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Zusammenfassung

Versierte Verfahren zur Organisation von Musikkollektionen bilden die Grundlage fiir
eine Vielzahl von Anwendungen. Hier wird besonders auf vorhandene Probleme einge-
gangen, es werden bestehende Techniken und deren Unzulanglichkeiten beschrieben,
aber auch alternative Benutzerschnittstellen fuer Musikarchive und darauf aufbauend
neue Moeglichkeiten zur Interaktion erklaert. Dabei wird besonders auf Self-Organising
Maps, selbstorganisierende Neuronale Netzwerke zum Clustering von hochdimension-
alen Daten, und ihre Verwendbarkeit fiir Musikorganisation diskutiert. Um der viel-
seitigen, oft zu komplexen Information, die in Musikdaten stecken kann, gerecht zu
werden, werden Datenbeschreibungen, die iiber traditionelle Reprasentationen hinaus-
gehen, untersucht. Traditionell verwendet die Music Information Retrieval Community
auf Signalverarbeitung aufbauende Merkmalssets fiir Audiodaten. In dieser Arbeit
wird vor allem auf textbasierte Features und deren Informationsgehalt in Bezug auf
Diskriminanz zwischen Genres eingegangen. Auflerdem werden die Moglichkeiten un-
tersucht, die sich fiir kombinierte Empfehlung von dhnlichen Songs ergeben. Dabei wird
der Einfluss von Genre-, Artist- und Albenbeschreibungen auf die Musikempfehlun-
gen untersucht. Weiters wird ein neuer Ansatz zur Visualisierung von multimodalen
Reprasentationen fiir Audio beschrieben. Eine Audiokollektion kann demnach nach
verschiedenen Reprasentationen geclustert werden: Audiofeatures und Textfeatures
auf Basis von Song Lyrics. Die entstehenden Clusterings werden graphisch aufbereitet

und mittels eines Sets von Kennzahlen verglichen.



Abstract

Various aspects of the organisation of media archives and collections have produced
eager interest in recent years. The Music Information Retrieval community has been
gaining many insights into the area of abstract representations of music by means of
audio signal processing. On top of that, recommendation engines are built to provide
novel ways of creating playlists based on users’ preferences. Another important ap-
plication of audio representation is automatic genre categorisation, i.e. the automatic
assignment of genre tags to untagged audio files. However, for many applications rep-
resentation based on audio features only do not contain enough information. A song’s
lyrics often describe its genre better than what it sounds like, e.g. ‘Christmas carols’
or ‘love songs’. Therefore, approaches for the combination of additional data like song
lyrics, artist biographies, or album reviews for music recommendation are examined.
Further, the application of the Self-Organising Map for clustering, i.e. the mapping
from the resultant high-dimensional feature spaces onto two-dimensional maps, for
explorative analysis of audio collections with respect to multi-modal feature sets is
investigated (audio / text). Additionally, a new visualisation for simultaneous display
of multi-modal clusterings as well as cluster validation metrics are presented. Finally,

a short overview and outlook on future work is given.



The universe is perfect.
You cannot improve it.
If you try to change it,
you will ruin it.
If you try to hold it,

you will lose it.

Notes to Odo Chan, CY 9191

Credits go to Andromeda — for brilliant quotes like this one!2.

Ihttp://www.andromedatv.com/
%http://en.wikiquote.org/wiki/Andromeda
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Chapter 1

Introduction

The true quarry of any great adventurer is the undiscovered territory of their

own soul.

Lady Aenea Makros, “The Metaphysics of Motion” CY 6416

Text Information Retrieval deals with the automatic retrieval of (text) documents.
Its main task is to automatically extract machine-readable representations, so-called
features from all kinds of text documents. These features can subsequently be used
for key word as well as content-based and similarity search by a transformation to
a vector or matrix representation. Music Information Retrieval (MIR) is an area of
Information Retrieval which is concerned with the application of its methods to musical
data sources. In this context it does not only mean the sole audio signal of a piece of
music but also its associated metadata as well as additional information, which could,

for instance, be fetched or mined from the Internet.

The large-scale adaption of new business models for digital content including audio
material is already happening. Online music stores are gaining market shares, driving
the need for online music retailers to provide adequate means of access to their cat-
alogues. Their ways of advertising and making accessible their collections are often

limited, be it by the sheer size of their collections, by the dynamics with which new

8
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titles are being added and need to be filed into the collection organisation, or by inap-
propriate means of searching and browsing it. What many content providers and online
music vendors are still missing are appropriate means of presenting their media to their
users. Amazon'® or last.fm? have shown the potential of recommendation engines based
on data mining in transactional data. Those recommendation engines have impressively
shown the potential and merits of suggesting users new items in numerous online shop-
ping and other community centred applications. Private users’ requirements coincide
because their collections are growing significantly as well. The steadily increasing suc-
cess of online stores like iTunes® or Magnatune* brings digital audio closer to end users,
creating a new application field for Music Information Retrieval. Many private users
have a strong interest in managing their collections efficiently and being able to access
their music in diverse ways. Musical genre categorisation based on e.g. meta tags in
audio files often restricts users to the type of music they are already listening to, i.e.
browsing genre categories makes it difficult to discover ‘new’ types of music. The mood
a user is in often does not follow genre categories; personal listening behaviours often
differ from predefined genre tags. Thus, recommending users similar songs to ones they
are currently listening to or like is one of Music Information Retrieval’s main tasks.
Technologies related to similarity retrieval, however, have to be adapted to be used in
the music context. The online shops of music retailers are increasingly popular places
for buying music, creating a big market for music recommendation engines. Suggest-
ing customers similar songs is a key factor in being a successful music retailer and new
ways of presenting one’s collection to customers is a vital aspect of entering or staying

in the market.

Furthermore, it is an intrinsic need for every Music Information Retrieval system to
include not only recommendation or playlist generation engines, but also possibilities
to search and browse a music repository. Content-based access to music has proven

to be an efficient means of overcoming traditional metadata categories, as shown by

lhttp://wuw.amazon.com
2http://www.last.fm
Shttp://www.apple.com/au/itunes/store/
4http://www.magnatune. com
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benchmarking initiatives like the Music Information Retrieval Evaluation eXchange
(MIREX) [28]. To achieve this, signal processing techniques are used to extract fea-
tures from audio files capturing characteristics such as rhythm, melodic sequences,
instrumentation, timbre. These are feasible input both for automatic genre classifi-
cation of music as well as for alternative organisations of audio collections like their

display via map based, two-dimensional interfaces [32].

Similarity, however, is not only defined by individual hearing sensation but also, to
a large degree, by cultural or community information which offers a far richer and more
diverse source of information. Particularly song lyrics and other cultural information
are feasible means for searching these collections. Rather than searching for songs that
sound similar to a given query song, users often are more interested in songs that cover
similar topics, such as ‘love songs’, or Christmas carols’, which are not acoustic genres
per se, i.e. songs about these particular topics might cover a broad range of musical
styles. Similarly, the language of the lyrics often plays a decisive role in perceived
similarity of two songs as well as their inclusion in a given playlist. Even advances in
audio feature extraction will not be able to overcome fundamental limitations of this
kind. Song lyrics therefore play an important role in music similarity. This textual
information offers a wealth of additional information to be included in music retrieval
tasks that may be used to complement both acoustic as well as metadata information

for pieces of music.

Sometimes, finding a similar Album is more important than finding songs that
sound similar. Many users may rather be interested in songs that cover similar topics
than sound alike. Artist similarity may be of great help when users try not only to
find new songs, but are interested in new bands or concerts of these bands. Textual
artist descriptions define similarity by a whole new range of aspects too. There are
dimensions of artist similarity that can never be covered by audio features only, for
instance the fact that split-up bands and their successors may play very different kinds
of music, yet they may still be similar to each other (they once belonged to the same

band after all). Another aspect very particular to artist descriptions is its property
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of taking into account geographical information, e.g. bands from the same city or
country may be grouped together. Therefore, a text mining component is very suitable
to provide additional data and thereby achieve different levels of audio description. To
the ends of a more comprehensive model of musical similarity, methods to gather and
aggregate multiple levels of text descriptions are investigated and similarity retrieval

is based on these data in this thesis.

Browsing metadata hierarchies by tags like ‘Artist” and ‘Genre’ might be feasible for
a limited number of songs, but gets increasingly complex and confusing for collections
of larger sizes that have to be tendered for manually. Hence, a more comprehen-
sive approach for the organisation and presentation of audio collections is required.
Therefore, the visualisation of high-dimensional data itself and, more importantly, its
internal structure, poses a big challenge too. Aggregation techniques for very large
music collections being described by an even higher-dimensional vector representation
are needed. To address this issue, visualisation techniques will be introduced based on

the Self-Organising Map.

Having all of these points in mind, the main topics covered in this thesis are:

Musical Similarity Recommendation based on multi-modal Music Information Re-
trieval, i.e. the integration of artist, album, and genre descriptions as well as song

lyrics and audio features in similarity ranking methods.

Multi-Modal Clusterings and Their Evaluation will be explained in greater detail. The
importance and relevance of lyrics to the visual organisation of songs in large audio col-
lections is going to be identified as well. It is firstly suggested to cluster complex audio
data on two-dimensional maps, using the Self-Organising Map clustering algorithm.
Clustering will be done according to audio as well as lyrics features. Furthermore,
quality measures for the two resultant clusterings are proposed and experimentally

evaluated on two parallel corpora of both audio and text (lyrics) files.
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Musical Genre Classification using both song lyrics and audio features. The combi-
nation of both textual as well as audio information for music genre classification, i.e.
automatically assigning musical genres to tracks based on audio features as well as
content words in song lyrics, is chosen due to feasible results in similarity recommen-
dation. Experimental results will evince the impact on classification accuracy. Parts
of the work presented and relied on in this thesis have been presented at or published
in the context of international conferences. Particularly the automatic processing and

exploitation of song lyrics has been a pressing research topic.

First prototypes for map based applications on mobile devices were presented as a
poster at the 6th International Conference on Music Information Retrieval (ISMIR’05)
in London, United Kingdom [32]. An overview paper on map based user interfaces was
presented at the 1st Workshop on Visual and Multimedia Digital Libraries (VMDL’07),
a workshop organised in the course of the International Conference on Image Analysis
and Processing (ICIAP’07) in Modena, Italy [33]. The summary paper on the exper-
iments on musical genre classification were accepted for a poster presentation at the
29th European Conference on Information Retrieval (ECIR’07) in Rome, Italy [34].
Further, the multi-modal cluster evaluation and visualisation was accepted for a pre-
sentation at the tri-annual Recherche d’'Information Assistée par Ordinateur (RIAO’07)
conference in Pittsburgh, Pennsylvania, United States of America [35]. Finally, a book
chapter contribution about multi-modal audio analysis was accepted for the forthcom-
ing ‘Multimodal Processing and Interaction’ book to be published in the context of the
EU’s FP6 project ‘Multimedia Understanding through Semantics, Computation and
Learning’” (MUSCLE).

The remainder of this thesis is organised as follows. Section 2 gives an overview of
previous work in the field and relevant basics as well as it introduces feature sets used

in subsequent experiments.

In Chapter 3, we then describe audio test collections and data sources, i.e. the

automated indexing and textual enrichment of the songs in these collections.
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Then, Chapter 4 theoretically presents the main contributions to the field made in
this thesis, namely the combination of several levels of text data and audio representa-
tions for the basic Music Information Retrieval tasks of similarity ranking, visualisation,
and musical genre classification. Furthermore, a quantitative evaluation of multi-modal

clusterings is proposed.

Then, Chapter 5 presents the Atlantis and Sovis application which implement pro-

totypes for both multi-modal similarity ranking and visualisation in greater detail.

Further, Chapter 6 the visualisation method is experimentally validated. Finally, in

Chapter 7 conclusions are drawn as well as a short outlook is given.



Chapter 2

Main Principles and Underlying

Technologies

Those who fail to learn history are doomed to repeat it. Those who fail to
learn history correctly — why they are simply doomed”

Achem Dro’hm, “The Illusion of Historical Fact, CY 4971

This chapter gives an overview about relevant (sub-)disciplines and the techniques
used later on. This work incorporates methods from several areas, the most important
ones being Information Retrieval, more specifically Music Information Retrieval and

Self-Organising Maps for clustering and visualisation.

2.1 Music Information Retrieval

The area of Music Information Retrieval has been heavily researched, particularly fo-
cussing on audio feature extraction. Comprehensive overviews of Music Information
Retrieval are given in [8, 36], first experiments based on and an overview of content-

based Music Information Retrieval were reported in [9] as well as [52, 53], the focus

14
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being on automatic genre classification of music. In this work a modified version of
the Rhythm Patterns features is considered, previously used within the SOMeJB sys-
tem [45]. Based on that feature set, it is shown that the Statistical Spectrum Descriptors
yield relatively good results at a manageable dimensionality of 168 as compared to the
original Rhythm Patterns that comprise 1440 feature values [18]. In the remainder of
this thesis Statistical Spectrum Descriptors are used as audio feature set and improve-
ments in similarity ranking are based thereon. Another example of a set of feasible

audio features is implemented in the Marsyas system [52].

In addition to features extracted from audio, several researchers have started to
utilise textual information for music IR. A sophisticated semantic and structural anal-
ysis including language identification of songs based on lyrics is conducted in [23].
Artist similarity is defined based on song lyrics in [19]. It is also pointed out that
similarity retrieval using lyrics is inferior to acoustic similarity, but a combination of
lyrics and acoustic similarity could improve results. A powerful approach targeted at
large-scale recommendation engines is lyrics alignment for automatic retrieval as pre-
sented in [13]. Therein, lyrics are fetched via the automatic alignment of the results

obtained by Google queries.

