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Abstract. Satellite-based Earth observations (EO) are an ac-
curate and reliable data source for atmospheric and environ-
mental science. Their increasing spatial and temporal resolu-
tions, as well as the seamless availability over ungauged re-
gions, make them appealing for hydrological modeling. This
work shows recent advances in the use of high-resolution
satellite-based EO data in hydrological modeling. In a set of
six experiments, the distributed hydrological model Contin-
uum is set up for the Po River basin (Italy) and forced, in turn,
by satellite precipitation and evaporation, while satellite-
derived soil moisture (SM) and snow depths are ingested
into the model structure through a data-assimilation scheme.
Further, satellite-based estimates of precipitation, evapora-
tion, and river discharge are used for hydrological model
calibration, and results are compared with those based on
ground observations. Despite the high density of conven-
tional ground measurements and the strong human influence
in the focus region, all satellite products show strong poten-
tial for operational hydrological applications, with skillful
estimates of river discharge throughout the model domain.
Satellite-based evaporation and snow depths marginally im-
prove (by 2 % and 4 %) the mean Kling–Gupta efficiency
(KGE) at 27 river gauges, compared to a baseline simula-
tion (KGEmean = 0.51) forced by high-quality conventional

data. Precipitation has the largest impact on the model out-
put, though the satellite data on average shows poorer skills
compared to conventional data. Interestingly, a model cali-
bration heavily relying on satellite data, as opposed to con-
ventional data, provides a skillful reconstruction of river dis-
charges, paving the way to fully satellite-driven hydrological
applications.

1 Introduction

Remote sensing of the Earth from space is a ripe yet ever
growing sector, with countless applications and users world-
wide. Hydrological sciences have already benefited enor-
mously from Earth observation (EO) data (see e.g., McCabe
et al., 2017; Chen and Wang, 2018; Alfieri et al., 2018),
thanks to global and independent datasets for the different
components of the water and energy cycles as well as anthro-
pogenic processes such as irrigation (Massari et al., 2021).
Hydrological models play a crucial role in monitoring and
forecasting, thanks to their ability to reproduce the phys-
ical processes that govern the water cycle. Their success-
ful implementation is strongly conditioned by the availabil-
ity of consistent, accurate, and seamless hydrometeorologi-
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cal datasets for the considered focus region, space/time res-
olution, and period of interest. Conventional data, includ-
ing ground observations and weather radars, are traditionally
popular sources of dynamic data to force these models. Yet,
they are not viable options for the still vast ungauged regions
of the world. Satellite and independent products offer a range
of alternatives to fill such gaps, thanks to their massive con-
tribution to the atmospheric reanalyses (see e.g., Hersbach
et al., 2020) as well as with independent products. Hydro-
logical models can benefit from dynamic data (either ground
or satellite-based) in various forms: (1) as forcing datasets,
(2) as assimilation datasets, (3) as benchmark data for model
calibration and improved parameterization, and (4) to inves-
tigate process understanding.

Forcing data are mandatory input for hydrological models.
Key variables are precipitation, air temperature, and evapo-
ration or, alternatively, the meteorological variables needed
to estimate them. Their influence on hydrological modeling
was assessed, for example, by Wu et al. (2017) and Beck et
al. (2017) for precipitation datasets, Dembélé et al. (2020a)
for evaporation datasets, and Dembélé et al. (2020b) for com-
binations of temperature and precipitation datasets. The lat-
ter found a reduced influence of the choice of temperature
datasets on the output discharge, though these can signifi-
cantly impact evaporation and soil moisture (SM) estimates.
Data assimilation methods are designed to merge measure-
ments of any type with estimates from geophysical models
(Reichle, 2008), to compensate for errors in the forcing data,
model structural deficiencies, and update their state variables
at the initial or intermediate simulation steps (Spaaks and
Bouten, 2013). Relevant applications of assimilating satel-
lite products in hydrological modeling include SM (Mas-
sari et al., 2015; Wanders et al., 2014), water storage (Li
et al., 2012), snow cover (Thirel et al., 2013), evaporation
(Hartanto et al., 2017), land surface temperature (Silvestro
et al., 2013), water levels (Paiva et al., 2013), discharge
(Ishitsuka et al., 2020), water extent (Revilla-Romero et al.,
2016; Hostache et al., 2018), and multi-variable combina-
tions (Wongchuig-Correa et al., 2020). Hydrometeorological
data have also been used as a benchmark to train the model
parameters through machine-learning techniques (Mosaffa
et al., 2022) or calibration techniques based on minimiza-
tion of cost functions computed between simulated and ob-
served variables (Pechlivanidis et al., 2011; Demirel et al.,
2018). Additionally, satellite estimation of river levels shows
promising applications in the field. It has been tested in the
calibration of hydrological (Getirana et al., 2013; Dhote et
al., 2021) and hydraulic (Domeneghetti et al., 2021) models.

As part of the Green Deal and Digital Strategy, the
European Commission recently launched the Destina-
tion Earth program (https://digital-strategy.ec.europa.eu/en/
policies/destination-earth, last access: 28 July 2022). This
is a joint effort involving key European institutions to de-
velop a very high-precision digital model, or “Digital Twin”,
of the Earth for monitoring and predicting environmental

change and human impacts, to ultimately support sustain-
able development. The present work strives toward that di-
rection by contributing to the development of a Digital Twin
Earth that is focused on the water cycle and hydrological
processes. It highlights the potential of high-resolution satel-
lite products in describing the water cycle and monitoring
hydrological extremes and water resources. Through vari-
ous dedicated experiments, we test the influence of five new
high-resolution satellite-derived datasets on the performance
of CIMA’s distributed hydrological model Continuum (Sil-
vestro et al., 2013), set up for the entire Po River basin in
northern Italy. These include (1) GPM-SM2RAIN (Massari
et al., 2020) precipitation and (2) the Global Land Evapo-
ration Amsterdam Model (GLEAM; Miralles et al., 2011)
evaporation as dynamic forcing; data assimilation of (3) C-
SNOW (Lievens et al., 2019) snow depth and (4) RT1 (Quast
et al., 2019) SM; and model calibration using (5) satellite-
based river discharge (Tarpanelli et al., 2020) as a bench-
mark. By comparing results with observed river discharge
over 2017–2019, and with a simulation forced by conven-
tional data, we investigate the relative impact of these high-
resolution satellite products. Further, we take the first steps
toward hydrological modeling, fully relying on satellite data,
by calibrating and subsequently running the model using
SM2RAIN satellite precipitation and GLEAM evaporation
as forcing, and satellite-based estimates of river discharge as
benchmark data for the calibration.

