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A B S T R A C T   

The presence of surface water on the canopy affects radar backscatter. However, its influence on the relationship 
between radar backscatter and crop biophysical parameters has not been investigated. The aim of this study was 
to quantify the influence of surface canopy water (SCW) on the relationship between L-band radar backscatter 
and biophysical variables of interest in agricultural monitoring. In this study, we investigated the effect of SCW 
on the relationship between co- and cross-polarized radar backscatter, cross ratios (VH/VV and HV/HH), and 
radar vegetation index (RVI) and dry biomass, vegetation water content (VWC), plant height and leaf area index 
(LAI). In addition, the effect of SCW on estimated vegetation optical depth (VOD) and its relationship with in-
ternal VWC was investigated. The analysis was based on data collected during a field experiment in Florida, USA 
in 2018. A corn field was scanned with a truck-mounted, fully polarimetric, L-band radar along with continuous 
monitoring of SCW (dew, interception) and soil moisture every 15 min for 58 days. In addition, pre-dawn 
destructive sampling was conducted to measure internal vegetation water content and dry biomass. Results 
showed that the presence of SCW can increase the radar backscatter up to 2 dB and this effect was lower for cross 
ratios (CRs) and RVI. The Spearman's rank correlations between radar observables and biophysical parameters 
were, on average, 0.2 higher for dry vegetation compared to wet vegetation. The estimated VOD from wet 
vegetation was generally higher than those from dry vegetation, which led to different fitting parameter (so- 
called b) values in the linear fit between VOD and VWC. The results presented here underscore the importance of 
considering the influence of SCW on the retrieval of biophysical variables of interest in agricultural monitoring. 
In particular, they highlight the importance of overpass time, and the impact that daily patterns in dew and 
interception can have on the retrieval of biophysical variables of interest.   

1. Introduction 

Quantification of crop biophysical parameters is essential for many 
applications including agricultural management, yield forecasting, crop 
health monitoring and soil moisture estimation. Providing continuous 
and reliable crop information enables farmers and food producers to 
implement timely interventions to maximize yields and make optimal 
use of resources. Satellite data are increasingly used to estimate crop 
biophysical parameters such as leaf area index (LAI) (Brakke et al., 1981; 
Jiao et al., 2009; Gao et al., 2013; Hosseini et al., 2015; Chang, 2020), 
crop height (Fieuzal et al., 2012; Gao et al., 2013; Liao et al., 2018), dry 

biomass (Brakke et al., 1981; Ferrazzoli et al., 1992; Paloscia and 
Pampaloni, 1992; Gao et al., 2013; Chang, 2020) and vvegetation water 
content (VWC) (Saatchi et al., 1995; Steele-Dunne et al., 2017; Kim 
et al., 2018). LAI is related to crop productivity and growth (Kross et al., 
2015) and is a vital input parameter for crop growth and yield fore-
casting models (Jiao et al., 2009; Molijn et al., 2014). Crop height and 
dry biomass are also important indicators for crop development (Liao 
et al., 2018), crop identification and crop yield estimation (McNairn and 
Brisco, 2004). VWC can provide information to support irrigation 
management (Dzikiti et al., 2010; Thenkabail and Lyon, 2016) and 
drought assessment (Tucker, 1980; Penuelas et al., 1993), and is an 
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essential parameter in soil moisture retrieval (Attema and Ulaby, 1978; 
Bindlish and Barros, 2001; Barrett et al., 2009). Vegetation optical depth 
(VOD) is increasingly used for vegetation monitoring in agricultural 
applications and natural ecosystems (El Hajj et al., 2019; Konings et al., 
2019; Frappart et al., 2020). 

Low frequency (1–10 GHz) radar data are not affected by atmo-
spheric conditions, can penetrate clouds and can acquire data during 
day and night. Radar observations are sensitive to dielectric and geo-
metric properties of crops such as vegetation water content, leaf size, 
stem density, as well as the moisture and roughness of the underlying 
soil. Furthermore, microwaves penetrate the canopy, with lower fre-
quencies penetrating deeper into the canopy and the underlying soil. As 
a result, radar data are well suited to monitor soil and vegetation in 
agricultural applications (McNairn and Brisco, 2004; Steele-Dunne 
et al., 2017). Many ground-based experiments and campaigns based 
on airborne and satellite data have demonstrated the value of low fre-
quency radar data in agricultural applications such as crop monitoring 
and classification, soil moisture estimation, and extracting bio- and 
geo-physical parameters from radar data (Brisco et al., 1998; McNairn 
and Brisco, 2004; Steele-Dunne et al., 2017). Several studies have 
investigated the sensitivity of radar backscatter to biophysical parame-
ters of crops (e.g. (Inoue et al., 2002; Jiao et al., 2009; Jia et al., 2013)). 
Others have shown that L-band backscatter coefficients and RVI are 
highly correlated with VWC (Kim et al., 2011, 2013a; Srivastava et al., 
2015; Ma et al., 2017), LAI (Kim et al., 2008; Jiao et al., 2010; Hosseini 
et al., 2015) and the fresh weight of various crops (Kim et al., 2008, 
2013a). The launch of ESA's Sentinel-1 mission in 2014 and Radarsat 
Constellation Mission (RCM) in 2019 provide high temporal resolution 
SAR data with revisit time of 6–12 days and 4 days respectively. This 
unprecedented revisit time has accelerated the use of radar observation 
for monitoring temporal variability in agricultural areas (Han et al., 
2017; Veloso et al., 2017; Vreugdenhil et al., 2018; El Hajj et al., 2018, 
2019; Kumar et al., 2018; Khabbazan et al., 2019; Mahdianpari et al., 
2019; Ouaadi et al., 2020; Mandal et al., 2020a). However, little 
attention has been paid to the potentially confounding influence of 
surface canopy water (SCW) on retrieval of crop biophysical parameters. 
The SCW is generally referred to the presence of water in a form of dew 
or interception on the canopy surface. 

Dew is often present on vegetation in temperate regions during the 
early morning (Hornbuckle et al., 2006; Kabela et al., 2009). Kabela 
et al. (2009) found that dew was present on more than 80% of days 
during the SMEX-05 experiment in Ames, Iowa, with dew accumulating 
on corn and soybean fields between 00:30 and 6:30 Central Standard 
Time (CST). As most satellites carrying radar instruments are in a 
near-polar, sun-synchronous orbit with local overpass times between 
4:00 AM/PM and 10:00 AM/PM, the effect of dew on the radar signal 
needs to be considered. Several early experimental studies have reported 
an increase in radar backscatter at different frequencies due to the 
presence of SCW caused by dew and interception. Allen and Ulaby 
(1984) sprayed water to simulate rainfall on the canopy and found that 
the presence of water on canopies can increase X-band backscatter from 
wheat, soybean and corn by up to 2–3 dB. The dynamic range in VV-pol 
backscatter for the look angle of 50 degree for wheat, corn and sorghum 
during the whole season was around 7.59, 6.02 and 6.28 dB respec-
tively. Gillespie et al. (1990) used a truck-mounted scatterometer in a 
wheat field to show that dew produced an increase of 1 dB in L- and 
Ku-band backscatter and 4 dB in C-band. Herold et al. (2001) and Riedel 
et al. (2002) investigated the effect of dew and interception on fully 
polarimetric X-, C-, and L-band data acquired by an airborne E-SAR 
system over different crop types, including corn. Among these three 
bands, the strongest influence of dew and interception was found at the 
cross-polarized L-band, while at the X-band and L-VV no significant 
influence of dew on radar backscatter was observed. They found that the 
influence of dew on the radar backscatter was independent of crop type. 
Wood et al. (2002) found that the presence of dew during descending 
(dawn) acquisitions of RADARSAT-1 resulted in values which were 2.5 

dB higher than those from the ascending (dusk) acquisitions. In a recent 
controlled experiment, Brancato et al. (2017) explored the influence of 
SCW on differential interferometric observables using a multifrequency 
(S-, C-, X-, and Ku-band), fully-polarimetric scatterometer. They found 
that the influence of SCW on the interferometric coherence was com-
parable to that due to changes in soil or plant water status. They also 
reported dependence between the interferometric observables and 
change in plant surface moisture in X- and Ku-bands. Moreover, in S- and 
C-band they observed a more noticeable effect in VV polarization 
especially for canopies with a vertical orientation such as maize. These 
studies provide valuable insight into the potential impact of SCW on 
radar observables, but are limited to temporally sparse data. 