A comprehensive evaluation of additional features is undertaken in [40]. This work
takes into account rhyme and style features and shows their impact on classification

accuracy for the genre categorisation task in addition to content-based methods.

Artist similarity based on co-occurrences in Google results is studied in [50], creating

prototypicality artist/genre rankings, again, showing the importance of text data.

A combined similarity metric for multi-level combination of artist and lyrics retrieval
results is presented in [4], which the approach presented in Chapter 3 combination will
be based on. It is also outlined in how far the perception of music can be regarded a
socio-cultural product. Different aspects like year, genre, or tempo of a song are taken
into account in [55]. Those results are then combined and a user evaluation of different

weightings is presented and shows that user control over the weightings can lead to
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easier and more satisfying playlist generation.

The importance of browsing and searching as well as their combination is outlined
in [6]. This work tries to improve those aspects, a combination approach can improve
both of them by satisfying users’ information needs through offering advanced search

capabilities and improving the the recommendations’ quality.

2.2 Introduction to Text Information Retrieval

In classic text categorisation low-level features are computed from a labelled training
set of sufficient size. New documents can be assigned to the class represented by the

most ‘similar’ documents in terms of word co-occurrences.

An introduction to Information Retrieval as such is given in [49]. The basic idea is
to treat text as a bag of words or tokens. This form of IR abstracts from any kind of
linguistic information and is often referred to as statistical natural language processing
(NLP). Documents are represented as term vectors. A document collection containing

the following two documents:
This is a text document.

and
And so is this document a text document.

would represent its documents by a vector of length 7, the number of distinct tokens
over all documents. Of course, the tokenisation process makes a difference here, if, e.g.,
spaces were counted as separate tokens, the vector would be of size 8. Models for text

representation range from lists of whole words to vectors of n-grams (i.e., tokens of

size n). Tokenisation may include stemming, i.e., stripping off affixes of words leaving
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Table 2.1: Text indexing by example. Tokens are displayed horizontally, different documents are

shown row-wise. The token’s occurrences make out the numbers in the table

Document/Token | this | is | a | text | document | and | so
1 1 1111 1

2 1 1111 2 1 1
Document frequency | 2 2 122 2 1

only word stems. It is very common to use lists of stop words, i.e., static, predefined
lists of words that are removed from the documents before further processing (see [24]
or ranks.nl* for a sample list of English stop words). The vectors are shown in detail

in Table 2.1.

This representation is subsequently used to calculate distances between or similari-
ties of documents in the vector space; throughout this thesis we rely on the Euclidean
distance, given for the distance between two vectors x; and z; of dimensionality D in

Equation 2.1:
D

dp(xi,x;) = [[xi — x5l = | >_(af — 2})2. (2.1)

k=1
It is defined by the length of the straight line connecting points x; and x;. For a
discussion of this problem and general limitations of the Euclidean Distance, see for

instance (17, 1].

2.3 Term Weighting in Information Retrieval

Once a text is represented by tokens, more sophisticated techniques can be applied. In
the context of a vector space model a document is denoted by d, a term (token) by ¢,

and the number of documents in a corpus by N.

Ihttp://wuw.ranks.nl/tools/stopwords.html
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The number of times term ¢ appears in document d is denoted as the term frequency
tf(t,d), the number of documents in the collection that term ¢ occurs in is denoted
as document frequency df (t), as shown in Table 2.1. The process of assigning weights
to terms according to their importance or significance for the classification is called
“term-weighting”. The basic assumptions are that terms that occur very often in a
document are more important for classification, whereas terms that occur in a high
fraction of all documents are less important. The most common weighting is referred
to as term frequency X inverse document frequency [48], where the weight tf X idf of

a term in a document is given in Equation 2.2:

tfidf(t,d) =tf(t,d) = In(N/df(t)) (2.2)

This results in vectors of weight values for each document d in the collection. Based on
such vector representations of documents, classification methods can be applied. This

favours higher weights to less frequent terms.

2.4 Feature Selection and Dimensionality Reduction

When tokenising text documents, one often faces very high dimensional data. Tens of
thousands of dimensions are not easy to handle, therefore feature selection plays a sig-
nificant role. Document frequency thresholding achieves reductions in dimensionality
by excluding terms having very high or very low document frequencies. Terms that
occur in almost all documents in a collection do not provide any discriminating infor-
mation. It is similar for terms that have a very low document frequencies, although
those features might be helpful if they are not distributed evenly across classes. If a
term has a low document frequency it can still help to discriminate genres if it only

occurs in for example ‘Rock’ song lyrics.

Several methods ranging from simple ones relying solely on frequency counts of

terms to more sophisticated ones estimating the entropy of terms for specific class
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distributions may be employed, which are briefly described below.

2.4.1 Document Frequency Thresholding

Document frequency thresholding is a feasible feature selection for unlabelled data
for not taking into account a priori class information. The basic assumption here is
that very frequent terms are less discriminative to distinguish between classes (a term
occurring in every single instance of all classes would not contribute to differentiate
between them and therefore can safely be omitted in further processing). The largest
number of tokens, however, occurs only in a very small number of documents. The
biggest advantages of document frequency thresholding is that there is no need for
class information and it is therefore mainly used for clustering applications. Besides,
document frequency thresholding is far less expensive in terms of computational power.
In this context that technique is used for dimensionality reduction for clustering and
to compare the classification results obtained by the more sophisticated approaches.

The document frequency thresholding is followed as follows:

e At first the upper threshold is fixed around .5 - .8, hence all terms that occur in

more than 50 to 80 per cent of the documents are omitted

e The lower boundary is dynamically changed as to achieve the desired number of
features, removing, e.g., terms that appear in less than 5-10 documents, i.e. have

a document frequency lower than 5 or 10

2.4.2 Information Gain

Information Gain (IG) is a technique originally used to compute splitting criteria for
decision trees. Different feature selection models including Information Gain are de-
scribed in [58]. The basic idea behind IG is to find out how well each single feature

separates the given data set. Information Gain makes use of class information to iden-
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tify the most discriminant features.

The overall entropy I for a given dataset S is computed in Equation 2.3.
c
I =— Zpiloggpi (2.3)
i=1
where C' denotes the available classes and p; the proportion of instances that belong to
one of the 7 classes. Now the reduction in entropy or gain in information is computed

for each attribute or token.

165, 4) = 1(5) = " el 15 (2.4)

veA |S|
where v is a value of attribute A and S, the number of instances where A has that

value. For instance, if the attribute in question is a token, v could either comprise all
occurring values for that term’s tf x idf weighting or simply whether it is present in
a document or not, i.e. it can be assumed to be a binary value. S,— therefore is the
number of instances where attribute A has the value 0 or the number of documents

that do not include that token.

This results in an Information Gain value for each token extracted from a given
document collection. Hence, documents are represented by a given number of tokens

having the highest Information Gain values for the content-based experiments.

Other methods similar in spirit are x?, based on statistical testing, Odds Ratio using

probabilities, or the Gain Ratio.

2.5 Audio Features

For feature extraction from audio Statistical Spectrum Descriptors were used (SSDs,
[18]). The approach for computing SSD features is based on the first part of the al-
gorithm for computing Rhythm Pattern features [45], namely the computation of a

psycho-acoustically transformed spectrogram, i.e. a Bark-scale Sonogram. Compared
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to the Rhythm Patterns feature set, the dimensionality of the feature space is much
lower (168 instead of 1440 dimensions), at a comparable performance in genre classifi-
cation approaches [18]. Therefore, SSD audio features are used in the context of this
work, which were computed from audio tracks in standard PCM format with 44.1 kHz

sampling frequency (i.e. decoded MP3 files).

Statistical Spectrum Descriptors are composed of statistical characteristics are com-
puted from several critical frequency bands of a psycho-acoustically transformed spec-
trogram. They describe fluctuations on the critical frequency bands in a more compact
representation than Rhythm Pattern features. In a pre-processing step the audio signal
is converted to a mono signal and segmented into chunks of approximately 6 seconds.
Usually, not every segment is used for audio feature extraction. For pieces of music
with a typical duration of about 4 minutes, frequently the first and last one to four

segments are skipped and out of the remaining segments every third one is processed.

For each segment the spectrogram of the audio is computed using the short time
Fast Fourier Transform (STFT). The window size is set to 23 ms (1024 samples) and a
Hanning window is applied using 50 % overlap between the windows. The Bark scale,
a perceptual scale which groups frequencies to critical bands according to perceptive

pitch regions [59], is applied to the spectrogram, aggregating it to 24 frequency bands.

The Bark scale spectrogram is then transformed into the decibel scale. Further
psycho-acoustic transformations are applied: Computation of the Phon scale incorpo-
rates equal loudness curves, which account for the different perception of loudness at
different frequencies [59]. Subsequently, the values are transformed into the unit Sone.
The Sone scale relates to the Phon scale in the way that a doubling on the Sone scale
sounds to the human ear like a doubling of the loudness. This results in a Bark-scale
Sonogram — a representation that reflects the specific loudness sensation of the human

auditory system.

From this representation of perceived loudness a number of statistical moments

is computed per critical band, in order to describe fluctuations within the critical
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bands extensively. Mean, median, variance, skewness, kurtosis, min- and max-value are
computed for each of the 24 bands, and a Statistical Spectrum Descriptor is extracted
for each selected segment. The SSD feature vector for a piece of audio is then calculated

as the median of the descriptors of its segments.

2.6 Self-Organising Map

Throughout this thesis various data sets will be used for clustering experiments, wether
they are used for user interfaces or simply to explore the given data. For clustering, the
Self-Organising Map, an unsupervised neural network that provides a mapping from a
high-dimensional input space to usually two-dimensional output space [14, 15] is used.
Topological relations are preserved as faithfully as possible. A SOM consists of a set of
7 units arranged in a two-dimensional grid, each attached to a weight vector m; € R".
Elements from the high-dimensional input space, referred to as input vectors x € R",
are presented to the SOM and the activation of each unit for the presented input vector
is calculated using an activation function (the Euclidean Distance is commonly used
as activation function). In the next step, the weight vector of the winner is moved
towards the presented input signal by a certain fraction of the Euclidean distance
as indicated by a time-decreasing learning rate a. Consequently, the next time the
same input signal is presented, this unit’s activation will be even higher. Furthermore,
the weight vectors of units neighbouring the winner, as described by a time-decreasing
neighbourhood function, are modified accordingly, yet to a smaller amount as compared
to the winner. The result of this learning procedure is a topologically ordered mapping
of the presented input signals in two-dimensional space, that allows easy exploration

of the given data set.

Numerous visualisation techniques have been proposed for Self-Organising Maps.
These can be based on the resultant SOM grid and distances between units, on the

data vectors itself, or on combinations thereof. In this chapter we make use of two
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kinds of visualisations. Another method for SOM visualisation which will be used
in the course of our experiments are Smoothed Data Histograms [39]. Even if it is
not necessary for clustering tasks per se, class information can be used to give an
overview of a clustering’s correctness in terms of class-wise grouping of the data. A
method to visualise class distributions on Self-Organising Maps is presented in [25].
This colour-coding of class assignments will later be used in the experiments to show

the (dis)similarity of audio and lyrics clusterings.

2.7 Cluster Validation Techniques

Having shown that music recommendation can benefit from the integration of sev-
eral data sources as well as the feasibility of Self-Organising Map clustering, more
sophisticated methods for data visualisation and evaluation are going to be taken into
consideration. Whenever clustering or visualisation is involved, the need for the evalu-
ation of at least certain aspects of the techniques used, arises. In this section the main
concepts of cluster analysis will be introduced for both supervised and unsupervised
cluster evaluation. Furthermore it will be pointed out in how far these techniques can
be used in the context of multi-modal music clustering. The main points in this section

therefore will be:

1. Introduction to the basic concepts of cluster validation.
2. Potential of supervised evaluation.

3. Explanation why unsupervised validation is still relevant.

It might not be obvious why cluster validation makes sense, since clustering is often
used as part of explorative data analysis and therefore validation seems not to be a
central issue. One key argument in favour of cluster validation is that any clustering
method will produce results even on data sets, which do not have a natural cluster

structure [51]. Other than that, cluster validation can be used to determine the ‘best’
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clustering out of several candidate clusterings. For many clustering techniques the
number of clusters (often denoted as k) is the main parameter to be changed, therefore
influencing the resultant clustering quality significantly. Thus, measuring the clustering
quality produced by either different algorithms or for different parameter settings is a
vital issue in clustering. Besides, manual (visual) cluster validation may be feasible for a
small data set in two-dimensional space, but becomes impossible for higher-dimensional

data.

If the data set is labelled, i.e. class tags are available for all data points, this
information can be used to determine the similarities between classes and natural
clusters within the data. One can distinguish unsupervised and supervised cluster
validation techniques. Whereas unsupervised techniques will be of limited use in the
scenario covered, supervised cluster validation and its merits for multi-modal clustering

of audio data will be more relevant and be described in more detail.

Table 2.2 gives an overview of variables used in this context.

2.7.1 Unsupervised Cluster Validation

In unsupervised cluster validation no external data is used for evaluation, it’s primarily

based on cluster distances, similarities, and densities. The main types of measures are:

e Intra-cluster similarity / cluster cohesion and

e Inter cluster similarity / cluster separation

which are used to evaluate how much variation there is within clusters and in between

clusters, respectively.
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Table 2.2: Variable names used in cluster validation equations

Variable name | Explanation
ci Cluster 3.
C; Clustering i, i.e. a set of clusters.
Number of clusters.
w Weight w.
Si Silhouette value for data point i.
S Silhouette value for cluster j.
S Overall Silhouette value for a clustering.
b; Average distance of data point ¢ to all
other vectors in its cluster.
a; Average distance of i to all data vectors
in the closest cluster.
n Number of data points in set.
Number of classes in set.
m; Number of data points assigned to cluster i.
Myj Number of data points assigned to cluster ¢

belonging to class j.
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In general the overall validity of a clustering (i.e. a set of clusters for a given data set)
is the weighted sum of the validity of its individual clusters as shown in Equation 2.5.

k
overallvalidity = w; - validity(c;) (2.5)
i=1

Where ¢; denotes cluster i, k£ the number of clusters k£ and w; the weight for cluster
1. The validity function can be either inter-cluster, intra-cluster, or some combination
thereof. In the simple case, weights are either omitted or set according to the sizes of
the individual clusters (i.e. number of data points associated with a cluster divided by
the number of data points in the data set). Since distances within clusters should be
minimised and in between clusters maximised, the higher an intra-cluster measure and

the lower an inter-cluster measure, the better.