2 Case study and data

2.1 Case study – the Po River basin

The Po River basin has a catchment area of about 74 000 km2

that is shared between Italy (95 %) and Switzerland (5 %). It
is fed by tributaries from the Alps in the north and west, and
by the Apennines in the south. The basin elevation ranges
between 4800 m and the sea level, and hence it features a
variety of climatic and hydrological regimes, from a glacial
and snow-rain type in the mountain area to a pluvial yet
drier regime in the lowland section. The region is considered
to be highly vulnerable to flooding, both economically and
with respect to loss of life (Domeneghetti et al., 2015). The
basin plays a significant role in the Italian economy, host-
ing approximately 25 % of the Italian population, producing
40 % of the national GDP, and consuming 48 % of national
produced energy. The Po River flows through the Po Plain,
one of the largest contiguous agricultural areas of Europe.
This causes more than 30 % of water to be extracted from
surface water and used for agricultural purposes. Although
water is sufficient for all uses under average climate con-
ditions, recent periods of prolonged drought led to substan-
tial economic losses and threats to water security (Mysiak et
al., 2013), thus a comprehensive evaluation of the impacts
of human activities on water resources in the area is a far-
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reaching matter. Given its large socio-economic influence,
the Po River basin has already been investigated through a
number of modeling approaches forced by in situ data and by
Earth system models, especially to predict the impact of in-
undation and of climate change (e.g., Ravazzani et al., 2015;
Vezzoli et al., 2015; Nogherotto et al., 2019) while applica-
tions including satellite products remain scarce.

2.2 Static data

In the choice of spatial information, large-scale datasets were
deliberately used over more detailed local data, in line with
the concept of the Digital Twin Earth and in view of the plan
to extend the simulation area for a continental or global ap-
plication. We used the Digital Elevation Model (DEM) from
the global USGS Hydrologic Derivatives for Modeling and
Analysis (HDMA; Verdin, 2017) at 3 arcsec spatial resolu-
tion (about 90 m at the Equator), which comes with pre-
computed and corrected hydrological derivatives including
channel network and macro basins. The DEM was upscaled
at the chosen model resolution of 1 km through cubic resam-
pling, to define the computational grid and compute the nec-
essary hydrological derivatives (flow accumulation, drainage
directions, and channel network). The river network is de-
fined by cells with an upstream area larger than 240 km2, fol-
lowing previous applications of Continuum in northern Italy.
To improve its spatial representation, DEM was carved with
a high-resolution stream network of the main rivers taken
from the Italian Institute for Environmental Protection and
Research, while dikes were manually placed at specific loca-
tions, especially in flat areas.

The curve number map used to model direct runoff and
infiltration from excess rainfall was derived from the ESA-
CCI 2018 land cover map (ESA, 2017) at 300 m resolution,
together with information on the soil characteristics. Hydro-
logic soil groups were extracted from the HYSOGs250m
(Ross et al., 2018), while for soil texture identification, we
applied the USDA method (Shirazi and Boersma, 1984) us-
ing the global maps of the fractions of sand and clay from the
International Soil Reference and Information Centre (ISRIC)
SoilGrids (Hengl et al., 2017), combined with the ESA CCI
SoilMoisture (Dorigo et al., 2017) global map of soil poros-
ity. Glacial areas used in the cryospheric model S3M (see
Sect. 3.1) were taken from the Randolph Glacier Inventory
(RGI) v6 (Raup et al., 2007). Vegetation coverage is taken
from the global land cover map ECOCLIMAP (Faroux et al.,
2013).

Point information for a set of 99 reservoirs and the three
major lakes (Maggiore, Como, and Garda) was included in
the model setup (Fig 1). Information on the dams and the
corresponding reservoirs was provided by the Italian Civil
Protection Department (DPC) and from the Global Reservoir
and Dam (GRanD) database (Lehner et al., 2011). Data in-
gested for each dam include the maximum stored volume,
initial volume, maximum non-damaging discharge at the out-

flow gates, weir length, maximum storage level, outflow co-
efficient, and coordinates of the release point. For lakes, re-
quired metadata are the outlet coordinates, minimum volume
inducing outflow discharge, initial volume, and emptying co-
efficient.

2.3 Dynamic data

The hydrological model used requires input maps of pre-
cipitation, air temperature, relative humidity, wind speed
and incoming solar radiation. Alternatively, both actual and
potential evaporation can be provided as dynamic input,
where the latter is used to estimate actual evaporation from
lakes and reservoirs. In such cases wind speed maps are not
needed by the model. The baseline hydrological simulation
uses conventional meteorological data as input. Precipitation
fields were estimated with the Modified Conditional Merg-
ing (MCM) technique (Bruno et al., 2021), which incorpo-
rates precipitation gauges and radar estimates. The MCM is
an improvement of the conditional merging (CM) technique
proposed by Sinclair and Pegram (2005), which estimates the
structure of covariance and the length of spatial correlation at
every gauge, taking it from the cumulated radar precipitation
fields. For the Po River basin, MCM is based on 1377 pre-
cipitation gauges and on the mosaic of the Italian weather
radars.