A recent field study by Vermunt et al. (2020) combined sub-daily 
L-band radar data from a truck-mounted scatterometer with contin-
uous observations of leaf surface wetness, surface and root zone soil 
moisture, and dense destructive vegetation sampling over an entire 
growing season of corn. The daily cycle of dew accumulation and 
dissipation, and the interception of precipitation and irrigation events, 
were shown to result in sub-daily variations in L-band backscatter. 
Vermunt et al. (2020) highlighted the potentially confounding influence 
of the SCW on the retrieval of biophysical parameters. 

The aim of this study was to quantify the influence of SCW on the 
relationship between radar observables and geophysical variables. The 
analysis was based on L-band data collected in an intensive field 
campaign during an entire growing season of corn. L-band data are 
particularly relevant in the context of the future availability of L-band 
SAR data from NISAR (Rosen et al., 2017) and ROSE-L (Pierdicca et al., 
2019). In this study, first the effect of SCW on different radar observables 
such as co- and cross-polarization data (σVV, σHH, σXP), polarimetric ratio 
data (σVH/σVV and σHV/σHH), and Radar Vegetation Index (RVI) was 
investigated. Then, correlation analyses were conducted between these 
radar observables and dry biomass, Vegetation Water Content (VWC), 
plant height and Leaf Area Index (LAI) at different growth stages of the 
corn plant. Finally, vegetation optical depth (VOD) was estimated in 
each polarization, and the effect of SCW on VOD estimation from L-band 
radar data was investigated. 

2. Data and methods 

2.1. Field experiment 

2.1.1. Study area 
This study was conducted at the University of Florida Institute of 

Food and Agricultural Sciences (UF/IFAS) Plant Science Research and 
Education Unit (PSREU) near Citra, Florida, USA (29.4◦ N, 82.17◦ W). 
The site is classified as Cfa under the Köppen Geiger Climate classifi-
cation, described as a humid subtropical climate with hot and humid 
summers, and cold to mild winters (Peel et al., 2007). The rainy season 
runs from around May to November (Black, 1993). The corn field was 
250 m by 150 m and the soil had >90% by volume fine sand (Bongio-
vanni et al., 2015). Sweet corn (Zea mays L. var. rugosa) was planted on 
13 April at a row spacing of 92.5 cm with an average density of 7.9 plant 
m− 2, and harvested on June 18 before the start of the senescence stage. 
Center-pivot irrigation was applied throughout the season as needed. It 
was generally applied late in the evening, and was frequently needed 
during the dry period in the early season. 

2.1.2. Hydrometeorology 
The presence and duration of SCW, such as dew and interception, 

was monitored using Phytos31 dielectric leaf wetness sensors. These 
sensors closely approximate the thermodynamic and radiative proper-
ties of a leaf. Moreover, the surface of the sensors are hydrophobic, 
similar to the hydrophobic cuticle of a corn leaf. A sensor detects the 
presence of water on its surface by measuring its dielectric constant, 
which is highly sensitive to water. The sensor output threshold for ‘water 
on the sensor’ is based on factory calibration (METER Group, 2021) and 
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regularly checked by visual inspection. Three sensors were installed 
outside the radar footprint, at different heights in the canopy. The sen-
sors were evenly distributed along the height of the plants, and their 
positions were adjusted as the plant height increased. Precipitation and 
irrigation data were used to classify the SCW as precipitation, irrigation 
or dew. 

Meteorological data were obtained from the nearby weather station 
from the Florida Automated Weather Network (FAWN). The station was 
located <600 m from the experimental site. 15-min observations of 
rainfall, relative humidity, temperature, solar radiation and wind speed 
were obtained from the Report Generator (https://fawn.ifas.ufl.edu/da 
ta/reports/). The timing and amount of irrigation was provided by UF/ 
IFAS. Soil moisture was observed using Decagon EC-5 sensors (ME 
Group, 2021a) installed at 5, 10, 20, 40 and 80 cm depth in two pits 
adjacent to the radar footprint. Data were collected every 15 minutes. 
Prior to installation, a site-specific calibration was performed in the 
laboratory using soil samples from the field. The goodness of fit for the 
linear regression between soil moisture estimates from the EC-5 sensors 
and values from gravimetric sampling was 0.993, and the RMSE was 
0.028 m3m− 3. Although the two profiles were 40 m apart, the obser-
vations of the two pits closely matched, and their average was used in 
this study. 

2.1.3. Ground vegetation sampling 
Predawn destructive vegetation sampling was conducted every 2–3 

days during the entire growing season to measure VWC and dry biomass 
(md). Four rectangular sampling areas with average dimensions of 30 by 
35 m2 were delineated outside, but adjacent, to the radar footprint at the 
beginning of season. For each sampling event, eight field-representative 
plants were chosen from the four sampling areas. From the eight sam-
ples, all constituents (leaves, stems, ears, tassel and tillers) of these 
plants were separated, paper towel-dried, weighed, and oven dried at 
60◦ C for 5 to 7 days. The dry samples were weighed again to estimate 
field-average VWC and md as follows (Vermunt et al., 2020): 

VWC = (Wf − Wd) × ρplant (1)  

md = Wd × ρplant (2)  

where Wf and Wd are the average fresh and dry weight of the eight 
samples (kg) respectively and the ρplant is the average number of plants 
per square meter (m− 2). The samples were also used to estimate field- 
average plant height using measuring tapes. Weekly detailed vegeta-
tion geometry data were used to determine Leaf Area Index (LAI) on 
seven dates during the growing season. Leaf length and width were 
measured, and used to estimate the leaf area, which was summed per 
plant and subsequently multiplied by plant density to obtain LAI. Visual 
identification of growth stages was performed on sampling days, using 
the Biologische Bundesanstalt, Bundessortenamt and Chemical industry 
(BBCH) scale for corn (Meier et al., 2009). 

2.2. Radar data 

Radar backscatter was measured using the truck-mounted University 
of Florida L-band Automated Radar System (UF-LARS) (Nagarajan et al., 
2013) (Table 1). Radar data were acquired at four polarization combi-
nations (VV, HH, VH, and HV) using a dual polarization horn antenna. 
The VH and HV data were very similar so, following previous studies 
(Liu et al., 2016), they were averaged and are referred to here as the 
cross-polarized backscatter σXP. The system was installed on a Genie 
platform with an antenna height of 14 meter from the soil surface. 
UF-LARS scanned the corn field with a fixed elevation angle of 40◦. In 
this study, samples at three azimuth scans at − 9◦, 0◦ and +9◦ were used. 
At each azimuth scan, nine samples were taken at 30 MHz increments 
from 1130 to 1370 MHz which resulted in 27 independents samples. 
Individual samples are prone to noise due to fading, i.e. the noise arising 

from interference between returns from multiple ground targets (Bush 
and Ulaby, 1975). The average of 27 samples were used in order to 
account for variations in row direction, and to increase the 
signal-to-noise ratio, which for a single sample is lowered by fading (Liu 
et al., 2016). 

