional signature. An identity (over τ) is a τ -sentence
of the form

∀x1, . . . , xn, y1, . . . , ym : s(x1, . . . , xn) = t(y1, . . . , ym)

where s and t are τ -terms and x1, . . . , xn, y1, . . . , ym are not necessarily distinct variables.
A height 1 identity is an identity where the terms s and t are of height 1, i.e., the identity
is of the form

∀x1, . . . , xn, y1, . . . , ym : f(x1, . . . , xn) = g(y1, . . . , ym)

where f and g are function symbols in τ . An algebra D is a model of a set of identities if
those identities hold in D. An identity is satisfied by operations f1, . . . , fk on a set D if the
function symbols of the identity can be replaced by operations of f1, . . . , fk such that the
resulting equation holds for every assignment of the variables occurring in the equation to
D.

Definition 2.1.14. A variety is a class of algebras over the same functional signature
that is closed under homomorphic images, subalgebras, and products. By Birkhoff’s HSP
theorem [Bir35], a class of algebras of the same signature τ is a variety iff it is the class of
models of some set of identities over τ .
Let D be an algebra. We write V(D) = HSPD for the variety generated by D, i.e., the

smallest variety containing D.

Definition 2.1.15. A set of operations D on a nonempty set D is called a (function)
clone if D contains all projections πn

i : Dn → D, (x1, . . . , xn) → xi for n ∈ N \ {0} and
i ∈ {1, . . . , n} and is closed under composition, i.e., for any function f ∈ D of arity m and
any functions g1, . . . , gm all of arity k in D the map

f(g1, . . . , gm) :
Dk → D,

(x1, . . . , xk) → f(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))

lies in D. Function clones will be denoted by calligraphic font letters, usually by the same
letter as the corresponding domain (we also use calligraphic font for other objects, e.g., sets

6



2 Basic Definitions and Results

of functions that are not necessarily a function clone). For an arbitrary set O of operations
on a set D we write O for the smallest clone containing O. If D is a τ -algebra, we
write Clo(D) := {fD : f ∈ τ} for the clone of term operations of D and Clok(D) for all
operations in Clo(D) of arity k.

Definition 2.1.16. Two algebras D,E with the same domain are called term-equivalent
if Clo(D) = Clo(E) holds.

Definition 2.1.17. Let τ be a relational signature. A first-order τ -formula φ is called
primitive positive or a pp-formula if it is an existentially quantified conjunction of atomic
τ -formulas ψ1, . . . , ψl, i.e.,

φ(x1, . . . , xn) = ∃xn+1, . . . , xm(ψ1 ∧ · · · ∧ ψl),

where atomic formulas are of the form R(y1, . . . , yk) with yi ∈ {x1, . . . , xm} for all i ∈
{1, . . . , k} and R in τ , or of the form y = y with y, y ∈ {x1, . . . , xm}. A pp-formula
without free variables is a primitive positive sentence.

Definition 2.1.18. A relationR is pp-definable in a relational τ -structure D if it is definable
by a pp-formula φ(x1, . . . , xn) over τ , i.e.,

∀a1, . . . , an ∈ D : (a1, . . . , an) ∈ R ⇐⇒ D |= φ(a1, . . . , an).

Definition 2.1.19. Let Γ be a set of relations on a nonempty domain D. We write Γ
for the set of all pp-definable relations of (D,Γ). Any set of relations which is closed under
pp-definitions is called a relational clone.

Definition 2.1.20. A k-ary function f : Dk → D is said to preserve an n-ary relation
R ⊆ Dn, or equivalently R is closed or invariant under f , if R is a subuniverse of the
structure (D, {f})n. We abbreviate this by f R.
In that case applying f to the rows of a matrix (aij) ∈ Dn×k whose columns are tuples

of R yields a column that is again a tuple of R.

a11
a21
...

an1


 ,



a12
a22
...

an2


 , . . . ,



a1k
a2k
...

ank


 ∈ R ⇒



f(a11, . . . , a1k)
f(a21, . . . , a2k)

. . .
f(an1, . . . , ank)


 ∈ R. (2.1)

Definition 2.1.21. Let D be a relational τ -structure and k a positive integer. A function
f : Dk → D is called a polymorphism of D if f preserves every relation of D. We define

Polk(D) := {f : Dk → D | ∀R ∈ τ, f RD}
to be the set of all k-ary polymorphisms of D. Then

Pol(D) :=
∞

k=1

Polk(D)

is the polymorphism clone of D. We use the same notion on mere sets of relations, i.e.,
for a set Γ of relations on D we write Pol(Γ) for the set of operations that preserve every
relation in Γ.

7



2 Basic Definitions and Results

Remark 2.1.22. Let D be a relational structure on a domain D. Then the polymorphism
clone Pol(D) of D is a clone.

Definition 2.1.23. Let D be an algebra. We write Inv(D) for the set of all invariant
relations under D. The same notion is used for a set of functions O on a common domain
D, i.e., we write Inv(O) for the set of relations on D that are preserved by every operation
in O.

Remark 2.1.24. The relation induces an antitone Galois connection between sets of
operations and sets of relations on a fixed common domain D via the order reversing
functions Inv and Pol. The equations

Inv(Pol(Inv(O))) = Inv(O)

and
Pol(Inv(Pol(Γ))) = Pol(Γ)

hold as a consequence. The following two theorems describe the closure operators Inv ◦Pol
and Pol ◦ Inv, we refer to, e.g., [Sze86] for proofs.

Theorem 2.1.25. Let O be a set of operations on a finite set D. Then O = Pol(Inv(O)).

Theorem 2.1.26. Let Γ be a set of relations on a finite set D. Then Γ = Inv(Pol(Γ)).

Definition 2.1.27. A finite relational structure E is a core if all of its endomorphisms
are automorphisms. A constraint language that is a core is also called a core constraint
language. Let D and E be relational structures over the same signature. Then E is called
a core of D if E is a core and homomorphically equivalent to D.

Lemma 2.1.28. Every finite relational structure has a core and all of its cores are iso-
morphic.

Proof. Let D be a finite relational structure. Assume D is no core. Then there exists an
endomorphism h ∈ End(D) \ Aut(D) by definition of core. Note that selfmaps on finite
sets are injective if and only if they are surjective. Therefore any surjective endomorphism
f must in particular permute the tuples of any relation R of D, i.e., (a1, . . . , an) ∈ R
if and only if (f(a1), . . . , f(an)) ∈ R for every n-ary relation R, implying that f is an
automorphism. Thus h cannot be surjective. We define D to be the induced substructure
of D with domain D := h(D) by restricting relations to the new domain. Now, as observed,
D has strictly smaller domain than D and the structures are homomorphically equivalent
by h and h : D → D,x → x. Repeating this construction at most |D| times yields a finite
chain of successively strictly smaller and homomorphically equivalent relational structures
D0 := D and Dk+1 := (Dk) until the assumption Aut(Dk) End(Dk) fails. The last
relational structure of such sequence is a core of D.
Let E and E be two cores of the structure D and let g : D → E, h : E → D, g : D → E ,

h : E → D be homomorphisms. The endomorphisms g ◦ h ◦ g ◦ h and g ◦ h ◦ g ◦ h
of E and E are automorphisms. Thus g ◦ h : E → E and g ◦ h : E → E are bijective
homomorphisms. Finiteness of both structures implies coinciding sizes of the relations RE

and RE for every relation symbol R. Hence both maps must be isomorphisms.
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Definition 2.1.29. Let D be a core with domain D. We say E is the singleton expansion
of D if E is obtained from D by adding all singleton relations, i.e., the relations {a} for
every a ∈ D, to D.

Definition 2.1.30. An operation f is called idempotent if f(x, . . . , x) = x holds for all
x in the domain of f . A clone is idempotent if it contains only idempotent operations.
A constraint language is called idempotent if it contains all singleton relations, implying
that its polymorphism clone is idempotent. The idempotent reduct of a clone is the clone
consisting of all of its idempotent operations.

Definition 2.1.31. Let D and E be relational structures with possibly different signatures.
We say D pp-interprets E, or that E is pp-interpretable in D, if there exists n ≥ 1 and a
mapping f from a subset of Dn onto E such that all of the following relations are pp-
definable in D:

• the domain of f ;

• the preimage of the equality relation on E under f (the kernel of f), viewed as a
2n-ary relation on D;

• the preimage of every relation in E under f , where the preimage of a k-ary relation
under f is again regarded as a kn-ary relation on D.

A similar but less general notion of interpretations are pp-powers. We require that the
partial surjective mapping f from above definition of pp-interpretations is an isomorphism.
Let us give a precise explanation what that means.

Definition 2.1.32. Let D and E be relational structures with possibly different signatures.
We say that E is a pp-power of D if E is isomorphic to a structure with domain Dn, where
n ≥ 1, whose relations are pp-definable from D; as before, a k-ary relation onDn is regarded
as kn-ary relation on D.

Definition 2.1.33. Let D and E be finite relational structures. We say that D pp-constructs
E, or that E is pp-constructible from D, if there exists a sequence D = C1,C2, . . . ,Ck = E
such that for every 1 ≤ i < k,

• Ci pp-interprets Ci+1, or

• Ci+1 is homomorphically equivalent to Ci, or

• Ci is a core, and Ci+1 is obtained from Ci by adding a singleton unary relation.

According to [BOP15] any pp-construction can be achieved with only two constructions.

Theorem 2.1.34. The following are equivalent for finite relational structures D, E.

(i) E is pp-constructible from D.

(ii) E is homomorphically equivalent to a pp-power of D.

Proof. Corollary 3.10 in [BOP15].

9



2 Basic Definitions and Results

Definition 2.1.35. Let D, E be clones. A map ξ : D → E is called a clone homomorphism
if

1. ξ preserves arities,

2. ξ(πn
i ) = πn

i holds for all projections πn
i , 1 ≤ i ≤ n and n ∈ N \ {0}, and

3. ξ preserves compositions, i.e.,

ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn))

for all n-ary functions f and all m-ary functions g of D.

We write D ≤ch E if there exists a clone homomorphism ξ : D → E , and D ∼ch E if
D ≤ch E ≤ch D.

Remark 2.1.36. Clone homomorphisms preserve identities. For example, if a clone D has a
Maltsev operation, i.e., there exists an m ∈ D such that x = m(x, y, y) = m(y, y, x) holds
for all x, y in the domain of m, and ξ : D → E is a clone homomorphism, then ξ(m) is a
Maltsev operation of E .
Definition 2.1.37. Let D be a function clone. We denote by H(D) all function clones
obtained by letting D act naturally on the classes of an invariant equivalence relation on
the domain of D. We denote by S(D) all function clones obtained by letting D act on an
invariant subset of its domain via restriction. We denote by Pfin(D) the function clones
such that D acts component-wise on finite powers of its domain. Finally, the operator E(D)
yields all function clones gained by extending D, i.e., by adding functions to D. We use
constructions like HSPfin to describe the classes gained by consecutively applying these
operators to (classes) of function clones.

The following theorem is stated in [BOP15]. According to this paper, it is as a con-
sequence of the Galois connection between relational structures and function clones, see
Remark 2.1.24, and Birkhoff’s HSP theorem [Bir35]. In [BP15], a more general version of
the below theorem is proved with inspirations from [BJK05].

Theorem 2.1.38 ([BOP15, Theorem 1.1]). Let D and E be finite relational structures.
Then the following are equivalent.

1. E is pp-interpretable in D

2. Pol(E) ∈ EHSPfin(Pol(D))

3. Pol(D) ≤ch Pol(E).

Definition 2.1.39. Let D, E be clones. A map ξ : D → E is a minion homomorphism or
h1 clone homomorphism if

1. ξ preserves arities, and

10
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2. ξ preserves composition with projections, that is, for all operations f ∈ D and pro-
jections πn

i1
, . . . , πn

im
, we have

ξ(f ◦ (πn
i1 , . . . , π

n
im)) = ξ(f) ◦ (πn

i1 , . . . , π
n
im).

We write D ≤h1 E if there exists a minion homomorphism from D to E .
Remark 2.1.40. Minion homomorphisms preserve height 1 identities. For example, if D has
a ternary WNU operation w, i.e., the equations w(y, x, x) = w(x, y, x) = w(x, x, y) hold
for all x, y in the domain of w, and ξ : D → E is a minion homomorphism, then ξ(w) is a
WNU operation of E .

In order to describe the corresponding algebraic perspective for pp-constructions, in
particular to mimic homomorphic equivalence, reflections were introduced in [BOP15].

Definition 2.1.41. Let D be a τ -algebra. Let E be a set and h1 : E → D and h2 : D → E
functions. Then the τ -algebra E with domain E and a function

fE : (x1, . . . , xk) → h2(f
D(h1(x1), . . . , h1(xk)))

for every k-ary function fD of D is called a reflection of D.

Definition 2.1.42. For a class K of algebras, we denote by R(K) the class of all reflections
of algebras in K. The construction in Definition 2.1.41 can be extended to sets of operations
on a fixed domain without a signature. If D is a function clone, we write R(D) for the sets
of functions that can be obtained from D via reflection.

Remark 2.1.43. A reflection of a clone must not necessarily be a clone again. This issue is
resolved by applying the operator E not only to clones but also to mere sets of functions.

Theorem 2.1.44 ([BOP15, Theorem 1.8]). Let D and E be finite relational structures.
Then the following are equivalent.

1. E is pp-constructible in D;

2. Pol(E) ∈ ERPfin(Pol(D));

3. Pol(D) ≤h1 Pol(E).

2.2 Constraint Satisfaction Problems

We have already given three examples of Constraint Satisfaction Problems in the intro-
duction, Examples 1.0.1, 1.0.2, and 1.0.3. We want to formalize the framework in this
section.

Definition 2.2.1. Let D be a constraint language. An instance of CSP(D) is a triple
I = (V,D, C), where V is a finite set of variables, D is the domain of D, C is finite list of
constraints C = (s,R), where the scope s is a finite tuple of variables and the constraint
relation R is a relation of D whose arity equals the length of s. An instance I is called
trivial if it contains a constraint with empty constraint relation.

11
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Remark 2.2.2. Sometimes, especially in Chapter 4, we will just speak of an instance I =
(V ,D, C) without mentioning a constraint language D or that I is an instance of CSP(D).
In that case, the exact form of the constraint language is not of importance or should be
clear from the context.

Definition 2.2.3. Let D be a constraint language. Let I = (V,D, C) be an instance of
CSP(D). Any function f : V → D is called an assignment. It is said to satisfy a constraint
C = (s,R) if f(s) ∈ R where f(s) is the tuple obtained by component-wise application of
f to s. Furthermore, f is called a solution of the instance I if f satisfies all constraints
C ∈ C.
Notation 2.2.4. For two instances I = (V ,D, C) and I = (V ,D , C ) we write I I if
V = V , D = D , and for any constraint (s,R ) ∈ C there exists some relation R ⊆ R such
that (s,R) ∈ C. Note that any solution of I is also a solution of I .

Notation 2.2.5. For a constraint C = (s,R) with scope s = (x1, . . . , xn) we will use set-
theoretic phrases like s contains (is contained in) a set W of variables or define functions on
s to abbreviate analogue statements for the set {x1, . . . , xn}. The scope s = (x1, . . . , xn)
of a constraint contains (is contained in) a set W ⊆ V if W ⊆ {x1, . . . , xn} (or W ⊇
{x1, . . . , xn}). Similarly, we write f : s → D for a function f : {x1, . . . , xn} → D.

Definition 2.2.6. Let D be a constraint language. Then CSP(D) is the problem of deciding
whether a given instance I = (V,D, C) such that every constraint relation of I is a relation
of D has a solution.

Example 2.2.7. We can write the instance in Example 1.0.1 as I = ({x1, x2, x3}, {0, 1}, C)
with C = {((x1, x2),=), ((x2, x3),=), ((x3, x1),=)}. It does not have a solution. The
instance in Example 1.0.2 does have a solution f(x1) = f(x3) = f(x5) = 0, f(x2) =
−1, f(x4) = 1.

Remark 2.2.8. Let D be a constraint language. An instance I = (V,D, C) of CSP(D) with
constraints {(s1, R1), . . . , (sm, Rm)} and scopes si = (xi1, . . . , x

i
ki
), where ki is the arity of

Ri for every i ∈ {1, . . . ,m}, can be translated into a primitive positive sentence

φI := ∃x1, . . . , xnR1(x
1
1, . . . , x

1
k1) ∧ · · · ∧Rm(xm1 , . . . , xmkm)

where {x1, . . . , xn} is a full list of all variables in s1, . . . , sm. The instance I now has a
solution if and only if the formula φI is true in D by definition.

This very natural view of CSPs as truth of primitive positive sentences or satisfiability of
conjunctions of atomic formulas in a relational structure immediately suggests versatility
and a broad field of problems that can be described using CSPs. Bodirsky and Grohe proved
in [BG08] that every computational decision problem is polynomial-time Turing-equivalent
to a constraint satisfaction problem with an infinite template.

Remark 2.2.9. Let D be a constraint language and let I = (V ,D, C) be an instance of
CSP(D). Denote the signature of D by τ . We construct another τ -structure EI as follows.
The relational structure EI has universe V and for every relation symbol R of τ , the
relation REI shall contain exactly those tuples s such that (s,RD) is a constraint of I.

12
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Then h : V → D is a solution of I if and only if h is a homomorphism from EI to
D. This perception of instances as relational structures gives opportunity to compare
instances of CSP(D) through homomorphisms. If I, J are instances of CSP(D) and h is a
homomorphism from EJ to EI , then a solution f of I yields a solution f ◦ h of J . Hence
solving J is easier than solving I. In Chapter 5 we will make use of this observation. For
some constraint languages, showing that certain instances which are actually easier than
I, i.e., their associated relational structures map homomorphically to I, do not have a
solution already yields the unsolvability of I.

Example 2.2.10. Let k be a positive integer and let G = (G;E) be an undirected graph. A
k-colouring of G is an assignment h : G → {1, . . . , k} such that for any two adjacent vertices
v, w of G, the colours h(v) and h(w) are different. Hence, an assignment h : G → {1, . . . , k}
is a k-colouring iff it is a homomorphism from G to the constraint language

Dk-COL := ({1, . . . , k},=).

If G has a k-colouring, we say that G is k-colourable.
The problem of deciding whether a given graph is k-colourable is called k-colourability.

This problem is described by CSP(Dk-COL).

2.3 Local Consistency Methods

This section shall clarify what is meant by local consistency methods in the title of this
thesis. A short, historically motivated definition of width via datalog programs is followed
by the pebble game, which will be used in the proof that solving linear equations is com-
parably hard, and relational width. The part concerning datalog up to Definition 2.3.8 is
not needed for the rest of the thesis.

2.3.1 Datalog and width

Datalog is a framework heavily studied studied in database theory. It can be described
as the language of logical programming without function symbols, see [Ull88]. We give a
short definition following [Bod21].

Definition 2.3.1. A database program consists of a finite set of rules, each rule is usually
written in the form

ψ :− φ1, . . . , φm

where m ≥ 0 and ψ, φ1, . . . , φm are atomic formulas over some relational signature. In
this context we will call such formulas predicates. The relation symbol R of a predicate
R(x1, . . . , xn) is the name or symbol of the predicate and refers to a relation. In practice,
this relation represents storage.

The formula ψ is called the head of the rule and φ1, . . . , φm is called the body. The
variables from the head ψ = R(x1, . . . , xn) must occur in the body.
The relation symbols that occur in the head of a rule are the names of intensional

database predicates or short IDBs. The relation symbols that only occur in the body of a

13
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rule but not in the head of any rule are the names of extensional database predicates or
EDBs. The underlying relations corresponding to IDBs represent the information that a
program derives from initial data corresponding to the EDBs.
A datalog program has width (k, l) if all IDBs of its rules are at most k-ary, and if there

are at most l distinct variables in the body of each rule (the names of k and l might be
switched in older literature and are chosen to fit our upcoming definition of relational width
(k, l)).

Definition 2.3.2. Let Π be a datalog program, let τ be the set of symbols of its EDBs,
let σ be the set of symbols of its IDBs, and let D be a finite relational τ -structure. Then
the program Π can be used to define a (τ ∪ σ)-expansion Π(D) of D such that

Π(D) |= ∀x((φ1 ∧ · · · ∧ φm) → ψ) holds for every rule (ψ :− φ1, . . . , φm) of Π (2.2)

and such that the relations of any (τ ∪σ)-expansion of D with property (2.2) contain those
of Π(D).

Remark 2.3.3. Instead of the above definition as minimal (τ ∪σ)-structure satisfying prop-
erty (2.2), we can construct Π(D) the following way.
Let D0 be the (τ ∪ σ)-expansion obtained from D by adding an empty relation for every

relation symbol in σ. For every i ≥ 0, we can now inductively construct a new structure
Di+1 from Di by adding tuples to the relations of Di belonging to the IDBs of Π. Whenever

Q(x) :−R1(x1), . . . , Rm(xm)

is a rule of Π and the conjunction of the atomic formulas in its body holds in Di under an
assignment f of the variables of the rule to the domain of Di, we add the tuple f(x), where
f is applied component-wise to x, to the relation Q of Di+1. Since D is finite, after finitely
many steps, say r iterations, no more tuples are added, i.e., Di = Di+1 holds for i ≥ r. We
set Π(D) := Dr.