Silhouette Value

The Silhouette value is mostly used to find the right setting for the number of clus-
ters [47]. The ideal value of the Silhouette is close to 1, hence a; being close to 0
for it is subtracted in the numerator of Equation 2.6. The Silhouette coefficient de-
scribes the level of data separation using both intra- and inter-cluster distances and
can for instance be of great help in finding the optimal number of clusters (k) in the
k-Means algorithm. Both intra-cluster and inter-cluster measures are used to compute

the Silhouette value, as shown in Equation 2.6.

bi — Q;
§; = ————— 2.6
maz{a;,b;} (26)
Where i is an index over all data vectors, a; the average distance of i to all other
vectors of that cluster, b; the average distance of i to all data vectors in the closest

cluster. Herein the closest cluster is defined by the minimum distance between clusters’

prototype vectors. The value resides between —1 and 1 (Equation 2.7).
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—1< <1 (2.7)

s; therefore is the Silhouette value for data vector ¢, the overall Silhouette value for

a clustering is the average over all single Silhouette values, shown in Equation 2.8.

n-:

g1 > s (2.8)
i=1

Let n be the number of instances. Analogously, the Silhouette for single clusters is

defined in Equation 2.9.

The number of instances assigned to cluster j is denoted to as m;, the average
Silhouette of all instances within cluster j is computed as .S;. The resultant values for
S and S; provide an evaluation criterion for the comparison of several clusters to each

other.

2.7.2 Supervised Cluster Validation

Supervised cluster validation makes use of external data and tries to measure in how

far a clustering matches some kind of external structure like class labels.

Entropy

The entropy value, introduced in Section 2.4 in the context of feature selection, de-
scribes the degree to which each cluster consists of objects of a single class. The

optimum value would be achieved, each cluster consisted only of instances belonging
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to one class. The probability that one instance (member of cluster i) belongs to class

J is stated in Equation 2.10.

mij

m;; denotes the number of instances in cluster 7 belonging to class j and m; the
number of instances belonging to cluster ¢. Further, the entropy for cluster ¢ is given

in Equation 2.11 (analogously to Equation 2.3 in Section 2.4.

L
I; = = pijlogapi; (2.11)

j=1

Where L denotes the number of classes and p;; the class probability from Equa-
tion 2.10. The overall entropy value for a given clustering is given by the sum over all
cluster entropy values weighted by the number of elements in the individual clusters,

shown in Equation 2.12.

E

I (2.12)

=y

i=1

3|

k denotes the number of clusters and m the total number of data points or instances.

Purity

The purity of cluster i is defined by the probability of the most dominant class within

a cluster and is given in Equation 2.13.

pi = maz(pij) (2.13)

The overall purity of a clustering is computed analogously to the overall entropy

and shown in Equation 2.14.
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k m:
purity =3 _ = pi (2.14)

i=1

All methods introduced in this section do have their relevance to cluster validation,

it is desirable to have clusterings that are

e very similar within clusters,
e very dissimilar in between clusters,

e and, if possible, ‘pure’ in terms of a high entropy or purity value (only applicable

if class labels are available),

all of which could be achieved by a combination of, for instance, the Silhouette coeffi-
cient and entropy or purity. The Self-Organising Map clustering algorithm, however,

differs from the centroid based approaches which those techniques are best applied to.

2.8 Cluster Validation for Self-Organising Maps

Several quality measures for Self-Organising Maps have been investigated. The topo-
graphic product, which is used to measure the quality of mappings for single units with

respect to their neighbours, is reported in [2].

However, those methods provide measurements on a per unit basis or for complete

maps and fail to take into account class information of any kind.

The Silhouette value is computationally expensive and in its current form limited to
instance-based computations. This leads to problems for both large numbers of data
points and large numbers of clusters (very commonly used in Self-Organising Map
clusterings). To accommodate for these special characteristics of the Self-Organising

Map, a possible modification to the Silhouette technique is described in the following.
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2.8.1 Adaption of the Silhouette Value to the Self-Organising Map

The Silhouette validation compares every unit to all other vectors assigned to that
unit and to all vectors in the closest unit. Due to performance issues, we introduce

modifications to better fit the Self-Organising Map scenario.

Let each comparison be based on units’ weight vectors, i.e. distances are calculated
on the unit level in the input space, rather than the actual data vectors, a; is defined

as follows.

a; = dist(w;, 1) (2.15)

b; is defined as:

Where w; denotes the weight vector of the unit data point 7 is assigned to and wc;
denotes the weight vector of the closest unit. The overall Silhouette computation is then
based on those values for a; and b;. The experimental evaluation from now on is done
using this technique, because it needs significantly less computational power. Hence,
the quality of different SOM clusterings can be compared by their Silhouette values.

Furthermore the results can be used to visualise the correctness of the clustering.

The one (rather big) simplification this introduces that the number of units is set to
the number of clusters, a modification ignoring the Self-Organising Map’s basic prop-
erty of preserving topological relations. A natural cluster could easily be distributed
over (or covered by) several units of the Self-Organising Map, making the Silhouette
coefficient for Self-Organising Maps less sound a validation technique than for purely
centroid-based approaches like k-Means. A more detailed discussion and experimental

results can be found in [30]. The question that still remains is how can Self-Organising
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Map clusterings according to different dimensions be compared? What are the main
differences between clusterings? Which classes (genres) profit most from multi-modal
clustering, i.e. for which class does the clustering vary much across dimensions? The
next chapter will introduce a visualisation technique for multi-modal clusterings in the

music domain, a possible quality assessment will be investigated thereafter.

The modified Silhouette technique assumes the number of units to equal the num-
ber of clusters. An assumption which does not necessarily hold, for one of the main
strengths of the Self-Organising Map is that it discovers structures beyond simple clus-
ters, i.e. larger compounds spreading across multiple units. It can, however, be used
as a criterion to compare several SOMs with each other, as opposed to finding the best

number of clusters/units.

2.9 Interfaces Based on the Self-Organising Map

Several teams have been working on user interfaces based on the Self-Organising Map.
The SOM is an unsupervised neural network, that provides a topology-preserving map-
ping from a high-dimensional feature space onto a two-dimensional map in such a way,
that data points close to each other in input space are mapped onto adjacent areas
of the output space (in this context a two-dimensional map). The SOM has been
extensively used to provide visualisations of and interfaces to a wide range of data,
including control interfaces to industrial processing plants [16] to access interfaces for

digital libraries of text documents [44].

Creating a SOM-based interface for Digital Libraries of Music, i.e. the SOM-
enhanced JukeBox (SOMeJB), was first proposed in [42], with more advanced visu-
alisations as well as improved feature sets being presented in [38, 46]. Since then,
several other systems have been created based on these principles, such as the Mu-
sicMiner [29], which uses an emergent SOM. A very appealing three-dimensional user

interface is presented in [12], automatically creating a three-dimensional musical land-
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scape via a SOM for small private music collections. Navigation through the map is
done via a video game pad and additional information like labelling is provided using

web data and album covers.

A mnemonic SOM [27], i.e. a Self-Organising Map of a certain shape other than a
rectangle, is used to cluster the complete works of the composer Wolfgang Amadeus
Mozart to create the Map of Mozart [26]. The shape of the SOM is a silhouette of
its composer, leading to interesting clusterings like, e.g. the accumulation of string

ensembles in the region of Mozart’s right ear.
An online demo is available at http://www.ifs.tuwien.ac.at/mir/mozart.

Another interface based on SOMs, which takes into account a user’s focus of percep-

tion, is presented in [22], using prototypes as recommendations for adjacent clusters.

The PlaySOM application presented in [7] is based on the original SOMeJB system,
implementing a desktop interface suitable also for larger collections of several tens of

thousands of music tracks.

In addition to systems designed for desktop applications handling large audio collec-
tions, the design of interfaces for mobile devices constitutes interesting and important
challenges. Novel interfaces particularly developed for small-screen devices were pre-
sented in [56], clustering pieces of audio based on content features as well as metadata
attributes using a spring model algorithm. The PocketSOM system [32], an implemen-
tation of the PlaySOM application specifically designed for mobile devices.

A more experimental interface, refraining from the use of a display, using motion
detectors to respond to the listener’s movements is presented in [11]. Another inno-
vative user interface providing various ways of interaction like similarity based search

over sticking behaviour of tracks visualised as discs is introduced in [10].

A good overview of various MIR systems is given at http://www.mirsystems.info/
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2.10 Machine Learning Techniques

Classification — the task of assigning objects to predefined classes or labels — will be
used to categorise music into genres. The popular Support Vector Machines [54, 5] are
powerful classification algorithms consisting of two parts: An optimisation formulation
and a kernel function. The former is needed for fitting a separating hyperplane into
the data set, the latter projects the data set into a higher dimensional space. This
method’s primary advantage lies in the combination of these two components which
allows for efficient implementations that avoid the complexity problems of other kernel
based methods, also known as the ‘kernel trick’. The type of kernel used determines
the classes of problems that may be solved, and typical choices are linear, polynomial,

and radial basis functions.

2.11 Recap

In this chapter we introduced the main techniques that will be used later on. Foun-
dations have been laid for the following thematic areas: Information Retrieval, text
feature selection, the Self-Organising Map and its evaluation. Further a short overview

of relevant machine learning techniques has been given.

We now go on and introduce adaptions of and extensions to some of the techniques
introduced here. We further will more precisely specify the scenarios dealed with in

the remainder of this thesis.



Chapter 3

Test Collections and Multi-Modal

Audio Indexing

Beneath knowing, understanding
Beneath understanding, seeing
Beneath seeing, recognizing
Beneath recognizing, knowing

Keeper of the Way, “Vision of Faith”, CY 10003

In the following chapter we introduce the test collections we will use for experimental
evaluation as well as the main types of data used for the enrichment of plain audio

files. This will cover various online resources in combination with ID3 metadata.

Musical similarity is a concept not easily defined and highly subjective in its na-
ture. What one regards similar may sound rather dissimilar to another person et vice
versa. Yet, it is desirable to broaden the spectrum of sources taken into account when
computing track similarities, for one single dimension will never be able to describe the

musical sensation of as diverse a user base as music consumers are.

An audio track and its metadata can basically be decomposed into information

34
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Song Level
Audio Features (Audio)
Song Lyrics, Search Engine Query
Video Clips (Video)

Album Level Artist Level Genre Level
Album Reviews Artist Descriptions Genre Descriptions
Album Covers (Image) Artist Photographs (Image) Genre Hierarchies (Ontology)
Search Engine Query Search Engine Query Search Engine Query

Figure 3.1: Categorisation of multi-level Music Information Retrieval

according to: (1) Track, (2) Album, (3) Artist, and (4) Genre information.

On the track level, a song can be described by audio features as well as the track’s
lyrics, whereas the album, artist and genre levels consist of a textual description only,
each containing a wealth of meta information for music retrieval requests. However, a
multitude of other media types is possible. Images could provide additional information
for artists or albums in terms of photos of the artist or album cover artwork. Video clips
could be taken into consideration to provide an even better insight into a songs meaning,
etc. An overview of a possible categorisation of description levels and sources therefore
used in a multi-level Music Information Retrieval scenario is given in Figure 3.1. For a
fully deployed Music Information Retrieval system it would, of course, make sense to
aim at a high coverage of different types of information in all respects, and therefore
place more emphasis on the retrieval component. Usually, not all information will be
available in a single system. A possible fall-back strategy could be the use of suitable
search engine queries, e.g. the results from a search engine query for the given artist
name. This approach would almost guarantee to retrieve some data for each element
in the collection, albeit of a possibly lower quality. However, full multi-level retrieval of
music collections is beyond the scope on this thesis, the search engine fall-back strategy
as well as other media types than text are not covered. The use of genre hierarchies as,
for instance specified in [37], would make sense to replace missing genre descriptions

or merge very similar genres, but is omitted for reasons of simplicity.

The system presented in this thesis uses the above set of information for MIR
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purposes, integrating them off-line in a single data source. To avoid biased information
obtained from one single source only, independent sources of information can be used,

e.g. artist descriptions from one web portal, album descriptions from another.

The test collections, data sources and feature representations used are described in

more detail in the following sections.

3.1 Test Collections

Particularly for Information Retrieval experiments and prototypes the use of test col-
lections for experimental evaluation is of vital importance to show the applicability
of the proposed approaches. A more thorough discussion of corpus building can be
found in [31]. We therefore use two test collections, the latter being a larger superset
of the first one. The large collection will be used for large-scale experiments, whereas
the small collection will be an example for demonstrating the application of underly-
ing principles. The starting point for the ongoing corpus development was a private
collection consisting of 12770 songs. The initial collection takes about 150G of disk
space. The song lengths in that collection range from short 20 second ‘Punk Rock’
pieces to audio book chapters lasting for about one hour. MP3 is the prevalent file

type, followed by the lossless audio codec FLAC!.