Hourly maps of the weather variables collected for the
Po River basin ultimately include 1258 temperature stations,
608 for relative humidity, 460 for wind speed, and 278 for
solar radiation. Temperature maps include an altitude correc-
tion algorithm with temperature gradients estimated at every
time step by linearly interpolating available data at different
elevations. They also include an outlier removal algorithm
which discards station data with a deviation of more than
20 ◦C from the corresponding temperature–elevation inter-
polating line.

Discharge data at 27 river gauging stations with hourly
sampling frequency for the years 2016–2019 were pro-
vided by DPC and the regional hydrometeorological offices.
Twenty-two stations were selected for model calibration,
while five were retained for validation only (Fig. 1). Vali-
dation stations were chosen to represent different areas of
the Po River basin, including a mix of small and large sub-
catchments with varying influences on lakes and reservoirs.

2.4 Satellite products and validation

2.4.1 Precipitation

The precipitation dataset used in this work and referred to
as SM2RAIN (Fig. 2) merges SM2RAIN-ASCAT (Brocca
et al., 2019) and GPM mission IMERG-LR (Huffman et al.,
2015) datasets, both available at 10 km spatial resolution.
Unlike the work of Massari et al. (2020), where the fusion
of the two datasets was based on an optimal interpolation
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Figure 1. Simulated domain (blue line) and river network (dark green) of the Po River basin. Symbols show the point features considered in
the hydrological model.

technique, here we relied on a triple collocation (TC)-based
merging using the signal-to-noise ratio (SNR), as in Gruber
et al. (2017). In particular, to derive the merged dataset we
seek the optimality in a least squares sense, so that the vari-
ance of residual random errors is minimized. This leads to a
weighted average between SM2RAIN-ASCAT and IMERG-
LR, i.e.,

PDTE = w1PSM2RAIN-ASCAT+w2PIMERG-LR, (1)

where the weights w1 and w2 are calculated as

w1 =
SNR1

SNR1+SNR2
w2 =

SNR2

SNR1+SNR2
, (2)

where SNR is estimated as the ratio between the variance
of the true signal and that of the considered satellite prod-
uct, multiplied by a parameter representing the systematic
error (see Gruber et al., 2017). The subscripts 1 and 2 refer
to the SM2RAIN-ASCAT and IMERG-LR datasets, respec-
tively. Under the assumption that the two datasets are inde-
pendent (as also required by TC), the random error of the
merged time series is lower than those of the individual input
datasets.

The TC was applied to the triplet: SM2RAIN-ASCAT,
IMERG-LR, and the MCM radar-gauge precipitation dataset.
Note that, unlike the use of random error variances in Crow
et al. (2015), weights calculated in Eq. (2) do not require
the assumption of null systematic differences between the
datasets, thanks to the self-consistency of SNR (see Gru-
ber et al., 2017 for further details). Before the weights can
be used to merge the datasets, relative systematic differences
(i.e., long-term bias) have to be corrected to make the weights
obtained by Eq. (2) converge to the optimal weights in a
least squares sense (Crow et al., 2015). Given the nature of
the precipitation signal (containing many null values), this
rescaling has been done by means of a multiplicative factor
to the mean with respect to MCM. The fusion of the two

Figure 2. Daily Pearson correlation coefficient between SM2RAIN
precipitation and the MCM (radar-gauge) precipitation dataset.
The median correlation rSM2RAIN = 0.76 largely improves that
of the two individual products, i.e., rSM2RAIN-ASCAT = 0.66 and
rIMERG-LR = 0.67.

datasets was only done for the time steps where IMERG-LR
was greater than zero. Due to the high sensitivity of the GPM
mission, values with zero precipitation in IMERG-LR were
set to zero. Hourly data were obtained by imposing the sub-
daily temporal pattern of IMERG-LR to the merged dataset.
The 10 km resolution dataset generated was thus resampled
at 1 km resolution through bilinear interpolation for use in
the hydrological model.

2.4.2 Evaporation

GLEAM (Miralles et al., 2011) is a state-of-the-art method-
ology to derive evaporation and its various components
(i.e., transpiration, bare soil evaporation, interception loss,
snow sublimation, and open-water evaporation). It combines
global satellite observations of meteorological (precipitation,
near-surface net radiation, and air temperature) and surface
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(soil and vegetation water content, and snow water equiva-
lent (SWE)) variables that are informative for the evaporation
process. The model is based on the equation by Priestley and
Taylor (1972) to estimate potential evaporation. Those esti-
mates are then constrained based on root-zone SM, which
results from a precipitation-driven running water balance in
which satellite-based SM can be assimilated. Interception
loss is independently estimated through an adapted Gash an-
alytical model (Miralles et al., 2010). Since its first version,
GLEAM has been widely deployed at coarse resolution for
climatic studies. In the past few years, it has been further de-
veloped to solve higher spatial and temporal resolutions. For
example, Martens et al. (2018) obtained accurate results in
an implementation over the Netherlands at 100 m resolution.
For this work, GLEAM was applied over the entire Po River
basin to produce both potential and actual evaporation esti-
mates at 1 km resolution.

Since measurements of evaporation in the focus region are
limited, the performance of the 1 km evaporation dataset was
inferred on the basis of the FluxNet IT-Tor site, located in the
mountainous Val d’Aosta region in the northwestern part of
the domain (Fig. 3). While based on one station only, the per-
formance (Pearson correlation coefficient r = 0.83) is in line
with results obtained in the high-resolution implementation
across the Netherlands, where Martens et al. (2018) found
a median temporal correlation coefficient of 0.76 across 29
sites.