Example 2.3.4. The following program Π checks if a finite graph with edge relation edge
is not 2-colourable:

oddpath(x, y) :− edge(x, y)

evenpath(x, y) :− oddpath(x, z), edge(z, y)

oddpath(x, y) :− evenpath(x, z), edge(z, y)

not2colourable :− oddpath(x, x)

The program will compute the binary relation corresponding to the IDB oddpath(x, y) of
the input graph to store vertices which are connected by a path of odd length. If there
exists a vertex v of the graph such that v is connected to itself via a path of odd length, the
empty tuple will be added to the relation of the IDB not2colourable of arity zero. In that
case, the graph is not 2-colourable. Therefore, 2-colourability can be solved by a datalog
program of width (2, 3) as the above program has at most 2 distinct variables in the head,
and at most 3 distinct variables in the body of each rule.
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Example 2.3.4 shows how a datalog program can be used as decision procedure. We
require a distinguished IDB p of arity zero to be part of the datalog program to do so.
In above example this predicate is not2colourable and it indicates whether the problem
(colouring the graph) has a solution or not.
Let us specify how a datalog program Π with distinguished IDB p of arity zero would

apply to an instance I = (V,D, C) of CSP(D) using our notation. The procedure would start
with EDBs R(x) for every constraint (x,R) of the instance and an empty relation on D of
appropriate arity for every IDB symbol of Π. Proceeding as described in Remark 2.3.3 yields
the relational structure Π(DI), where DI is exactly I interpreted as relational structure.
The instance is unsatisfiable if the corresponding relation of the predicate p in Π(DI) is
nonempty and the program Π is sound for CSP(DI). Let us define what sound means.

Definition 2.3.5. Let D be a finite constraint language. A datalog program Π is sound
for CSP(D) if it does not categorize satisfiable instances of CSP(D) as unsatisfiable. A
program Π solves CSP(D) if it correctly detects all unsatisfiable instances and is sound.

Definition 2.3.6. A finite constraint language D has width (k, l) for k ≤ l if there exists a
datalog program of width (k, l) that solves CSP(D). It has bounded width if it has width
(k, l) for some k and l.

To determine whether given constraint language D has width (k, l), the definition suggests
that one has to consider all datalog programs of width (k, l) which are sound for D and
check whether one of the programs solves the problem. Luckily in [FV98, Theorem 17]
Feder and Vardi argue that there is one canonical datalog program of width (k, l) for every
choice of k ≤ l, which subsumes all the inferences any sound datalog program of width
(k, l) would perform.

Theorem 2.3.7 ([FV98, Theorem 17]). For every finite constraint language D and posi-
tive integers k ≤ l, there is a canonical datalog program of width (k, l) with the following
property: if any datalog program of width (k, l) solves CSP(D), then the canonical one does.

Instead of a rigorous proof, we want to describe how the canonical datalog program of
width (k, l) operates. It is today known as the (k, l)-consistency algorithm.

Definition 2.3.8. Let D be a constraint language, let I = (V,D, C) be an instance of
CSP(D) and let W ⊆ V . A mapping f : W → D is a partial solution for I on W if f solves
every constraint of I which has a scope contained in W .

Remark 2.3.9. Note that the definition of a partial solution for an instance on a set W of
variables does not depend on constraints with scopes containing variables that are not in
W .

Notation 2.3.10. Let W,D be sets, let F ⊆ DV be a set of functions and let W ⊆ V . We
will sometimes write F |W = {f |W : f ∈ F} for the set of functions of F restricted to W .

The (k, l)-consistency algorithm with input instance I roughly operates in two steps.

1. Find the set F of all partial solutions of I on subsets W ⊆ V of at most l elements.
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2. Eliminate assignments from F that are not consistent on sets of up to k variables,
i.e., for every set W of up to k variables and sets W1 ⊇ W and W2 ⊇ W of up to
l variables, the equation (FW1)|W = (FW2)|W holds, where FWi denotes the partial
solutions in F with domain Wi for i = 1, 2.

For sake of completeness, we cite a possible implementation of this procedure given in
[BK14].

Algorithm 1 (k,l)-consistency

1: procedure (k,l)-consistency(instance I = (V,D, C))
2: F = all functions from at most l-element subsets of V into D;
3: for all f ∈ F do
4: for all ((x1, . . . , xn), R) ∈ C do
5: if x1, . . . , xn ∈ dom f and (f(x1), . . . , f(xn)) /∈ R then
6: F = F \ {f}
7: break;

8: repeat
9: for all f ∈ F do

10: for all W ⊆ V of at most l elements do
11: if (| dom f | ≤ k, dom f ⊆ W and there is no g ∈ F with dom g = W and
12: g|dom f

= f) or
13: (W ⊆ dom f and f |W /∈ F) then
14: F = F \ {f}
15: break; proceed to the next f ∈ F
16: until F was not altered
17: if F = ∅ then
18: return NO
19: else
20: return YES
21: end procedure

A reformulation of Theorem 2.3.7 could be stated as follows.

Theorem 2.3.11. Let D be a finite constraint language. D has width (k, l) iff every instance
of CSP(D) is correctly decided by the (k, l)-consistency algorithm, Algorithm 1.

2.3.2 A pebble game

As an instrument to prove that the CSP over certain languages within P is not solvable
by any datalog program, or equivalently, does not have bounded width, we make use of a
pebble game. The version given here is based on [Bod21].

Definition 2.3.12. Let D be a constraint language, I = (V ,D, C) an instance of CSP(D)
and 0 < k < l integers. The (k, l)-pebble game involves two players, namely the Spoiler,
trying to show that the instance is unsatisfiable, and the Duplicator, trying to hinder Spoiler
from finding a contradiction. Spoiler and Duplicator each have l pebbles. They take turns
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placing them on variables of I (Spoiler cannot place two pebbles on the same variable)
and elements of D, respectively. The repeated placement of pebbles corresponds to Spoiler
choosing a set of variables Wi in every round i ∈ {0, 1, . . . } and Duplicator choosing a
partial assignment hi from Wi to D afterwards.
The game starts in round 0 with no pebbles placed, i.e., W0 = ∅ = h0. In round i > 0

Spoiler may choose a set Wi of at most l elements such that W := Wi−1∩Wi has at most k
elements. Duplicator has to choose a mapping hi : Wi → D such that (hi)|W = (hi−1)|W . In
the pebble world, this corresponds to Spoiler leaving up to k pebbles unchanged, removing
all of the other pebbles and, possibly, placing new pebbles. Duplicator must not change
the pebbles corresponding to unchanged pebbles of Spoiler but may put pebbles on new
elements if the corresponding ones were removed or newly placed by Spoiler.
Spoiler wins the game if at some point of the game hi is not a partial solution of I.

Duplicator wins if the game continues forever.

Definition 2.3.13. Let D be a constraint language and let I be an instance of CSP(D).
Spoiler has a winning strategy for the (k, l)-pebble game on I if no matter what Duplicator
plays, Spoiler can choose sets of variables such that after finitely many rounds Duplicator
has to pick a map that is not a partial solution of I. Duplicator has a winning strategy if
no matter what sets of variables Spoiler chooses, Duplicator can always pick a map that is
a partial solution of I on the chosen set.

Definition 2.3.14. Let D be a constraint language, let I be an instance of CSP(D) and
let 0 < k ≤ l be integers. A (k, l)-consistent family for I is a nonempty set H of partial
solutions of I such that

(CF1) H is closed under restrictions of its members, and

(CF2) for every set of variables W of size at most k, every partial solution h : W → D in
H and every superset W ⊇ W of at most l elements, there exists a partial solution
h : W → D in H which extends h.

Lemma 2.3.15. Let D be a constraint language, let I be an instance of CSP(D) and let
0 < k < l be integers. Duplicator has a winning strategy for the (k, l)-pebble game on I iff
there exists a (k, l)-consistent family for I.

Proof. If there exists a (k, l)-consistent family H for I and Duplicator chooses a mapping
hi ∈ H in the i-th round of the pebble game, Duplicator can choose a new partial assignment
hi+1 from H no matter which pebbles Spoiler removes or places by definition of (k, l)-
consistent families. Hence, Duplicator has a winning strategy.
For the converse implication, we assume there is a winning strategy for Duplicator.

Denote HW the possible choices of partial solutions h1 : W → D of Duplicator in round 1
of the pebble game, considering the case that Spoiler had started with W1 = W , such that
Duplicator does have a winning strategy from there on. HW is nonempty for every set of
variables W of size at most l. Define

H =
W⊆V
|W |≤l

HW .
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We want to prove that this set is a (k, l)-consistent family. H contains only partial solutions
and is nonempty. Disregarding some of the values of a mapping only makes the game easier
for Duplicator and thus H is closed under restrictions. Let h ∈ HW for some W with at
most k variables and take an arbitrary W ⊇ W of size at most l. Assume that Spoiler
started the game with W1 = W, W2 = W and Duplicator chose h1 = h. Then h1 ∈ HW

implies that there exists a choice h2 for Duplicator extending h to all of W such that
Duplicator still has a winning strategy from there on, i.e., h2 ∈ HW ⊆ H holds.

Theorem 2.3.16. Let D be a finite constraint language, let I be an instance of CSP(D)
and let 0 < k < l be integers. The (k, l)-consistency algorithm returns YES on input I iff
Duplicator has a winning strategy in the (k, l) pebble game on I.

Proof. If (k, l)-consistency returns YES, the algorithm yields a nonempty set of partial
solutions F that is no longer altered in step two of the algorithm and must therefore be a
(k, l)-consistent family for I.

Let H be a (k, l)-consistent family for I. Since none of the maps in H would be re-
moved in the (k, l)-consistency algorithm, the algorithm run on I would yield YES. With
Lemma 2.3.15 this concludes the proof.

Corollary 2.3.17. Let 0 < k < l be integers. A finite constraint language D has width
(k, l) iff Spoiler wins the (k, l) pebble game on every unsatisfiable instance of CSP(D). A
finite constraint language D has bounded width iff there exists some integer l > 1 such that
Spoiler wins the (l − 1, l) pebble game on every unsatisfiable instance of CSP(D).

Proof. This is an immediate consequence of Theorem 2.3.16 and Lemma 2.3.15.

2.3.3 Relational width

As Barto describes in [Bar14], the notions of width and relational width are very similar
but, depending on k and l, do not necessarily coincide. We will highlight the exact difference
in Remark 2.3.35 but anticipate some information as motivation for the new definition.

A finite constraint language has bounded width iff it has bounded relational width. The
notion of width (k, l) does not depend on constraints of arity higher than l, a behavior that
is rather unaesthetic. Additionally, Barto shows that Corollary 4.0.6 does not hold if one
substitutes width for relational width by giving a counterexample [Bar14, Example 4.7.],
i.e. an instance of bounded width that does not have width (2, 3).
In [Bar14], Barto defines constraints with scopeW ⊆ V as subsets ofDW . An assignment

V → D satisfies such constraint if its restriction to the scope W is an element of the
constraint. To be able to simulate repetitions of variables, Barto only considers the CSPs
over constraint languages containing the equality relation. If D is such constraint language,
CSP(D) consists of all instances I such that for any constraint C ⊆ DW of I, the elements
of W can be written in an ordered tuple (x1, . . . , x|W |) such that the |W |-ary relation
{(f(x1), . . . , f(x|W |)) | f ∈ C} is a relation of D. Using this notation, the possible values

on a subset W ⊆ W of variables for any assignment f satisfying a constraint C ⊆ DW

are given by the projection C |W = {g|W | g ∈ C} of the constraint onto DW . We opted
for a different notation of CSPs but still want the benefits of translating constraints into
suitable sets of partial assignments. This motivates below definition.
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Definition 2.3.18. Let C = (s,R) be a constraint on a domain D and W a set of variables
contained in the scope s. We say that the constraint C permits the function f : W → D
on the set W if there exists a solution g : s → D of C such that g|W = f . We define

SolW (C) = {f ∈ DW : C permits f on W}.

Remark 2.3.19. Let C = (s,R) be a constraint and let Z be a set of variables with Z ⊆ W
that is also contained in s. Then the equation

SolZ(C) = (SolW (C)) |Z = {f |Z : f ∈ SolW (C)}
holds. For any assignment f satisfying C and an arbitrary set W contained in s, we have
f |W ∈ SolW (C).

Definition 2.3.20. Let D be a constraint language and let 0 < k ≤ l be natural numbers.
We say an instance I = (V,D, C) of CSP(D) is (k, l)-minimal if:

(M1) Every subset W ⊆ V of at most l elements is contained in the scope of some
constraint.

(M2) For every subset W ⊆ V of at most k elements and every pair of constraints C1

and C2 with scopes containing W , the equation SolW (C1) = SolW (C2) holds.

(M3) For every constraint (s,R) and every tuple a ∈ R, there exists a solution f : s → D
of the constraint (s, {a}), i.e., (s, {a}) corresponds to a partial assignment.

A (k, k)-minimal instance is also called k-minimal.

Properties (M2) and (M3) together can be subsumed by the equivalent requirement (M2’)
which is shorter but maybe less comprehensible.

(M2’) For every subset W ⊆ V of at most k elements and every pair of constraints
C1 = (s1, R1) and C2 = (s2, R2) with scopes containing W , we have for all a

a ∈ Ri ⇒ ∃f ∈ SolW (Cj) : (si, {a}) permits f on W

whenever {i, j} = {1, 2}.
Remark 2.3.21. Any (k, l)-minimal instance is (k , l )-minimal for any 0 < k ≤ l with
k ≤ k and l ≤ l. This is immediately clear since the conditions (M1) and (M2) are both
stronger for respectively higher k and l.

In order to properly utilize the above definition, we need a procedure to transform an
arbitrary instance into an associated (k, l)-minimal instance with the same set of solutions
in polynomial time. Algorithm 2, which we will also call the (k, l)-minimality algorithm,
suggests a way to do this computation. Lines 2 to 4 add constraints to the instance to
ensure (M1). Lines 5 to 13 shrink the enriched instance to one satisfying (M2’).
The algorithm terminates because there are only finitely many tuples to be removed,

supposed that the input I is an instance of CSP(D) for a finite constraint language D. If
no tuples were removed in lines 5 to 13, the condition (M2’) must already be satisfied.
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Algorithm 2 (k,l)-minimality

1: procedure (k,l)-minimality(instance I = (V,D, C))
2: for all W ⊆ V, |W | ≤ l do
3: if W = {v1, . . . , vn} not contained in any constraint C ∈ C then
4: add ((v1, . . . , vn), D

n) to C.
5: repeat
6: for all W ⊆ V, |W | ≤ k do
7: for all C2 ∈ C containing W do
8: calculate SolW (C2)
9: for all C1 = (s1, R1) ∈ C containing W do

10: for all a ∈ R1 do
11: if the constraint (s1, {a}) does not permit any f ∈ SolW (C2) then
12: remove a from R1

13: until no tuples were removed
14: return the modified I = (V,D, C)
15: end procedure

Lemma 2.3.22. Let 0 < k ≤ l be integers, let D be a finite constraint language and let I
be an instance of CSP(D). Algorithm 2 returns a (k, l)-minimal instance I with the same
set of solutions as the input instance I. If I is (k, l)-minimal, the algorithm returns the
same instance I.

Proof. We already argued why the algorithm returns a (k, l)-minimal instance and it is
immediately clear that the algorithm does not alter a (k, l)-minimal instance.
Let f be a solution of the input instance I. We want to show that f solves the output

instance I . For W ⊆ V of arbitrary size and any constraint C containing W we have
f |W ∈ SolW (C) at every stage of the algorithm. In particular lines 10 to 12 only remove
tuples a ∈ R1 such that (s1, {a}) does not permit f restricted to subsets of s1.
On the other hand, algorithm 2 only adds new constraints or shrinks existing ones,

making the instance progressively harder to satisfy. Therefore, any solution of the output
instance must also be a solution of the input instance.

Lemma 2.3.23. Algorithm 2 runs in polynomial time.

Proof. The number of subsets W ⊆ V of size at most l is bound by O(|V |l). Hence, the
runtime of the algorithm is polynomial with regard to the size of I and the exponent is
determined by l.

Lemma 2.3.24. Let 0 < k ≤ l be integers, let D be a finite constraint language and let I, J
be instances of CSP(D). Then I J implies (k, l) -minimality(I) (k, l) -minimality(J).

Proof. Lines 2 to 4 of Algorithm 2 applied to I and J yields instances IM1 and JM1 with
J J again. Hence we may assume I and J to be instances satisfying property (M1)
already. Write Imin = (k, l) -minimality(I). Then Imin I J holds. Since only finitely
many tuples have to be removed from J to obtain (k, l) -minimality(J), we are left to show

20



2 Basic Definitions and Results

that whenever a tuple is removed from the constraint relation of a constraint of J , the
resulting instance J still satisfies Imin J .

Say the tuple a is removed from the constraint relation of a constraint C
(J)
1 = (s1, R

(J)
1 )

in line 12 of Algorithm 2 because there exists a constraint C
(J)
2 = (s2, R

(J)
2 ) and (s1, {a})

does not permit any f ∈ SolW (C
(J)
2 ) on a set W ⊆ s1. By the assumption Imin J , there

exist constraints C1 = (s1, R
(Imin)
1 ) and C2 = (s2, R

(Imin)
2 ) of Imin such that R

(Imin)
1 ⊆ R

(J)
1

and R
(Imin)
2 ⊆ R

(J)
2 hold. Now, a ∈ R

(Imin)
1 together with the (k, l)-minimality of Imin

would imply that (s1, {a}) permits a f ∈ SolW (C
(Imin)
2 ) ⊆ SolW (C

(J)
2 ). Such f does not

exist. Hence, we have a /∈ R
(Imin)
1 and Imin J follows.

Corollary 2.3.25. Let 0 < k ≤ l be integers, let D be a finite constraint language and
let I be an instance of CSP(D). Then (k, l) -minimality(I) is nontrivial iff there exists a
nontrivial (k, l)-minimal instance I with I I.

Lemma 2.3.26. Let 0 < k ≤ l be integers, let D be a finite constraint language and let I
be an instance of CSP(D). The instance (k, l) -minimality(I) does not depend on the order
of removals in algorithm 2.

Proof. Let (k, l) -minimality1 and (k, l) -minimality2 be two versions of Algorithm 2 starting
from line 5 with possibly different but fixed orders of removals, i.e., there respectively exists
a different, fixed order for the loops in lines 5 to 13. Now

(k, l) -minimality1(I) = (k, l) -minimality2 ◦ (k, l) -minimality1(I) (k, l) -minimality2(I)

holds due to property (M2’) of (k, l) -minimality1(I) and Lemma 2.3.24. Symmetry implies
(k, l) -minimality2(I) (k, l) -minimality1(I) and equality follows since both instances are
(k, l)-minimal.

Definition 2.3.27. Let 0 < k ≤ l be integers, let D be a finite constraint language and let
I be an instance of CSP(D). The instance (k, l) -minimality(I) is called the (k, l)-minimal
instance associated to I.

Lemma 2.3.28. Let 0 < k ≤ l be integers, let D be a finite constraint language and let I be
an instance of CSP(D). Then any constraint relation of (k, l) -minimality(I) is invariant
under Pol(D).

Proof. It suffices to prove that for any two constraints C1 = (s1, R1), C2 = (s2, R2)
with scopes containing a set W and whose constraint relations are subpowers of Pol(D),
the constraint relation R1 gained by removing tuples from R1 in lines 5 to 13 of the
(k, l) -minimality algorithm is still invariant under Pol(D). To this end, we define the
biggest subset R=

1 ⊆ R1 such that (s1 = (v1, . . . , vn), R
=
1 ) satisfies (M3) by

R=
1 = {(a1, . . . , an) ∈ R1 | ∀i, j ∈ {1, . . . , n} : (vi = vj ⇒ ai = aj)}

and observe that it is invariant under Pol(D). Now, Sols1(C1) interpreted as relation
{(f(w1, . . . , wk) | f ∈ Sols1(C1)}, where w1, . . . , wk is a list of the unique variables in s1, is
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merely a projection of R=
1 onto the set {w1, . . . , wk} and again an invariant relation. Simi-

larly, Sols2(C2), the projections SolW (C1) = (Sols1(C1))|W and SolW (C2) = (Sols2(C2))|W ,
and the intersection SolW (C1) ∩ SolW (C2) are invariant under Pol(D). Finally,

R1 = {a ∈ R=
1 | ∃f ∈ SolW (C1) ∩ SolW (C2), (s1, {a}) permits f on W}

must be invariant under Pol(D).

We can extend Algorithm 2 to a decision procedure described in Algorithm 3, called the
(k, l)-decision algorithm.

Algorithm 3 (k,l)-decision

1: procedure (k,l)-decision(instance I = (V,D, C))
2: I = (k, l) -minimality(I)
3: if I is trivial then
4: return No
5: else
6: return Yes
7: end procedure

If the output instance of Algorithm 2 is trivial, the original instance has no solution by
Lemma 2.3.22. If the output is non-trivial, we cannot generally conclude whether or not
the input instance is solvable. The (k, l)-decision algorithm with fixed parameters k and l
might not be able to refute all instances that are not solvable.

Definition 2.3.29. Let 0 < k ≤ l be integers. A finite constraint language D has relational
width (k, l) if the (k, l) -decision algorithm decides every instance of CSP(D) correctly. D has
relational width k if it has relational width (k, k). Furthermore, D has bounded relational
width if there exist k and l such that D has relational width (k, l).

Theorem 2.3.30. Let D be a finite constraint language with bounded relational width.
Then CSP(D) is in P .

Proof. Algorithm 3 runs in polynomial time.

Remark 2.3.31. If a finite constraint language D has relational width (k, l) for some 0 < k ≤
l, then it also has relational width (k , l ) for any l ≥ k > 0 with k ≥ k and l ≥ l. This is
due to the fact that the (k , l ) -decision algorithm is in general stronger than (k, l) -decision.

Definition 2.3.32. Let 0 < k ≤ l be integers and let I be a (k, l)-minimal instance. Let
W be a set of at most k variables and let C be a constraint of I containing W . Then by
(M2), the set SolW (C) does not depend on the particular choice of C. We define

P
(I)
W = SolW (C).

We omit the instance I and abbreviate P
(I)
W by PW if there is no risk of confusion.

22



2 Basic Definitions and Results

We will continue with a definition almost identical to (k, l)-consistent families, a fit-
ting notion to characterize instances that are correctly decided by the (k, l)-consistency
algorithm and hence appropriate for constraint languages of width (k, l). The notion of
(k, l)-minimal family will be suitable for the relational width (k, l) counterpart. We will
illuminate the exact difference and stress the added, first requirement as a replacement for
only considering partial solutions in (k, l)-consistent families.

