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A B S T R A C T

Trajectory estimation refers to the task of obtaining position and orientation estimates by fusing various sensor
inputs. In kinematic mapping, global navigation satellite systems (GNSS) and inertial navigation systems (INS)
are traditionally used to compute a trajectory which then serves as basis for direct or integrated orientation of
the imaging sensors. As an inherently interdisciplinary problem, literature on trajectory estimation is broad.
Apart from remote sensing itself, many recent advances come from autonomous navigation and robotics. This
paper aims to provide a unified view of trajectory estimation with a focus on its role in kinematic mapping,
specifically on the integration of GNSS, INS, laser scanners and cameras, as well as a survey of the related
literature. Recent trends and challenges in trajectory estimation are identified and discussed.
1. Introduction

Laser scanning and photogrammetric imaging are widely used for
remote sensing tasks such as mapping and surveying (Toth and Jóźków,
2016). These techniques rely on optical imaging sensors, specifically
laser scanners and frame cameras, to obtain georeferenced 3D point
clouds and other 3D models of the environment. Kinematic mapping
refers to mapping with moving sensor platforms. It includes mobile
mapping (e.g., car- or train-based) and airborne mapping (e.g., drone-,
helicopter-, or plane-based). Modern kinematic mapping systems are
multi-sensor systems (MSS), where all sensors are mounted together
on a moving platform. In addition to the imaging sensors, the MSS
typically includes a global navigation satellite system (GNSS) and an
inertial navigation system (INS) to facilitate the determination of the
platform trajectory (position and orientation over time).

The aim of this contribution is to provide an as-yet missing unified
view of trajectory estimation, with focus on mapping and surveying ap-
plications and the accompanying requirements with respect to accuracy
and sensors used. Trajectory estimation refers here to the task of estimat-
ing a trajectory based on various sensor inputs with respect to a given
georeferenced coordinate system. In contrast to navigation, trajectory
estimation emphasizes the recovery of position and orientation not just
for the current moment but over a period of interest. More generally,
estimation is the problem of recovering a systems’ internal state from
noisy measurements (Jazwinski, 1970).

In the context of surveying, the industry standard for trajectory es-
timation is GNSS/INS integration through Kalman filtering, exploiting
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the synergy between inertial sensors and satellite navigation (Groves,
2013; Toth and Jóźków, 2016). The resulting trajectory may still ex-
hibit significant errors, especially in the case of challenging GNSS
conditions, making the quality of the trajectory a limiting factor for
the quality of the 3D model. These trajectory errors can be partially
mitigated at the trajectory level, e.g., via subsequent trajectory correc-
tion (Glira et al., 2019; Zhou et al., 2021) by exploiting redundancy in
the imaging sensor measurements. Alternatively, other additional sen-
sors may be used to improve trajectory accuracy: In mobile mapping,
distance measuring instruments commonly provide wheel odometry
information (Meng et al., 2017). Magnetic field sensors provide head-
ing information (Sabatini, 2006), but are hard to calibrate due to
systematic distortions of the magnetic field. Range cameras, event
cameras, 2D laser scanners and low-cost variants thereof are popular
in robotics (Cadena et al., 2016; Chen et al., 2018b). However, this
work focuses on survey-grade 3D laser scanners and frame cameras as
imaging sensors, as used in high-accuracy mapping applications.

The ubiquity of sensors and the associated wealth of (possibly
unsynchronized) measurements require versatile estimation methods
capable of fusing the various types of sensor input. Many such meth-
ods fall under the umbrella of simultaneous localization and mapping
(SLAM, cf. Cadena et al., 2016). The focus is on real-time capability,
often for the purpose of autonomous navigation (Kolar et al., 2020).
While the SLAM map is in many cases only of interest insofar as
it provides a means for reliable and globally consistent localization,
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autonomous methods also show promise for surveying applications
(Nex et al., 2022). Kinematic mapping generally does not have the same
real-time constraint, but has high accuracy requirements for the map,
he georeferenced point cloud. Recently, novel methods have been pro-
osed for kinematic mapping that directly integrate the measurements
f the payload sensors with GNSS and INS for simultaneous determina-
ion of the sensor platforms’ trajectory and sensor calibration (Rouzaud
nd Skaloud, 2011; Cucci et al., 2017; Brun et al., 2022). A common
spect in both robotics and remote sensing is the trend towards such
olistic methods that incorporate as much available information as
omputationally feasible for the given application. This is in contrast
o the standard two-step processing pipeline (e.g., Glira et al., 2019),
ased on GNSS/INS integration with subsequent adjustment, which was
reviously dominant in remote sensing (Toth and Jóźków, 2016).

Trajectory estimation is a task spanning many fields including nav-
gation, remote sensing and robotics. On the navigation side, Farrell
2008) and Groves (2013) offer a comprehensive treatment of nav-
gation solutions with focus on GNSS, INS and their integration via
lassical filtering and smoothing methods. Al-Jlailaty and Mansour
2021) give a detailed overview of the low-level theory of inertial nav-
gation and GNSS/INS integration, and El-Sheimy and Youssef (2020)
rovide a review of modern inertial sensor technology. The use of these
ethods for remote sensing is reviewed in Colomina (2015). Recent

nnovations, especially concerning the use of additional sensors and
ulti-sensor fusion, often come from the fields of autonomous systems

nd robotics. Yuan et al. (2021) discuss localization from the perspec-
ive of unmanned aerial vehicles. Similarly, Qingqing et al. (2020) and

ang et al. (2020b) review autonomous multi-sensor fusion methods
or vehicle applications. An in-depth treatment of classical SLAM is
ound in the tutorials of Durrant-Whyte and Bailey (2006) and Bailey
nd Durrant-Whyte (2006). Cadena et al. (2016) provide a survey of
odern SLAM, including graph-based formalisms. While they discuss

eneral SLAM formulations, Chen et al. (2018a) give an overview
nd comparison of filtering and optimization approaches for visual-
nertial SLAM, and Debeunne and Vivet (2020) review visual-LiDAR1

LAM methods. A comparatively new development are continuous-time
rajectory estimation methods, of which Furgale et al. (2015) give a
hort survey and exposition.

As this is a problem lying at the intersection of various fields,
here exists a large body of literature on trajectory estimation and
elated topics. However, approaches to trajectory estimation differ in
ethodology and objectives, depending on field and application. Our

ontribution attempts a more unified treatment of trajectory estimation:
hile existing work usually approaches the problem from a field-

pecific perspective, we provide a general framework for trajectory
stimation and a broad review of the relevant literature, although
ith a particular focus on remote sensing, mapping and surveying
pplications.

Specifically, this paper formulates a methodological framework for
odelling of multi-sensor systems and estimation of their trajectory and

alibration parameters. Due to the breadth of the topic, this is not an
xhaustive survey of integrated navigation or data fusion literature in
eneral, but rather an attempt to present the underlying theory and
erminology in a coherent manner and highlight methods and trends
elevant to remote sensing applications. Emphasis is put on new trends
uch as continuous-time trajectory modelling and tight coupling of
he imaging sensors. The basic measurement equations for the most
ommon sensor types are discussed together with their use in different
stimation methodologies.

The rest of this paper is structured as follows: Section 2 gives an
verview of the problem of trajectory estimation for kinematic map-
ing. Section 3 formulates trajectory estimation as a generic parameter

1 Laser scanners use light detection and ranging (LiDAR) together with a 2D
r 3D scanning mechanism, and are therefore also referred to as LiDAR systems.
288
Fig. 1. Standard kinematic mapping processing pipeline with trajectory-level error
modelling (see Sections 2.1 and 2.2).

estimation problem and discusses common estimation methodologies,
such as Kalman filtering and smoothing as well as batch nonlinear least
squares. Section 4 presents the underlying models for the trajectory as
well as the different sensors’ measurement processes. Section 5 reviews
the trajectory estimation literature and examines existing method-
ologies according to the characteristics established in the previous
sections. Section 6 provides a discussion on recent trends as well as
future challenges.

2. Overview of trajectory estimation for kinematic mapping

The most common mapping products are 3D point clouds. The
generation of these point clouds and their georeferencing (registration
to a reference coordinate system) requires knowledge of the sensors’
exterior orientation. Since the platform is mobile, the exterior orien-
tation changes between measurements, but may be derived indirectly
via measurement of known control points or directly from the platform
trajectory. This is referred to respectively as indirect georeferencing and
direct georeferencing (Toth and Jóźków, 2016).

The inclusion of GNSS and INS allows for direct determination of
platform trajectory and thus sensor orientation without the immediate
need for ground control. The default processing pipeline in modern
kinematic mapping is shown in Fig. 1 (cf. Kager, 2004, or more
recently Glira et al., 2016). This is generally a multi-step procedure:
First, the trajectory is determined by fusion of GNSS and INS via
Kalman filtering (Colomina, 2015; Fengguang et al., 2017). If the
trajectory is sufficiently accurate, it can be used directly to obtain 3D
point clouds from the measurements of the imaging sensors. Alterna-
tively, the GNSS/INS integration may be followed by an adjustment
step: Redundancy in the imaging sensor observations is used together
with the trajectory information in an integrated sensor orientation to
obtain (i) corrections to the trajectory, (ii) sensor orientation and cal-
ibration, and (iii) the desired 3D models, e.g., point clouds. In contrast
to this two-step approach, recent methods combine imaging sensor-
based adjustment with GNSS/INS integration in a single estimation
procedure (see Fig. 2).

2.1. Trajectory estimation with GNSS and INS

The fundamental technologies in modern navigation applications
are satellite navigation and inertial navigation, which synergize well
due to GNSS providing low-frequency absolute measurements and INS
providing high-frequency relative measurements (cf. Farrell, 2008).
However, redundancy in GNSS/INS integration is low resulting in
reduced observability (Tang et al., 2009) and overly optimistic error
measures.

The inertial sensors (gyroscope and accelerometer) are usually com-
bined into a single measurement device, the inertial measurement
unit (IMU). In some cases, additional sensors such as a magnetome-

ter are included. The INS consists of the inertial sensors, as well as
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Fig. 2. Holistic kinematic mapping processing pipeline with sensor-level error
modelling (see Section 2.3).

hardware and algorithms for computing a dead reckoning navigation
solution (Groves, 2013). The inertial sensors provide high frequency
measurements of proper acceleration and angular velocity, typically
with 100–400 Hz (see also Section 4.2, Eq. (4.11)). From these, relative
position and orientation may be derived through integration, but errors
(e.g., noise and bias) in the inertial measurements cause large drifts
over time. Information from other sensors, most commonly GNSS, mit-
igates this by providing lower frequency yet more stable information,
allowing for in-run calibration of the inertial sensor errors. Due to its
high measurement frequency and ability to track both position and
orientation, the IMU is often seen as the primary navigation sensor with
other sensors serving as a way to eliminate or reduce its drift. Vehicle
dynamics and GNSS reception determine whether INS errors are ob-
servable and can be corrected for. As an extreme example, without any
movement or with constant velocity, bias in the accelerometer cannot
be completely distinguished from gravity. Generally, trajectory quality
is limited by the INS quality as well as satellite visibility (Skaloud et al.,
2010; Lesjak et al., 2015), and thus may exhibit large drifts during
GNSS outages. Other sensors such as distance measuring instruments,
or exterior orientations from an indirect georeferencing, can provide
additional redundancy and improve the trajectory estimate.

