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Universitätsklinik für Radiologie
der Medizinischen Universität Wien

und in der

Arbeitsgruppe Medizinische Physik des
Institutes für Diagnostische und Interventionelle Radiologie

der Friedrich Schiller Universität Jena

unter der Anleitung von

Univ. Doz. DI Dr. Markus Barth

durch

Stephan Witoszynskyj, Bakk.techn.
Zimmermanngasse 22

1090 Wien

Wien, 1. September 2007

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Kurzfassung

Eine Besonderheit von Magnet Resonanz (MR) Daten ist, dass sie, im Gegen-
satz zu vielen anderen bildgebenden Verfahren, komplexwertig sind. Trotzdem
nutzen die meisten Anwendungen nur die Magnitudeninformation. Nichtsdesto-
trotz gibt es aber Anwendungen, die auf der Phaseninformation basieren, da
die Phase sehr sensitiv ist. In diesen Anwendungen stellt das Aliasing (auch
Phase-Wrapping genannt), das auf Grund des beschränkten Definitionsberei-
ches der Phase auftritt, ein schwieriges Problem für die Nachbearbeitung dar.
Die Beseitigung der resultierenden Mehrdeutigkeiten wird als Phase Unwrapping
bezeichnet.

Im Rahmen dieser Masterarbeit wurde ein zweidimensionaler Region-Growing
Phase-Unwrapping-Algorithmus für MR-Phasenbilder optimiert. Das Ziel war
es eine Methode zu entwickeln, die besonders für suszeptibilitätsgwichtete Bild-
gebung (SWI) geeignet ist. SWI ist eine spezielle MR Technik, die auf hoch-
aufgelösten Daten basiert, die oft ein niedriges Signal zu Rausch Verhältnis
(SNR) aufweisen. Die Implementierung des Algorithmus, Φun, wurde ausgie-
big an Phantom und in vivo Daten getestet und mit einer etablierten Methode
verglichen. Gerade bei hochaufgelösten Daten mit niedrigem SNR war Φun so-
wohl in Bezug auf Geschwindigkeit als auch im Sinne der Verlässlichkeit der
Ergebnisse überlegen.

Abstract

Magnetic Resonance Imaging (MRI) data, unlike the data of many other imaging
modalities, are complex valued. Nevertheless, in most applications only the
magnitude information is used. However, since the phase is very sensitive, there
are techniques that are based on phase images. For data acquired with those
techniques aliasing (also known as phase wrapping) due to the limited domain
of the phase poses a difficult problem to post processing. Resolving the resulting
ambiguities is known as phase unwrapping.

For this thesis a two-dimensional region growing phase unwrapping algorithm
was optimized for MR phase images. The goal was to develop a method that
is especially suited for Susceptibility Weighted Imaging (SWI). SWI is a special
MR technique that is based on high-resolution data which often have a low
signal-to-noise ratio (SNR). The implementation of the algorithm, Φun, was
evaluated extensively on both phantom and in vivo data, and compared to an
established method. Φun’s performance, both in terms of speed and robustness,
proved to be superior especially in the case of high resolution, low SNR data,
such as SWI data.
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In diesem Zusammenhang möchte ich mich ganz besonders bei Prof. Dr. Jür-
gen Reichenbach bedanken, der mich in seine Arbeitsgruppe in Jena aufgenom-
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1
Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) probably is the most powerful, but also the
most complex, tool available for diagnostic imaging today. One reason for this
is that MRI is sensitive to a large number of physical effects. This, on one hand,
allows for an ever wider range of applications, but on the other hand makes it
challenging to design robust data acquisition and image processing tools and
protocols.

Although the data acquired by MRI consist of complex values, in clinical
routine, only magnitude images are reconstructed most of the time. However,
the phase is extremely sensitive and can thus be of great value. Phase infor-
mation can be exploited to detect small inhomogeneities of the magnetic field
caused by tissue interfaces [1, 2, 3], but also to measure large scale field inhomo-
geneities [4, 5]. This information can be applied to correct for distortions. Phase
information can also be utilized to measure flow [6] or mechanic properties of
tissue [7]. Phase images can also facilitate the segmentation of tissues [8].

Because of the limited domain of the phase, aliasing can occur. Aliasing itself
is not only a problem if the underlying physical quantity is to be measured,
but also if relative changes of the phase are of interest. The latter is the case
in many applications, such as Susceptibility Weighted Imaging (SWI). In those
applications phase aliasing causes these changes to appear larger than they
actually are. Aliasing artifacts appear as sharp edges in phase images. They are
commonly known as phase wraps. The removal of phase wraps in two or more
dimensional data is a non-trivial problem known as phase unwrapping. It arises
in fields ranging from optics, over radar interferometry to MRI.

1



1 Introduction

In MRI, there exist several situations in which phase unwrapping can be
circumvented. If phase images are used for field mapping, phase unwrapping
often can be avoided by computing the complex division of two complex images
instead of subtracting two unwrapped phase images [9, 10]. In SWI, homodyne
detection [11] often is applied [12]. However, these approaches do not provide
true unwrapping and can be subject to aliasing themselves. Latter usually
occurs in the presence of strong field inhomogeneities.

A number of methods for true phase unwrapping have been described in the
literature (e.g. [13, 14, 15, 16, 17, 18]). In the MRI community, Prelude [16]
is a well established phase unwrapping program that is freely available on the
internet. Prelude was developed for unwrapping of field maps for distortion
correction of Echo Planar Imaging (EPI) data, which requires relatively low
resolution phase images. However, its performance was found to be not sufficient
for high resolution applications such as SWI. For those applications not only
unwrapping speed is of concern, but also the performance in low Signal-to-Noise
Ratio (SNR) areas.

The aim of the work described in this thesis was to develop a method that
provides fast phase unwrapping for high resolution MRI applications such as
SWI that often are affected by low SNR. The program that I have implemented
is called Φun which stands for “Phase UNwrapper”.

1.2 Overview

This master thesis is structured as follows:

Chapter 2 and 3 give an overview of the physical concepts and principles of
MRI. An understanding of those foundations is necessary for appreciating
difficulties and limitations of MRI data,

Chapter 4 explains how complex images are obtained from measuring physical
quantities which are real valued. The effects of noise are described and
problem caused by the limited domain of the phase – phase wraps – as well
as approaches to solve this problem are discussed. Finally, the challenges
posed by modern fast image acquisition techniques are discussed.

Chapter 5 describes the idea behind phase unwrapping by a region growing
algorithm and the problems observed when this approach is applied to MRI
data. Suggestions for optimizing this approach for MRI are introduced and
evaluated.

Chapter 6 discusses some of the details of the implementation of the approach
described in the previous chapter. The implementation was named Φun.
The implementation will be referred to by this name throughout the thesis.
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Chapter 7 describes the evaluation of Φun and the comparison with an estab-
lished method, namely Prelude.

Chapter 8 discusses properties of the algorithm as well as potential applica-
tions, and, finally,

Chapter 9 summarizes the conclusions drawn from the work described in this
thesis.
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2
Theory of Nuclear Magnetic

Resonance

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI)
are complex techniques that exploit a number of physical effects and properties.
Thus, a description of the theory of NMR has to include quantum mechanics,
electrodynamics and statistical mechanics. As the name NMR implies the very
starting point of such a description has to be the magnetic behaviour of nuclei.
This behaviour is a result of a quantum mechanical property called spin that
can be attributed to all kind of particles. Nevertheless, due to the Ehrenfest

theorem which states that classical physics can be applied to the expectation
value of a quantum variable, and the large number of nuclei present in any
NMR experiment, a large fraction of NMR can be described in terms of classical
mechanics which will be done most of the times throught these sections.

2.1 Spin, Angular Momentum and Magnetic

Moment

Angular Momentum in Classical Mechanics

Classical mechanics distinguishes between two different types of rotation of a
rigid body: rotation about an external axis and rotation about the center of
mass. A quantity named angular momentum can be attributed to each type
of rotation (see for example [1]). In the first case it is called orbital angular
momentum Lorbital and is calculated as

Lorbital = r × p , (2.1)
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2 Theory of Nuclear Magnetic Resonance

where r is the distance of the center of mass from the axis of rotation and p the
momentum. In the second it is called spin Lspin and is given by

Lspin = Iω , (2.2)

with I being the moment of inertia and ω the angular frequency. In principle,
there is no difference between the two angular momenta. For a given object and
a given axis of rotation, the spin angular momentum (eq. 2.2) can be derived
from the formula for the orbital angular moment (eq. 2.1) by integrating over
the object.

Orbital angular momentum Lorbital and spin angular momentum Lspin can be
added up to form a total angular momentum Ltotal

Ltotal = Lorbital + Lspin . (2.3)

The total angular momentum Ltotal is a conserved quantity.

Magnetic Moment

The magnetic (dipole) moment µ [2] is defined as

µ =
1

2

∫

d3 r r × j(r) (2.4)

with j(r) being a current density. It relates the torque τ acting upon a current
distribution in a magnetic field B to this field:

τ = µ × B (2.5)

For a simple loop current, equation 2.4 can be simplified to

µ = jA , (2.6)

where A is the area enclosed by the loop and j the current.
It can be shown easily that, in case of a rotating and electrically charged

object, the magnetic moment is related to the angular momentum: let’s consider
an infinitely thin ring of radius r, mass m that has a charge q distributed around
the whole circumference. The ring rotates about its center with an angular
velocity of ω. For simplicity the ring is assumed to lie within the x-y plane and
to be centered about the z-axis (figure 2.1). As a result the vector equations
can be simplified to scalar equations.

The moment of inertia I can be calculated to be

I = mr2 . (2.7)

The angular momentum hence is

L = Iω = mr2ω . (2.8)

6



2.1 Spin, Angular Momentum and Magnetic Moment

r
y

z

ω

v

dq

x

Figure 2.1: A ring that has a charge q, a mass m and is rotating about the z-axis
has a magnetic moment µ that is parallel to the axis of rotation and
proportional to the ring’s charge, mass and angular momentum.

The rotation of the charged ring corresponds to an electric current j circulat-
ing in a loop. The current is given by

j =
qω

2π
. (2.9)

Using equation 2.6, the ring’s magnetic moment µ can be thus written as

µ = πr2j = r2 qω

2
. (2.10)

ω can then be substituted using equation 2.8 leading to

µ =
r2qL

2I
=

q

2m
L = γL . (2.11)

γ is called the gyromagnetic ratio. It can be shown that the relation γ = q

2m

holds for any object as long as both charge and mass are distributed uniformly.

Angular Momentum in Quantum Mechanics

As in classical mechanics, in quantum mechanics, one has to distinguish between
orbital and spin angular momentum. The operators for the orbital angular mo-
mentum can be derived from the classical orbital angular momentum (eq. 2.1) [3]
and are given by

Lx =
~

i

(

y
∂

∂z
− z

∂

∂y

)

, Ly =
~

i

(

z
∂

∂x
− x

∂

∂z

)

and Lz =
~

i

(

x
∂

∂y
− y

∂

∂x

)

.

(2.12)
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2 Theory of Nuclear Magnetic Resonance

particle(s) spin

bosons

photon 1
8 gluons 1
W±, Z0 1
graviton 2

fermions
νe, νµ, ντ

1
2

e−, µ−, τ− 1
2

u, d, s, c, b, t 1
2

Table 2.1: Fundamental particles and their spins.

It can be shown easily that the angular momentum’s components Lx, Ly and
Lz do not commute

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly . (2.13)

This means that Lx, Ly and Lz are incompatible observables and, because of
Heisenberg’s uncertainty principle, cannot be measured at the same time. As
a consequence L cannot be known. Nevertheless, each component Lx, Ly and
Lz commutes with the squared total angular momentum

L2 = L2
x + L2

y + L2
z (2.14)

[

L2,L
]

= 0 . (2.15)

Thus, L2 and one of the components can be measured at the same time. This
means that functions exist that are eigenfunctions of both L2 and Lz (or any
other component).1 The eigenequations can be derived to be

L2|ψ〉 = ~
2l (l + 1) |ψ〉 and Lz|ψ〉 = ~ml|ψ〉 (2.16)

with
l = 0, 1, 2, . . . and ml = −l,−l + 1, . . . , l − 1, l . (2.17)

This means that both L2 and Lz are quantized and can assume discrete values
only.

The mathematical theory of the intrinsic angular momentum – the spin S –
basically is the same as the one of the orbital angular momentum. As in the case
of the angular momentum, the components (Sx, Sy and Sz) do not commute

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy (2.18)

and, thus, cannot be measured at the same instant. The eigenvectors of S2 and
Sz satisfy

S2|sms〉 = ~
2s (s+ 1) |sms〉 and Sz|sms〉 = ~ms|sms〉 (2.19)

1In text books, the z-component is used as a “synonym” for the components of the angular
momentum.
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2.1 Spin, Angular Momentum and Magnetic Moment

|J | =
√

j (j + 1)~

j = 1
2

~

2

−~

2

Figure 2.2: The schematic relation between J , |J | and Jz for a particle with a
total angular momentum number of j = 1

2
(e.g. l = 0 and s = 1

2
).

with s and ms having values of

s = 0,
1

2
, 1,

3

2
, . . . and ms = −s,−s+ 1, . . . , s− 1, s . (2.20)

The value of s is an immutable property of fundamental particles. All funda-
mental particles have either s = 1

2
, s = 1 or s = 2 (tab. 2.1). Fundamen-

tal particles having integer spin are called gauge bosons and are subject to
the Bose-Einstein statistics. They act as mediator of the four fundamental
forces. Particles having spin s = 1

2
are called fermions. They are subject to the

Fermi statistics. An important consequence of the Fermi statistics is Pauli’s
exclusion principle.

Spins of two or more particles can be added up to form a total angular mo-
mentum. For a two particle system the resulting total spin quantum number s
can assume values from |s1 − s2| to (s1 + s2):

s = |s1 − s2| , |s1 − s2| + 1, . . . , (s1 + s2) − 1, (s1 + s2) (2.21)

This equation can be generalized for systems consisting of more than two par-
ticles. In case of a combination of three quarks, for example u, u and d, the
possible total angular momentum (assuming all quarks have zero orbital angular
momentum) can be either s = 1

2
or s = 3

2
. These two possibilities are considered

to be two distinct particles: the proton in case of s = 1
2

and ∆+ in case of s = 3
2
.

Spin S and angular momentum L can couple to form the total angular mo-
mentum

J = L + S . (2.22)

Just as in the case of angular momentum L and spin S, J2 and Jz fulfill the
eigenvalue equations

J2|jmj〉 = ~
2j (j + 1) |jmj〉 and Jz|jmj〉 = ~mj|jmj〉 (2.23)

with

j = |l − s| , |l − s| + 1, . . . , l + s− 1, l + s and mj = −j,−j + 1, . . . , j − 1, j .
(2.24)
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2 Theory of Nuclear Magnetic Resonance

Z A J NucleusA
Z

even even 0 C12
6 , O16

8

odd odd 1
2
, 3

2
, 5

2
, . . . H1

1 , N15
7 , F19

9 , P31
15

even odd 1
2
, 3

2
, 5

2
, . . . C13

6 , O17
8

odd even 1, 2, 3, . . . H2
1 , N14

7

Table 2.2: Angular momentum quantum numbers of some important nuclei
(taken from [6]).

The schematic relation between J , |J | and Jz for a particle having s = 1
2

and
l = 0 and thus j = 1

2
is shown in figure 2.2. In case of atoms, the total

angular momentum J gives rise to the anomalous Zeeman effect. This effect is
a consequence of different orientations of J with respect to an external magnetic
field B having slightly differing energies.

In case of nuclei, the total angular momentum can be calculated using the
nuclear shell model (see for example [4] or [5]). According to this model, the
spins of protons and neutrons have to be summed up separately. The total spin
S and the total angular momentum L are then coupled to form a total angular
momentum J (the values of J for several selected nuclei is given in table 2.2).2

Often, especially in MR literature, the total angular momentum J of a nucleus
is referred to as spin. This nomenclature will be used in the following sections.

Spin and Magnetic Moment

Just as there is a magnetic dipole moment µ associated with the classical angular
momentum, a magnetic dipole moment µ can be attributed to the spin of a
particle.3 The proportionality is given by an equation similar to equation 2.11:

µ = γS (2.25)

where γ is the gyromagnetic ratio. The magnetic moment is quantized in the
same way as the spin S.4

2This scheme does not hold for heavier nuclei, because these exhibit jj coupling. In this
case, the spin Si and the angular momentum Li of each nucleon have to be coupled first
to form a Ji. The Ji then couple together to form the total angular momentum J .

3Particles do not necessarily have to be electrically charged to have a magnetic dipole
moment. For example the neutron has no net charge, but a magnetic dipole moment
µ = −1.9130427 ± 0.0000005µN [7]. The reason for this is that the neutron is composed
out of three quarks, which all have a non-zero charge.

4Historically, spin was introduced by Goudsmit and Uhlenbeck to explain the anomalous
Zeeman effect. According to their theory, spin is associated with a magnetic momentum.
The quantization of spin and the magnetic momentum was shown experimentally by Stern

and Gerlach in the famous experiment named after them.
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2.2 Free Spins in a Magnetic Field

The gyromagnetic ratio γ is an intrinsic property of each particle. For the
electron it is given by

γe = ge
µB

~
. (2.26)

µB is called Bohr magneton and is defined as

µB =
e~

2me

= 927.400915(23) × 10−26 JT−1 [8]. (2.27)

ge is the electron’s Landé factor. The precise prediction of its value

ge = −2.0023193043622(15) [8] (2.28)

is one of the big successes of quantum electrodynamics (QED).

In case of nuclei, the magnetic moment is expressed in units of nuclear mag-
netons

µN =
e~

2mp

= 5.05078324(13) × 10−27 JT−1 [8]. (2.29)

The magnetic moment of a nuclei is thus given by

µ = γJ = gJ

µN

~
J . (2.30)

gJ is characteristic for each nucleus.

2.2 Free Spins in a Magnetic Field

By solving the Schrödinger equation using the Hamiltonian of a spin 1
2

particle at rest in a magnetic field B = B0ẑ and calculating the expectation
value of the spin 〈S〉 one obtains following values for the individual components:

〈Sx〉 =
~

2
sinα cos(γB0t)

〈Sy〉 = −~

2
sinα sin(γB0t)

〈Sz〉 =
~

2
cosα

(2.31)

This means that the expectation value precesses about the direction of the
field at the Larmor frequency

ω = γB0 . (2.32)

The angle α by which 〈S〉 is tilted from the direction of the magnetic field
depends only on the initial conditions and is constant (figure 2.3).
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2 Theory of Nuclear Magnetic Resonance

α

x

y

z
ω

<S>

Figure 2.3: Precession of the expectation value 〈S〉 in a uniform magnetic field.

As stated by Ehrenfest’s theorem, the same result should be obtained if
the classical equations of motions are solved. An angular moment L on which
a torque τ is acting evolves according to

d L

d t
= τ . (2.33)

Substituting equation 2.5 and equation 2.115 into this equation yields

d µ

d t
= µ × γB = ω × µ . (2.34)

The solution is a time-dependent magnetic moment of the form

µ(t) =





µxy cos (ωt)
µxy sin (ωt)

µz



 (2.35)

which has exactly the same form as the equation of the expection value (eq. 2.31).
This solution also holds for a magnetization vector M which is the sum of a
number of moments µi

M =
∑

i

µi

d M

d t
= ω × M .

(2.36)

2.3 Spin Ensembles in a Magnetic Field

If an object having a magnetic moment µ is placed in a magnetic field B not
only a torque τ acts upon it, but it also has a potential energy Epot depending
on its orientation.6 This potential energy is given by

Epot = −µB . (2.37)

5Of course, the quantum mechanical value for γ has to be used in equation 2.11.
6Since the potential energies are the eigenvalues of the Hamiltonian, this relation was im-

plicitly used in the derivation of the equation for the expectation value in the previous
section.
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2.3 Spin Ensembles in a Magnetic Field

nucleus
“nuclear magnetic moment Larmor frequency rel. abundance
spin” J µ [µN] ν

B
[MHz/T] in biol. systems

H1
1

1
2

2.793 42.58 1
Na23

11
3
2

2.216 11.27 10−3

P31
15

1
2

1.131 17.25 1.4 × 10−3

C13
6

1
2

0.702 10.71 2.5 × 10−4

F19
9

1
2

2.627 40.08 6.3 × 10−5

Table 2.3: Selected nuclei and their “nuclear spin” J , magnetic moment, Lar-

mor frequency, as well as their abundance in biological systems rel-
ative to H1

1 (adapted from [6, 9]).

If the magnetic moment is quantized the potential energy Epot will also have
discrete values only

Em = −γ~BmJ with mJ = −J,−J + 1, . . . , J − 1, J . (2.38)

A spin 1
2

particle will thus have two energy levels with an energy difference

∆E = γ~B with B = |B| . (2.39)

Transitions between the two energy levels are possible by the emission or ab-
sorption of photons. The frequency of the photons is given by

∆E = hν = ~ω . (2.40)

This frequency is called the Larmor frequency and can also be written as

ω = γB . (2.41)

For the hydrogen nucleus the Larmor frequency is ν
B

= γ

2π
≈ 42.58 MHz/T.

Table 2.3 lists a few selected nuclei and their spin J , magnetic moment µ,
Larmor frequency ν and relative abundance in biological systems such as the
human body.

If an ensemble of non-interacting spin 1
2

particles is placed in an external
magnetic field B both energy levels (γ~B and −γ~B) will be populated equally.7

If, however, the ensemble interacts with a reservoir the population distribution
in thermal equilibrium is given by the Boltzmann statistics

n− 1

2

n 1

2

= e
− ∆E

kBT = e
− γ~B

kBT , (2.42)

where kB = 1.3807× 10−23 J/K is the Boltzmann constant and T the temper-
ature. This means that the state of higher energy will be less populated than

7This, of course, is only true if the particles were not polarized before they were placed into
the magnetic field.

13



2 Theory of Nuclear Magnetic Resonance

the state of lower energy. However, in general, γ~B will be much smaller than

kBT , and thus the ratio
n
−

1
2

n 1
2

will be close to one.

Using equation 2.42, the population difference can be calculated to be

∆n = N tanh

(

γ~B

2kBT

)

≈ Nγ~B

2kBT
(γ~B ≪ kBT ) (2.43)

At room temperature T ≈ 300 T and a magnetic field B = 3 T, this results in
the lower energy level having an excess of

∆n ≈ 10−5N (2.44)

particles. This population difference leads to a net magnetization of

M = ∆n · µ ≈ Nγ~µB

2kBT
(2.45)

in thermal equilibrium. Due to the large number of nuclei involved in a typical
MR experiment (N is in the order of Avogadro’s number NA = 6.022 ×
1023 mol−1), M is of detectable size.