3.1.1 Small Collection

For initial experiments we decided to use a somewhat smaller collection that is more
easily comprehensible. We selected ten genres only. Table 3.1.1 describes the compo-
sition of the small test collection in detail. It comprises ten genres and 149 songs in
total — the number of songs per genre varies from 9 to 17. This collection consists of

songs from 20 artists and from the same number of albums. Also, for the small col-

Thttp://flac.sourceforge.net/
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Genre Number of Songs
Christmas Carol 15
Country 17
Grunge 16
Hip-Hop 16
New Metal 16
Pop 15
Rock 16
Reggae 14
Slow Rock 15
Speech 09

Table 3.1: Composition of the small test collection

lection, all lyrics were manually preprocessed as to have additional markup like ’[2x]’,

etc. removed and to include the unabridged and high quality lyrics for all songs.

3.1.2 Large Collection

To be all set for visualisation and genre classification experiments we omitted all songs
we were not able to retrieve lyrics for, resulting in a parallel corpus of audio and song
lyrics files for a music collection of 7554 titles organised into 52 genres, containing
music as well as spoken documents (e.g. Shakespeare sonnets). An overview of the
song/genre distribution is given in Table 3.2; genres were assigned manually. Class
sizes ranged from only a few songs for the ‘Classical’ genre to about 1.900 songs for
‘Punk Rock’, due to both, the distribution across genres in the collection and difficulties
in retrieving the lyrics for some genres like ‘Classical’. The collection contains songs
from 644 different artists and 931 albums. The main motivation was to experiment
with a collection of sufficient size to study the effects of missing values as well as the
availability of ID3 metadata to reliably retrieve the artist and lyric information and

album and genre tags.



Table 3.2: Overview of genres in the music collection used throughout this thesis
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Genre #Songs
Acid Punk 25
Altern Rock 317
Alternative 122
Ambient 24
Avantgarde 90
Bluegrass 12
BritPop 130
Christian Rock 40
Christmas Carol 36
Classical 30
Country 100
Dance 13
Dance Hall 10
Death Metal 1
Digital Hardcore 4
Electronic 125
Emo 258
Experimental 13
Folk 56
Funk 2
Garage 11
Goth Metal 106
Grunge 104
Hard Rock 46
Hardcore 142
Hip-Hop 500

Genre #Songs
Indie 400
Indie Rock 23
Industrial 52
Instrumental 8
J-metal 1
Jazz 28
Metal 559
New Metal 110
Noise 4
Nursery Rhymes 25
Opera 17
Pop 911
Post Punk 32
Progressive Rock 14
Psychedelic Rock 3
Punk Rock 1160
R&B 228
Reggae 162
Rock 690
Ska 37
Slow Rock 649
Soundtrack 4
Speech 47
Techno 2
Trip-Hop 67
World 4
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Query
Artist : Title

\

lyrc.com.ar sing365.com oldielyrics.com Google alignment tool

Figure 3.2: Lyrics retrieval, the Atlantis way

3.2 Automated Enrichment and Indexing Techniques

The indexing of the audio collections and extraction of audio features is straight-
forward: first, all files in a collection are scanned and stored. After that every single
file is decoded into the wave format. A after that all three kinds of audio features
introduced in Chapter 2 are computed and stored in the database along with the song
data. Text indexing and retrieval is a bit more complex and will be discussed in the

following.

There are numerous online sources for song lyrics like sing365.com? or azlyrics.com?.

There are more sophisticated means of lyrics retrieval as mentioned in Section 2, but
to the ends of evaluating the feasibility of combined feature sets, minor inaccuracies
in lyrics fetching are ignored and this method provides satisfactory results. Text data
was indexed according to the tf x idf scheme. Hence, the text documents were to-
kenised where a word constitutes a token. No stemming was performed due to unique
word endings in lyrics for certain genres (e.g. ‘Hip-Hop’ songs having virtually all word
endings stripped anyway — information which would be lost if stemming were applied
additionally). The remaining tokens can dynamically be adjusted to a certain dimen-
sionality according to term frequency thresholding, i.e. the number of occurrences of
a certain token within the collection. This will be reflected by different experimental

settings in Chapter 6.

The other meta categories were additionally enriched by textual descriptions from

%http://wuw.sing365. com/
Shttp://www.azlyrics.com/
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other sources. Artist descriptions were mined from Wikipedia*. The Wikipedia data
were taken from a two year old snapshot only, so the actual coverage may be higher.
Figure 3.2 shows the different retrieval sources for automated lyrics fetching and their
importance. For every query, consisting of artist and title of a track, three lyrics portals
are used to retrieve the lyrics. If the lyrc.com.ar is valid, i.e. of reasonable size, those
lyrics are assigned to the track. If lyrc.com.ar fails to return the lyrics, the sing365.com
is checked for validity and so on. In case of no valid lyrics document from any of the
three lyrics portals, the KV script is used to retrieve the lyrics result page from Google.
For the remaining text descriptions we used data from laut.de®. Therefore the genre
descriptions and album reviews are in German, which does not negatively influence the
results, since only the resultant distances are combined. There is only one language
within one dimension (e.g. all artist biographies are in English, all genre descriptions

in German).

The coverage rates are high enough to show the extent of influence coming from the
additional information, but of course are far from optimal. Strategies to achieve higher
coverage — at least for the lyrics fetching for it is the most important data source used
throughout this theses — would be to include other sources of cultural information or

additional lyrics portals like lyrics.com® or lyricsdyou’

. Countless lyrics portals can
be found on the net and could also be taken into consideration, but were omitted due
to reasons of simplicity, three portals suffice to explain the methodology behind our

approach.

Nonetheless, these collections and their given availability of textual artist, lyrics,
album and genre information are very feasible for combined similarity experiments
because they allow for studying the effects of missing values, which is of particular
importance as this is very likely to occur in a real life scenario, albeit to a lesser extent

as probably more effort would be put into the retrieval component of such a system.

dhttp://en.wikipedia.org
Shttp://www.laut.de
Shttp://wuw.lyrics.com
Thttp://www.lyrics4you.com
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3.3 Recap

We stressed the importance of test collections for experiments in Music Information
Retrieval. To the end of proper evaluation we introduced two test collections, one of
large, one of small size. Further we explained the indexing process and automated
enrichment using text documents from online sources. We therefore considered all
necessary requirements for the multi-modal view of Music Information Retrieval and

are now ready to exploit the information gathered in this way.



Chapter 4

Multi-Modality in Music

Information Retrieval

The great blessing

of the Al is that we are
gifted with the power to
touch our Creator.

This is also our Curse.

The Clarion’s Call, “Hour of the Abyss”, CY 11745

After having introduced underlying techniques and retrieval components of a multi-
modal Music Information Retrieval system, this chapter theoretically presents the main
contributions to the field made in this thesis, namely the combination of several levels
of text data and audio representations for the basic Music Information Retrieval tasks

of similarity ranking, visualisation, and musical genre classification.

Firstly, a similarity ranking approach using a multidude of textual inputs is pre-
sented. Multi-modal ranking and combination approaches will be presented in Sec-

tion 4.1.
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Then, we give a general introduction to the application of clustering techniques for
audio — both its text and signal processing based representation — and explain the
overall idea of multiple or combined clusterings in Section 4.2. To that end, we at first
explain why multiple clusterings can be of help in understanding music, then we show

techniques to formally evaluate these multiple clusterings.

Finally we give a short outlook on the third set of experiments — audio and text

based musical genre classification in Section 4.3.
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4.1 Ranking Merging - Integrating Retrieval Results

This section introduces a possible combination methodology for multiple similarity
rankings. It is now possible to not only retrieve similar tracks according to audio
similarity for a given seed song, but also similar tracks according to lyrics features.
Moreover, artist rankings for the artist of the seed song as well as similar albums to

the seed songs’ album can be provided.

This yields several rankings for each query song. Based on the vectors of distances
to the query song, the Euclidean distance is used to generate multi-level rankings for
a single seed song. The straight forward case for audio similarity and lyrics, ranks on
a song to song basis. All other rankings comprise tracks as well, but are based on
distances of non track level features, e.g. all tracks by band X have the same artist
distance to all songs of band Y. The distances for the album and genre dimension are
computed analogously. This results in five rankings of length of the number of songs
in the collection, or, in other words, for each song, there are five distances to the seed

song.

Each of those rankings is min-max normalised, following Equation 4.1 to prevent

biasing influence on the overall ranking.

dorm (9, ) = d(q,t) — min(d(q,t))

= man(d(q, ) — min(d(g, D)) (4.1)

Each entry d in a distance vector d(q, t), for a given query and track in the collection
is replaced by the fraction of the current entry minus its minimum value min(d(q,t)) in
the vector and the difference of its maximum value max(d(g,t)) and its minimum value
min(d(q,t)). This is needed to take into account distances not starting from zero. This
preprocessing step is necessary to be able to combine the individual distances, without

it the ranges would be from different scales and impossible to integrate.

Equation 4.2 shows how D(q,t), the overall distance of query ¢ to a track ¢ is
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computed as the sum of all individual distances d;(q,t) times their respective weights

w; over all input sources 2€71".

ieT

Equation 4.2 is rewritten in Equation 4.3, as audio features, artist descriptions,
song lyrics, album reviews and genre descriptions are taken into account in order to

represent all different sources identified to be relevant for music similarity.

D(q,;t) = Waudio * audio(q; 1)
Wartist * Aartist (¢, 1)
Wiyrics * dlyrics(q ) t)
Watbum * Aatbum (¢, )

Wyenre dgem‘e(‘]a t) (43>

+ o+ 4+ o+

4.1.1 Missing Values

Whenever an artist description, album review, genre description, or a song’s lyrics are
not available, i.e. could not be fetched, we speak of a missing value problem. This fact
has to be taken into account for similarity calculation for the distance of the missing

song, artist, album, or genre to the query can not be computed.

Audio features are assumed to cover all songs of a collection, therefore no explicit
strategy for missing data for audio values is taken into account, but would of course
make sense for audio files that are non-readable for some reason (e.g. the decoding
fails or to many bit errors occur within the file). As textual descriptions may not be

available for all artists, albums, genres or songs (lyrics), it is a vital requirement for any
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Table 4.1: Test collection and coverage of different types of descriptions for the collection used in the

experimental evaluation

Type Elements | Covered | Coverage
Audio Features | 12770 12770 1.0
Lyrics 12770 7554 .59
Artists 644 348 .54
Albums 931 226 .24
Genres 52 15 .29

multi-level MIR system to provide appropriate techniques for handling these missing
values. Techniques to identify instrumental pieces of music would also be desirable
to identify songs that do not have lyrics associated by definition and therefore need
special treatment. The main problem with missing values is that they subsequently
result in missing distance values between certain instances and further calculation is
not possible for elements that have no vector associated with it. These distances that
can not be computed are referred to as missing values throughout the remainder of

this section.

Table 4.1 summarises the coverages of different information sources for the large
benchmark collection. The figures result from mining contextual information from the
sources specified in the previous chapter. Audio features are available for all songs in
the collection, artist descriptions for 54 per cent and so on. Genre descriptions are only
available for some 29 per cent of all 52 genres in the collection. Hence, particularly
the feature groups that are not available on a per song basis — that is artists, albums,
and genres — have a strong impact on the missing values problem. For instance, one
missing genre might consist of a large number of songs, all for which no distances could

be computed in the genre dimension.

In order to overcome the missing value problem, three basic methods are considered:
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e Exclusion
e Simple averaging

e Category substitution

The simplest way of treating missing values is to exclude them from the results, e.g.
if an artist description is missing, this artist is omitted in the results of the query, or
heavily penalised for that matter. This brings an increase in precision (all songs in the
result are similar to the query), yet negatively impacts recall (many (possibly) similar

songs are not considered).

To avoid this problem of low recall, substitution of missing values with the average
distance is feasible. Every missing value is replaced by the average distance of existing

values, henceforth missing values are no more penalised.

Finally, category substitution can be applied. A value is replaced by the average
of elements of the same category as opposed to being replaced by the average over
all existing values. The average distance of artists of the same genre, for instance, is
substituted for a missing artist distance. In the scenario portrayed in this work, the

following substitutions make sense:

1. Artist level

Each missing value is replaced by the average distance of songs of the same genre.

2. Genre level

Simple averaging is applied to replace missing genre distances. A genre hierarchy
could improve the substitution on the genre level by providing suitable rules for

substitution.

3. Lyrics/song level

The average over lyrics from same album or artist (if no lyrics from the same

album are available) is substituted for missing lyrics distances.
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4. Album level

The average over albums from same artist replaces missing values.

In any case the fall-back strategy that is applied if no appropriate elements can be

found, is to use the average over all existing distances, i.e. the simple averaging strategy.

Another possible strategy would be simply omitting of songs with missing values.
At the cost of never getting many songs recommended at all, the plain simplicity would
speak for this possibility. Moreover the computational expense could also be lowered by
much. We have not applied this strategy for not wanting to omit such a large fraction
in the similarity rankings, i.e. we think of this as too restrictive, albeit definitely the

easiest way of dealing with missing values.

4.1.2 Recap

In this section we proposed techniques for ranking merging in the multi-modal case.
We explained a way of merging multiple rankings — each one obtained for another
modality or category — and to deal with missing values. Experiments later on will

show the applicability of our approach.
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4.2 Multi-Modal Visualisation of SOM Clusterings

The basic idea to be introduced in this section is to visualise multiple clusterings,
each according to a different modality, and draw connections between corresponding
instances on both clusterings. We propose to visualise the similarities and differences
between the two clusterings by drawing lines across maps, which visually connect pieces
of music. The rationale for this is that the same instance could be clustered very
differently, depending on the dimensionality in use. The resultant connections will
therefore rather show one instance’s positions on several maps and reveal additional
information about its embedding in different feature spaces. These connections will be
denoted as cross map linkages, as they link instances across clusterings and modalities.
The data is clustered by the dimensions of audio features on the one hand and lyrics
on the other hand (those maps will be denoted as audio and lyrics map, respectively).
Every track is therefore present on two Self-Organising Maps of equal size, which is no

necessity but was chosen on purpose in order to stick to simpler examples.