2.2. Sensor orientation and trajectory adjustment

The accuracy of the acquired point cloud depends strongly on the
quality of both GNSS/INS trajectory and sensor calibration parame-
ters (Glennie, 2007; Vallet et al., 2020). For frame cameras, indirect
sensor orientation is possible and trajectory information is not strictly
needed but is in practice commonly used for aerotriangulation and as
initial solution or constraint in a bundle adjustment (Triggs et al., 2000).

oderate trajectory errors can thereby be compensated, although only
t the image acquisition times. On the other hand, survey-grade laser
canners provide high frequency point measurements (>10 kHz, typ-

ically even >100 kHz, cf. Pirotti, 2013; Vallet et al., 2020). Due to
the high frequency and sequential nature of these point measure-
ments, indirect georeferencing is not applicable and direct or integrated
georeferencing of the laser points requires highly accurate trajectory
information. Trajectory errors become visible as discrepancies in the
point clouds where multiple scans observe the same physical area. A
subsequent strip adjustment uses overlaps to reduce trajectory errors
and for in-run self-calibration. In order to correct errors on the tra-
jectory level, certain assumptions about the trajectory must be made:
Trajectory errors are usually assumed to be due to slowly varying GNSS
errors or uncompensated inertial sensor drift and thus of low frequency
(<1 Hz) while the higher frequency components of the trajectory are
comparatively accurate. Practically, corrections are either tied to the
flight geometry, as fixed offsets per strip, or modelled as slowly time-
varying (Kager, 2004; Glira et al., 2016). Since trajectory errors can
vary strongly also within strips, such adjustment in practice often
289

requires highly flexible correction models and is therefore at risk of
overfitting, resulting in a global deformation of the point clouds. This
motivates the modelling of errors at the sensor level by including laser
scanner and camera measurements directly in the trajectory estimation,
together with GNSS, INS and possibly other sensors.

2.3. Trajectory estimation with GNSS, INS and imaging sensors

This shift from error modelling at the trajectory level to error
modelling at the sensor level is not new (Colomina, 2015), although
it has accelerated recently due to a convergence between the robotics,
autonomous navigation and remote sensing communities. This has lead
to significant advances especially in multi-sensor integration.

It is worth noting that there are some differences in the require-
ments on the platform trajectory depending on the final application.
For navigation purposes, e.g., car navigation or machine guidance, one
is usually interested in the smoothed vehicle trajectory. For surveying,
i.e., georeferencing of sensor measurements, the trajectory of interest
is that of the imaging sensor itself, which may or may not be rigid with
respect to the vehicle frame. For this purpose, any vibrations are not
to be considered as noise and therefore are not to be filtered out, as
these vibrations do effect the measurements. Similarly, the accuracy
requirements for georeferencing are high. Nominal laser ranging accu-
racy is around 2 cm (Glennie, 2007), but for sufficiently smooth terrain
deviations in the millimeter range have been reported (Mandlburger
et al., 2020). Thus, trajectory accuracy is often the limiting factor. Due
to the high measurement range in airborne remote sensing, errors in
the orientation (be it trajectory errors or misalignment between scanner
and INS), dominate.

In the following, we will discuss the sensors of specific interest in a
mapping context, i.e., those that are classically included in a kinematic
mapping system: GNSS, INS, laser scanner and camera. Apart from
GNSS, we consider only autonomous sensors which are wholly located
on the platform and do not rely on data from external sources (such
as satellites or radio beacons). Proprioceptive sensors, such as inertial
sensors or wheel odometry, measure an internal state. Exteroceptive
sensors, such as cameras or laser scanners, measure certain properties
of the environment. Each of these specific sensors is capable of stan-
dalone localization: GNSS provides position, while strap-down inertial
navigation provides both relative position and orientation. Standard
photogrammetric techniques allow for recovery of relative transforma-
tion between images, known in robotics as visual odometry. Similarly,
LiDAR odometry is the determination of position and orientation from
successively captured point clouds. In contrast to trajectory estimation,
odometry generally focuses on an incremental computation of position
and orientation using successively acquired data.

The question remains how to best integrate these measurements
in order to obtain optimal estimates for the trajectory. The sensors’
coupling describes how the measurements are used and interact with
each other. Loose coupling refers to error modelling at the trajectory
level: position and/or orientation estimates from different sensors are
combined into an integrated trajectory estimate. In tight coupling,
errors are modelled at the sensor level; i.e., measurements are com-
bined in a raw form and only one trajectory estimate is produced. This
terminology is widespread and in longstanding use (Greenspan, 1996),
but is not fully standardized. For the most commonly used definitions,
which are also adopted here, see Groves (2013).

For integration of more than two systems, each component can be
coupled loosely or tightly to another. Coupling can also be a hierar-
chical process, with two systems being tightly coupled to produce an
intermediate result, which is then further improved with measurements
from a different system. Generally, looser coupling allows for modu-
larization of the individual systems which makes implementation less
complex and possibly computationally more efficient. This comes at the
cost of reducing the information available to the trajectory estimation
algorithm. The pre-processing step may also produce synthetic mea-

surements with properties that are incompatible with the assumptions
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Table 1
Multi-sensor mounting parameters.

Trajectory Position 𝒙𝑒
𝑒𝑏(𝑡) ∈ R3

Orientation 𝑹𝑏
𝑒(𝑡) ∈ SO(3)

GNSS Lever arm 𝒙𝑏
𝑏𝑔

Laser scanner Lever arm 𝒙𝑏
𝑏𝑠 ∈ R3

Boresight alignment 𝑹𝑠
𝑏 ∈ SO(3)

Camera Lever arm 𝒙𝑏
𝑏𝑐 ∈ R3

Boresight alignment 𝑹𝑐
𝑏 ∈ SO(3)

of the integration method, e.g., different noise distributions. In contrast,
tight coupling takes all measurements into account, thereby enabling
more accurate – but also more complex – modelling, both with respect
to the functional and the stochastic model. Sensors may also simply
aid in the estimation process without directly impacting the trajectory
estimate. This is often done to improve the GNSS solution (Groves,
2013), e.g., by using measurements from camera or laser scanner to
identify non-line-of-sight effects (Wen et al., 2019a; Wen, 2020).

2.4. Multi-sensor platform

The considered MSS consists of multiple sensors which are mounted
on a carrier platform (Fig. 3). Trajectory position and orientation are
generally referenced to a coordinate system which is rigid with respect
to the imaging and inertial sensors. Stabilized mounts can be used to
stabilize the sensor system with respect to the platform, leading to a
dynamic (but known) rotation between the sensors and the platform.
Here, we assume a rigid mounting to simplify the presentation and
interpret the trajectory as position and orientation of the inertial sensor
frame. In other words, the inertial sensor frame is assumed coincident
with the body frame.

The geometric relation of the imaging sensors’ frames to the inertial
sensors’ frame (the sensor mounting) is required to obtain the sen-
ors exterior orientation. Additionally, depending on the sensor, various
nternal calibration parameters (i.e., the interior orientation) are of in-
erest. Table 1 recaps the geometric relations and mounting parameters
ommonly occurring in such a multi-sensor system setup.

The platform trajectory is defined as position and orientation of
he body coordinate system with respect to an earth-fixed coordinate
ystem
𝑒 (𝑡) ∈ R3, 𝑹𝑏(𝑡) ∈ SO(3) (2.1)
290

𝑒𝑏 𝑒 r
in a specific time interval [𝑡𝑎, 𝑡𝑏] ∋ 𝑡.
Rotations in 3D are fundamentally linear maps and can be repre-

ented as matrices 𝑹 ∈ R3×3 where 𝑹𝑇𝑹 = 𝑰 . This is impractical in an
estimation setting, as it involves nine parameters with an orthogonality
constraint. Thus, a suitable parametrization for the rotational motion
(cf. Trainelli and Croce, 2004) has to be chosen.

The classical and still widely used option for parametrizing rotations
is to use Euler angles, where a rotation is described by three rotations
around fixed axes (L’Afflitto, 2017). The axis-angle representation,
another three-parameter representation, describes a rotation by a nor-
malized axis of rotation and an angle of rotation. However, all three-
parameter rotation parametrizations are subject to singularities (Stuelp-
nagel, 2006). Quaternions are a singularity-free 4-parameter represen-
tation with the additional constraint of unit norm and are frequently
used in modern filtering and optimization methods (Schmidt et al.,
2001; Al-Jlailaty and Mansour, 2021). In many robotics or computer vi-
sion applications, 4D homogeneous coordinates (Hartley and Zisserman,
2003) are used for describing 3D points and their transformations, due
to computational and practical advantages (Barfoot, 2017).

3. Estimation framework

3.1. Problem setting and mathematical model

The general setting for trajectory estimation is that of a time-
dependent parameter estimation problem (Jazwinski, 1970; van den
Bos, 2007) for an underlying dynamical2 system model.

In this section, the general probabilistic trajectory estimation model
is described. This formulation is popular especially in SLAM (Cadena
et al., 2016), but also describes classic GNSS/INS integration as well
as strip and bundle adjustment. As customary in the robotics literature,
we formulate the probabilistic problem of trajectory estimation as a
maximum a-posteriori problem (Cadena et al., 2016; Barfoot, 2017).

The trajectory evolution and sensor measurements are described by
a state-space model, composed of two parts. The process model

𝒙̇(𝑡) = 𝑓 (𝑡,𝒙(𝑡), 𝒖(𝑡)) + 𝒗(𝑡), 𝑡 ∈ [0, 𝑇 ], (3.1)

is a stochastic differential equation which models the evolution of the
system state 𝒙(𝑡). The state includes position, attitude and other time-
varying quantities and is influenced by an extrinsic input 𝒖(𝑡). The
dynamic model for the system state is disturbed by process noise 𝒗(𝑡).
Often, this does not mean the state 𝒙(𝑡) is random, but rather the
process noise is used to describe uncertainties in the model itself.

The various sensors make measurements 𝒛𝑘 which are distorted
y random noise 𝒘𝑘. This measurement process is described by the
easurement model

𝑘 = ℎ𝑘(𝒙(𝑡𝑘)) +𝒘𝑘, 𝑡𝑘 ∈ [0, 𝑇 ], 1 ≤ 𝑘 ≤ 𝑛. (3.2)

trictly speaking, the noise 𝒘𝑘 describes the actual measurement uncer-
ainty but may in practice also serve to probabilistically represent sys-
ematic uncertainty associated with the modelling of the measurement
rocess.