2.4.3 Soil moisture (SM)

High-resolution SM was retrieved from incidence angle-
dependent Sentinel-1 backscatter measurements at 500 m
spatial sampling (∼ 1 km spatial resolution) (Bauer-
Marschallinger et al., 2019) by using a modeling approach
based on the time series of first-order radiative transfer
(RT1; see Quast and Wagner, 2016; Quast et al., 2019).
The RT1 model uses auxiliary leaf area index (LAI) time
series provided by the ECMWF ERA5-Land reanalysis
dataset (Muñoz-Sabater et al., 2021) to correct effects
induced by seasonal dynamics of vegetation. The retrieval
is then performed via a nonlinear least-squares regression
that optimizes static and dynamic model parameters to
minimize the difference between measured and modeled
backscatter for a set of ∼ 300 000 pixels over a 4-year time
period (2016–2019). The resulting SM product represents
a percentage measure of the relative moisture saturation of
the soil surface. The performance of the obtained SM time
series was validated with in situ observations as well as
compared to top-layer (0–7 cm) SM estimates from ERA5-
Land. In addition, the spatial distribution of the resulting
auxiliary model parameters (single-scattering albedo, soil
scattering directionality) was analyzed with respect to the
Climate Change Initiative (CCI) land cover (ESA, 2017)
classifications to assess the physical plausibility of the
resulting parametrization. The observed spatial pattern of

the parameters indicate a close connection to the associated
land cover, following some expected variations, e.g., higher
single-scattering albedo over forested areas compared to
croplands.

The RT1 high-resolution SM product over the Po River
basin shows an overall good performance compared to
ERA5-Land SM, with a median Pearson correlation coef-
ficient of 0.55 for croplands and 0.65 over areas primarily
covered by natural vegetation (i.e., tree, shrub, herbaceous
cover). Validation was performed using in situ SM for the
Oltrepo station (Bordoni et al., 2019) located in Canneto
Pavese (PV, Italy), which resulted in a correlation coefficient
of 0.58 (raw data) and 0.73 (with a 10-daily rolling mean)
(Fig. 4). These results highlight the potential of Sentinel-1
observations for high-resolution SM retrievals and their use
in applied science.

2.4.4 Snow depth

Snow-depth data were obtained from the Sentinel-1-based
product proposed by Lievens et al. (2019). The data prod-
uct has a 1 km spatial resolution and daily granularity, and
is available through the public repository of the C-SNOW
project (https://ees.kuleuven.be/project/c-snow, last access:
28 July 2022). The mapping algorithm is based on a change-
detection approach and has been validated across the moun-
tain regions of the entire Northern Hemisphere.

For the scope of the present study, C-SNOW data during
the period September 2016–April 2020 were evaluated with
172 ultrasonic snow-depth sensors across the Po River basin
(Fig. 5a). Of the evaluation dataset, 77 % is located in the
range 1000–2500 m above sea level (a.s.l.) (Fig. 5b), a fre-
quent condition in the Alps (Avanzi et al., 2021). Observed
snow-depth data were processed by (1) setting to missing
any negative value, (2) applying climatological thresholds for
maximum and minimum snow depth to remove spikes, and
(3) using a threshold on the 6 h moving coefficient of varia-
tion to detect periods with grass interference (Avanzi et al.,
2014). Data were then aggregated at daily resolution, and C-
SNOW data were extracted for the same locations and data
range. The evaluation confirmed previous results by Lievens
et al. (2019), with C-SNOW successfully reproducing the
seasonality and magnitude of snow depth as measured by
snow-depth sensors (Fig. 5c and d). Root mean square errors
(RMSEs) ranged from less than 20 cm below 1000 m a.s.l. to
60 cm or more above 2000 m a.s.l., though with no significant
trend in the bias versus the elevation.

2.4.5 River discharge

River discharge time series from satellite remote sensing are
estimated by integrating data from two sensors: altimeter and
multispectral. Traditionally defined as the product of cross-
sectional river flow area and velocity, river discharge is cal-
culated by assuming that the satellite sensors measure the
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Figure 3. Average GLEAM daily actual evaporation for 2017–2019 in the Po River basin at 1 km resolution (a) and comparison with daily
evaporation from the FluxNet site IT-Tor for 2018 (b). Pearson correlation coefficient r = 0.83. The location of the FluxNet site is marked
with a red star in (a).

Figure 4. Time series of RT1 surface SM compared to in situ SM in Oltrepo. A 10-daily rolling mean is applied to the RT1 retrievals to
reduce noise. The shading indicates the corresponding standard deviation (SD). Pearson correlation coefficient of 0.58 (raw data) and 0.73
(10-daily rolling mean).

two quantities (Tarpanelli et al., 2015). Specifically, once the
cross-sectional geometry is known, flow area is calculated
as a function of the water height derived from satellite al-
timetry (Abdalla et al., 2021), while flow velocity, usually
measured through in situ instruments (current meter, acous-
tic Doppler current profiler, velocimeter), is linked to the re-
flectance measured by the near-infrared signal of the mul-
tispectral sensor (Tarpanelli et al., 2013), relying on the re-
flectance ratio between a dry (C) calibration pixel and the
corresponding wet (M) measurement pixel.