2.4 Relaxation Mechanisms

In the previous two sections, the magnetization of a spin ensemble in thermal
equilibrium and the behavior of a non-interacting magnetic moment with an
arbitrary initial condition were discussed. In this section these two aspects shall
be fused. The question on how an initial condition that differs from thermal
equilibrium can be obtained will be discussed in a later section.

The transition from a given magnetic moment M to the equilibrium moment
M0 is called relaxation. The z component of M0 is given by equation 2.45.
Since in thermal equilibrium there is no energy difference between a magnetic
moment’s orientation perpendicular to the magnetic field, each possible orien-
tation is equally probable. The transverse component of the total magnetic
moment M0 must thus be 0. Because of this, and for reasons that will become
clear soon, it makes sense to split the discussion of relaxation mechanisms into
the relaxation of the longitudinal moment Mz and the relaxation of the trans-
verse moment M⊥.8 The first process is called “spin-lattice relaxation”, the
second “spin-spin relaxation”.

8Strictly speaking, this is allowed only if the time constant of the process leading to the
recovery of the longitudinal magnetic moment is much longer than the process leading to
the decay of the transverse component.
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Figure 2.4: Spin-lattice relaxation: the longitudinal magnetization Mz recovers
with time due to spin flip processes. Spin-spin relaxation (which is
shown in figure 2.5) takes place at the same time independent of
spin-lattice relaxation.

Spin-Lattice Relaxation

Changes in Mz can only occur by a spin’s transition from one of its quantized
orientations to another. Since both energy and angular momentum have to be
conserved such a spin flip requires energy and angular momentum exchange with
the surroundings (referred to as lattice) of the nucleus.

Using Maxwell’s theorem of relaxation, the spin-lattice relaxation can be
expressed mathematically as a differential equation

dMz

d t
= −Mz −M0

T1

. (2.46)

The solution of this equation is given by

Mz(t) = M0

(

1 − e
− t

T1

)

+Mz(0) e
− t

T1 , (2.47)

where Mz(0) is the initial longitudinal magnetization (i.e. immediately after a
RF pulse). The time constant T1 is referred to as longitudinal or spin-lattice
relaxation time (fig. 2.4). In solid insulators, T1 can be as long as 1000 s, while
in conductors it can be in the range of ms.9 Typical values for T1 of human
tissues are given in table 2.4.

Spin-Spin Relaxation

The decay of the transverse magnetic moment M⊥ (referred to as spin-spin
relaxation) occurs independent of the spin-lattice relaxation. Furthermore, it is
not a result of energy exchange, but of a mechanism called “dephasing”.

9In metals, the electrons in the conduction band form an additional energy reservoir. Thus,
the energy exchange can occur at a faster rate.
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2 Theory of Nuclear Magnetic Resonance

Tissue T1 [ms] T2 [ms]

white matter 600 80
gray matter 950 100
cerebrospinal fluid 4500 2200
fat 250 60
muscle 900 50
blood 1200 100-200

Table 2.4: Spin-lattice relaxation times (T1) and spin-spin relaxation times (T2)
of several tissues at a field strength of B0 = 1.5 T and body temper-
ature (adopted from [9]).
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Figure 2.5: Spin-spin relaxation: because spins experience different local field
strengths they precess at different frequencies. This leads to de-
phasing of the spins and a decay of the transverse magnetization
M⊥.
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2.4 Relaxation Mechanisms

Within any sample, not all spins will experience the same magnetic field. The
reason can be static inhomogeneities of the magnetic field, or stochastic processes
such as local random fluctuations of the magnetic field. As a result not all spins
will precess with the same Larmor frequency. M⊥ will thus be an average over
a large number of spin isochromats precessing at different frequencies. In a frame
of reference rotating with M⊥ it will appear as if the magnetic moments would
smear out over the whole transverse plane (figure 2.5). The averaged magnetic
moment will hence approach zero. If only random processes are taken into
account the time constant of this process is T2, and T ⋆

2 if static inhomogeneities of
the magnetic field are considered as well. The time constants of these processes
can usually be separated

1

T ⋆
2

=
1

T2

+
1

T ′
2

. (2.48)

The time dependency of the magnitude of the transverse magnetization M⊥ is
given by

|M⊥(t)| = |M⊥(0)| e−
t

T⋆
2 . (2.49)

Typical values for T2 of human tissues are given in table 2.4. The differences
in relaxation times T1 and T2 between various tissues types give rise to image
contrast in anatomical MRI.

Bloch’s Equations

By introducing the relaxation mechanisms into equation 2.34 (or equation 2.36,
respectively) one obtains a set of differential equations known as Bloch’s equa-
tions:

dMx

d t
= (M × γB)x −

Mx

T2

= γ (MyBz −MzBy) −
Mx

T2

dMy

d t
= (M × γB)y −

My

T2

= γ (MzBx −MxBz) −
Mx

T2

dMz

d t
= (M × γB)z −

Mz −M0

T1

= γ (MxBy −MyBx) −
Mz −M0

T1

(2.50)

From these equations it is obvious that while spin-lattice relaxation also has an
effect on the transverse magnetization M⊥, spin-spin relaxation has no influence
on the longitudinal magnetization. In biological systems spin-spin relaxation
always occurs at a much faster rate than spin-lattice relaxation (T1 > T2) and
thus the influence of spin-lattice relaxation on the transverse magnetic moment
M⊥ can be neglected.
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Figure 2.6: General relationship between two frames of reference. The primed
coordinates denote the moving frame, x, y and z the resting frame.
In case of the description of the magnetic moment as seen from a
rotating frame of reference both rOO′ and

d rOO′

d t
vanish (adopted

from [10]).

2.5 Magnetic Moments and Radio Frequency

Fields

In the previous sections the behavior of a magnetic moment M in a static
magnetic field B and the mechanisms leading to the return of a given magnetic
moment to thermal equilibrium were discussed. This section will deal with the
question on how a deviation of a magnetic moment M from thermal equilibrium
can be obtained.

Let’s assume that in addition to a static magnetic field B0 = B0ẑ that causes
a magnetic moment to precess at a Larmor frequency ω0 a rotating radio
frequency (RF) field B1 with the frequency ω is applied:

B1 =





B1 cosωt
B1 sinωt

0



 . (2.51)

This leads to a total magnetic field

B = B0 + B1 =





B1 cosωt
B1 sinωt
B0



 . (2.52)

The solution of the resulting equations of motion can be simplified if a trans-
formation into a coordinate system (figure 2.6) rotating with the RF field is
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2.5 Magnetic Moments and Radio Frequency Fields

performed [6]:
d M ′

d t
= −γB′ × M ′ = ω′ × M ′ . (2.53)

Transforming the time derivative to the rotating frame and taking into account
that the origins of both frames coincide yields

d′ M ′

d t
=





ωM ′
y

−ωM ′
x

0



 +





γB0M
′
y

−γB0M
′
x + γB1M

′
z

−γB1M
′
y



 = −γ





B1

0
B0 + ω

γ



 ×





M ′
x

M ′
y

M ′
z



 .

(2.54)
The last term in eq. 2.54 now contains an expression for an effective field

B′′ =





B1

0
B0 + ω

γ



 . (2.55)

Resonance

It is intuitively obvious that for

ω0 − ω = ∆ω = 0 (2.56)

the effective field B′′ (eq. 2.55) becomes

B′′ =





B1

0
0



 . (2.57)

Substituting this effective field into the equation of motions leads to

d′M ′
x

d t
= 0

d′M ′
y

d t
= −M ′

zω1

d′M ′
z

d t
= M ′

yω1 .

(2.58)

The resulting motion in the rotating frame of reference is thus a rotation about
the x′-axis. The angle depends on the strength of the RF Field B1 and its
duration t:

φ(t) = ω1t = −γB1t (2.59)

Thus, by choosing the amplitude and/or duration of B1 an arbitrary inclination
can be obtained. In MR two angles are of special importance:

B1t = − π

2γ
→ φ =

π

2
(2.60)

and
B1t = −π

γ
→ φ = π . (2.61)

The first is called a 90 ◦ pulse and the second a 180 ◦ pulse.

19



2 Theory of Nuclear Magnetic Resonance

Figure 2.7: Iso-surface of the magnitude of the magnetic field Bdipole of a point
dipole. Note that the torus and the handles have opposite signs.

2.6 The NMR Signal

The magnetic field Bdipole that is generated by a (point) dipole M is given by

Bdipole(r) =
µ0

4πr3
(3 (Mr̂) r̂ − M ) +

2µ0

3
Mδ3(r) , (2.62)

where r is the distance from the dipole to the point of measurement, r̂ the
unity vector pointing in the same direction as r and µ0 the magnetic vacuum
permeability (figure 2.7 displays an iso-surface of the magnetic field strength
Bdipole). Combining this expression with equations 2.35 and 2.36 leads to a
time varying magnetic field Bdipole(r, t).

If a loop is placed somewhere in the vicinity of the sample, the time varying
field Bdipole(r, t) gives rise to an electromotive force E in the loop. According
to Faraday’s law [2] of in induction the electromotive force E is given by

E = −d Φ

d t
= − d

d t

∫

coil

d A · Bdipole(r, t) . (2.63)

As a result a current will be induced that, according to Lenz’s law, will oppose
the flux changes. In MR experiments, this current is the measured signal10.
From this equation it is obvious that only variations of the magnetic field with
time contribute to the signal and, thus, the static field can be ignored. Fur-
thermore the contribution of the relaxation processes can be ignored when cal-
culating the differential, since they happen on a time scale that is much slower
than the precession. Thus, only the rotation of the transverse magnetization
M⊥ leads to the NMR signal.

Although, in principle, equation 2.63 is the general form of Faraday’s law of
induction, there is an implicit assumption in the way it is written: Bdipole(r, t)

10For reasons that will be explained later, usually a voltage is measured and the current is
kept small by using circuits with a high impedance.
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was assumed to be a dipole field. This holds only if the sample is very small
compared to the coil or at a large distance from the coil. In NMR experiments
this is not fulfilled. Nevertheless, this does not pose a substantial problem since
one can split up the magnetic dipole moment M into a distribution of magnetic
moments µi and compute the contribution of each to the total signal. This can
be done by applying the principle of reciprocity.11 The magnetic field Breceive(r)
that would be generated by a current in the loop is used as spatial weighting
factor called coil sensitivity. The induced electromotive force E is then given by
[9]

E = − d

d t
Φ(t) = − d

d t

∫

sample

d3 rµ(r, t) · Breceive(r) . (2.64)

If we replace µ(r, t) in equation 2.64 with the solution of the equation of
motions for a magnetic moment in a magnetic field (eq. 2.35) it becomes appar-
ent that E oscillates with the Larmor frequency ω. If relaxation is taken into
account as well one obtains a waveform that is known as free induction decay
(FID) (fig. 2.8).
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3
Magnetic Resonance Imaging

The physical principles described in the previous chapter are exploited in an
imaging modality known as magnetic resonance imaging (MRI) [1]. MRI prob-
ably is the most important application of nuclear magnetic resonance (NMR)
today. This chapter starts with a simple derivation of the basic concepts that
allow imaging using the signal created by the precession of magnetic moments.
During this discussion most of the physics derived in the previous chapter is
neglected. By adding excitation and the relaxation mechanisms to the concepts
described in the beginning contrast mechanisms and two basic experimental
protocols for imaging are derived. A discussion of the properties of experimen-
tal data would be incomplete if the measurement process itself was left out.
The data acquisition has some very fundamental consequences on the images
obtained with MRI, it is thus discussed briefly. Finally some sources of image
artifacts are mentioned to illustrate the complexity of MRI and MRI data.

3.1 Basic Concepts of MRI

MRI is based on the resonance frequency’s dependency on the external magnetic
field B0 (eq. 2.41). Thus, if one manages to generate a magnetic field B0 that
is a function of space, the Larmor frequencies will also be a function of space,
and, therefore, space will be encoded by frequencies. The basic principles of
this encoding will be derived starting with a one-dimensional problem. The two
and three dimensional cases will be discussed afterwards. For lucidity, several
simplifications will be introduced: first of all signal decay will be neglected,
secondly, in each situation the problem will be treated as truly one dimensional,
or two dimensional, respectively. The fact that space is three dimensional and,
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3 Magnetic Resonance Imaging

thus, signals originating from all dimensions contribute to the total signal will
be ignored. Furthermore it is assumed that the sensitivity to signals coming
from the whole measured volume is uniform.

The One-Dimensional Problem

Let’s consider a one dimensional distribution of magnetic moments µ(x) in a
magnetic field B0 (fig. 3.1). B0 shall be B0 = B0ẑ, the precession of all moments
shall be in phase and their longitudinal component shall be zero. With this
assumptions, µ(x) can be written as

µ(x, t) = µ(x)





cosωt
sinωt

0



 , (3.1)

where ω = γB0. Substituting this expression into equation 2.64 under the as-
sumption that Breceive = Breceivexx̂ will yield an electromotive force E oscillating
with ω. E is proportional to the integral of µ(x):

E(t) = − d

d t

∫

dxBreceivexµ(x) cosωt ∝ sinωt

∫

dxµ(x) (3.2)

The measured signal s(t) is proportional to E(t).
Let’s assume that it is possible to modulate the z component of the magnetic

field B0 without changing any of the other components.1 The variation shall be
a linear function of x so that

Bz(x) = B0 +Gxx . (3.3)

Since applying the nabla operator to this function yields

∇Bz =





d Bz

d x
d Bz

d y
d Bz

d z



 =





Gx

0
0



 , (3.4)

Gx is called x gradient.
Because of equation 2.32 and 3.3 the Larmor frequency is now a function

of x
ω(x) = γBz(x) = γ (B0 +Gxx) . (3.5)

The signal given by equation 3.2 is thus modified to

s(t) ∝ d

d t

∫

dxµ(x) cos (ω0 + γGxx) t

∝
∫

dxµ(x) (ω0 + γGxx) sin (ω0 + γGxx) t .

(3.6)

1Strictly speaking it is not possible to modify a single component of the magnetic field
B0 without altering any of the other components because of Maxwell’s equations [2].
Nevertheless, if the modification is small a change of the axis of precession can be neglected.
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Figure 3.1: An one dimensional distribution of magnetic moments µ(x) (a) and
an example of a signal that results from those moments precessing
in a magnetic field to which a linear gradient is superimposed (b).

Using the coordinate transform

x′ = ω0 + γGxx

dx′ = γGx dx
(3.7)

and taking into account that, in general, γGxx is very small compared to ω0

equation 3.6 can be written as

s(t) ∝
∫

dx′µ(
x′ − ω0

γGx

) sin x′t ∝
∫

dx′µ′(x′) sinx′t . (3.8)

From this expression it is obvious that the measured signal (fig. 3.1(b)) is nothing
but the sine transform of the magnetic moments’ distribution (fig. 3.1(a))! Thus,
the distribution can be obtained from the measured signal by using the inverse
transform.

The Two-Dimensional Problem

The problem of encoding a second dimension can be solved using the same
assumptions as for the one dimensional problem. The only exception shall be
that the distribution of the magnetic moments is a function of not only x but
also of y. This leads to

µ(x, y, t) = µ(x, y)





cosωt
sinωt

0



 . (3.9)

If no field gradient is applied the signal can be written as

s(t) ∝ sinωt

∫∫

dx dy µ(x, y) . (3.10)
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(a) (b)

Figure 3.2: A two-dimensional distribution of magnetic moments µ(x, y) (a) and
profiles acquired from 0 ◦ to 360 ◦ in steps of 1 ◦ plotted as a sinogram
(b).

Just as before, it is possible to apply a gradient. Once again, this gradient
shall be along the x axis. Substituting the one dimensional distribution in
equation 3.8 by a two dimensional distribution and using equation 3.11 leads to

s(t) ∝
∫∫

dx′ dy µ(
x′ − ω0

γGx

, y) sin x′t ∝
∫

dx′ sin x′t

∫

dy µ′(x′, y) . (3.11)

It is obvious that only a single direction can be encoded by this approach.

The Projection Reconstruction Method

So far it has been assumed that the field gradient is applied along the x direction
and thus encodes along the x axis. Of course, instead of applying a gradient Gx,
one could use a gradient Gy along the y axis. This would yield an encoding in
the y direction. It is trivial to show that using linear combinations of Gx and Gy

allows for encoding in arbitrary directions. The transform of the signal yields
a profile of the density µ(x, y) perpendicular to the encoding direction. Such
a profile is equivalent to an absorption profile obtained with X-ray computer
aided tomography (CAT). The series of steps required for imaging can thus be
summarized as:

1. measure a set of density profiles of µ(x, y) by varying the angle of the
encoding direction step by step (figure 3.2b displays a set of profiles of the
distribution shown in figure 3.2a as a sinogram),

2. reconstruct the image by back-projection.

Although, this method was the one proposed for MRI originally [1], today the
Fourier reconstruction method is used in most MRI applications.
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3.1 Basic Concepts of MRI

The Fourier Reconstruction Method

One of the many assumptions that were made previously was that the magnetic
moments had a no phase shift with respect to t = 0. This was done because
the mathematical treatment is much easier, and therefore, the result is more
intuitive. In general, this will not be fulfilled. In the most general case (but
still using a many of the simplifications introduced in the treatment of the one
dimensional problem) equation 3.2 can be written as

s(t) ∝
∫∫

dx dy µ(x, y) sin (ω(x, y)t+ φ(x, y)) . (3.12)

To solve the one dimensional case, it was assumed that a gradient Gx is applied
along the x direction. Thus, the previous equation can be rewritten into the
form known from before:

s(t) ∝
∫∫

dx dy µ(x, y) sin (ω0t+ γGxxt+ φ(x, y)) . (3.13)

No statement about the history of the magnetic moments has been made so
far. It was assumed implicitly that t ≥ 0, that the signal is measured continu-
ously and that the gradient Gx is constant with respect to time. It shall be now
assumed that all magnetic moments were forced to a coherent precession by an
RF pulse at some point t < 0.2 Whatever happened between this excitation and
the start of the measurement is of importance now, since it might have changed
the phase φ(x, y). If, for example, a gradient G of the form

G =





0
Gy

0



 (3.14)

had been applied for a period ∆t, a magnetic moment at (x, y) would have
acquired a phase shift of

φ(x, y) = ∆ω∆t = γGyy∆t (3.15)

compared to a magnetic moment at (x, 0). The total signal would thus be

s(t) ∝
∫∫

dx dy µ(x, y) sin (ω0t+ γGxxt+ γGy∆ty) . (3.16)

Since γGy∆t is constant during a single experiment it does not change the
fact that only the x direction is encoded by this measurement. Nevertheless,
assuming that the experiment is repeated with different values of γGy∆t the

2The excitation is assumed to happen at t < 0 because the signal is measured from t = 0
onwards. Thus, a RF pulse at t = 0 would result in the situation described previously.
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(a) (b)

Figure 3.3: A two-dimensional distribution of magnetic moments µ(x, y) (a) and
the corresponding k-space (the logarithm of the magnitude is shown)
(b). Each line corresponds to the signal acquired after a certain
phase encoding gradient Gy was applied.

signal s(t) can be written as a function not only of the time t, but also of
γGy∆t. Using ky = γGy∆t simplifies the notation:

s(t, ky) ∝
∫∫

dx dy µ(x, y) sin (ω0t+ γGxxt+ kyy) (3.17)

It can be shown that the density µ(x, y) can be calculated from a set of signals
equally spaced along ky by a two dimensional Fourier transform (fig. 3.3).

The procedure for two dimensional imaging using the Fourier reconstruction
method can be summarized as:

• acquire a set of signals. During each acquisition the Gx gradient is applied.
This results in an encoding along the x direction.

• before each acquisition a gradient Gy is applied for a period ∆t. The
strength of the gradient varies from acquisition to acquisition. The varia-
tion of the Gy gradient provides for encoding in the y direction.

• perform a two dimensional Fourier transform on the full data-set. This
transform yields the density µ(x, y).

The gradient that is applied while the signal is acquired (in the previous
treatment this was Gx) is often called “read-out gradient”. The gradient that is
used to encode the other direction (Gy) is often named “phase encoding gradi-
ent”. The encoding directions are thus referred to as “read-out direction” and
“phase-encoding direction”, respectively.
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k-Space

To achieve a more consistent notation another coordinate transform shall be
introduced3:

γGxt = kx ⇔ t =
kx

γGx

(3.18)

The signal equation thus becomes

s(kx, ky) ∝
∫∫

dx dy µ(x, y) sin

(

kx

(

ω0

γGx

+ x

)

+ kyy

)

(3.19)

or

s(kx, ky) ∝
∫∫

dx′ dy µ′(x′, y) sin (kxx
′ + kyy) , (3.20)

with x′ = ω0

γGx
+ x and µ′(x′, y) = µ(x′ − ω0

γGx
, y). kx and ky span the so called

k-space [3]. The goal of an MRI acquisition is to sample k-space in a way that k-
space is covered completely. Equation 3.20 allows a description that is basically
independent of how the sampling and gradient application is performed. For
example, the sampling scheme for the projection reconstruction method can also
be expressed in terms of kx and ky. It thus can be shown that both methods
are equivalent.

The Three-Dimensional Problem

There are two methods for performing imaging of a volume. The first one is
imaging the volume slice by slice. For this it is necessary that only magnetic
moments within a certain slice are excited by an RF pulse. This can be achieved
by applying a gradient along the z direction during the duration of the pulse.
Thus, the frequency of the pulse will only match the Larmor frequency of
magnetic moments at a certain z position. Only these magnetic moments will
be turned towards the x–y plane by the desired angle. After such an excitation
both methods for two dimensional imaging, projection and Fourier imaging,
can be applied.

Truly three dimensional imaging can be achieved by extending the principle
of two dimensional Fourier imaging to three dimensions. This is done by
encoding along the z axis in the same manner as along the y axis. Thus, for
each y encoding step a number of z encoding steps are performed. In practice,
both y and z gradients can be applied at the same time.

3.2 Pulse Sequences

A number of assumptions that are violated in nature were made for the deriva-
tion of the fundamental concepts that enable imaging by NMR. One, for ex-

3For reasons of lucidity the definition of kx differs from the one usually found in the literature
by a factor of 2π.
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Figure 3.4: Illustration on the effects of different slice selection gradient
strengths. A stronger slice gradient (Gz1) yields a thiner slice
(adopted from [4])

ample, was to exclude both relaxation and excitation. This made it possible
to treat the signal as if it was infinite in time. Nevertheless it was mentioned
already that the acquistion of an magnetic resonance image requires repeated
excitation, encoding and read-out steps. Such a sequence is called a pulse se-
quence. Within this section a more realistic view of MRI shall be given and the
two most important basic sequence types shall be discussed.

RF Pulses and Slice Selection

In section 2.5, the properties a radio frequency must have to change the orienta-
tion of a magnetic moment by a desired amount were derived. It was shown that
the frequency has to match the Larmor frequency. Nevertheless, the fact that
a delta function like frequency spectrum corresponds to an infinite sine wave,
and thus to a pulse of infinite length, was neglected. The effects of limiting the
pulse length will be described in the next paragraphs.