Since the measurements are available at certain times 𝑡𝑘, a straight-
orward way of discretizing Eq. (3.1) is to consider the discrete subset
f states 𝒙𝑘 ∶= 𝒙(𝑡𝑘). This is the classical approach employed in the
alman filter and related methods, replacing Eq. (3.1) with a set of
iscrete difference equations

𝑘 = 𝐹𝑘(𝒙𝑘−1, 𝒖𝑘) + 𝒗𝑘, (3.3)

here 𝒗𝑘 is (now discrete) random noise. The state transition 𝐹𝑘 is in
eneral only an approximation to the exact solution of the initial value
roblem

̇ (𝑡) = 𝑓 (𝑡,𝒙(𝑡), 𝒖(𝑡)), 𝒙(𝑡𝑘−1) = 𝒙𝑘−1. (3.4)

2 The term dynamic refers to time-dependent behaviour, whereas kinematic
efers specifically to the motion of one or multiple objects.
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Fig. 3. Multi-sensor platform featuring GNSS, INS, laser scanner & camera. The inertial and imaging sensors are depicted as boxes, while the GNSS is represented as an antenna.
Fig. 4. Taxonomy of parameter estimation methods.
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3.2. Parameter estimation

The various estimation methods differ in their assumptions on the
stochastic properties of the process and measurement noises. Below
follows a short recap of parameter estimation methods in a general
setting and their application to the trajectory estimation problem.

Consider the goal of estimating unknown parameters 𝒙 from 𝑛
oisy measurements 𝒛. In a full Bayesian approach, the conditional

probability density function 𝑝(𝒛|𝒙) is assumed to be known. This allows
inference based on the posterior 𝑝(𝒙|𝒛), i.e., the probability distribution
of the state given the measurements. Using Bayes theorem, the posterior
density is written as

𝑝(𝒙|𝒛) = 𝑝(𝒛|𝒙)𝑝(𝒙)
𝑝(𝒛)

, (3.5)

where the a priori density 𝑝(𝒙) contains any prior knowledge (belief)
about 𝒙.

Computing the whole posterior density (i.e., a fully Bayesian ap-
proach) is often not feasible for complex problems. The maximum
a-posteriori (MAP) estimate maximizes the posterior

𝒙∗ = argmax
𝒙

𝑝(𝒙|𝒛) = argmax
𝒙

𝑝(𝒛|𝒙)𝑝(𝒙)
𝑝(𝒛)

= argmax
𝒙

𝑝(𝒛|𝒙)𝑝(𝒙). (3.6)

MAP estimation produces the parameters most likely given the mea-
surements 𝒛, i.e., the mode of the posterior distribution, which in
general differs from the mean. In that case, the MAP estimator is
biased. If the prior density 𝑝(𝒙) is constant, MAP reduces to classical
291

N

maximum likelihood (ML) estimation. Under the additional assumption
of Gaussian noise, MAP and ML estimates are identical to the nonlinear
least squares (NLS) estimator. For independent Gaussian noise 𝒘𝑘, 𝒗𝑘

ith zero mean and variances V(𝒘𝑘),V(𝒗𝑘), the NLS estimator for Eqs.
3.2)–(3.3) is given by

∗ = argmin
𝒙

𝑛
∑

𝑘=1
(𝒛𝑘 − ℎ𝑘(𝒙𝑘))𝑇 V(𝒘𝑘)−1 (𝒛𝑘 − ℎ𝑘(𝒙𝑘))

+
𝑛
∑

𝑘=1
(𝒙𝑘 − 𝐹𝑘(𝒙𝑘−1, 𝒖𝑘))𝑇 V(𝒗𝑘)−1 (𝒙𝑘 − 𝐹𝑘(𝒙𝑘−1, 𝒖𝑘)).

(3.7)

he least squares estimator is a linearized version of the best linear
nbiased estimator (BLUE), which requires only knowledge of the
oises’ first and second moments (see Fig. 4). Even without proba-
ilistic assumptions, NLS can be interpreted in terms of minimizing a
eometric distance. Note that this approach does not require an explicit
istinction between process and measurement model, as all equations
ontribute to the estimation in the same way.

In SLAM, the batch MAP problem is often described using factor-
raphs (Kschischang et al., 2001; Grisetti et al., 2010), a graphical
ormalism for modelling factored functions, such as probability densi-
ies (Dellaert and Kaess, 2017). The factor-graph (cf. Fig. 5) can be
sed to derive efficient solvers for the linear system occurring in the

LS optimization.
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Fig. 5. Example of a factor graph for GNSS/INS/LiDAR integration. The trajectory and object parameters 𝒙𝑡
⋆ ,𝒙

𝑜 are represented by circles, the GNSS, INS and LiDAR measurements
𝒛𝑔⋆ , 𝒛𝑖⋆ , 𝒛

𝑙
⋆ by rectangles. A measurement (or factor) is conditionally independent of all other measurements given the parameters it is connected to.
3.3. Filtering and smoothing

Estimation theory distinguishes between filtering, where the state is
estimated given information at the current and previous points in time
and smoothing, which makes use of both past and future measurements.
For applications where trajectory information is required in real-time,
filtering methods are the obvious choice. Otherwise, the smoothing
solution is superior, although it comes with a higher computational
cost.

Randomness enters the system in the form of process noise 𝒗𝑘,
and the measurement noise 𝒘𝑘. If the noise terms 𝒗𝑘 and 𝒘𝑘 are
independent in the discrete model

𝒙𝑘 = 𝐹𝑘(𝒙𝑘−1, 𝒖𝑘) + 𝒗𝑘,

𝒛𝑘 = ℎ𝑘(𝒙𝑘) +𝒘𝑘,
(3.8)

then the probability density functions of the states and measurements
factorize as

𝑝(𝒛|𝒙) =
𝑛
∏

𝑘=1
𝑝(𝒛𝑘|𝒙𝑘), 𝑝(𝒙) =

𝑛
∏

𝑘=1
𝑝(𝒙𝑘|𝒙𝑘−1) 𝑝(𝒙0),

and their posterior density is given by

𝑝(𝒙|𝒛) ∝ 𝑝(𝒛|𝒙)𝑝(𝒙) =
𝑛
∏

𝑘=1
𝑝(𝒛𝑘|𝒙𝑘)

𝑛
∏

𝑘=1
𝑝(𝒙𝑘|𝒙𝑘−1) 𝑝(𝒙0). (3.9)

The model is Markovian, which means the current state is conditionally
independent of past measurements given the prior state

𝑝(𝒙𝑘|𝒙𝑘−1, 𝒛1∶𝑘−1) = 𝑝(𝒙𝑘|𝒙𝑘−1),

and the current measurement is conditionally independent of past
measurements given the current state

𝑝(𝒛𝑘|𝒙𝑘, 𝒛1∶𝑘−1) = 𝑝(𝒛𝑘|𝒙𝑘).

The MAP solution to this problem is usually called the smoother. In
contrast, if one is interested only in the most recent state 𝒙𝑘 given all
previous and current measurements 𝒛1∶𝑘, a recursive filtering solution
can be derived.

This Bayesian filter (see e.g., Särkkä, 2013) consists of a prediction
and an update step. First, the predictive density 𝑝(𝒙𝑘|𝒛1∶𝑘−1) is computed
from the state transition 𝑝(𝒙𝑘|𝒙𝑘−1) and previous state 𝑝(𝒙𝑘−1|𝒛1∶𝑘−1) as

𝑝(𝒙𝑘|𝒛1∶𝑘−1) = ∫ 𝑝(𝒙𝑘|𝒙𝑘−1) 𝑝(𝒙𝑘−1|𝒛1∶𝑘−1)d𝒙𝑘−1, (3.10)

and the updated posterior density 𝑝(𝒙𝑘|𝒛1∶𝑘), derived using Bayes rule,
is then given by

𝑝(𝒙𝑘|𝒛1∶𝑘) ∝ 𝑝(𝒛𝑘|𝒙𝑘) 𝑝(𝒙𝑘|𝒛1∶𝑘−1). (3.11)

The particle filter (Del Moral, 1996) is a sequential Monte Carlo
method where random samples (the particles) are used to represent
the probability densities occurring above. Assuming a linear model
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(

and uncorrelated Gaussian noise, all densities are Gaussian and thus
fully described by their mean and covariance. This is the basis of
the classic Kalman filter (Kalman, 1960), which follows directly from
Eqs. (3.10)–(3.11) under the Gaussian assumptions. In comparison, the
information filter (cf. Anderson and Moore, 2005, Ch. 6) does not use
the covariance matrix to describe uncertainty but rather its inverse,
the information matrix. While algebraically equivalent, the information
filter is computationally more efficient if the number of measurements
is large compared to the number of state variables.

In the case of a linear model with Gaussian noise, the smoothing
solution is equivalent to a classic batch3 least-squares solution. The
resulting linear system is a block-tridiagonal system, which can be effi-
ciently solved using sparse methods. Conceptually, sparse tridiagonal
solvers rely on a forward and backward pass, similar to forward–
backward smoothers (cf. Aravkin et al., 2017). The extended Kalman
filter (EKF) is a generalization of the linear Kalman filter to nonlinear
models, which uses a first-order approximation of the process and
measurement model for covariance propagation. Extensions to the EKF
are the multi-state constraint Kalman filter (Mourikis and Roumeliotis,
2007) as well as the unscented Kalman filter, which uses determinis-
tically chosen sample points and can be more accurate especially for
highly nonlinear functions (Wan and Van Der Merwe, 2000).

Multiple Kalman filters are sometimes used in a chained (or cas-
caded) fashion. An example of this is classical loosely coupled GNSS/
INS integration, where the GNSS position/velocity estimates are com-
puted by Kalman filter and then passed into another Kalman filter
together with the inertial measurements. However, standard Kalman
filters assume the measurements to be free of any time correlation
– which is not the case for its output – leading to overly optimistic
covariance estimates (Crespillo et al., 2020).

The relation between different filtering methods is depicted in
Fig. 6. For an in-depth treatment of Bayesian filtering and smoothing
refer to Särkkä (2013).

3.4. Linearization and marginalization

The classic delineation between filtering and smoothing has become
less useful, as some methods incorporate aspects of both filtering and
smoothing, e.g., a sliding window filter that employs a smoother within
each window. In this context, a distinction is often made between filter-
based and optimization-based methods (cf. Chen et al., 2018a). This is a
useful characterization, but more specifically the defining characteristic
is whether an iterative optimization (i.e., re-linearization) is performed
and if so, which states are involved.

Filter-based methods of course include classical filtering techniques,
such as recursive least squares filters, Kalman filters, complementary

3 The term batch is used here to signify the estimation of all/many states
the batch) at once, in contrast to recursive (or sequential) solutions.
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Fig. 6. Taxonomy of filtering methods.
Fig. 7. Filter-based and optimization-based methods. While many filter-based methods also employ optimization in some form, only the methods derived from the full nonlinear
MAP problem and incorporating an iterative nonlinear optimization simultaneously over a large set of states are generally referred to as optimization-based.
filters and particle filters, and run in an incremental fashion. For trajec-
tory estimation, particle filters (Montemerlo et al., 2002) or variations
of the multi-state constraint Kalman filter developed in Mourikis and
Roumeliotis (2007) are popular.