Definition 2.3.33. Let D be a constraint language, I = (V ,D, C) and 0 < k ≤ l integers.
A nonempty set P of partial mappings from V to D is a (k, l)-minimal family for I if

(MF1) for every constraint ((x1, . . . , xn), R) of I and every h ∈ P with domain W , there
exists a tuple (d1, . . . , dn) such that h(xi) = di for every i ∈ {1, . . . , n} with
xi ∈ W and such that for every set W ⊆ {x1, . . . , xn} of size at most k, the map
h : W → D with h (xi) = di for every i ∈ {1, . . . , n} with xi ∈ W is in P,

(MF2) P is closed under restrictions of its members, and

(MF3) for every set of variables W of size at most k, every h : W → D in P and
every superset W ⊇ W of at most l elements, there exists a partial mapping
h : W → D in P extending h.

Lemma 2.3.34. Let 0 < k ≤ l be integers, let D be a finite constraint language and let I
be an instance of CSP(D). The instance I has a (k, l)-minimal family iff (k, l) -decision(I)
returns YES.

Proof. If (k, l) -minimality(I) is nontrivial, the partial mappings

P :=

W⊆V,|W |≤l

PW

form a (k, l)-minimal family.
Let P be a (k, l)-minimal family for I with respect to D. Write PW for those partial

mappings in P with domain W for every subset W ⊆ V . We will now define a nontrivial
(k, l)-minimal instance I I such that P is also a (k, l)-minimal family for I with respect
to D. To that end, put a constraint (s,R) in I for every scope s of a constraint occurring
in I where the constraint relation R contains exactly those tuples witnessing the first
property in the definition of (k, l)-minimal families for P. Furthermore, we enforce (M1)
and add a constraint (s,R) for every s = (x1, . . . , xl) such that W = {x1, . . . , xl} is a
set of l variables that is not already contained in a scope of a constraint of I and define
R = {((h(x1), . . . , h(xl)) : h ∈ PW }.
Clearly, I ⊆ I holds. The missing property (M2’) is an immediate consequence of the

constructed constraint relations of I .

Remark 2.3.35. As promised, we revisit the difference of (k, l)-minimal families and (k, l)-
consistent families. It was already remarked that partial solutions completely neglect con-
straints with scopes containing a high number of variables, see Remark 2.3.9. Property
(MF1) in the definition of (k, l)-minimal families respects those constraints.
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The requirement that mappings in a (k, l)-consistent family need to be partial solutions
is stronger than property (MF1) of (k, l)-minimal families if we are considering scopes with
k + 1 to l elements.
If k is greater than or equal to the highest arity of any relation of the constraint language

D in play, the notions (k, l)-minimal family and (k, l)-consistent families coincide.

Theorem 2.3.36. A constraint language D has bounded width width iff it has bounded
relational width.

Proof. This is a consequence of the last observation in Remark 2.3.35, of Lemma 2.3.34
and Theorem 2.3.16.

From now on, we will only use the notion of bounded relational width unless for historical
reasons.

2.4 Constructions Preserving Bounded Relational Width

In [LZ07] Larose and Zádori use that bounded width is preserved by pp-interpretations
and that varieties generated by finite bounded width algebras only contain bounded width
algebras. We extend the notion bounded relational width from constraint languages to
relational structures with possibly infinite signature. We then show that bounded relational
width is even preserved by pp-constructions.

Definition 2.4.1. A finite relational structure D has bounded relational width if every
reduct of D of finite type has bounded relational width.

Definition 2.4.2. A finite algebraD has bounded relational width if the relational structure
(D; Inv(D)) has bounded relational width, i.e., every constraint language with base set D
and whose relations are invariant under D has bounded relational width.

Theorem 2.4.3 ([LZ07]). Let D be a finite constraint language with bounded width. Then
any constraint language with the same base set and relations that are pp-definable from D
has bounded width.

Theorem 2.4.4 ([LZ07]). Every finite algebra in the variety generated by a bounded width
algebra has bounded width.

By Theorem 2.1.34, a finite relational structure E is pp-constructible from another finite
relational structure D iff it is homomorphically equivalent to a pp-power of this structure.
We will continue by showing that those two constructions preserve bounded relational
width.

Lemma 2.4.5. Let 0 < k ≤ l be integers. Let D and E be homomorphically equivalent
finite constraint languages. Then D has relational width (k, l) iff E has relational width
(k, l).
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Proof. Assume D has relational width (k, l). Let IE = (V,E, C) be an instance of CSP(E)
and g : D → E and h : E → D homomorphisms. We have to prove that IE has a solution,
provided the associated (k, l)-minimal instance IE := (k, l) -minimality(IE) is nontrivial.
If IE is nontrivial, the associated (k, l)-minimal instance ID := (k, l) -minimality(ID) of
ID := (V,D, C) is nontrivial. Indeed, the tuple (h(a1), . . . , h(an)) is not removed from a
constraint relation during the calculation of (k, l) -minimality(ID) if the tuple (a1, . . . , an)
is not removed in the same step of the calculation of (k, l) -minimality(IE). Since D has
relational width (k, l), the non-triviality of ID implies the existence of a solution f of ID.
Thus g ◦ f is a solution of IE and E has relational width (k, l). Due to symmetry the
converse implication holds as well.

Lemma 2.4.6. Let 0 < k ≤ l be integers. A finite constraint language has relational width
(k, l) iff its core has relational width (k, l).

Proof. Lemma 2.4.5.

The next lemma is an adaptation of a result from [LZ07]. We use relational width instead
of width and slightly different terminology.

Lemma 2.4.7. Let D be a finite constraint language with bounded relational width. Every
constraint language E with the same domain as D and whose relations are pp-definable over
D has bounded relational width.

Proof. Let 0 < k ≤ l be integers and let D be a finite constraint language with relational
width (k, l). A constraint language E that has only relations which are pp-definable from
the relations of D can be obtained from D by repeating the constructions listed below
finitely many times.

(1) removing a relation from D,

(2) adding a a relation obtained by permuting the components of a relation to D,

(3) adding the intersection of two relations of the same arity to D,

(4) adding the product of two relations to D,

(5) adding the equality relation to D,

(6) adding a relation to D obtained by projecting an n-ary relation to its first n − 1
components.

Therefore, it suffices to prove that any constraint language E obtained by D through any
one of these steps still has bounded relational width.

Case 1: Let E be the structure obtained from D by removing a relation. Any instance
I of CSP(E) is an instance of CSP(D). Therefore, the (k, l) -decision algorithm correctly
decides I.
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Case 2: Let E be the structure obtained from D by adding a relation

RE := {(aπ(1), . . . , aπ(n)) : (a1, . . . , an) ∈ RD}

where RD is a n-ary relation of D and π is a permutation of {1, . . . , n}. We can transform
an instance IE of CSP(E) into an instance ID of CSP(D) with the same set of solutions
by replacing constraints of the form CE = ((v1, . . . , vn), R

E) of IE with corresponding con-
straints CD = ((vπ−1(1), . . . , vπ−1(n)), R

D) in ID and keeping all other constraints unchanged.
The (k, l) -decision algorithm correctly decides ID and since SolW (CE) = SolW (CD) holds
for every set W contained in the scopes of both constraints, the algorithm also correctly
decides IE.

Case 3: Let E be the structure obtained from D by adding the intersection RE := RD
1 ∩RD

2

of two relations RD
1 , R

D
2 of D with the same arity. Any instance IE of CSP(E) can be

transformed into an instance ID of CSP(D) with the same set of solutions by replacing every
constraint of the form (s,RE) of IE by two constraints (s,RD

1 ) and (s,RD
2 ), and keeping

all other constraints unchanged. If IE has no solutions, so does ID and the (k, l) -decision
algorithm refutes ID. Since IE ID holds, the (k, l) -decision algorithm also refutes IE by
Lemma 2.3.24.

Case 4: Let E be the structure obtained by adding the product

RE = {(a1, . . . , am+n) : (a1, . . . , am) ∈ RD
1 , (am+1, . . . , am+n) ∈ RD

2 }

of two relations RD
1 , R

D
2 of D to D.

Assume IE is an instance of CSP(E) that has a nontrivial associated (k, l)-minimal in-
stance (k, l) -minimality(IE). We define an instance ID of CSP(D) with the same set of
solutions as IE by replacing every constraint of the form C = (s,RE) in IE by two con-
straints C(1) = (s1, R

D
1 ) and C(2) = (s2, R

D
2 ), where s1 is the m-tuple consisting of the first

m entries of s and s2 is the n-tuple consisting of the last n entries of s, and keeping all
other constraints unchanged. Furthermore, define JE to be the instance of CSP(E) which
contains C(1) and C(2), defined as above, in addition to all the constraints of IE and observe
that JE ID holds. The proof is complete by Lemma 2.3.24 if we can show that adding
of C(1) and C(2) to IE is negligible for the outcome of the (k, l) -decision algorithm, i.e.,
(k, l) -minimality(JE) is still nontrivial.

By Lemma 2.3.26, we may assume that during the execution of the (k, l) -minimality
algorithm every comparison in lines 5 to 13 of constraints C1 = C(i) and an arbitrary
constraint C2, or an arbitrary constraint C1 and C2 = C(j) with i, j ∈ {1, 2} is respectively
subsequent to the comparison of C1 = C and C2, or C1 and C2 = C. For any tuple a that
would be removed from the constraint relation of C1 in the case C1 = C(i), the algorithm
removes all tuples starting with a from the constraint relation of C while comparing C1 = C
and C2 if i equals 1, and all tuples ending with a if i equals 2. Thus, we have SolW (C) ⊆
SolW (C(i)) for i ∈ {1, 2} and all sets W of at most k elements contained in C(i) throughout
the execution of the algorithm. Now, consider the case that constraints C1 and C2 = C(i)

are compared during execution of the algorithm. Let a be a tuple that would theoretically
be removed from the constraint relation of C1 in line 12 of the (k, l)-minimality algorithm
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because (s, {a}), where s is the scope of C1, does not permit any f ∈ SolW (C(i)). Then
(s, {a}) also does not permit any f ∈ SolW (C) and hence a is not in the constraint relation
of C1 or was removed earlier, e.g., when considering the constraints C1 and C. Hence
(k, l) -minimality(JE) is still nontrivial.

Case 5: Let E be the structure obtained from D by adding the equality relation. We will
prove that E has relational width (2k, 2l) under the additional assumption l > 1. Let
IE = (V ,D, C) be an instance of CSP(E) that has a nontrivial associated (2k, 2l)-minimal
instance JE := (2k, 2l) -minimality(IE). We define θ to be the reflexive, symmetric and
transitive closure of the binary relation {(x, y) ∈ V 2 | ((x, y),=) ∈ C} on the variables of
IE. Write [v]θ for the equivalence class of a variable v with respect to θ, and V/θ for the
set of equivalence classes of V . If s = (v1, . . . , vn) is a scope and C = (s,R) a constraint,
we use the notations

s(θ) = ([v1]θ, . . . , [vn]θ) and C(θ) = (s(θ), R).

We transform IE into an instance ID of CSP(D) with variables V/θ, domain D, and a

constraint C(θ) for every constraint C of IE that has a constraint relation different from
equality. Similarly, we transform JE into an instance JD of CSP(D).

Clearly JE IE holds and this implies JD ID. By definition, IE has a solution iff
ID has a solution. Furthermore, JD is surely nontrivial if JE contains any constraint with
a constraint relation different from equality, e.g., a ternary relation, and the additional
assumption l > 1 yields the existence of such constraint. Thus it suffices to show that JD
is (k, l) minimal by Corollary 2.3.25.

In order to prove (M1), (M2) and (M3) of JD, we firstly claim that for any variables
x, y ∈ V and any constraint C in JE containing {x, y}, the implication

(x, y) ∈ θ ⇒ ∀f ∈ Sol{x,y}(C) : (f(x) = f(y)) (2.3)

holds. Indeed, (x, y) ∈ θ implies the existence of an r > 0 and variables x = v0, . . . , vr = y
such that either vi−1 = vi or vi = vi−1 is a constraint of IE for every i ∈ {1, . . . , r}. The
claim now follows by the (2, 3)-minimality of JE.

Property (M1) of JD is an immediate consequence of the same attribute of JE. If C is
a constraint of JE and g a solution of C, the function g(θ) : V/θ → D, [v]θ → g(v) is well-

defined and a solution of C(θ) by (2.3). Hence, (M3) holds for JD. In order to prove (M2),
we assume W θ ⊆ V/θ to be a set of at most k classes of variables, and C1

(θ), C2
(θ) to be

constraints of JD with scopes s1
(θ), s2

(θ) containing W θ. We choose constraints C1, C2 ∈ JE
with scopes s1, s2 that have representatives of the variables of s1

(θ), s2
(θ) in corresponding

positions. Furthermore, we choose a set W1 ⊆ V of at most k variables that is contained
in s1 and contains at least one representative of every class [v]θ in W θ. Such set exists
by definition of s1

(θ). Analogously, we can pick a set W2 of at most k variables that is
contained in s2 and contains at least one representative of every class [v]θ in W θ.

If f1
(θ) ∈ SolW θ(C1

(θ)), there exists a solution g(θ) : s1
(θ) → D of C1

(θ) such that
g(θ)|

Wθ
= f1

(θ) holds. By definition, the map g1 : s1 → D, v → g(θ)([v]θ) solves C1 and
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hence f1 := g1|W1
∈ SolW1(C1) follows. Since W1 ∪ W2 has at most 2k elements, (M1)

implies the existence of a constraint C3 that has a scope s3 which contains W1 ∪W2. Now,
(M2) yields f1 ∈ SolW1(C3). Let g : s3 → D be a solution of C3 extending f1. Property
(M2) implies f2 := g|W2

∈ SolW2(C2) and we choose a solution g2 : s2 → D of C2 with

g2|W2
= f2. By (2.3), the function g2

(θ) : s2
(θ) → D, [v]θ → g2(v) is well-defined, and it

solves C2
(θ). Therefore, f2

(θ) := g2
(θ)|

Wθ
∈ SolW θ(C2

(θ)) holds and (2.3) applied to the
constraint C3 and the function g implies f1(x) = f2(y) for all x ∈ W1, y ∈ W2 with
(x, y) ∈ θ. Hence, f1

(θ) = f2
(θ) holds.

Case 6: Let E be the structure obtained from D by adding the projection

RE
p = {(a1, . . . , an−1) | ∃an ∈ D, (a1, . . . , an) ∈ RD

p }

of an n-ary relation RD
p onto the first n− 1 variables. Assume l to be greater or equal than

the arity of any relation of D and that D has relational width (l, l). We want to show that
E has relational width (l2, l2).

Let IE = (V,D, CE) be an instance of CSP(E) such that JE = (l2, l2) -minimality(ID)
is nontrivial. Denote the set of constraints of IE that have the constraint relation RE

p by

CE
p . We define the instance ID = (VD, D, CD) of CSP(D) by replacing every constraint

C = ((v1, . . . , vn−1), R
E
p ) ∈ CE

p by a constraint ((v1, . . . , vn−1, zC), R
D
p ), where zC is a new

unique variable not occurring in any constraint of IE, and keeping all other constraints of
IE. The set of variables VD of ID consists of these variables zC for every constraint C ∈ CE

together with the variables V of IE. For every new variable z ∈ VD \ V , denote the unique
constraint of ID which contains z by

Cz = ((v
(z)
1 , . . . , v

(z)
n−1, z), R

D
p ).

The instance IE has a solution iff ID has a solution. Hence, it is sufficient to show that
(l, l) -minimality(ID) is also nontrivial. We write ID for the instance obtained from ID after
executing lines 2 to 4 of the (l, l) -minimality algorithm, i.e., the instance ID satisfies (M1).

In the remaining part of the proof, for every subset W ⊆ VD with at most l elements, we
construct a nonempty class ΨW of functions from W to D such that

ΨW ⊆ SolW (C)

holds at any stage of the algorithm for every constraint C of ID containing W . If such
classes ΨW exist, (l, l) -minimality(ID) is clearly nontrivial.

Let WD ⊆ VD be a set of at most l variables. Since l is greater or equal than the arity of
any relation of D, the set

WE := (WD ∩ V ) ∪
z∈WD\V

{v(z)1 , . . . , v
(z)
n−1} (2.4)

has at most l2 elements. Hence there exists a constraint C in JE containing WE. Note that
SolWE(C) is nonempty and does not depend on the choice of C. Hence, we can define the
set ΨWD consisting of all functions ψ : WD → D such that there exists a h ∈ SolWE(C) with
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(i) ψ|WD∩V
= h|WD∩V

, and

(ii) ∀z ∈ WD \ V , the function h|
{v(z)1 ,...,v

(z)
n−1}

∪ ψ|{z} solves Cz.

ΨWD is nonempty because SolWE(C) is nonempty and because (h(v
(z)
1 ), . . . , h(v

(z)
n−1)) ∈ RE

p

implies that we can extend ψ to z such that (h(v
(z)
1 ), . . . , h(v

(z)
n−1), ψ(z)) ∈ RD

p holds by

definition of the relation RE
p .

Additionally, we claim that for any sets W
(1)
D ⊆ W

(2)
D of at most l variables

Ψ
W

(1)
D

= Ψ
W

(2)
D

|
W

(1)
D

:= {ψ|
W

(1)
D

| ψ ∈ Ψ
W

(2)
D

} (2.5)

holds. Indeed, by construction of Ψ
W

(1)
D

and Ψ
W

(2)
D

, the right side of the above equation

must be contained in Ψ
W

(1)
D

. Let W
(1)
E and W

(2)
E respectively be the sets defined as in (2.4)

for W
(1)
D and W

(2)
D , and let C be a constraint of JE containing W

(2)
E ⊇ W

(1)
E . Now, choose a

ψ1 ∈ Ψ
W

(1)
D

, then there exists a h1 ∈ Sol
W

(1)
E

(C) such that ψ1 is an extension of h1|
W

(1)
D ∩V

.

By definition, there exists a h2 ∈ Sol
W

(2)
E

(C) with h2|
W

(1)
E

= h1. We extend h2|
W

(2)
D ∩V

to a

function ψ2 by

ψ2(z) =



h2(z), for z ∈ W

(2)
D ∩ V,

ψ1(z), for z ∈ W
(1)
D \ V,

any d with (h(v
(z)
1 ), . . . , h(v

(z)
n−1), d) ∈ RD

p , for z ∈ W
(2)
D \ (W (1)

D ∪ V ).

The obtained ψ2 is in Ψ
W

(2)
D

, extends ψ1, and hence (2.5) follows.

Let W ⊆ VD be a set of at most l variables and let C be a constraint of ID which contains

W . Then C has one of the three forms Cz = ((v
(z)
1 , . . . , v

(z)
n−1, z), R

D
p ), or (s,Dt) where t

is the arity of s, or (s,R) with s contained in V and it is already a constraint of ID. For
either one of those sorts, ΨW ⊆ SolW (C) follows easily.

We conclude by proofing that ΨW ⊆ SolW (C) holds even after termination of the (l, l)-
minimality algorithm by induction on the loops in lines 5 to 13. Let W ⊆ VD be a set of
at most l variables and C1 = (s1, R1), C2 = (s2, R2) constraints with scopes containing W .
Assume that the tuple a will be removed from R1 in line 12, i.e., (s1, {a}) does not permit
any f ∈ SolW (C2).

We want to show that ΨW ⊆ SolW ((s1, R1 \ {a})) still holds for every set W contained
in s1 with at most l elements. To that end, fix such set W and choose a ψ ∈ ΨW . By
(2.5) and the assumption that l is greater or equal than the arity of any relation in D,
there exists a g ∈ Ψs1 with g|W = ψ. The induction hypothesis implies g ∈ Sols1(C1), i.e.,
b = (ψ(v1), . . . , ψ(vt)) ∈ R1, where s1 = (v1, . . . , vt). Notice, that (2.5) and the induction
hypothesis yield g|W ∈ ΨW ⊆ SolW (C2). Hence b is not removed from R1 as (s1, {b})
clearly permits g|W and we have ψ ∈ SolW ((s1, R1 \ {a})).
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Lemma 2.4.8. Let D be a finite constraint language. If D has bounded relational width,
then any pp-power of D has bounded relational width.

Proof. Let E be a pp-power of the finite constraint language D with bounded relational
width. Then there exists an integer n ≥ 1 such that E is isomorphic to a constraint language
E with domain Dn whose relations are pp-definable over D. It suffices to prove that E has
bounded relational width. From now on, if RE is a t-ary relation of E, we write RD for its

corresponding tn-ary relation, i.e., with the abbreviation bi = (a
(i)
1 , . . . , a

(i)
n ) ∈ Dn, we have

(b1, . . . , bt) ∈ RE ⇐⇒ (a
(1)
1 , . . . , a(1)n , . . . , a

(t)
1 , . . . , a(t)n ) ∈ RD .

The constraint language D obtained by adding all the relations RD for every relation RE

to D has bounded relational width by Lemma 2.4.7, say it has relational width (k, l).
Let IE = (VE, D

n, CE) be an instance of CSP(E) with the variables VE = {v(1), . . . , v(m)}
such that its associated (k, l)-minimal instance JE := (k, l) -minimality(IE) is nontrivial.
Finding a solution of IE would imply that E has relational width (k, l).
To that end, we translate the instances IE and JE to instances ID and JD . Both shall

have variables
VD := {v(1)1 , . . . , v(1)n , . . . , v

(m)
1 , . . . , v(m)

n }
and the domain D. For every constraint CE = ((v(i1), . . . , v(it)), RE) of IE, we add a
constraint

CD := ((v
(i1)
1 , . . . , v(i1)n , . . . , v

(it)
1 , . . . , v(it)n ), RD )

to ID . Analogously, we add a constraint CD to JD for every constraint in JE. We have

JE IE which implies JD ID . If f is a solution of ID , then v(i) → (f(v
(i)
1 ), . . . , f(v

(i)
n ))

is a solution of IE. By Corollary 2.3.25, it now suffices to show that JD is a nontrivial
(k, l)-minimal instance.
The instance JD is clearly nontrivial and (M1) is an immediate consequence of (M1) for

JE. Let
WD = {v(i1)j1

, . . . , v
(ik)
jk

} ⊆ VD

be a set of at most k variables, let CD
1 = (sD1 , RD

1 ) and CD
2 be two constraints of JD

containing WD , and let

a = (a
(1)
1 , . . . , a(1)n , . . . , a

(t)
1 , . . . , a(t)n ) ∈ RD

1 .