Linkages can be shown on different levels:

Track FEach (selected) track on the audio map is connected to the same track on the
lyrics map. This allows the analysis of the characteristics of a certain piece of music by
identifying its acoustic as well as textual placement, i.e. to which clusters it belongs

in the respective modality.

Genre FEach track of a selected genre is connected to all songs of the same genre on the
other map. Here, the spread of a given genre can be inspected. For instance, whether
a genre forms a consistent cluster in both modalities, or whether it does form a rather
consistent cluster in, say, the textual domain, while it is rather spread across different

clusters on the audio map.
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Artist Each track of the given artist on the audio map is connected to all songs
of the same artist on the lyrics map. This allows to analyse the textual or musical

‘consistency’ of a given artist or band.

The other important aspect is the (colour-)coding of connections for the simul-
taneous display of two music maps. Once connections are drawn on the maps, the
connections between units are coloured according to their number of connecting units.
The main idea is to allow for user selections on one map and provide the simultaneous

highlighting of songs on the other one. Possible levels are:

e Colour-code types of connections

i.e. all track-track connections blue, track-genre red, ...

e Colour-code connexion strength

All connections between units are colour-coded. For example, the highest
number of connections is coloured red, the lowest blue and the remaining links

are coloured according to the palette in between.

The resultant clustering provides both a means of navigation in and visualisation of
multiple modalities of electronic music archives. To further investigate these principles
a ‘traditional” prototype model was developed, which will be described in the following

section.

4.2.1 A First Prototype

Figure 4.1(a) shows a full view of the prototype mock-up, built of paper, carton, and
sewing cottons. It was built using needles and glue and is held together by adhesive
tape. Clusterings of a small example collection of about 50 songs is shown, a lyrics
clustering on the bottom and an audio clustering on the top pane. The connections
drawn (or rather stitched) are for songs of a particular artist (‘Smow Patrol” in this

case) and give an overall idea of how such a system could work.
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(b) Detailed view of the visualisation prototype

Figure 4.1: Visualisation prototype mock-up
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Figure 4.1(b) shows a detailed view. It is shown that particular units have a very
high number of outgoing links and the variation in spread, which is going to be discussed

in more detail in the remainder of this section.

4.2.2 Cluster Validation for Multi-Modal Clusterings

Cluster validations in this context will be based on two Self-Organising Maps trained

on different feature sets. Their common features will be:

e Same size - to make comparisons easier, only Self-Organising Maps of equal size

will be compared to each other.

e Same set of instances - the data points on the maps are the same ones.

Another approach for the comparison of multiple SOM clusterings is introduced
in [3]. Data shifts and cluster shifts are used to compute shifts in between clusterings.
Shifts are graphically represented by coloured arrows of different line widths. The
cluster shifts take into account emerging clusters on both SOMs and have to consider
mappings between these two. The main points of this visualisation are the identification
of outliers as well as stable regions over multiple maps. The main difference to the
concepts presented in the following are its independence from class information of any
kind. As opposed to the data shifts visualisation, we emphasise the exploitation of
given class information and evaluation in this context therefore is always to be seen in

respect to genre, artist, or possibly album information.

To determine the quality of the resultant Self-Organising Map clusterings, we try
to capture the scattering of instances across the maps using meta information such as
artist names or genre labels as ground truth information. In general, the more units a
set of songs is spread across, the more scattered and inhomogeneous the set of songs
is. On the other hand, if the given ground truth values are accepted as reasonable

structures to be expected to be revealed by the clustering, songs from such sets should
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be found to be clustered tightly on the map.

Several ways of computing distances on SOMs are possible. Distances are always
subject to a specific distance measure, we use the Euclidean distance, see Section 2.2.
They can be computed either in the input or output space, where the input space refers
to whatever dimensionality of data is used as input, e.g. the resultant dimensionality
after feature selection for text data. The output space refers to the SOM grid; it is two-
dimensional. As a combination of both spaces for distance calculation the distances in

the output space could be weighted by distances in the input space.

In this context, the focus lies on distances in between units in terms of their position
on the trained Self-Organising Map. The abstraction from the high-dimensional vector
descriptions of instances to the use of unit coordinates instead of unit vectors is feasible
from a computational as well as a conceptual point of view. Comparison of individual
vectors does not take into consideration the very nature of the Self-Organising Map
clustering algorithm, which is based on the preservation of topological relations across
the map. This approach therefore computes the spread for genres or artists with respect
to the Self-Organising Maps’ clusterings. For distances between units the Euclidean
distance is used on unit coordinates, which is also used for distances between data
and unit vectors in the input space in the Self-Organising Map training process. All
quality measurements are computed for sets of data vectors and their two-dimensional
positions on the trained Self-Organising Maps. Particularly, sets of data vectors refer
to all songs belonging to a certain genre or from a certain artist. Generally, a Self-
Organising Map consists of a number M of units &;, the index ¢ ranging from 1 to M.
The distance d(&;,&;) between two units & and &; can be computed as the Euclidean
distance between the units’ coordinates on the map, i.e. the output space of the Self-
Organising Map clustering. In this context only units that have data points or songs
that belong to a given category, i.e. a particular artist or genre, are considered. This
holds for both maps, all quality measurements can only be calculated with respect
to a class tag, i.e. for songs belonging to a particular artist or genre. The average

distance between these units with respect to a Self-Organising Map clustering is given
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in Equation 4.4.

im1 =1 A€ €)

n2

avgdist = (4.4)

n denotes the number of data points or songs considered, i.e. the songs belonging
to a given artist or genre. Further, the average distance ratio defines the scattering
difference between a set of two clusterings C' = {caudio, Ciyrics }+ Caudio D€Ing an audio
and ¢;yrics being a lyrics clustering, is given as the ratio of the minimum and maximum

values for these clusterings.

Further, we define the ratio of the average distance ratio across clusterings in Equa-
tion 4.5 as the ratio of the respective minimum and maximum values of the average

distance ratio.

min(avgdist gudio, VGt yrics)

(4.5)

ad’raudio,lyrics = : .
max(avgdist sudgio, AVGAistyyrics)

The closer to one the average distance ratio, the more uniformly distributed the
data across the clusterings in terms of distances between units affected. However, this
measure does not take into account the impact of units adjacent to each other, which
definitely plays an important role. Adjacent units should rather be treated as one unit
than several due to the similarity expressed by such results, i.e. many adjacent units

lead to a small average distance.

Therefore, the contiguity value co for a clustering ¢ gives an idea of how uniformly
a clustering is done in terms of distances between neighbouring or adjacent units. The
specifics of adjacent units are taken into account, leading to different values for the
minimum distances between units since distances between adjacent units are omitted
in the distance calculations. If, for example the songs of a given genre are spread across
three units on the map &, &, &3, where & and & are neighbouring units, the distances
between & and & are not taken into consideration. Currently, no difference is made

between units that are direct neighbours and units only connected via other units. The
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contiguity distance cd is given in Equation 4.6

0 if & and &; are neighbouring units

d iy Qj —
it &) d(&, &) otherwise

(4.6)

The contiguity value co is consequently calculated analogously to the average dis-

tance ratio based on contiguity distances as shown in Equation 4.7.

co = ?:1 ;L:l Cd(£(l)7 g(])) (47>
77,2

In the case of fully contiguous clusterings, i.e. all units a set of songs are mapped
to are neighbouring units, the co value is not defined and set to one. The overall

contiguity ratio for a set of clusterings is given in Equation 4.8.

min(Cdaudio ) Cdlyrics)

(4.8)

CT qudio,lyrics —
max(Cdaudiov Cdlyrics)

This information can be used to further weigh the averagedistratio from Equa-
tion 4.5 as shown in 4.9 and gives an average distance contiguity ratio value adrer, i.e.
the product of average distance ratio and contiguity ratio, for a set of one audio and

lyrics map.

adrc’raudio,lyrics = ad’raudio,lyrics * CTqudio,lyrics (49)

This considers both the distances between all occupied units as well as taking into
account the high relevance of instances lying on adjacent units of the Self-Organising

Map.

Figure 4.2 shows possible distributions of data points belonging to one class. The

left column shows the distribution for audio clustering, the right column for lyrics
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(a) All points lie in (b) Points are con-
the upper left corner centrated in the left
(audio) upper corner of the

map (lyrics)

(c) All points lie in (d) Points are con-
the upper left corner centrated in the lower
(audio) right corner of the

map (lyrics)

1 1 1

(e) All points lie in (f) Points are ordered
the upper left corner diagonally (lyrics)
(audio)

1 1 1 1 1

(g) Data points are (h) Data forms sub-
not contiguously dis- clusters (lyrics)

tributed (audio)

Figure 4.2: Distribution of four data points belonging to one class (this could be, e.g., four pieces of
‘Rock’ music). The figures in the left column display possible distributions of data points according
to the audio dimension, whereas the right column represents possible arrangements for the lyrics

scenario. All figures are examples only and do not rely on real-world data



CHAPTER 4. MULTI-MODALITY IN MUSIC INFORMATION RETRIEVAL

Table 4.2: Calculation of average distance values for clusterings e in Figure 4.2

Unit |11](12|21|22| Sum Avg

11 |x |1 1 V2 | 3.414214 | 0.853553
12 1 x V2 |1 3.414214 | 0.853553
21 1 V2 | x 1 3.414214 | 0.853553
22 | V2|1 1 x | 3.414214 | 0.853553

Table 4.3: Calculation of average distance values for clusterings f in Figure 4.2

Unit |11 (22 (33|44 | Sum Avg

11 |x V2 | V8 | VI8 | 8.485281 | 2.121320
22 V2 | x 2 | V8 | 5.656854 | 1.414214
33 V8 | V2 | x V2 | 5.656854 | 1.414214
44 VIS | V8 | V2 | x 8.485281 | 2.121320

o7

clustering. Units are shown as squares, the numbers denote the number of data points

associated to a unit. This is meant as an example how clusterings can differ across

dimensions (lyrics and audio features in this case).

Tables 4.2 and 4.3 show the average distance values resulting from examples e and

f of Figure 4.2. The corresponding average distance values are

~.853553 + .853553 + .853553 + .853553

avgdist(e) = 1

and

2.121320 + 1.414214 + 1.414214 + 2.121320

= .853553

avgdist(f) = 1

Table 4.4 shows the values obtained for the density ratio and average distance ratio

that are obtained from the clusterings in Figure 4.2. These clusterings only consist of

four data points, hence all weighting by the number of instances per unit is omitted

for reasons of simplicity. Both the density ratio and average distance ratio give a

fair measure of scattering across clusterings. The clusterings a, b as well as ¢, d have
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Table 4.4: Scatter measures for Self-Organising Maps (see Figure 4.2). Note, (a) denotes the audio
clusterings a,c,e and g; (1) the lyrics clusterings b,d, f and h. AC and LC denote the contiguity

ratios for audio and lyrics, respectively

Maps | avgdist(a) | avgdist(l) | ADR | AC LC CR | ADRxCR
a,b. 3.4142 3.4142 1 1 1 1 1

c,d. 3.4142 3.4142 1 1 1 1 1

e,f. 3.4142 7.0711 4828 1 4.9497 | .2020 .2020
g,h. 6.1992 8.1411 7615 | 5.1992 | 7.1411 | .7281 .5544

coefficients of .5 and 1, respectively, whereas the values for clustering e, f are lower.
Visually the clusterings a, b as well as ¢, d are equal, even if not mapped to the same
parts of the map (there is no semantic interpretation possible for different areas of the

map, in fact, there is no way of telling differences in terms of clustering position).

A possible visualisation for those values is the colour-coding (binary) of all units
on a map within avg(dist) x w from the centre of the units (average coordinates). All
units, except outliers, within one class would be clearly distinguishable from the rest,

backing the linkage visualisation introduced at the beginning of this section.

4.2.3 Recap

In this section we showed possible techniques for the multi-modal visualisation of audio
collections based on SOMs. Both lyrics and audio data were taken into account in
order to provide a three-dimensional visualisation of audio tracks and their relations
to each other. We also showed how this visualisation can be used to derive quality
measurements for multiple SOM clusterings on toy examples; a large scale evaluation

is to follow in Chapter 6.
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4.3 Multi-Modal Genre Classification

Musical genre classification or the labelling of songs according to predefined genre
categories is a classic machine learning task. We will use a subset of the data sources
introduced in the last chapter, namely audio features and lyrics data as input space.
To the end of classification we will use Support Vector Machines, a standard machine

learning technique.

Experimental evaluation will be outlined in Chapter 6.

4.4 Where Do We Go from Here

We theoretically introduced the main categories of techniques used in this thesis. An
implementation for multi-modal similarity ranking and visualisation will be introduced
in the following chapter, quantitative evaluation of these concepts will be done in

Chapter 6.



Chapter 5

Implementation Details

The conceptual methods introduced in the last chapters were implemented to allow for
experimental evaluation, this chapter gives an overview of the resultant implementa-

tion. The implementation comprises two components:

e Atlantis is a text mining application, combining textual information for music
data from different modalities such as artist descriptions and song lyrics. Further,

it contains a user interface and back ends for music similarity retrieval.

e Sovis (Self-Organising Map visualisation) implements all aspects related to visu-
alisation. A GUI component allows user access to multiple clusterings and a back

end component evaluates clusterings.