Smoothing methods can be constructed from filtering methods, e.g.,
by combining a forward and a backward filter pass (Särkkä, 2013).
Methods based on batch MAP estimation use nonlinear optimization
to compute global estimates of all states (the full batch) and are thus
smoothers (Dellaert and Kaess, 2006). An efficient simplification is to
optimize only over a subset of states and marginalizing out (Chang
et al., 2019) or discarding (Lupton and Sukkarieh, 2012) all others.
Sliding-window methods such as Huang et al. (2011) and Shan et al.
(2020) use a number of consecutive prior states instead of only the
current state and incrementally add new and remove old states. On
the other hand, keyframe-based methods (Leutenegger et al., 2015)
keep the problem size tractable by identifying a small set of important
states. These partial MAP estimates are incrementally incorporated into
a global solution. Both window and keyframe methods are a simpli-
fication of the full batch MAP estimate and in general do not result
in the same estimate. As in practice these methods are all based on
the assumption of Gaussian noise and therefore reduce to a nonlinear
least-squares estimation, this approach will be referred to as batch NLS.
Notably, MAP estimation with non-Gaussian noise can still be done
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with least-squares methodology in a statistically correct way (Rosen
et al., 2013), although this has not yet seen much use.

Optimization-based usually refers to methods using nonlinear opti-
mization techniques to obtain an MAP estimate (i.e., a solution to the
maximization problem Eq. (3.6)) either for the full problem or for a sub-
set of states. The number of states which are optimized simultaneously
is referred to as the batch size. The use of the term ‘optimization’ is
somewhat ambiguous in this context, as many filter-based methods can
be interpreted as sequential optimization. An example of this is the iter-
ative Kalman filter, which can be seen as a recursive application of the
Gauss–Newton method (Bell and Cathey, 1993). Thus, ‘optimization-
based’ emphasizes simultaneous optimization over multiple states, in
contrast to the sequential nature of filtering algorithms (see Fig. 7).

For a linear model with Gaussian noise, the Kalman filter is equiv-
alent to the MAP estimate for the current state, given all past mea-
surements. Similarly, the Rauch–Tung–Striebel (RTS) smoother is then
equivalent to the full MAP estimate (Särkkä, 2013). The defining
difference within classic filter-based methods and optimization-based
methods can be traced to how the linearization of the nonlinear model
is performed (Fleps et al., 2011; Hesch et al., 2014). An extended
Kalman filter (EKF) linearizes only once. Iterative Kalman filters lin-
earize iteratively, but still only for the current state as past states
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Fig. 8. Trade-off between marginalization and linearization: As more and more states are marginalized, their linearization points are fixed, and thus fewer variables are available
for (re-)linearization.
c
𝐵

𝑔

are marginalized out and the filters’ belief about past states is never
updated. On the other hand, batch least-squares estimation based on
nonlinear optimization successively re-linearizes all states to obtain
an improved estimate. In this way, the marginalization of states re-
duces computational effort but also reduces accuracy by introducing
linearization errors. Fig. 8 highlights this trade-off: the more states are
marginalized, the fewer states are available for linearization.

Whether the linearization error presents a problem in practice de-
pends on the degree of nonlinearity of the model and the accuracy
of the initial linearization point. For GNSS/INS integration, error-state
formulations perform better than total-state formulations (Madyastha
et al., 2011) due to mitigating the nonlinearity in the state propagation
by modelling the error of the state instead of the state itself. Multi-
state Kalman filters or sliding window filters implicitly use partial
re-linearization and will also reduce linearization errors. All else being
equal, a batch MAP solution can be expected to be at least as accurate as
the corresponding filtering solution and can be more efficient depend-
ing on the application (Dellaert and Kaess, 2017). In a comparison of
EKF and batch NLS, Wen et al. (2019b) demonstrate better accuracy of
the latter, albeit at the cost of computational efficiency. Strasdat et al.
(2012) show that bundle adjustment is more accurate and efficient than
filtering for visual SLAM. Even compared to a particle filter, which
is capable of representing non-unimodal non-Gaussian distributions,
sliding window batch NLS can achieve higher accuracy (Wilbers et al.,
2019). The benefits of the batch NLS approach in comparison to an EKF
approach are summarized as

• at least locally optimal solution of the MAP problem,
• straightforward modelling of time-constant parameters,
• better computational performance for large numbers of observa-

tions w.r.t. states (Strasdat et al., 2012),
• more accurate estimates for highly nonlinear models (Wen et al.,

2019b).

Since the batch NLS approach involves solving potentially large sys-
tems of equations, these benefits come at the expense of performance.
Specifically, batch NLS methods often exhibit

• superlinearly growing computational complexity as the number
of states increases,

• costly recovery of the posterior parameter covariance, and
• globally optimal solution is still not guaranteed for nonlinear

nonconvex problems.

With the increase of available computational resource and the de-
velopment of more efficient numerical methods, the first two draw-
backs become less relevant. Recently, stochastic optimization tech-
niques developed for machine learning have been successfully applied
to general nonlinear least squares optimization (Le et al., 2021; Huang
et al., 2021a) with promising performance improvements. Similarly,
the adaptation of convex optimization methods, such as proximal meth-
ods (Eriksson et al., 2016; Fan and Murphey, 2022) or the alternating
294
direction method of multipliers (Boyd, 2010; Ramamurthy et al., 2017),
to the (generally nonconvex) nonlinear least squares problem allows
efficient optimization in distributed computing environments. These
developments allow for the use of the batch approach for increasingly
large and complex problems.

4. Modelling framework

Trajectory estimation requires modelling of two somewhat separate
aspects: Modelling of the sensor measurements and modelling of the
trajectory itself. While the classical methods represent the trajectory (as
well as other time-varying quantities) as a discrete time-series of state
variables, some newer formulations use a continuous representation.

4.1. Discrete and continuous trajectories

The mathematical trajectory definition Eq. (2.1) is not directly
realizable: The trajectory must be discretized somehow, as in practice
it obviously cannot be stored for all 𝑡 ∈ [𝑡𝑎, 𝑡𝑏]. Trajectory data is
commonly available as timestamped discrete samples. For georeferenc-
ing, the trajectory is required at least for the time of each LiDAR shot
or camera exposure and is accordingly interpolated to obtain position
and orientation for all measurements. The necessary frequency thus
depends on the sensors used (i.e., measurement frequency) but also on
the vehicle dynamics. High frequency measurements can be accurately
georeferenced from a low-frequency trajectory by interpolation if the
movement is sufficiently smooth. High vehicle dynamics require the
trajectory to be more finely resolved in time.

Generally, it is necessary to obtain trajectory estimates at the imag-
ing sensor sample times. If the number of such measurements is large,
it may be unfeasible to explicitly estimate the trajectory at all these
times, requiring that the trajectory can somehow be represented by
a relatively small number of parameters. For this, there are two op-
tions: compute trajectory estimates at fixed points in time and use
interpolation to derive the required values in between or use an ex-
plicit continuous-time representation that can be evaluated whenever
required. While interpolation of the position is straightforward, special
care needs to be taken for the orientation. In contrast to the position,
the 3D rotations do not make up a Euclidean vector space and standard
vector-space techniques do not properly account for the underlying
mathematical structure (Zefran and Kumar, 1998; Haarbach et al.,
2018). When directly applying standard interpolation to e.g., the Euler
angle parametrization, the interpolation suffers from singularities and
the interpolated values depend on the choice of coordinate systems.

A continuous representation of an arbitrary function 𝑔 ∶ [𝑡𝑎, 𝑡𝑏] → R
an be constructed by linearly combining suitable basis functions
𝑖 ∶ [𝑡𝑎, 𝑡𝑏] → R

(𝑡) =
𝑛
∑

𝑐𝑖𝐵𝑖(𝑡), 𝑡 ∈ [𝑡𝑎, 𝑡𝑏], (4.1)

𝑖=0
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given a set of 𝑛 + 1 parameters 𝑐𝑖 ∈ R, 0 ≤ 𝑖 ≤ 𝑛. The parameters are of
course still discrete, but the resulting function 𝑔 is continuous. Often,
B-Splines are used as basis functions (Furgale et al., 2012). As with
interpolation, special care has to be taken for the orientations, e.g., by
using cumulative B-Splines. The cumulative B-Spline introduced in Kim
et al. (1995) is a widely used method (cf. Lovegrove (2013) and Li
et al. (2020)) to generate arbitrary order quaternion curves which are
invariant to coordinate system changes (Sommer et al., 2016). Such a
basis function representation for position and orientation can be written
as

𝒙𝑒𝑒𝑏(𝑡) =
𝑛
∑

𝑖=0
𝒙𝑖𝐵𝑖(𝑡), 𝒙𝑖 ∈ R3, (4.2)

𝑹𝑏
𝑒(𝑡) = 𝑹0

𝑛
∏

𝑖=1
exp(log(𝑹𝑇

𝑖−1𝑹𝑖)𝐵̃𝑖(𝑡)), 𝑹𝑖 ∈ SO(3), (4.3)

where 𝐵̃𝑖(𝑡) =
∑𝑛

𝑗=𝑖 𝐵𝑗 (𝑡) are the cumulative basis functions and exp, log
are the exponential and logarithmic maps4 in SO(3). The locality of
classical B-Splines carries over to the cumulative formulation: when B-
splines of order 𝑘 are chosen as basis functions 𝐵𝑖, all but 𝑘 + 1 terms
in the sum and product above vanish.

A continuous-time representation can also be achieved by employ-
ing a stochastic formulation based on Gaussian process regression with
a suitable prior (Tong et al., 2013). The Gaussian process is defined by
the a-priori mean 𝜇 and covariance kernel5 𝐾 (see also Rasmussen and
Williams, 2006)

𝑓 (𝑡) ∼ (𝜇(𝑡), 𝐾(𝑡, 𝑡′)). (4.4)

Given an estimate of the trajectory at given times 𝑡0,… , 𝑡𝑛, function
values at an arbitrary time 𝑡 can then be recovered in a way similar to
Gaussian process regression or Kriging

𝑓 (𝑡) = 𝜇(𝑡)+
(

𝐾(𝑡, 𝑡0) … 𝐾(𝑡, 𝑡𝑛)
)

×
⎛

⎜

⎜

⎝

𝐾(𝑡0, 𝑡0) … 𝐾(𝑡0, 𝑡𝑛)
⋮ ⋱

𝐾(𝑡𝑛, 𝑡0) … 𝐾(𝑡𝑛, 𝑡𝑛)

⎞

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎝

𝜇(𝑡0) − 𝑓 (𝑡0)
⋮

𝜇(𝑡𝑛) − 𝑓 (𝑡𝑛)

⎞

⎟

⎟

⎠

. (4.5)

To extend this approach for matrix Lie groups (e.g., the rotational
component of the trajectory), the Gaussian process is defined locally
in the Lie group’s tangent space (Dong et al., 2018). Note that while
the practical implementation differs, the two approaches are somewhat
analogous as spline interpolation can be interpreted as type of Gaussian
process regression for a specific covariance kernel (Kimeldorf and
Wahba, 1970).