Furthermore, it was shown in the previous section how magnetic field gradients
can be used for encoding space by magnetic field gradients for imaging. For most
of the derivation it was neglected that any sample stretches out in all three
dimensions. Only, in the last paragraphs, it was mentioned that by applying a
gradient along the third dimension while the sample is excited by an RF pulse,
images of single slices can be obtained. In the next paragraphs the properties
of such RF pulses and the corresponding gradients shall be discussed.

In most applications, one is interested to excite all magnetic moments within
a slab of finite thickness uniformly. The thickness might vary depending on
whether a two dimensional or a three dimensional sequence is performed, on how
much signal can be expected from a certain volume, or on how much the volume
might be affected from sources of signal loss (e.g. due to field inhomogeneities).

The relationship between location and resonance frequency in a situation
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Figure 3.5: A slice selective truncated RF pulse and a slice selection gradient
with an area A. The slice selection gradient is followed by a rephasing
gradient with an area ≈ A

2
.

where a linear gradient is applied holds not only for precessing magnetic mo-
ments but also during excitation. It is given by equation 3.5. Thus, an RF
pulse that is supposed to excite magnetic moments at a certain location has
to have a frequency that fulfills this equation. According to equation 2.59, the
angle by which a magnetic moment is turned into the x-y plane depends on
the magnitude and duration of the RF pulse. From these two equations it is
obvious that the pulse’s frequency spectrum has to resemble a boxcar function
with frequencies ranging from ω0 − γGz

∆z
2

to ω0 + γGz
∆z
2

to excite all magnetic
moments within a slab of finite thickness. Since the Fourier transform of a
rectangle centered around zero in frequency space is a sinc function in time do-
main, the envelope of the pulse has to be a sinc function. Figure 3.4 displays
the relationship between the thickness of the excited slice and the strength of
the slice selection gradient for a given pulse.

Unfortunately, also the sinc function spans the whole time domain. But un-
like, for example, the sine function it approaches zero asymptotically. Thus, in
principle, it can be truncated. Nevertheless, a truncation causes imperfection
(especially ringing) that give rise to an inhomogeneous excitation profile. The
shorter the pulse will be the stronger these artifacts will get. In practice, the
undesired effects of truncation can be mitigated if other windowing functions
than the boxcar function which corresponds to a simple truncation are used.

Another issue is that the slice selection gradient will cause magnetic moments
to precess at different frequencies and thus to build up a phase difference with
respect to the magnetic moments at the center of the slice:

φ(z, tp) = eiγGz(z−zo)
tp
2 , (3.21)

where z0 is the center of the slice and tp the duration of the slice selection
gradient. If this phase shift is not compensated for signal loss occurs. A com-
pensation can be achieved by applying the slice selection gradient with opposite
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sign and approximately half the area after excitation.4 Figure 3.5 shows both a
slice selective RF pulse and the scheme for switching the slice selection gradient
to compensate for dephasing.

Relaxation

The basic mechanisms leading to a decay of the transverse magnetic moment and
the build up of the equilibrium longitudinal magnetic moment were described
in section 2.4. This section will deal with the consequences of various relaxation
mechanisms for MRI. Although these processes are exploited to generate differ-
ent contrasts (i.e. proton density, T1 weighting, T2 weighting) by changing the
acquisition parameters, the contrasts themselves shall not be discussed.

It was pointed out before that the time constant T1 governing the recovery
of the magnetic moment to thermal equilibrium is much longer than the time
constant T2 describing the decay of the transverse component of the magnetic
moment. Thus, the two relaxation mechanisms can be treated independently.
T1 relaxation has following importance for imaging: the size of the transverse
magnetic moment after a pulse depends not only on the flip angle, but also
on the magnitude of the longitudinal magnetic before the pulse was applied.
Thus, if subsequent pulses are used to sample k-space the magnitude of the
moment that can be exploited by a pulse depends on how much the longitudinal
moment has recovered from the previous pulse because of T1 relaxation. The
time between excitations is referred to as repetition time TR. If TR is long T1

differences between tissues will not affect the image contrast. If TR is short T1

differences will be a contrast mechanism.

The relaxation of the transverse magnetic moment M⊥, on the other hand,
is a result of a multitude of causes. Dephaseing, in principle, is caused by a
variation of precession frequencies within a certain volume or by movement of
magnetic moments in an inhomogeneous field. Differing precession frequencies
can be either a result of time constant field inhomogeneities or by time dependent
field variations. It should be therefore obvious that a discussion of the decay of
the transverse magnetic moment M⊥ is rather complex.

Although the intrinsic processes leading to T2 decay are spin-spin interactions
which are random processes, for reasons of lucidity, the effects of time con-
stant field inhomogeneities are described first. This is followed by a discussion
of time varying field inhomogeneities and of magnetic moments moving in an
inhomogeneous field.

4The area under the refocusing gradient is exactly half the area of the slice selection gradient
only under the assumption that spins are flipped instantaneously and that no spin diffusion
or motion (flow) occurs [5].
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Static Field Inhomogeneities

Ideally, the magnetic field within a sample is homogeneous and of the same
strength as the applied field. This can be fulfilled only if the sample has the same
magnetic properties as vacuum, which is almost never the case. Materials alter
the magnetic field depending on their magnetic susceptibility χ. The magnetic
susceptibility χ is a material property that describes the relation between a
material’s magnetization and an applied field. The magnetic flux within the
material is given by

B = µ0 (1 + χ) H , (3.22)

where µ0 = 4π × 10−7 VsA−1m−1 is the vacuum’s magnetic permeability. De-
pending on their magnetic susceptibility χ, materials are classified as being
diamagnetic (χ ≤ 0), paramagnetic (χ ≥ 0) or ferromagnetic (in this case the
magnetic susceptibility is not a scalar). Most tissues in the human body are
diamagnetic.

The field within an object placed into an external field depends not only on
the sample’s susceptibility, but also on its geometry. The field outside of an
object is modified as well to satisfy the Maxwell equations at the boundaries.
Within biological samples, many areas with differing susceptibilities exist. Thus
the field within such a sample will never be homogeneous. As a result the local
Larmor frequencies deviate from the expected values. This causes the total
transverse magnetic moment to decay due to dephasing. The time constant for
this process is named T ′

2.
The field variations caused by susceptibility differences are constant in time

(at least within the time frame of the experiment). This means that the fre-
quency difference ∆ω between a magnetic moment at r and one at r′ stays
constant. If it was possible to change the direction of precession without al-
tering the absolute value of the precession frequency there would be a point in
time at which the moments have zero phase difference again and thus the total
magnetic moment would regain its maximum value. This rephasing of magnetic
moments is called an echo. It is obvious that the echo would occur after ex-
actly the same time span after sign reversal that the spins had for dephasing.
Although, reversing the sign of precession is impossible, methods that achieve
a similar behavior will be discussed in the next sections.

Time Varying Field Inhomogeneities

The magnetic field experienced by a spin depends not only on the applied field
and macroscopic material properties, but also on the microscopic environment.
Or in other words, on the atoms and molecules in its vicinity. Since these are
subject to thermal motions such as vibration or Brownian motion, which are
stochastic processes, the field that the spin is exposed to fluctuates randomly.
The phase shift φ a spin accumulates because of the random changes of the
magnetic field resembles a random walk [2]. The expectation value of φ2 in-
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creases with time. This means that the distribution of phases of an ensemble
will spread out and thus the total magnetic moment will decrease. This relax-
ation is intrinsic to the sample. It is the primary mechanism for T2 relaxation.

Magnetic Moments Moving in an Inhomogeneous Field

Let’s consider a homogeneous sample in which some sort of transport process,
for example diffusion, takes place. The effect of this transport process on signal
decay can be explained by a simple classical model. For this model we assume
a homogeneous sample placed in an inhomogeneous magnetic field.

Depending on its location, a proton contributes to the magnetic moment of a
certain isochromat. If this proton moves to a different location, it will contribute
to the isochromat that corresponds to the magnetic field at the new location.
Since the proton was precessing at a different frequency before, it will have a
phase difference with respect to the magnetic moment of the isochromat. If a
large number of protons are moving into and out of the isochromat, the total
number of protons contributing to the isochromat will stay constant (assuming
a zero net flux). Nevertheless, the magnetic moment of the isochromat will
change. In the most general case, the phase and the magnitude of the magneti-
zation vector will change. However, how those two are affected depends on the
transport process.

One can distinguish between two transport processes: diffusion and flow. The
first one, diffusion, is a stochastic process. Protons will move in and out of a lo-
cation randomly. Each proton will have a phase depending on its history, which
can be described by a random walk. As a result the expectation value of the
isochromat’s phase will stay constant over time, but the magnitude of its mag-
netization vector will decrease. As in the case of random field fluctuations, this
loss cannot be compensated for. Nevertheless, the impact of diffusion depends
on the inhomogeneity of the applied field. This is exploited by a method called
diffusion weighted imaging.

The second process, flow, leads not only to signal loss, but also to a phase
shift. This can be illustrated by considering the most extreme scenario in which
all protons move with the same velocity in the same direction. In this case the
movement would not lead to a signal loss, but only to a phase shift.

All stochastic processes, diffusion and random fluctuations of the local mag-
netic field, are subsumed under a single time constant - T2. The resulting decay
of the transverse magnetic moment is irreversible. The time constant for the
effective relaxation of the transverse magnetic moment includes the relaxation
caused by static field inhomogeneities and is called T ⋆

2 and is given by

1

T ⋆
2

=
1

T2

+
1

T ′
2

. (3.23)

The effect caused by T ⋆
2 relaxation is a signal that decays quickly after the

excitation pulse.
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Figure 3.6: Schematic illustration of the principle of a gradient recalled echo as
seen from the rotating frame of reference. After forcing the magnetic
moments to precess within the x-y plane by an RF pulse the mo-
ments will dephase due to an inhomogeneous field caused by the so
called (read)dephasing gradient (top row). Flipping the sign of the
gradient will reverse this effect. Spins that precessed faster before,
will be slower and vice versus. This results in a rephasing of the
magnetic moments (bottom row).

Gradient-Echo Imaging

Since the decay of the signal starts immediately after excitation and occurs
rapidly there is little time for complicated gradient switching schemes as required
by imaging. It was mentioned before that the fraction of the transverse magnetic
moment that is lost due to T ′

2 decay could, at least theoretically, be recovered if
it was possible to reverse the direction of rotation. Although, in practice, it is
not possible to change the direction of rotation in the laboratory frame, one can
modify the velocity of rotation. In the rotating frame this amounts to reversing
the motion of magnetic moments relative to each other (fig. 3.6). This can be
achieved by reversing the sign of the gradient. This kind of sequence is called
“gradient-echo sequence”(GE) or “gradient recalled echo sequence” (GRE).

The echo is generated when the integral of the gradient after gradient reversal
reaches the same size as before (fig. 3.7). Dephasing caused by field inhomo-
geneities (i.e. T ′

2 decay) cannot be compensated using this technique. Thus, the
signal is not subject to pure T2 decay and is sensitive to field inhomogeneities
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Figure 3.7: Schematic pulse diagram of a gradient-echo sequence (a) and the
corresponding k-space trajectory (b). The sequence is repeated for
each phase encoding step. The different strengths of the phase en-
coding gradient for each phase encoding step are indicated by the
dashed lines.

and susceptibility differences.

Spin-Echo Imaging

The sensitivity towards field inhomogeneities and susceptibility differences can
be avoided by using a so-called spin echo sequence. Figure 3.8 displays the
underlying principle as seen from the rotating frame of reference. After the ini-
tial pulse the magnetic moments dephase due to their different relative angular
velocities. After a while a 180 ◦ (or π) pulse is applied. In the rotating frame
of reference this pulse corresponds to a reflection with respect to a line passing
through the origin in the x-y plane (e.g. the x axis). As a result magnetic mo-
ments with a small deviation of their angular velocity from the angular velocity
of the transverse magnetic moment will be put ahead of those with a larger
difference. Thus the faster magnetic moments will “catch up” and an echo will
be generated. A precondition is, of course, that the angular velocity of each
magnetic moment stays constant. This condition can be fulfilled exactly only as
long as the magnetic moments are just subject to static field inhomogeneities.
Since in practice stochastic fluctuations of the magnetic field always are present
the maximum amplitude of the echo is affected by T2 decay (but not by T ′

2

relaxation).
A schematic pulse diagram and the corresponding k-space trajectories are

shown in figure 3.9. The sequence starts with a 90 ◦ pulse that rotates the
relaxed magnetic moment into the x-y plane. During the pulse, the slice selection
gradient Gz is applied. After the pulse, a refocusing gradient is employed along
the z-axis. Phase encoding is performed in the y direction. An additional
dephasing gradient is used along the x-axis. The purpose of this gradient is
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Figure 3.8: Schematic illustration of the principle of a spin echo as seen from the
rotating frame of reference. After forcing the magnetic moments to
precess within the x-y plane by a RF pulse the moments will dephase
due to field inhomogeneities (top row). A 180 ◦ pulse sets the slow
magnetic moments in front of the faster moments. Thus the faster
moments will“catch up”and an echo will be generated (bottom row).
Note that T2 decay has been neglected in this illustration.
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Figure 3.9: Schematic pulse diagram of a spin-echo sequence (a) and the corre-
sponding k-space trajectory (b). The sequence is repeated for each
phase encoding step. The different strengths of the phase encoding
gradient for each phase encoding step are indicated by the dashed
lines.

to ensure that the echo is centered in k-space. Although the gradient causes a
movement in positive kx direction, the refocusing pulse reflects the spin system
back to negative kx. Thus, k-space will be sampled from −∆kx

2
to ∆kx

2
during

readout. Note that also the sign of ky is flipped by the refocusing gradient.

3.3 Data Acqusition

Up to now, the signal has been implicitly treated as a infinite continuous func-
tion. However, data is not only acquired during a finite time window, but also
sampled in discrete time steps. This has some important consequences for imag-
ing.

Perfect time discrete sampling can be described by multiplying the signal s(t)
with a sample function w(t). The sampling function is defined as

w(t) = ∆t
∞

∑

m=−∞

δ(t−m∆t) [6], (3.24)

where δ(t) is the Kronecker delta function. The sampled signal ŝ(t) can thus
be written as

ŝ(t) = s(t)w(t) = ∆t
∞

∑

m=−∞

s(t)δ(t−m∆t) . (3.25)
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The Fourier transform of this function yields

f(x) =
1√
2π

∫ ∞

−∞

d t ŝ(t) e−ixt =
1√
2π

∫ ∞

−∞

d t ∆t
∞

∑

lm=−∞

s(t)δ(t−m∆t) e−ixt =

=
1√
2π

∆t
∞

∑

m=−∞

s(m∆t) e−ixm∆t

(3.26)
which is nothing but a Fourier series. s(m∆t) corresponds to the Fourier

coefficients. However, since the function computed by a Fourier series is pe-
riodic always, f(x) is a periodic function. The periodicity interval L is given
by

L =
2π

∆t
. (3.27)

This means the closer the samples are placed the larger is the periodicity interval
L.5 Or, in other words, the higher the sampling frequency the larger the length
of the period.

The notion of k-space was introduced previously to take into account that the
MR signal is a function of both gradient strength and time. By using k-space, a
formulation of the sampling that is independent of the actual gradient strength
can be given. The distance in k-space between two samples is given by

∆k = γG∆t . (3.28)

The sampled points of the signal are thus s(m∆k) and equation 3.26 becomes

f(x) =
1√
2π

∆k
∞

∑

m=−∞

s(m∆k) e−ixm∆k (3.29)

Since the samples s(m∆k) are nothing but the Fourier coefficients they can
be written as

s(m∆k) = sm =

√
2π

L

∫ L
2

−L
2

dxf(x) eixm∆k . (3.30)

Let’s assume that f(x) corresponds to the density of, for example, magnetic
moments µ(x) (without considering the physics of the measurement process).
In general, of course, µ(x) is not a periodic function, and the integral in equa-
tion 3.30 can not be limited to a finite interval since the precession of all magnetic
moments contribute to the signal. If, however, µ(x) is limited to −L

2
≤ x < L

2

because of, for example, the size of the sample, the signal will satisfy the equa-
tion for the Fourier coefficients and f(x) will be an exact estimate for µ(x).
If this condition is not fulfilled aliasing will occur and f(x) will not represent
µ(x) correctly. L is usually called the field of view.

5It should be noted that both x and L have the dimension of a frequency.
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So far it has been assumed that an infinite number of samples is taken. This,
of course, is never the case. If a limited number of samples (e.g. 2n samples) is
taken, equation 3.29 is transformed to

f̂(x) =
1√
2π

∆k
n−1
∑

m=−n

s(m∆k) e−ixm∆k . (3.31)

f̂(x) is now an estimation for f(x) that approaches f(x) in case the signal is
sampled for an infinite period. In the image, the error that is made by the
estimate appears as blurring and limits the resolution. Another result of the
finite number of samples is Gibb’s ringing which worsens with a decreasing
number of samples.

If a finite number of samples of f̂(x) is taken and the number of samples is
the same as the number of signal points f̂(m∆x) and s(m∆k), form a pair of
the discrete Fourier transform. For a given field of view L the resolution ∆x
is thus given by the number of sampled signal points

∆x =
L

N
(3.32)

Together with equation 3.27, this equation relates the resolution to the distance
∆k between two k-space points, or, if the gradient strengths are taken into
account, to the sampling frequency 1

∆t
. If instead of the k-space formulation,

the formulation in time space is used, ∆x has the dimension of a frequency. 1
N∆t

,
which is the inverse of the length of the readout interval, is called bandwidth
per pixel. This measure quantifies the frequency difference between the centers
of two neighboring pixels.

3.4 Artifacts

Considering the complex theory of MRI, it is not very surprising that MR imag-
ing can be affected by a large number of different artifacts. Although the MR
scanner itself can be the source of a number of artifacts, starting from imperfect
RF pulses, to imperfections of both the static magnetic field and the gradient
system to subtle effects like heating of the gradient system due to the strong
currents applied, many artifacts are caused by the underlying physics. This on
one hand requires a careful choice of measuring parameters, but on the other
hand makes MRI extremely powerful. It can be summarized in following quote
one man’s artifact is another man’s signal.

While it is out of the scope of this thesis to describe all kind of possible
artifacts and their sources, a few examples of artifacts shall be given to illustrate
the complexity of MR data. The large number of possible artifacts makes it very
hard to develop image processing techniques that can be applied to all sort of
MR data.
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(a) (b)

Figure 3.10: Illustration of selected MRI artifacts. (a) displays ghosts caused by
motion, (b) a susceptibility artifact (note that the mouth and the
nose are not visible at all!) caused by metal brackets.

In clinical applications, the probably most common artifacts are motion arti-
facts. Motion artifacts are a result of the considerable time that often is required
to sample the full k-space. For example, acquiring a high resolution SWI data-
set of the brain typically takes 10-15 min. Since the image is generated from
k-space using the Fourier transform, any error in k-space propagates to the
full image. In images, motion artifacts appear as “ghosts” (fig. 3.10(a)). How
much an image is affected by motion depends on the type of motion, on the time
at which motion occurred during k-space sampling and on the k-space sampling
scheme. Periodic motions have the strongest impact on images. Also, if mo-
tion occurs while the center of k-space is sampled the effects on the images are
considerable.

Motion artifacts are caused by any kind of motion, not only by bulk motion.
For example breathing or even blood flow cause motion artifacts. Flow artifacts
are special because they can be mitigated by carefully designed sequences.

Another important source of image artifacts are susceptibility differences in
the measured object. As discussed before, the magnetic flux in matter depends
on a property called susceptibility χ (see equation 3.22). While materials with
different susceptibility usually have well defined boundaries and interfaces, the
effect on the magnetic field extends well beyond those boundaries. Magnetic
field inhomogeneities caused by such susceptibility differences can lead to signal
loss because of dephasing. Figure 3.10(b) shows a sagittal image of a patient
with metal brackets obtained with a two-dimensional gradient echo sequence.
Mouth and nose are not visible because of the strong distortions of the magnetic
field.
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On the other hand susceptibility differences can be exploited by carefully de-
signed techniques such as SWI to image structures that have dimensions smaller
than the voxel size. For example, small venous vessels can be detected because
the susceptibility of deoxygenated blood differs from parenchyma.

Not only susceptibility can cause the magnetic field strength to deviate from
the expected values. Another source of artifacts caused by magnetic field imper-
fections are eddy currents. Eddy currents are induced by fast changing gradients
and thus typically occur in fast k-space acquisition techniques only. The field
distortions caused by eddy current can cause severe distortions of the image.

The previous artifacts were caused by the Larmor frequency deviating from
the expected value because of macroscopic inhomogeneities of the magnetic field.
Nevertheless, such an aberration of the Larmor frequency can be caused not
only by the macroscopic magnetic field differing from the presumed value, but
also by microscopic effects. The microscopic magnetic field, and thus the Lar-

mor frequency, depends on the chemical environment. For example the Lar-

mor frequency of a Hydrogen nucleus that is bound to a lipid differs from one in
a water molecule by 214 Hz at 1.5 T [2]. This can cause some sort of an aliasing
artifact if the bandwidth per pixel is too small. In this case, the image attributed
to protons bound to fat will be shifted from the water image. This shift can
be quite large. Even if the bandwidth is chosen such that no shift occurs, the
signal in a given voxel can vary depending on the echo time, since depending on
the acquired phase shift the water and fat signals can add up constructively or
destructively.

So far the discussion of artifacts has only mentioned artifacts that are caused
by a deviation of the evolution of the magnetic moments from the ideal case.
Nevertheless it is obvious that if the initial magnetization is imperfect the re-
sulting image differs from the expected one. There are a multitude of reasons
why an excitation might be less then perfect. It starts with distortions of the
frequency spectrum of a pulse caused by truncation. In principle, all the mecha-
nisms described previously can also cause imperfect magnetization. In addition
to these inhomogeneities of the B1 field might be present. These inhomogeneities
can be caused not only by the design of the RF coil, but also by the interaction
of the sample with the RF field. This interaction might not only cause damping
but also resonances. Thus, because of B1 inhomogeneities, even an image of
a perfectly homogeneous sample, that is not effected by any other source for
artifacts (e.g. susceptibility or flow), might be inhomogeneous.
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4
MR Phase Images

In the previous chapter, an important property of MRI signals and images was
omitted: namely that MRI signals and images consist of complex numbers. This
might seem strange because measured physical quantities such as voltage always
are real values. This chapter starts with an explanation of the complex nature
of MRI signals. Afterwards the properties of noise in MRI images and especially
in phase images is discussed. This is followed by an analysis of the effects of
the limited domain of the phase, namely phase wraps, and the problem of phase
unwrapping. Finally, the problem of reconstructing phase images from data
acquired with modern phased array coils is touched briefly.

