
Received: 9 March 2022 Revised: 20 May 2022 Accepted: 23 May 2022

DOI: 10.1002/zamm.202200091

EDITOR ’ S CH OICE

Stress average rule derived through the principle of virtual
power

Nabor Jiménez Segura Bernhard L.A. Pichler Christian Hellmich

Institute for Mechanics of Materials and
Structures, TU Wien (Vienna University
of Technology), Vienna, Austria

Correspondence
Christian Hellmich, Institute for
Mechanics of Materials and Structures,
TU Wien (Vienna University of
Technology), Karlsplatz 13/202, 1040
Vienna, Austria.
Email: christian.hellmich@tuwien.ac.at

Present address
Institute for Mechanics of Materials and
Structures, TU Wien (Vienna University
of Technology), Karlsplatz 13/202, 1040
Vienna, Austria

Funding information
H2020 Marie Skłodowska-Curie Actions,
Grant/Award Number: 764691

Stress and strain average rules are the key conceptual pillars of the wide field
of continuum micromechanics of materials. The aforementioned rules express
that the spatial average of (micro-)stress and (micro-)strain fields through-
out a microscopically finite representative volume element (RVE) are equal to
the (macro-)stress and (macro-)strain values associated with the correspond-
ingmacroscopically infinitesimal volume element (macroscopic material point).
According to the famous contribution of Hashin, stress and strain average
rules are derived from equilibrium and compatibility conditions, together with
(micro-)displacement and (micro-)traction boundary conditions associated with
homogeneous (macro-)strains and (macro-)stresses, respectively. However, as,
strictly speaking, only displacements or tractions can be described at the bound-
ary, the remaining average rule turns out as a mere definition. We here suggest a
way to do without such a definition, by resorting to the principle of virtual power
(PVP) as a means to guarantee mechanical equilibrium: at the boundary of the
RVE, we prescribe virtual (micro-)velocities, which are linked to arbitrary, but
homogeneous virtual (macro-)velocities and (macro-)strain rates, while the lat-
ter are also linked, in a multilinear fashion, with the microscopic virtual strain
rate fields inside the RVE. Considering, under these conditions, equivalence of
the macroscopic and the microscopic expressions for the virtual power densi-
ties of the internal and the external forces yields the well-known stress average
rule and, in case of microscopically uniform force fields, a volume force average
rule. The same strategy applied to anRVEhosting single forces between atomistic
mass points, readily yields the macroscopic “internal virial stress tensor.”

1 INTRODUCTION—MOTIVATION AND SCOPE

Composite material mechanics [1, 2], also referred to as continuummicromechanics [3], is a very successful and versatile
branch of continuummechanics. It describes themechanical behavior of a representative volume element (RVE) ofmatter,
coinciding with the infinitesimal volume of classical continuum mechanics, but being considered, at the same time, as a
finite volume at the microscopic scale, see Figure 1a. Stresses and strains are introduced both at the microscopic and at
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F IGURE 1 Different characteristics of the representative volume element (RVE): (a) scale separation between structural scale and
material scale; (b) RVE coinciding with samples undergoing a classical mechanical test [6]; (c) RVE not coinciding with a sample undergoing
an ultrasonic test with wavelength 𝜆 [3, 7, 8]

the macroscopic level, and their relation is governed by average rules. Hashin [4, 5] considered fields of microstrains and
microstresses depending on a microscopic location variable 𝑥, so that the strain and stress average rules read as

𝐄 =
1

𝑉RVE ∫
𝑉RVE

𝜺(𝑥) d𝑉(𝑥) , (1)

𝚺 =
1

𝑉RVE ∫
𝑉RVE

𝝈(𝑥) d𝑉(𝑥) , (2)

with 𝜺 standing for the linearized microscopic strain tensor, 𝝈 standing for the microscopic Cauchy stress tensor, 𝐄 denot-
ing for the microscopic linearized strain tensor, 𝚺 denoting the macroscopic Cauchy stress tensor, and 𝑉RVE denoting the
volume of the RVE. All the mathematical symbols and abbreviations used in the present paper are summarized in Table 1.
Hashin [4, 5] showed that—in case of kinematically compatible microstrains, and of equilibrated microstresses in the
absence of body forces, respectively—the relations (1) and (2) imply the following boundary conditions for the RVE:

𝜉(𝑥) = 𝐄 ⋅ 𝑥 , ∀𝑥 ∈ 𝑆RVE , (3)