Multi-mission satellite altimetry data coming from Sar-
al/Altika, Cryosat-2, and Sentinel-3A and 3B are used to de-
rive densified water level time series (Zakharova et al., 2020)
at five stations along the main reach of the Po River basin
named Piacenza, Cremona, Borgoforte, Sermide, and Pon-
telagoscuro (i.e., virtual stations in Fig. 1). At these stations,
the multi-mission reflectance was extracted from the MODIS
(Aqua and Terra), OLCI (Sentinel-3A) and MSI (Sentinel-

2) sensors following the methods shown in Tarpanelli et
al. (2020). Here, river discharge (Q) is estimated as the prod-
uct of flow velocity (Tarpanelli et al., 2020) and flow area, as
a function of altimetry-derived water height (H ) (Tarpanelli
et al., 2015):

Q= α(H)β(C/M)γ , (3)

where the parameters α, β, γ were calibrated using observed
discharges at the five stations. The resulting time series for
each station are illustrated in Fig. 6 against the in situ ob-
servations recorded at the gauged stations. Performance met-
rics (Supplement, Table S1) show skillful performance of the
method in representing the observed daily discharges at the
five stations, with average Nash–Sutcliffe (NS) of 0.81, KGE
of 0.88 and relative RMSE (rRMSE) of 26 %.
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Figure 5. Evaluation of satellite based C-SNOW snow-depth estimates. (a) Location of the 172 sensors across the Po River basin, and
(b) their elevation distribution. (c) Comparison between the interquartile range of C-SNOW and in situ measurements at the 172 sensors.
(d) Comparison between daily C-SNOW estimates and ground-based snow-depth measurements for all sites.

Figure 6. Comparison between discharges simulated by the multi-mission approach versus observations at five gauging stations in the Po
River basin in terms of time series (left column) and scatter plot (right column): (a, f) Piacenza, (b, g) Cremona, (c, h) Borgoforte, (d,
i) Sermide and (e, l) Pontelagoscuro.
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3 Methods

3.1 Hydrological modeling

Continuum (Silvestro et al., 2013) is a distributed hydrologi-
cal model relying on a morphological approach that is based
on the identification of the drainage network components
(Giannoni et al., 2000). It is a tradeoff between empirical and
physically-based models, reproducing all the main hydrolog-
ical processes by relying on parameterization. The physical
description of the hydrological processes is comparatively
simple, resulting in high computational efficiency, yet gen-
erally skillful performance (Silvestro et al., 2013). Contin-
uum reproduces the spatiotemporal evolution of runoff, SM,
energy fluxes, surface soil temperature, snow accumulation
and melting. Evaporation is estimated through a bulk formu-
lation by solving the mass and energy balance as described
in Silvestro et al. (2013) and related appendix, though it can
also be provided as input variable. Deep flow and water table
evolution are based on the Darcy equation, where each cell
drains towards the neighboring cells following the 2D water
table gradient and their hydraulic head, while a distributed in-
teraction between water table and soil surface is represented
through parameterization. A force-restore equation (Dickin-
son, 1988) is used to model the surface energy balance and
enables the estimation of land surface temperature.

To simulate the cryospheric processes, we used S3M ver-
sion 5 (Avanzi et al., 2022) – a one-layer snow model ac-
counting for precipitation-phase partitioning, snowpack ac-
cumulation and melt, snow rheology and hydraulics, as well
as glacier melt (Terzago et al., 2020; Avanzi et al., 2022).
With its hybrid approach to snowmelt, which decouples the
radiation- and temperature-driven contributions, S3M com-
bines a parsimonious formulation with a substantial physi-
cal realism. For this work, S3M and Continuum were set up
and run across the entire Po River basin (drainage area of
74 000 km2), with a constant grid spacing of 1 km and time
resolution of 1 h.

3.2 Model calibration

To improve the representation of the hydrological states,
Continuum was calibrated in the focus region using dis-
charge data as benchmark. We deployed a multi-site calibra-
tion procedure that iteratively searches the model parameteri-
zation that best matches the available discharge observations
over the calibration period at the 22 considered calibration
stations (Fig. 1), through minimization of a cost function.
Hydrological simulations run for the model calibration cover
the 2 years starting on 1 January 2018, while the calibration
period starts on 1 July 2018, leaving out the initial 6 months
for model warm-up. The calibration tool perturbs six scalar
parameters related to four physical hydrological features: in-
filtration velocity at saturation (cf), field capacity (ct), curve
number (CN), and water sources (ws).

While the calibrated value of ws is a constant for the entire
region of interest, the calibration of ct, cf, and CN consists of
a rescaling of their default maps to the best value, thus pre-
serving their spatial pattern, which depends on geographic
spatial datasets of soil characteristics and land cover. The
cost function, based on the Kling–Gupta efficiency (KGE;
Gupta et al., 2009), computes an error between the dura-
tion curves at each percentile, weighted with the logarithm of
the upstream area, to give higher weight to the downstream
stations without neglecting the contribution of the most up-
stream ones.

The calibration procedure was performed through the im-
plementation of a parallel search algorithm. The algorithm
performs an iterative exploration of the 6D parameter space;
the exploration starts withN = 20 initial values sampled with
a Gaussian Latin hypercube approach. For each of these N
parameter sets, a hydrological simulation is performed over
the calibration period, and the cost function is computed to
map the error hypersurface. The point that minimizes the cost
function is used as the center of the following iteration, until
the algorithm converges to an optimal solution.

3.3 Data assimilation of satellite snow and SM products

Satellite-derived SM from the Sentinel-1 RT1 product was
assimilated into the Continuum model through a nudging
technique (Stauffer and Seaman, 1990; Lakshmivarahan and
Lewis, 2013). The nudging scheme is a computationally in-
expensive approach and is particularly suitable for applica-
tions in operational frameworks for flood predictions. The
update is performed when the satellite data become available,
on average once per day for SM, following the equation

X+MOD(t)=X
−

MOD(t)+G
[
XOBS(t)−X

−

MOD(t)
]
, (4)

where X+MOD represents the updated modeled variable,
X−MOD is the prior modeled value, XOBS is the observation,
andG is the kernel function. Thus, the correction term repre-
sents the difference between observed (XOBS) and modeled
variable multiplied by G that takes into account the uncer-
tainties of both model and satellite observations. In this ap-
plication we used a constant value ofG= 0.45, following the
recommendations by Laiolo et al. (2016), who estimated op-
timal G values from a test on four different satellite-derived
SM products. In addition, we used G= 0 in areas with low
Pearson correlation coefficient (r < 0.7) between satellite-
derived and modeled SM in the simulation period.