4.1 The Origin of Complex Signals in MRI

In section 2.6 it was explained how the precession of magnetic moments induces
a signal in a coil. In general, the voltage of this signal is measured. Of course,
the measured value is a real value. Since the signal depends only on the rotation
of M⊥ its frequency is given by the Larmor frequency ω0. At 1.5 T and for
the hydrogen atom it is thus 63.72 MHz.

A derivation of how linear field gradients can be used for encoding space with
frequencies and how this can be exploited to use NMR as an imaging modality
was given in the previous chapter. Typical field gradients are of the order of a
few 10 mT/m. Let’s assume a gradient strength of 10 mT/m in x direction and
an isotropic voxel of 1 mm3. The difference between the Larmor frequencies
at the center of two neighboring voxels is

∆ω = γ∆B0 = γ10−5 ≈ 424.8 Hz (4.1)
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which is very small compared to the Larmor frequency.
Thus, the total signal is a superposition of waves that differ only slightly

from the Larmor frequency ω0. Since only the frequency differences contain
information, ω0 is removed from the signal by demodulation. This procedure is
called quadrature detection. It has the same effect as if the signal was acquired
in the rotating frame [1].

Demodulation is achieved by multiplying the signal by a sine or cosine of a
reference signal having the frequency ω0 (or a frequency close to ω0). Using the
trigonometric relations one obtains

sin (ω0 + ∆ω)t sinω0t =
cos ∆ωt+ cos (2ω0 + ∆ω)t

2
(4.2)

and

sin (ω0 + ∆ω)t cosω0t =
sin ∆ωt+ sin (2ω0 + ∆ω)t

2
(4.3)

respectively. The terms containing the 2ω0 offset can be suppressed by a low
pass filter. The final signal will thus oscillate with ∆ω. The two equations can
also be interpreted as the real and imaginary part of a complex signal

S(t) = Sre(t) + iSim(t) = cos ∆ωt+ i sin ∆ωt . (4.4)

An interpretation of the physical meaning of the complex signal can be derived
in following way: from equation 2.64 it is known that the signal is proportional
to the integral of the product of Breceive(r) and the magnetic moments µ(r, t)

s(t) ∝ − d

d t

∫

sample

d3 rµ(r, t) · Breceive(r) . (4.5)

Since the derivative of the relaxation can be neglected compared to the rotation
of µ equation 4.5 can be simplified to

s(t) ∝ − d

d t

∫

sample

d3 rµx(r, t)Breceivex(r) + µy(r, t)Breceivey(r) . (4.6)

Remembering that µx and µy were given by

µx = µ⊥ cosωt and µy = µ⊥ sinωt , (4.7)

the magnetic moment’s transverse component µ⊥ can also be written as a
complex number

µ+ = µ⊥ eiωt . (4.8)

Also the transverse component of Breceive can be defined to be a complex number

B+ = Breceivex + iBreceivey = B⊥ eiθ , (4.9)
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where B⊥ =
√

B2
receivex

+B2
receivey

. Using trigonometric relations, it can be easily

shown that the signal given in equation 4.6 is nothing else but the real part of
a complex signal given by

s′(t) ∝
∫

sample

d3 rµ+(r, t)B∗
+(r) . (4.10)

By inserting ω = ω0 + ∆ω into equation 4.1 one obtains

µ+ = µ⊥ ei(ω0+∆ω)t = µ⊥ eiω0t ei∆ωt (4.11)

thus the components of the complex signal S(t) obtained by demodulation rep-
resent the orientation of the magnetic moment in the rotating frame of reference.

Introducing the k-space notation for imaging gradients and an additional spa-
tial varying phase into equation 4.10 yields (after removing eiω0 by demodula-
tion)

S(kx, ky) ∝
∫

sample

d3 rµ⊥(r) eiφ(r) eikxrx eikyry . (4.12)

The signal S(kx, ky) is therefore nothing but the two dimensional Fourier

transform of µ⊥(r) eiφ(r). The density of magnetic moments is given by the
magnitude of µ⊥(r) eiφ(r), and the distribution of their phases by φ(r). This
phase depends on the history of a magnetic moment at r. A non-zero phase
can, for example, be the result of an inhomogeneity δB of the static magnetic
field B0.

4.2 Noise in MR (Phase) Images

As any experimentally obtained data, MR data is affected by noise. In case of
MR, noise can originate from a number of sources: random charge fluctuations in
the sample, electrical noise in the coil and the receiver as well as RF transmitter
noise [2]. However, if the coil is loaded significantly (i.e. substantial damping is
caused by the sample), noise currents in the sample are the dominating noise
source [3] and other sources can be neglected. This is of importance for the
discussion of the noise properties of the two demodulated channels (i.e. the real
and imaginary part of the signal). While transmitter and receiver may cause
correlated noise in the two channels, randomly fluctuating currents in the sample
have a random phase and thus produce uncorrelated noise [2]. In general the
coil will be loaded sufficiently, because this also results in an efficient absorption
of RF energy during the exciting pulse. Thus for the following discussion the
noise of the real and imaginary part of the complex signal will be assumed to be
uncorrelated. The noise in each channel can then be treated as an independent
random variable.

The noise of each channel can be assumed to be white noise and to satisfy
a Gaussian distribution with zero mean. Because the Fourier transform is
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Figure 4.1: Illustration of the relationship between the variance of the phase and
the magnitude. An example of a pixel with a high intensity is given
in (a). The variance of the real and imaginary part are indicated by
the circle. The variance of the phase is illustrated by the cone. The
opening of the cone (i.e. the variance of the phase) in (a) is much
smaller compared to the one of a pixel with a smaller magnitude but
the same variances of the real and imaginary part (b).

orthogonal and linear it preserves the Gaussian characteristics of noise. Fur-
thermore, because of the Fourier transform, the variance will be uniform over
the image and the real and imaginary parts will be uncorrelated [4].

Both, magnitude and phase images, are computed from the complex image
using non-linear mappings. The noise in the respective image is thus no longer
Gaussian.1 It can be shown that in case of the magnitude image the noise is
distributed according to a Rician distribution [4]. In case of regions where only
noise is present this distribution reduces to the Rayleigh distribution

p(I) =
I

σ2
e−

I2

2σ2 (4.13)

with I being the modulus of the voxel’s complex value and σ the variance of
the real and imaginary part under the assumption that both variances are the
same. If the signal to noise ratio (SNR) becomes sufficiently high (SNR > 3)
the Rician distribution can be approximated by a Gaussian distribution [4].

The distribution of the phase noise ∆φ is more complicated. Nevertheless two
situations for which simple equations can be given can be distinguished [4]. The
first limit occurs in regions where only noise is present. In this case the phase

1In case of the magnitude image this becomes obvious by considering voxels in which no signal
but noise is present. If the noise was Gaussian the magnitude would assume negative
values, which is not possible because of the definition of the magnitude.
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noise is distributed uniformly

p(∆φ) =

{

1
2π

if − π < ∆φ < π

0 otherwise .
(4.14)

If the SNR is substantially large (SNR > 3) the phase noise ∆φ can be approx-
imated by a Gaussian distribution

p(∆φ) ≈ Ī√
2πσ

e
− ∆φ2

2(σ/Ī)2 . (4.15)

The variance is given by

σ∆φ =
σ

Ī
≈ σ

I
. (4.16)

The variance of phase noise ∆φ is thus independent of the phase angle and in-
versely proportional to the magnitude. This is also valid on a pixel by pixel
basis [2]. The only condition is that the SNR has to be sufficiently large.
Figure 4.1 provides an schematic illustration of the relationship between the
variance of phase noise and the magnitude of a complex value.

4.3 Phase Wraps and Phase Unwrapping

In section 4.1 not only the origin of complex values in MRI was derived, but
a physical interpretation was given as well. According to this interpretation,
physical quantities can be easily attributed to the components of the complex
numbers if the polar notation is used. The magnitude I corresponds to the
magnitude of the magnetic moment µ⊥(r) and the phase φ(r) to the orientation
of this vector in a coordinate system rotating at the Larmor frequency.

In chapter 3 a few effects that can lead to phase offsets were discussed briefly.
These effects were for example deviations of the magnetic field strength B0

from the expected value or flow. If the static magnetic field B0 differs from the
expected value by ∆B the phase offset ∆φ in a voxel is given by

∆φ = −γ∆B∆t (4.17)

with ∆t being the echo time. From this equation it is obvious that, in principle,
the phase offset ∆φ is boundless. On the other hand, the phase of a complex
number is limited to [−π, π) and is periodic. Thus, the phase image φ(r) is the
result of a mapping of a boundless function to a variable that has a limited do-
main. This mapping is commonly described by the so called wrapping operator
W [5]

φwrapped(r) = W[φ(r)] . (4.18)

Although, in general, the “true” phase is a continuous function, the wrapped
phase φwrapped(r) has discontinuities if the “true” phase has values that are not
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within the interval [−π, π). The result is aliasing which is often referred to as
phase wrapping. In phase images these discontinuities appear as borderlines
between black and white. Figure 4.2(a) gives an example of a phase image in
which phase wraps occur. The underlying continuous function is a two dimen-
sional Gauss function that ranges from 0 to 5π. It thus exceeds the domain of
the phase.

The wrapped phase φwrapped(r) differs from the true phase φ(r) by multiples
of 2π

φ(r) = φwrapped(r) + 2πm(r) (4.19)

with m(r) being integer numbers. The problem of determining a function m(r)
such that the phase φ(r) is a continuous function is known as phase unwrapping.
The problem of phase unwrapping is extremely difficult, if not unsolvable, be-
cause of noise and since phase images represent samples of a continuous function
at discrete points.

Because of the discrete support, phase images can be affected by a second
type of aliasing. This type of aliasing occurs when the phase topography is very
steep and the phase difference between two neighboring pixels exceeds 2π. Such
a wrap is not necessarily visible in the image and cannot be resolved without
additional knowledge [5]. The lines along which the first type of aliasing occurs
are often called fringelines. In the second case the borderlines are referred to as
cutlines [6]. Fringelines and cutlines may or may not overlap.

Two types of fringe lines can be distinguished [6]: closed fringelines and open
ended fringelines. The fringelines in figure 4.2(a) are all closed fringelines. Un-
wrapping an image that has closed fringelines only is straightforward. The
situation is very different if open ended fringelines are present (fig. 4.3). In this
case, the image contains singularities. If poles are present it is impossible to
describe the phase with a continuous function. It is therefore impossible to un-
wrap the image without using additional knowledge or assumptions. Two trivial
examples of possible configurations of poles are shown in figure 4.4. In these
cases, one could assume that a cutline connects both poles along the shortest
path. In real images, more than two poles are present usually. In such a situa-
tion connecting poles is ambiguous not only because of the choice of the cutline,
but also because of the pairing of poles. Nevertheless there exists a number of
algorithms that attempt unwrapping by placing cutlines between poles [5, 6].

A closer look at open ended fringe lines reveals, that open ended fringe lines
themselves can be divided into two groups. In areas where there is either no or
just little signal present, open ended fringe lines occur often. One reason is that
the phase is not defined if the magnitude is zero, the other is that phase noise
is distributed uniformly in those regions. In this situation unwrapping still is
possible if areas of low signal are avoided.

The second group of open ended fringe lines can be found in areas where
there is a sufficiently large magnitude. As discussed before such a situation is
possible only if a cutline is present - in other words the phase topography must
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(a) (b)

(c) (d)

Figure 4.2: Due to the limited domain of the phase, phase images that are a
mapping of a continuous function (in this example a two dimensional
Gauss function) can have discontinuities if the underlying function
has values that are not within the interval [−π, π) (a). The effect of
noise is shown in (b) to (d). The signal to noise ratio (SNR) is 5 in
(b), 2.5 in (c), and 1.25 in (d), respectively.
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Figure 4.3: Example of an open ended fringeline. The image was generated by
computing arctan y

x
.

(a) (b)

Figure 4.4: Phase images with two poles. Both images cannot be unwrapped
without making assumptions where cutlines might be present.
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be extremely steep within the pixels that constitute the cutline. However, in
all phase images investigated during this thesis, it was found that if a phase
topography reached a steepness that made it likely that a cutline might occur
in some place, signal loss due to dephasing occurred. The only exception were
images that were either not reconstructed correctly, or that were obtained from
data that was subject to a filter.

Since phase unwrapping is a very hard problem, there exists a large number
of different approaches to solve this problem. Algorithms were developed with
having different applications in mind. Areas in which phase unwrapping is of
importance include Synthetic Aperture Radar (SAR) interferometry, optics, as
well as MRI.

A program that has become established for unwrapping MR images is Pre-

lude [7] which is part of the FSL Analysis Package (Oxford Centre for Func-
tional Magnetic Resonance Imaging of the Brain, United Kingdom). Prelude

is based on the “Split and Merge” principle. Other approaches to phase un-
wrapping include Minimum Spanning Trees (e.g. [8, 9]), region growing (e.g.
[10, 11, 12]), neural networks (e.g. [13]), various approaches to minimizing er-
rors between the unwrapped phase image and the wrapped phase image (e.g.
[14, 15]) and many others (e.g. [16, 17, 18, 19]). A detailed overview and a
comparison of several algorithms can be found in [5].

4.4 Phase Images and Phased Arrays/Parallel

Imaging

Figure 4.5: A standard
12-channel
Siemens TIM
Trio head coil.

Fast imaging techniques such SiMultaneous Ac-
qusition of Spatial Harmonics (SMASH) [20],
SENSitivity Encoding (SENSE) [21] or GeneR-
alized Autocalibrating Partially Parallel Acquisi-
tions (GRAPPA) [22] require phased arrays to re-
construct information that is missing because of
k-space undersampling. Phased arrays consist of
a number of decoupled coils that acquire data si-
multaneously [23]. A complex image can be recon-
structed from the data of each coil. Depending on
the arrangement of the coils and the coils’ geome-
try, the coils’ sensitivities to a signal coming from
a given area of the measured object will differ. An
example is given in figure 4.6 and figure 4.7. The
magnitude and phase image of each channel of the
12 channel Siemens TIM Trio head-coil depicted
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Figure 4.6: Magnitude images of a homogeneous spherical water-phantom. Each
image corresponds to single channel of a 12 channel Siemens TIM
Trio head coil.

54



4.4 Phase Images and Phased Arrays/Parallel Imaging

Figure 4.7: Phase images of the same phantom. Each phase image corresponds
to single channel of a 12 channel Siemens TIM Trio head coil.
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in figure 4.5 are shown in figure 4.6 and figure 4.7, respectively.2 To obtain a
single (complex) MR image the data of these coils have to be combined somehow.

In [23] Roemer et al. showed that using global weighting factors and phase
shifts to combine the images of a phased array results in an image that is op-
timal only in a single point. To obtain an image that is optimal in each point,
weighting factors and phase shifts have to be a function of position. These
parameters reflect the coils’ sensitivities. From basic considerations concern-
ing electro-magnetic fields a simple equation for combining the data of a set of
Ncoils coils in a SNR-optimal way was derived. This formula, which has to be
evaluated for each point of the image, can be written as

p̂x,y,z = λx,y,zs
H
x,y,zψ

−1px,y,z , (4.20)

where p̂x,y,z is the complex value of a voxel at (x, y, z) in the combined image,
λx,y,z a real valued scaling factor, sx,y,z a Ncoils-dimensional vector consisting of
the complex sensitivities of each coil at (x, y, z), ψ the noise correlation matrix
of the Ncoils coils and px,y,z a Ncoils-dimensional vector containing the complex
image values of each coil at (x, y, z). sH

x,y,z denotes the transposed complex
conjungate of sx,y,z. Unfortunately, in general, neither λx,y,z, sx,y,z nor ψ are
known.3

To overcome the problem of unknown sensitivities several assumptions and
simplifications are often made for calculating combined images. The simplifica-
tion made most often is that each coil’s signal is by itself an estimate for the
coil’s sensitivity. It is obvious that the signal must be proportional to the sen-
sitivity. Nevertheless, using the signal as estimate adds a bias, since the signal
also depends on properties of the object such as, for example, the proton den-
sity. If sx,y,z is substituted by px,y,z and λx,y,z set to λx,y,z = 1 and ψ to the unit
matrix, equation 4.20 can be rewritten as

p̂x,y,z = pH
x,y,zpx,y,z =

Ncoils
∑

i=1

|pi;x,y,z|2 . (4.21)

Usually the square root of equation 4.21 is taken. p̂x,y,z then has the dimension
of a magnitude. This method is known as Sum of Squares (fig. 4.8b shows the
Sum of Squares image of the images shown in fig. 4.6; fig. 4.8a displays the
magnitude image measured with the body coil for comparison). It is intuitively
evident that the phase information is lost.

Apparently, combining images to obtain a phase image is more difficult be-
cause of the locally varying phase shifts. Nevertheless, phase images are often
calculated by summing over all Ncoils complex images and subsequently taking

2In case of TIM coils the channels do not reflect individual coils of the phased array, but are
linear combinations of three coils.

3In principle ψ can be measured easily. But in most cases the noise correlation can be
neglected and ψ can be set to I [21].
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(a) (b)

Figure 4.8: Magnitude image of the phantom measured with the body coil (a)
compared to the Sum of Squares image of the indiviudual images
of a 12 channel Siemens TIM Trio head coil shown in fig. 4.6 (b).
Both images were normalized for comparison.

(a) (b)

Figure 4.9: Phase image measured with the body coil (a) and combined phase
image computed by complex summation of the individual images
of a 12 channel Siemens TIM Trio head coil shown in fig. 4.6 and
fig. 4.7.
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the arc tangent. By using equation 4.20 it can easily be shown that this is the
same as assuming that all coils have the same sensitivity and that this sensitiv-
ity is constant. This, on the other hand, would mean that the images of all coils
would have to be identical, which, of course, is not the case. It is not surprising
that the resulting phase image does not resemble the phase as measured with
a homogeneous coil, such as the body coil (fig. 4.9a and fig. 4.9b, respectively).
Furthermore, the combined phase often is affected by singularities. These sin-
gularities impede phase unwrapping. However, even in situations were phase
unwrapping would be possible the physical interpretation of the result is ques-
tionable.
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5
Phase Unwrapping by Region

Growing

Rauscher et al. showed that phase unwrapping by a region growing algorithm can
be applied to MR data [1]. For this study a simplified variant of a region growing
phase unwrapping algorithm originally developed for SAR interferometry [2]
was used. This algorithm tries to predict the unwrapped phase of a given pixel
by extrapolating the phase from neighboring pixels that have been unwrapped
previously. The reliability of such an estimate is estimated using a set of quality
criteria. One of these criteria is the local coherence of the phase. The method
does not take information that might be contained in the signal intensity into
account because in SAR interferometry only the phase is available. Although
the algorithm had difficulties with some of the special properties of MR phase
images, the results were promising nonetheless. Thus this approach was taken
as a starting point for developing an optimized phase unwrapping program.
The main goals were to define quality criteria that were more appropriate for
MR images and to write an efficient implementation. The modified approach
was presented at the Annual Meeting of the International Society for Magnetic
Resonance in Medicine (ISMRM) [3] and the European Congress of Radiology
(ECR) [4].

This chapter is structured as follows: first the principles of the algorithm are
described, secondly the problems encountered in MR phase images using this
approach are discussed. Subsequently a set of quality maps are defined and
finally their influence on unwrapping is described.
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5 Phase Unwrapping by Region Growing

5.1 The Principles of Unwrapping by Region

Growing

As described in the previous chapter the problem of phase unwrapping can be
summarized as estimating the number of multiples of 2π that have to be added
to the phase of a given pixel to yield a smooth phase topography:

φu
i,j = φi,j + 2πmi,j , (5.1)

where φi,j is the wrapped phase defined in the range [−π, π) and φu
i,j the un-

wrapped phase of a voxel (i, j). The idea of unwrapping by region growing is
to try to predict the unwrapped phase for each pixel neighboring a region for
which the value of the unwrapped phase is known already. Each pixel that has
been unwrapped this way is then added to the region. These steps are repeated
until the whole image is unwrapped.

The problem thus consists of two sub-problems:

• how to predict the unwrapped phase of a pixel from pixels in its neighbor-
hood that have been unwrapped in previous iterations, and

• how to estimate how reliable such a prediction is.

Especially latter is of great importance, because it essentially controls which
pixels are added to a region of unwrapped pixels and thus how the region grows.

Prediction of the Unwrapped Phase

The approach on which this work is based uses linear extrapolation along short,
straight lines to calculate predictions for an unwrapped pixel [2]. Predictions are
calculated along one or two pixel long lines, depending on how many unwrapped
pixels are available on this line. Let l denote the index of a line that belongs
to a set of lines through pixel (i, j) and i′, j′; l and i′′, j′′; l the nearest neighbor
and the next nearest neighbor to (i, j) on the line l, respectively. The linear
extrapolation φp

i,j;l for the phase along this line is then given by

φp
i,j;l =

{

2φu
i′,j′;l − φu

i′′,j′′;l if two unwrapped pixels are along the line l

φu
i′,j′;l if one unwrapped pixel is along the line l.

(5.2)

Depending on the direction of the line, the predictions might vary. One reason
for this variation can be that only a single pixel is available on a given line,
while other lines are comprised of two pixels. Another cause can be that the
underlying phase topography is not linear, and finally, noise. It is thus necessary
to calculate a common prediction from these individual predictions. Since a
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Figure 5.1: Illustration of the unwrapping algorithm’s principle. The pixels of
the unwrapped region are indicated by filled squares. The pixels of
the fringe, which the algorithm will attempt to unwrap during the
next iteration, are marked by hatched boxes. (b) and (c) display
two of the three prediction lines that are used to unwrap the pixel
(i, j).

higher confidence can be attributed to estimations that are obtained using longer
lines, the common prediction is calculated by taking a weighted average

φp
i,j =

1
∑n

l=1wi,j;l

n
∑

l=1

wi,j;l φ
p
i,j;l . (5.3)

The weights are defined as

wi,j;l =

{

1 if the line l is comprised of two unwrapped pixels
1
2

if one unwrapped pixel is along the line l.
(5.4)

The multiplication factor mi,j in equation 5.1 can be calculated from the es-
timated phase φp

i,j by simply taking next nearest integer to the ratio of the
difference between the predicted phase φp

i,j and the wrapped phase φi,j and 2π

mi,j = round

(

φp
i,j − φi,j

2π

)

. (5.5)

This estimation is repeated for each pixel in the direct neighborhood of a
region of pixels that have been unwrapped already. Although, in general, an
arbitrary set of prediction lines can be defined, for computational efficiency
it makes sense to use horizontal, vertical and diagonal lines only. Figure 5.1
provides an illustration of the principle for estimating the unwrapped phase
for a pixel in the fringe around a region that has been unwrapped previously.
Gray boxes symbolize the unwrapped pixels of a certain regions. The hatched
boxes are the pixels that belong to the region’s fringe. The algorithm will try
to unwrap these pixels next. Figure 5.1(b) and figure 5.1(c) give an example for
a two pixel long and a one pixel long prediction line, respectively.
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Reliability Criteria

As mentioned beforehand, evaluating the reliability of a prediction of an un-
wrapped phase before adding it to a region is of utmost importance. The errors
introduced by adding incorrectly unwrapped pixels can propagate easily, since
in the worst case the algorithm bases its predictions using a single pixel only.
The reliability of an unwrapped phase can be checked in various ways. First of
all the reliability of a prediction can be tested by checking the agreement of the
predictions along the various lines. Secondly, the quality of the data contained
in the pixel can be evaluated. In total three reliability criteria were proposed [2].
Two of those three criteria judge the estimate for the unwrapped phase. The
third one examines the data quality.