By construction, the constraints CE
1 = (sE1 , R

E
1 ) and CE

2 = (sE2 , R
E
2 ) both contain the set

WE = {v(i1), . . . , v(ik)}.

With bi = (a
(i)
1 , . . . , a

(i)
n ) for i ∈ {1, . . . , t}, we have (b1, . . . , bt) ∈ RE

1 . By the (k, l)-
minimality of JE, there exists a map fE ∈ SolWE(C

E
2 ) such that (sE1 , {b1, . . . , bt}) permits

fE on WE. Hence there exists a solution gE of CE
2 . For q ∈ {1, . . . , k}, we define

fD (v
(iq)
jq

) = (fE(v
(iq)))jq ,

30



2 Basic Definitions and Results

i.e., fD (v
(iq)
jq

) is the jq-th component of the n-tuple fE(v
(iq)). Analogously, set

gD (v
(i)
j ) = (gE(v

(i)))j

for i, j such that v
(i)
j is contained in the scope sE2 . Then fD ∈ SolWD (CD

2 ) follows since gD

solves CD
1 . Finally, (sD1 , {a}) permits fD on WD and symmetry yields (M2’) for JD .

Theorem 2.4.9. The class of finite constraint languages with bounded relational width is
closed under pp-constructions.

Proof. We proved that said class is closed under homomorphic equivalence and building
pp-powers in Lemma 2.4.5 and Lemma 2.4.8. Hence, Theorem 2.1.34 yields the result.

Corollary 2.4.10. The class of finite relational structures with bounded relational width
is closed under pp-constructions.

Proof. Let D be a relational structure with bounded relational width and let E be pp-
constructible from D. Choose an arbitrary reduct E of E that has finite type. It is
sufficient to show that E is pp-constructible from a reduct D of D of finite type. To that
end, by Theorem 2.1.34, we may consider a relational structure C which is homomorphically
equivalent to E and a pp-power of D. The reduct C of C to the finite language of E is
homomorphically equivalent to E and still a pp-power of D. However, there are only finitely
many relations of D needed to pp-define all of the finitely many relations of C .

Corollary 2.4.11. Let D, E be finite algebras such that Clo(E) ∈ ERPfin(Clo(D)), or
equivalently, Clo(D) ≤h1 Clo(E) holds. If D has bounded relational width, E also has
bounded relational width.

Proof. This is an immediate consequence of Corollary 2.4.10 and Theorem 2.1.44.

Corollary 2.4.12. A finite relational structure D that is a core has bounded relational
width iff the singleton expansion of D has bounded relational width.

Proof. The singleton expansion of a finite core D and D are pp-constructible from one
another. The result follows with Corollary 2.4.10.
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3 Necessary Conditions for Bounded
Relational Width

The aim of this chapter is to find obstructions which hinder a constraint language from
having bounded relational width.

3.1 Solving Linear Equations

We give an example of a constraint language which has a tractable CSP but does not have
bounded relational width. This section is heavily based on [Bod21, Theorem 8.6.11]. A
result, similar to the one from Bodirsky which is presented below, was originally stated
by [FV98] using the notion of ability to count. The CSP over the constraint language
which is defined in the next theorem may be interpreted as solving linear equations. This
sets a well-known obstruction to bounded relational width. Any constraint language that
pp-constructs the language below cannot have bounded relational width.

Theorem 3.1.1. Let (G; +, 0,−) be a finite abelian group and a ∈ G \ {0}. Define the
relations

Rk
c := {(x1, . . . , xk) ∈ Gk | x1 + · · ·+ xk = c}

for any c ∈ G. Then G = (G; {0}, R3
0, R

3
a) does not have bounded relational width.

Definition 3.1.2. Let D be a relational structure and I = (V ,D, C) be an instance of
CSP(D). The incidence graph G(I) is the bipartite graph which has as vertex set the
disjoint union of all variables V of I and all scopes of constraints of I, and (a, b) is an edge
of G(I) iff a is a variable and b a tuple containing a or vice versa.

Moreover, we write G[S] for the incidence graph G(I[S]), where I[S] is the instance with
the variables S, and I[S] contains contains exactly those constraints of I with scopes fully
contained in S.

Definition 3.1.3. The girth of an undirected graph is the length of its shortest cycle. We
say that an instance I has girth k if all scopes of constraints of I consist of pairwise distinct
variables and the bipartite graph G(I) has girth 2k.

Definition 3.1.4. A graph is called k-regular if every vertex of the graph has precisely k
neighbours. A 3-regular graph is also called cubic.

The next lemma will be the core of our proof that solving linear equations does not
have bounded relational width. The proof formalizes the intuition that, roughly speaking,
one needs a cycle of sufficiently small length in the incidence graph of an instance to find
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3 Necessary Conditions for Bounded Relational Width

a contradiction via local consistency methods. In the proof of Theorem 3.1.1 we indeed
construct unsatisfiable instances with high girth such that Spoiler could not possibly win
the pebble game.

Lemma 3.1.5. Let D be a finite constraint language whose relations are at least of arity
3 and such that for every relation R of D of arity r, the projection of R onto any r − 1
components is the full relation Dr−1. Suppose that for every integer l, there exists an
unsatisfiable instance Il of CSP(D) of girth at least 4l + 1. Then D does not have bounded
relational width.

It is rather intuitive that Spoiler should, in order to complicate the situation for Du-
plicator, place pebbles on variables that are adjacent to a node corresponding to a tuple
containing already pebbled variables in the incidence graph of an instance I of CSP(D).
This motivates the definition below.

Definition 3.1.6. Let D be a constraint language, let I be an instance of CSP(D), and
let 0 < k < l and m ≥ 2 be integers. During any point of the (k, l)-pebble game on I,
a nonempty set S of variables of I is called m-controlled if the following conditions are
satisfied.

1. m variables of I are pebbled and I has girth at least 4m+ 1.

2. The incidence graph G[S] is a tree.

3. All but at most one of the elements that are leaves of G[S] are pebbled.

We say that a set S of variables is controlled if it is m-controlled for some m. Both notions
depend on the instance I. If the instance is clear from context, we will omit it.

Example 3.1.7. Let D be a constraint language with a 3-ary relation R3 and a 4-ary
relation R4. Let I be an instance of CSP(D) with the variables {x1, x2, . . . , x8}, and the
constraints

((x1, x2, x3), R3), ((x3, x4, x5), R3), and ((x1, x6, x7, x8), R4).

Assume that during the (k, l)-pebble game on I, the variables {x3, x4, . . . , x8} are pebbled.
Figure 3.1 shows the incidence graph G(I) of I. Let S = {x1, x2, x3, x6, x7, x8}. The
incidence graph G[S] is depicted by the subgraph with solid edges in Figure 3.1. The set S
is 6-controlled as a set of variables of I and S is 4-controlled as a set of variables of I[S]. The
set {x1, x2, . . . , x6} is not controlled since x1, x2 are unpebbled leaves of G[{x1, x2, . . . , x6}].

Lemma 3.1.8. Let D be a constraint language and let I be an instance of CSP(D) such
that the scope of any constraint of I has at least arity 3. If S is an m-controlled set of
variables of I during some version of the pebble game on I, then |S| ≤ 2m.

Proof. Denote the number of leaves of a graph G by λ(G). Let m ≥ 2 and let S be an
m-controlled set. At most one of the leaves of G[S] is not pebbled. Hence, we have

m ≥ λ(G[S])− 1.
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◦x2 •x4

•x3

(x1, x2, x3) (x3, x4, x5)

•x6 •x5

◦x1 •x7

(x1, x6, x7, x8) •x8

Figure 3.1: This figure shows the incidence graph of the instance in Example 3.1.7. Pebbles
are represented by black bullets. Vertices that correspond to the scope of a
constraint are represented by rectangles.

Let W ⊆ S be a set of variables such that G[W ] is a tree. We want to show that

2(λ(G[W ])− 1) ≥ |W | (3.1)

holds. This immediately yields 2m ≥ |S| in case W = S. We prove the inequality (3.1) by
induction on the number of constraints of I[W ]. If I[W ] contains all of the constraints of
I[S], we have W = S since G[S] is connected.
Firstly, note that I has girth 4m+ 1 and thus every scope of a constraint of I contains

pairwise distinct variables. If W is a set of variables such that G[W ] is a tree and such that
I[W ] has only one constraint, the equation λ(G[W ]) = |W | holds. The tuple s contains at
least 3 distinct variables and all of them are leaves of G[W ]. The inequality 2λ(G[W ])−2 ≥
|W | follows.
Assume that there exists a constraint C of I[S] that is not a constraint of I[W ]. Denote

the scope of C by s and write r for the arity of s. Since I[S] is connected, we may choose
C such that s is adjacent to a node x of G[W ] in G[S], i.e., the variable x is contained in s.
(In Figure 3.1, such situation is given if we set W = {x1, x2, x3, x6, x7, x8}, s = (x3, x4, x5)
and x = x3.) Adding the variables of s that are not already in W , those are r − 1 ≥ 2
many, to W yields a strictly bigger set W such that G[W ] is still a tree. If x was a leaf of
G[W ], it is not anymore a leaf of G[W ]. All of the other leaves of G[W ] are still leaves of
G[W ] and we added r − 1 ≥ 2 new leaves. Hence, we have

2(λ(G[W ])− 1) ≥ 2(λ(G[W ])− 1 + (r − 1)− 1) ≥ |W |+ 2(r − 1)− 2 ≥ |W |.
Since I[S] contains only finitely many constraints, the lemma follows.
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Proof of Lemma 3.1.5. By Corollary 2.3.17, it is sufficient to prove that for any arbitrarily
large integer l, Spoiler cannot win the (l − 1, l)-pebble game on the unsatisfiable instance
Il of CSP(D) with girth at least 4l + 1 provided by the assumption of the lemma.
We will show via induction on the number i ∈ N of rounds played that Duplicator can

maintain the following condition during the (l − 1, l)-pebble game on Il.

( ) Let S be a controlled set after Spoiler has removed pebbles in round i. Let t ≤ l−1 be
the number of pebbled leaves x1, . . . , xt of G[S] and denote the answers of Duplicator
by h : {x1, . . . , xt} → D. Then there exists a partial solution h : S → D of Il that
extends h to all of S.

Since adding only one pebble at a time does not make the game easier for Duplicator, we
may only consider such rounds. If the property ( ) holds for every i ∈ N, Duplicator wins
the (l − 1, l) pebble game on Il. Indeed, assume x1, . . . , xt are the pebbled vertices after
Spoiler has potentially removed pebbles in round i. Let x be an unpebbled variable. Then
the connected components of G[{x1, . . . , xt, x}], more specifically, the corresponding sets of
variables are controlled. If Spoiler places a pebble on x, Duplicator can extend previous
choices to a partial solution on {x1, . . . , xt, x} by ( ).
In round 1 property ( ) is rather trivial as the only controlled sets are one-elementary.
Let i ∈ N and assume that ( ) holds for rounds 1, . . . , i. Let x be the variable that

Spoiler pebbles in round i. We have to prove that Duplicator can play a value h(x) such
that ( ) holds in round i + 1. To that end, denote the controlled sets that have x as an
unpebbled leaf in round i, right after Spoiler potentially removed pebbles, by S1, . . . , SN .
Since {x} is a controlled set, we have N ≥ 1.
We claim that S := S1 ∪ · · · ∪ SN is a controlled set as well. All leaves of S1, . . . , SN

except of x are pebbled and hence G[S] only has an unpebbled leaf if x is still a leaf of G[S].
The graph G[S] is connected since every tree G[S1], . . . ,G[SN ] shares the vertex x. To prove
that G[S] has no cycles, note, that the sets S1, . . . , SN are m-controlled sets of variables of
Il for some m ≤ l. Hence, Lemma 3.1.8 yields |S1 ∪ S2| ≤ 2l + 2l = 4l. Since Il has girth
at least 4l + 1, the graph G[S1 ∪ S2] does not have any cycles, i.e., S1 ∪ S2 is controlled.
Applying this argument inductively on (S1 ∪ · · · ∪ Sα) and Sα+1 for α ∈ {1, . . . , N − 1}
yields that S is controlled.

By induction hypothesis ( ) for the round i, there exists a partial solution h on S ex-
tending previous choices of Duplicator. Duplicator places the pebble corresponding to x
on h(x). We will use this specific partial mapping h in the following part of the proof and
call it hS from here on.
Let T be a controlled set in round i + 1 right after Spoiler has potentially removed

pebbles. It is sufficient to consider cases where T contains x and does have an unpebbled
leave, call it y. For any other T , we already know that ( ) holds because it did in the
previous round.
We have to prove that there exists a partial solution h : T → D which extends the

choices Duplicator made for pebbled variables. To that end, the induction hypothesis and
secondly the assumption of the lemma that any relation R of arity r in D has the property

∀d1, . . . , di−1, di+1, . . . dr ∈ D ∃di ∈ D : (d1, . . . , dr) ∈ R (3.2)
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• v4 s4 • v5

• t3 • ◦ v3

•x t1 ◦ y1 t2 ◦ y2 t3 ◦ y3 t4 ◦ y

• • • • • v1 • v2

Figure 3.2: This figure shows a possible incidence graph G[T ] in the last part of the proof
of Lemma 3.1.5. Pebbled variables are represented by black bullets. Unpebbled
variables are represented by circles. Vertices that correspond to the scope of a
constraint are represented by rectangles. The subgraph with solid edges depicts
G[TS ]. After removing t3, y3, t4, y and edges that are incident to them from
G[T ], the connected components that do not contain x are exactly the incidence
graphs of the controlled sets V1 = {v1}, V2 = {v2} and V3 = {v3, v4, v5}.

for every position i ∈ {1, . . . r} will be useful.
There is a unique path

(x = y0, t1, y1, t2, . . . , yM−1, tM , yM = y)

connecting x to y in G[T ] where t1, . . . , tM are scopes and y0, . . . , yM are variables. Since
y0 = x is pebbled and yM = y is unpebbled, there exists a largest integer q ∈ {0, . . . ,M−1}
such that yq is pebbled or such that q ≥ 1 and yq is adjacent to a third scope tq+1, distinct
from tq, tq+1, in G[T ]. If we remove the edge (yq, tq+1) from G[T ], the set TS of variables
that occur in the connected component of G[T ] which contains x, is a controlled set with
pebbles on all leaves of G[TS ]. Hence, TS ⊆ S holds and we define h|TS := hS |TS .
Now, h is defined everywhere on T except on yq+1, . . . , yM and possibly on unpebbled

variables in branches starting from tq+1, . . . , tM . If we remove tq+1, yq+1, tq+2, . . . , tM , y
and all edges that are incident to them from G[T ], the connected components G1, . . . ,GL of
G[T ] that do not contain x are incidence graphs of controlled sets V1, . . . , VL, respectively.
The induction hypothesis yields partial solutions of Il on each of these sets and we extend
h to V1 ∪ · · · ∪ VL accordingly. Now, assume that α ∈ {q, . . . ,M − 1} is minimal such that
h is defined on yα but not on yα+1. Then h is defined for every variable in tα+1 except on
yα+1. Property (3.2) yields a suitable choice for h(yα+1). Repeating this argument shows
that h can be extended to a partial solution on all of T .
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3 Necessary Conditions for Bounded Relational Width

Proof of Theorem 3.1.1. The relation {(x, y) ∈ G2 | x + y = 0} has a primitive positive
definition in G. Hence, for i ∈ {1, 2, 3}, the 3 + 2i-ary relation

Si
a :=

(x1, . . . , x3+2i) ∈ G3+2i | x1 + x2 + x3 = a ∧
s∈{1,...,i}

x2s+2 + x2s+3 = 0


is also pp-definable in G. By Theorem 2.4.3, it suffices to prove that the constraint language

D = (G;R3
0, S

1
0 , S

2
0 , S

3
0 , R

3
a, S

1
a, S

2
a, S

3
a)

does not have bounded relational width.
We want to apply Lemma 3.1.5. To that end, note that relations in D are of arity

greater or equal than 3 and the projection of a relation Ri
c or Si

c onto all except one of its
components always yields the full relation Gr−1 of adequate arity r − 1. Thus, we only
have to prove that we can construct unsatisfiable instances Ik of CSP(D) of girth at least
4k + 1 for every integer k.
By [Big98], there exists a finite cubic graph (Vk;Ek) of girth at least 4k + 1 for any

positive integer k. We orient the edges of the graph arbitrarily. The variables of Ik will be
all the pairs in Vk×Ek. For readability, we write ve instead of (v, e) for a variable of Ik. For
every v ∈ Vk with three incoming edges e1, e2, e3, we add a constraint ((ve1 , ve2 , ve3), R

3
0)

to Ik. For each v ∈ Vk with two incoming edges e2, e3 and one outgoing edge e1 = (v, w),
we add the constraint ((ve1 , ve2 , ve3 , ve1 , we1), S

1
0) to Ik. Likewise, for each v ∈ Vk with one

or no incoming edge and two or three outgoing edges, we add a constraint involving the
relation S2

0 or S3
0 . Finally, we change exactly one constraint for only one i ∈ {1, 2, 3} of the

form (s, Si
0) to (s, Si

a).
Suppose for contradiction that h is a solution of Ik. We sum over all constraints in-

terpreted as equations. Since every variable ue of Ik appears exactly once in a sum of 3
variables and exactly once in a sum of 2 variables, the sum over all equations yields

2


e∈Ek,u∈e

h(ue)

 = a,

as there is exactly one constraint with a constraint relation Si
a in Ik. For every edge

e = {u, v} ∈ Ek, the equation h(ue) + h(ve) = 0 must hold and hence, we also have

2


e∈Ek,u∈e

h(ue)

 =

{u,v}∈Ek

(h(ue) + h(ve)) = 0.

Thus, h cannot be a solution.
Any cycle in the bipartite incidence graph of Ik of length at least 2m yields a cycle of

length m in the undirected graph (Vk;Ek) and hence Ik has girth at least 4k + 1.
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3 Necessary Conditions for Bounded Relational Width

3.2 Affine Clones

Definition 3.2.1. Let R be a ring with the multiplicative identity 1 and let M be an
R-module. A map f : Mk → M is called affine if there exist coefficients r1, . . . , rn ∈ R
with r1 + · · ·+ rn = 1 such that

f(x1, . . . , xn) =

n

i=1

rixi.

The set of affine functions on M is called an affine clone.

Definition 3.2.2. An algebra D is affine if it is term-equivalent to an affine clone.

Corollary 3.2.3. Let D be a finite affine algebra. Then D does not have bounded relational
width.

Proof. Say D is term-equivalent to an affine clone D of a finite R-module M . We apply
Theorem 3.1.1 to the abelian group (M ; +, 0,−). The relations {0}, R3

0 and R3
a defined in

said theorem are invariant under D, hence also under D and we conclude that D does not
have bounded relational width.

We can extend the above theorem and give a more explicit description of the affine spaces
in play.

Definition 3.2.4. Let p be a prime. Then Aff(Zp) denotes the set of affine subspaces of
Zp, i.e., solution spaces of linear equations over Zp.

Theorem 3.2.5. Let D be a finite constraint language such that Pol(D) is idempotent.
Then the following are equivalent and imply that D does not have bounded relational width.

1. Pol(D) has a clone homomorphism to an affine clone.

2. Pol(D) has a minion homomorphism to an affine clone.

2’. Pol(D) has a minion homomorphism to the idempotent reduct of Clo(Zp; +) for some
prime p,

3. D pp-constructs (Zp; Aff(Zp)) for some prime p.

Proof.

(1. ⇒ 2.) This implication is trivial as every minion homomorphism is also a clone
homomorphism.

(2. ⇒ 1.) We will delay the proof of this implication and bring it as part of Theo-
rem 6.1.7. Meanwhile, we will of course not use it in any proofs.
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3 Necessary Conditions for Bounded Relational Width

(2. ⇒ 2’.) Since the composition of two minion homomorphisms is again a minion
homomorphism, it is sufficient to prove that for any affine clone there exists a prime
p such that we can write down a minion homomorphism to the idempotent reduct of
Clo(Zp; +).

Let R be a ring with the multiplicative identity 1 and let M be an arbitrary finite
R-module. The set Φ of all multiplications φr(m) = rm for r ∈ R on M together with
the binary operation defined by φr+Φφs := φr+s for r, s ∈ R is a finite abelian group,
where the distributive law on M ensures that +Φ is well-defined and that φ : r → φr

is a homomorphism from (R; +) to (Φ;+Φ). By the fundamental theorem of finite
abelian groups, see, e.g., [Rob12], there exists an isomorphism h from (Φ;+Φ) to the
direct sum n

i=1 Zei
pi of finitely many cyclic groups of prime-power order. Visualising

the above, we have

R
φ−→ (Φ;+Φ)

h−→
n

i=1

Zei
pi

π1−→ Ze1
p1

π−→ Zp1

with the projection π1 onto the first coordinate and π : Ze1
p1 → Zp1 , x → xmod(p1).

The composition ψ = π ◦ π1 ◦ h ◦ φ(1) is a homomorphism from (R,+) to (Zp,+)
with p = p1. It preserves addition but might not map 1 ∈ R to 1 ∈ Zp. Luckily,
Zp is a field and multiplying by the inverse of ψ (1) yields another homomorphism
ψ := (ψ (1))−1 · ψ̃ with ψ(1) = 1.