𝑡(𝑥) = 𝚺 ⋅ 𝑛(𝑥) , ∀𝑥 ∈ 𝑆RVE , (4)

with 𝜉 as microdisplacements, 𝑡 as micro-tractions, 𝑛 as outward-oriented unit normal vector, and 𝑆RVE as the surface of
the RVE. Accordingly, Equations (3) and (4) are standardly referred to as the “Hashin boundary conditions” [2]. It should
be noted that the rules (1) and (2) are normally applied simultaneously, and since the boundary conditions (3) and (4)
cannot be applied simultaneously to one and the same RVE, the “Hashin boundary conditions” are less convincing than
they might appear on first sight. In other words, one of the rules (1) and (2) needs to remain a definition, whenever the
other one has been formulated on the basis of equilibrium or compatibility considerations. A very pragmatic way out of
this somewhat unsatisfactory solution was proposed by Hori and Nemat-Nasser [6] by considering the RVE as a (presum-
ably cuboidal or cylindrical) macroscopic sample undergoing a mechanical test, see Figure 1b. Hori and Nemat-Nasser
consider the surface integrals over micro-tractions and micro-displacements as “natural quantities” arising from such a
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TABLE 1 Mathematical symbols and abbreviations

𝔸𝑑 = virtual-strain-rate-related concentration tensor
𝑑 = size of microheterogeneity
𝐝 = microscopic actual Eulerian strain rate tensor
𝐝̌ = microscopic virtual Eulerian strain rate tensor
𝐃 = macroscopic actual Eulerian strain rate tensor
𝐃̌ = macroscopic virtual Eulerian strain rate tensor
𝐄 = macroscopic strain acting on the RVE
𝑒
𝑖

= orthonormal base vector
𝑓 = microscopic volume force

𝑓
𝑖𝑛𝑡

𝑖
= internal force acting on mass point 𝑖

𝐹 = macroscopic volume force
𝑔 = gravitational acceleration field

𝐺𝜌 = microscopic Gibbs potential per unit mass
𝕀 = symmetric fourth-order identity tensor
𝓁 = characteristic length of the RVE
 = structural length
𝑛 = outward-oriented unit normal vector on the surface of the RVE
 = virtual power

 [𝑒𝑥𝑡,𝑖𝑛𝑡] = virtual power of external and internal forces, respectively
PVP = principle of virtual power
RVE = representative volume element

𝑆 = surface of a (macroscopic) volume 𝑉

𝑆RVE = surface of the RVE
𝑡 = microscopic surface force (traction vector)
𝑇 = macroscopic surface force (traction vector)
𝑉 = macroscopic volume
𝑣 = microscopic virtual velocity
𝑉̌ = macroscopic virtual velocity

𝑉RVE = volume of the RVE
𝑥 = microscopic position vector with origin at the center of gravity of the RVE
𝑥̃ = microscopic position vector measured from an arbitrary origin

𝑥̃
𝐶𝐺

= position of the center of gravity of the RVE from an arbitrary origin
𝑋 = macroscopic position vector
𝑥𝑖 = 𝑖th component of microscopic position vector
𝑥

𝑖
= microscopic position vector of mass point 𝑖

𝜆 = wavelength of ultrasonic test
𝜋[𝑒𝑥𝑡,𝑖𝑛𝑡] = virtual power of the external and internal forces, respectively

𝜌 = microscopic mass density
𝝈 = microscopic stress tensor
𝝈̇ = partial temporal derivative of microscopic stress tensor
𝚺 = macroscopic stress acting on the RVE
𝜉 = microscopic displacement vector

𝝎 = spin tensor
div𝑥 = microscopic divergence with respect to variable 𝑥

grad𝑥 = microscopic gradient with respect to variable 𝑥

GRAD𝑋 = macroscopic gradient with respect to variable 𝑋

(Continues)
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TABLE 1 (Continued)

grad
𝑆

𝑥 = symmetrized microsopic gradient with respect to variable 𝑥

∙𝑇 = transpose operator, acting on second-order tensor as ∙𝑇
𝑖𝑗 = ∙𝑗𝑖

⋅ = dot product or contraction product
: = double contraction product

× = cross product|| ∙ || = Euclidean norm||| ∙ ||| = third-order norm
⊗ = dyadic product