Trajectory priors
SLAM methods often rely only on visual information which can

be sparse depending on the environmental features. This motivates
making certain assumptions on the platform trajectory to constrain the
trajectory towards realistic values, which can be done either explicitly

4 The exponential map exp ∶ R3 → SO(3) maps a vector 𝝎 to the correspond-
ng rotation matrix, which represents a rotation of angle ‖𝝎‖ around the axis
𝝎

‖𝝎‖
. It is a composition of the cross product map

⋅ ]× ∶ R3 → R3×3

𝝎 ↦ 𝜴 =
⎛

⎜

⎜

⎝

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

⎞

⎟

⎟

⎠

, s.t. [𝝎]×𝒗 = 𝝎 × 𝒗 ∀𝒗 ∈ R3,

and the matrix exponential exp(𝜴) =
∑∞

𝑖=0 𝜴
𝑖. Its inverse is the logarithm

log ∶ SO(3) → R3. As multiple vectors can have the same exponential, making
a suitable restriction, e.g., ‖𝜔‖ < 𝜋, is required for bijectivity. Note that in
general exp(𝑨) exp(𝑩) ≠ exp (𝑨 + 𝑩), 𝑨,𝑩 ∈ R3×3.

5 While the covariance kernel 𝐾 in Eqs. (4.4) and (4.5) and the covariance
V in Eq. (3.7) refer to similar concepts, we use the notation common in the
respective context.
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r implicitly. In filter-based methods, such assumptions are modelled
y choosing a suitable process model. Similarly, the Gaussian-process-
ased estimation methods model the trajectory as a Gaussian process
ith a suitable prior distribution. These stochastic priors only steer

he solution towards the prior assumptions, but do allow deviations
rom the prior based on the actual measurements. On the other hand,
arametrized continuous-time methods implicitly impose a sort of ‘de-
erministic prior’ by the choice of the basis functions. Compared to
tochastic priors, the choice of basis functions is a hard constraint as
he solution inherently cannot deviate from this representation.

.2. Sensors and measurements

The multi-sensor system consists of multiple sensors providing mea-
urements of different physical or geometric quantities. Measurements
rom different sources can be combined in different ways, which is
escribed by the coupling of the sensors. Below follows a discussion of
he common sensors in kinematic mapping, GNSS, INS, laser scanner
nd camera, and their respective measurements.

lobal navigation satellite system
GNSS provides global positioning using passive ranging by radio

ignals transmitted from satellites. This makes it an integral com-
onent of most georeferencing solution, as it provides stand-alone
lobally georeferenced position measurements. Multi-antenna GNSS
onfigurations may be used for orientation determination (Teunissen
nd Montenbruck, 2017), although in this work only GNSS position-
ng with a single antenna is discussed. The primary measurements
upplied by GNSS through the standardized receiver independent ex-
hange format (RINEX) are pseudorange, carrier phase and Doppler
easurements. For high-precision kinematic applications, carrier-phase
ifferential GNSS provides up to cm-level accuracy in post-processing
ode (Hofmann-Wellenhof et al., 2008), given that the integer ambi-

uities are correctly resolved.
Loosely coupled integration refers to the use of separately computed

NSS solution in the GNSS/INS integration. This standalone GNSS
olution is usually computed by an extended Kalman filter (Teunissen
nd Montenbruck, 2017), which estimates the antenna position and
elocity

̃𝑒𝑒𝑔(𝑡), 𝒗̃
𝑒
𝑒𝑔(𝑡), 𝑡 ∈ {𝑡0,… , 𝑡𝑛}, (4.6)

s well as acceleration and other model parameters such as receiver
lock error. In loose coupling, the GNSS-derived position and velocity
s described by the measurement equation6

̃𝑒𝑒𝑔(𝑡) = 𝒙𝑒𝑒𝑏(𝑡) +𝑹𝑒
𝑏(𝑡)𝒙

𝑏
𝑏𝑔 +𝒘𝑥(𝑡), (4.7)

𝒗̃𝑒𝑒𝑔(𝑡) = 𝒗𝑒𝑒𝑏(𝑡) + 𝑹̇𝑒
𝑏(𝑡)𝒙

𝑏
𝑏𝑔 +𝒘𝑣(𝑡). (4.8)

he noise terms 𝒘𝑥,𝒘𝑣 describe errors in the processed GNSS solution
and are made up of the original measurement errors as well as estima-
tion errors (e.g., wrongly resolved integer ambiguities). Therefore, the
assumption of uncorrelated measurements, which is integral to most
estimation methods, is in general not given (Miller et al., 2012; Niu
et al., 2014). The time-correlated nature of the measurement has to
be explicitly taken into account in order to obtain a realistic trajectory
estimate (Niu et al., 2018).

Tight coupling directly integrates the raw GNSS pseudoranges &
carrier phase measurements (Falco et al., 2017) with the INS. The
benefit of tight coupling is most apparent for real-time processing, with
less accurate INS’ and in areas with bad GNSS reception (Falco et al.,
2017), especially when combined with a robust estimator (Crespillo
et al., 2018) to further reduce the impact of outliers. Additionally,
if less than 4 GNSS satellites are available, stand-alone GNSS cannot

6 The notation 𝒛̃ signifies a noisy measurement of the true quantity 𝒛.
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provide a position/velocity solution and loose coupling degrades to a
pure INS while tight coupling still allows for the integration of the
available GNSS measurements. The performance disadvantage of loose
coupling can however be reduced in a post-processing situation via
Kalman smoothing (Wang et al., 2020a). In GNSS/INS integration, loose
coupling is often also referred to as position-domain integration and tight
coupling as range-domain integration. This corresponds to our notion of
trajectory-level and sensor-level error modelling.

Deep coupling methods go even further to combine the INS inte-
gration with GNSS signal processing (Lashley et al., 2010). However,
this requires very direct access to the underlying GNSS hardware and
as such is hard to implement as an end-user compared to the loosely
and tightly coupled approaches which only depend on the RINEX
output. Deep GNSS/INS coupling enables information from the INS to
be used to improve GNSS signal acquisition and tracking. It also enables
detection and rejection of outliers, such as non-line-of-sight (NLOS)
effects, before they are included in the navigation filter.

Inertial sensors
The inertial sensors, namely accelerometer and gyroscope, can theo-

retically provide a standalone trajectory (Titterton and Weston, 2004)
via integration, but due to the relative nature of the measurements,
errors accumulate and cause large drifts in the solution over time.

Gyroscopes measure angular rate 𝝎𝑏
𝑖𝑏 and accelerometers the specific

force 𝒇 𝑏
𝑖𝑏 of the body frame w.r.t. the inertial frame, in body frame

coordinates. The relation between absolute position 𝒙𝑒𝑒𝑏 and attitude
𝑹𝑏

𝑒 of the body frame and the specific force 𝒇 𝑏
𝑖𝑏 and angular velocity

𝝎𝑏
𝑖𝑏 is given by the navigation equations7

𝜴𝑏
𝑖𝑏 = 𝜴𝑏

𝑖𝑒 +𝜴𝑏
𝑒𝑏

= 𝑹𝑏
𝑒𝜴

𝑒
𝑖𝑒𝑹

𝑒
𝑏 +𝑹𝑏

𝑒𝑹̇
𝑒
𝑏,

(4.9)

𝒇 𝑏
𝑖𝑏 = 𝒂𝑏𝑖𝑏 − 𝜸𝑏𝑖𝑏

= 𝑹𝑏
𝑖 𝒙̈

𝑖
𝑖𝑏 −𝑹𝑏

𝑒𝜸
𝑒
𝑖𝑏

= 𝑹𝑏
𝑒
(

(𝜴𝑒
𝑖𝑒)

2𝒙𝑒𝑒𝑏 + 2𝜴𝑒
𝑖𝑒𝒙̇

𝑒
𝑒𝑏 + 𝒙̈𝑒𝑒𝑏 − 𝜸𝑒𝑖𝑏

)

.

(4.10)

Here, 𝜸𝑏𝑖𝑏 is the acceleration due to gravitational force. The skew-
symmetric matrix 𝜴𝑏

𝑖𝑏 of the angular rate vector 𝝎𝑏
𝑖𝑏 is defined as

𝜴𝑏
𝑖𝑏 =

[

𝝎𝑏
𝑖𝑏
]× ∶=

⎛

⎜

⎜

⎜

⎝

0 −𝜔𝑏
𝑖𝑏,𝑧 𝜔𝑏

𝑖𝑏,𝑦
𝜔𝑏
𝑖𝑏,𝑧 0 −𝜔𝑏

𝑖𝑏,𝑥
−𝜔𝑏

𝑖𝑏,𝑦 𝜔𝑏
𝑖𝑏,𝑥 0

⎞

⎟

⎟

⎟

⎠

,

and analogously, the earth rotation vector 𝝎𝑒
𝑖𝑒 defines the skew-

symmetric matrix 𝜴𝑏
𝑖𝑏.

It should be emphasized that IMU measurements can take different
forms. The basic output are the instantaneous values 𝝎𝑏

𝑖𝑏(𝑡),𝒇
𝑏
𝑖𝑏(𝑡), as they

occur in the above equations. Higher-end IMUs internally measure the
angular rate and specific force at a very high sample rate (>1 kHz), but
output down-sampled averaged or integrated values

𝛥𝒗𝑏𝑖𝑏(𝑡𝑖) ≈ ∫

𝑡𝑖

𝑡𝑖−1
𝒇 𝑏
𝑖𝑏(𝑡)d𝑡, 𝛥𝜽𝑏𝑖𝑏(𝑡𝑖) ≈ ∫

𝑡𝑖

𝑡𝑖−1
𝝎𝑏
𝑖𝑏(𝑡)d𝑡 (4.11)

at a lower rate (typically 100–400 Hz, cf. Groves, 2013, Ch. 4). The
exact formula for calculating the delta values depends on the IMU
model. Often, additional corrections are applied to reduce coning and
sculling errors in subsequent integration (Al-Jlailaty and Mansour,
2021). If coning and sculling corrections are applied, the integrated
IMU measurements 𝛥𝒗𝑏𝑖𝑏 and 𝛥𝜽𝑏𝑖𝑏 represent the difference in velocity
and orientation between two successive sample times (Savage, 1998a,b;
Groves, 2013)

𝑹𝑏
𝑒(𝑡𝑖) ≈ exp

(

−𝛥𝜽𝑏𝑖𝑏(𝑡𝑖)
)

𝑹𝑏
𝑒(𝑡𝑖−1) exp

(

𝝎𝑒
𝑖𝑒 𝛥𝑡𝑖

)

, (4.12)

𝒗𝑒𝑒𝑏(𝑡𝑖) ≈ 𝒗𝑒𝑒𝑏(𝑡𝑖−1) +𝑹𝑒
𝑏(𝑡𝑖)𝛥𝒗

𝑏
𝑖𝑏(𝑡𝑖) (4.13)

7 For the complete derivations, refer to Groves (2013, Ch. 2.5).
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Fig. 9. Inertial measurements as input in the process model, cf. Eqs. (4.12) and (4.13).

Fig. 10. Inertial measurements as observations in the measurement model,
cf. Eqs. (4.9) and (4.10).