5.1 Atlantis

The Javadoc API for the entire Atlantis project is available at http://www.ifs.

tuwien.ac.at/"neumayer/atlantis/api.
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ac.tuwien.ifs. atlantis
utils

ac.tuwien.ifs atlantis
vectorfilewriter

ac.tuwien.ifs.atlantis
wikipedia

ac.tuwien.ifs. atlantis
index

ac.tuwien.ifs.atlantis
g Ui

ac.tuwien.ifs. atlantis
Iyrics

ac.tuwien.ifs.atlantis
runnables

ac.tuwien.ifs.atlantis
vectorfile
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Figure 5.1: Overview of Atlantis’ packages

5.1.1 Packages of Particular Interest

This section will explain some classes of the most relevant packages within this project
in more detail as well as indicate which parts they belong to. Figure 5.1 shows an
overview of the Java packages in the Atlantis implementation, some of which will be

explained in more detail in the following.

5.1.2 Database Binding

The most important DB related classes are shown in Figure 5.2. The DBManager
Singleton class is responsible for connecting to the DB and sharing of the connexion.
The Corpus class represents one text corpus, e.g. one collection of song lyrics or
artist descriptions. This corpus concept is vital to the application since all grouping

of documents and classes is organised by corpora. Once documents are indexed, the
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unique list of words is calculated and the rest of the database schema is filled with
document term assignments. The MusicCollectionManager classes provide access to
a music collection’s metadata information. It also provides access to the classes in

atlantis.db.musicmetadata’s mapping classes like Artist, Track or Genre.

Figure 5.3 shows the classes used for document representation. A Document is the
superclass for all document representations providing means for accessing a document
object’s original as well as preprocessed text values (stored in the respective textValue
and rawText Value fields). The basic idea is to implement the abstract Document class’

preprocessAndTokenise method in a different way for each document type.

5.1.3 Internet Text Mining

Figure 5.4 shows the class diagrams for lyric fetching and parsing. The aforementioned
classes work with local snapshots of Wikipedia and laut.de. Lyrics fetching is done just
in time over the Internet. Therefore, every class has a static host address, e.g. http:
//www.sing365.com for the sing365 lyrics portal. Further, every class implements
the constructSearchURI method, which returns the correct URI for the given artist
and track name. The content from these URIs is then retrieved from the web and is

preprocessed accordingly, i.e. exactly the same way as in the general document cases.

5.1.4 Feature Selection

Feature selection is implemented as part of the vector or matrix generation. Figure 5.5
shows the main classes for frequency thresholding and Information Gain matrix gener-
ation. The VectorGenerator class offers the most generic methods to retrieve a single
document vector or matrix for sets of documents. The composition of these matrices
is done in the individual classes LowerFrequencyThresholdingMultiple CorporaVector-
Generator and InfoGainMultiple CorporaVectorGenerator. The Information Gain im-

plementation computes the information gain for all tokens found in a specific set of
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=1 FeaturelWectorM anager

+ FeatureWectorManager iConnection
+ boolean update (String , 5tring , 5tr
+ boolean update (String . double | §
+ boolean deleteVectors (5tring )

+ boolean sync

|—] DEManager

# Connection con
# DEManager dbminstance

- DEManager (String . String . String |
+ DBManager getinstance (String . Str
+ Objectclone O

# boolean openDEB (String . String . 5t
# boolean connect (5tring , 5tring . 5t
# boolean loadDriver

+ woid close 0

+ CorporaManager getCorporaManag
+ MusicCollectionManager getMusicC

ac tuwien.ifs. atlantis.db
info

ac tuwien.ifs. atlantis.db
lyrics

ac tuwien.ifs.atlantis.db
musicmetadata

|:| CorporaRecycler
- Vector corpora
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+ boolean getTermTable §
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+ boolean getDocumentFrequencies §
+ boolean computeDocumentFrequern
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- String name

- String type

- String description
-intnumDocs

+ Carpus {lang . 5tring . String , 5trii
+ Corpus {long ., String , String , Stril
+ lang getlD §

+ String getMame 0

+ String getType 0

+ String getDescription 0

+ int getMumDocs 0

+ void setName (5tring )

+ woid setType (String )

+ woid setDescription (5tring ) -

= CarporaManager
- Wector corpora

+ CorporaManager (Connection )

+ MaildirCocumentM anager getM aild
+ ReutersDocumentManager getReute
+ LyricsDocumentManager getlyricsl
+ Corpus getCorpusByMame (5tring )
+ void showCorpora 0

+ Corpus getCorpusBylD llong )

- Vector getCorpora §
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+ boolean addNewCorpus (String . 5S¢

[F] Documentinfo
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+ Documentinfo 0
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# Vector artists
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+ MusicCollectionManager (Connecti
+ Vector getTracks

+ Vector getGenres 0
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+ void showArtists
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ac tuwien.ifs.atlantiz.db
conmnectivity

ac.tuwien.ifs.atlantis.db
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ac tuwien ifs atlantis.db
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Figure 5.2: Classes for the management of corpora within the framework
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Figure 5.3: Classes for the representation of various documents
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Figure 5.4: Lyrics fetching and parsing - the Atlantis way
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Figure 5.5: Classes for vector generation and dimensionality reduction of text corpora

corpora and stores these values until they are needed for matrix generation. The fre-
quency thresholding is computed every time a matrix is requested. The upper threshold
is fixed and set to .5, whereas the lower threshold is set to .01 at the beginning and

incremented iteratively as to match the required dimensionality.
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5.1.5 Import Export Component

The export component mainly covers exports to various exchange formats used in
machine learning. Bindings are implemented to write files in the SOMLib format [43].
Classinfo files are used to store class information for instances, a vector file contains
the vectors itself, and a template vector file holds information about the single features
(e.g. tokens for text). Further the ARFF file format, which is used by the Weka
machine learning suite [57], is supported. Moreover plain text files can be written out

for further processing in Matlab.

Further files in SOMLib format can be imported if they contain any of the following

feature sets:

rp, the rhythm patterns feature set (dim 1440)

ssd, statistical spectrum descriptors (dim 168)

rh, rhythm histograms (dim 60)

bpm, beats per minute (dim 1)

In the ideal case, Atlantis holds all of this information about a song and plus informa-

tion about text data terms of tf X idf vectors for the following dimensionalities:

e Song lyrics
e Artist biographies
e Album reviews

e Genre descriptions

The main music-related import/export component handles data from the Amarok
music player [41]. Amarok is a music management application for the KDE desktop. It

supports not only the indexing of music files, but also lyrics fetching for the song that



CHAPTER 5. IMPLEMENTATION DETAILS 68

is currently playing via scripts, as well as support for the community site last.fm [21].
Amarok was chosen because it saves many aspects in its database and offers promising
features like its last.fm support, which might be interesting in the future. Currently,
Atlantis supports song, artist, album, genre information as well as song lyrics imports
from an existing Amarok database. Moreover, once Atlantis’ lyrics fetching is done, it

is possible to re-export the lyrics information to Amarok.

An overview of various distance measures, criteria for comparing vectors, is given
in Figure 5.6. All of Atlantis’ similarity experiments as well as all distance calcula-
tions relating to Self-Organising Maps use the FEuclidean distance in order to provide
distances (or similarity) between documents and vectors. Both the Euclidean and the
Manhattan or City Block distance are forms of the more general Minkowski distance
in terms of a different exponent, p = 1 for the Manhattan distance, p = 2 for the Eu-
clidean distance. Normalisation is performed in the Normalisation class, implementing
a simple MinMax normalisation, i.e. every value is divided by a vectors maximum
value. This results in vectors scaled from zero to one. Further, utility methods for

converting from String to double vectors et v.v. are provided.

The various ranking mechanisms used are depicted in Figure 5.7. A SimilarityRank-
ing basically is a sorted, two-dimensional matrix, instances being listed along its y,
features along its x axis. Furthermore, a CombinedRanking is a combination of rank-
ings for album, artist, genre, and track, as well as lyrics rankings. The substitute XXX
methods implement the substitution strategies presented in Section 4.1.1. Besides,

normalisation is done for all rankings to guarantee their comparability.

5.1.6 Typical Atlantis Usage

The typical usage of Atlantis would consist of the following steps:

e Import collection database (from Amarok)
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Figure 5.6: Overview of distance measures used in Atlantis
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e Fetch lyrics

Interactively check files

Possibly export the fetched lyrics to Amarok
e Import audio features (from SOMLIB files)
e Batch update text corpus

e Export vector files, browse by similarity, etc.

5.2 Sowis (Self-Organising Map Visualisation)

Subsequently, Sovis, an application prototype for multiple Self-Organising Maps, was
implemented for the simultaneous display of two music maps. Sovis uses Atlantis’
data model and interfaces for music collection management and the link to metadata.
Once connections are drawn on the maps, the connections between units are coloured
according to their number of connecting units. The main idea is to allow users to select
songs on one map. All selected songs are highlighted on the other map. On top of
the interactive user interface and the connexion visualisations, Sovis implements the

multi-modal quality measurements introduced in section 4.2.2.

The Sowvis prototype allows for selection of:

e Genres
o Artists

e Tracks

All selections are organised hierarchically according to the songs’ artist or genre
tags, i.e. further selection refinements are possible. If the user selects, for instance,
all songs from the rock genre, all songs belonging to that genre are connected in the

interactive 3D display of the Self-Organising Maps. Moreover, all single songs of that
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particular genre are displayed and the user can further refine his selection to a particular
set of songs. The main user interface is depicted in Figure 5.8. The right part of
the application is occupied by the display of the two Self-Organising Maps. The 3D
display offers ways to rotate the view as well as pan and zoom in or out. Controls to
select particular songs, artist or genres are on the left side together with the palette
describing the associations between colours and line counts. Selections of artists or
genres automatically update the selection of songs on the left hand side. Several
visualisations for single Self-Organising Maps have been proposed. In this work we use
the Smoothed Data Histograms technique to colour-code the Self-Organising Maps [39];
whenever class distribution is of interest, we make use of the Thematic Class Map
and Chess Board visualisations to emphasise the regions covered by different classes.
The SOMToolbox application for 2D clusterings supports a wide range of additional
visualisations that could be used as a basis for 3D visualisations, as proposed in this
thesis. We relied on the same visualisation method for both audio and lyrics features.
Of course, this is not necessary and different visualisations could be deployed for the

respective feature spaces and clusterings.

Figure 5.9 depicts Sovis’ main classes and GUI as well as Self-Organising Map pack-
ages. The SwinglInterfaceMain class is the main entry point for the GUI application.

QualityMain evaluates two clusterings in batch mode.

Figure 5.10 shows Sovis” GUI components. SwinglInterface uses both Atlantis ele-
ments and the CrossMapLinkage Visualisation class and presents the main GUI com-
ponent, handling the display of links between mappings itself. CrossLinkage Visuali-
sationCrontrol encapsulates the functionality for loading and displaying trained Self-
Organising Maps and CrossLinkage VisualisationCrontrolFrame holds control elements

and user input fields. The ColourXXX classes handle the display of the colour palette.

Sovis’ functionality to management and evaluation of multiple Self-Organising Maps
is shown in Figure 5.11. SOMQuality implements the computation of the quality

measures introduced in section 4.2.2. The Self-Organising Map grid and methods for
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Figure 5.9: Overview of the Sovis implementation

accessing mapping and unit information can be found in ElementManager.

5.3 Recap

This Chapter introduced the Atlantis and Sowvis Java implementations. Their back
end implementations and user interfaces will be used to experimentally evaluate the
concepts described earlier on. Multi-modal clustering as well as similarity ranking
experiments will be performed exclusively using these implementations, for musical
genre classification the files produced by the export components will be used as input

for the Weka machine learning suite.
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Chapter 6

Experiments

Love? Truth? Beauty? I prefer negotiable securities.

Doge Miskich var Miskich, “All About Me”, 301 AFC

This chapter describes the experimental setting and provides experimental results

for the three main tasks considered in this thesis, namely multi-modal

e similarity ranking and retrieval,
e multi-modal visualisation and cluster validation, and

e musical genre classification.

At first, experiments are shown on the small data collection, particularly focussing
on visualisation. After that, a full set of experiments is performed on the large collec-
tion, including ranking, cluster visualisation, and musical genre classification, which is

much more feasible for collections of sufficient size.

T
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Figure 6.1: Thematic class map visualisation for the audio clustering of the 10 genres subset of the

small audio collection. Genre colours are displayed in the legend

6.1 Small Collection Experiments

The experimental results presented in the following were obtained from experiments

made with the small data collection, introduced in Section 3.1.1.

6.1.1 Clustering According to Audio Features

For each song lyrics features as well as audio features (Statistical Spectrum Descriptor,
dimensionality 168) were computed. The Self-Organising Map clustering was finally
performed on the small data set. We then trained two Self-Organising Maps of size 8

X 8, i.e. 64 units, one on the audio feature set, one on lyrics.

Figure 6.1 displays the clustering of the small collection according to audio features
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Figure 6.2: Thematic class map visualisation for the lyrics clustering of the 10 genres subset of the

small audio collection. Genre colours are displayed in the legend

plus class legend. Different areas of the map are coloured according to their genre. The
class legend is given in 6.1(b). Such a visualisation makes it easy to comprehend the
distribution of classes on the map. The ‘Reggae’ genre (dark red) for example is located
on the right upper part of the map, clustered on adjacent units only. ‘Christmas’ songs
(light blue), on the other hand, are spread all over the map. This corresponds to
the very differently sounding nature of these two genres. ‘Christmas’ music is rather
defined by its lyrics, whereas ‘Reggae’ is rather defined by its typical sound. Songs
belonging to the ‘Punk Rock’ and ‘Speech’ genres both are also rather defined by their

sound.
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6.1.2 Clustering According to Lyrics Features

The same collection clustered according to song lyrics is shown in Figure 6.2. The
resultant high-dimensional feature vectors were further downscaled to 905 dimensions
out of 5.942 using feature selection via document frequency thresholding, i.e. the
omitting of terms that occur in a very high or very low number of documents. We
therefore excluded terms occurring in less than 16 per cent and more than 40 per cent

of the documents.