Internal calibration was applied during each acquisition to account 
(among others) for the effect of temperature on the electronics. External 
calibration was conducted using a trihedral corner reflector of known 
radar cross section several times during the growing season. The Single 
Target Calibration Technique (STCT) (Sarabandi and Ulaby, 1990) was 
used to calculate the backscatter coefficient σ◦ from the received signal. 
The total systematic error and random error were estimated as 1.49 and 
0.85 dB respectively (Nagarajan et al., 2013; Liu et al., 2016). The 
ground range and azimuth range for each polarization combination 
were determined using the 3 dB antenna beamwidth of 14.7◦ and 19.7◦

in E-plane and H-plane respectively as shown in Table 1. Scanning the 
corn field over 3 azimuth angles resulted in the total footprint area of 
120, 119 and 87.5 m2 in HH, VV and XP polarization respectively. 
Vegetation samples were collected outside, but adjacent, to the radar 
footprint to avoid introducing patches and heterogeneity within the 
radar footprint, and to prevent any changes in roughness due to foot 
traffic. All sensors and hardware are installed outside the footprint to 
avoid any influence of metal structures or cables on the radar back-
scatter. The UF-LARS system was programmed to automatically acquire 
32 measurements per day during the growing season. During the last 7 
days, this was reduced to 16 measurements per day to avoid any radio 
frequency interference with other microwave sensors. 

3. Methodology 

3.1. Radar data 

In addition to analyzing the radar backscatter itself, time series of 
Radar Vegetation Index and Cross Ratio were also considered. The RVI is 
calculated using: 

RVI =
8σVH

σHH + σVV + 2σVH
(3)  

where σHH, σVV and σVH are the observed linear backscatter intensities 
[–]. Here, σXP which is the average of σVH and σHV is used instead of σVH. 
The RVI was first introduced by Kim and van Zyl (2009) and is often 
used to monitor vegetation growth (Kim et al., 2011, 2013b; Mandal 
et al., 2020a,b), map vegetation cover (Haldar et al., 2020; Mandal et al., 
2020b), and monitor crop development (Kim et al., 2011; Huang et al., 
2016). RVI is a (dimensionless) normalized index that ideally varies 
between zero (bare soil) and one (Szigarski et al., 2018). 

The cross ratios CRH and CRV are defined as σXP/σHH and σXP/σVV in 
the linear domain respectively (Vreugdenhil et al., 2018). Recall that the 
average of σVH and σHV is used as the cross-polarized backscatter (σXP) 
here. Hence, the only difference between the CRH and CRV here is in the 

Table 1 
UF-LARS system specifications.  

Parameter UF_LARS 

Frequency (GHz) 1.25 

3dB Beamwidth (deg) E-Plane 14.7 
H-plane 19.7 

Bandwidth (MHz) 300 
Antenna type Dual-polarization horn 
Range resolution (m) HH/VV/XP 8.5/6.2/6.2 
Azimuth resolution (m) HH/VV/XP 4.7/6.4/4.7 
NEσ◦ (dB) HH/VV/XP − 23.43/− 25.58/− 48.12 

Error in σ◦ (dB) Systematic 1.49 
Random 0.85 

Incidence angle (deg) 40 
Platform height (m) 14  
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denominator. CRs and RVI are less sensitive to surface soil moisture 
variations (Veloso et al., 2017; Vreugdenhil et al., 2018; Khabbazan 
et al., 2019) and are considered useful indicators of crop growth (Jiao 
et al., 2009; Kim et al., 2011; Veloso et al., 2017; Vreugdenhil et al., 
2018; Khabbazan et al., 2019). 

The influence of SCW on radar observables was quantified by 
comparing radar observations from early morning (6 AM) to the first 
observations after SCW had dissipated. Generally this occurred at 
around 10 AM. Spearman's rank correlation coefficient (ρ) was used to 
quantify the effect of SCW on the relationship between six radar ob-
servables and four plant biophysical parameters. 

3.2. Vegetation Optical Depth (VOD) estimation 

The VOD estimation approach is based on that of Vreugdenhil et al. 
(2016), where the VOD can be estimated from the decrease in sensitivity 
of backscatter over bare soils as a result of vegetation. Fig. 1 shows an 
illustrative time series of backscatter in a vegetated area. The upper and 
lower limits of the backscatter time series are referred to as the wet 
reference (σ0

wet) and dry reference (σ0
dry) respectively. The wet reference 

corresponds to the backscatter values one would obtain under saturated 
soil conditions. The dry reference at some time t (σ0

dry(t)) is the value 
corresponding to backscatter from a completely dry soil. It is a combi-
nation of a static component (σ0

s,dry e.g. due to soil texture, roughness 
etc.) and a dynamic component due to vegetation phenology. Vegetation 
growth leads to an increase in the dry reference, which indicates that the 
change in backscatter in response to a given change of soil moisture is 
assumed to be less than that during the bare soil period (Wagner et al., 
1999). Note that this implicitly assumes that any change in the sensi-
tivity to soil moisture is entirely due to the change in attenuation, and 
neglects any changes in double bounce or multiple-scattering. 

The vegetation optical depth (VOD) is a measure of the degree to 
which the vegetation attenuates backscatter from the soil, and is a 
parameter of the Water Cloud Model (Attema and Ulaby, 1978). 
Vreugdenhil et al. (2016) showed that the VOD can be expressed at any 
time step as the difference between the sensitivity of backscatter to soil 
moisture changes in bare soils and the observed sensitivity attenuated by 
the vegetation in terms of the dry and wet reference as follows: 

VOD(t) =
− cosθ

2
ln(

σ0
wet − σ0

dry(t)
σ0

wet − σ0
s,dry

) (4) 

The value of σ0
wet was determined by averaging the highest back-

scatter values observed during the soil moisture peaks throughout the 
season. Vreugdenhil et al. (2016) used the Integral Equation Method to 
model backscatter and, in particular, to estimate σ0

s,dry. In this study, the 
tower-based measurements of radar backscatter are combined with in 
situ soil moisture data to estimate the dry reference. Following Wagner 

et al. (1999) and Attema and Ulaby (1978), it is assumed that for a given 
vegetation water content, radar backscatter and soil moisture are line-
arly related. VWC influences the slope of this linear relationship. 
Therefore, a linear fit is obtained for a dynamic window (1–3 days) 
during which it is assumed that VWC is relatively constant. The dry 
reference σ0

dry(t) varies in time due to vegetation growth, so it was ob-
tained by fitting a linear model between backscatter and soil moisture 
during a moving window, and extrapolating to determine the back-
scatter that would corresponds to a completely dry soil. The static 
component of the dry reference (σ0

s,dry) was estimated based on the 
backscatter data from 1 to 3 May. This corresponds to the period after 
planting (April 13) and during the formation of the first leaves (see 
Table 2). Estimating σ0

s,dry during this period, rather than the bare soil 
period directly after planting, ensures that the soil surface has been 
smoothed by several irrigation events (see Fig. 4(b) and (c)), and that the 
roughness controlling σ0

s,dry is as close as possible to roughness under the 
growing canopy. The length of the dynamic window for the estimation 
of σ0

dry(t) was obtained using a rule-based decision tree. The window 
should be as short as possible to minimize the variations in vegetation 
water content. However, it needs to be long enough to ensure that there 
is some variation in soil moisture (and backscatter), and that sufficient 
data are included to obtain a reasonable goodness of fit, defined here as 
R2 > 0.7 and P <0.05. The leaf wetness sensor data were used to 
distinguish between backscatter data obtained in the presence (wet) or 
absence (dry) of SCW due to dew or interception. The dry reference was 
determined separately for these two conditions. Hence, two time series 
of VOD were obtained. VODdry indicates the attenuation due to internal 
vegetation water content alone. It is the estimate of VOD obtained in the 
absence of any SCW. VODwet is the estimate of VOD based on observa-
tions obtained when SCW was present due to dew or interception. 