mechanical test. By means of micro-stress equilibrium and micro-strain compatibility, respectively, the aforementioned
surface integrals are then transformed into volume integrals over stress and strain, giving way to the average rules (1) and
(2). However, there are cases where the tested sample does not coincide with the RVE: in the context of ultrasonic test
with different frequencies [7, 8], the size 𝓁 of the RVE is governed by the wavelength 𝜆, that is, [3]: 𝓁 ≪ 𝜆, see Figure 1c.
This situation goes beyond the reasoning of Hori and Nemat-Nasser [6].
Hence, we consider the derivation of strain and stress average rules governing simultaneously the behavior of an RVE

as a topic of on-going interest. In this context, we here aim at preserving the conceptual beauty of Hashin’s geometrical
boundary conditions leading to Equation (1), while looking for a simultaneously open rigorous way to derive Equation (2)
from a fundamental principle of continuummechanics. In more detail, we employ the principle of virtual power (PVP) as
stated by Germain [9] in 1973: a mechanical system is in equilibrium if the power performed by the external and internal
forces on any virtual velocity field characterizing the aforementioned system, vanishes. After recalling this principle for a
standard macroscopic continuummechanical system, we employ it for a microscopically finite RVE playing the role of an
infinitesimal volume element at the macroscopic level (see Section 2). Thereafter, we link the microscopic virtual velocity
field to the virtual quantities governing the macroscopically infinitesimal volume element, that is, velocity and strain
rate tensor (see Section 3). Next, the implications for computational homogenization in atomistic systems and continuum
RVEs undergoing large deformations are discussed (see Section 4). The paper is concluded by setting our derivation in
context to somehow related deliberations in the rich field of micromechanics (Section 5).

2 PRINCIPLE OF VIRTUAL POWER APPLIED TO A CONTINUUMMECHANICS
SYSTEMAND ITSMICROSTRUCTURALLY REPRESENTATIVE VOLUME ELEMENTS

The PVP states that a mechanical system is in equilibrium if, for any virtual motion 𝑉̌ defining the type of mechanical
system considered, the virtual power of forces associated with the mechanical system vanishes [9, 10],

(𝑉̌) = 0 , (5)

with the virtual power  being a multilinear form on 𝑉̌. In the case of classical continuum mechanics under quasistatic
conditions, the principle (5) takes the form [9, 10],

𝑒𝑥𝑡[𝑉̌(𝑋)] +  𝑖𝑛𝑡[𝐃̌(𝑋)] = 0 , (6)

with the virtual power of external forces 𝑒𝑥𝑡, the virtual power of internal forces  𝑖𝑛𝑡, with 𝑉̌(𝑋) being any three-
dimensional continuous vector field across all (macroscopic) points 𝑋 of the continuum with volume 𝑉 and surface 𝑆,
and with 𝐃̌(𝑋) as the (macroscopic) virtual Eulerian strain rate tensor, mathematically reading as

𝐃̌(𝑋) =
1

2

{
𝜕𝑉̌

𝜕𝑋
(𝑋) +

[
𝜕𝑉̌

𝜕𝑋
(𝑋)

]𝑇}
=

1

2

{
GRAD𝑋 𝑉̌(𝑋) +

[
GRAD𝑋 𝑉̌(𝑋)

]𝑇}
= GRAD𝑆

𝑋 𝑉̌(𝑋), (7)
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JIMÉNEZ SEGURA et al. 5 of 12

whereby GRADX is the (macroscopic) gradient operator with respect to variable 𝑋, and GRADX
S is its symmetrized

counterpart.
𝑒𝑥𝑡 and  𝑖𝑛𝑡 are linear forms on 𝑉̌ and 𝐃̌, respectively

𝑒𝑥𝑡 = ∫
𝑉

𝐹(𝑋) ⋅ 𝑉̌(𝑋) d𝑉(𝑋) + ∫
𝑆

𝑇(𝑋) ⋅ 𝑉̌(𝑋) d𝑆(𝑋) , (8)

 𝑖𝑛𝑡 = −∫
𝑉

𝚺(𝑋) ∶ 𝐃̌(𝑋) d𝑉(𝑋) , (9)

with 𝐹 as the (macroscopic) volume forces and 𝑇 as the (macroscopic) surface forces.
In continuum micromechanics [3], any infinitesimal volume element d𝑉 around any macroscopic material point 𝑋 is

represented by a microscopically finite RVE with a characteristic size 𝓁; such an RVE carrying all features of a classical
continuum mechanics system at the microscopic scale. In order to maintain the physical relevance of the infinitesimally
small macroscopic volume elements d𝑉, the corresponding RVEs need to be much smaller than the structural length ,
that is, Refs. [3, 11]:

𝓁 ≪  =
||𝚺(𝑋)|||||GRAD𝑋 𝚺(𝑋)||| . (10)

Thereby, the ≪-sign typically refers to a factor [8] of 5 to 10. Applying the PVP to such an RVE yields

𝑒𝑥𝑡
RVE = ∫

𝑉RVE

𝑓(𝑥) ⋅ 𝑣(𝑥) d𝑉(𝑥) + ∫
𝑆RVE

𝑡(𝑥) ⋅ 𝑣(𝑥) d𝑆(𝑥) , (11)

 𝑖𝑛𝑡
RVE = − ∫

𝑉RVE

𝝈(𝑥) ∶ 𝐝̌(𝑥) d𝑉(𝑥) , (12)

so that

∫
𝑉RVE

𝑓(𝑥) ⋅ 𝑣(𝑥) d𝑉(𝑥) + ∫
𝑆RVE

𝑡(𝑥) ⋅ 𝑣(𝑥) d𝑆(𝑥) − ∫
𝑉RVE

𝝈(𝑥) ∶ 𝐝̌(𝑥) d𝑉(𝑥) = 0 , (13)

with 𝑣 as themicroscopic virtual velocities, 𝑓 and 𝑡 as themicroscopic volume and surface forces, and 𝐝̌ as themicroscopic
virtual strain rates, the latter reading as

𝐝̌(𝑥) =
1

2

{
𝜕𝑣

𝜕𝑥
(𝑥) +

[
𝜕𝑣

𝜕𝑥
(𝑥)

]𝑇}
=

1

2

{
grad𝑥 𝑣(𝑥) +

[
grad𝑥 𝑣(𝑥)

]𝑇}
= grad𝑆

𝑥 𝑣(𝑥) . (14)

In Equation (14), gradx denotes the microscopic gradient operator, and gradxS denotes its symmetrized counterpart. This
operator induces the microheterogeneity size 𝑑 as

𝑑 =
||𝝈(𝑋)|||||grad𝑥 𝝈(𝑋)||| ≪ 𝓁 . (15)

Thereby, the ≪-sign refers to a factor of 2 to 3 for spherical or parallel cylindrical inclusions embedded in a continuous
matrix phase [12–14]. Integration by parts of the power of internal forces of the RVE according to Equation (12) yields

 𝑖𝑛𝑡
RVE = − ∫

𝑉RVE

div𝑥

[
𝝈(𝑥) ⋅ 𝑣(𝑥)

]
d𝑉(𝑥) + ∫

𝑉RVE

div𝑥 𝝈(𝑥) ⋅ 𝑣(𝑥) d𝑉(𝑥) . (16)
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6 of 12 JIMÉNEZ SEGURA et al.

with the divergence operator standing for

div𝑥(∙) = ∇
𝑥

⋅ (∙) with ∇
𝑥

=

3∑
𝑖=1

𝜕

𝜕𝑥𝑖
𝑒
𝑖
, (17)

whereby 𝑒
1
, 𝑒

2
, and 𝑒

3
are orthonormal base vectors. Application of the divergence theorem to the first term of the right-

hand side in Equation (16) yields

− ∫
𝑉RVE

div𝑥

[
𝝈(𝑥) ⋅ 𝑣(𝑥)

]
d𝑉(𝑥) = − ∫

𝑆RVE

𝑛(𝑥) ⋅ 𝝈(𝑥) ⋅ 𝑣(𝑥) d𝑆(𝑥). (18)

Insertion of Equation (18) into Equation (16), and of the respective result into Equation (13), yields, after re-arrangement
of the terms integrated over volumes and surfaces, respectively, the following expression:

∫
𝑉RVE

[
𝑓(𝑥) + div𝑥 𝝈(𝑥)

]
⋅ 𝑣(𝑥) d𝑉(𝑥) + ∫

𝑆RVE

[
𝑡(𝑥) − 𝝈(𝑥) ⋅ 𝑛(𝑥)

]
⋅ 𝑣(𝑥) d𝑆(𝑥) = 0 . (19)