We can use ψ to define a minion homomorphism Ψ from the affine clone over M to
the idempotent reduct of Clo(Zp; +) by

Ψ :

m

i=1

rixi →
m

i=1

ψ(ri)xi.

Since ψ preserves addition, Ψ is well-defined. Moreover, m
i=1 ri = 1 implies

m

i=1

ψ(ri) = ψ

m

i=1

ri = 1,

and Ψ preserves height 1 identities. Ψ preserves arities and hence, it is indeed a
minion homomorphism.

(2’. ⇒ 2.) The idempotent reduct of Clo(Zp; +) consists of functions in Clo(Zp; +)
which are idempotent. Every operation f of arity n in Clo(Zp; +) can be written as

f(x1, . . . , xn) =
n

i=1

aixi

with a1 . . . , an ∈ Zp. Hence, the equivalence

∀x ∈ Zp : f(x, . . . , x) = x ⇐⇒ ∀x ∈ Zp :
n

i=1

aix = 1x ⇐⇒
n

i=1

ai = 1

shows that the idempotent reduct of Clo(Zp; +) is indeed an affine clone.
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3 Necessary Conditions for Bounded Relational Width

(2. ⇐⇒ 3.) This follows from Theorem 2.1.44 if we can prove that Pol(Zp; Aff(Zp))
equals the idempotent reduct D of Clo(Zp; +). To that end, let f ∈ D, i.e. f =

n
i=1 aixi with

n
i=1 ai = 1, and let

R = {(x(1), . . . , x(k)) ∈ Zk
p | b1x(1) + · · ·+ bkx

(k) = b},

where b, b1, . . . bk ∈ Zp, be the solution space of a linear equation. Then simple calcula-
tions yield f R and since f and R were arbitrary, D is contained in Pol(Zp; Aff(Zp)).

For the other inclusion, we show that any k-ary function f preserving the relations
R1 := {1} and R2 := {(x, y, z) ∈ (Zp)

3 | x − y = z} must already be in D. Indeed,
f R2 yields that f is additive and, furthermore, linear as multiplication on the
vector space Zk

p can be achieved by reiterated addition. Hence, the linear form f has
a representation f(x1, . . . , xk) = a1x1 + · · · + akxk and f R1 yields f(1, . . . , 1) =
a1 + · · ·+ ak = 1, i.e., f is idempotent.

The following example from [BOP15] shows that the notion of pp-constructibility is
strictly weaker than pp-interpretability. As a consequence, if there exists a minion ho-
momorphism from a clone D to an affine clone, we cannot necessarily find a clone ho-
momorphism from D to the same affine clone by Theorem 2.1.44 and Theorem 2.1.38.
This observation in combination with Theorem 3.2.5 indicates that the notion of clone
homomorphisms or, equivalently, on the perspective of relational structures, the notion of
pp-interpretations might actually be too narrow for our purposes. Pp-constructions still
preserve bounded relational width. A coarser classification via minion homomorphisms and
pp-constructions allows us to consider very specific affine clones in Theorem 3.2.5, namely,
idempotent reducts of Clo(Zp; +). Pp-constructions still preserve bounded relational width.

Example 3.2.6. Consider the relational structure D with domain D = Z2
2 consisting of

ternary relations R(a,b), (a, b) ∈ Z2
2 defined by

R(a,b) = {(x,y, z) ∈ (Z2
2)

3 : x+ y + z = (a, b)},

and unary singleton relations {(a, b)}, (a, b) ∈ Z2
2. Let D be the reduct of D formed by

the relations R(0,0), R(1,0), {(0, 0)}, and {(1, 0)}. Trivially, D is pp-definable from D. Now,
take the relational structure E with E = Z2 and relations Ra, a ∈ Z2, where

Ra = {(x, y, z) ∈ (Z2)
3 : x+ y + z = a},

together with singletons {0}, {1}.
We will show that E is pp-constructible but not pp-interpretable from D. Note that

Pol(D) consists of all idempotent affine operations of the module Z2
2 over End(Z2

2) and
Pol(E) of all idempotent affine operations of the abelian group Z2.

The mappings D → E, (x1, x2) → x1 and E → D, x → (x, 0) are homomorphisms from
D to E and from E to D , respectively. (In fact, E is the core of D .) Therefore, E is
homomorphic equivalent to a pp-power of D.
Suppose that D pp-interprets E and f is a mapping from C ⊆ Dn onto E witnessing this.

Let α be the kernel of f - it is an equivalence relation on C with two equivalence classes (E
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3 Necessary Conditions for Bounded Relational Width

has two elements). By the definition of pp-interpretation, both C and α are pp-definable
from D. Since D contains the singleton unary relations, both equivalence classes of α are
pp-definable as well. Thus, C is a pp-definable relation which is a disjoint union of two
pp-definable relations. This is impossible as it is easily seen that the cardinality of any
relation pp-definable from D is a power of 4.
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Relational Width

Thanks to Theorem 3.2.5, we now know that any constraint language D which can simulate
solving linear equations over Zp for some prime p does not have bounded with. Proving
the contrary implication shall be the task of this chapter. We will follow the idea presented
in [BK14] which was further improved in [Bar14]. Every finite constraint language which
does not pp-construct (Zp; Aff(Zp)) does not only have bounded relational width but even
relational width (2, 3).

Intuition suggests that it is rather difficult to derive information from the negative state-
ments: D does not pp-construct (Zp; Aff(Zp)) for any prime p, or D does not have relational
width (k, l) for any positive integers k ≤ l. This motivates the following notion.

Definition 4.0.1. A lattice L is meet semi-distributive, or is SD(∧), iff for all x, y, z ∈ L,
the equation x∧y = x∧z implies x∧y = x∧(y∨z). A variety V is SD(∧) if the congruence
lattice of every algebra in V is SD(∧). An algebra D is SD(∧) if V(D) is SD(∧).

The property SD(∧) is a substantial assumption in Theorem 4.2.5 and Theorem 4.2.7
although we omit the proofs. The lemma below is a consequence of [LZ07][Lemma 4.1] and
[HM88][Theorem 9.10], slightly reformulated to fit the terminology of this thesis.

Lemma 4.0.2. Let D be a finite, idempotent algebra. The following are equivalent:

1. Clo(D) does not have a clone homomorphism to an affine clone.

2. D is SD(∧).
Let us start by outlining the main results and strategy of this chapter following the

proof in [Bar14]. In Lemma 4.1.7, we show that every (2, 3)-minimal instance is a Prague
instance, see Definition 4.1.5. The following theorem is the core result of this chapter. Its
rather technical proof will be dealt with in the coming sections.

Theorem 4.0.3. Let D be a finite, idempotent SD(∧) algebra. Then every nontrivial
Prague instance which has only constraint relations that are invariant under D has a solu-
tion.

Corollary 4.0.4. Let D be a finite, idempotent SD(∧) algebra. Then every (2, 3)-minimal
instance which has only constraint relations that are invariant under D has a solution.

Proof. This is an immediate consequence of Lemma 4.1.7 and Theorem 4.0.3.

Corollary 4.0.5. Let D be a finite constraint language with all singletons. Furthermore,
interpret Pol(D) as an algebra on D by choosing an arbitrary signature. Then the following
are equivalent.
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4 Sufficient Conditions for Bounded Relational Width

1. Pol(D) is SD(∧).
2. D has relational width (2, 3).

3. D has bounded relational width.

Proof. To prove the implication ”1 =⇒ 2”, assume that Pol(D) is SD(∧) and let I be
an instance of CSP(D). By Lemma 2.3.28, the (2, 3)-minimal instance J associated to I
has only constraint relations which are invariant under Pol(D). If J is nontrivial, then it
has a solution by Corollary 4.0.4, as required. The implication ”2 =⇒ 3” is trivial and
”3 =⇒ 1” follows from Theorem 3.2.5 and Lemma 4.0.2.

Corollary 4.0.6. Let D be a finite constraint language. If D has bounded relational width,
then D has relational width (2, 3).

Proof. Let D be a finite constraint language with bounded relational width. Lemma 2.4.6
and Corollary 2.4.12 yield that the singleton expansion D of the core of D has bounded
relational width. By Corollary 4.0.5, D has relational width (2, 3) and thus, also D has
relational width (2, 3) as any instance of the core of D is also an instance of D .

4.1 Prague Instances

Notation 4.1.1. Let I be a 1-minimal instance. Recall Definition 2.3.32. We write

P(I)
x := {f(x) | f ∈ P

(I)
{x}}

for the set of all permissible assignments for x. We omit the instance I and write Px instead

of P
(I)
x if the instance is clear from the context.

Definition 4.1.2. Let I = (V ,D, C) be a 1-minimal instance. A pattern of length k−1 > 0
from x1 to xk (in I) is a tuple

p = (x1, C1, x2, C2, . . . , xk−1, Ck−1, xk),

where xi ∈ V for every i ∈ {1, . . . , k}, Ci ∈ C, and {xi, xi+1} is contained in the scope
of Ci for every i ∈ {1, . . . , k − 1}. The set of all variables in p is denoted by p , i.e.,
p = {x1, . . . , xk}. The pattern is closed if x1 = xk.
A realization of p in I is a tuple (f1, . . . , fk−1) of functions such that for every i ∈

{1, . . . , k − 1}, the function fi : si → D solves the constraint Ci = (si, Ri), and such that
fi(xi+1) = fi+1(xi+1) holds. We say that this realization connects f1(x1) to fk−1(xk) and
that p connects a ∈ Px to b ∈ Py if there exists a realization of p that connects a to b.
For X ⊆ V, x ∈ X, and a, b ∈ Px, we say that a and b are connected in X if there exists

a pattern p from x to x which connects a to b such that p ⊆ X. (The notion depends on
the variable x, which should always be clear from the context.)
If p is a pattern from x to y and A ⊆ Px, we define a subset A+ p of Py by

A+ p = {b ∈ Py : ∃a ∈ A, p connects a to b}.
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4 Sufficient Conditions for Bounded Relational Width

If p = (x1, C1, x2, . . . , Ck−1xk) and q = (y1, C1, y2, . . . , Cl−1, yl) are patterns such that
xk = y1, we define

p+ q := (x1, C1, x2, . . . , Ck−1, xk, C1, y2, . . . , Cl−1, yl)

and
−p := (xk, Ck−1, xk−1, . . . , C1, x1).

For a closed pattern p and a positive integer m, we write

m× p := p+ p+ · · ·+ p

m×
.

Notation 4.1.3. We write A− p for A+ (−p). Since (A+ p) + q = A+ (p+ q) (whenever
the expressions make sense), we can simply write A+ p+ q.

Remark 4.1.4. For x, y ∈ V , a pattern p from x to y, a set A ⊆ Px of possible assignments,
and a constraint C whose scope contains x, observe

1. Px+ p = Py,

2. A ⊆ A+ p− p, and

3. A+ (x,C, x) = A.

Definition 4.1.5. An instance I = (V ,D, C) is a Prague instance if

(P1) I is 1-minimal, and

(P2) for any x ∈ V , any closed pattern p from x to x and any a, b ∈ Px, whenever a and
b are connected in p , then there exists an integer k > 0 such that k× p connects
a to b.

Lemma 4.1.6. If I = (V ,D, C) is a (2, 3)-minimal instance, x, y ∈ V and h ∈ P{x,y} then
any pattern q = (x = x1, C1, . . . , xl = y) connects a = h(x) to b = h(y).

Proof. We prove this statement via induction on the length l of q. For l = 1, simply extend
h to a solution of C1.
Let l > 1 and assume the statement holds for patterns of length l − 1. Since the

instance is (2, 3)-minimal, there exists a constraint C of I such that its scope s contains
{x1, x2, xl}, and there exists a solution g of C extending h to s. We set h = g|{x2,xl} and

a = g(x2) = h (x2). By (M2), we have g|{x1,x2} ∈ Sol{x1,x2}(C1) and hence there exists a
solution f1 of C1 extending g|{x1,x2} to the scope of C1. The induction hypothesis yields a

realization (f2, . . . , fl−1) of (x2, C2, . . . , xl) that connects a = h (x2) to b = h (xl). Hence,
(f1, f2, . . . , fl−1) connects a to b in q.
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Lemma 4.1.7. Every (2, 3)-minimal instance is a Prague instance.

Proof. Any (2, 3)-minimal instance is 1-minimal by definition.
In order to prove the second property of Prague instances, choose any variable x ∈ V ,

an arbitrary closed pattern p = (x1 = x,C1, . . . , xk = x) from x to x, and a, b ∈ Px that
are connected via a realisation (f1, . . . , fm−1) of a pattern q = (y1 = x,C1, y2, . . . , ym = x)
such that q ⊆ p . Clearly, (fi)|{yi,yi+1}

∈ P{yi,yi+1} holds for every i ∈ {1, . . . ,m − 1}.
Hence, by Lemma 4.1.6, the sub-patterns pi of p+ p, where

p1 = (x = y1, C1, . . . , y2),

pi = (yi, . . . , Ck−1, x) + (x,C1, . . . , yi+1) for i ∈ {2, . . . ,m− 2},
and pm−1 = (ym−1, . . . , Ck−1, x = ym),

respectively, connect fi(yi) to fi(yi+1) for every i ∈ {1, . . . ,m− 1}. Thus,
(m− 2)× p = p1 + p2 + · · ·+ pm−1

connects a to b.

Lemma 4.1.8. Let I = (V ,D, C) be a Prague instance, let x ∈ V , and let p be a closed
pattern from x to x. Then there exists a positive integer m such that for every integer
k ≥ m and every a, b ∈ Px, if a and b are connected in p , then k × p connects a to b.

Proof. Since D is finite, we may use (P2) in the definition of Prague instances and restrict
ourselves to the case a = b. It even suffices to prove the existence of such m for fixed but
arbitrary a = b, again, due to the finiteness of D. Now, by (P2), there exists an integer l
such that l × p connects a to a. Let c ∈ Px be such that p connects a to c and (l − 1)× p
connects c to a. Since a and c are connected in l × p , there exists an integer l such that
l × (l × p) = (ll ) × p connects a to c. Now, l × p and (l l + l − 1) × p both connect a
to a. Since l and l l + l − 1 are coprime, it follows that k × p connects a to a for every
k ≥ l(l l + l − 1), as required.

Lemma 4.1.9. Let I = (V ,D, C) be a Prague instance, let x, y ∈ V , let p be a pattern
from x to y, let q be a pattern from y to x, let A ⊆ Px, B ⊆ Py, and let r be a pattern from
x to y such that r ⊆ p+ q . If A+ p = B and B + q = A, then A+ r = B.

Proof. Let a ∈ A+ r. Then there exists an element b ∈ B such that a and b are connected
in p+ q , e.g., via the path −r+ p. Hence, b and a are connected via the path k(q+ p) for
some k by the definition of Prague instance. B+ q+ p = B yields a ∈ B and, furthermore,
A + r ⊆ B. Analogously, we obtain B − r ⊆ A. Now, B ⊆ B + (−r) − (−r) ⊆ A + r and
A+ r = B follows.

4.2 Proof of Theorem 4.0.3

The strategy of this proof is to successively make the Prague instance smaller until Px

contains only one element for every x ∈ V . Sending x to that left-over element clearly
yields a solution of the original Prague instance.
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Throughout the proof, unless stated otherwise, D denotes a finite, idempotent SD(∧)
algebra and I = (V ,D, C) is a Prague instance with constraint relations that are invariant
under D such that |Px | > 1 for at least one x ∈ V . Furthermore, note that each set Px

is the projection of a subpower of D and hence a subuniverse of D. We write Px for the
subalgebra of D with domain Px.
The proof of Theorem 4.0.3 is split into three parts. The first two parts are dedicated to

the construction of a system
(t,X, (Pi

x)
n
i=0, x∈V ),

consisting of an n-ary operation t of D, a nonempty subset X ⊆ V , and subsets Pi
x ⊆

Px, x ∈ V, i ∈ {0, . . . , n} such that

(D1) P0
x is a proper subset of Px for every x ∈ X,

Pi
x = Px for every x ∈ V \X, i ∈ {0, . . . , n},

(D2) Pi
x is a subuniverse of Px for every x ∈ V, i ∈ {0, . . . , n},

(D3) Pi
x+(x,C, y) = Pi

y for every x ∈ X, y ∈ V, i ∈ {0, . . . , n} and every constraint
C ∈ C whose scope contains {x, y},

(D4) t(a1, . . . , an) ∈ P0
x for every x ∈ V, a1, . . . , an ∈ Px such that ai ∈ Pi

x holds for all
but at most one i ∈ {1, . . . , n}.

We distinguish whether there exists a z ∈ V such thatPz has a proper absorbing subuniverse
or not. Afterwards, in Theorem 4.2.9, a smaller Prague instance shall be constructed from
the system. Repeating this construction finitely many times yields a Prague instance with
|Px | = 1 for every x ∈ V .

Definition 4.2.1. A subuniverse A of an idempotent algebra D is absorbing if there exists
an operation t ∈ Clo(D) of arity n > 1 such that t(a1, . . . , an) ∈ A whenever ai ∈ D and
ai ∈ A for all but at most one i ∈ {1, . . . , n}. An absorbing subuniverse A of D is called
proper if ∅ A D.

Lemma 4.2.2. Let D be a finite algebra and let I = (V ,D, C) be a Prague instance which
has only constraint relations that are subpowers of D. Let x, y ∈ V and let p be a pattern
from x to y.

(1) The set S = {(a, b) ∈ Px×Py : p connects a to b} is invariant under D and its
projection to the first (the second, resp.) coordinate is Px (Py, resp.).

(2) If s is a k-ary operation of D, A1, . . . , Ak, B ⊆ Px and s(a1, . . . , ak) ∈ B for any ai ∈
Ai, i ∈ {1, . . . , k}, then for any a1, . . . , ak ∈ Py such that ai ∈ Ai + p, i ∈ {1, . . . , k},
we have s(a1, . . . , ak) ∈ B + p.

(3) If A is a subuniverse (an absorbing subuniverse, resp.) of Px, then A + p is a
subuniverse (an absorbing subuniverse, resp.) of Py.
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Proof. To prove (1), let s be a k-ary operation of D, let (ai, bi) ∈ S and let (f
(i)
1 , . . . , f

(i)
n )

be realizations of p connecting ai to bi for i ∈ {1, . . . , k}. Then

(s(f
(1)
1 , . . . , f

(k)
1 ), . . . , s(f (1)

n , . . . , f (k)
n ))

is a realization of p connecting s(a1, . . . , ak) to s(b1, . . . , bk) because the constraint relations
of I are preserved by s. Since every Prague instance is 1-minimal by definition, the second
part follows.
(2) follows similarly as the first part of (1).
For (3), apply (2) with A1 = · · · = Ak = B = A (and Ai = Px for one i ∈ {1, . . . , k} in

the case of an absorbing subuniverse A).

Lemma 4.2.3. If R,S are subuniverses of D2, then the relational composition

R ◦ S = {(a, c) ∈ D ×D : (∃b ∈ D) (a, b) ∈ R and (b, c) ∈ S}

is also a subuniverse of D2.

Proof. Straightforward.

4.2.1 Absorption

Theorem 4.2.4. Let z ∈ V be such that Pz has a proper absorbing subuniverse E. Let t
be an operation of Pz witnessing the absorption and let n be its arity.
Define a quasiorder on the set of all pairs (A, x) such that x ∈ V and A Px by

(A, x) (B, y) iff B = A+ p for some pattern p from x to y.

Let M be a maximal class of the partial order induced by , greater or equal to the class
of (E, z). Define

X := {x ∈ V : ∃A Px, (A, x) ∈ M}.
Then for every x ∈ X, the set Mx ⊆ Px such that (Mx, x) ∈ M is unique. Furthermore,
the system (t,X, (Pi

x)
n
i=0, x∈V ), where for all i ∈ {0, . . . , n}, we define

Pi
x =

Mx, for x ∈ X,

Px, for x ∈ V \X,

satisfies properties (D1) - (D4) introduced in the beginning of this section.

Proof. Let (A, x), (B, x) ∈ M. By definition, we have (A, x) (B, x) (A, x), i.e., there
exist patterns p, q from x to x with A+p = B and B+q = A. This implies A+(p+q) = A
and with p ⊆ (p+ q) + (p+ q) , Lemma 4.1.9 yields A+ p = A. Hence, A = A+ p = B
holds for (A, x), (B, x) ∈ M

(D1) is satisfied by construction.
(D2) and (D4) are obvious for x ∈ V \X. For x ∈ X, we apply item (3) of Lemma 4.2.2:

since E is an absorbing subuniverse ofPz and (E, z) (Pi
x, x) holds for every i ∈ {0, . . . , n},

there exists a pattern p from z to x such that E + p = P0
x = · · · = Pn

x and hence P0
x is an
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4 Sufficient Conditions for Bounded Relational Width

absorbing subuniverse of Px, where the absorption is witnessed by t. This yields (D2) and
(D4). We are left to prove (D3).

To that end, let x ∈ X, y ∈ V, i ∈ {0, . . . , n} and let C ∈ C be a constraint such that its
scope contains {x, y}. If y ∈ X, we have (Pi

y, y) ∈ M by definition and hence there exist

patterns p from x to y and q from y to x such that Pi
x+p = Pi

y and Pi
y +q = Pi

x holds.

Thus, Lemma 4.1.9 yields Pi
x+(x,C, y) = Pi

y. If y ∈ V \X and Pi
x+(x,C, y) Pi

y = Py,

the pair (Pi
x+(x,C, y), y) would belong to the maximal class M which would yield y ∈ X,

a contradiction.

4.2.2 No absorption

In the case that Px does not have a proper absorbing subalgebra for every x ∈ V , the
following theorem yields the term t for our system satisfying (D1) to (D4).