Fig. 1. Illustration of the wet reference (σ0
wet), and static components (σ0

s,dry) and dynamic components of the dry reference (σ0
dry) as three components of the TU Wien 

soil moisture retrieval method along with radar backscatter coefficient (Steele-Dunne et al., 2019). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Table 2 
Description of BBCH codes and growth stages of sweet corn.  

Period Date DAP BBCH Description 

Early season 
Apr 27 14 13 Leaf development - 3 leaves (V) 
May 11 28 21 Beginning of tiller formation (V) 

Mid season 

May 18 35 30 Beginning of stem elongation (V) 
May 23 40 51 Beginning of tassel emergence (V) 
May 28 45 55 Middle of tassel emergence (V) 

Late season 
Jun 1 49 63 

Male: Beginning of pollen shedding (R) 
Female: tips of stigmata visible (R) 

Jun 8 56 69 End of flowering (R) 
Jun 13 61 73 Development of suit - Early milk (R) 

V = Vegetative stage; R = Reproductive stage. 
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4. Results 

4.1. Hydrometeorological data 

4.1.1. Weather data 
Daily precipitation and irrigation and 15-minute air temperature, 

relative humidity, and solar radiation are presented in Fig. 2. The early 
season (26 April to 18 May) was hot and dry with strong daily cycles in 
air temperature and relative humidity. Irrigation was applied at 
midnight on 8 occasions to ensure moisture availability for plant 
growth. During the mid-season (19 May to 30 May), rainfall occurred on 
most days with three particularly heavy rainfall events on 21, 27 and 30 
May. Nighttime temperatures were generally warmer than in the early 
season, so the amplitude of the daily temperature cycle was less than 
during the early season. The late-season was dry and warm with high 
temperatures and solar radiation and a few small rain events. 

4.1.2. Root zone soil moisture 
Fig. 3 shows the volumetric soil moisture (θ) at five depths. In gen-

eral, soil moisture at 5 and 10 cm were highly affected by irrigation and 
precipitation events, while the soil moisture content was mostly stable at 
20, 40, and 80 cm depth. The soil moisture at 80 cm depth was only 
affected by very heavy rainfall events. The effect of midnight irrigation 
during the early season can be seen as a rapid increase in 5 cm and 10 cm 
soil moisture, followed by a clear dry down. The soil moisture at 20 cm 
was slightly affected by irrigation events, but the water did not infiltrate 
to the sensors at 40 and 80 cm. During the mid-season, heavy rain events 
led to several abrupt increases throughout the root zone. Three intense 

rain events from 21 May to 1 June resulted in higher soil moisture 
content at 10 and 20 centimeters compared with soil moisture at 5 
centimeters. The dry period from 2 June to 11 June resulted in a sig-
nificant decrease in soil moisture at all depths. The minimum soil 
moisture observed in situ was 0.107 m3 m− 3. This value will be 
considered as “dry soil” for the estimation of the dry reference. 

4.1.3. Interception and dew data 
Fig. 4 shows the presence and duration of water on the leaf wetness 

sensors at three different heights. Fig. 4(a), (b), and (c) shows results 
from the sensor installed at the upper, middle and lower canopy 
respectively. 

During the early season, the canopy surface wetness was related to 
the presence of dew and midnight irrigation practices. During the mid- 
season, the surface of the canopy was mostly wet due to the frequent rain 
events. Fig. 4(d) shows the number of days on which SCW (dew or 
interception of precipitation/irrigation) was present as a function of 
time of day. Dew is almost always present from midnight until around 10 
AM. The presence of SCW is 3.05 times more likely between 12 AM and 
10 AM than between 11 AM and 11 PM. 

4.2. Crop development 

Data on crop development are shown in Fig. 5 and Table 2. While 
corn height continued to increase until the end of the season, the LAI 
reached its maximum value around 23 May. Slight variations in LAI are 
observed after this date due to variability within the field. However, leaf 
VWC (Fig. 5(a)) and leaf dry biomass (Fig. 5(b)) suggest that leaf 

Fig. 2. Time series of meteorological data collected by Florida Automated Weather Network: (a) daily rainfall and irrigation (mm d− 1), (b) air Temperature at 2- 
meter height (◦C), (c) relative humidity at 2-meter height (%) and d) solar radiation at 2-meter height (W m− 2). 
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formation stabilized after this date. On 23 May, the dry biomass of both 
stems and leaves was almost equal but the stems account for 65% of the 
total VWC. The formation of corn ears at the start of June is clear from 
the increase in both dry biomass and ear water content. The stem VWC 
decreases by around 30% (− 0.8 kg m− 2) from 1 to 8 June due to a 
combination of ear formation and separation, the decline in root zone 
soil moisture due to warm and dry weather conditions, and the start of 
senescence. 

4.3. Time series of L-band backscatter and derived indices 

Fig. 6(a) shows the seasonal variation in the observed radar back-
scatter. The increasing trend in backscatter during the early stage (27 
April to 18 May) is due to crop growth. It is particularly clear in XP and 
VV, which are less sensitive than HH backscatter to soil moisture. 
Fluctuations of up to 5 dB are observed in all polarizations after irri-
gation events. The influence of biomass accumulation on backscatter 

Fig. 3. Averaged volumetric soil moisture (m3 m− 3) from two pits on different depths (5, 10, 40, and 80 cm). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Presence of SCW resulted from precipitation, irrigation, and dew on detected from (a) upper sensor, (b) middle sensor and (c) lower sensor. The red star on 7 
May shows the installation date for the upper sensor. Colored squares represent detection of water in the sensors for at least 15 min during that hour. (d) The percent 
of days that SCW was presented at each hour of the day. (e) The picture of leaf wetness sensors at early stage. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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dynamics during the mid-season (19 – 31 May) is limited because the 
soil and vegetation are both wet for much of this period, resulting in 
persistently high backscatter. The lack of precipitation or irrigation from 
June 1 (Fig. 2) results in a drydown in the root zone (Fig. 3), and 
decrease in stem VWC (Fig. 5), which result in a decrease in cross-pol 
backscatter from − 16 dB to − 21 dB. Ear development from 2 to 12 
June coincides with an overall increasing trend in XP- and VV-pol 
backscatter, with short-term variations corresponding to the precipita-
tion events on 5 and 11 June. 

In a previous study (Vermunt et al., 2020), the Tor Vergata Model 
(Bracaglia et al., 1995; Della Vecchia et al., 2006) was used to simulate 
the observed backscatter using the soil moisture and vegetation data 
discussed in Section 2.1. In addition to providing the total backscatter, 
the Tor Vergata model simulations also provide some insight into the 
relative importance of different scattering mechanisms to total back-
scatter and how this changes throughout the growing season. Direct 
scattering from the ground dominates co-polarized backscatter in the 
early season. Increasing biomass leads to attenuation of direct scattering 

Fig. 5. Seasonal pattern of (a) vegetation water content (kg m− 2) per constituents and leaf area index, and (b) dry biomass (kg m− 2) per constituents and canopy 
height (cm). Phenological stages are shown by BBCH codes, which are explained in Table 2. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Complete time series of L-band (a) HH, VV, and cross-polarized (XP) radar backscatter, and (b) CRs (CRV, and CRH) and Radar Vegetation Index (RVI). Light 
blue vertical lines indicate the presence of SCW during the radar acquisition. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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and increased double-bounce and multiple scattering between the 
vegetation and ground in both HH and VV. Direct scattering from 
vegetation dominates after mid-May, with double-bounce as the second 
largest contribution. This term is more significant in HH than VV and 
ensures some sensitivity to soil moisture throughout the growing season. 
In contrast, σXP

◦ is dominated by direct vegetation scattering as soon as 
the vegetation emerges, with limited influence of soil moisture due to 
multiple scattering between the vegetation and ground. 