+ 𝛥𝑡𝑖
(

𝜸𝑒𝑖𝑏 −
(

𝜴𝑒
𝑖𝑒
)2 𝒙𝑒𝑒𝑏(𝑡𝑖−1) − 2𝜴𝑒

𝑖𝑒𝒗
𝑒
𝑒𝑏(𝑡𝑖−1)

)

,

here 𝛥𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1. Eqs. (4.12) and (4.13) approximate the integral
olution of Eqs. (4.9) and (4.10) from 𝑡𝑖−1 to 𝑡𝑖.

In practice, inertial measurements can be incorporated in the tra-
ectory estimation in two ways. The classic way is as input to the
rocess model Eq. (3.1), where the specific force and angular velocity
easurements are numerically integrated to obtain predictions for
osition, velocity and orientation (Fig. 9). In newer optimization-based
pproaches, inertial measurements are incorporated into the measure-
ent model (Fig. 10), with predictions of specific force and angular rate
erived by differentiation from position and orientation. If no trajectory
rior is explicitly specified, then there is no process model, only a
easurement model. This has the benefit of being an explicit formu-

ation in the form of Eq. (3.2), so that the noise is treated optimally
n the least-squares sense. In comparison, the numerical integration of
MU measurements requires propagating the error stochastic properties
hrough the integration process (cf. Forster et al., 2017).

Errors in the inertial measurements cause a time-dependent drift
n the position and orientation. Integration with other sensors allows
or in-run calibration of the inertial sensor errors. For this, an accurate
odel of the inertial sensors error characteristics is required (Groves,
013). The general error model is
̃𝑏
𝑖𝑏 = (𝑰 +𝑴𝑓 )𝒇 𝑏

𝑖𝑏 + 𝒃𝑓 +𝒘𝑓 ,

𝝎̃𝑏
𝑖𝑏 = (𝑰 +𝑴𝜔)𝝎𝑏

𝑖𝑏 + 𝒈𝜔(𝒇 𝑏
𝑖𝑏) + 𝒃𝜔 +𝒘𝜔,

(4.14)

where 𝒃⋆ are the sensor biases, 𝒘⋆ are the sensor noises and 𝒈𝜔(𝒇 𝑏
𝑖𝑏) is

an error caused by gyroscope sensitivity to acceleration. The matrices
𝑴𝑓 and 𝑴𝜔 are of the form

𝑴 =
⎛

⎜

⎜

⎝

𝑠𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧
𝑚𝑦𝑥 𝑠𝑦 𝑚𝑦𝑧
𝑚𝑧𝑥 𝑚𝑧𝑦 𝑠𝑧,

⎞

⎟

⎟

⎠

(4.15)
with scale factors 𝑠⋆ and axis misalignment parameters 𝑚⋆⋆.
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IMUs are generally calibrated in a laboratory setting to remove
systematic errors (see Poddar et al., 2017). Some errors, such as bias
and scale factor, can vary from run to run (turn-on bias) as well as
within a run (time-varying bias). An accurate stochastic model for
their behaviour is required. Time-varying biases and scale factors are
traditionally modelled as random walk or first-order Gauss–Markov
processes (Farrell et al., 2019), or as ARMA processes (Hemerly, 2017).
The noises 𝒘𝑓 , 𝒘𝜔 are assumed white with a known power spectral
ensity. The g-dependent errors 𝒈𝜔 and axis misalignments 𝑚⋆⋆ are
sually assumed fixed and pre-calibrated, but may also be estimated
n-run (Farrell, 2008).

rame camera
Ideal frame cameras record a 2D perspective projection of a 3D

cene. A 3D representation can be recovered from multiple images,
.g., by dense image matching (Remondino et al., 2013). This requires
nowledge of camera orientation and calibration, which can be ob-
ained by bundle adjustment (Triggs et al., 2000). Underlying this
rocess is a parametric model of the camera which describes how a 3D
oint 𝒙𝑐 ∈ R3 in camera coordinates corresponds to measured image
oint 𝒖̃ ∈ R2 in image space.

A standard camera model is perspective projection

(𝒙𝑐 ) = 1
𝒙𝑐𝑧

(

𝑓𝒙𝑐𝑥
𝑓𝒙𝑐𝑦

)

− 𝒖0, (4.16)

where 𝑓 is the focal length and 𝒖0 is the principal point. Internal
camera parameters include focal length and principal point, as well as
additional parameters such as lens distortion. The coordinates 𝒙𝑐 in the
camera coordinate system of a point 𝒙𝑒 depend on the cameras exterior
orientation at the acquisition time 𝑡, which may be derived from the
platform trajectory and camera mounting

𝒙𝑐 (𝒙𝑒) = 𝑹𝑐
𝑒(𝑡)(𝒙

𝑒 − 𝒙𝑒𝑒𝑐 (𝑡)),

= 𝑹𝑐
𝑏
(

𝑹𝑏
𝑒(𝑡)(𝒙

𝑒 − 𝒙𝑒𝑒𝑏(𝑡)) − 𝒙𝑏𝑏𝑐
)

.
(4.17)

In summary, the measurement equation for an image measurement 𝒖̃
corresponding to a 3D point 𝒙𝑒 is given by

𝒖 = 𝒖(𝒙𝑐 (𝒙𝑒)) +𝒘𝑢, (4.18)

where 𝒘𝑢 is the image measurement noise and 𝒖 implicitly depends on
trajectory, camera calibration and camera mounting parameters.

Laser scanner
In kinematic laser scanning, the scanner moves during acquisition

and thus the scanner trajectory is required for generation of a 3D point
cloud. Each laser scanner measurement is primarily a range. Through
knowledge of the beam direction, the range measurement describes a
single point 𝒙𝑠 in the scanner’s coordinate system. While all pixels of an
image obtained by frame camera share the same acquisition time, each
laser shot is temporally separate and has its own exterior orientation.

To obtain a 3D point cloud in a global coordinate system, the
scanners orientation 𝑹𝑏

𝑠 and lever arm 𝒙𝑠𝑏𝑠 with respect to the plat-
form coordinate system and the platform’s position 𝒙𝑒𝑒𝑏 and orientation
𝑹𝑒

𝑏 are required. A point’s position in the earth-centered earth-fixed
coordinate system is then given by the georeferencing equation

𝒙𝑒 = 𝒙𝑒𝑒𝑏(𝑡) +𝑹𝑒
𝑏(𝑡)𝑹

𝑏
𝑠
(

𝒙𝑠𝑏𝑠 + 𝒙𝑠
)

. (4.19)

Indirect sensor orientation, as with camera images, is not generally
possible. This poses a chicken-and-egg problem for using laser scanners
alone as sensors for trajectory estimation. The problem can be reduced
to a point cloud alignment problem if scans are taken in a stop-and-
scan manner (Nüchter et al., 2007). Relative position and orientation
between the scan positions is derived from the transformation between
the two point clouds of the two scans. This transformation is estimated
via scan matching, e.g., using ICP. If the movement of the scanner
is slow compared to the scan speed, the distortion caused by the
movement may be neglected or modelled with certain assumptions,
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such as constant velocity during a scan (Zhang and Singh, 2017). When
used in conjunction with other sensors, such as GNSS/INS, the existing
trajectory can be used to a-priori correct for scanner motion (Chang
et al., 2019). This is similar to strip adjustment in kinematic laser
scanning (Glira et al., 2016), where the GNSS/INS trajectory is used
as initial solution and constraint to the adjustment. The underlying
principle is that of geometric invariance between repeated observa-
tions of the same object. In this way, the laser measurements provide
constraints either between different points in time or with respect to
existing reference information.

Object space model
Neither camera nor laser scanner directly measure physical 3D

coordinates, but both can be used to recover the 3D structure. In
contrast to the raw sensor measurements, this derived and primarily
geometric information lives in 3D, in the object space. This suggests a
unified modelling in object space of all imaging sensor measurements.
The object space model describes how information from the imaging
sensors is incorporated into the trajectory estimation. This of course
depends on the sensor used as well as on the application and the
environment.

In this context, we distinguish between physical objects in 3D space
and corresponding features. The objects, also called landmarks in SLAM,
are entities in 3D space and composed of at least a location and are
possibly parametrized further, e.g., a building facade is modelled as
a plane and represented by a point and a normal vector. A feature
is derived from sensor data and serves as a description of an object,
which may change depending on sensor orientation and calibration.
The process of extracting features from images or point clouds is called
feature detection. Corresponding features describe the same physical
object and are determined by feature matching. In this way, objects
scanned or imaged at different times can provide anchors to constrain
the trajectory, creating an interdependency between trajectory and
object space representation of imaging sensor measurements. How
features are modelled and how the correspondences are established
varies depending on sensor and application. For LiDAR point clouds,
correspondences are derived from local geometric properties the point
cloud in object space, such as lines or planes. On the other hand, image
correspondences are commonly constructed based on keypoints in the
images themselves.

While the observed geometric properties differ for frame cameras
and laser scanners, both bundle adjustment and strip adjustment typi-
cally rely on the principle that the observed geometry is static8 during
the acquisition period and as such, the measurements of the same object
at different times must be consistent. Exploiting this requires estab-
lishing correspondences between measurements at different times or
between measurements and a known ground truth. In a hybrid camera
and laser scanner adjustment, correspondences have to be established
between images and laser scanner measurements, in addition to the
correspondences within the measurements of a single sensor type. Thus,
object space serves as interface for integrating measurements from the
different imaging sensors.

A distinction is made depending on whether any parameters describ-
ing the object space are estimated together with the trajectory and the
sensor calibration (cf. Fig. 11):

• Explicit object space model: Features are associated with the
corresponding objects in object space. The objects are explic-
itly parametrized by object parameters, which are either known
a-priori or estimated together with the sensor orientation.

8 Some works also allow for dynamically changing environments by detect-
ng and discarding (Brasch et al., 2018) or explicitly modelling (Bibby and
eid, 2010) dynamic objects, but this is not considered here.
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Fig. 11. Feature constraints and observations. If feature correspondences are included in the adjustment as constraints, observing an object from 𝑛 different viewpoints results in
up to 𝑛(𝑛−1)

2
cross-temporal constraints.
Fig. 12. Trajectory estimation is characterized based on estimation method, sensor coupling, as well as measurement and trajectory models.
• Implicit or structure-free object space model: Features are as-
sociated with corresponding features. While correspondences are
established in object space, the final estimation incorporates them
as constraints between measurements made at different points in
time and thus different exterior orientations. Object parameters
can be recovered separately if needed.

The process of image feature detection and matching is a central
topic in computer vision and photogrammetry (Ma et al., 2021). In the
point cloud domain, 3D feature detection is used for rigid registration
of point clouds (Huang et al., 2021b). However, detecting and matching
3D features in kinematic laser scanning is more challenging due to the
following reasons:

• If the trajectory or the sensor calibration is wrong, objects will
look different at different times.

• During optimization the trajectory and point cloud change, and in
turn the feature or correspondence may change. Depending on the
magnitude of the change, this requires recalculation of features
and correspondences.