An obvious measure for the quality of the estimate of the predicted phase
φp

i,j is the variance of the predictions φp
i,j;l along the different prediction lines.

A similar measure for the variability is the average of the absolute difference
of a prediction φp

i,j;l from the weighted average φp
i,j. Although both measures

have the same purpose the advantage of the latter one is that it is less computa-
tionally expensive. The different predictive strengths of one and two pixel long
prediction lines can be taken into account by calculating a weighted average.
The variability measure can thus be written as

vi,j =
1

∑n

l=1wi,j;l

n
∑

l=1

wi,j;l

∣

∣φp
i,j;l − φp

i,j

∣

∣ . (5.6)

vi,j is positive always and can assume any value larger than 0. The corresponding
reliability criteria is that vi,j has to be below a threshold tv, i.e.

vi,j < tv . (5.7)

The second reliability criteria that judges the prediction uses the difference
between the unwrapped phase φu

i,j and the predicted phase φp
i,j;l

∆φi,j =
∣

∣φp
i,j − φu

i,j

∣

∣ . (5.8)

It is motivated by the effects of rounding in equation 5.5. If φp
i,j − φi,j is close

to π the ratio becomes ≈ 0.5. In this situation an additional small error of
the estimate or a small amount of additional noise can lead to a different value
for mi,j and thus of the unwrapped phase φu

i,j. Therefore an unwrapped phase
φu

i,j for which ∆φi,j is close to π is considered less reliable than one for which
∆φi,j ≈ 0. The reliability criterion using this measure is defined as

∆φi,j < t∆φ (5.9)

with the threshold t∆φ having values between 0 and π.
Rejecting a pixel because of these two criteria does not necessarily mean that

the pixel might not be unwrapped in a later iteration, even if the thresholds are
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kept constant. If the region grows around the pixel predictions along lines that
become possible because of newly unwrapped neighboring pixels might improve
the prediction for the pixel allowing it to pass the reliability criteria.

The third criterion, evaluates the data itself. For this criterion a quality mea-
sure is defined for the data. The quality measure should allow an assessment of a
phase prediction’s reliability considering the properties of the data surrounding
a given pixel. Since in SAR interferometry, only phase information is available,
the quality measure has to be based on parameters that can be computed merely
from the phase. Such a measure is the local coherence QLC. It is a measure for
how coherent the phase around a given pixel is. It is defined as

QLC
i,j =

1

dx · dy

i+ dx
2

∑

k=i− dx
2

j+
dy
2

∑

l=j−
dy
2

eiφk,l (5.10)

where dx and dy are the dimensions of the kernel over which QLC is computed.
QLC lies within the interval [0, 1]. It is lowest in noisy areas as well as in regions
having a steep phase topography. The reliability criterion is defined as

QLC
i,j > tQ (5.11)

If a pixel passes all three reliability criteria it is added to the region. During
each iteration, the algorithm attempts to unwrap an one pixel wide fringe around
the region. This procedure is repeated until less than tN pixels are unwrapped.
If less than tN pixels have been unwrapped the reliability criteria are relaxed.
The method described herein uses an approach that slightly differs from the
original algorithm. Originally tQ or tv and t∆φ (with tv = t∆φ) are relaxed while
the other threshold is kept constant [2]. The algorithm described in this thesis
relaxes both tQ and tv and t∆φ (with tv = t∆φ) in a double loop. tQ is relaxed
in the inner loop and tv and t∆φ in the outer loop. This is motivated in the
following way: as long as the predictions can be made reliably, one can accept
pixels for which the data quality measure yields a lower value. On the other
hand, when the algorithm starts accepting predictions which are less reliable (a
reason for less reliable predictions might be an uneven phase topography), it
should use predictions which are based on reliable data.

The algorithm terminates as soon as the thresholds of all reliability criteria
are relaxed to their lower limits and less than tN pixels are unwrapped.

Multiple Regions

Unwrapping can be done by an arbitrary number of regions simultaneously. In
this case situations will occur in which more than one region attempts to unwrap
the same pixels and an overlap will be created. Even if the unwrapped phase in
both regions is reliable, the unwrapped phase of pixels in an overlap might differ
by multiples of 2π due to the two regions having had different start values. Since
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the algorithm should yield a single unwrapped phase image, it is necessary to
attempt to merge the regions. Following method has been suggested for merging
two regions [2]:

1. if the overlap between two regions reaches a critical size, i.e. the two re-
gions share more than tO pixels an attempt to merge the two regions is
made. If there are less than tO pixels in the overlap the algorithm proceeds
with unwrapping. Thus the overlap might reach a critical size in a later
iteration. A typical value for tO is tO = 3

2. compute the difference

∆i,j = φu
i,j;r1

− φu
i,j;r2

(5.12)

where r1 and r2 are the indices of the two overlapping regions and φu
i,j;r1

and φu
i,j;r2

are the unwrapped phases predicted by those two regions for
each pixel in the overlap.

3. determine the most common difference ∆mode between the unwrapped
phases of the two regions.

4. apply the following two tests

N∆ > t∆ (5.13)

and
N∆

NO

> tf (5.14)

where N∆ is the number of pixels for which ∆i,j = ∆mode and NO is the
total number of pixels in the overlap. Typical values for t∆ and tf are
t∆ = 3 and tf = 3

4
, respectively [2]. If both criteria are passed the regions

are merged, otherwise all pixels in the overlap are removed from both
regions in the hope that an overlap that has a better agreement will be
created in a later iteration.

5. merge the regions by adding the difference ∆mode to all pixels of one of the
regions.

6. start a new region by selecting a seed point. This keeps the number of
regions growing concurrently constant.

Selecting Seed Points

Seed points have to be selected every time a new region is started, i.e. before
the first iteration and every time two regions have been merged. A seed has to
fulfill two criteria: it must not have been unwrapped already and it should have
the highest data quality, i.e. the highest value of QLC of all pixels that have not
been unwrapped. The latter criterion ensures that a region starts with a pixel
from which predictions can be made most reliably.
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5.2 Issues Encountered in MR Phase Images

Although, in many cases, the approach described above works quite well if ap-
plied to MR phase images [1], there are situations in which the results are
unsatisfactory. The most common reason are ghosting artifacts which can be
caused by subject motion. Even when these ghosting artifacts are hardly visible
in the magnitude (fig. 5.2(a)), they can be quite apparent in the phase image
(fig. 5.2(b)). As a result the algorithm attempts to unwrap areas with low sig-
nal intensities. Since those areas are noisy, the predictions are not very reliable.
This causes, on the one hand, a significant increase in computation time, on
the other hand errors can accumulate resulting in an inconsistently unwrapped
phase image (fig. 5.2(c)). Furthermore the coherence in areas affected by ghost-
ing artifacts is, in general, much higher than in areas that have a steep phase
topography but a well defined signal and thus a high SNR (fig. 5.2(d)). Although
unwrapping of those areas is desired it is impossible to define thresholds based
on the QLC that allow unwrapping in regions of steep phase topography while
avoiding ghosting artifacts. Although, this could be overcome by segmentation
and masking, QLC obviously is not a measure that truly reflects the “quality” of
MR images.

5.3 Quality Maps

Definition of Quality Maps

To overcome the problems described before, four additional quality maps were
defined and evaluated in addition to the local coherence. The five quality maps
(an example for each map is given in fig. 5.3) are motivated and defined in the
following manner:

local coherence (QLC) which was introduced previously is a measure for the
coherence of the phase (fig. 5.3(c)). It is calculated as

QLC
i,j =

1

dx · dy

∣

∣

∣

∣

∣

∣

∣

i+ dx−1

2
∑

l=i− dx−1

2

j+
dy−1

2
∑

m=j−
dy−1

2

p̂l,m

|p̂l,m|

∣

∣

∣

∣

∣

∣

∣

, (5.15)

with (i, j) being the coordinates of the pixel for which the local coherence
is calculated and dx and dy being the dimensions of the kernel.

average of the complex image (QACI) takes both magnitude and phase into
account. It should thus suppress ghosting artifacts in areas of low signal
intensity and avoid unwrapping of those areas. It reaches its highest values
when the phase is coherent and the signal is high (fig. 5.3(d)). It is defined
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(a) (b)

(c) (d)

Figure 5.2: Magnitude (a), phase (b) and unwrapped phase images (c) that are
affected by steep phase topography in the frontal areas due to sus-
ceptibility effects and ghosts caused by subject motion. Due to the
large coherence in the areas affected by ghosts (d) the algorithm tries
to unwrap areas with low signal intensities before areas with steep
phase topography are unwrapped.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 5.3: Overview of the quality maps for an image with ghosting artifacts.
The magnitude and phase of this image are displayed in (a) and (b),
respectively. All maps were computed with a rectangular kernel of
5 × 5 pixels and normalized to [0, 1]. (c) shows the local coherence
QLC. The map exhibits the typical properties of QLC: very low
values in areas of steep phase topography even if there is a significant
signal, and high values in areas where almost no signal is present.
(d) depicts the magnitude of the local average of the complex image
QACI. QACI suppresses areas with low signal intensities, and has
small values in regions with steep phase topography. The map of
the local average of the magnitude QAM is shown in (e). The local
variance of the complex image QVCI is given in (f). It separates
the object from the background by a dark rim and has low values
in areas of steep phase topography. The variance in noisy areas
is very low (corresponding to high pixel intensities) even compared
to homogeneous areas within the object which does not favor the
variance as a quality criterion because it is lower in noise than in the
object. (g) is an example for the local variance of the phase QVPH.
It exhibits a behavior similar to QLC.
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as

QACI
i,j =

1

αACI · dx · dy

∣

∣

∣

∣

∣

∣

∣

i+ dx−1

2
∑

l=i− dx−1

2

j+
dy−1

2
∑

m=j−
dy−1

2

p̂l,m

∣

∣

∣

∣

∣

∣

∣

, (5.16)

where αACI is a normalization constant ensuring that QACI
i,j is within the

interval [0, 1].

average of the magnitude (QAM) is a measure that is based on signal intensity
only. It is calculating by smoothing the magnitude image (fig. 5.3(e)) with
a rectangular kernel. A normalization is applied so that its values range
from 0 to 1. Using the signal intensity as a measure for the phase can
be justified since the variance of the phase is inversely proportional to the
magnitude [5]. Mathematically QAM can be formulated as

QAM
i,j =

1

αAM · dx · dy

i+ dx−1

2
∑

l=i− dx−1

2

j+
dy−1

2
∑

m=j−
dy−1

2

|p̂l,m| . (5.17)

variance of the complex image (QVCI) measures the variance of the complex
image within a rectangular area around a given pixel (fig. 5.3(f)). It was
introduced to allow a better delineation of the object, since the variance
can be expected to be highest at the borders of the object. By using this
measure it should be possible to limit unwrapping to the object. QVCI is
given by

QVCI
i,j =

1

αVCI






p̄i,j p̄

∗
i,j −

1

dx · dy

i+ dx−1

2
∑

l=i− dx−1

2

j+
dy−1

2
∑

m=j−
dy−1

2

p̂l,mp̂
∗
l,m






+ 1, (5.18)

where p̄i,j is the local average of the complex image computed with a kernel
of the same size (dx×dy) and αVCI a normalization constant. The definition
of QVCI ensures that pixels of highest quality (i.e. lowest variance) have a
quality of approximately 1.

variance of the phase (QVPH) is motivated in the same way as QVCI, but takes
only the phase into account (fig. 5.3(g)). It is calculated by applying
equation 5.18 on the normalized complex image p̂′i,j = p̂i,j/ |p̂i,j|. Also this
map was motivated by expecting it to yield a better delineation of the
object.

Evaluation of Quality Maps

The influence of the five maps on both unwrapping itself and the selection of seed
points was investigated. For this study SWI data obtained on a 3T Bruker
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threshold range

tQ [0.15, 1.00]
tv = t∆ [0, 3

4
π]

Table 5.1: Values of the thresholds that were chosen as default values.

MedSpec (Bruker Medical, Ettlingen, Germany) and a 1.5 T Siemens

Magnetom Vision (Siemens, Erlangen, Germany) were unwrapped and an-
alyzed retrospectively. Phantom data were not investigated, because ghosting
artifacts are caused by motion and thus phantom data are hardly affected by
ghosts. Each map was computed with kernel sizes of 3 × 3, 5 × 5 and 7 × 7
pixels, respectively.

It became immediately obvious that QVCI did not show the expected prop-
erties, namely that it would allow a better delineation of the object. While in
principle the variance was higher (and thus QVCI lower) at the borders of the
object than in the neighboring areas, areas within the object exhibited values
almost as low as at the borders (fig. 5.3(f)). Also, in general, the variance within
the object was higher than in the noise. Furthermore, the variance showed a
very large dynamic range. This made it very difficult to define thresholds on
(the normalized) QVCI. Several schemes to scale the variance (by for example
the logarithm) before normalization were tested, but none provided a significant
improvement. The use of QVCI was thus not further investigated.

Also QVPH was used only in the beginning since it exhibited the same prop-
erties as QLC. Thus the use of QVPH did not provide any improvement over
QLC.

The Influence of Quality Maps on Unwrapping

The best results in terms of how well the algorithm unwrapped areas of steep
phase topography while still limiting the unwrapping to the object were obtained
using the local average of magnitude QAM computed with a kernel of 5 × 5 as
quality measure. By using this measure it was possible to choose a threshold
that yielded good results for all data-sets. The values for the thresholds are
shown in table 5.1. Although the local average of the complex image QACI also
led to some improvements compared to QLC, these were not as significant as
those obtained with QAM. Apparently the phase variations in areas of steep
phase topography had a larger influence on the map than the signal intensities.
An example of an image that is affected by strong field inhomogeneities in the
frontal area is shown in figure 5.4. The field inhomogeneity is caused by the
paranasal sinuses. The threshold tQ was optimized for each map to allow the
unwrapping to proceed as far as possible without unwrapping the background.
Using QAM (fig. 5.4(e)) clearly leads to the best results.
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5 Phase Unwrapping by Region Growing

(a) (b)

(c) (d) (e)

Figure 5.4: A typical magnitude (a) and phase (b) image of a data-set that
suffered from strong field inhomogeneities in the frontal areas caused
by the paranasal sinuses (denoted by the white rectangle). The
image was unwrapped by Φun using QLC, QACI and QAM to guide
the unwrapping procedure. The termination criteria were optimized
for each map in such a way that the unwrapping proceeded as far as
possible but was limited to the object. The results are shown in the
bottom row. When using QLC (c) the algorithm fails to unwrap the
frontal areas. Although, QACI (d) leads to an improved unwrapping
of those regions, the best results are obtained with QAM (e).
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(a) (b) (c)

Figure 5.5: Example of an artifact caused by seed points that were placed into
a poorly connected region. (a) shows the magnitude image, (b) the
unwrapped phase image that is affected by an artifact resulting from
unwrapping starting in the sagittal sinus, (c) correctly unwrapped
phase image. In case of (b) the local average of magnitude QAM was
used for seed finding. (c) was obtained by applying local coherence
QLC to seed finding. The arrow heads indicate the areas where seeds
were placed.

The Influence of Quality Maps on Seed Finding

The map used for guiding the unwrapping is not necessarily the optimal map
for seed finding. Using different maps for seed finding and unwrapping can be
justified by following arguments:

• for a newly unwrapped pixel the phase topography has to be flat to allow
it to pass the reliability criterion based on t∆ as long as t∆ is small. If a
quality criterion is used for seed finding that allows seeds to be placed in
areas of steep phase topography a new region starts growing only after t∆
has been relaxed sufficiently. On the other hand it is important that, in
the beginning, predictions are made using rigorous constraints so that a
high reliability is ensured to avoid propagation of errors.

• since especially in the beginning the growth of regions should be as reliable
as possible for as long as possible, it makes sense to base seed finding on
a criterion that evaluates the data on a rather global scale. Such a global
measure would have adverse effects for unwrapping, since a region should
grow towards areas of poor data as far as possible.

As could be expected from these arguments the seed finding that produced the
most reliable results was based on maps calculated with a kernel that was much
larger than the one used for unwrapping (15 × 15 instead of 5 × 5). QLC was
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found to be most suitable for seed finding, not only because it ensures that seeds
are placed in areas with a flat phase topography, but also because artifacts were
observed from time to time in case QAM was used. These artifacts were caused
by large signal intensities in regions that were poorly connected to the bulk of
the brain. Thus the brain itself was unwrapped only after all thresholds had
been relaxed. Because of that errors were allowed to propagate. Figure 5.5
shows an example of such an artifact.
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6
Implementation

This chapter describes several aspects and details of the implementation. The
main design goals for the implementation were the following:

1. fast unwrapping,

2. support easy integration of further data formats,

3. reusable code in case modifications of the algorithm are added, and

4. easy integration into existing work flows.

For these reasons C was chosen as programming language. Point 2 and point 3
would have been met more easily by using an object oriented programming
language such as C++. On the other hand to fulfill the last point an integration
into IDL and Matlab was considered (and also implemented). Especially in
the case of IDL, according to the manuals [1], C is preferred to C++. To
make use of some advantages that C++ provides, especially, late binding, the
implementation makes use of pointers to functions in many cases. This allows,
for example, adding support for new data types, without requiring many changes
to the existing code. Also new variants of parts of the algorithm can be added
easily without losing the option to use the ones implemented already.

Originally the algorithm was implemented under Linux as a command line
tool. The program was named Φun. It was also compiled successfully under
Mac OS X and, using the Cygwin [2] environment, under Windows. After
some minor modifications it was possible to compile it using the MinGW [3]
environment which links against the Windows run-time libraries. Furthermore
modules for IDL and Matlab were implemented. These modules allow calling
the algorithm from those two programs as if it was a built-in function.
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1 typedef struct _Slice {

2 Point dimension;

3 BOOL phaseOnly;

4 unsigned char type;

5 ComplexImage slice;

6 } Slice;

Listing 6.1: Data structure for a complex valued image.

1 typedef union {

2 struct {

3 float re, im;

4 } cart;

5 struct {

6 float abs , phi;

7 } polar;

8 } Complex;

Listing 6.2: Data structure defining complex numbers.

6.1 Data Structures

Some important data structures that are used by various functions of the imple-
mentation are described in this section. Further data structures that are used
by individual functions only, are described in the sections corresponding to these
functions.

Complex Images

Φun uses two dimensional complex array for handling the images contained in
the input data. An image is defined by the structure given in listing 6.1. The im-
age itself is stored as a two dimensional array of complex numbers (listing 6.2).
The complex numbers can be both in cartesian or polar format. The format
that is used for the slice is encoded by unsigned char type. The advantage of
allowing the image to be stored in both formats is that the number of conver-
sions between cartesian and polar complex numbers can be reduced. Φun has
functions not only for creating and deleting complex images, but also for creat-
ing an image consisting of polar complex numbers from one in cartesian complex
numbers and vice versa. Those functions check whether a conversion is neces-
sary and if not return a copy of the original image. This allows for a transparent
use of complex images regardless of the type of the complex numbers.
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1 typedef struct _UnwrappingPixel {

2 unsigned char nRegions;

3 float phiWrapped;

4 float phiUnwrapped[MAX_OVERLAPS ];

5 int m[MAX_OVERLAPS ];

6 PRegion region[MAX_OVERLAPS ];

7 short unsigned int iteration;

8 signed char current;

9 BOOL seed;

10 } UnwrappingPixel;

Listing 6.3: Data structure for a “pixel” in the “phase image” used during un-
wrapping.

Phase Image for Unwrapping

The phase image used during unwrapping consists of pixels defined by listing 6.3.
The rather complex structure of each pixel is caused by the fact that it is not
only used for storing the phase value but also for storing information required
during unwrapping. Thus it stores the number of regions by which the pixel
has been unwrapped and the corresponding values for the unwrapped phase Φu

i,j

and the ambiguity numbers mi,j. The latter adds redundant information and
is stored only to allow computational efficiency. For example: the unwrapped
phase values are used for calculating phase predictions. Using the ambiguity
number would add a significant amount of additional computation steps. On the
other hand, the ambiguity numbers are used for resolving overlaps. Furthermore
a pointer of the type PRegion is stored. This pointer points to each region by
which the pixel has been unwrapped.

The variables short unsigned iteration and signed char current are used
during region growing. One purpose is to make sure that only pixels are used for
predictions that have been unwrapped in previous iterations. Its exact function
is described in more detail in the section on unwrapping. The limited range of
iteration is not an issue, because an absolute counting of the number of itera-
tions is not necessary. Nevertheless the number of regions growing concurrently
should be smaller than the maximum value of iteration. This would ensure
that overflows occur every few iterations only. Otherwise the algorithm would
not be able to distinguish whether a pixel was visited within the current or a
previous iteration.

The purpose of BOOL seed is to allow for a mask that ensures that seed points
are not placed too close to each other. Every time a seed point is planted a
certain neighborhood around it is masked to prevent other seed points to be
placed in its vicinity.

77



6 Implementation

1 typedef struct _Region {

2 int index;

3 Fringe* unwrapFringe;

4 Point leftLower , rightUpper;

5 Overlap* overlaps;

6 BOOL toBeDeleted;

7 BOOL newOverlap;

8 } Region;

Listing 6.4: Data structure that defines a region.

1 typedef struct _Fringe {

2 Point pixel;

3 PFringe next;

4 } Fringe;

Listing 6.5: Data structure that defines a region.

Regions

Each region is described by the data structure given in listing 6.4. Besides
the index that identifies the region, it contains pointers to the data structures
containing the fringe around the region and to the overlaps with other regions,
respectively. The flag toBeDeleted states whether the region is to be deleted
because it has been merged with another region. The flag newOverlap is set
every time an overlap with another region occurs. Its purpose is to aid an
efficient resolving of overlaps. Also, the intention behind the bounding box
of the region defined by Point leftLower, rightUpper is to allow an efficient
merging of regions.

The fringe around a region is stored as single chained list. Its definition is
given in listing 6.5. The reason why coordinates and not a pointer to the pixel
are stored, is that the coordinates are also required for querying the neighbors.