Theorem 4.2.5. Let D be a finite, idempotent SD(∧) algebra. Then there exists a term
t ∈ Clo(D) and elements c1, . . . , cn, b ∈ D such that t(a1, . . . , an) = b whenever a1, . . . , an ∈
D for all i ∈ {1, . . . , n} and ai = ci for all but at most one i ∈ {1, . . . , n}.
Proof. [BKS15, Lemma 2.0.12].

The proof of Theorem 4.2.5 relies on a theorem called Absorption Theorem. We will
state and use a slightly altered version of this theorem.

Definition 4.2.6. Let P and Q be nonempty sets. A subset R of P × Q is called linked
if the bipartite graph (P ∪̇Q,R) with the partite sets P and Q, where every tuple in R is
regarded as an undirected edge, is connected, i.e., any two vertices in P ∪̇Q are connected
via a path only using edges of R.

Equivalently, the projection of R to the first (the second, resp.) coordinate yields P (Q,
resp.) and the transitive closure of

R ◦R−1 = {(a, b) ∈ P 2 : (∃c ∈ Q) (a, c), (b, c) ∈ R}
is equal to P 2.

Theorem 4.2.7. Let D be a finite, idempotent SD(∧) algebra, let R be a subuniverse of
D2, let P,Q be the projections of R to the first and the second coordinate, respectively, and
let P,Q be the corresponding subalgebras of D. If neither P nor Q has a proper absorbing
subuniverse and R is linked (as subset of P ×Q), then R = P ×Q.

Proof. There is no clone homomorphism from Clo(D) to an affine clone by Lemma 4.0.2.
Hence, there is also no clone homomorphism from Clo(D) to the clone of all projections.
This is equivalent to D being Taylor, see e.g., [Bod21, Theorem 6.6.4]. Under that weaker
assumption, the theorem is known as the Absorption Theorem. A proof can be found in
[KB12].

Theorem 4.2.8. Assume that for every x ∈ V the algebra Px does not have a proper
absorbing subuniverse. Then there exists a system (t,X, (Pi

x)
n
i=0, x∈V ), consisting of an

n-ary operation t of D, a nonempty subset X ⊆ V , and subsets Pi
x ⊆ Px, x ∈ V, i ∈

{0, . . . , n}, which satisfies the properties (D1) - (D4).
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4 Sufficient Conditions for Bounded Relational Width

Proof. Let z ∈ V be a variable such that |Pz | > 1 and let ∼ be a maximal congruence of
Pz, see Remark 2.1.12. Theorem 4.2.5 applied to Pz yields an n-ary operation t ∈ Clo(Pz)
(we can also interpret t as term of Clo(D)) and elements c0, c1, . . . , cn ∈ Pz such that
t(a1, . . . , an) = c0 whenever ai ∈ Pz for all i ∈ {1, . . . , n} and ai = ci for all but at most
one i ∈ {1, . . . , n}. We set

Pi
z = [ci]∼

for all i ∈ {0, 1, . . . , n} and define

X := {x ∈ V : there exists a pattern px from z to x such that P0
z +p Px}.

Choose a pattern px from z to x with P0
z +px Px for every x ∈ X. Now, for every

i ∈ {0, . . . , n}, set

Pi
x =

Pi
z +px, for x ∈ X \ {z}, and

Px, for x ∈ V \X.

Property (D1) is satisfied by construction. Properties (D2) and (D4) are trivial for
x ∈ V \X. We now show that (D2) and (D4) hold for x ∈ X separately for the cases x = z
and x = z.
Let x = z. The idempotency of D yields (D2). Let i ∈ {0, 1, . . . , n}. If s is a k-ary

operation of Pz and a1, . . . , ak ∈ Pi
z = [ci]∼, then

s(a1, . . . , ak) ∼ s(ci, . . . , ci) = ci

and hence s(a1, . . . , ak) ∈ [ci]∼ = Pi
z . For (D4), we utilize the specific attribute of our t. If

ai ∈ Pz for all i ∈ {1, . . . , n} and ai ∈ Pi
z, i.e., ai ∼ ci for all but at most one i ∈ {1, . . . , n},

say i = 1, then
t(a1, . . . , an) ∼ t(a1, c2, . . . , cn) = b

and hence t(a1, . . . , an) ∈ [b]∼ = P0
z.

Let x ∈ X, x = z. To prove (D4), let i ∈ {1, . . . , n}, and let a1, . . . , an ∈ Px be such
that ai ∈ Pi

x for all i ∈ {1, . . . , n} \ {i }. By construction, Pi
x = Pi

z +px holds for all
i ∈ {0, . . . , n}. Recall, that Px = Pz +px. Hence, we can apply item (2) of Lemma 4.2.2
with s = t, p = px, B = P0

z, and Ai = Pi
z for all i ∈ {1, . . . , n} \ {i }, as well as Ai = Pz,

and t(a1, . . . , an) ∈ P0
x follows.

Item (3) of the same lemma transfers property (D2) from x = z to arbitrary x ∈ X.
We are left to prove (D3). To that end, we use the following consequence of Theo-

rem 4.2.7.

Claim 1. For every x ∈ V and every pattern p from z to x, either

(1) for any i, j ∈ {0, . . . , n} with Pi
z = Pj

z, the sets Pi
z +p and Pj

z +p are disjoint, or

(2) Pi
z +p = Px for all i ∈ {0, . . . , n}.
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4 Sufficient Conditions for Bounded Relational Width

Proof of Claim 1. Define

S = {(a, b) ∈ Pz ×Px : p connects a to b}
R =∼ ◦S = {(a, b) ∈ Pz ×Px : p connects some a ∼ a to b}, and

R−1 = {(b, a) : (a, b) ∈ R}.

By item (1) of Lemma 4.2.2, the relation S and, as congruence of Pz, also ∼ are subpowers
of D. By Lemma 4.2.3, the relational composition R =∼ ◦S is also a subpower of D and
R ◦ R−1 is a subpower of Pz. Furthermore, notice that the projection of R to its first
coordinate equals Pz, its projection to the second coordinate equals Px, and

Pi
z +p = {b : (ci, b) ∈ R}

for every i ∈ {0, . . . , n}.
Let β be the transitive closure of R◦R−1. Since β is finite, we can write β as a relational

product of finitely many copies of R ◦ R−1, i.e., β = R ◦ R−1 ◦ · · · ◦ R ◦ R−1. Clearly, β is
an equivalence relation and due to Lemma 4.2.3 also a congruence of Pz.
As ∼⊆ β and ∼ is a maximal congruence, either β =∼, or β = Pz ×Pz. The first case

translates to (1), since Pi
z = Pj

z is equivalent to (ci, cj) /∈∼ by definition, but

∅ = (Pi
z +p) ∩ (Pj

z +p) = {b : (ci, b) ∈ R} ∩ {b : (cj , b) ∈ R}

would yield the contradiction (ci, cj) ∈ β. In the second case R is linked and Theorem 4.2.7
implies R = Pz ×Px, hence Pi

z +p = Px holds for every i ∈ {0, . . . , n}.
For any x ∈ X, case (1) takes place for the pattern px since P0

z +px Px by definition
of X. Hence, β =∼ and we see

Pi
z ⊆ Pi

z +px − px ⊆ {a ∈ Pz : ∃a ∈ Pi
z, (a , a) ∈ β} = Pi

z

and thus Pi
x−px = (Pi

z +px)− px = Pi
z for every i ∈ {0, . . . , n}.

We can now prove (D3). Let x ∈ X, y ∈ V , and let C ∈ C be a constraint whose scope
contains {x, y}.
If y ∈ V \X, we have P0

z +px + (x,C, y) = Py by definition of X. Hence, case (2) of the
claim must take place for the pattern px+(x,C, y) from z to y, i.e., for every i ∈ {0, . . . , n},
we have Pi

z +px + (x,C, y) = Py and further

Pi
x+(x,C, y) = (Pi

z +px) + (x,C, y) = Py = Pi
y .

If y ∈ X, we have Pi
x−px + py = Pi

z +py = Pi
y and Pi

y −py + px = Pi
z +px = Pi

x for every

i ∈ {0, . . . , n}. Hence, Lemma 4.1.9 yields Pi
x+(x,C, y) = Pi

y.

4.2.3 Smaller instance

Theorem 4.2.9. Let t be an n-ary operation of Clo(D), let X be a nonempty subset of V
and let Pi

x ⊆ Px for x ∈ V, i ∈ {0, . . . , n} be sets such that the system (t,X, (Pi
x)

n
i=0, x∈V )
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4 Sufficient Conditions for Bounded Relational Width

satisfies (D1) to (D4). Define instances Ii = (V,D, Ci) for every i ∈ {0, . . . , n}, where for
every constraint C = ({x1, . . . , xk}, R) of I, we set

Ci := ({x1, . . . , xk}, R ∩ (Pi
x1

× · · · × Pi
xk
)) and Ci = {Ci : C ∈ C}.

Then

(1) for every i ∈ {0, . . . , n}, the instance Ii is 1-minimal with P
(Ii)
x = Pi

x, its constraint
relations are invariant under D, and

(2) the instance I0 is a Prague instance with P
(I0)
x ⊆ P

(I)
x for every x ∈ V and P

(I0)
x P

(I)
x

for at least one x ∈ V .

Proof. For the proof of item (1), let i ∈ {0, . . . , n}. The constraint relations of Ii are
invariant under D because those of I were and because of (D2). We have to prove
Sol{x}(Ci) = {x} × Pi

x for every constraint Ci ∈ Ci and every x in the scope s of Ci.

To that end, fix one variable x in s. The inclusion Sol{x}(Ci) ⊆ {x} × Pi
x is clear by

construction. Let a ∈ Pi
x. We want to prove that Ci permits the assignment {(x, a)}.

Assume x ∈ X. Let C be a constraint of I that corresponds to Ci and let f be a solution
of C with f(x) = a. By (D3), we have Pi

x+(x,C, y) = Pi
y for every y in the scope s of C.

Hence, f(y) ∈ Pi
y for every y in s and f also solves Ci. Thus, its restriction to {x} is in

Sol{x}(Ci).
Now, assume x /∈ X and that there exists a y in s with y ∈ X. Then (D3) and (D1) yield

Pi
y +(y, C, x) = Px. Hence, there exists some solution f of C with f(x) = a and f(y) ∈ Pi

y.
The same argument as above applied on y ∈ X instead of x implies that f solves Ci and
its restriction to {x} is in Sol{x}(Ci).
Lastly, assume that s does not contain variables of X. Then by (D1), we have Ci = C

and Sol{x}(Ci) = {x} × Pi
x = {x} × Px. Altogether, the the instance Ii is 1-minimal for

every i ∈ {0, . . . , n}.
Property (D1) and item (1) immediately yield that I0 is properly contained in I as

described in item (2). We are left to prove that J = I0 satisfies the property (P2) in the
definition of a Prague instance.

To that end, we introduce notation to distinguish patterns (and later realizations of
these) in I and Ii for i ∈ {0, . . . , n}. Whenever p = (x1, C1, x2, C2, . . . , xk) is a pattern in
I and i ∈ {0, . . . , n}, we write

pi = (x1, C
i
1, x2, C

i
2, . . . , xk)

for the corresponding pattern in Ii. Note that any pattern in Ii can be written as pi for a
suitable pattern p in I.

Let x ∈ V, a, b ∈ P
(J)
x = P0

x. Assume that p is a closed pattern in I from x to x such
that a and b are connected in p = p0 in J . We have to prove that k × p0 connects a to
b for some integer k. In fact, we can even weaken the assumption and suppose that a and
b are merely connected in p in the instance I.

Lemma 4.1.8 yields an integer m such that for every m ≥ m, the pattern m ×p connects
any a , b ∈ Px which are connected in p .

51



4 Sufficient Conditions for Bounded Relational Width

Assume x ∈ V \X for now. We will show that nm× p0 connects a to b in J by applying
the operation t to a specific n-tuple of realizations

f i = (f i
1,1, . . . , f

i
1,ml, f

i
2,1, . . . , f

i
2,ml, . . . , . . . , f

i
n,ml), i ∈ {1, . . . , n}

of the pattern nm×p, where l denotes the length of p. These realizations will be built such
that

• f i connects a to b for every i ∈ {1, . . . , n}, i.e., f i
1,1(x) = a and f i

n,ml(x) = b, and

• for every i, j ∈ {1, . . . , n} with i = j, the j-th subpattern (f i
j,1, . . . , f

i
j,ml) of f i is a

realization of m× pi.

Let i ∈ {1, . . . , n}. We will now construct f i. Since x ∈ V \X, we have a ∈ Px = Pi
x and

hence there exists a realization (f i
1,1, . . . , f

i
i−1,ml) of (i−1)m×pi with f i

1,1(x) = a. Similarly,

there exists a realization (f i
i+1,1, . . . , f

i
n,ml) of (n − i)m × pi with f i

n,ml(x) = b. It remains

to find a realization of the i-th subpattern m × p of f i that connects a := f i
i−1,ml(x) to

b := f i
i+1,1(x). Since a and a, a and b, as well as b and b are connected in p , also a and

b are connected in p . By our choice of m, the pattern m× p connects a to b . Choose a
realization (f i

i,1, . . . , f
i
i,ml) of m× p witnessing this.

As promised, we now define functions fi,j = t(f1
i,j , . . . , f

n
i,j) for i ∈ {1, . . . , n}, j ∈

{1, . . . ,ml}, think of applying t to the columns of the matrix with rows f1, . . . , fn. We
want to prove that f = (f1,1, . . . , fn,ml) is a realization of nm× p0 connecting a to b. The
latter is an immediate consequence of the idempotency of t. Indeed,

f1,1(x) = t(f1
1,1(x), . . . , f

n
1,1(x)) = t(a, . . . , a) = a

and analogously follows fn,ml(x) = b. Now, we use our assumption on the subpatterns
of f i. Let i ∈ {1, . . . , n}, j ∈ {1, . . . ,ml}. For every y in the domain of fi,j and for
every i ∈ {1, . . . , n} with i = i, we have f i

i,j(y) ∈ Pi
y. Hence, (D4) yields fi,j(y) ∈ P0

y.
Furthermore, the constraint relations appearing in p are subpowers of D. This guarantees
that f is a realization of nm× p and thus even of nm× p0.
If x ∈ X and p ⊆ X, then, by (D3) and similar reasoning as in the proof of the

1-minimality, every realization of m × p witnessing that this pattern connects a ∈ P0
x to

b ∈ P0
x is already a realization of m× p0.

If x ∈ X and there exists some y ∈ p with y /∈ X, we can write p = p1 + p2 such that
p1 is the subpattern of p from x to the first appearance of y and p2 is the subpattern of
p starting with y. There exist a , b ∈ P0

y such that p01 connects a to a and such that p02
connects b to b. Hence, p2 + p1 is a closed pattern from y to y and a , b are connected in
p2 + p1 . Since y /∈ X, there exists an integer k such that k × (p2 + p1)

0 connects a to b
by the previous paragraphs. Thus, (k+1)× p0 = p01+ k(p2+ p1)

0+ p02 connects a to b.
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Corollary 4.0.6 shows that a constraint language with bounded relational width has rela-
tional width (2, 3). Strengthening this result, we can prove that any constraint language
with bounded relational width has exactly relational width (2, 3) or relational width (1, 1),
excluding the cases of relational width (2, 2) or (1, l) for an integer l.

5.1 Relational Width (1,l)

Theorem 5.1.1. Every finite constraint language with relational width (1, l) for an integer
l ≥ 1 has relational width 1.

Proof. Let D be a finite constraint language with relational width (1, l). Let I be an
instance of CSP(D) such that I = (1, 1) -minimality(I) is non-trivial. By Lemma 2.3.24,
it suffices to prove that the instance (1, l) -minimality(I ) is still non-trivial.

For every set {x1, . . . , xl} ⊆ V of l variables which is not contained in the scope of
a constraint of I , a constraint C = ((x1, . . . , xl), D

l) is added at the beginning of the
(1, l) -minimality algorithm with input I . Since the order in which constraints are com-
pared in line 12 of the algorithm does not matter, see Lemma 2.3.26, we may assume that
every new constraint C will be compared to all constraints of I at the beginning of the
computation and we call the resulting instance Imin. The instance I is (1, 1)-minimal and
hence, the constraint relation of every constraint C = ((x1, . . . , xl), R) of Imin that is not
in I is exactly

R = P(I )
x1

× · · · × P(I )
xl

.

None of these relations is empty because I is non-trivial. Thus, also Imin is non-trivial.
Moreover, we have Sol{x}(C1) = Sol{x}(C2) for all constraints C1, C2 of Imin. Hence, (M2’)
holds for Imin and Imin is (1, l)-minimal.

5.2 Relational Width (2,2)

For the proof of the analogous statement for relational width (2, 2), we follow the idea in
[Dal09].

Theorem 5.2.1. Every finite constraint language with relational width (2, 2) has relational
width (1, 1).

The strategy of the proof can be outlined by two steps. Theorem 5.2.11 yields a charac-
terization of relational width (k, k) which then enables the use of the Sparse Incomparability
Lemma, Theorem 5.2.4.
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5 Collapse of the Relational Width Hierarchy

Definition 5.2.2. Let E be a relational structure. If si = (x
(i)
1 , . . . , x

(i)
ki
) are tuples of

relations Ri from E for i = 0, . . . ,m− 1, the pairs (si, Ri) are pairwise distinct and the set

{x(i)j : 0 ≤ i ≤ m − 1, 1,≤ j ≤ ki} has at most m−1
i=0 (ki − 1) elements, then s0, . . . , sm−1

is called a circle of length m. The girth of E denotes the length of its shortest circle.

Remark 5.2.3. For every integer m ≥ 2, the above definition for girth m of a relational
structure E coincides with the definition of girth m for E, interpreted as an instance, given
in Definition 3.1.3. The case m = 1 is impossible in Definition 3.1.3 due to the requirement
that variables that are contained in scopes must be pairwise distinct.

Theorem 5.2.4 (Sparse Incomparability Lemma). Let k, l be positive integers and let E
be a finite constraint language. Then there exists a finite constraint language G such that

1. G hom−→E,

2. for every constraint language D with at most k elements, E hom−→D iff G hom−→D, and

3. G has girth at least l.

Proof. [NR89]

Definition 5.2.5. Let A be a relational τ -structure. A tree-decomposition of A is a pair
(T , φ) where the graph T = (T,E) is a tree and φ : T → 2A assigns a subset of A to every
node of T such that

(td1) for every a ∈ A, the subgraph of T generated by φ−1(a) is connected and hence
a tree itself,

(td2) for every relation symbol R of τ and every tuple s ∈ RA, there exists a node t(s,R)

of T such that φ(t(s,R)) contains the elements of s. The assignment (s,R) → t(s,R)

has to be injective on {(s,R) : R ∈ τ, s ∈ RA}.
Notation 5.2.6. We will be a bit imprecise and say that t is a node of a tree-decomposition
(T , φ) if t is a node of T . Furthermore, we will say that a node t of a tree-decomposition
contains a set of elements or just an element of A to abbreviate that φ(t) contains the
respective set or element.

Definition 5.2.7. Let A be a finite constraint language and let τ be its signature. A is a
k-relational tree or k-reltree if there exists a tree-decomposition (T , φ) of A such that

(k-rt1) for all nodes t1 = t2 of T , we have |φ(t1) ∩ φ(t2)| ≤ k,

(k-rt2) for every node t of T , either |φ(t)| ≤ k or there exists a tuple s of some relation
of A such that s contains φ(t).

For the proof of Theorem 5.2.11, we introduce a recursive definition of k-reltrees.

Definition 5.2.8. Let A be a finite constraint language and let L ⊆ A with |L| ≤ k. The
pair (A, L) is called a recursive k-reltree if
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(rk-rt1) there is at most one tuple in at most one relation of A,

(rk-rt2) there exist a finite index set J , k-reltrees (Aj , Lj), j ∈ J and (not necessarily
distinct) a1, . . . , an ∈ A, n ≥ 0 such that for all j ∈ J , Aj ∩{a1, . . . , an} ⊆ Lj and
for all i, j ∈ J , Ti ∩ Tj ⊆ {a1, . . . , an}, and either

(a) A = j∈J Aj but one n-ary relation of A additionally contains the tuple
(a1, . . . , an), and L ⊆ {a1, . . . , an}, or

(b) A = j∈J Aj and L = {a1, . . . , an}, or
(rk-rt3) there is a k-reltree (A, L ) with L ⊆ L .

Remark 5.2.9. Let A be a k-reltree. Then adding or removing elements from the domain
of A that do not occur in any tuple of a relation of A yields another k-reltree. Similarly, if
(A, L) is a recursive k-reltree, we can add or remove elements that do not occur in L or in
any tuple of a relation of A and obtain another recursive k-reltree.

Lemma 5.2.10. A finite constraint language A is a k-reltree iff (A, ∅) is a recursive k-
reltree.

Proof. We will prove that for every recursive k-reltree (A, L), there exists a tree-decomposi-
tion (T , φ) of A such that the set L is contained in some node of T by induction on the
construction of (A, L) via the rules (rk-rt1),(rk-rt2), and (rk-rt3).
If A contains only one tuple s, the graph T shall consist of only two connected nodes

t1, t2, where t1 contains exactly the elements of s and t2 the elements of L.
Assume that J is a finite index set and that (A, L) is built from finitely many recursive k-

reltrees (Aj , Lj), j ∈ J using rule (rk-rt2) part (a) or (b) with the elements a1, . . . , an ∈ A.
Let (Tj , φj) be an appropriate tree-decomposition for (Aj , Lj) for every j ∈ J . Then (T , φ)
is gained by adding a new node t, defining φ(t) = {a1, . . . , an} and connecting t to the
respective nodes of Tj containing Lj for j ∈ J .

The third case is easy, just take the same tree-decomposition as for (A, L ).
For the converse implication, let (T , φ) be a suitable tree-decomposition of A with a

minimum number of nodes. Let τ be the signature of A. For each relation symbol R ∈ τ
and every tuple s of RA, there exists a distinguished node t(s,R) of T containing the elements
of s by (td2). Denote the set of such vertices by S. By the definition of k-reltrees, every
node t(s,R) in S is either of size at most k or contained in s. Thus, if a node t(s,R) in S has
more than k elements, t(s,R) and s share the same elements.