In Fig. 6(b), CRs and RVI data clearly follow plant development, 
increasing steadily from 27 April to 28 May. The steady decrease in both 
CRs and RVI data from 28 May to 5 June coincides with the general 
decrease in stem VWC in response to high evaporative demand and 
decreasing root zone soil moisture availability (Fig. 2). The differences 
among the two CRs and RVI are greatest in the early season, i.e. before 
18 May. The difference between the V-pol and H-pol CRs, in particular, 
can be attributed to the difference between HH and VV-pol backscatter 
during the early season due to the difference in their sensitivities to soil 
moisture and vegetation. The presence of system noise in the HH data 
partly explains higher variability in the CRH at this time. The CRV and 
CRH converge after 18 May when backscatter is dominated by vegetation 
scattering. The divergence from 5 to 10 June may be attributed to the 
difference in sensitivity of VV and HH to changes in ear and stem VWC. 

Fig. 7 shows the mean daily cycle of the radar backscatter for the 
period from June 1 to June 13. This specific period was chosen because 
the limited precipitation means that the SCW is primarily due to the 
presence of dew, and the corn has reached maximum biomass. There is 
clear daily cycle in radar backscatter in response to accumulation and 
dissipation of dew (shown in Fig. 4) and variations in internal water 
content (VWC). The maximum value is observed at the acquisition of 
7:30 AM in VV and cross-pol, coinciding with the maximum dew accu-
mulation. The minimum backscatter occurs in the late afternoon in all 
polarizations when the VWC reaches its minimum value. The increase in 
backscatter between 1:00 PM and 3:00 PM is due to the influence of rain 
events on 6 and 11 May. The range of the mean daily cycle in backscatter 
during this period is 0.78, 1.02, and 0.96 dB in HH, VV and cross-pol 
respectively. In Section 4.4, it will be shown that even larger varia-
tions are observed in the early and mid-season. A detailed discussion 
about the daily cycle of backscatter can be found in Vermunt et al. 
(2020). 

4.4. Effect of surface canopy water on morning radar backscatter 

Fig. 8 shows the difference in radar observables acquired during 
early and late morning, i.e. in the presence and absence of SCW. Dawson 
and Goldsmith (2018) found that the presence of SCW influenced 
cellular, leaf and whole-plant water relations through its role in sup-
pressing transpiration and changing water potential. It is also assumed 

that the plant water potential has finished equilibrating with the soil by 
6 AM and will not continue to rise during the mid-morning period 
(Slatyer and Markus, 1968). Therefore, it is assumed here that the 
presence of SCW limits transpiration, so that the change in internal 
water content between the 6 AM and late morning observations is 
limited. 

Note from Fig. 8(a), that the coincident difference in soil moisture is 
less than 0.01 m3m− 3, However, it is important to note that variations in 
backscatter in the early season may be affected by dew formation on the 
soil surface (Vermunt et al., 2020). The formation and dissipation of dew 
on the soil surface will not influence the observed 5 cm soil moisture, but 
will affect backscatter. 

Fig. 8(a) shows that early morning backscatter is higher than late 
morning backscatter by up to 1.02 dB for co-pol and 1.27 dB for cross- 
pol, and can reach up to 3.56 dB (σVV on 9 May). Note that these dif-
ferences are not negligible while the dynamic range for HH, VV and XP 
during the growing season was around 11.36, 8.19 and 12.93 dB 
respectively. The magnitude of the difference varies considerably during 
the growing season. Large differences, particularly in VV and XP are 
observed in the early season. However the low fractional cover during 
this period means that this is also influenced by dew on the soil. During 
the mid-season, the growing vegetation results in an increase in direct 
scattering from the vegetation and increased attenuation of the return 
from the soil. Note that large differences of up to 2.77 dB in XP (23th 
May), and 1.49 dB in HH and VV (25th May) occur on days when SCW 
was due to dew rather than interception. Differences of around 1 dB are 
observed in all polarizations in the late season with a maximum value of 
1.37 dB observed in σVV on 11th June. 

Fig. 8(b) shows the difference in early morning CRs and RVI due to 
the dissipation of SCW. On average, the difference between early- and 
late-morning CRs is 0.7 dB, and the average difference in RVI is 0.02. 
These are relatively small compared to the dynamic range of CRs and 
RVI observed in Fig. 6(b). However, the observed sensitivity of XP 
backscatter to SCW (Fig. 8(a)) means that both CRs and RVI are espe-
cially affected by SCW in the mid-season. Differences in this period are 
consistently positive, and reach up to 2 dB and 0.125 in CRs and RVI 
respectively. 

4.5. VOD time series retrieved from dry and wet vegetation 

Fig. 9 shows the dry reference, estimated separately for wet and dry 
vegetation. The annotation σ0

dry− PSCW and σ0
dry− ASCW indicates whether 

the dry reference was estimated from radar observations in the presence 
or absence of SCW. During the early season, sufficient data were avail-
able to estimate the dry reference for both wet and dry SCW conditions 
in VV and XP. Noise in the first few days of HH backscatter (Fig. 6(a)) 
resulted in goodness of fit values lower than our threshold for the linear 
fit between soil moisture and backscatter. Hence it was not possible to 
estimate σ0

dry− ASCW in HH reliably in the early season. Frequent rain 
events during the mid-season meant that there were not enough data to 
calculate σ0

dry− ASCW from 18 May to 1 June. 
Both σ0

dry− PSCW and σ0
dry− ASCW increase during the vegetative stages as 

the fresh biomass increases. Recall that σ0
wet − σ0

dry corresponds to the 
range within which backscatter varies due to soil moisture, and is 
therefore an indication of the sensitivity of backscatter to soil moisture. 
As σ0

wet has a constant value for the growing season, an increase of σ0
dry 

indicates a loss in sensitivity of backscatter to soil moisture as a result of 
vegetation attenuation. The rate of increase in σ0

dry varies per polariza-
tion as backscatter in different polarizations is sensitive to different 
constituents of the canopy. The rapid increase in σ0

dry in VV is due to stem 
elongation, while the more gradual increase in XP corresponds to the 
increase in LAI, which reaches a maximum around 23 May. 

In general, σ0
dry− PSCW is higher than σ0

dry− ASCW. In terms of Eq. (4), this 
means that the estimated attentuating effect of vegetation is higher in 

Fig. 7. Mean daily cycle of co- and cross-polarized backsactter for a 13 day 
period from June 1 to June 13. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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the presence of SCW. The difference between σ0
dry− PSCW and σ0

dry− ASCW, 
depends on polarization, with a larger difference observed in VV than XP 
backscatter. In the absence of reliable data in the early season in HH, it is 
difficult to draw a conclusion about HH polarized data. In the late- 
season, drier weather ensured that sufficient data were available to es-
timate σ0

dry− PSCW and σ0
dry− ASCW. In both VV and HH, σ0

dry− PSCW remains 
relatively flat in the late-season. Temporal variations in σ0

dry− ASCW vary 
with polarization. The increase in VV, for example, coincides with the 
increase in ear water content, while HH and XP are more sensitive to the 
leaf water content. Fig. 10 provides a closer view of the estimated wet 
and dry references in VV polarization during the early stages. While 
σ0

dry− ASCW increases relatively steadily during this period, σ0
dry− PSCW is 

influenced by irrigation events and dew formation. As dew accumulates, 
σ0

dry− PSCW increases, corresponding to a gradual reduction in sensitivity 
to soil moisture at 5 cm depth. 

Fig. 11 shows the VOD for each polarization, estimated using Eq. (4). 
From 5 May onwards, the rapid increase in biomass of all plant con-
stituents (Fig. 5) results in an increase in VOD. The rate at which it in-
creases varies by polarization due to the sensitivity to different 
vegetation constituents. The sharpest increase is observed in VV due to 
the sensitivity to increasing biomass in the corn stems during the early 
stage. 