The overlaps between regions are difficult to handle. There are many data
structures one can devise to treat overlaps. Each have their own advantages
and disadvantages. One possibility, for example, would be to keep the overlaps
between every two regions in a separate list. This would make handling these
overlaps during merging extremely efficient. On the other hand, adding new
pixels to an overlap during region growing would be more expensive, since it
would require looking up the correct list.

The solution that was used in this implementation is more efficient during
the region growing step, but more care has to be taken during region merging.
Each region has a list of all overlapping pixels. During region growing new
overlaps are just added to the list. The disadvantage is that before regions can
be merged, the overlaps have to be sorted. The details of how overlaps are
handled are discussed later in a separate section.
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1 typedef struct _Regions {

2 int nRegions , maxRegions , maxIndex;

3 Region** regions;

4 Seeds* seeds;

5 BOOL deleteRegions;

6 BOOL newOverlaps;

7 BOOL randM;

8 int defaultM;

9 } Regions;

Listing 6.6: Data structure containing all information on the unwrapping re-
gions.

An additional structure was implemented that stores all information that is
related to the unwrapping regions. The definition of this structure is given in
listing 6.6. int nRegions and maxRegions are the numbers of regions that are in
use and the maximum number of regions that are allowed to grow concurrently,
respectively. int maxIndex is the identifier used by the region added latest.
Region** region is an array with pointers to the regions. Seeds* seeds contains
a structure containing all seeds that are available. A description of the data
structure used for storing seeds can be found in the section on seed finding. The
flags BOOL deleteRegions and BOOL newOverlaps are used for resolving overlaps.
The first tells whether there are any regions to be deleted after an attempt
to merge regions was made, the second is set every time an overlap occurs
during region growing. Finally, int defaultM and BOOL randM are used during
the creation of new regions. They contain information on whether each region
is to be started with the same multiple of 2π or if this number is to be chosen
randomly.

6.2 Data Input and Output

The input and output functions of Φun were designed with having a large flexi-
bility in mind. The flexibility is not only in the sense of supported data formats,
but also in the sense of allowing an easy addition of further data formats. Both
input and output is performed slice by slice.

Input

Φun supports three dimensional complex images and phase images for which
no magnitude information is available. The complex images can be provided
to Φun both as cartesian complex numbers and as polar complex numbers.
Furthermore the complex data can be stored in a single file consisting of complex
numbers or in separate files that contain real and imaginary part, or modulus
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and phase, respectively. In all cases, the data has to be stored as single precision
floating point values. Data files can either be in Analyze format [4] or be plain
three dimensional data arrays that use following convention: the x coordinate
represents the fastest changing index and the z coordinate the slowest.

While, in principle, data in cartesian and polar complex numbers can be han-
dled in the same way, as long as a conversion can be performed afterwards,
handling pure phase images, data stored in a single file or in two separate files
requires significantly different treatment. To allow for the highest possible flex-
ibility, following strategy was conceived: for each type of data, phase images
without magnitude information, complex images stored in a single file, complex
images that are stored in separate files, there is one function for opening the
files as well as initializing data structures required by the other functions, one
function for reading a single slice, and one function for closing the data files.
While the functions for opening the various data types do not have a common
interface definition, since they require, for example, a different number of file
names, the functions for reading a slice and closing the files share a common in-
terface definition. They are called through pointers to functions. These pointers
are set by the functions for opening the files. Thus adding a new type of data
requires only changes at a single spot in the program. Reading data and closing
files is done transparently.

Since the only difference between data stored in Analyze format and data
stored in a plain array is that the Analyze format has an additional header file
that contains, among other information, the dimensions of the array, both type
of formats are handled by the same functions. If present, the Analyze header
is read and evaluated by the function that opens the file.

In addition, Φun allows data to have a different endianess than the machine on
which Φun is executed. Φun determines the machine’s endianess automatically.
The user just has to specify the data’s endianess by a command line option. In
case the data’s endianess differs from the machine’s endianess, Φun performs
the necessary conversion. If the data’s endianess is not specified by the user,
Φun assumes that the data has the same endianess as the machine.

Output

Compared to the data input the output is relatively simple. There is only one
function for opening the file, writing a slice and closing the file, respectively.
In the current implementation the unwrapped phase image is saved as float
only. Since supporting other data format was of little interest, the functions are
called directly without the use of pointers to functions. If the input files were
in Analyze format, an Analyze header is written upon creation of the data
file. In case the user requested the data to be written with a certain endianess,
byte swapping is performed if necessary.

The function that actually writes a slice to disk loops over all pixels of the
unwrapped phase image. For each pixel the function checks whether the pixel
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has been unwrapped by one or more regions. If it has been unwrapped by more
than one region, the phase of the region with the lowest identifier number is
stored.

If a pixel has not been unwrapped, the original phase value, zero, or Not A
Number, is saved depending on the choice of the user. Per default the wrapped
phase value is stored. The motivation behind storing pixels that have not been
unwrapped as zero or as Not A Number was that this allows for a mask to be
created easily from the unwrapped phase image. This is especially true if Not
A Number is used. The option of writing zeros was implemented because not
all programs that handle Analyze files might be able to handle Not A Number
values.

In addition to the functions for storing the unwrapped phase image, functions
for storing quality maps were written. Also in this case there is a separate
function for opening the file, writing a slice, and finally closing the file.

6.3 Quality Maps

All five quality maps that were described in the previous chapter were imple-
mented. For each quality map a separate function was written. Nevertheless
all five functions use the same interface and thus can be used in a transparent
way by using a pointer to the respective function. The quality maps are stored
in the data structure QualityMap that describes a two dimensional float array.
The interface of the functions is defined as

QualityMap* calculateMap(Slice* slice , Slice* polarSlice ,

Point kernel)

All functions take a pointer to both a slice that can contain cartesian complex
data as well as one that can contain polar complex data. The motivation was
to avoid multiple conversion between cartesian and polar complex number while
keeping a common interface to all functions at the same time. Nevertheless it is
not necessary to provide both data, if the data format required by the function
is missing a conversion is performed. An example for this strategy would be that
the original data is made up of cartesian complex numbers. Prior to unwrapping,
the data has to be converted to polar complex numbers. Thus the data exists in
both forms. Since the function for calculating the quality map is called through
a pointer that is set to a certain function, the function calling the quality map
function is not aware whether cartesian or polar complex numbers will be used
for computing the quality map. In case of computing the average of the complex
image QACI the calculation would be done using data in cartesian numbers, in
case of the local coherence QLC the polar form would be used. By providing
both type of the data, no additional conversion has to be made. If, on the other
hand, the original data consists of polar complex number, a conversion will be
made only if QACI is called, since in this case the second pointer will point to
NULL.
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The computation of all five quality criteria requires at least one integration
over a rectangular neighborhood around each pixel (in case of the variance maps
two such summations are required since the mean value has to be computed
first). Evaluating the double sum for each pixel is rather computationally ex-
pensive. If the image dimensions are Nx × Ny and the kernel size is kx × ky, a
total number of Nx × Ny × kx × ky additions are required. For an image the
size of a typical SWI slice (512 × 384) and a typical kernel size (5 × 5), this
procedure would result in approximately 5 million additions. This number can
be reduced easily if the sum is rewritten. This shall be illustrated first for the
one dimensional case.

For a one dimensional image pi with i ∈ [1, Nx] and a smoothing window of
kx pixel (with kx being an odd number) the value of a pixel p̄i in the smoothed
image can be written as

p̄i =
1

kx
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(6.1)
If Pi is computed and stored before p̄i is calculated, the simple sequence Pi =
Pi−1 +pi can be utilized. Thus the computational effort is reduced from Nx×kx

to 2Nx.
For a two dimensional image the reduction in computation time is more sig-

nificant. Let pi,j be the value of a pixel at i ∈ [1, Nx] and j ∈ [1, Ny]. The
smoothing kernel shall have a dimension of kx × ky. p̄i,j is then given by
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Figure 6.1 provides an illustration of the area integrals P
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. Just as in the one dimensional case Pi,j can be

calculating using a sequence:

Pi,j = Pi−1,j + Pi,j−1 − Pi−1,j−1 + pi,j . (6.3)

82



6.3 Quality Maps

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

����
����
����
����
����
����

����
����
����
����
����
����

y

x

Figure 6.1: Illustration of the area integrals used for the fast integration over a
sliding rectangular kernel (area enclosed by the stronger lines).

This reduces the total number of iterations from Nx ×Ny × kx × ky to 2×Nx ×
Ny. In the case of the previous examples, this means less than 400 thousand
iterations instead of just below 5 million are required.

This procedure potentially is numerically unstable since it involves subtract-
ing large numbers that might differ by a small amount only. Double precision
numbers were thus used for the computation of the sequence. The results ob-
tained with the functions for computing the quality maps were compared to
maps calculated with the built in functions of IDL on several data sets. The
observed difference between the two methods were at maximum at the order of
10−6 and thus found to be negligible.

Special care has to be taken at the boundaries. In principle, there are two
possible boundary conditions:

1. periodic boundary condition: although assuming a periodic boundary con-
dition would be unusual in case of ordinary images, it can make sense in
case of MR images, since the image is computed by a discrete Fourier

transform and is thus inherently periodic.

2. embedding the image into noise: this would correspond to extending the
field of view. This boundary condition is easier to implement.

The second option was preferred for treating the boundaries, because in gen-
eral the field of view is placed such that it is not too close to the boundaries
to avoid aliasing due to a too small field of view. Furthermore this method is
easier to implement. Nevertheless two cases have to be distinguished, namely
the maps that are based on the mean value (average of magnitude QAM, local
coherence QLC and average of the complex image QACI, respectively) and those
based on the variance (variance of the phase QVPH and variance of the complex
image QVCI).
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In the first case, one can simply add zeros around the image, since the mean
value of perfectly Gaussian distributed noise is zero. This ignores that the
noise in the magnitude is distributed according to a Rician distribution. But
since this just results in a decrease of the quality measure close to the border
this is acceptable. In the implementation the embedding of the image into
“perfect noise” is achieved by adding a rim filled with zeros is around the image.
The integration starts at the origin of the original image (which is (⌈kx

2
⌉, ⌈ky

2
⌉)

because of the additional border containing “pure noise”) and proceeds to the
other corner without any special treatment of the borders.

In case of the variance maps, simply adding zeros around the image would
lead to a lower variance than in the noisy part of the image. Thus periodic
boundary conditions were implemented for the variance maps.

All maps were normalized to the interval [0, 1]. In case of the variance maps,
the lowest variance was defined to be 1 and the highest to be 0.

In addition to the five functions for computing the quality maps, helper func-
tions for allocating and deallocating two dimensional double precision real valued
and complex valued maps were implemented. Additionally, a function for mul-
tiplying a quality map with a bit mask was written as well. By applying a bit
mask to a quality map unwrapping can be limited elegantly to arbitrary regions
defined by the user without requiring additional tests during unwrapping.

6.4 Seed Finding

Every time unwrapping by a new region is to be started a seed point for this
region has to be defined. In case of the single region mode this occurs only once.
In the multi region mode a new seed point has to be selected every time two
regions have been merged. Since choosing a seed point requires searching the
quality map for the point that has the highest quality measure of all points that
have not been unwrapped so far, this procedure is rather time consuming. I thus
decided to identify and sort all possible seed points before unwrapping starts
and store them in a special data structure. During unwrapping, every time
a new region is started a seed point is picked from the top of this structure.
The description of the implementation of my approach for seed finding starts
with seed finding in single region mode. Afterwards seed finding in multi region
mode and the data structure for storing the seed points are discussed. The
functions for both modes use the same interface definition. In principle, this is
not necessary, since if the multi region mode is used for unwrapping seed finding
has also to be done in multi region mode and the other way round. Nevertheless
using the same interface definition does not come at an additional cost and
increases the reusability of the code in case new unwrapping algorithms are to
be implemented in future versions of Φun. The template for the interface of the
seed finding functions is:

int findSeeds(QualityMap* map , Regions* regions ,

BitMask* mask)
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1 typedef struct _Seed* PSeed;

2

3 typedef struct _Seed {

4 float quality;

5 Point coordinates;

6 PSeed next;

7 } Seed;

Listing 6.7: Single chained list for storing seed points.

1 typedef struct _Seeds {

2 Seed** seeds;

3 int* nSeeds;

4 int nSeedsTotal;

5 float minQuality , delta;

6 int hashSize;

7 int maxSorted;

8 } Seeds;

Listing 6.8: Structure for storing seed points.

The functions return the number of seed points found. The data structure
containing the seed points is stored in the same structure as the regions. In
addition, a pointer to a bit mask can be passed to the function. By defining
a bit mask additional arbitrary constraints on the seed points (e.g. a minimum
signal intensity) can be defined easily. This can be necessary if the same quality
map is to be used for seed finding and unwrapping.

In addition to the two functions for seed finding, a function creating a new
region by picking a seed point from the list of seed points and a function for
deallocating the data structure containing the seed points were implemented.

Seed Finding in Single Region Mode

Seed finding in single region mode is straight forward and is just described for
the sake of completeness. The full quality map is searched for the point having
the maximum quality measure. If a bit mask has been provided, only points for
which the corresponding bit in the mask is set are considered during this search.
The point that has been identified as seed point is then stored in the structure
for seed points (which is described in more detail in the next subsection) and
returned as part of the structure describing the regions.
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Seed Finding in Multi Region Mode

In principle seed finding for the multi region mode can be done by simply sorting
all pixels according to their respective quality measure. Because of the large
number of pixels this would be a rather time consuming and inefficient method.
The main idea of the approach used by Φun is to minimize the actual sorting
by dividing the seeds into bins of certain quality intervals. Thus each bin only
contains a relatively small number of pixels and sorting those pixels can be
done more efficiently. The seeds are stored in a single chained list within each
bin (listing 6.7). The structure in which all seed points are stored is given in
listing 6.8. Seed** seeds represents an array of pointers to the lists containing
the seed points and thus the bins. The number of points stored in each bin
is given by int* nSeeds. The width of each bin is given by float delta. The
number of bins is stored in int hashSize. It is computed by

hashSize =
1 − minQuality

delta
(6.4)

During seed finding the index of the bin corresponding to the pixels quality
is calculated for each point that qualifies as a seed, i.e. that has a quality larger
than float minQuality and a corresponding bit set in the bit mask (if a bit
mask was passed to the function). The point is then added to this bin. In
principle, all seed points within each bin should be sorted. This can be a very
time consuming procedure if many points fall into a single bin. On the other
hand, the seed points do not have to be sorted precisely as long as the bins
are small enough. I have thus chosen an approach in which only the points
having the highest quality in each bin are sorted, while the rest are just added
to the list. The number of points that are sorted within each bin is given
by int maxSorted. Thus adding a seed point to a bin requires at maximum
int maxSorted comparisons.

Creating a New Region

Every time one or more regions have to be created a call to

int addRegions(Regions* regions , float t_q ,

UnwrappingImage* image)

is made. The functions attempts to add as many regions as are missing to
the maximum number of regions that are used for simultaneously unwrapping
the image. Figure 6.2 illustrates the sequence of steps for adding regions. The
following steps are repeated as long as the number of regions is lower than the
maximum number of regions used for unwrapping and as long as seed points are
available that are above the current quality threshold:

• check whether the seed point has been unwrapped already; if not, proceed,
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Figure 6.2: Flow chart of the function addRegions.
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• check whether the seed point is too close to another seed point, since
placing the seed points in the vicinity of another seed point would cause
attempts to merge the regions to be made before the regions have actually
grown. To avoid seeds being placed too close to each other the pixels
around a new region are masked. During this step, it is checked whether
the current seed point is masked already; if not, proceed,

• initialize the region. The structure describing the region is created and
added to the list of regions. The pixel is marked as unwrapped in the
unwrapped image.

• mask the pixels in the vicinity of the seed point, to avoid placing further
regions.

• remove the seed point from the list of seed points.

6.5 Unwrapping

A single function controls unwrapping for both single and multi region mode.
Nevertheless, the function is called through a pointer to a function to allow for
a transparent replacement in case a modified approach to relaxing reliability
criteria is implemented in a future release of Φun. The interface of the function
is

int unwrap(UnwrappingImage* slice , QualityMap* map ,

QualityMap* seedMap , BitMask* seedMask)

The arguments are a phase image with the corresponding unwrapping records,
two pointers to quality maps, one for seed finding and the other as quality
criterion for unwrapping. Additionally a pointer to a bit mask for constraining
seed finding can be given. The motivation for the bit mask is that there might
be situations in which the same quality map is used for seed finding and for
region growing. In this case limiting the placement of seeds by multiplying the
quality map with a mask without also constraining the unwrapping would not
be possible.

After initializing the data structure containing the data of the regions and
calling the function for seed finding, the function starts executing the two loops
for relaxing the quality criteria. The outer loop relaxes the two constraints on
the extrapolation (tv and t∆φ) while keeping both at the same value, the inner
loop relaxes the quality criterion tQ. The second loop contains a third loop,
which is repeated until the criterion for relaxing a reliability criterion is reached
(i.e. the number of pixels unwrapped during an iteration falls below a limit tN).
During each iteration, the algorithm checks first whether the current number of
regions is equal to the desired number of regions. If this is not the case new
regions are created by calling the respective function.
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As a next step the function for growing a region is called for each region. This
function returns the number of pixels that have been unwrapped. This value is
added to the total number of pixels unwrapped during the current iteration.

After all regions have been grown, the flag indicating new overlaps is checked.
If an overlap occurred the function for resolving overlaps is called. This func-
tion returns the number of pixels that had to be deleted because they were
unwrapped by two regions but for which the predictions of the two regions were
in disagreement. This number is subtracted from the total number of pixels
unwrapped during the iteration. This is necessary to avoid oscillations and to
ensure that the algorithm terminates. Finally the condition for relaxing one of
the reliability criteria is checked.

6.6 Region Growing

The actual region growing is done by two functions, one for the single region
mode and one for the multi region mode. Both functions are very similar and
use the same interface definition:

int growRegion(Regions* regions , int regionsIndex ,

UnwrappingImage* image , float t_q ,

float t_d , float t_v)

The only difference is that handling of multiple regions is not implemented in
the function for the single region mode for reasons of computational efficiency.
Thus the implementation of the region growing function for single region mode
is described first. Afterwards only the differences required for handling multiple
regions are discussed.

Region Growing in Single Region Mode

After retrieving the pointer to the region that is to be grown from the data
structure storing information on all regions using the region’s index, the iter-
ation counter is increased. The main purpose of this counter is to enable the
function to discriminate between pixels that have been unwrapped during previ-
ous iterations from pixels that have been unwrapped within the same iteration.

The algorithm then starts examining each pixel stored in the fringe list. An
optimization of this phase was attempted by determining as early as possible
whether a pixel can be unwrapped and by trying to minimize operations by
utilizing information from previous steps. As a first step the pixel is marked as
having been looked at by setting the value of its iteration field to the current
iteration and the current field to −2. Then the quality criterion is checked. If
the pixel does not pass this test the function continues with the next pixel on
the list.

Prior to investigating each neighbor, the variables for computing the predic-
tion of the unwrapped phase are initialized. These variables are the common
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prediction and the sum of the weights, the number of prediction lines, as well
as an array for the individual predictions and another array for the respective
weights.

The algorithm checks whether a neighbor has been unwrapped in a loop over
all neighbors and immediately proceeds to the next neighbor if this is not the
case. If a neighbor has been unwrapped it checks if the pixel has been visited by
comparing the iteration field with the current iteration. If necessary the pixel
is then marked as visited by updating the iteration field and setting current to
0. These steps are repeated with the next nearest neighbor on the prediction line
defined by the neighbor. The individual prediction is then computed taking into
account whether the next nearest neighbor belongs to the region or not. Both,
the prediction and the weight, are stored in the respective arrays and added
to the corresponding total values. Furthermore the counter for the number of
neighbors is increased by one.

If the number of neighbors is larger than zero the algorithm tests the other
reliability criteria. Actually the situation that a pixel in the fringe has no
neighbors should not occur, since a pixel without any unwrapped neighbors is
not really a part of the fringe. Such a pixel is thus removed from the fringe list
and added to a list containing all pixels that were removed from the fringe. The
memory for data structures on this list is deallocated before the function exits.

The reliability criteria are tested in the following manner: first a check whether
pixel passes t∆φ is performed. This test is done first, because it does not require
any further calculations. Contrary to that computing the variability of the
predictions requires a loop over the individual predictions of each prediction
line. Thus the efficiency is increased if this parameter is computed and tested
only if the pixel has passed the other reliability criteria.

In case the pixel has passed all reliability criteria and thus can be unwrapped,
the corresponding fields in the pixel’s data structure are adjusted. These fields
are the counter nRegions which counts by how many regions the pixel has been
unwrapped, the unwrapped phase phiUnwrapped[], the ambiguity number m[]

and the pointer to the region region[]. Furthermore the field current[] is
decreased by nRegions. This way the pixel is marked as having been unwrapped
within the current iteration. The pixel is then removed from the fringe list and
added to a list of pixels that have been unwrapped during the current iteration.
This list is used later to determine which pixels have to be added to the fringe
because they are neighboring a newly unwrapped pixel.

After all pixels of the fringe have been processed, the bounding box of the
region is adjusted if necessary and the fringe is updated. This is done by iterating
over the list of newly unwrapped pixels. For each pixel its immediate neighbors
are tested exploiting the information of the current and iteration fields: a pixel
for which current is set to −2 is already in the fringe, either because it was not
unwrapped, or because it did not pass the reliability criteria, or because it just
has been added to the list. Latter happens when a given pixel is neighboring
two or more pixels that have been unwrapped during the current iteration. If
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the value of current is −1 the pixel is a neighbor that is not in the fringe list
already. It thus has to be added to fringe. After this is done, its current field
is set to −2 to avoid adding it multiple times.

Finally the list of pixels that do not belong to the fringe anymore is deleted
and the associated memory is freed.

Region Growing in Multi Region Mode

The function for region growing in multi region mode is implemented almost
exactly as the function for single region mode. The only difference is that it takes
into account that if a pixel has been unwrapped already it has not necessarily
been unwrapped by the current region and thus an overlap might occur. Such
an overlap has to be taken care of in a special way. To handle multiple regions
efficiently the function uses the field current even more than the function for
single region mode.

First of all one has to distinguish five cases:

1. a pixel has been unwrapped by two regions already and is part of the
current region’s fringe,

2. a pixel has not been unwrapped by any region, but is part of the fringe of
the current region,

3. a pixel has been unwrapped by another region and is part of the fringe of
the current region,

4. a pixel has been unwrapped by the current region only, and finally

5. a pixel has been unwrapped by the current region and another region.

In the first case the function proceeds immediately to the next pixel in the
fringe, because overlaps are allowed between two regions only. The algorithm
will attempt to unwrap this pixel in a later iteration (after the other two regions
have been merged).