The assimilation of satellite-derived C-SNOW maps into
S3M was performed using the same approach and assuming
G= 1 to mimic direct insertion. The C-SNOW maps provide
snow depths, while S3M supports assimilation in the form of
snow water equivalent (SWE), which is a more suitable vari-
able to assimilate for controlling the water balance. Thus,
snow depths from C-SNOW were converted into SWE us-
ing simulated snow-density values (see Avanzi et al., 2022).
Along with snow-depth information, we rely on C-SNOW to
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determine snow-covered and snow-free areas, and then as-
similated this information into S3M to clip modeled snow
cover according to the satellite information. More informa-
tion on the theoretical background of SWE assimilation in
S3M can be found in Avanzi et al. (2022).

4 Results

4.1 Baseline run

The hydrological model Continuum was first calibrated using
conventional meteorological data and observed discharges at
the 22 calibration stations described above. The calibrated
setup was then run over the years 2016–2019 to produce a
baseline simulation for 2017–2019, excluding 2016 as model
warm-up. Average evaporation in 2017–2019 computed by
Continuum for the Po River basin is 950 mm yr−1 and results
are 21 % less than the GLEAM average of 1200 mm yr−1 in
the same time span. A comparison of simulated versus ob-
served hourly river discharges is shown in Fig. 7 for five
sample stations, while six performance metrics are shown
for all 27 discharge stations in Fig. 8 and in Table S2 (see
Supplement). Dimensionless scores, including KGE and its
three decomposition terms, i.e., correlation (r), bias rate, and
coefficient of variation rate (CV rate), increase on average
with the upstream area. Note that all four scores have op-
timum value at 1. The mean KGE across all the stations
(KGE= 0.51) rises to 0.63 and 0.70 for basins larger than
1000 and 10 000 km2, respectively. Similar trends versus the
same classes of upstream area are found in the mean r (0.75,
0.86, 0.88), while bias rate (0.98, 0.99, 0.94) and CV rate
(0.89, 0.94, 1.13) are slightly deteriorated for basins larger
than 10 000 km2.

Differences in the mean KGE, r and CV rate between vali-
dation and calibration stations are not statistically significant
in a two-sample t-test for the mean. Only the mean bias rate
of the two samples is statistically different at 5 % significance
level, with validation stations having an average 30 % nega-
tive bias in comparison to an average 5 % positive bias of the
calibration stations.

4.2 Model runs with satellite input

In a second phase, we performed four hydrological sim-
ulations. Each simulation is based on the configuration
and input data of the baseline run and by replacing in
turn one input dataset with one of four satellite products
described in Sect. 2.3: (1) precipitation from SM2RAIN;
(2) evaporation from GLEAM; data assimilation of (3) SM
from RT1, and (4) snow depths from C-SNOW. Two addi-
tional configurations were run including multiple satellite-
based data sources: (5) all four satellite Earth observation
datasets, hereafter referred to as EO, and (6) a combination
of the satellite precipitation and evaporation, referred to as
SM2RAIN+GLEAM. The spatial distribution of the perfor-

mance of the six model simulations at the 27 river gauges is
shown as maps of KGE (Fig. 9) and its three decomposition
terms (see Supplement). Further, boxplots of KGE of the six
experiments and comparison with the baseline run are shown
in Fig. 10.

Results denote a generally skillful reconstruction of river
discharges for all experiments, with mean KGE at the 27
stations ranging between 0.13 (SM2RAIN+GLEAM) and
0.53 (C-SNOW), all well above the no-skill threshold of
KGE0 = 1–21/2 ∼=−0.41 (see Knoben et al., 2019). Simu-
lations including C-SNOW and GLEAM perform on aver-
age better than the baseline run, with mean improvements in
KGE of 0.02 and 0.01 (+4 % and +2 %), respectively. The
largest differences in the overall performances are due to the
wide range of the mean bias across the six simulations, with
the largest bias rates for SM2RAIN+GLEAM (1.58) and
EO (0.69), and the lowest bias rate for GLEAM (1.02) and C-
SNOW (0.97), both improving that of the baseline run (0.95).
On the other hand, average correlations across the six ex-
periments fall in a much narrower interval, ranging between
0.61 for EO and 0.75 for both C-SNOW and the baseline run.
Running the model with all EO data produces on average a
28 % deterioration of the mean performance (KGE= 0.37),
though it surprisingly generates the best performance at the
five validation stations (KGE= 0.54) among all simulations
(Fig. 10).

The six simulations forced by satellite products were then
compared to the baseline run to detect similarities and devia-
tions in the entire simulation domain, including areas where
no observations are available. To reduce the correlation ef-
fects along the river network, we consider only one value per
simulated river reach, located just upstream of each conflu-
ence. The use of RT1 and GLEAM does not result in signifi-
cant spatial differences with respect to the baseline (Fig. 11).
As expected, using C-SNOW results in differences mainly
in alpine areas, especially in Ticino (Switzerland), where the
MCM dataset used in the baseline run is known to underes-
timate precipitation rates due to the lack of ground measure-
ments outside the Italian territory. Larger deviations are visi-
ble in the runs including SM2RAIN, particularly in the upper
Po River basin in the west and the upper Adda River in the
north, confirming the stronger sensitivity of river discharge
to precipitation dynamics.