Amongst the most obvious differences are the better separation of ‘Hip-Hop’ songs
in the upper right part of the map. This genre is easily identified by terms like ‘shit’,
‘rap’ or names of different rappers. Christmas carols are clearly separated in the lower
left corner of the map, exclusively covering four units. Tracks belonging to the genres,
‘Slow Rock’, or ‘New Metal’ are spread across large parts of the map, reflecting the

diversity of topics sung of within them.

6.1.3 Combined, Multi-Modal Visualisation

Figure 6.3 shows the prototype implementation’s tool section as well as its visuali-
sation part. On the right hand part of the illustration two clusterings are visualised
simultaneously. These clusterings are subsequently subject to quantitative evaluation

according to quality criteria introduced in Section 4.2.2.

Table 6.1.3 lists these quality measures for all the genres in the small collection.
Exceptionally high values for the ADRXxCR were, for example, calculated for the ‘Pop’
and ‘Hip-Hop’ genres, meaning that they are rather equally distributed across clus-
terings. ‘Pop’ songs, for instance, are equally distributed in terms of audio and lyrics
contiguity, leading to the maximum value for LC. ‘Christmas Carol’ songs have an
exceptionally low value, stemming from the fact that they form a very uniform cluster

on the lyrics map, the contiguity value is therefore set to one. On the audio map,
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Figure 6.3: Overview of the visualisation prototype. The left part of the application is occupied by
tools to select songs from the audio collection. The main part displays the clusterings and connections

in between

Christmas carols are spread well across the map. Other low values can be identified
for ‘Punk Rock’ or "Speech’, both of which are more spread across the lyrics than the

audio map.

Figure 6.4 shows two examples of genre connections. Figure 6.4(a) shows the con-
nections for all songs belonging to the ‘Christmas Carol’ genre, and visualises its dis-
tribution as mentioned in the previous paragraph. Songs belonging to the ‘Punk Rock’
genre are shown in Figure 6.4(b). The strong divergence of distributions is clearly

visible.

6.2 Large-Scale Experiments

To prove the applicability of the proposed methods, we performed experiments on a

larger collection of digital audio, which is described in Section 3.1.2.
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(b) Distribution of ‘Punk Rock’ songs on both maps

Figure 6.4: Distribution of selected genres across maps
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Table 6.1: Genres and the according spreading values across clusterings.

Genre AC LC CR | ADR | ADRxCR
Cristmas Carol | .1240 1 1240 | 2982 .0370
Country 1644 | .2169 | .7578 | .8544 .6475
Grunge 3162 | .5442 | 4714 | .9791 4616
Hip-Hop 2425 | .1961 | .8086 | .6896 .5576
New Metal 1754 | 1280 | .7299 | .9383 .6849
Pop 1644 | .1644 1 .9538 .9538
Punk Rock 4472 | 11280 | .2863 | .7653 2191
Reggae 2774 | .1810 | .6529 | .5331 .3480
Slow Rock A715 | .1240 | 7232 | .7441 .5382
Speech 3333 | .1754 | .5262 | .3532 1859

83

AC denotes the audio

contiguity, LC the lyrics contiguity, CR the contiguity ratio, ADR the average distance ratio, and

ADRXCR the product of ADR and CR. Maximum values are printed in bold font, minimum values

italic

6.2.1 Multi-Modal Audio Similarity Ranking

This section contains an experimental evaluation of the techniques for multi-modal
similarity ranking in Section 4.1. The main idea is to rank songs in a music collection

according to different modalities. We consider the following levels of similarity for each

seed /query song:

e Song (audio)

e Song (lyrics)

o Artist

e Album

e Genre
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As a next step all the different rankings are merged into one result list, the experi-

ments performed will be explained in the following.

In order to show the importance of the missing values problem, Table 4.1 summarises
the coverage of different levels of textual description within the large collection. The
evaluation and comparison of the results of content-based (i.e. audio) similarity rank-
ings to combined approaches presented in the Section 4.1 is the central part of the
experiments described in this section. To that end, at first, the combined distances for
each track in the collection to all other songs are computed. Then the first 5, 10 and

20 results are evaluated according to the number of songs belonging to:

e the same artist,
e the same album, or

e the same genre,

While this kind of evaluation is definitely not the optimal way, it constitutes an
objective, automated way of analysing results that has been used in this setting be-
fore [20]. Obviously, this should be followed-up by a user study to establish sound

parameter values for real-world retrieval tasks.

Table 6.2 gives an overview of different settings for weightings. Weights are always
given for each of the five dimensions and always sum up to one. The sum column
denotes the sum of the number tracks in the result set, that are featured on the same
album, interpreted by the same artist, and belonging to the same genre as the seed song
taken from the top 20 results for every given song!. Therefore, the higher the value,
the more similar tracks are returned according to that similarity measure. It is shown
that additional textual data sources improve the results significantly. Experiment 15

shows very high values and seems to be the best combination in this context, especially

1This evaluation for sure has its weaknesses like, for example, a strong bias on albums, because they implicitly
convey genre information. We still chose this kind of evaluation instead of large-scale user studies due to time and effort

restrictions.
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Table 6.2: Results for given weighting strategies. The different weightings are given in the Audio,
Artist, Lyrics, Album and Genre columns. The Sum column denotes the sum over the number of

songs amongst the top 20 results from the same artist plus album plus genre for each combination

ID | Audio | Artist | Lyrics | Album | Genre | Sum
1 1.0 .00 .00 .00 .00 | 5.37
2 .50 .50 .00 .00 .00 | 19.54
3 .70 .30 .00 .00 .00 | 19.53
4 .30 .70 .00 .00 .00 | 19.54
5 .30 .30 .30 .00 .00 | 18.70
6 .70 .30 .20 .00 .00 | 18.89
7 .25 .25 .25 .25 .00 | 20.64
8 .70 .10 .10 .10 .00 | 20.09
9 .40 .25 .10 .25 .00 | 20.87

10 .40 .30 .00 .30 .00 | 21.41

11 40 .00 .30 .30 .00 | 9.64

12 .20 .20 .20 .20 .20 | 22.65

13 .60 .10 .10 .10 10 | 22.12

14 40 .30 .10 .10 10 | 22.73

15 .30 .30 .00 .20 .20 | 23.46

16 .30 .30 .00 .10 .30 | 23.35

17 .30 .30 .00 .30 .10 | 23.43
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outperforming the audio only experiment number one. Of course this may look very
different on a per user basis. However, these weightings offer a very good point to
start from in ongoing experiments, particularly including user feedback. Naturally, the
results according to the chosen evaluation are far more improved by artist, album and

genre information than by a song’s lyrics.

The values given in Table 6.3 and Table 6.4 show the differences over changes in
the substitution strategies as well as initial size of the result set. The weights used
for this experiment are .3, .3, .0, .2, and .2, respectively for the audio, artist, lyrics,
album, and genre categories. This weighting corresponds to the best result obtained in
the ranking experiments (experimental setting 15), which are summarised in Table 6.2.
The first set of results are based on a full ranking of all songs, the latter relies on
a re-ranking of the first 600 closest songs in terms of audio similarity. The given
results are computed as the sums of this evaluation for the 5, 10 and 20 best results.
Furthermore, the average count over results for different seed songs was computed.
The figures show that penalising of missing values does not improve the quality of the
retrieval results, the simple averaging strategy performs better in all respects which
is negatively influenced by the low coverage of data, i.e. many similar tracks are
without textual information and therefore would not be considered in the result, if
it was not for averaging their distance. Surprisingly, category substitution does not
improve results at all. Table 6.4 outlines that the results for a subsampled data set
decreases performance significantly, but also shows that the ranking based on Statistical
Spectrum Descriptors selects songs according to criteria decoupled from metadata tags.
Category substitution is not available for the full retrieval setup. However, results are

provided for a performance improvement over that strategy.

User Interface

Figure 6.5 shows the main user interface of an experimental system to evaluate the

impact of different weighting strategies. The largest part of the GUI is occupied by
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Table 6.3: Experimental results for similarity ranking experiments using different substitution strate-
gies for the combination of the results taken from a full ranking of all songs. Numbers given denote
the number of songs belonging to the same artist, album, and genre as the seed song in the top 5, 10,

or 20 songs retrieved

Same Album Top 5 | Top 10 | Top 20
Category Subst. NA NA NA
Exclusion done 2.11 3.76 5.88
Simple Avg. 2.17 4.04 6.45
Same Artist Top 5 | Top 10 | Top 20
Category Subst. NA NA NA
Exclusion done 3.17 6.09 11.66
Simple Avg. 3.22 6.24 11.90
Same Genre Top 5 | Top 10 | Top 20
Category Subst. NA NA NA
Exclusion done 2.77 5.23 9.52
Simple Avg. 2.85 5.50 10.25
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Table 6.4: Re-Ranking of top 600 initial results for similarity ranking experiments using different

substitution strategies weighting for the combination of the results. Numbers given denote the number

of songs belonging to the same artist, album, and genre as the seed song in the top 5, 10, or 20 songs

retrieved

Same Album Top 5 | Top 10 | Top 20
Category Subst. 1.84 2.79 3.52
Exclusion 1.91 2.78 3.55
Simple Avg. 2.36 3.41 4.07
Same Artist Top 5 | Top 10 | Top 20
Category Subst. 2.43 4.09 5.83
Exclusion 241 3.95 5.53
Simple Avg. 2.97 5.11 7.15
Same Genre Top 5 | Top 10 | Top 20
Category Subst. 1.55 2.85 5.15
Exclusion 1.64 2.87 4.92
Simple Avg. 1.90 291 4.43
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the five different rankings, one for audio, artist, album, lyrics, and genre respectively.
Only the pre-filtered rankings are shown, i.e. not the rankings according to five different
modalities are shown themselves. Instead, each ranking shows the ranking obtained by
substitution strategies for all songs. The genre ranking, for instance, shows all songs
in the collection ranked by their genre weight, i.e. all songs from a given genre are
represented by that genre’s term vectors. The weights for each of these sources can
interactively be updated and the influence on the combined ranking can be observed.
The user can update these weights and instantly see the influence on the combined
ranking as described earlier. A textbox is provided to search for song titles, rankings are
generated accordingly. The figure shows the query for the track ‘Politik’ by ‘Coldplay.’
It becomes evident that the first result is either the song itself or all other songs by
the same artist. Every ‘Coldplay’ song has the same distance (zero) to all other songs
of the same artist, whereas the lyrics and audio categories have distances on a song
basis. For this song, there’s no genre information available (‘Slow Rock’), therefore, in
terms of genre similarity, all songs have the same distance to the query. For matters
of simplicity all distances are set to 0 in this case. It is, however, possible to compute
all other four kinds of similarities. In terms of audio features, the most similar songs
are mainly songs by 'Richard Ashcroft’ or ‘The Verve’ as well as ‘Blur’ and ‘Oasis’.
The most similar lyrics are from songs by ‘Coldplay’ itself, ‘The Cranberries’, and
‘The Pogues’ as seen in the third column. According to the analysis of the artist
descriptions the most similar artists are ‘The Flaming Lips’, ‘Bloc Party’, and ‘The
Gorillaz’” as well as Conor Oberts’s ‘Bright Eyes’. Albums with similar reviews are
from artists like the Americans ‘Nada Surf’ or the British ‘Badly Drown Boy’. Once
the user has set his preferred weights, he can generate an overall ranking based on the
single ones. Figure 6.6 shows the combined ranking with the weights .7, .1, .1, .4, and
42, for audio, artist, lyrics, album, and genre, respectively. It also shows the updated
distances and reveals a new ranking based on all modalities and a user’s preference for

them (adjusted by the chosen weighting).

2These weights were subjectively chosen but provided a good blending of results.
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Figure 6.6: Combined ranking for the track ‘Politik’ by ‘Coldplay’, based on single rankings in five

modalities

One vital aspect of multi-level similarity is that adjusting the weights also means
adjusting to the user. Personalisation based on weightings therefore will definitely
be evaluated in the future. Relevance feedback could be used to automatically adapt

weights according to user input, i.e. those data can be extracted from a user’s playlist.

6.2.2 Comparisons of Multi-Modal Clusterings

This section summarises the findings from the multi-modal clustering experiments. We
train one map representing the collection in terms of lyric similarity, one in terms of
audio similarity. At first, examples of different clustering results for processing based
on song lyrics will be given. We then stress the differences between the audio and lyrics

space. After that we will provide experimental results of multi-modal clustering.
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Figure 6.7: Clustering of songs centred around the love topic

Traditional Genres and the Lyrics Space

Figure 6.7 shows the distribution of genres on two particular units on a Self-Organising
Mayp trained on lyrics data. The pie chart display shows the numbers of songs belonging
to the different genres, underpinning the idea that traditional genres are not necessarily
feasible for the lyrics space. The labelling of single units is done via the LabelSOM
algorithm, i.e. the identification of discriminative components. In this case, the promi-
nent key words ‘love’, ‘baby’, ‘give’, ‘real’, and ‘need’ give a very good idea on the main
topics of these songs’ lyrics. The 50 songs, for instance, mapped onto the right unit
of this Self-Organising Map are distributed across 16 ‘traditional” genres, the largest
group being ‘R&B’ songs, followed by ‘Metal” and ‘Indie’.

Artists whose songs are mapped onto this unit are, amongst others: ‘Mary J. Blige’,
‘Beyonce’, ‘Christina Milian’, as well as ‘Wolfmother’ or the ‘Smashing Pumpkins’.
This interesting mapping shows clearly that topics in song lyrics overcome traditional
genre boundaries, while pointing out that a categorisation on the lyrics level makes

sense since all songs cover similar topics.