Recall from Fig. 9 that σ0
dry− PSCW was always greater than σdry− ASCW. 

As a result, VOD values estimated in the presence of SCW are always 
higher than those estimated in its absence. The difference is particularly 
striking in the mid-season when interception following several heavy 
rainfall events results in significant variations in VOD in all polariza-
tions. Fig. 4 showed the persistent presence of SCW in this period. As a 
result, few data were available to estimate σ0

dry− ASCW (Fig. 9) and hence 
VOD (Fig. 11) from dry vegetation during this period. Nonetheless, 
Fig. 11 shows that VOD in the presence of SCW reached up to 0.4–0.5, 
while that from dry vegetation was in the range 0.1–0.2. Three heavy 
rain events (Fig. 2) occurred on 21, 27, and 30 May. Their influence on 
the estimated VOD varies considerably with polarization due to the 
polarization-dependent sensitivity of backscatter to different constitu-
ents of the canopy (Fig. 9). 

During the late-season (1–12 June), both VOD estimates in VV po-
larization increase steadily, coinciding with ear formation (Fig. 5). Be-
tween 1 and 8 June, the difference between VOD estimated in the 
presence and absence of SCW is around 0.1 for VV and HH, though 
barely any difference is discernible in XP. 

4.6. Effect of surface canopy water on the relation between radar 
backscatter data and crop biophysical variables 

Fig. 12 shows how each of the radar observables relates to the bio-
physical parameters of interest in the presence (blue) and absence (red) 
of SCW. The scatter plots and Spearman's rank correlation coefficient (ρ) 
values in Fig. 12 show that cross-polarized backscatter, and the indices 
derived from it, are strongly related to each of the biophysical param-
eters of interest. In general, ρ is consistently lower (by around 0.2) when 
the backscatter data are collected in the presence of SCW. This is true for 
all radar observables and all biophysical parameters. It is also clear that 
increase in backscatter due to SCW (Fig. 6) results in a different rela-
tionship between the radar observables and the biophysical variables, so 
the presence of SCW potentially has a confounding effect on the retrieval 
of biophysical parameters from radar observables. On the other hand, 
the dynamic range of backscatter values is marginally larger when 
backscatter is acquired in the presence of SCW. So, while the relation-
ship may be less well-defined, there is greater sensitivity to the bio-
physical variables. This is clear, for example, in Fig. 12(m to p) where 
the sensitivity of the CRV is higher for wet vegetation than for dry 
vegetation when BBCH < 55. The same is true in Fig. 12(u to x) for the 
RVI, particularly for BBCH < 55. 

Recall from Fig. 5 that the rapid changes in biophysical parameters, 
particularly in VWC and LAI, occur before BBCH = 55. These rapid 
changes result in a strong increasing trend in backscatter, particularly in 
cross-polarization (Fig. 6). In contrast, after BBCH = 55, VWC is quite 
stable and the backscatter is closer to saturation. There is no increasing 
trend after BBCH = 55, but backscatter still varies in response to changes 
in the structure (e.g. ear formation), as well as changes in stem and ear 
VWC, their influence on the relative importance of different contribu-
tions to total backscatter. The domimant contribution to backscatter in 
all polarizations at this time is direct scattering from vegetation. So, the 

Fig. 8. Differences in early morning backscatter from wet and dry vegetation on destructive sampling dates. The difference is calculated between observations at 6 
AM (wet vegetation) minus the first radar observation after the SCW has dissipated ( 10 AM–12 PM). Data are presented for (a) backscatter and soil moisture, and (b) 
CRs and RVI. 
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variations are primarily due to vegetation, but some (limited) sensitivity 
to soil moisture remains due to the contribution of double-bounce. 
Consequently, the ability to relate biophysical parameters to radar ob-
servables is very different before and after BBCH = 55. This can also be 
observed in Fig. 12, where the relationship between the radar observ-
ables and biophysical parameters is not linear over the full range of 
biophysical parameter values. 

Table 3 compares ρ between the radar observables and the bio-
physical parameters for ρ calculated using the whole season, or only the 
period before BBCH = 55. Due to the limited number of destructive 
sampling dates, note that this corresponding number of samples is 21 
and 13 respectively. ρ values for which the corresponding P-vale is 
greater than 0.01 are indicated in bold in Table 3. For BBCH < 55, the 
presence of SCW leads to similar or higher ρ values when cross-polarized 
data are used (e.g. in XP, RVI and CRV) and lower values of ρ when co- 
polarized data are used. When data from the whole season are used, ρ 
values are lower than those obtained using data for BBCH < 55 alone. 
The difference between the two is greater when the radar observables 
were acquired in the presence of SCW (i.e. ”Wet”). 

4.7. Effect of surface canopy water on relation between VOD and 
vegetation water content 

VOD is assumed to depend linearly on vegetation water content ac-
cording to VOD = b * VWC. Fig. 13 shows the linear fit between VOD 
and total VWC for the whole season (a–c) and for the period with BBCH 
< 55. The goodness of fit (R2) is up to 0.34 higher when the linear fit is 
limited to BBCH < 55 (Fig. 13d–e). 

Recall from Fig. 5 that after BBCH = 55, the total VWC remains at 
around 4 kg m− 2, but the stem water content decreases and the ears form 
and separate from the stem. So, while VWC does not change, the internal 
moisture distribution changes and the canopy is undergoing structural 
changes which influence the backscatter (Fig. 6), and VOD (Fig. 10). 
Focusing on the relationship for BBCH < 55, the goodness of fit is > 0.94 
for both VV and XP in the presence and absence of SCW. Values are 
lower for HH polarization, though this may be due to limited data. 
Goodness of fit values are similar in the presence and absence of SCW, so 
the assumption that there is a linear relationship is reasonable in both 
scenarios. Note, however, that VOD values obtained in the presence of 

Fig. 9. Time series of radar backscatter along with the calculated static component (σ0
s,dry), the dry reference for wet vegetation (σ0

dry− PSCW) and dry vegetation 
(σ0

dry− ASCW), and the wet reference (σ0
wet) for co- and cross-polarization data. The green and orange horizontal lines on each plot indicate the wet reference and the 

static component, both of which are constant for the entire growing season. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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SCW (blue) are generally higher, than those obtained in its absence 
(red), and the difference increases with VWC. So, the linear regressions 
between VOD and VWC in the presence and absence of SCW are mark-
edly different. The b parameters are generally much higher when esti-
mated using VOD in the presence of SCW (Table 4). The difference 
occurs regardless of whether b is estimated using data from the entire 

season or the period where BBCH < 55. 