Figure 12 shows a comparison of the six simulations
forced by satellite products, the baseline run, and observed
discharges at two validation stations, for a series of moderate
to high intensity events which hit a large portion of the Po
River basin in the autumn of 2019. The second of the three
main events, during the second half of November, caused
the exceedance of the maximum alert level and widespread
flooding in several river sections in the main reach of the Po
River basin across the Lombardy and Emilia-Romagna re-
gions, including the area of Piacenza (Fig. 12, bottom). In
Piacenza, all model simulations performed reasonably well,
with maximum error on the peak discharge below 20 %. The
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Figure 7. Observed versus simulated (baseline) discharge (m3 s−1) for the years 2017–2019 at five river gauging stations.

Figure 8. Skills of the baseline run versus upstream area at the 27 measurement stations. Dashed lines indicate the optimum value of each
score.
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Figure 9. Spatial distribution of the Kling–Gupta efficiency (KGE) of the six model runs driven by the four input satellite products versus
observed discharges at the measurement stations. Validation stations are marked with a bold circle. Multi-product experiments are in row 1,
while single-product experiments are in row 2 (forcing input) and 3 (data assimilation input).

Figure 10. Boxplots comparing the KGE of simulated river discharges for all the considered experiments versus observations at the calibra-
tion and validation stations. The no-skill line at 1–21/2 is indicated with a solid horizontal line. In the three rightmost columns, PE stands for
precipitation and evaporation, while Q stands for discharge.
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Figure 11. Spatial distribution of the KGE of discharges of the six model runs driven by the four input satellite products versus the baseline
run, at each modeled river reach. Multi-product experiments are in row 1, while single-product experiments are in rows 2 (forcing input) and
3 (data assimilation input).

best performances over the three months are found in the
baseline run and in the two runs with data assimilation (RT1
and C-SNOW), all three with KGE= 0.89. Lower perfor-
mances are produced by the three runs forced by SM2RAIN,
mainly due to an overestimation of the first event in late Oc-
tober 2019. At the Candoglia station, results show an oppo-
site pattern, with the best performances by SM2RAIN and
SM2RAIN+GLEAM, both with KGE= 0.74 over the three
months. This mildly improves on the performance of the
baseline run (KGE= 0.71).

4.3 Sensitivity of satellite data to three model
parameterizations

A subsequent experiment investigated the performance of
the hydrological model in reproducing discharges at the
27 river gauges, by forcing it with the satellite datasets
SM2RAIN and GLEAM. We compared the results of three
model runs over 2017–2019 in detail, using three different
model parameterizations obtained through dedicated calibra-
tions (over 2018–2019), derived by applying the steps de-
scribed in Sect. 3.2 to different configurations of input and
benchmark discharges:

1. The first is the simulation SM2RAIN+GLEAM de-
scribed in Sect. 4.2, i.e., run with the model parameters
obtained by calibrating with conventional ground obser-
vations (interpolated measurements and MCM precipi-
tation) and optimizing the objective function using ob-
served discharge at the 22 calibration stations as bench-
mark (obs PE, obs Q in Fig. 10).

2. The simulation SM2RAIN+GLEAM run on a model
calibration forced by the same satellite datasets
SM2RAIN and GLEAM as input and optimizing the
objective function using observed discharge at the 22
calibration stations as benchmark (EO PE, obs Q in
Fig. 10).

3. The simulation SM2RAIN+GLEAM run on a model
calibration forced by the satellite datasets SM2RAIN
and GLEAM as input and optimizing the objective func-
tion using satellite-derived discharge estimates at the
five virtual stations (see Sect. 2.3.5) as a benchmark (EO
PE, EO Q in Fig. 10).
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Figure 12. Comparison of observed and simulated hydrographs (m3 s−1) for the events between October and December 2019 at two valida-
tion stations: Candoglia (a) and Piacenza (b), together with KGE of calculated versus the observed discharges for the same three months.

It is worth noting that SM and snow-depth data were not
used in this experiment because they are not model input
variables but rather assimilation variables, hence the calibra-
tion procedure described in Sect. 3.2 would not be directly
applicable. Results from simulation no. 2 forced by the same
SM2RAIN and GLEAM used in the calibration shows the
lowest performance among the three (mean KGE= 0.07 over
all 27 stations). Simulation no. 3 (EO PE, EO Q) gives sat-
isfactory performance (mean KGE= 0.10), relatively close
to no. 1 (mean KGE= 0.13), despite relying largely on satel-
lite data. Interestingly, the five validation stations on average
outperform the set of calibration stations, with average KGE
of 0.38, 0.30, and 0.29 for the three experiments. The per-
formance of the three model runs versus the upstream area
at the 27 stations (Fig. 13) shows a general improvement in
the correlation with the upstream area, while for the other
metrics trends are less clear. Simulation no. 3 shows reduced
variability (CV rate), yet smaller absolute errors (RMSE and
mean error in Fig. 13), also thanks to a calibration focused
on the downstream virtual stations.

5 Discussions

A critical evaluation of the results from the experiments per-
formed can help to identify strengths and weaknesses, as
well as measures that can be taken to maximize the bene-
fits of satellite observations in Earth system modeling. Over-
all, hydrological simulations driven by satellite datasets pro-
duced encouraging results, with 95 % of KGE of the station–