• Trade-off between small-scale and large-scale features: Smaller
features have better time-locality, but matching is harder. Actual
1-to-1 correspondences are rare (i.e., in practice, there are no
exact point-to-point correspondences).

• LiDAR-derived features can be aggregates of a number of indi-
vidual measurements, which are taken at slightly different points
in time. Such features are in a sense synthetic measurements and
need to be associated with a timestamp (e.g., closest actual point).

5. Characterization and survey

In Section 3, two approaches to trajectory estimation were dis-
cussed based on the probabilistic estimation method. Filtering methods
can be further divided into deterministic (e.g., Kalman filter) and
nondeterministic (e.g., particle filter). Within the optimization-based
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approaches, there are multiple paradigms differing in their exact for-
mulation, application and origin. This section reviews the literature
on trajectory estimation and gives a characterization based on the
modelling and estimation framework established above (see Fig. 12).
Table 2 shows a comparison of trajectory estimation methods, each
with novel methodology or application.

Estimation method
It was already argued above that a batch NLS estimation method is

in many cases superior to a filtering approach. This lead to increasing
popularity of such methods recently, which is also reflected in Table 2.
In SLAM, optimization-based methods have become dominant in the
past years (Cadena et al., 2016; Debeunne and Vivet, 2020). The pose
graph optimization (PGO, Grisetti et al., 2010) is a special case of factor
graph optimization, where each measurement is a relative transforma-
tion between two poses. As these relative transformations are derived
from various sources, such as wheel, image or lidar odometry, this
represents a relatively general method for loosely coupling various
sensors. Methods exploiting the special structure of PGO to provide
global optimality (Rosen et al., 2019) or significant performance im-
provements (Moreira et al., 2021) have begun to replace the usual
Gauss–Newton-based NLS optimization.

In photogrammetry, bundle adjustment is well established and lends
itself to inclusion of additional sensors’ measurements directly in a
single adjustment step. Cucci et al. (2017) integrates bundle adjustment
with GNSS and INS, which proves particularly useful for low-cost
sensors and in GNSS-denied situations. The method is based on so-
called dynamic networks, which are a generalization of geodetic network
adjustment to allow joint static and dynamic modelling, i.e., network
adjustment with time-dependent quantities (Colomina and Blázquez,
2004). This approach has been validated in a first simulation study
with inertial and laser measurements (Rouzaud and Skaloud, 2011) as
well as practically for UAV laser scanning (Brun et al., 2022). While
these are post-processing methods, for many other applications solving

the optimization problem from scratch whenever new measurements
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Table 2
Trajectory estimation literature overview: Selected seminal works with novel methodology or application (marked in bold). A ‘/’ implies to corresponding column is not mentioned
in the paper or is not applicable, e.g., in a purely theoretical paper. Parentheses in the coupling column specify coupling type: A + B means that sensor A is tightly coupled to
sensor B, while (A) + B implies sensor A is loosely coupled to sensor B.
NLS: Nonlinear least-squares. NLSi: Incrementally solved NLS. EM: Expectation–Maximization algorithm. PF: Particle filter. MSCKF: Multi-state constraint Kalman filter.

Application Estimation method Batch size Trajectory
representation

Sensors and
coupling

Inertial
measurement model

Object space
model

Jung and Taylor, 2001 3D
Reconstruction,
. . .

2 × NLS All Spline (Camera)+INS Integrated/
Instantaneous

/

Montemerlo et al.,
2002

SLAM PF Current Discrete / / /

Colomina and Blázquez,
2004

Dynamic
Modelling

NLS All Discrete / / /

Dellaert and Kaess,
2006

SLAM NLS All/subset Discrete / / /

Mourikis and
Roumeliotis, 2007

Navigation MSCKF Subset Discrete Camera+INS Integrated Implicit

Soloviev, 2008 Navigation EKF Current Discrete GNSS+LiDAR+INS Integrated Implicit
Kaess et al., 2008 SLAM NLSi All Discrete / / /
Nagai et al., 2009 UAV Mapping NLS + EKF Current Discrete (Camera)+(GNSS)

+INS
Integrated /

Lupton and Sukkarieh,
2009

SLAM NLSi All Discrete INS + Camera Pre-integrated Explicit

Bibby and Reid, 2010 SLAM EM/NLS Window Spline Radar / Explicit
Rouzaud and Skaloud,
2011

Mobile laser
scanning

NLS All Discrete LiDAR+INS Instantaneous Explicit

Fleps et al., 2011 Calibration NLSa All Spline (Camera) + INS Instantaneous /
Indelman et al., 2012 Bundle

adjustment
NLSi All Discrete Camera / Implicit

Furgale et al., 2012 SLAM NLS All Spline INS+Camera Instantaneous Explicit
Klein and Filin, 2012 Mobile laser

scanning
EKF Current Discrete INS+LiDAR Integrated Known

Angelats et al., 2012 Airborne
Mapping

NLS All Discrete Camera+LiDAR Integrated Explicit

Furgale et al., 2013 Calibrationb NLS All Spline Camera+INS Instantaneous Explicit
Vu et al., 2013 Vehicle

trajectory
NLS All Discrete GNSS+INS Integrated /

Lovegrove, 2013 SLAM NLS All Splinec INS+Camera Instantaneous Explicit
Tong et al., 2013 SLAM NLS All Gaussian

Process
LiDAR+Wheel / Explicit

Anderson et al., 2014 SLAM NLS All Waveletd LiDAR / Implicit
Zhang and Singh, 2014 Odometry NLS Current Discrete (LiDAR)+(INS) / Implicit
Anderson et al., 2015 SLAM NLS Window Spline/Relative Camera / Explicit
Glira et al., 2016 Airborne Laser

Scanning
NLS All Discrete/Spline (GNSS+INS)+LiDAR / Implicit

Cucci et al., 2017 Bundle
adjustment

NLS All Discrete (GNSS)+INS
+Camera

Instantaneous Explicit

Ovrén and Forssén,
2019

Structure from
Motion

NLS All Splinee INS+Camera Instantaneous Explicit

Glira et al., 2019 Hybrid
adjustment

NLS All Spline (GNSS+INS)+
Camera+LiDAR

/ /

Ye et al., 2019 LiDAR-Inertial
Odometry

NLS All Discrete INS+LiDAR Pre-integrated Implicit

Wen et al., 2019a Autonomous
Driving

NLSi All Discrete GNSS+INS,
Cameraf

Integrated /

Rückert and
Stamminger, 2021

SLAM 2 × NLSg Subset Discrete INS+Camera Pre-integrated Explicit

Brun et al., 2022 UAV laser
scanning

NLS All Discrete (GNSS)+INS+LiDAR Pre-integrated Implicit

aSequential quadratic programming (SQP) is used to solve a nonlinear least squares problem with equality constraints.
bAllows for spatio-temporal calibration by estimating a time offset in addition to the other calibration parameters.
cFirst to use a Lie-group cumulative spline formulation (cf. Kim et al. (1995)).
dTrajectory is represented by a hierarchical B-Spline wavelet decomposition.
eSpline knot spacing is determined by the method introduced in Ovren and Forssen (2018).
fThe camera is used only for GNSS aiding via none-line-of-sight detection.
gThe problem is split into two interdependent parts: an IMU-based pose estimation and a bundle adjustment.
arrive is costly. One solution is to keep the batch size low by using a
sliding window or keyframe approach. Kaess et al. (2008) introduces an
incremental smoothing solution for the MAP problem, which is further
improved by the development of specialized data structures (Kaess
et al., 2012). This is used in Indelman et al. (2013) for real-time capable
GNSS/INS/camera-based navigation with much lower computational
requirements than solving the full problem.
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Trajectory representation
The second important aspect of trajectory estimation is the represen-

tation of the trajectory itself. The spline-based representation was first
used in this context by Jung and Taylor (2001) for the estimation of a
camera trajectory. This was achieved by fitting a spline to accelerome-
ter measurements after recovering the orientation from both gyroscope
measurements and image relative orientations. More recently, Bibby



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 287–305F. Pöppl et al.
and Reid (2010) used splines to represent both the trajectory as well
as objects in a dynamic environment. In Furgale et al. (2015), the
authors provide a thorough exposition of their spline-based trajectory
estimation method as well as a review of continuous-time trajectory
estimation in general.

An alternative approach to continuous-time trajectory estimation
is based on Gaussian processes (Tong et al., 2013). The represen-
tation of the trajectory as a Gaussian process requires specifying a
prior on the trajectory, based on suitable assumptions on the vehicle
dynamics (Dong et al., 2018). Commonly used priors such as the white-
noise-on-acceleration or white-noise-on-jerk motion prior (Tang et al.,
2019) result in extremely sparse inverse covariance matrices and can
therefore be solved efficiently (Barfoot et al., 2014).

The continuous-time formulation has two main benefits: Firstly,
position and orientation, and derivatives thereof, are available at
all times. Secondly, the continuous-time representation simplifies es-
timation of sensor time offsets between asynchronous sensors. Be-
cause of this, both spline-based (Furgale et al., 2013) and Gaussian-
process-based (Li et al., 2021) representations are well suited for
spatio-temporal multi-sensor calibration and have been demonstrated
to perform better compared to existing discrete-time approaches (Lv
et al., 2022). A comparative study of the spline-based continuous-time
methods and discrete-time methods is done in Cioffi et al. (2022) for
camera-based SLAM, where the continuous-time representation is again
shown to be especially effective for recovering time offsets between
camera and IMU.

Independent of the type, continuous trajectory representation makes
a trade-off between reducing parameter count and trajectory fidelity.
This trade-off often results in a smoothing of higher frequencies, which
may or may not be desirable depending on the application.

Sensor coupling
An arguably even bigger differentiator of the different trajectory

estimation methods are the sensors used, as well as their coupling.
Generally, looser coupling allows for modularization of the individ-
ual systems which makes implementation less complex and possible
computationally more efficient. This comes at the cost of reducing
the information available to the trajectory estimation algorithm. For
the purpose of obtaining georeferenced 3D models, the sensors of
interest are: GNSS, INS and imaging sensors (here: laser scanner and/or
camera). The standard processing pipeline for point cloud genera-
tion (Fig. 1) is loose coupling of GNSS/INS with the imaging sensor,
which consists of an initial GNSS/INS processing with subsequent
bundle or strip adjustment.

The methods of Glira et al. (2019), Cledat and Skaloud (2020)
and Zhou et al. (2021) combine bundle adjustment with strip ad-
justment in a hybrid manner, where all imaging sensors are adjusted
together. This represents a tight coupling of laser scanner and camera,
with an existing GNSS/INS trajectory used as position and orientation
observations within the adjustment. This hybrid adjustment avoids in-
consistencies between laser and image point clouds and achieves more
robust and accurate trajectory correction and sensor calibration (Toschi
et al., 2018; Haala et al., 2022), resulting in higher quality 3D mod-
els (Mandlburger et al., 2017; Haala et al., 2022). Different ways of
establishing the required correspondences between laser scanner and
camera measurements are reviewed in Cledat and Skaloud (2020).