5. Discussion 

Results in Fig. 4 demonstrated that L-band backscatter is influenced 
by the presence of SCW, in the form of both dew and interception. This is 

Fig. 10. Time series of radar backscatter along with the calculated static component (σ0
s,dry), the dry reference for wet vegetation (σ0

dry− PSCW) and dry vegetation 
(σ0

dry− ASCW), and the wet reference (σ0
wet) for VV-pol and period of 3 to 15 May. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 11. Temporal pattern of VOD for wet and dry vegetation computed for (a) VV polarization, (b) HH polarization and (c) XP polarization. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. The relationship between six radar observables and four key biophysical variables based on data from the full growing season. Blue and red indicate that the 
radar observables correspond to acquisitions from wet (including SCW) and dry (no SCW) vegetation. The corresponding Spearman's rank Correlation Coefficients (ρ) 
are in the lower right corner. The vertical dashed line indicates BBCH = 55 (middle of heading stages and start of ear formation). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

S. Khabbazan et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 268 (2022) 112789

13

compatible with previous studies (Gillespie et al., 1990; Hornbuckle 
et al., 2010; Sharma et al., 2020; Vermunt et al., 2020). Fig. 8 showed 
that the presence of early morning dew can contribute to a difference of 
up to 2 dB in L-band backscatter. This is consistent with previous studies 
(Wood et al., 2002; Hornbuckle et al., 2006; Vermunt et al., 2020; 

Sharma et al., 2020). However, here the availability of high temporal 
resolution data from both leaf wetness sensors and tower-based radar 
throughout the entire season allowed us to show that the impact of SCW 
on backscatter varies with growth stage and with polarization. In the 
early season, while the fractional cover was low, the difference between 
SCW and no-SCW conditions were large due to the combined influence 
of dew on the canopy as well as the soil. In the mid-season, the amount of 
SCW is higher due to both interception and dew, and the fact that LAI is 
much higher than the early-season. In the late-season, the LAI is still 
high, but the difference between SCW and no-SCW is lower than the 
early and mid-season because the high biomass means that radar 
backscatter is close to saturation and the SCW is almost entirely due to 
dew rather than a combination of dew and interception. It remains 
challenging to explain the differences observed between polarizations 
because there is a limited understanding of how the presence of droplets 
or a film of water affects the various contributions to total backscatter. 

Table 3 
Spearman's rank correlation coefficients between four biophysical variables and the six radar parameters for dry and wet vegetation at two different growing stages.   

Dry biomass VWC Plant height LAI  

BBCH < 55 Whole season BBCH < 55 Whole season BBCH < 55 Whole season BBCH < 55 Whole season  

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet 

VV 0.87 0.75 0.82 0.61 0.87 0.75 0.86 0.70 0.89 0.74 0.82 0.54 0.89 0.74 0.86 0.57                  

HH 0.90 0.89 0.84 0.76 0.90 0.89 0.86 0.80 0.92 0.89 0.84 0.74 0.92 0.89 0.85 0.74                  

XP 0.92 0.96 0.87 0.74 0.92 0.96 0.90 0.75 0.93 0.96 0.87 0.70 0.93 0.96 0.89 0.66                  

CRV 0.88 0.92 0.89 0.67 0.88 0.92 0.85 0.68 0.90 0.93 0.89 0.64 0.90 0.93 0.83 0.63                  

CRH 0.87 0.80 0.75 0.49 0.87 0.80 0.71 0.47 0.87 0.81 0.74 0.44 0.87 0.81 0.75 0.39                  

RVI 0.92 0.93 0.87 0.68 0.92 0.93 0.83 0.67 0.92 0.94 0.85 0.64 0.92 0.94 0.84 0.61  

Fig. 13. Vegetation optical depth (VOD) calculated for VV- (left), HH- (middle) and cross-polarized backscatter (right), as a function of vegetation water content 
(VWC). Results are shown for the full growing season (a–c), and the period up to BBCH = 55 (d–f). The data, fitted linear regressions and goodness of fit (R2) values 
are shown in blue and red to indicate if they were obtained in the presence (blue) or absence (red) of SCW. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 4 
Regression coefficient (b-factor) for each linear regression between VWC and 
VOD retrieved from VV, HH and XP backscatter.  

Channel 
BBCH < 55 Whole season 

Dry Wet Dry Wet 

VV 0.06 0.08 0.03 0.05 
HH 0.03 0.10 0.03 0.05 
XP 0.03 0.05 0.02 0.04  
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Unfortunatly, current models do not account for the presence of SCW 
(Ulaby et al., 1990; Bracaglia et al., 1995; Monsivais-Huertero and 
Judge, 2011; Monsivais-Huertero et al., 2018; Sharma et al., 2020). 

In addition to backscatter, we also examined the influence of SCW on 
CRs and RVI. These are increasingly used to monitor vegetation because 
they are less influenced by soil moisture as they are normalized with co- 
polarized backscatter (Jiao et al., 2009; Kim et al., 2011; Veloso et al., 
2017; Vreugdenhil et al., 2018; Khabbazan et al., 2019). The difference 
between early morning and late morning values, i.e. in the presence and 
absence of dew, was not zero. In fact, the difference in morning values 
during the mid-season was around a quarter of the dynamic range. This 
suggests that while CRs and RVI may be useful in mitigating the influ-
ence of soil moisture, they are not immune to the influence of SCW. 

The relationships between radar observables (backscatter, CRs, RVI) 
and biophysical variables are most meaningful during the vegetative 
stages as they all monotonically increased in response to the accumu-
lation of fresh biomass. This is consistent with previous studies (Jiao 
et al., 2009; Fieuzal et al., 2012; Jia et al., 2013; Hosseini et al., 2015; 
Huang et al., 2016). In the later stages the backscatter was closer to 
saturation, but it still varied in response to changes in the structure and 
internal distribution of moisture within and among constituents. This 
explains why the Spearman's rank correlation coefficient was lower 
when determined for the whole season rather than the stages where 
BBCH < 55. 

Unlike previous studies, this study explicitly addressed the influence 
of time of day on the relationship between radar observables and bio-
physical parameters. Occasionally, rapid daytime growth can occur in 
the early vegetative stages when a dry spell ends. Generally though, LAI, 
dry biomass and plant height do not vary much on a single day. On the 
other hand, the impact of SCW on backscatter means that the timing of 
observations used to retrieve biophysical parameters matters. If we 
consider the entire growing season, results in Fig. 12 showed that the 
strength of the monotonic relationship between backscatter and the 
biophysical variables is higher (difference in ρ up to 0.25) when one uses 
backscatter collected in the absence of SCW. This is quite consistent with 
decades of research using destructive sampling of vegetation to prove 
that backscatter is sensitive to the dielectric constant of vegetation, 
which is primarily controlled by its water content. However, results in 
Table 3 showed that the lower ρ values were primarily due to the low 
sensitivity of backscatter to biophysical variables when BBCH > 55. 
During the vegetative stages, the ρ values were comparable in the 
presence and absence of SCW. Results for BBCH < 55 in Table 3 suggests 
that stronger relationships (higher ρ) were observed in the presence of 
SCW. This is consistent with the conclusions of earlier studies that 
argued that the presence of SCW made it easier to distinguish between 
crop types (Gillespie et al., 1990; Molijn et al., 2018). This is likely due 
to the influence of vegetation geometry on the amount of water that can 
be held by the vegetation. 

However, it is essential to note that the relationship between the 
radar observable and the biophysical parameter is just different due to 
the higher values of backscatter obtained in the presence of SCW. If 
ground data are used to calibrate relationships between radar observ-
ables and biophysical parameters it is essential, therefore, to calibrate 
the relationship for the situation likely to be observed. For example, if 
early morning dew is common, and morning satellite overpasses will be 
used, these relationships need to be determined for wet vegetation. 

VOD estimated using radar backscatter data obtained in the presence 
of SCW was generally higher than that obtained in its absence. This was 
true for all polarizations. The largest differences were found in the mid- 
to late-season, but the dynamics (i.e., the difference between VOD ob-
tained in the presence and absence of SCW) were found to vary by po-
larization. This may be related to the polarization-dependent response of 
radar backscatter to SCW, but the influence of data scarcity cannot be 
overlooked. 