The second situation is trivial and does not differ from the single region mode.
In the third case the algorithm has to ensure that it handles the overlap correctly
when the pixel is being unwrapped. Unwrapping of a pixel in this case results
in the field nRegions of the pixel now being increased to two and the unwrapped
phase, the ambiguity number as well as the pointer to the region being stored in
the second field of the corresponding arrays. Furthermore two overlap records
are created. One pointing to the region which unwrapped the pixel first which
is added to the current region’s list of overlapping pixels. And one pointing to
the current region which is added to the other region’s list.

The last two situations occur either when the pixel actually should not be
on the list of fringe pixels (which usually occurs after two regions have been
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merged) or when the pixel is a neighbor of a pixel that is to be unwrapped. Of
course, the second case is the one of interest.

The main problem in all cases is the very often repeated check whether a pixel
has been unwrapped by the current region, and if this is the case, which field
in the array containing the value of the unwrapped phase corresponds to the
current region. Usually it has to be performed more than once for each pixel,
because pixels in the fringe have common neighbors and every time a neighbor
is being looked at the check has to be done. Thus an efficient implementation
that reduces the number of tests to a minimum is desirable.

To achieve this the algorithm uses the fields iteration and current in the
following way: just as before iteration and current are set to the number
of the current iteration and to −2, respectively, as soon as the function starts
processing a pixel belonging to the fringe. Then, during the treatment of this
pixel’s neighbors, the algorithm checks whether the neighbor has been examined
during the current iteration by using the iteration field. If this is not the
case, it updates the iteration field and determines whether the pixel has been
unwrapped by the current region. This is done by comparing all entries in the
pixel’s region field with the pointer to the current region. If there is a match
the corresponding index is stored in the current field, otherwise it is set to -1.
Thus the values of current have the following meaning:

0 and positive values indicate the index of the pixel’s unwrapping record that
corresponds to the current region,

-1 the pixel has not been unwrapped by the current region and is not in the
fringe,

-2 the pixel belongs to the fringe.

Thus for using the neighbors for a prediction only a test whether current is
positive or not has to be performed after testing iteration. In all subsequent
steps current is used as an index to access the pixel’s values that corresponds
to the current region.

6.7 Resolving Overlaps

At the end of each region growing iteration, i.e. after the algorithm attempted
to unwrap a one pixel wide fringe around each region, the algorithm tries to
resolve any overlap that might have occurred. Resolving overlaps is a non-
trivial, computationally expensive operation. It was thus tried to optimize it as
much as possible.

As a first step the algorithm checks if any new overlap occurred by checking a
flag in the regions’ structure. If not the function returns immediately. Otherwise
the algorithm loops over all regions starting with the region that has the lowest
index. This ensures that at first the algorithm tries to merge overlaps that have
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1 typedef struct _Overlap {

2 Point coordinates;

3 UnwrappingPixel* pixel;

4 PRegion region;

5 int diff;

6 POverlap prev ,next;

7 } Overlap;

Listing 6.9: Data structure for overlaps.

occurred with those regions that were started with the best seed points, i.e. the
“oldest” regions.

Sorting the Overlapping Pixels

First the flag whether a pixel has been added to an overlap of the current
region is tested. If it is not set the algorithm continues with the next region.
Otherwise the list containing the overlapping pixels is sorted. The function
updates the information of the structure in listing 6.9. This is necessary in case
the region with which the current region is overlapping has already been merged
with another region. In this case neither int diff nor PRegion region might
be correct.

The difference between the multiplication factors mi,j of 2π of both regions is
stored in int diff. The list is then sorted in terms of the indices of the regions
the current region is overlapping with. If many regions are growing concurrently
many overlaps may occur. Thus the list might be rather long. Thus a fast sorting
algorithm, namely quick sort, was implemented.

As a next step the algorithm checks each overlap if it is large enough for an
attempt to merge both regions (NO > tO). If this is the case, the most common
phase difference ∆mode (i.e. the mode of the phase differences) is calculated.

Calculating the Most Common Phase Difference

For calculating the mode a single chained list that stores the differences between
the unwrapped phases of pixels in the overlap and their frequency is used. For
each pixel in the overlap, the list is searched for the respective difference between
the multiplication factorsmi,j of both regions. If the value is found its occurrence
frequency is increased by one, if not this value is appended to the list. Finally
the difference that has the highest occurrence frequency (i.e. the mode ∆mode)
is returned together with the number of occurrences.

If the ratio between the occurrence frequency of ∆mode and the total number
of pixels in the overlap NO passes the threshold tf the two regions are merged.
Otherwise the pixels in the overlap are deleted from both regions.
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Merging of Regions

The algorithm starts by looping over all pixels in the overlap. For each pixel
it checks whether the difference between the unwrapped phases is in agreement
with the most common difference (∆mode). If there is an agreement the pixel is
updated such, that the reference to the second region is removed and the region
counter is set to one. If the difference is not compatible with the common
difference, the references to both regions are deleted. Thus the pixel is being
marked as not having been unwrapped. Furthermore the pixel is added to
the fringe of the first region, so that an attempt to unwrap it is made in the
next iteration.1 The number of pixels that have been set as not unwrapped is
returned.

During the next step all pixels of the second region are added to the first
region. This is done by looping over all pixels that are contained within the
bounding box of the second region. Each pixel is then tested if it has been
unwrapped by the second region. If this is the case the reference to the second
region is updated such that it points to the first region. Also the value of the
unwrapped phase is adjusted.

It is also necessary to add the pixels in the fringe around the second region
to the fringe of the first region. This is done by simply joining the lists. A
check whether a pixel of the fringe list has been unwrapped is not done, because
both fringes would have to be checked. Such a check is done during the region
growing phase. Also, the list of overlaps of the second region is appended to the
list of overlaps of the first region.

Finally, the bounding box of the first region is updated such that it also
circumscribes the pixels added to the region. The second region is marked as to
be deleted.

It is necessary to sort the list of overlaps after two regions have been merged,
since the overlap with any other region might have changed in size because of
a previous overlap that the second region had. After sorting the overlaps, the
next overlap is processed.

Deleting an Overlap

If the agreement between the two regions is not good enough, all pixels in the
overlap are deleted from both regions. This is done by setting the region counter
of each pixel to zero and setting the pointers to the regions to NULL.

After all pixels have been removed from both regions, the fringe of each region
has to be updated. This is done by looping over all pixels in the overlap once
again. For each pixel a check is performed whether the pixel has neighbors that
belong to one of the regions. If a pixel has neighbors it is added to the fringe of
that region.

1The pixel is not added to the second region, because the second region is being merged with
the first region. It will thus not exist during the next iteration.
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Twice the number of pixels that have been deleted (once for each region) is
returned. Subtracting this number from the total number of pixels which were
unwrapped during the previous growth phase is necessary to avoid oscillations.
Such oscillations could occur if the thresholds were not relaxed because the
number of pixels unwrapped appears higher than it actually is.

Finishing Resolving the Overlaps

After all regions have been processed, the algorithm checks whether there are
any regions that have to be deleted because they have been merged with other
regions. If this is the case, the structure corresponding to the region is removed.
The array containing all regions is modified such that after a region has been
deleted, the regions with a higher index are moved in order not to leave any
gaps in the array. Finally, the flags marking the inclusion of pixels to an overlap
and that regions have to be deleted, are both cleared.
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7
Evaluation

In principle, there are two possible approaches to evaluate a phase unwrapping
algorithm: to unwrap experimentally measured data and compare the results
with another method or a gold-standard, or to unwrap simulated phase images.
Both approaches have advantages and disadvantages.

The advantage of using experimentally obtained data is that these data give
a realistic picture of the algorithms performance. The disadvantage is that for
this kind of data the true value of the phase is not known. The results have
thus to be compared with a second method or a gold-standard. In situations
in which the results of the two methods disagree it can be hard to judge which
method yielded the correct phase value.

The problem of not knowing the “true phase” can be overcome if simulated
phase images are used. For such a simulation one could assume that the phase
is a function to which noise is added. Unfortunately, such a simulation fails to
reflect the interplay between magnitude and phase image. Furthermore it does
not resemble the complexities of measured data. It is rather difficult to devise
a simulation that yields realistic magnitude and phase images while preserving
knowledge of the absolute phase.

For these reasons I chose the first approach, namely a comparison of Φun’s
performance on experimentally measured data with an established method. As
established method, I selected Prelude [1] which is part of the FSL Analy-
sis Package (Oxford Centre for Functional Magnetic Resonance Imaging of the
Brain, United Kingdom). Prelude was mainly developed for correcting EPI
data for distortions caused by magnetic field inhomogeneities.

Prelude belongs to the class of algorithms commonly known as “Split and
Merge” algorithms. During the split phase it divides the image into partitions
that have similar phase values. Each region is free of phase wraps because of
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the definition of the phase intervals. In the worst case, a region might contain a
single voxel. Prelude then attempts to merge the regions using a cost function
that is minimal when the correct multiple of 2π is added to each region.

Unlike Φun, Prelude is able to unwrap not only in two dimensions but
also in three dimensions. Also a third mode in which the partitioning phase is
done slice by slice (i.e. in two dimensions), but with the region merging phase
proceeding in three dimensions exists. By default Prelude chooses the hybrid
mode for high resolution data. All of the data presented herein were treated as
high-resolution data-sets. Nevertheless, Prelude can be forced to use a certain
mode by setting command-line parameters. For the evaluation of Φun, all three
modes of Prelude were used.

For the evaluation, both programs were applied to phantom data and subject
data using their default parameters. The only exception were the parameters
controlling the unwrapping modes (single region and multiple regions in case of
Φun, and 2D, hybrid and 3D mode in case of Prelude).

All data-sets were unwrapped on the same multi-processor Linux machine.
The computer contained two 2 GHz dual-core AMD Opteron processors. It
was ensured that one processor core was used for unwrapping only at all times.
Furthermore, the machine always had enough free memory to guarantee that no
swapping occurred. Also, it was ensured that all disk operations were on local
disks to allow for fast and reproducible data access. The time required to read
a typical complex data-set and to save it as floating point values was measured
and found to negligible (6.2 × 10−3 s for a 256 × 224 slice).

The results obtained with the two programs were compared both in terms of
time required for unwrapping and the quality of the unwrapped phase images.
Differences between the results where identified by subtracting the unwrapped
phase images from each other. In case of offsets between images, a multiple of 2π
was subtracted from the subtraction image. Thus any pixel of the subtraction
image that differed from 0 was caused by a mismatch between the methods.
Those pixels were closely investigated in the magnitude image, the wrapped
phase image and the unwrapped phase image of each method to obtain an
understanding for the reasons for the disagreement.

The results of the evaluation were presented at the 2007 Annual Meeting of the
ISMRM [2]. A manuscript has been submitted to Medical Image Analysis [3].

7.1 Phantom Data

Using phantom data for evaluating Φun’s performance was motivated in the
following way:

• a phantom produces realistic data that takes into account the full mea-
surement process.

• nevertheless, the complexity of the data can be controlled by the design of
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(a) (b)

(c) (d)

Figure 7.1: A sagittal slice of the phantom (magnitude: (a), wrapped phase:
(b)) and a transversal slice of the phantom (magnitude: (c), wrapped
phase: (d)). The arrow heads in (a) indicate the slices in which the
ROIs for calculating the SNR were placed.

the phantom. Thus, although it is not possible to know the“true”phase of
measured data, the likelihood of a certain predicted phase can be judged
rather easily.

• the amount of dephasing and the signal’s magnitude (and thus the SNR)
can be modulated easily by the experiment’s parameters.

• artifacts often found in in vivo data, such as motion or flow, can be sup-
pressed easily.

• the total acquisition time and thus the parameter space that can be sam-
pled is limited by the available scanner time only. Since a clinical scanner
was used to acquire the data, all data had to be measured within a single
night.

The goal of this study was to investigate the behaviour of Φun at differ-
ent SNR levels, as well as how well it could handle the rather complex phase
topography caused by a large susceptibility perturbation. In nature, such a
perturbation can be found, for example, close to the paranasal sinuses. Fur-
thermore, the dependence of Φun’s performance on the density of phase wraps
was of interest. The phantom was thus designed to be homogeneous with a
single field perturbation. It consisted of a 5 L glass bowl with a ping-pong
ball immersed in an aqueous solution containing 0.9 % NaCl and 0.2 mmol/l
Gd-DTPA. Figure 7.1 shows sagittal and transversal cuts through the magni-
tude images (fig. 7.1(a) and fig. 7.1(c), respectively) and through the phase
images (fig. 7.1(b) and fig. 7.1(d)).
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Data Acquisition and Processing

A total number of 72 fully first order flow compensated 3D gradient echo [4]
data-sets were acquired on a 1.5 T MR scanner (Magnetom Vision, Siemens,
Erlangen, Germany) with the standard CP receive/transmit head coil. The
scans had different echo-times, flip angles and resolutions. 48 of the 72 scans
were low resolution scans (matrix: 256×168×48 and a field of view (FoV): 256×
224 × 95 mm3; i.e. having a voxel dimension of 1 × 1.33 × 2 mm3). TE and
the flip angle α of each measurement were chosen such that all combinations
of the parameter space TE × α with TE ∈ {20, 25, 30, 35, 40, 45}ms and α ∈
{2, 4, 6, 8, 10, 15, 20, 25}◦ were used.

The other 24 data-sets consisted of 12 low resolution (matrix: 256×168×32,
FoV: 256 × 224 × 48 mm3; i.e. voxel dimensions: 1 × 1.33 × 1.5 mm3) and 12
high resolution (matrix: 512 × 336 × 32, FoV: 256 × 224 × 48 mm3; i.e. voxel
dimensions: 0.5 × 0.67 × 1.5 mm3) scans. The parameter space TE × α was
TE ∈ {20, 30, 45}ms and α ∈ {2, 4, 8, 16}◦. Each low resolution and each high
resolution data-set corresponded to one point in this parameters space. In z
direction, the slab did not cover the full ping-pong ball. For all measurements
TR was 60 ms.

Before reconstruction, the data were zero-filled in the in-plane phase encoding
direction to obtain an isotropic in-plane voxel size. This step yielded an in-plane
resolution of 1 × 1 mm2 for the low resolution data-sets and of 0.5 × 0.5 mm2

for the high resolution data-sets, respectively. While the echo was slightly off-
centered in the phase encoding direction to increase the number of phase wraps
and thus creating a more complex phase topography, it was centered in the z
direction. The latter was done to avoid penalizing three dimensional unwrapping
methods.

After reconstruction, the outermost slices were discarded. This was done for
two reasons: first of all the signal in those slices was comparatively small. Sec-
ondly the images were hampered by fold overs due to violation of the Nyquist

condition in the z encoding direction caused by imperfections of the slice profile,
which are typical for 3D imaging.

Additionally, to compare the performance in homogeneous and inhomoge-
neous regions, each data-set was split into a homogeneous part (13 slices) and
one containing the inhomogeneous part (20 slices). The homogeneous data-sets
did not exhibit significant distortions caused by the field inhomogeneity. In
total, 216 data-sets were created and unwrapped.

To study the performance of Φun and Prelude as a function of the number
of phase wraps, two neighboring slices of three low resolution data-sets (SNR =
5.1, 14.9 and 83.0) were selected. The slices were chosen such that they were
still affected by the field inhomogeneity, but that they were unwrapped by all
methods completely. A two dimensional Fourier transform was then applied
to each slice. This led to a two dimensional k-space for each slice. From each
k-space a set of images with different numbers of phase wraps was obtained by
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: Illustration of the influence of measuring parameters and echo shifts
on the phantom data. The top row displays data that were acquired
with TE = 20 ms and a flip angle of α = 25 ◦. The SNR was cal-
culated to be 80.3 in the center of the image. (a) is the magnitude
image, (b) the phase image with the echo centered and (c) the phase
image with the echo shifted to achieve the maximum number of
phase wraps. The bottom row exhibits data of the same phantom
acquired at TE = 45 ms and α = 2 ◦. The SNR in the center of the
image is 5.1. (e) and (f) are the phase images with the centered and
the maximally off-centered echo, respectively.
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(a) (b)

Figure 7.3: SNR as a function of echo time TE and flip-angle α of a ROI in an
homogeneous area (a) and a ROI affected by the field inhomogeneity
(b).

shifting the echo off center in phase encoding direction. The echo was displaced
in steps of two pixels to a maximum distance of 33 pixels from the center.
Depending on the displacement of the echo, the number of phase wraps ranged
from 6 to 31. The median distance between wraps ranged from 22.0 to 6.5
voxels, respectively. The effect of both the off centered echo and the acquisition
parameters on magnitude and phase images of the phantom is displayed in
fig. 7.2. The top row corresponds to the images with the highest SNR (SNR =
80.3) and the bottom row to the images with the lowest SNR (SNR = 5.1). The
middle column displays the phase images that were reconstructed with the echo
centered in k-space, while the right column shows the phase images obtained
with the maximally off centered echo.

Results

Low Resolution Data-Sets

The SNR was measured for each data-set in two ROIs. One ROI was placed
in the vicinity of the field inhomogeneity and one in an homogeneous area.
The placement of the ROIs is indicated by arrow heads in figure 7.1. In the
homogeneous area the SNR ranged from 5.4 at the longest TE and the smallest
flip-angle α to 90.6 at the shortest TE and the largest flip-angle α. In the
inhomogeneous ROI the respective values were 5.1 and 84.3. The SNR as a
function of flip angle α and TE is shown in figure 7.3 for both ROIs.

The results of all applied methods (Φun, Φun with multiple regions and
Prelude in all three modes) were in very good agreement for all SNR levels.
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(a) (b)

(c) (d) (e)
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Figure 7.4: A slice of the phantom ((a) magnitude image, (b) phase image) un-
wrapped by Φun (c) and Prelude 2D (d). (e) shows the difference
between the results obtained with Φun and Prelude. White pixels
indicate pixels for which Φun computed an unwrapped phase but not
Prelude, black pixels those which were unwrapped by Prelude

but not by Φun. In (f) the phase along a cut parallel to the x-axis
at the center of the slice is shown. At about pixel 150, Prelude

generates an artificial phase wrap. This wrap is indicated in (d) and
(e) by the arrow heads. It is hardly visible because of its small size
and the rather large dynamic range of the image (the lowest value
is −51.79, the highest 42.46).
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Figure 7.5: Normalized time (on a logarithmic scale) required for unwrapping a
slice of (a) a full low resolution data-set, (b) a slab at a distance from
the source of the field inhomogeneity and (c) a slab around the field
inhomogeneity versus SNR measured in a region in the proximity of
the inhomogeneity’s source.
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Nevertheless, some small systematic differences between the two methods were
observed (fig. 7.4):

• Φun tended to unwrap an additional one pixel wide rim compared to
Prelude at the outer boundary of the phantom. This is the result of
slightly differing termination conditions.

• in areas that were strongly affected by the signal drop out caused by
the field inhomogeneity, Φun tended to create smoother borders, while
Prelude unwrapped further into the field inhomogeneity, but often left
small“holes”of wrapped pixels that were unwrapped by Φun. Also, in this
case, the discrepancies can be explained by slightly differing termination
criteria.

In regions with a very steep phase topography, Prelude occasionally created
a phase wrap. These areas were small in size (well below 100 pixels). In those
situations the different modes of Prelude often yielded differing results. Φun

always generated smooth phase topographies in which these wraps did not ap-
pear. Nevertheless, a close inspection of all images did not provide insight into
which result was the correct one. Figure 7.4(d) shows a phase image obtained
with Prelude that exhibits such a wrap (indicated by the arrow head). This
wrap is not visible in the phase image generated by Φun (fig. 7.4(c)). A cut
through the phase image is displayed in figure 7.4(f).

Although all methods performed equally well in terms of the quality of the
unwrapped phase image, the times required for unwrapping differed significantly.
The computation times required by all methods versus the SNR measured in the
ROI affected by the field inhomogeneity is shown in figure 7.5. The computation
time is normalized to a single slice. At the highest SNR levels, Φun’s single
region mode demanded 0.14 s for unwrapping a single slice. In multi-region
mode, Φun was about a factor 1.6 slower. Prelude in 2D mode needed about
0.20 s. In 3D and hybrid mode Prelude was more than a factor 12 slower,
requiring 1.68 s and 3.85 s, respectively.

Φun’s computation time did not show an SNR dependency. On the other
hand, Prelude’s performance in all three modes was strongly dependent on
SNR. At the lowest SNR levels Prelude required between 2.5 times (in 2D
mode) and 145 times (hybrid mode) as much time as Φun. Comparing the times
required for unwrapping the homogeneous (fig. 7.5(b)) and the inhomogeneous
(fig. 7.5(c)) part of each data-set, showed that unwrapping times required for
unwrapping the full data-set were dominated by the slices most affected by the
field inhomogeneity.

High Resolution Data-Sets

The SNR of the high-resolution data-sets was measured in a similar way as
the one of the low-resolution data-sets. Because of the smaller voxel size the
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SNR was reduced significantly. It ranged from 3.7 to 22.1 in the ROI in the
homogeneous area and from 1.8 to 18.5 in the ROI in the proximity of the
ping-pong ball. Unlike in the case of the low-resolution data-sets, the effects of
the field inhomogeneity were not dominating the computation time anymore.
Prelude’s 3D and hybrid mode failed to unwrap low SNR (SNR < 8) data-
sets within 24 h and were terminated manually. Since Prelude managed to
unwrap the slab that contained only the field inhomogeneity, and thus had less
slices, within 24 h in all cases, it is reasonable to assume that Prelude would
have unwrapped the full low SNR data-sets if it had been given more time.
Nevertheless, terminating Prelude of 24h was justified since the goal was not
to test whether Prelude was able to unwrap all data-sets but an evaluation of
Φun’s performance.

The unwrapped phase images obtained with all methods were in very good
agreement above an SNR of 13. Just as in the case of the low resolution data, the
only discrepancies between the methods were found in the areas most affected
by the field inhomogeneity. As before Φun created smoother boundaries while
Prelude grew further into the signal drop out, but left “holes” of unwrapped
pixels. Except for these differences the unwrapped phases images were smooth
and did not contain wrapped pixels.

At low SNR, differences between the Φun and Prelude were observed. While
Φun still yielded smooth and fully unwrapped phase images below an SNR of
13, Prelude failed to unwrap an increasing number of pixels. These pixels
were not connected and appeared like salt and pepper noise. The number of not
unwrapped pixels increased from a single pixel in a single slice at SNR ≈ 13 to
1.5 % of the pixels of the object at the lowest SNR (SNR ≈ 3.7).

At SNR below 10, Prelude started attempting to unwrap the area outside
of the phantom. This led to a sharp increase in computation time (a factor 10
at SNR ≈ 7 and more than a factor 1000 at SNR < 4, respectively). At SNR
levels below 4, Φun also started to unwrap the area outside of the phantom.
This resulted in an approximately 10 times longer unwrapping time (fig. 7.6).
Except for the lowest SNR levels, Φun’s unwrapping speed did not show a
dependence on the SNR level. This is in agreement with the low resolution
data. Φun required about 0.51 s for unwrapping a single slice at the highest
SNR levels. This is approximately four times as long as for the low resolution
data and corresponds very well to the increase in the number of pixels. The
respective computation times of Prelude were between ≈ 0.55 s in 2D mode,
≈ 1.32 s in 3D mode and ≈ 2.42 s in hybrid mode.