experiment combinations above the no-skill threshold (ver-
sus 100 % for the baseline run). The remaining 5 % of com-
binations with KGE below the no-skill threshold occur in
just 3 of 27 stations and only in model configurations in-
cluding SM2RAIN. Generally, the precipitation dataset is
found to have the largest weight on the resulting model per-
formance, with standard deviation (SD) of changes in KGE
versus the baseline simulation (SD1KGE,SM2RAIN = 0.37) be-
ing more than twice that of all the other satellite-driven con-
figurations (SD1KGE,RT1 = 0.16, SD1KGE,GLEAM = 0.09,
SD1KGE,C−SNOW = 0.06). In other words, the simula-
tion performance shows strongest sensitivity to the pre-
cipitation forcing, which in fact leads to the largest
deteriorations compared to the baseline run. Addition-
ally, some of the largest improvements in KGE, up to
1KGEMAX,SM2RAIN = 0.29, are well above all the improve-
ments produced by GLEAM (1KGEMAX,GLEAM = 0.17)
and C-SNOW (1KGEMAX,C-SNOW = 0.12) at any single sta-
tion. This result is largely in agreement with previous find-
ings (e.g., Jones et al., 2006; Sperna Weiland et al., 2015)
and highlights the importance of advances in satellite pre-
cipitation estimation for hydrological applications. Qi et
al. (2016) showed that model performance can also be im-
pacted by model-precipitation product interactions, though
this can partly be mitigated by dedicated model calibrations
for each combination of input products. The high-resolution
version of SM2RAIN used in this work leads to hydrologi-
cal performance comparable to that of the best non-gauge-
corrected satellite products found in the literature (Camici
et al., 2018; Amorim et al., 2020), and local results are better
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Figure 13. Skills of the run forced by satellite precipitation and evaporation (PE) versus upstream area at the 27 measurement stations.
The three markers denote three calibrated parameter sets, obtained with different configurations of PE input and of benchmark discharge
(Q). Conventional observational datasets are indicated with “obs”, while “EO” are the satellite-derived datasets. Dashed lines indicate the
optimum value of each score.

than those obtained with previous coarser resolution versions
(see e.g., Beck et al., 2017; Tang et al., 2020). These works
also show that satellite-based precipitation datasets that are
bias-corrected with ground observations further improve the
overall quality, including the performance of hydrological
modeling.

With regard to the precipitation forcing, one must also
note that the MCM dataset used in the baseline represents
a benchmark that is particularly difficult to overcome. The
high station density and the merging with the Italian radar
composite make MCM a high-quality and detailed product
both spatially and temporally. Yet only a few world areas
can rely on seamless and nearly unbiased gauge-radar prod-
ucts, while satellite datasets remain prime candidates in un-
gauged regions, especially for real-time applications, thanks
to key features such as extended coverage, high resolution,
short latency, and spatial consistency. In addition, satellite
datasets are unaffected by country borders, making them suit-
able for applications in transboundary river basins, especially
in countries where data-sharing agreements are not easily im-
plemented.

In contrast, GLEAM and C-SNOW consistently produced
moderate improvements, though on a larger number of river
sections, with only a minority of stations where skills deterio-
rated in comparison to the baseline run. Finally, the assimila-
tion of RT1 SM shows contrasting behavior. On the one hand,
it deteriorated KGE values throughout most of the stations in
the main reach of the Po River basin due to a general increas-
ing negative bias. On the other hand, it shows general benefits
in small-size upstream catchments and notably the best im-
provement in KGE (1KGEMAX,RT1 = 0.41) among all 216

station–experiment combinations for the Trebbia River at
Valsigiara. Our findings confirm the challenges related to im-
plementing a semi-automated assimilation of satellite SM al-
ready pointed out in previous research (Laiolo et al., 2016;
Wanders et al., 2014), where a range of factors affect and
often decrease the assimilation performance, including the
presence of complex topography, snow cover, frozen soil, ur-
ban areas, as well as differences between modeled and actual
vegetation cover and LAI.

A final comment goes to the surprisingly high skills of hy-
drological simulations at the five validation stations, which
on average exceed those at the calibration stations in five
of nine experiments (see Fig. 10). The multi-site calibration
strategy is designed to find an optimal parameter set for the
entire domain, thus reducing the effect of highly variable
model performance which is typical of cascading calibra-
tions (e.g., Alfieri et al., 2020). All results are then compared
at the calibration and validation stations for the same period
2017–2019. This is twice the duration of the calibration pe-
riod, implicitly adding a validation component at the calibra-
tion stations as well. Higher performance at the validation
stations seem to be particularly evident in simulations forced
by SM2RAIN, though a connection between these facts is
not known and it may simply be related to spatial differences
in the skills of the satellite-based precipitation forcing in the
sub-catchments where validation stations are located. A note-
worthy case is that of the validation station Toce River at
Candoglia, in the northwestern part of the Po River basin. It
is influenced by a large number of reservoirs upstream and
Lake Maggiore, located just downstream, hugely smoothens
its runoff characteristics from the rest of the river network.
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This makes the sub-basin almost disconnected to the rest of
the Po River basin. Notwithstanding, simulation performance
at Candoglia is higher than those of the calibration stations
in all experiments but one (RT1), with the case of SM2RAIN
scoring a KGE= 0.74, hence 0.22 points higher than the av-
erage calibration KGE among all stations. Given the num-
ber of experiments presented, focused on the role of differ-
ent input data and model parameterization, results are only
shown through overall statistics of each model run. Future
work will investigate detailed model behavior over specific
hydrological processes, regimes, seasonality, and quantiles
of the flow duration curve, to better disentangle strengths and
weaknesses of the considered satellite products under spe-
cific hydrological conditions.

6 Conclusions

This research explored the impact of five high-resolution
satellite products in distributed hydrological modeling. In a
set of experiments we tested the use of satellite-based pre-
cipitation and evaporation as forcing input, data assimilation
of satellite SM and snow depth, and satellite river discharge
estimates as benchmark for model calibration. We found
skillful performances for all simulations including satellite-
derived products, with GLEAM evaporation and C-SNOW
snow depth respectively yielding an average 2 % and 4 %
improvements over a baseline run driven by high-quality
ground-based datasets. The skills of model runs including
EO data showed considerable variability in space and time.
In addition, we found skillful results in a model calibration
relying heavily on satellite products, both with regard to forc-
ing input and benchmark discharge. This heralds the use of
hydrological models that fully rely on satellite data as an ap-
pealing solution for large-scale applications and for regions
where ground-based observations are not available, particu-
larly in near real time.
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