As Equation (19) needs to hold for any virtual microscopic velocity field 𝑣, it readily delivers equilibrium conditions for
all microscopic points inside the RVE,

div𝑥 𝝈(𝑥) + 𝑓(𝑥) = 0 , ∀𝑥 ∈ 𝑉RVE , (20)

and Cauchy’s fundamental theorem for the microscopic points at the surface of the RVE,

𝑡(𝑥) = 𝝈(𝑥) ⋅ 𝑛(𝑥) , ∀𝑥 ∈ 𝑆RVE . (21)

3 EQUIVALENCE OFMACROSCOPIC ANDMICROSCOPIC EXPRESSIONS FOR
INTERNAL AND EXTERNAL POWER DENSITIES—STRESS AND VOLUME FORCE
AVERAGING RULES

Still, the RVE-related virtual powers need to be fully governed by the virtual kinematical properties of the infinitesimal
volume elementsd𝑉(𝑋) at themacroscopic scale, that is, being proportional to themacroscopic location-dependentmacro-
scopic virtual velocities and strain rates, 𝑉̌(𝑋) and 𝐃̌(𝑋). Accordingly, we impose the latter two macroscopic quantities
onto the RVE, in terms of the following microscopic virtual velocity fields prescribed at the boundary of the RVE,

∀𝑥 ∈ 𝑆RVE ∶ 𝑣(𝑥, 𝑋) = 𝑉̌(𝑋) + 𝐃̌(𝑋) ⋅ 𝑥 , (22)

noting that Equation (22) can be seen as a modification and extension of the so-called “Hashin boundary conditions” [2].
Expressions (22) and (14) imply an average rule for the virtual strain rates, reading as

𝐃̌(𝑋) =
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝐝̌(𝑥, 𝑋) d𝑉(𝑥, 𝑋) , (23)

which appears as the rate form of the well-known strain average rule, see Equation (1). Note that d𝑉(𝑥, 𝑋) refers to inte-
gration over the microscopic variables 𝑥, at the macroscopic position 𝑋. Within the RVE, the microscopic virtual strain
rate needs to be proportional to the macroscopic strain rate, which we express by a multilinear concentration relation of
the form

𝐝̌(𝑥, 𝑋) = 𝔸𝑑(𝑥, 𝑋) ∶ 𝐃̌(𝑋) , (24)

with a yet-to-be-determined continuous concentration tensor field 𝔸𝑑(𝑥, 𝑋).
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JIMÉNEZ SEGURA et al. 7 of 12

Identification of the RVE-related and macroscopic volume element-related expressions for the power densities of
internal forces, as derived from Equations (9), (12), and (24), yields

𝜋𝑖𝑛𝑡(𝑋) = −𝚺(𝑋) ∶ 𝐃̌(𝑋)
!
= 𝜋𝑖𝑛𝑡

RVE(𝑋) = −
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝝈(𝑥, 𝑋) ∶ 𝔸𝑑(𝑥, 𝑋) d𝑉(𝑥, 𝑋) ∶ 𝐃̌(𝑋) , (25)

where
!
= indicates the bridging of scales. Namely, the internal and external power densities remain the very same phys-

ical quantities, regardless of whether they are expressed in terms of macroscopic or microscopic virtual velocities or
strain rates. An alternative expression for the internal power density as a function of the macroscopic virtual strain rate is
obtained from insertion of Equation (18) into the first integral on the right-hand side of Equation (16), followed by spec-
ifying the corresponding result for the boundary conditions (22) and the equilibrium conditions (20). Accordingly, this
alternative power density expression reads as

𝜋𝑖𝑛𝑡(𝑋) = −
1

𝑉RVE(𝑋) ∫
𝑆RVE(𝑋)

[
𝑉̌(𝑋) + 𝑥 ⋅ 𝐃̌(𝑋)

]
⋅ 𝝈(𝑥, 𝑋) ⋅ 𝑛(𝑥, 𝑋)d𝑆(𝑥, 𝑋)

−
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

[
𝑓(𝑥, 𝑋)

]
⋅ 𝑣(𝑥, 𝑋) d𝑉(𝑥, 𝑋) . (26)

Taking the macroscopic virtual strain rate out of the first integral of Equation (26), and applying the divergence theorem
to this first integral, while considering equilibrium condition (20), yields

𝜋𝑖𝑛𝑡(𝑋) = −

⎡⎢⎢⎢⎣
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝝈(𝑥, 𝑋) d𝑉(𝑥, 𝑋)