Recently there has been a trend towards integrating the imag-
ing sensors tightly with GNSS and INS. Combining GNSS, IMU and
LiDAR measurements in the same adjustment process, Brun et al.
(2022) improves point cloud accuracy compared to the classic two-
stage procedure (Fig. 1). Cucci et al. (2017) presents a method for
integration a position/velocity GNSS solution, IMU measurements and
image correspondences in a unified bundle adjustment.

A similar trend is visible in other fields. The tightly coupled
IMU/LiDAR odometry frameworks presented in Ye et al. (2019) and
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Shan et al. (2020) are reported to outperform previous state-of-the-art
methods (e.g., Zhang and Singh, 2014). Seo and Chou (2019) tightly
couple image and LiDAR measurements in a visual odometry algorithm
and show that it outperforms both stand-alone visual and LiDAR
odometry as well as depth-enhanced visual odometry. Vu et al. (2013)
adapted the batch NLS method of Dellaert and Kaess (2006) for tightly
coupled GNSS/INS integration by employing a two-stage process where
the results of a batch optimization with pseudo-range and Doppler
measurements are used to resolve the carrier-phase integer ambiguities.
Newer results from optimization-based tightly coupled GNSS/INS inte-
gration aided by other sensors also show promise (Wen et al., 2019a;
Wen, 2020). Generally however, loose coupling of GNSS with other
sensors is still predominant due to the added complexity of modelling
all GNSS errors and resolving the integer ambiguities. Soloviev (2008)
avoids the latter problem by considering carrier-phase differences
between subsequent GNSS measurement epochs.

Inertial measurement model
The inertial measurement model describes vehicle dynamics and re-

lates the trajectory to the inertial measurements. Filter-based methods
(e.g., Mourikis and Roumeliotis (2007)) treat the integrated inertial
measurements as input and therefore as part of the process model.
The optimization-based approaches (Rouzaud and Skaloud, 2011; Fleps
et al., 2011) provide a way of incorporating instantaneous inertial
measurements in an explicit Gauss–Markov formulation. Predictions
of the instantaneous values of angular velocity and specific force can
be computed, given that derivatives of position and orientation are
available. Analytical derivatives are readily available for continuous-
time formulations (Furgale et al., 2015). For discrete representations,
they can be computed by finite-differencing (Cucci et al., 2017).

IMU pre-integration (Lupton and Sukkarieh, 2009) is an approach
that greatly reduces the computational workload and has seen much
use recently (Le Gentil et al., 2018; Toschi et al., 2018; Song and Hsu,
2021). A pre-integrated measurement aggregates many IMU measure-
ments by integrating specific force and angular rate measurements to
obtain fictitious relative measurements, one for position and one for
orientation. However, due to the way the inertial sensor errors are
included in the pre-integration, estimating the time-correlated compo-
nents of the sensor errors becomes more difficult (Cucci and Skaloud,
2019). Even if the original sensor noise is Gaussian, the errors of the
integrated measurements are not necessarily so, violating the underly-
ing assumptions of most methods. Modern pre-integration formulations
do take care to properly account for the Lie-group structure for angular
velocity pre-integration and propagation of the associated measurement
covariance (Forster et al., 2017; Le Gentil and Vidal-Calleja, 2021).

Object space model
The various approaches of incorporating imaging sensor measure-

ments differ mainly in two aspects: The type of feature, how those
features are found, as well as how correspondences established and
subsequently incorporated in the estimation. The classic approach for
LiDAR-derived features is to identify points that lie on a common
surface, most practically a plane and minimize the point-to-plane dis-
tances while estimating the plane parameters (Skaloud and Lichti,
2006; Kaess, 2015). Alternatively, pairwise constraints between points
lying on the same plane may be formed in a structure-less approach
as in Glira et al. (2015), where the correspondences are iteratively
re-established in an ICP-like procedure.

The former is similar to the approach taken in classical bundle
adjustment (Triggs et al., 2000), which consists of estimating the point
coordinates for an image correspondence jointly with the sensor ori-
entations. Conversely, the structure-less approach, does not explicitly
model the objects and instead incorporates a correspondence as con-
straint between two (Rodriguez et al., 2011) or three images (Schneider
et al., 2017). Apart from points, more complicated features such as
lines (Zhang et al., 2007) or even splines (Lee and Yu, 2009) may also

be used.
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The underlying assumption to the methods described so far is that
the object space is predominantly static. Any changes in the observed
geometry between two observations is unmodelled and would cause
systematic errors if undetected. A notable exception to this is Bibby and
Reid (2010), where objects are allowed to move and their trajectories
are modelled by time-varying splines.

In some applications, prior knowledge of the environment is avail-
able (cf. Toth et al., 2009). In this case, the known object coordinates
are fixed in the optimization. Klein and Filin (2012) and Bureick et al.
(2019) use laser measurements and known building models in an
integrated INS/LiDAR navigation.

In summary, five defining characteristics of trajectory estimation
methods are identified: The estimation method, the sensors used and
their coupling, the representation of the trajectory, the inertial mea-
surement model, and the object space model.

6. Discussion

6.1. Trends

Trajectory estimation is central to the task of obtaining accurate
3D models from moving imaging sensors. As an inherently multi-
disciplinary problem, it has benefitted strongly from an increased
convergence between the fields of remote sensing, computer vision,
robotics and navigation. We have identified four essential trends in tra-
jectory estimation; although in this work we have discussed trajectory
estimation from the viewpoint of kinematic mapping using imaging
sensors, these trends largely apply to multi-sensor fusion in general.

From recursive filtering to batch optimization. Solutions for integrated
navigation were previously based on recursive estimation, namely
Kalman filter type solutions. Recently, approaches based on the batch
MAP estimate have been gaining traction. Incremental or simplified
solutions exist, but mainly for performance reasons: The full batch ap-
proach is theoretically preferable, although computationally expensive.

From discrete to continuous trajectory representations. Classical filtering
methods parametrize the evolution of position and orientation as a dis-
crete set of states. As the inclusion of multiple, possibly asynchronously
sampled sensors requires estimation of position and orientation at very
high frequencies, a continuous trajectory parametrization has proven
useful and is widely used especially in the robotics community. This
allows evaluation of position and orientation at arbitrary times. Apart
from stochastic priors, additional ‘deterministic’ prior information on
the trajectory can be incorporated by choosing suitable trajectory rep-
resentations. On the other hand, the continuous formulation can be
more computationally demanding if measurements are synchronous or
linear interpolation suffices. It should be mentioned that no exhaustive
comparison between all the different trajectory representations has
been done to date.

From trajectory level to sensor level error modelling. Trajectory level
error modelling is effective for small errors or errors following certain
characteristics. However, this approach can lead to a deformation of
the trajectory and subsequently the 3D model, as the underlying mea-
surements (GNSS and IMU) are disregarded. Advances in estimation
algorithms as well as available computational power have caused a
trend towards a holistic multi-sensor estimation methodology, where
errors are modelled at the sensor level, i.e., in a tightly coupled manner.

Towards mathematically rigorous modelling. Recently presented method-
ologies have employed more sophisticated mathematical techniques.
This manifests in different ways: For the trajectory representation,
increasingly the classic Euler-angle representation is criticized and
replaced by parametrizations respecting the underlying Lie-group struc-
ture. Previously, weighted least-squares was employed simply as an
optimization tool, but it is now mostly used within a probabilistic
framework, as the need for accurate stochastic error modelling becomes
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more evident. For these statistical interpretations, work is done in
order to incorporate errors with different, possibly a-priori unknown
probability densities. Estimators providing strong theoretical guaran-
tees, both with respect to statistical optimality as well as numerical
performance, are preferred where computationally feasible.

6.2. Challenges

From a purely theoretic standpoint, there is no drawback to a
tightly-coupled full batch estimation, wherein all measurements are
considered simultaneously. Compared to an incremental or loosely
coupled approach, a tightly coupled global approach can be expected
to perform better in terms of robustness as well as accuracy. However,
a practical formulation of this ‘fully tightly-coupled’ method has proven
elusive. In most cases, simplifications are made to allow for more
efficient processing, or sensors are partly coupled in a loose manner to
simplify the model and the necessary computations. Among the various
simplifications and different coupling combinations, no clearly superior
method has been established. If the trend is there, and global tight
coupling is superior, then why is this not reflected in practice? We
argue that this is mainly due to two reasons, outlined below.

Model complexity. While methods employing tighter coupling often
show higher performance in practice, it requires significant effort.
For sensor-level error modelling, in-depth knowledge of the sensor is
needed to accurately model the errors without introducing systematic
errors in the estimation. For this, access to the raw sensor data is
necessary. This is problematic especially for high-quality IMUs which
are encumbered by export restrictions and often do not easily allow
access to raw data, only providing the integrated navigation solution.
For GNSS data however, this problem is already solved: RINEX provides
a standardized, documented data exchange format.

Nevertheless, tight coupling requires estimation of all relevant pa-
rameters and measurements at the same time. This leads to higher pro-
cessing and memory requirements compared to loose coupling. More
efficient, parallelizable algorithms and faster hardware will enable
further exploitation of tight sensor coupling.

Lack of comparative studies. All methods described above were ex-
perimentally evaluated, but for different sensor modalities and ap-
plications, and mostly on an individual basis and not comparatively.
An exception is Cioffi et al. (2022), where a discrete-time and a
spline-based SLAM implementation are compared to each other for
different robotics scenarios. However, a general in-depth comparison
between different methods is difficult, for one due to lack of high-
accuracy reference data, but also because few implementations are
openly available and re-implementation is not often done due to the
complexity of the models. Example applications of different methods,
specifically of different trajectory representations, are available in the
literature presented in Section 5. In some studies, a combination of
low-grade and high-grade hardware is used to test new methodologies
with respect to a reference trajectory from the better system (e.g., Brun
et al., 2022). However, the problem of evaluating the better system
remains. Any comparison is also necessarily limited to a specific use
case: The requirements on the trajectory solution, as well as assump-
tions on the system behaviour such as platform dynamics, vibrations
and sensor noise, differ depending on the application. For mobile
laser scanning, especially in urban environments, positioning errors
due to bad GNSS reception or multipath effects, play a large role.
For airborne applications, GNSS is generally unproblematic but high-
accuracy orientation is required, as errors in orientation have large
effects on the georeferenced data due to the longer measurement

range.
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Challenges for kinematic mapping applications
The generally high precision and accuracy requirements in kine-

matic mapping applications pose further challenges. Although much
work has been done in this regard to improve the accuracy of low-cost
sensors, many surveying applications still depend on expensive high-
grade hardware. Available processing solutions require experienced
operators, due to necessary fine-tuning of the various algorithmic com-
ponents. Others are based on commercial black-box solutions for parts
of the processing workflow, which are often too optimistic in terms of
reported accuracy.

6.3. Outlook

In summary, there is a lot of progress with contributions from many
different fields. Several clear trends have been established. However,
the best solution remains unclear. As such, the main challenge is to
allow for rigorous evaluation and comparison of the different methods,
which in turn requires suitable benchmark data. Future work in this
direction will allow for the development of more accurate, reliable and
automatic trajectory estimation methodology, which in turn benefits all
kinematic mapping related activities.
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