VOD is often used as a proxy for vegetation water content as the two 
are assumed to be linearly related (Konings et al., 2019). However, 

results presented here show that the linear regression coefficient b is 
very different when the backscatter data are obtained in the presence 
and absence of SCW. Higher backscatter values in the presence of SCW 
result in considerably higher b values. It is important to highlight that 
VOD is not a biophysical parameter, but a parameter of an electro-
magnetic model, in this case the Water Cloud Model. The VOD is 
assumed to be a measure of the degree to which the signal from the soil is 
attenuated by the vegetation. However, the VOD time series contain 
artifacts from the manner in which VOD is estimated from this model 
and the validity of any inherent assumptions. For example, multiple 
scattering is not considered. This assumption is particularly problematic 
in the presence of SCW as any enhancement of multiple scattering due 
the presence of droplets or a film of water on the leaves is not accounted 
for. In addition, the methodology involves fitting a relationship between 
backscatter and soil moisture within some time window. The length of 
this window must be long enough to ensure a reasonable fit, but this 
implies that the dry reference (hence VOD) is constant within this 
window. Data sparsity and noise in the data will influence the VOD 
estimate, as will any rapid changes in VOD during the window due to 
growth or water uptake. 

6. Conclusions 

Data from an intensive field campaign were used to investigate the 
influence of SCW on the relationship between L-band backscatter and 
biophysical variables in crop monitoring. Continuous leaf wetness 
sensor data, combined with precipitation and irrigation data were used 
to chart the accumulation and dissipation of dew and interception 
throughout the growing season. These were combined with data from an 
L-band fully polarimetric tower-based radar to quantify the effect of 
SCW on L-band radar observables (backscatter, RVI and CRs), as well as 
the relationship between these observables and biophysical parameters 
of a corn crop. In addition, VOD was estimated to consider the effect of 
SCW on VOD, and its relationship with VWC. 

At the study site in Florida, dew was present on the canopy for most 
days from 12 AM to 10 AM and was found to have a substantial effect on 
backscatter in all polarizations and throughout the growing season. The 
cross-ratio and RVI, often used to mitigate the influence of soil moisture, 
were not immune to the influence of dew and interception. Furthermore, 
it was shown that the presence of SCW affected the relationship between 
L-band observables and biophysical variables. This means that it is 
important to consider daily patterns in SCW and overpass time when 
deciding to retrieve biophysical parameters from radar data. Sentinel-1 
and RCM are in near-polar, sun-synchronous orbits with local overpass 
times at 18:00 and 06:00 hours. Future SAR missions, like NiSAR and 
ROSE-L, are likely to be in similar orbits (Rosen et al., 2017; Pierdicca 
et al., 2019). Daily patterns in SCW should be taken into consideration 
when choosing to retrieve biophysical parameters from ascending or 
descending passes, or by combining data from both. Further research 
exploring the influence of frequency and viewing geometry is strongly 
recommended to support agricultural applications using data from these 
and other current and future SAR missions. 

Results presented here show that the VOD estimate in the presence of 
SCW was higher than those estimated in its absence. In some sense, it is 
acceptable to say that the higher values of VOD from wet vegetation 
indicate a reduced sensitivity to soil moisture. However, this reduced 
sensitivity is not entirely attributable to the attenuation. It is hypothe-
sized that the presence of water on the canopy may be leading to an 
increase in direct scattering from the vegetation, which is also reducing 
the signal that reaches the soil surface. The influence of SCW on multiple 
scattering, and how it might affect sensitivity to soil moisture is entirely 
unknown. This suggests that if VOD is to be used as a proxy for internal 
vegetation water content, backscatter values affected by SCW should not 
be included in the VOD estimate. In areas with strong daily cycles in dew 
or interception, it would be prudent to limit the estimation of VOD to 
satellite radar acquisitions at overpass times less likely to be affected by 
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SCW. 
The conclusions drawn in this study are based on experimental data 

collected in a field experiment of limited duration, with a single crop 
type. Interestingly, similar conclusions were drawn in a recent study 
using VOD obtained from satellite passive microwave remote sensing, 
suggesting that the outcomes of this study are relevant for a wider range 
of cover types. Xu et al. (2021) used VOD data derived from X-band 
(10.7 GHz) measurements by the Advanced Microwave Scanning Radi-
ometer for the Earth Observing System (AMSR-E) in combination with a 
terrestrial biosphere model in order to evaluate the relationship between 
canopy water content (CWC) and leaf surface water (LWs) due to dew 
formation and rainfall interception with VOD at four tropical forest and 
savanna sites in Brazil. They found that LWs accounts for >50% of 
diurnal variation in CWC at all four of the study sites that could make a 
large contribution to diurnal variation in CWC and AMSR-E VOD signals 
over tropical forests. Additional studies, over multiple locations, crop 
and land cover types are essential to characterize the impact of surface 
canopy water on retrievals of soil and vegetation states more generally 
from both active and passive microwave remote sensing. 

All of the above point to an urgent need for an improved under-
standing of microwave interactions with vegetation in the presence of 
SCW. Additional experiments are strongly recommended to examine the 
influence of SCW over a wider range of vegetation. The capacity of 
various crops to store water will depend on their structure and geometry 
(e.g. narrow-leaved or broad-leaved etc.). These data are needed to 
understand how droplets or a film of water on the vegetation influences 
microwave interactions with the vegetation and soil. Inclusion of SCW in 
radiative transfer models of vegetated surfaces is essential to account for 
its influence in retrieval of soil and vegetation states. Furthermore, the 
potential to observe and retrieve SCW using radar remote sensing offers 
many new opportunities in the context of hydrology (Allen et al., 2020), 
and plant physiology (Dawson and Goldsmith, 2018). 
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Vegetation characterization through the use of precipitation-affected SAR signals. 
Rem. Sens. 10, 1647. 

Molijn, R.A., Iannini, L., Mousivand, A., Hanssen, R.F., 2014. Analyzing C-band SAR 
polarimetric information for LAI and crop yield estimations. In: Remote Sensing for 
Agriculture, Ecosystems, and Hydrology XVI. International Society for Optics and 
Photonics, p. 92390V. 

Monsivais-Huertero, A., Judge, J., 2011. Comparison of backscattering models at L-band 
for growing corn. IEEE Geosci. Rem. Sens. Lett. 8, 24–28. https://doi.org/10.1109/ 
LGRS.2010.2050459. 

Monsivais-Huertero, A., Liu, P.W., Judge, J., 2018. Phenology-based backscattering 
model for corn at L-band. IEEE Trans. GeoSci. Rem. Sens. 1–17. https://doi.org/ 
10.1109/tgrs.2018.2803153. 

Nagarajan, K., Liu, P.W., DeRoo, R., Judge, J., Akbar, R., Rush, P., Feagle, S., Preston, D., 
Terwilleger, R., 2013. Automated L-band radar system for sensing soil moisture at 
high temporal resolution. IEEE Geosci. Rem. Sens. Lett. 11, 504–508. 

Ouaadi, N., Jarlan, L., Ezzahar, J., Khabba, S., Dantec, V.L., Rafi, Z., Zribi, M., Frison, P. 
L., 2020. Water stress detection over irrigated wheat crops in semi-arid areas using 
the diurnal differences of Sentinel-1 backscatter. In: 2020 Mediterranean and 
Middle-East Geoscience and Remote Sensing Symposium (M2GARSS). IEEE, 
pp. 306–309. https://doi.org/10.1109/M2GARSS47143.2020.9105171. 

Paloscia, S., Pampaloni, P., 1992. Microwave vegetation indexes for detecting biomass 
and water conditions of agricultural crops. Rem Sens. Environ. 40, 15–26. https:// 
doi.org/10.1016/0034-4257(92)90123-2. 

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the K&rdquo; 
oppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https:// 
doi.org/10.5194/hess-11-1633-2007. 

Penuelas, J., Filella, I., Biel, C., Serrano, L., Save, R., 1993. The reflectance at the 950- 
970 nm region as an indicator of plant water status. Int. J. Rem. Sens. 14, 
1887–1905. https://doi.org/10.1080/01431169308954010. 

Pierdicca, N., Davidson, M., Chini, M., Dierking, W., Djavidnia, S., Haarpaintner, J., 
Hajduch, G., Laurin, G.V., Lavalle, M., López-Martínez, C., et al., 2019. The 
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