Choose a node t0 of T and think of T as a rooted tree with root t0. Let M be the length
of the longest path in T starting from t0. For every m ∈ {0, . . . ,M}, denote the set of
nodes that can be reached from t0 by a path of length m by Vm. Furthermore, for every
tm ∈ Vm, we write Ttm for the rooted subtree of T with root tm, where Ttm contains the
nodes in Vm+1∪ · · · ∪VM that can only be reached from t0 by a path through tm. We show
by induction on m ∈ {M,M − 1, . . . , 0} that for every tm ∈ Vm, the graph Ttm corresponds
to a recursive k-reltree (Atm , Ltm) such that

• Ltm = ∅ if m = 0 and Ltm = φ(tm) ∩ φ(tm), where tm denotes the first node on the
path from tm to t0, otherwise, and
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• the τ -structure Atm , roughly said, includes all the tuples s that occur in Ttm .
VM only contains leaves of T , not necessarily all of them. Due to the minimality of T ,
each node tM of VM is in S. Fix a node tM ∈ VM and let s be the tuple and R be the
relational symbol such that tM = t(s,R) holds with the notation in the definition of a tree-
decomposition. We construct a recursive k-reltree (AtM , LtM ). The constraint language
AtM has the domain φ(tM ) and empty relations except RAtM = {s}. We set LtM = ∅ if
M = 0 and we set LtM = φ(tM ) ∩ φ(tM ), where tM ∈ VM−1 denotes the first node on the
path from tM to t0, otherwise.
Let m ≤ M − 1, let tm ∈ Vm, and let J be the set of its adjacent vertices in Vm+1. If J is

empty, tm is a leave and we construct the recursive k-reltree as above. If J is nonempty, let
(Aj , Lj), j ∈ J be appropriate recursive k-reltrees provided by induction hypothesis. We
set {a1, . . . , an} = φ(tm).
If tm is not in S, we apply item (b) of (rk-rt2) to obtain the recursive k-reltree (Atm , Ltm).
If tm ∈ S and tm = t(s,R) for a tuple s and a relation symbol R, there are two cases.

If φ(tm) is at most of size k and contains elements that are not in s, we enlarge J by
one element j and define a recursive k-reltree (Aj , Lj ), where Aj = Lj = φ(tm) and
Aj contains only the tuple s in the relation corresponding to R. Then apply item (b) of
(rk-rt2). If s contains all the elements of φ(tm), we apply item (a) of (rk-rt2). For both
cases, tm ∈ S and tm /∈ S, set Ltm = ∅ if m = 0 and Ltm = φ(tm)∩φ(tm), where tm denotes
the first node on the path from tm to t0, otherwise.
By (td2) and by construction, At0 contains exactly the tuples of A in corresponding

relations. Remark 5.2.9 yields that (A, ∅) is a recursive k-reltree.

Theorem 5.2.11. Let D be a finite constraint language with signature τ and let I be an
instance of CSP(D). Write EI for I interpreted as a τ -structure. Then the following are
equivalent for every integer k > 0.

(i) (k, k) -decision(I) returns YES.

(ii) For every k-reltree A, if A hom−→EI , then also A hom−→D.

Proof. By Lemma 2.3.34, (k, k) -decision(I) returns YES iff there exists a (k, k)-minimal
family P for I. We prove by structural induction that if (A, L) is a recursive k-reltree,
f a homomorphism from A to EI and h ∈ P a map with domain f(L), then there exists
a homomorphism g from A to D with g|L = h ◦ f |L . With Lemma 5.2.10 this yields the
implication from (i) to (ii).

(rk-rt1) A has only one tuple s = (a1, . . . , an) in a relationR and L is a subset ofA of size at
most k. Let (x1, . . . , xn) = (f(a1), . . . , f(an)) and let (d1, . . . , dn) be the tuple witnessing
the first condition of (k, k)-minimal families for h and the constraint ((x1, . . . , xn), R).
Now, define g : A → D by g(ai) = di for i ∈ {1, . . . , n}, g(a) = h ◦ f(a) for a ∈ L and
arbitrary assignments otherwise.

(rk-rt2) (a) Let (a1, . . . , an) be the tuple that was added to a relation R. Define xi =
f(ai) for i ∈ {1, . . . , n}. Let (d1, . . . , dn) be the tuple witnessing the first condition
of (k, k)-minimal families for h and the constraint ((x1, . . . , xn), R). Now, define
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g(ai) = di for i ∈ {1, . . . , n}. For the rest of A, consider a j ∈ J . By the second and
third property of (k, k)-minimal families, there exists a map hj ∈ P with domain
f(Lj) such that hj(xi) = di for every i ∈ {1, . . . , n} with xi ∈ f(Lj). Clearly,
f |Aj

is a homomorphism from Aj to EI and by induction hypothesis, there exists

a homomorphism gj from Aj to D with (gj)|Lj
= hj ◦ f |Lj

. For every a ∈ Aj , we

define g(a) = gj(a). The map g is a homomorphism, g satisfies g|L = h ◦ f |L by
construction and g is well-defined by the assumptions Aj ∩ {a1, . . . , an} ⊆ Lj and
Ai ∩Aj ⊆ {a1, . . . , an} for every i = j ∈ J .

(b) Define g(a) = h ◦ f(a) for all a ∈ L and extend g to all of A as in the previous case.

(rk-rt3) Let (A, L ) be a k-reltree such that L ⊆ L . By the third property of (k, k)-minimal
families, there exists an extension h of h defined on all of f(L ) ⊇ f(L). Induction
hypothesis yields a homomorphism g from A to D with g|L = h ◦ f |L , hence, also
g|L = h ◦ f |L .

For the proof of the implication from (ii) to (i), we will use the following claim.

Claim 1. Let W ⊆ V be of size at most k and let h : W → D be a map that is not in
SolW (C) at some point during the (k, k) -minimality algorithm for any constraint C. Then
there exists a recursive k-reltree (A, L) as well as a homomorphism f from A to EI which
is bijective on L and with f(L) = W , and any homomorphism g from A to D satisfies

g|L = h ◦ f |L .

Let us explain how to make use of the above before proving it. The map h = ∅ on the
empty domain W = ∅ is in Sol∅(C) iff C has a solution. If (k, k) -decision(I) returns NO,
the constraint relation of some constraint C will become empty during the computation.
Then, we have h /∈ Sol∅(C) and the above claim yields a recursive k-reltree (A, ∅) and a
homomorphism f from A to EI such that for every homomorphism g from A to D, we have

∅ = g|∅ = h ◦ f |∅ = ∅.

Hence, there exists no homomorphism g from A to D and we proved the contraposition of
the missing implication since A is a k-reltree by Lemma 5.2.10.
Proof of Claim 1. If W ⊆ V is a set of at most k variables and h : W → D is not an
element of SolW (C) for some constraint C = ((x1, . . . , xn), R) of I containing W before
even starting the algorithm, then set A to be the relational structure that has domain
{x1, . . . , xn} and only one tuple (x1, . . . , xn) in a relation RA that has the same relation
symbol as R, set f to be the identity, and L = W . Any homomorphism g from A to D
with g|W = h would imply h ∈ SolW (C) by definition.

Now, assume that for fixed W and h : W → D the constraint C = (s,R), where s =
(x1, . . . , xn), is the first constraint which is altered during the execution of (k, k) -minimality
such that afterwards h /∈ SolW (C). Let hj , j ∈ J be the set of partial mappings from sets
Wj of size at most k contained in s to D which the algorithm already sorted out, i.e.,
for every j ∈ J , there exists a constraint Cj containing Wj in some earlier stage of the
execution of (k, k) -minimality such that hj /∈ SolWj (Cj).
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For each j ∈ J , the induction hypothesis provides a recursive k-reltree (Aj , Lj) and a
homomorphism fj from Aj to EI which is bijective on Lj . Hence, by possibly renaming
the elements of Aj , we may assume Lj = Wj ⊆ {x1, . . . , xn}, that (fj)|Lj

= idLj and that

the elements of Aj \Lj do not occur in any other Aj with j = j or in {x1, . . . , xn}. Then
Lj = Aj ∩ {x1, . . . , xn} and Aj ∩Aj ⊆ {x1, . . . , xn}. Furthermore, for any homomorphism
gj from Aj to D, we have (gj)|Lj

= hj ◦ (fj)|Lj
= hj .

We construct (A, L) via item (a) of (rk-rt2), i.e., A = j∈J Aj and A additionally contains
the tuple (x1, . . . , xn) in the relation corresponding to the constraint (s,R) but we set L =
W ⊆ {x1, . . . , xn} using (rk-rt3). Define f(x) = x for x ∈ {x1, . . . , xn} and f(x) = fj(x)
whenever x ∈ Aj . Clearly, f is a homomorphism from A to EI .
Let g be a homomorphism from A to D. If g|L = h ◦ f |L = h, then the tuple a =

(g(x1), . . . , g(xn)) was not removed from the constraint (s,R) during the computation of
the (k, k)-minimality algorithm since for every j ∈ J , the homomorphisms gj := g|Aj

from

Aj to D satisfies (gj)|Lj
= hj and hence, for any constraint C2 containing Wj , we still have

(gj)|Lj
∈ SolWj (C2) and (s, {a}) clearly permits (gj)|Lj

, compare line 12 of Algorithm 2.

Hence, h would still lie in SolW (C), which contradicts our assumption, or g|L = h◦f |L .

Lemma 5.2.12. A finite constraint language without circles is a 1-reltree

Proof. Let A be a constraint language without circles and let T be its incidence graph. For
every node t of T that is a variable, define φ(t) to be the set containing only this variable.
For every node t of T that is a scope s = (x1, . . . , xn), define φ(t) = {x1, . . . , xn}. Then
(T , φ) is a tree-decomposition of A witnessing that A is a 1-reltree.

Lemma 5.2.13. A 2-reltree with girth 3 or higher does not contain cycles.

Proof. Let A be a 2-reltree of girth m ≥ 3 and (T , φ) be a tree-decomposition witnessing
this. Assume si = (ai1, . . . , a

i
ri) are tuples of relations of A for i ∈ {0, . . . ,m− 1} such that

s0, . . . , sm−1 is a circle of minimal length m. Hence, ri ≥ 2 for every i ∈ {0, . . . ,m − 1}
and we may order the tuples in a way such that for i, j ∈ {0, . . . ,m− 1}, i = j, the tuples
si and sj share exactly one element iff j = i+ 1, we will call this element ai, and share no
elements otherwise.
By definition of tree-decomposition, there exists a vertex ti of T containing (ai1, . . . , a

i
ri)

for every i ∈ {0, . . . ,m− 1}. For arbitrary but fixed i ∈ {0, . . . ,m− 1}, the node ti either
contains at most 2 elements or is contained in a tuple s of D. If s is not equal to si or in a
different relation than si, the tuples si, s would constitute a circle of length 2, contradicting
our assumptions. Hence, ti contains exactly the ri-many pairwise distinct elements of si.
We will now utilize the fact that exactly two of the elements of ti, namely ai and ai−1,
where a−1 := am−1, are from {a0, . . . , am−1}.
Consider the unique path in T from t0 to t1 continued by the unique path from t1 to t2

and so forth until reaching t0 again using the path from tm−1 to t0. We start by showing
that the path has to reverse after reaching t1 for the first time. In order to avoid a circle,
the path has to pass through the last edge used to originally reach t1 at some later point,
say during the walk from ti to ti+1 for some i ≥ 1. Every node in the path from ti to ti+1

contains ai and hence t1 contains ai. Thus, i = 1 and the path reverses after reaching t1.
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Every vertex in the proceeding path from t1 to t2 contains a1 and hence, this path cannot
pass through t0. The path branches away from the path from t1 to t0 at a vertex u. This
node u is used in the path from t0 to t1 and in the path from t1 to t2 and must therefore
contain a0 and a1. At some later point, say in the path from tj to tj+1 for a j ≥ 2, u will be
passed again. Hence, u also contains aj . The node u has cardinality at least 3 and must be
contained in some tuple s of A which differs from s0, . . . , sm−1. Now, s1 and s constitute
a circle of length 2. Hence, A must not contain circles at all.

Proof of Theorem 5.2.1. Let D be a finite constraint language with relational width 2 and
let I be an unsolvable instance of CSP(D). We will show that I is already refuted by the
(1, 1) -decision algorithm.

Write EI for I interpreted as relational structure. Since I does not have a solution, there
is no homomorphism from EI to D. By the Sparse Incomparability Lemma, Theorem 5.2.4,
there exists a finite relational structure G with girth at least 3 such that G hom−→EI but there is
no homomorphism from G to D. Hence, G, interpreted as an instance of CSP(D), is refuted
by the (2, 2) -decision algorithm and by Theorem 5.2.11, there exists a (finite) 2-reltree A
which maps homomorphically to G but not to D. Choose such A with a minimal number
of elements. We will prove that the girth of A is at least 3. In that case, A is cycle-free
and thus a 1-reltree by Lemma 5.2.13 and Lemma 5.2.12. Since A hom−→EI , by composition
of homomorphisms, Theorem 5.2.11 then implies that (1, 1) -decision(I) returns NO.
We are left to show that A does not contain cycles of length 1 or 2. Let h be a homo-

morphism from A to G. If A had a cycle of length 1, i.e., a tuple s containing the same
element twice, the image of s in G would also be a cycle of length 1. That is impossible.
Similar reasoning works for a cycle of length 2 consisting of two tuples s1 = (a1, . . . , ar1)

and s2 = (b1, . . . , br2), if those tuples are either from different relations or their images in
G are not equal. If s1, s2 both only occur in the same relation R of A, r1 = r2 = r, and
(h(a1), . . . , h(ar)) = (h(a1), . . . , h(ar)), we have to find a different reasoning. In order to
rule out this case, we will construct a constraint language A with less elements than A
which still is a 1-reltree and maps homomorphically to EI but not to D, contradicting the
minimality of A.

Define f : A → A by f(bi) = ai for i ∈ {1, . . . , r} and f(x) = x for x ∈ A \ {b1, . . . , br}.
Since s1 = s2, the map f cannot be surjective. Hence, f(A) has less elements than A.
Define the constraint language A := f(A). Since h(ai) = h(bi) for i ∈ {1, . . . , r}, we have
A hom−→G. Any homomorphism from A to D would immediately yield one from A to D via
composition. We are left to show that f(A) is a 2-reltree. The tuples s1 and s2 build a cycle.
Hence, they share at least 2 elements, in fact, they share exactly 2 elements because A is
a 2-reltree. Call those elements a1 and a2. Let (T , φ) be a tree-decomposition witnessing
that A is a 2-reltree. Denote v1 and v2 the vertices of T containing s1 and s2, respectively.
Define V1 to be the set of nodes of T reachable from v1 in T without crossing v2 and V2

shall contain all the other nodes of T . Then

• V1 and V2 are both connected in T ,

• v∈V1
φ(v) ∩ v∈V2

φ(v) = {a1, a2}, and
• {a1, . . . , ar} ⊆ v∈V1

φ(v) and {b1, . . . , br} ⊆ v∈V2
φ(v).
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Let Ai be the substructure of A induced by v∈Vi
φ(v) for i ∈ {1, 2}. Then f(A) =

A1∪f(A2). The structure A1 is a 2-reltree and since f is injective on A2, also f(A2) is. Let
(T1, φ1) and (T2, φ2) be tree-decompositions witnessing this. Let u1 and u2 be the nodes
of T1 and T2 containing the elements of s1 = f(s2), where f is applied component-wise,
provided by (td2). Hence, we have φ1(u1) = {a1, . . . , ar} = φ2(u2). Define T to be the
tree gained from T1 = (T1, E1) and T2 = (T2, E2) by glueing together the nodes u1 and u2,
i.e., the vertex set of T is the disjoint union of T1 and T2 \ {u2}. The edges of T are the
edges of T1 and T2 but every occurrence of u2 in an edge of T2 is substituted by u1. We
define φ (v) = φ1(v) for every node v of T1 and φ (v) = φ2 for every node v of T2. Then
(T , φ ) is a suitable tree-decomposition of f(A).

Theorem 5.2.14. For every finite constraint language D, precisely one of the following
statements are true.

1. D has relational width 1.

2. D has relational width (2, 3) and does not have relational width 2, nor (1, l) for any
l ≥ 1.

3. D does not have relational width.

Proof. Theorem 5.1.1, Theorem 5.2.1 and Corollary 4.0.6.
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6 Summary

In this final chapter, we add one last characterization of finite constraint languages with
bounded relational width via the existence of weak near unanimity polymorphisms. Equiv-
alent properties characterizing bounded relational width that are covered by this thesis
will be summarized in Theorem 6.1.7 and Corollary 6.1.8. We describe an algorithm that
decides bounded relational width for finite core constraint languages in polynomial time in
the last subsection and show that the assumption that the constraint language is a core
cannot be omitted.

6.1 Existence of WNU Operations

Definition 6.1.1. A k-ary weak near unanimity operation, WNU operation or just WNU
on a set D is an operation w that satisfies the equations

w(y, x, . . . , x) = w(x, y, . . . , x) = · · · = w(x, x, . . . , x, y)

for all x, y ∈ D.

Remark 6.1.2. Note that above definition of WNU operations deviates from the terminology
of some literature in that we do not require a WNU operation to be idempotent. That way,
WNU operations are defined solely by height 1 identities which are preserved by h1 clone
homomorphisms. Our notion of WNU operation is also known as quasi-WNU operation
in literature. An idempotent relational structure has a WNU polymorphism iff it has an
idempotent WNU polymorphism.

Definition 6.1.3. Let v be a 3-ary and let w be a 4-ary WNU operation on a domain D.
We say that v and w are compatible if v(y, x, x) = w(y, x, x, x) holds for every x, y ∈ D.

The idea of the proof for the next two results is attributed to E. Kiss in [KKVW15].

Lemma 6.1.4. Let D be a finite algebra with bounded relational width and let a = b be
elements of D. Then

(1) for every k ≥ 3, there exists a k-ary term t ∈ Clo(D) such that

t(b, a, . . . , a) = t(a, b, . . . , a) = · · · = t(a, a, . . . , a, b)

holds, and

(2) there exist a 3-ary term s3 and 4-ary term s4 in Clo(D) such that

s3(b, a, a) = s3(a, b, a) = s3(a, a, b) = s4(b, a, a, a) = · · · = s4(a, a, a, b).
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Proof. Let a = b be elements of D and let k ≥ 3 be an integer. To prove item (1), define a
k-ary relation Rk ∈ Inv(D) by

Rk =





t(b, a, . . . , a)
t(a, b, . . . , a)

...
t(a, . . . , a, b)


 | t ∈ Clok(D)


 .

Hence, Rk is the subuniverse of Dk generated by the elements

b1 =




b
a
a
...
a



 ,b2 =




a
b
a
...
a



 , . . . ,bk =




a
a
...
a
b



 .

It is sufficient to prove that there exists a c ∈ D such that (c, c, . . . , c)T ∈ Rk. To that
end, we define a specific instance I = (V ,D, C) of CSP((D, {Rk})) and aim to apply the
pigeonhole principle on a solution of this instance. We set N = (k − 1)|D| + 1, V =
{x1 . . . , xN}, and C shall contain a constraint (s,Rk) for every scope s ∈ V k consisting of
k pairwise distinct variables.
The instance I is non-trivial and we continue by proving that I is (k , l)-minimal for all

integers 0 < k ≤ l ≤ k. Every subset of at most l variables is contained in a constraint of
I. The relation Rk is closed under permutations. To show this, let (a1, . . . , an) ∈ Rk, let
h ∈ Clok(D) be such that

a1 = h(b, a, a, . . . , a),

a2 = h(a, b, a, . . . , a),

...

ak = h(a, a, . . . , a, b)

holds, and let σ be a permutation of {1, . . . , n}. Then

(aσ(1), aσ(2), . . . , aσ(k))
T = h((bσ−1(1),bσ−1(2), . . . ,bσ−1(k)))

where h is applied row-wise. Hence, the projection of Rk onto at most k of its coordinates
does not depend on the particular choice of coordinates. For any set W of at most k
variables and for constraints C1, C2 of I with scopes containing W , this implies SolW (C1) =
SolW (C2), hence (M2) holds. The property (M3) is satisfied since constraints of I have
scopes with pairwise distinct elements. In particular, I is (2, 3)-minimal and the projection
of Rk onto any two of its variables can be written as

R
(1,2)
k =

t(b, a, a, . . . , a)
t(a, b, a, . . . , a)

| t ∈ Clok(D) . (6.1)
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Rk is invariant under D. Thus, the constraint language (D, {Rk}) has bounded relational
width by the assumption on D. Note, however, that I is clearly not (k , l)-minimal for l > k
since sets of l variables are no longer contained in the scope of a constraint of I. Even after
adding such constraints, these might not have constraint relations that are closed under
permutations throughout the algorithm and the above argument cannot be used. Here, our
proof relies on Corollary 4.0.6. The language (D, {Rk}) even has relational width (2, 3).
Hence, I has a solution f : V → D. The pigeonhole principle yields the existence of a c ∈ D
and at least k variables x1, . . . , xk with f(x1) = · · · = f(xk) = c. Now, (c, c, . . . , c) ∈ Rk

holds since f solves the constraint ((x1, . . . , xk), Rk).
The proof of item (2) can be done in a very similar way using the relations R3 and R4

and the instance J = (V,D, C) with 3(|D|) + 1 variables, a constraint (s3, R3) for every
3-ary scope s3 ∈ V 3 with pairwise distinct entries and a constraint (s4, R4) for every 4-
ary scope s4 ∈ V 4 with pairwise distinct entries. The instance is again (2, 3)-minimal.
Indeed, property (M1) is clearly satisfied and we have already argued (M2) for constraints
of the form C1 = (s1, R3) and C2 = (s2, R3) of I, and of the form C1 = (s1, R4) and
C2 = (s2, R4). For the case C1 = (s1, R3) and C2 = (s2, R4) or vice versa, notice that
for every t ∈ Clok(D), the operation t3 = t(π3

1, π
3
2, π

3
3, π

3
3), where πn

m denotes the n-ary
projection onto the m-th coordinate, is in Clo3(D). Similarly, for every h ∈ Clo4(D), the
operation h4 = h(π4

1, π
4
2, π

4
3) is in Clo3(D). By construction, we have

t3(b, a, a) = t(b, a, a, a),

t3(a, b, a) = t(a, b, a, a)

for every t ∈ Clo3(D), as well as

h4(b, a, a, a) = h(b, a, a),

h4(a, b, a, a) = h(a, b, a)

for every h ∈ Clo4(D). With the representation from (6.1), we see R
(1,2)
3 = R

(1,2)
4 and

property (M2) follows. The instance J has a solution since the relations of (D,R3, R4) are
invariant under D. Hence, it has bounded relational width and, furthermore, relational
width (2, 3), just as in the previous case. By the pigeonhole principle, there exists a c ∈ D
with (c, c, c) ∈ R3 and (c, c, c, c) ∈ R4. Hence, suitable terms s3 and s4 exist.