Phase Wrap Density Dependence

To study the dependency of Φun’s performance on the number of phase wraps
the results of Φun on the echo shifted data-sets were compared to those ob-
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Figure 7.6: Normalized time (on a logarithmic scale) required for unwrapping
a slice of: (a) the full high resolution data-set, (b) a slab at some
distance from the source of the field inhomogeneity and (c) a slab
around the field inhomogeneity plotted against the SNR measured
in the region least affected by the inhomogeneity.
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Figure 7.7: Dependency of Φun’s and Prelude’s (in 2D mode) performance
on the number of wraps in a slice at different SNR levels. The
number of wraps was modulated by shifting the echo off center before
reconstruction. While Φun’s speed is independent of the number
of wraps, the time required by Prelude increases with increasing
number of wraps.

tained with Prelude’s 2D mode.1 Both programs were able to unwrap all
phase images. The unwrapped phase images were in exact agreement.2 The
methods differed only in the dependence of the computation time on the phase
wrap density. While the unwrapping times of all methods were comparable up
to 17 wraps contained within the object (corresponding to a median distance
of 12 voxels between wraps) for all data-sets, Prelude’s speed went down sig-
nificantly above this number while the time required by Φun stayed constant
(fig. 7.7). Up to the point where the behavior of Φun and Prelude started
deviating, both methods needed less than 200 ms for each slice at all SNR levels.
At higher wrap density Prelude did not only show a dependency on the num-
ber of wraps but also on SNR. For high SNR images (SNR = 83) unwrapping
the images with the maximum number of wraps (31) took Prelude about 5
times longer than unwrapping images with up to 17 wraps. In case of the low
SNR images (SNR = 5.1), Prelude was approximately a factor 20 slower than
Φun.

1Prelude was used only in 2D mode for this study, since only two slices were available.
2The only exception being the one pixel wide rim unwrapped by Φun that was described

previously.
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7.2 Subject Data

Φun’s main area of application is SWI. Thus, I chose to evaluate Φun’s per-
formance on SWI data. SWI data of five healthy subjects were investigated
retrospectively.

Data Acquistion and Processing

All data were acquired using the same fully first order flow compensated 3D
gradient echo sequence on the same 1.5 T MR scanner (Magnetom Vision,
Siemens, Erlangen, Germany) as for the phantom data. For all measurements
the standard CP receive/transmit head coil was used. The parameters of all
scans were TR = 64 ms, TE = 40 ms and α = 25 ◦. The slices were parallel to
the AC-PC line. The matrix size was 512×256×32 and FoV 25.6×19.2×6.4 cm3.
Before reconstruction, each slice was zero filled to a resolution of 512×384 which
resulted in an isotropic in-plane voxel size. One data-set was zero-filled to 64
slices, two to 96 slices and the remaining two to 128 slices. Of each data-set the
outermost slices were discarded because of fold overs.

Results

The results of Φun, in both single region as well as in multi-region mode, and
Prelude in 3D and in hybrid mode were in very good agreement. The results
differed by single voxels within the brain at maximum. In those situations, even
a close inspection of all data did not reveal which prediction was the correct
one. In most cases, the disagreement was in pixels that either had a very low
magnitude or were surrounded by pixels with a very poor SNR. In areas with
very low signal, such as regions close to the paranasal sinuses, Prelude tended
to unwrap further into the signal drop out, but left small holes with wrapped
pixels. Φun, on the other hand, created smoother boundaries. This resembles
the behavior observed in the phantom (fig. 7.8).

The main difference between the methods was the fatty rim around the brain.
For studying brain data this region is not of interest, thus the value of the
phase therein is not of relevance. Nevertheless, since the algorithms behaved
differently, this behavior shall be described. The fatty rim around the brain
shows rather inhomogeneous signal intensities (fig. 7.8(a)) and is rather poorly
connected. In general Φun in single region unwrapped this fatty area only
partly (fig. 7.8(c)). The reason for this is that those areas that had higher
signal intensities were poorly connected to the rest. In multi-region mode, Φun

tended to unwrap more of the fatty area, because additional seed points were
placed in the rim. But because of the poor quality of the data in these areas,
the phase predictions were not reliable always and artifacts could be observed.
Prelude, on the other hand, unwrapped most of the fatty region (fig. 7.8(d))
and the phase predictions were more reliable than those of Φun.
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(a) (b)

(c) (d) (e)

Figure 7.8: A single slice of one of the subjects ((a) magnitude image, (b) phase
image) unwrapped by Φun (c) and Prelude 2D (d). (e) shows the
difference between the results obtained with Φun and Prelude.
White pixels indicate pixels for which Φun computed an unwrapped
phase (that differed from the wrapped phase) but not Prelude,
black pixels those for which Prelude calculated an unwrapped
phase but not Φun. Except for the fatty area around the brain,
of which Φun unwrapped only a small fraction, there are small dif-
ferences in the frontal area because of different termination criteria.
Within the brain there are four pixels that were not unwrapped by
Prelude.
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(a) (b) (c)

Figure 7.9: Wrapped phase (a) of a subject where Prelude in 3D mode gener-
ated phase wraps that were not present in the original phase image
(b). For comparison the phase image obtained with Φun is shown in
(c). The position of the artifact produced by Prelude is indicated
by arrow heads in all three images.

Although in general, Prelude in 3D mode also yielded results that were
in good agreement with the other methods, it occassionally produced wraps in
areas where no wraps were present in the original phase image (fig. 7.9). An in-
spection of all images (magnitude, wrapped phase and phase images unwrapped
by the other methods) did not give any insight into the causes for these wraps.

A comparison of the times required for unwrapping did not reveal a depen-
dency on the number of slices interpolated from the original data-set by zero-
filling. In all cases, Φun in single region mode required much less computation
time than the other methods. Unwrapping of a single slice with Φun took less
than 0.4 s. For unwrapping in multi-region mode, Φun required between 0.6 s
and 0.8 s for each slice. In 2D mode, Prelude required between 2.49 s and
7.59 s per slice. The unwrapping times of Prelude in the other modes were
extremely long. In 3D mode, unwrapping by Prelude took between 29.42 s
and 397.56 s. In hybrid mode, Prelude was even slower and had computation
times ranging from 383.16 s to 1509.13 s (fig. 7.10).

7.3 Summary

In case of both the phantom as well as the subject data, the phase predictions by
Φun and Prelude were in very good agreement. Φun produced better results
on low SNR data-sets. While Φun still managed to fully unwrap the images
in those situations, Prelude left holes with pixels that were not unwrapped.
The most likely reason for this behavior is that Φun’s termination criterion is
based on smoothed images, while Prelude seemed to consider the magnitude
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Figure 7.10: Comparison of the times required for unwrapping SWI data-sets of
five different subjects. For better comparison the times were nor-
malized to a single slice. While Φun achieved unwrapping times
below 400 ms in single region mode and less than 800 ms in multi-
region mode, Prelude was about 10 times slower in 2D mode.
Furthermore, Prelude used with default parameters and Pre-

lude in 3D mode were between 100 and 5000 times slower than
Φun.

in a single point only. This also explains the differences that were observed
in areas close to field inhomogeneities where a similar behavior was observed.
Φun’s tendency to produce smoother boundaries might be advantageous for
subsequent post processing steps, since small holes correspond to high spatial
frequencies. Thus those areas would have to be excluded if a filter is to be
applied to the phase image.

In case of subject data, Φun and Prelude behaved differently in the fatty
area around the brain. Prelude tended to unwrap more of this region than
Φun. In multi-region mode Φun manages to unwrap the fatty rim, but does not
always provide reliable phase predictions using the default parameters. Never-
theless, this discrepancy is not of importance, because the fatty rim is not of
interest and usually is removed in post-processing steps.

The most important difference between the methods concerned the time re-
quired for unwrapping and its dependency on SNR. While Φun’s unwrapping
time were independent of SNR, Prelude exhibited a strong dependency on
SNR. This dependency was larger for the 3D and the hybrid mode than for
the 2D mode. The 3D and hybrid mode were unacceptable slow on low SNR
phantom data as well as on subject data. In general the hybrid mode required
significantly longer than the 3D mode, which is a result of the larger number of
initial regions caused by the initial partitioning which is done slice by slice in
hybrid mode.
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8
Discussion

8.1 Algorithm

It is intuitively obvious that any region growing approach strongly depends
on the criteria used to guide the growth of regions. In my opinion, both, the
underlying physics of the phase image as well as the properties of the phase
extrapolation technique have to be reflected in the choice of the criteria guiding
the growth of regions. The use of the magnitude information is motivated by
the physics of MRI: magnitude and the phase SNR are related to each other [1].
Although the magnitude could, in principle, be utilized through binary masks
that constrain unwrapping as well, there is a fundamental difference between
these approaches. Using the magnitude as quality criterion can rather be seen
as using a dynamic binary mask that is adjusted according to the requirements of
unwrapping. For each iteration of the loop that relaxes the reliability constraint
on the extrapolation, the quality criterion based on the magnitude information
is relaxed. This ensures that for each constraint on the extrapolation, pixels
with the highest phase SNR are added to the region first.

Using only magnitude information for seed finding is not appropriate, because
it does not pose any constraint on the flatness of the phase topography. This
flatness is of special importance in the beginning for two reasons: if the number
of pixels in a region is small, which is the case in the beginning, predictions
tend to be flat, because prediction lines will often contain a single pixel only.
Secondly, since the multiples of 2π are integer, the prediction of the unwrapped
phase involves rounding to the nearest integer. Because of noise the result of
the rounding step is more reliable if the number that is to be rounded is close
to an integer. This always is the case if the phase topography is flat. Thus for
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seed-finding the local phase coherence is used, since it is highest in areas of flat
phase topography.

Just as any post-processing scheme, Φun has certain requirements and poses
constraints on the data it is applied to. The most obvious constraint is that the
phase topography is free of singularities in areas with sufficient signal intensity.
However, this condition is not fulfilled always. The two most important causes
for singularities are incorrectly combined phase images acquired with phased
array coils and filters that were applied to the image before unwrapping. Com-
bining images of phased array coils is challenging by itself although the formula
for a correct combination has been known for years [2]. The difficulty arises
from the generally unknown coil sensitivities required for such a combination.
Phase unwrapping of images obtained with phased array coils thus remains a
challenge.

Another precondition on the data is that the phase topography has to be
smooth. There are situations where this is not the case. It was mentioned in
chapter 3 that the different resonance frequencies of Hydrogen nuclei bound to
water and Hydrogen nuclei bound to lipids cause a modulation of the signal in
dependence on the echo time. By carefully choosing the echo time the phase of a
voxel containing fat can differ from a voxel containing water by exactly π [3, 4].
It is obvious that in such a situation, the requirement on the smoothness of
the phase image is not fulfilled. As long as no partial volume effects occur this
problem should have no influence on the algorithms performance, since regions
containing fat and regions containing water would be unwrapped separately.
Nevertheless the consequences of partial volume effects would have to be studied
carefully. Such an investigation was not done for this thesis, because the main
area of application of Φun are brain images. Since brain tissue barely contains
fat, this problem does not occur.

8.2 2D vs. 3D

MRI data, especially SWI data, often are three dimensional. Since, in principle,
extending the region growing approach to three dimensions should be possible,
modifying the algorithm for three dimensional phase unwrapping was consid-
ered. Nevertheless there are several reasons why the two dimensional approach
was preferred.

The main advantage of a three dimensional algorithm compared to two di-
mensional unwrapping is that the unwrapped phase is consistent across slices.
On the other hand, in many applications, especially in SWI, the application
Φun was mainly intended for, such a consistency is not of importance. In those
applications the focus is on local phase changes and the main goal of unwrapping
is to enable removing phase changes of low spatial frequency. Furthermore as
long as each slice is unwrapped reliably, at least in principle, a consistent phase
across slices can be achieved relatively easy by adding multiples of 2π. Thus
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the main question when considering a three dimensional unwrapping algorithm
is whether unwrapping in three dimensions can improve phase predictions or if
this adds additional complexity to the problem.

For a discussion of possible advantages and disadvantages of a three dimen-
sional unwrapping algorithm, the different types of data have to be considered
first. As described in chapter 3, MRI data can be acquired either truly three
dimensional, or slice by slice. In the latter case, there often is a gap between
slices. In this situation two dimensional unwrapping is more appropriate, since
little is known about how the phase evolves between slices. For the other cases,
data obtained with three dimensional sequences and data acquired with two
dimensional sequences with no gap between slices, three dimensional phase un-
wrapping might have advantages.

Voxel dimensions often are anisotropic – the in plane dimensions generally are
much smaller than the slice thickness. The influence of the voxel anisotropy on
the phase predictions would have to be carefully investigated before an attempt
to extend the region growing approach to three dimensions can be made. It is
quite likely that the anisotropy has to be taken into account somehow. This
would add an additional complexity and further parameters to the problem.

Furthermore, in three dimensions, each voxel has 26 neighbors instead of eight.
This does not only increase the number of predictions that have to be made, but
also the chance that a prediction fails to meet one of the criteria and thus more
attempts to unwrap a voxel might be necessary. Both, the increased number of
predictions and the higher likelihood of repeated attempts to unwrap a voxel,
would increase the computation time significantly, which is contrary to one of
the main goals of the implementation presented in this thesis. Furthermore the
results of Prelude in 3D mode show, that three dimensional unwrapping does
not necessarily lead to improved phase images but can be an additional source
of artifacts.

A compromise between two dimensional and three dimensional unwrapping
could be a hybrid approach. This could be achieved by using three dimensional
quality maps for two dimensional unwrapping. This could be either done by
using three dimensional maps for seed finding, or unwrapping, or even both. In
every case an important question is how to take voxel anisotropy into account.
While this is probably not of great importance for seed finding, voxel anisotropy
would have to be considered for unwrapping especially since it might cause
a premature termination of the algorithm. The main advantage of a three
dimensional map for seed finding would be that seeds would be placed such
that the unwrapped phase of the first regions to be created in each slice would
be consistent across slices. This phase consistency would apply to the first seeds
only, it is thus not guaranteed that the final phase images would be consistent
across slices. For this reason and because consistency across slices is not a
concern for the application Φun was mainly intended for, this approach was not
tried.
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(a) (b)

Figure 8.1: Venogram computed with homodyne filtered phase images (a) and
with unwrapped phase images (b). The venogram computed with
homodyne filtered phase images is distorted in the frontal areas be-
cause the homodyne filter creates artifacts in areas of steep phase
topography.

8.3 Applications

Susceptibility Weighted Imaging

Φun was developed with having Susceptibility Weighted Imaging (SWI) in mind
as its main application. SWI is an MRI technique that utilizes long echo times
and high resolution data acquisition [5]. Because of the long echo times SWI
is sensitive to extremely small field inhomogeneities, which are caused by small
differences of the susceptibilities of different types of tissue. At the same time
the high resolution limits signal loss due to intra-voxel dephasing. By using
this technique small venous vessels can be uncovered, since the susceptibility of
deoxygenated blood differs from the surrounding tissue. Usually, phase infor-
mation is incorporated into the magnitude image by weighting the magnitude
image with a phase mask. This mask should be sensitive to local phase changes
only (e.g. as caused by venous vessels). The conventional approach is to apply
a homodyne filter [6]. This filter removes phase variations of low spatial fre-
quencies as well as phase wraps. Nevertheless, a trade off between preserving
structures with high spatial frequencies and the (desired) insensitivity towards
steep phase topographies has to be made. This can lead to artifacts in areas
with steep phase topographies. Figure 8.1(a) shows a venogram that was ob-
tained using this technique. The artifacts caused by steep phase topography are
clearly visible in the frontal area.
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Artifacts in areas with steep phase topography can be avoided if the phase
images are unwrapped. However, before the phase mask can be computed the
background field inhomogeneities have to be suppressed. This can be achieved
by high-pass filtering [7, 8]. Figure 8.1(b) displays a venogram computed from
unwrapped phase images of the same data set as before. Since SWI data-sets
have a high-resolution and a comparatively low SNR, it is necessary that a phase
unwrapping algorithm can handle such images efficiently. That Φun fulfills those
requirements was shown in this thesis.

Magnetic Field Mapping

An important application for phase images is the computation of maps of the
static magnetic field. These maps can be used to correct for distortions in
EPI [9]. The standard approach for calculating field maps is to acquire two
images at two different echo times and to compute the complex ratio of these
images [10, 11]

a2 + ib2
a1 + ib1

=
A2 eiφ2

A1 eiφ1

=
A2

A1

ei(φ2−φ1) , (8.1)

where A1 = |a1 + ib1| and A2 = |a2 + ib2| are the magnitude images and φ1

and φ2 the respective phase images. The phase difference ∆φ = φ2 − φ1 is
proportional to the static magnetic field. Just as a phase image, the map of ∆φ
may be affected by phase wraps, which have to be resolved. In principle, there
are two approaches to obtain field maps that are not affected by phase wraps.
The first is to unwrap each image first and then subtract the unwrapped phase
images from each other. The second is to apply phase unwrapping after the
complex ratio of the two images has been taken. Although this second approach
should work in principle, the first method might be more stable in case one
image contains areas of signal drop-outs. So far all field maps were calculated
using the subtraction of two unwrapped phase images.

Figure 8.2 shows an example of two field maps computed by taking the
complex ratio (top row) and of the same field maps computed by subtract-
ing unwrapped phase images (bottom row). In case of strong field inhomo-
geneities the field map computed by the complex ratio might be affected by
phase wraps (fig. 8.2(b)). Using unwrapped phase images instead avoids this
problem (fig. 8.2(d)).

Other Applications

Although Φun was developed with the application to brain data in mind, there
are other organs and applications for which Φun could be of interest. One of
these organs is the female breast. Phase unwrapping could facilitate the segmen-
tation of tissues by exploiting the opposed phase condition [3, 4]. Although the
opposed phase condition violates one of the preconditions (i.e. the smoothness
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(a) (b)

(c) (d)

Figure 8.2: Field maps computed by taking the complex ratio of two complex
images (top row) and by subtracting the unwrapped phase images
(bottom row). Two slices of a data-set are shown in the left and the
right column, respectively. If the field inhomogeneity is too large for
a given echo time difference, the field map obtained by the complex
ratio can be affected by phase wraps (b). This is not the case if the
same map is computed from unwrapped phase images (d).
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(a) (b)

Figure 8.3: Wrapped (a) and unwrapped (b) opposed phase image of a mamma.

of the phase) for applying Φun, a first attempt to apply Φun to images of the
breast was successful (fig. 8.3). Also SWI of the breast might be of interest to
distinguish between calcification and bleeding [12]. Nevertheless, the applicabil-
ity of Φun to breast data sets would have to be investigated on a larger number
of data-sets.

Another application where phase unwrapping can be of importance is phase
contrast angiography. In this application additional gradients are used to encode
flow [13]. Just as in Doppler sonography, aliasing occurs if the flow exceeds the
maximum encoding velocity. In the phase images this effect appears as phase
wraps. Phase unwrapping can thus be used to extract the correct flow velocity.
It was shown exemplarily that Φun can, at least in principle, be applied to
phase contrast data (fig. 8.4). However, also in this case a study involving more
data-set would be necessary to conclude on how applicable Φun is for this type
of data.
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(a)

(b)

Figure 8.4: A time series of flow encoded images of the aorta. In both the as-
cending and the descending branch of the aorta the phase is wrapped
in the original data (a). Phase unwrapping with two or more regions
produces correct velocity profiles for both branches.

122



List of References

List of References

[1] Conturo, T. E. and Smith, G. D. Signal-to-noise in phase angle recon-
struction: dynamic range extension using phase reference offsets. Magnetic
Resonance in Medicine, 15(3), 420–437 (1990).

[2] Roemer, P. B., et al. The NMR phased array. Magnetic Resonance in
Medicine, 16(2), 192–225 (1990).

[3] Dixon, W. T. Simple proton spectroscopic imaging. Radiology, 153(1),
189–194 (1984).

[4] Reichenbach, J. R., et al. Subtraction of in-phase and opposed-phase images
in dynamic MR mammography. Journal of Magnetic Resonance Imaging,
21(5), 565–575 (2005).

[5] Reichenbach, J. R., Venkatesan, R., Schillinger, D., and Haacke, E. M.
Small vessels in the human brain: MR-venography with deoxyhemoglobin
as an intrinsic contrast agent. Radiology, 204, 272–277 (1997).

[6] Noll, D. C., Nishimura, D. G., and Makovski, A. Homodyne detection in
magnetic resonance imaging. IEEE Transactions on Medical Imaging, 10,
154–163 (1991).

[7] Rauscher, A., et al. Magnetic susceptibility-weighted MR phase imaging
of the human brain. American Journal of Neuroradiology, 26(4), 736–742
(2005).

[8] Rauscher, A., et al. Automated unwrapping of MR phase images applied to
BOLD MR-venography at 3 Tesla. Journal of Magnetic Resonance Imaging,
18(2), 175–180 (2003).

[9] Jezzard, P. and Balaban, R. S. Correction for geometric distortion in echo
planar images from B0 field variations. Magnetic Resonance in Medicine,
34, 65–73 (1995).

[10] Cusack, R. and Papadakis, N. New robust 3–D phase unwrapping algo-
rithms: Application to magnetic field mapping and undistorting echoplanar
images. NeuroImage, 16, 754–764 (2002).

[11] Hutton, C., et al. Image distortion correction in fMRI: A quantitative
evaluation. NeuroImage, 16(1), 217–40 (2002).

[12] Deistung, A., et al. Demonstration of paramagnetic and diamagnetic
cerebral lesions by using susceptibility weighted phase imaging (SWI).
Zeitschrift für medizinische Physik, 16(4), 261–267 (2006).

[13] O’Donnell, M. NMR blood flow imaging using multiecho, phase contrast
sequences. Medical Physics, 12(1), 59–64 (1985).

123



List of References

124



9
Conclusions

For this thesis a 2D region-growing phase unwrapping algorithm optimized for
MRI data was developed, implemented and evaluated. This was achieved by us-
ing magnitude information for guiding the unwrapping. The use of magnitude
information can be motivated by the physics of MRI. The algorithm’s perfor-
mance was tested extensively on both phantom and in vivo data and compared
to an established method (Prelude). Although both algorithms performed
reliable in high SNR areas, Φun provided significant improvements in terms of
speed and robustness in low SNR areas. This makes Φun a suitable application
for SWI and EPI data which often are hampered by low SNR areas. Applying
Φun to other organs and applications, such as data of the female breast and
phase contrast angiography, led to promising results. Nevertheless, testing Φun

on these data was out of the scope of this thesis and was only done as a prove
of principle.
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