To the ends of exploiting the fundamental differences in clusterings we train two
Self-Organising Maps, one based on audio, one based on text features. These maps
will be referred to as audio and lyrics map, respectively. As well as examples are given,

experimental results are shown.
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Figure 6.8: Distribution of Christmas carols on clusterings for different feature spaces. The pie charts

denote the distribution of songs over different genres on the particular units — only units comprising

Christmas carols are highlighted
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Figure 6.8 shows the distribution of Christmas carols on the two-dimensional cluster-
ings, the distribution on the audio map is shown in Figure 6.8(a), and in Figure 6.8(b)
on the lyrics map, respectively. Both maps have the size 20 x 20, the dimensionality
of the audio input space is 168, whereas the lyrics space was downscaled to 6579 out
of 63884 dimensions. The respective lower and upper document frequency thresholds
used to obtain this dimensionality were one and 40 per cent. In the former case, the 33
songs are mapped onto 30 units, in the latter only onto 13. Hence, the lyrics cluster-
ing uncovers information such as vastly different interpretations of one and the same
song, that have the same lyrics, but differ greatly in sound. Manually assigned labels
demonstrate the different key tokens present on the respective areas of the map, i.e.
the ‘red / blood / christmas’ cluster on the top of the map. Due to the Self-Organising
Map’s random initialisation, the fundamental differences in lyrics space, and the gen-
eral training algorithm, the songs are mapped onto different corners of the map. For
evaluation the absolute location on the map plays a less important role than the rela-
tive distances. However, it is clear that the spread of songs differs from one clustering
to the other. In the lyrics space, Christmas carols are clustered more closely to each
other, whilst they get spread over more units and occupy a larger space of the map in
the audio space. The two interpretations of the song ‘The First Noel’, for example, are
mapped onto one unit in the lyrics space. On the audio map, however, these songs lie
on different units on different regions of the map. The artists of the interpretations are
the ‘Bright Eyes’ and ‘Saxofour’, even though the ‘Saxofour’ interpretation is instru-
mental, the lyrics space helps to uncover the similarity between the two songs. Songs

by ‘Bright Eyes’ are concentrated around clusters of rather slow folk music.

Noticeable Artists

Table 6.2.2 shows a selection of particularly interesting artists with respect to their
positions on the maps. A total of 18 ‘Sean Paul’ songs are mapped on each Self-
Organising Map. For the audio map, the songs are distributed across seven different

units, eleven being mapped onto one unit. On the lyrics map, all songs are mapped
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Artist AC LC CR | ADR | ADRxCR
Sean Paul 3162 | 1313 | .4152 | .4917 .2042
Good Riddance | .0403 | .0485 | .8299 | .7448 .6181
Silverstein 0775 | 1040 | .7454 | .8619 .6424
Shakespeare .2626 | 1.000 | .2626 | .3029 .0795
Kid Rock .0894 | .0862 | .9640 | .9761 9410

Table 6.5: Artists with exceptionally high or low spreading values. AC denotes the audio contiguity,
LC the lyrics Contiguity, CR. the contiguity ratio, ADR the average distance ratio, and ADRxCR
the product of ADR and CR

onto two adjacent units, the first one covering 17 out of the 18 tracks. The univying
theme for the distribution across units is based on song labels in the textual feature
space, i.e. songs having similar labels will be mapped onto units having high weights

for these labels.

The situation is different for ‘Good Riddance’, a Californian ‘Punk Rock’ band. For
the lyrics map, their 27 songs are spread across 20 units. For audio, the songs lie on
18 units, but some of them are adjacent units, a fact that is represented by a rather

high value for AC, the audio contiguity measure.

Shakespeare sonnets are clustered in a similar way. In terms of lyrics the six sonnets
lie on two units, whereas the audio representations are mapped on three units, non of

which were adjacent (only one sonnet is read by a male voice).

‘Kid Rock’ songs, mainly ‘Country’ tracks, lie on 13 units on the audio map, in-
cluding two adjacent units, compared to 11 units in the lyrics space, none of which are
adjacent. The spread is therefore almost identical on both maps. Figure 6.9 shows the

3D visualisation for all ‘Kid Rock’ songs.
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Figure 6.9: Detailed view of connections for the almost equally distributed artist ‘Kid Rock’. Dark

lines denote a high number of connections
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Genre AC LC CR | ADR | ADRxCR
Speech .0822 | .0665 | .8092 | .3417 .2765
Christmas Carols | .0393 | .0677 | .5800 | .7779 4512
Reggae .0392 | .0413 | .9495 | .8475 .8047
Grunge .0382 | .0466 | .8204 | .9974 .8182
Rock .0372 | .0382 | .9740 | .9300 .9059

Table 6.6: Genres with exceptionally high or low spreading values. AC denotes the audio contiguity,
LC the lyrics contiguity, CR the contiguity ratio, ADR the average distance ratio, and ADRxCR
the product of ADR and CR

Noticeable Genres

Analogously to the artists, we identified genres of interest in Table 6.2.2.

‘Rock’ music has proven to be the most diverse genre in terms of audio features
and rather diverse in terms of lyrics features alike. There were 672 songs assigned
to that genre in the test collection. The overall adr x cr measure is still rather high
due to the impact of adjacent units on both maps. ‘Speech’ as well as ’Christmas
Carols’, on the other hand, are rather diverse in terms of audio similarity, but are more
concentrated on the lyrics (or text) level, yielding in a low adr x cr value. Figure 6.10
shows the connections between all ‘Christmas’ songs, giving an interesting idea about
the differences in distributions on the maps, c.f. Figure 6.8. The similarity of ‘Reggae’
music is defined by acoustic and lyrics features to an equal amount. This genre has
rather high values for adr and cr, caused by a high number of adjacent units and a low

overall number of units.

6.2.3 Musical Genre Classification

In order to utilise the information contained in music for genre classification, we de-

scribe sets of audio features derived from the waveform of audio tracks as well as the
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Figure 6.10: Detailed view of connections for the genre ‘Christmas Carols’. Dark links denote a high

number of connections
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Table 6.7: Macro-avraged classification accuracies based on ten-fold cross validation for different types
and combinations of audio features and features based on lyrics. The experiments Al - A3 denote
audio-only, L1 - L4 lyrics-only, and C1 - C3 features combined from audio and lyrics feature sets. The

type column shows the types of feature sets used, dimensionality notes the resultant dimensionality

of the data
Name | Type Dimensionality | Classification Accuracy
Al RH. 60 .264702
A2 SSD. 168 377473
A3 RP. 1440 .375454
L1 LYRICS 60 .216076
L2 LYRICS 168 .263394
L3 LYRICS 1422 .334101
L4 LYRICS 3000 363122
C1 LYRICS + RH 120 .375454
C2 LYRICS + SSD 336 436819
C3 LYRICS + RP 3085 429821

bag-of-word features for song lyrics. Our experiments were performed on the large test

collection introduced in Chapter 3.

Table 6.7 shows classification accuracies for a set of experiments based on audio
and lyrics features as well as combinations thereof. We achieved the different lyrics
dimensionalities by document frequency thresholding, the upper limit was set to 40
per cent, the lower threshold was continually increased as to match the required resul-
tant dimensionality, leading to different values for the lower threshold in all settings.
Experiments were performed by Weka’s implementation of Support Vector Machines
for ten-fold stratified cross validation (linear kernel, ¢ = 1.0). Results shown are the

macro averaged classification accuracies.

The classifiers based on audio data showed good results, experiment A2 and A3

being rather similar, even though the dimensionalities are quite different. Experiment
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A1 showed by far lower results.

The higher-dimensional the data for the lyrics experiments is, the higher is its
classification accuracy, implying that there is even more discriminating information
contained in lyrics (see experiments L1 - L.4), which is not covered in this context

because of the limitations of the simple concatenation approach.

For combination experiments (C1 - C3) we use balanced combinations of features,
i.e. the dimensionality of the lyrics component always equals the dimensionality of
the audio feature component®. Results show that a combination of lyrics and audio
features improves overall classification performance. Very high accuracy was achieved
in the ‘LYRICS + RP’ setting (C3), having the highest dimensionality, second only to
the ‘LYRICS + SSD’ experiment (C2). For all combination experiments (C1 - C3) the
accuracies were at least equal to the highest values for the respective one-dimensional

approaches (A3 and L4).

For statistical significance testing we used a paired T-test for a significance level of
a = .05. Results showed that A2 performs better than Al (p = .0189), but there is
no significant difference between A2 and A3 (p = .9661). Further, it is shown that C3
performed better than L3 (p = .0059). Hence, a classifier based on differing numbers of
lyrics than audio features, e.g. more dimensions in the lyrics than in the audio space,
might further improve classification accuracy. Yet, by combining lyrics and audio (C2),
the same performance was achieved at a fraction of the dimensionality. Experimental
results for C2 and C3 are not significantly different (p = .7994). Further test results

are given in Table 6.8.

3These values sometimes are slightly skewed due to the dynamic feature space reduction with document frequency

thresholding.
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Table 6.8: p-values obtained by statistical significance tests performed on classification results. The
given tests were performed for a significance level of @ = .05 using a paired T-Test for distributions

with equal means

Name C2 C3 A2 L3 L4
Al .0157(1) 0189(1) 0732(0) .2021(0)
A2 .0074(1) .2298(0) .9661(0) .8118(0)
A3 .0885(0) .0059(1) | .9661(0) 3208(0) 5197(0)
L1 | 1.0096e-04(1) | 1.0597e-04(1) | .0051(1) | 2.2785e-04(1) | .2021(0)
L2 0011(1) | 2.0158¢-05(1) | .0573(0) | 1.0526e-05(1) | 2.3352¢-04
L3 .0885(0) .0059(1) 9661(0) 5197(0)
L4 .1343(0) .0076(1) 8118(0) | .5197(0)

Cl | 1.2867¢-04(1) | .0031(1) | .0031(1) | .0435(1) 2173(0)

C2 .7994(0) 0074(1) | .0885(0) .1343(0)

C3 .7994/(0) 2298(0) | 0.0059(1) .0076(1)
6.3 Recap

In this chapter we provided experimental results on two test collections — one of small,
one of large size. We thereby underpinned our position that Music Information Re-
trieval greatly benefits from the use of multi-modal data sources. We provided results
for multi-modal clustering, relying on the lyrics space as additional input information.
These principles were evaluated both in terms of an experimental user interface and
quantitative evaluation. We used a wide range of textual data sources like artist de-
scriptions or album reviews, to provide experimental results for the classic similarity
retrieval use case. The combination of these data sources extended the classic approach
of using audio similarity only. We furthermore showed that lyrics can greatly influence
the task of musical genre classification and provided statistical significance tests for

our classification experiments.
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Conclusions and Future Work

To a god, a wall is but a line on a page. We are all naked, seen beyond seeing.

Wayfinder Hasturi, aka “The Mad Perseid” 217 AFC

In this thesis, we investigated a multi-modal vision of Music Information Retrieval,
taking into account both a song’s lyrics as well as its acoustic representation, as op-
posed to concentrating on acoustic features only. We presented a novel approach to
the visualisation of multi-modal clusterings and showed its feasibility to introspect col-
lections of digital audio, in form of a prototype implementation for handling private
music collections, emphasised by concrete examples. On top of that, we introduced
performance metrics for Self-Organising Maps on a per-class level (e.g. artist or genre
classes), showing differences in spreading across maps. Moreover, we introduced mea-
surements for the comparison of multi-modal clusterings that showed their application

to identify genres or artists of particular interest.

We also integrated textual data beyond lyrics. A similarity ranking technique was
presented to additionally accommodate for further data sources such as artist and
genre descriptions and album reviews. To show the applicability of this approach we
presented a prototype that allows for interactive adjustments in weightings for these

different modalities.

102
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As another application we performed musical genre classification on audio tracks
represented by their indexed lyrics as well as audio features. We presented experimental
results showing that a feature combination is highly desirable in order to increase

classification accuracies.

Future work will mainly deal with the further exploitation of multi-faceted repre-
sentations of digital audio. Further, we plan to provide a more elaborate user interface
that offers sophisticated search capabilities. Ensemble methods have been successfully
used for the integration of multiple classifier instances and might prove particularly
useful for the music scenario. These classifiers mostly differ in the subset of features of
classifier technique used. In this context, classifiers could be trained on different sets
of features — motivated by the wealth of modalities available for musical data. Such
an approach would be feasible to achieve better overall integration and accuracy rates

for the musical genre classification task.

Besides, the possibilities of automatically adding metadata to audio files through
multi-modal representations will be explored in connection with semantic analysis or
automatic concept identification in music. An interesting application of this would
be automatic musical genre classification, emphasising on the additional information
contained in a song’s lyrics as opposed to purely acoustic approaches currently being in
use. Moreover, the investigation and evaluation of advanced feature sets for the lyrics

space will play an important role in future work.

In this thesis, a suitable categorisation of textual data was presented, which can
practicably be exploited for similarity retrieval. Our experimental results showed
how important the different weightings are and in how far they influence the results.
Nonetheless, our evaluation approach can only be seen as a first step towards a more
encompassing utilisation of multiple dimensions in Music Information Retrieval. More-
over, strategies for dealing with information that is not present in such a system that
showed improvements compared to the simple exclusion strategy, were presented. How-

ever, the results lead to the conclusion that a higher coverage of text data is desirable
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to improve similarity retrieval results.

One future goal is to find an optimal weighting for the different levels presented
in this thesis — both according to the evaluation used and users’ preferences. This
approach obviously offers itself for the application of a relevance feedback approach,
emphasising the interactive dynamics required to be addressed when talking about
music similarity. A long term objective is the integration of more sophisticated re-
trieval components, yielding a possibly much higher coverage. Moreover, for being
vital aspects for every large-scale Music Information Retrieval system, scalability and

performance issues need serious attention.

Exploiting the results from the comparisons of clusterings for classification, partic-

ularly its feasibility for ensembles of classifiers, could improve results.
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