Theorem 6.1.5. Let D be a finite constraint language with bounded relational width such
that Pol(D) is idempotent. Then Pol(D) has k-ary WNU operations for every integer k ≥ 3,
as well as compatible 3-ary and 4-ary WNUs v and w.

Proof. The subpowers of D = (D,Pol(D)) are pp-definable in D and hence D has bounded
relational width. Consider the algebra D = (Pol2(D),Pol(D)), where Pol(D) acts on
Pol2(D) via generalized composition of polymorphisms. Note that Pol2(D) ⊆ DD2

and
that for every k-ary f ∈ Pol(D) and g1, . . . , gk ∈ Pol2(D), the generalized composition
f(g1, . . . , gk) is exactly the operation sending (x1, x2) ∈ D2 to f(g1(x1, x2), . . . , gk(x1, x2)).
This is exactly how f applies to g1, . . . , gk ∈ DD2

on the power DD2
of D. Hence, D is a

subalgebra of DD2
and has bounded relational width by Corollary 2.4.11.
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Now, for an arbitrary integer k ≥ 3, item (1) of Lemma 6.1.4 applied to D with the
projections a = π2

1 and b = π2
1, where π2

i (x1, x2) = xi for all x1, x2 ∈ D and i ∈ {1, 2},
yields a k-ary operation t ∈ Pol(D) such that

t(π2
2, π

2
1, . . . , π

2
1) = t(π2

1, π
2
2, . . . , π

2
1) = · · · = t(π2

1, . . . , π
2
1, π

2
2)

holds. Hence, t is a k-ary WNU operation.
Item (2) of Lemma 6.1.4 with a = π2

1 and b = π2
2 yields compatible 3-ary and 4-ary

WNUs.

Lemma 6.1.6. Let p be a prime. Then Clo(Zp; +) does not contain k-ary idempotent
WNU operations for any multiple k of p, or compatible 3-ary and 4-ary idempotent WNUs.

Proof. Any idempotent operation w of Clo(Zp; +) is of the form w(x1, . . . , xk) =
k
i=1 dixi.

If w is a WNU operation, the equations

w(1, 0, 0, . . . , 0) = w(0, 1, 0, . . . , 0) = · · · = w(0, 0, . . . , 0, 1)

and hence d1 = d2 = · · · = dk hold. This contradicts the idempotency of w if k is a multiple
of p since w(1, 1, . . . , 1) = kd1 = 0 holds in Zp.
If v = c1x1 + c2x2 · · ·+ c3x3 and w = d1x1 + d2x2 + d3x3 + d4x4 are compatible WNUs,

v(1, 0, 0) = v(0, 1, 0) = v(0, 0, 1) = w(1, 0, 0, 0) = · · · = w(0, 0, 0, 1)

yields c1 = c2 = c3 = d1 = · · · = d4. Now, v(1, 1, 1) = w(1, 1, 1, 1) yields d4 = 0 and hence
v = 0 = w, contradicting the idempotency.

Theorem 6.1.7. For a finite constraint language D such that Pol(D) is idempotent, the
following are equivalent.

(I) D has bounded relational width.

(II) D has relational width (2, 3).

(III) Pol(D), interpreted as an algebra on D, is SD(∧)
(IV) Pol(D) does not have a clone homomorphism to an affine clone.

(V) Pol(D) does not have a minion homomorphism to an affine clone.

(VI) Pol(D) does not have a minion homomorphism to the idempotent reduct of
Clo(Zp; +) for any prime p,

(VII) D does not pp-construct (Zp; Aff(Zp)) for any prime p.

(VIII) Pol(D) has a k-ary WNU operation for every arity k ≥ 3.

(IX) Pol(D) has compatible 3-ary and 4-ary WNU operations.
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Proof. The equivalence of (I), (II) and (III) is given by Corollary 4.0.5.
The equivalence of (V), (VI) and (VII) is given by Theorem 3.2.5. The same theo-

rem yields the implication from (I) to either one of them. Clearly, (V) implies (IV). By
Lemma 4.0.2, (III) and (IV) are equivalent. Hence, (I) - (VII) are equivalent.
Theorem 6.1.5 shows that (I) implies (VIII) and (IX). If (VIII) or (IX) holds, (VI) must

also hold, since any minion homomorphism would map the WNU operations to WNUs in
the idempotent reduct of Clo(Zp; +), contradicting Lemma 6.1.6.

Corollary 6.1.8. For a finite constraint language D, the following are equivalent.

(I) D has bounded relational width.

(II) D has relational width (2, 3).

(III) Pol(D) does not have a minion homomorphism to an affine clone.

(IV) Pol(D) does not have a minion homomorphism to the idempotent reduct of
Clo(Zp; +) for any prime p,

(V) D does not pp-construct (Zp; Aff(Zp)) for any prime p.

(VI) Pol(D) has a k-ary WNU operation for every arity k ≥ 3.

(VII) Pol(D) has compatible 3-ary and 4-ary WNU operations.

Proof. The equivalence of (I) and (II) is given by Corollary 4.0.5. Let D be a finite constraint
language and E the singleton expansion of its core. Then D pp-constructs E and vice
versa. Hence, Pol(D) ≤h1 Pol(E) and Pol(E) ≤h1 Pol(D) hold by Theorem 2.1.44. Note
that minion homomorphisms map WNU operations to WNU operations. This observation
concludes the proof since the items (I) to (VII) are equivalent for the idempotent constraint
language E by Theorem 6.1.7.

6.2 Deciding Bounded Relational Width

We conclude this chapter by stating an algorithm that decides whether a finite core con-
straint language has bounded relational width in polynomial time and proving that this
decision problem is NP-hard for arbitrary finite constraint languages.

Theorem 6.2.1. There exists an algorithm that decides whether a given finite core con-
straint language D has bounded relational width in polynomial time. If D has bounded
relational width, the algorithm returns compatible 3-ary and 4-ary WNU polymorphisms of
D.

Proof. Let D be a finite core constraint language. We can add the equality relation and,
since D is a core, all singleton relations to D without changing whether D has bounded
relational width or not, by Theorem 2.4.9. The equality relation will be used to define
constraints, the singleton relations enable us to predefine values for variables.
By Theorem 6.1.7, D has bounded relational width iff Pol(D) contains compatible 3-ary

and 4-ary WNU operations. We now construct an instance I = (V ,D, C) of CSP(D) such
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that any solution of I corresponds to compatible 3-ary and 4-ary WNU polymorphisms v
and w of D. To that end, we set

V = {va,b,c : a, b, c ∈ D} ∪ {wa,b,c,d : a, b, c, d ∈ D}.

If f : V → D is a solution of I, the operations

v : (a, b, c) → f(va,b,c) and w : (a, b, c, d) → f(wa,b,c,d)

will be the proclaimed WNU polymorphisms. We use two kinds of constraints to ensure
that v and w are polymorphisms and that they are compatible WNU operations.

For every integer k, every k-ary relation R of D, and tuples a = (a1, . . . , ak), b =
(b1, . . . , bk), c = (c1, . . . , ck) ∈ R, we add a constraint

CR,a,b,c = ((va1,b1,c1 , . . . , vak,bk,ck), R)

to C which ensures that v preserves R. Likewise, we add constraints CR,a,b,c,d to ensure
that w is a polymorphism.

We add constraints to enforce the equations that characterize WNUs. For example, for
every a, b ∈ D, we add

Cv,b,a,a = ((vb,a,a, va,b,a),=), Cv,a,b,a = ((va,b,a, va,a,b),=) and Ca,b = ((va,a,b, wa,a,a,b),=)

and similar constraints Cw,b,a,a,a, Cw,a,b,a,a, Cw,a,a,b,a to C. By construction, I has a solution
iff D has bounded relational width.
If D has bounded relational width, it has relational width (2, 3) by Corollary 4.0.6. In

this case, the (2, 3)-decision algorithm correctly decides the satisfiability of I. If D does
not have bounded relational width, the (2, 3)-decision algorithm alone might not decide
satisfiability of the instance I correctly as it might return YES even though there is no
solution of I. Here comes into play that D contains the singleton relations. Let f : V → D
be an assignment. The (2, 3)-decision algorithm is capable of checking whether f is a
solution of I if we add a constraint ((x), {f(x)}) for every variable x ∈ V to I and run the
(2, 3)-decision algorithm on this altered instance. This observation motivates the following
procedure.
Denote the variables of I by V = {x1, x2, . . . , xn}. For every d1 ∈ D, we run the (2, 3)-

decision algorithm on the instance Id1 gained by adding an additional constraint x1 = d1
to I until it halts with YES for some d1 or no elements of D are left to try. In the first case,
we continue by running the (2, 3)-decision algorithm on Id1 with an additional constraint
x2 = d2 for every d2 ∈ D, until we find a d2 such that the algorithm halts with YES, or
every possible assignment for x2 was refuted. This process is repeated for every variable
xi, i ∈ {1, . . . , n} as long as the algorithm returns YES for at least one new fixed value
di. If the full n steps can be completed, the resulting map xi → di for i ∈ {1, . . . , n} is a
solution of I and hence corresponds to compatible 3-ary and 4-ary WNU polymorphisms of
D. The algorithm then returns the answer YES and the WNU polymorphisms. Otherwise,
the algorithm stops and terminates with NO as a final answer.
We are left to prove the correctness of this procedure. Assume that D has bounded

relational width. Then the instance I has at least one solution and D has relational width
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(2, 3) by Corollary 4.0.6. Hence, for given elements d1, d2, . . . of D, if the (2, 3)-decision
algorithm halts with YES when run on I with the additional constraint x1 = d1 during
the first step, additional constraints x1 = d1 and x2 = d2 during the second step and
so on, then there really exists a solution f of I with f(x1) = d1, f(x2) = d2 and so
on. Thus, the procedure described in the previous paragraph necessarily completes all n
steps and yields a full solution f of I. If D does not have bounded relational width, the
instance I does not have a solution. While the (2, 3)-decision algorithm alone might not
falsify the instance I, it will eventually stop after r < n steps with additional constraints
x1 = d1, x2 = d2, . . . , xr = dr in I because the (2, 3)-decision algorithm terminates with
NO upon adding any further constraint xr+1 = dr+1 for dr+1 ∈ D to I.

Since the size of I is polynomial in the size of D, the procedure described above correctly
decides whether a given finite core constraint language has bounded relational width in
polynomial time.

The assumption that D is a core played an important role in the proof and cannot be
omitted. In fact, deciding bounded relational width is NP-complete for finite constraint
languages as we will show now, following [CL17].

Definition 6.2.2. A strong Maltsev condition M is a finite set of identities. A relational
structure D satisfies M if it has polymorphisms that satisfy the equations in M. A strong
Maltsev condition M is

• non-trivial if M cannot be satisfied by projections on a domain with at least 2
elements;

• of height 1 if all identities in M are of height 1;

• consistent if for every non-empty finite set D, there exist idempotent operations on
D that satisfy the identities in M.

Example 6.2.3. The strong Maltsev condition MBW given by the identities

∀x, y : v(y, x, x) = w(y, x, x, x)

∀x, y : v(y, x, x) = v(x, y, x) = v(y, x, x)

∀x, y :w(y, x, x, x) = w(x, y, x, x) = w(x, x, y, x) = w(x, x, x, y)

is of height 1 and non-trivial. On a given finite set D = {d1, . . . , dn}, we can define a strict
linear order by di <D dj iff i < j for all i, j ∈ {1, . . . n}. Then the operations v(x1, x2, x3) =
max{x1, x2, x3} and w(x1, x2, x3, x4) = max{x1, x2, x3, x4} onD are idempotent and satisfy
MBW . Hence, MBW is consistent. By Corollary 6.1.8, a finite constraint language has
bounded relational width iff it satisfies MBW .

Remark 6.2.4. 3-colourability, see Example 2.2.10, is NP-complete, even when restricted to
connected, undirected graphs without loops and with at least 2 vertices, see, e.g., [Pap94].

Lemma 6.2.5. Let D be a finite constraint language and let M be a strong Maltsev condi-
tion of height 1. Then D satisfies M iff its core satisfies M by idempotent polymorphisms.
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Proof. Let E be the singleton expansion of the core C of D. Then D and E are pp-
constructible from each other. By Theorem 2.1.44, we have Pol(D) ≤h1 Pol(E) and
Pol(E) ≤h1 Pol(D). Hence, D satisfies M iff E satisfies M since M is of height 1. To
conclude the proof, note, that Pol(E) is exactly the idempotent reduct of Pol(C).

Lemma 6.2.6. Let G = (G,E) be a finite, connected, undirected graph without loops and
with at least 2 vertices. Then there exists a finite constraint language D containing only
binary relations such that D is computable in polynomial time from G and the following
properties hold.

(i) G is 3-colourable iff D is not a core.

(ii) Denote the core of D by C. If G is 3-colourable, every idempotent operation on C is
a polymorphism of C.

(iii) There exists a 3-element subset S of D such that the restriction of any idempotent
polymorphism of D to S is a projection on S.

Proof. The domain of D is D = E × {1, 2, 3}. For an element (u, i) ∈ D, we will write ui
since this is more convenient. Choose an arbitrary orientation of the edges E of G, and
define a binary relation Re on D for every edge e = (u, v) ∈ E, by

Re = {(u1, v2), (u1, v3), (u2, v1), (u2, v3), (u3, v1), (u3, v2)}.

Then set D = (D, (Re)e∈E). This language is computable in polynomial time from G.
(i) Assume G is 3-colourable. We want to show that D is not a core. To that end, let

φ : G → {1, 2, 3} be a 3-colouring. Then the map r : D → D defined by r(ui) = uφ(u)
for i ∈ {1, 2, 3} is an endomorphism of D. Indeed, for each edge e = (u, v) of G we
have φ(u) = φ(v) and (r(ui), r(uj)) = (uφ(u), vφ(v)) ∈ Re. Hence, r preserves Re.

In particular, r is a homomorphism from D to the proper, induced substructure C of
D with domain C = {uφ(u) : u ∈ G}. Thus D is not a core. In fact, C is the core of
D: for every edge e = (u, v) of G, the restriction of Re to C2 is the singleton relation
{(uφ(u), vφ(v))}. Since G is connected and contains at least 2 vertices, C contains at
least 2 elements and every element of C occurs in at least one singleton relation of
C. Hence, endomorphisms of D must fix every element of C.

For the converse implication, assume that D is not a core. We want to prove that G
is 3-colourable. Since D is not a core, there exists an endomorphism f of D that is
not injective. For every u ∈ G, write

F (u) = {f(u1), f(u2), f(u3)}

for the image of f on {u1, u2, u3}. Note, that for every vertex u ∈ G, there exists an
edge e of G such that u is incident to e. The set {u1, u2, u3} is a projection of Re

and hence invariant under Pol(D). In particular, F (u) ⊆ {u1, u2, u3} holds. Since the
sets {u1, u2, u3}, u ∈ G are pairwise disjoint and since f is not injective, there exists
a vertex w ∈ G such that F (w) has size at most 2.
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Claim 1. Let e = (u, v) be an edge of G, and let {i, j, k} = {1, 2, 3}. Then both of
the following implications hold, even for reversed roles of u and v.

(1) If ui, uj ∈ F (u), then vk ∈ F (v).

(2) If ui ∈ F (u), then vj ∈ F (v) or vk ∈ F (v).

Proof of Claim 1. To prove the first part, let s, t ∈ {1, 2, 3} be such that f(us) = ui
and f(ut) = uj . For r ∈ {1, 2, 3} \ {s, t}, we have (us, vr), (ut, vr) ∈ Re and hence
(ui, f(vr)), (uj , f(vr)) ∈ Re which yields f(vr) = vk. The second part follows since
f(vs) = vi and r ∈ {1, 2, 3} \ {i} yields (ui, f(vr)) ∈ Re and hence f(vr) = vj or
f(vr) = vk holds.

If there exists a vertex u of G such that F (u) has size 3 and (u, v) is an edge of G,
then F (v) also has size 3 by item (1) of Claim 1. By the connectedness of G and since
F (w) contains at most 2 elements, this yields |F (u)| ≤ 2 for all u ∈ G.

Define φ : G → {1, 2, 3} by

φ(u) =



1, for F (u) ∈ {{u1}, {u1, u3}},
2, for F (u) ∈ {{u2}, {u1, u2}},
3, for F (u) ∈ {{u3}, {u2, u3}}.

Claim 2. φ is a 3-colouring of G.
Proof of Claim 2. Let e = (u, v) be an edge of G and let φ(u) = i. If F (u) = {ui},
then by item (2) of Claim 1, F (v) does not contain vi. By the definition of φ, we
have φ(v) = i = φ(u). If F (u) = {ui, uj} has size 2, then by item (1) of Claim 1,
F (v) must contain vk for the unique k ∈ {1, 2, 3} \ {i, j}. The definition of φ then
yields φ(u) = φ(v). Hence, φ is a 3-colouring of G.

(ii) If G is 3-colourable, then every idempotent operation on C is a polymorphism of C
since every relation of C contains only one tuple.

(iii) Let u ∈ G. We will prove that the restriction of any idempotent polymorphism of D
to {u1, u2, u3} is a projection on {u1, u2, u3}. The following construction is attributed
to Feder, [Fed01] in [CL17].

Suppose that u has an outgoing edge (u, v), otherwise switch the direction of all
arrows in the gadget in Figure 6.2. This gadget visualizes how one can pp-define the
relation θ = {(ui, vi) : i ∈ {1, 2, 3}} by a formula ψ(x, y). The 6 outer nodes that are
depicted by rectangles correspond to the constants u1, u2, u3, v1, v2, v3. The 12 inner
nodes that are depicted by a circle correspond to variables. Every arrow stands for
a formula Re(α, β) where α is the variable or constant at the shaft of the arrow and
β the variable or constant at the head of the arrow. Denote the set of all formulas
built this way by Ψ. Then ψ(x, y) is the conjunction of the formulas in Ψ, where
x, y are free variables and u12, u13, v12, v13, u21, u22, u23, v21, v22, v23 are existentially
quantified.
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v1

u3

v2

Figure 6.1: The gadget used to define the relation θ in the proof of item (iii) of Lemma 6.2.6.

In order to satisfy ψ, for every i ∈ {1, 2, 3}, the variables u2i, v2i must be assigned the
values uj , vj for a j ∈ {1, 2, 3} \ {i}, respectively. Case distinction then yields that ψ
indeed defines θ. If u21 takes the value u2, then x and y either take the values u1 and
v1, or u3 and v3. If u21 takes the value u3 then x and y can either take the values u1
and v1, or u2 and v2.

The pp-formula ψ uses only constants and the relation Re to define θ. Hence, idempo-
tent polymorphisms of D preserve θ and the relation {(s, t) : ∃z (s, z) ∈ θ, (t, z) ∈ Re}
which is the complete graph K3 on {u1, u2, u3}. The only idempotent polymorphisms
of K3 are projections, see, e.g., [Bod21, Proposition 6.1.43].

Theorem 6.2.7. Let M be a non-trivial, consistent, strong Maltsev condition of height 1.
The problem of deciding if a finite constraint language satisfies M is NP-complete.

Proof. The problem is in NP since we can simply guess polymorphisms and then check
whether they satisfy the equations of M in polynomial time.

We will show that a given graph G that meets the requirements of Lemma 6.2.6 is
3-colourable iff the language D associated to G in Lemma 6.2.6 satisfies M. Since D
is computable in polynomial time from G and since 3-colourability, even restricted to the
considered graphs, is NP-complete, the problem of deciding whether a given finite constraint
language satisfies M must then be NP-hard.
Suppose that D satisfies M. By Lemma 6.2.5, the core C of D satisfies M with idem-

potent polymorphisms. If D would be a core, said idempotent polymorphisms that satisfy
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M would restrict to projections on a 3-element subset S of D by Lemma 6.2.6 (iii). This
contradicts that M is non-trivial. Hence, D cannot be a core and by Lemma 6.2.6 (i), the
graph G is 3-colourable.
If D does not satisfy M, then neither does the core C of D by Lemma 6.2.5. Since M

is consistent, it is satisfied by idempotent operations on C. If G was 3-colourable, these
idempotent operations would be polymorphisms of C by Lemma 6.2.6(ii), contradicting
that C does not satisfy M. Hence, G is not 3-colourable.

Corollary 6.2.8. Deciding whether a given finite constraint language has bounded rela-
tional width is NP-complete.

Proof. Finite constraint languages with bounded relational width are exactly those that
satisfy the non-trivial, consistent, strong Maltsev condition MBW of height 1 from Exam-
ple 6.2.3. The theorem follows from Theorem 6.2.7.
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