⎤⎥⎥⎥⎦ ∶ 𝐃̌(𝑋)

−
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝑓(𝑥, 𝑋) ⋅
[
𝑣(𝑥, 𝑋) − 𝑉̌(𝑋) − 𝐃̌(𝑋) ⋅ 𝑥

]
d𝑉(𝑥, 𝑋) . (27)

Identity of Equations (27) and (25) requires the concentration tensor 𝔸𝑑 to be equal to the identity tensor

𝔸𝑑(𝑥, 𝑋) = 𝕀 → 𝐝̌(𝑥, 𝑋) = 𝐃̌(𝑋) , ∀𝑥 ∈ 𝑉RVE(𝑋) , (28)

and the expression (22) to be not only valid at the boundary, but also throughout the entire volume of the RVE,

𝑣(𝑥, 𝑋) = 𝑉̌(𝑋) + 𝐃̌(𝑋) ⋅ 𝑥 , ∀𝑥 ∈ 𝑉RVE(𝑋) . (29)

Requirement (28), together with Equation (25), yields the classical stress average rule, reading as

𝚺(𝑋) =
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝝈(𝑥, 𝑋) d𝑉(𝑥, 𝑋) . (30)

We note that the derivation of Equation (30), different from the classical derivations [2, 3], did without the requirement
of vanishing volume forces 𝑓.
As regards the latter, the equivalence of the macroscopic and microscopic expressions for the external power density,

that is, of Equations (8) and (11), mathematically reads as

𝜋𝑒𝑥𝑡(𝑋) = 𝐹(𝑋) ⋅ 𝑉̌(𝑋)
!
= 𝜋𝑒𝑥𝑡

RVE(𝑋) =
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝑓(𝑥, 𝑋) ⋅ 𝑣(𝑥, 𝑋) d𝑉(𝑥, 𝑋) . (31)
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8 of 12 JIMÉNEZ SEGURA et al.

Inserting Equation (29) into Equation (31) results in

𝐹(𝑋) ⋅ 𝑉̌(𝑋) =

⎡⎢⎢⎢⎣
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝑓(𝑥, 𝑋) d𝑉(𝑥, 𝑋)

⎤⎥⎥⎥⎦ ⋅ 𝑉̌(𝑋) +

⎡⎢⎢⎢⎣
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝑓(𝑥, 𝑋) ⊗ 𝑥 d𝑉(𝑥, 𝑋)

⎤⎥⎥⎥⎦ ∶ 𝐃̌(𝑋) . (32)

We will show in the following that the term in the second pair of square brackets will vanish if (i) the microscopic volume
forces arise from a microscopically uniform field (such as the gravitational field), and if (ii) the microscopic location is
measured from the center of gravity of the RVE. As a microscopically parallel force field, that is, as a microscopic field of
uniform direction, we choose the gravitational field, which reads mathematically as

𝑓(𝑥, 𝑋) = 𝑔(𝑋) 𝜌(𝑥, 𝑋) , (33)

with the gravitational acceleration 𝑔 and the microscopic mass density 𝜌. Specifying the term in the second pair of square
brackets in Equation (32), for the parallel force field (33), for yields

𝑔(𝑋) ⊗

⎡⎢⎢⎢⎣
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝜌(𝑥, 𝑋) 𝑥 d𝑉(𝑥, 𝑋)

⎤⎥⎥⎥⎦. (34)

We are left with showing that the integral in Equation (34) vanishes if 𝑥 is measured from the center of gravity of the RVE.
Therefore, we adopt a location vector 𝑥̃measured from an arbitrary origin, locating the center of gravity at 𝑥̃

𝐶𝐺
. According

to the very definition of the center of gravity, 𝑥̃
𝐶𝐺

needs to fulfill

∫
𝑉RVE(𝑋)

𝜌(𝑥̃, 𝑋) 𝑥̃ d𝑉(𝑥̃, 𝑋) = 𝑥̃
𝐶𝐺 ∫

𝑉RVE(𝑋)

𝜌(𝑥̃, 𝑋) d𝑉(𝑥̃, 𝑋) , (35)

and since 𝑥 is measured from the center of gravity, it is related to 𝑥̃ and 𝑥̃
𝐶𝐺

through

𝑥 = 𝑥̃ − 𝑥̃
𝐶𝐺

. (36)

Use of Equations (36) and (35) in Equation (34) yields

∫
𝑉RVE

𝜌(𝑥, 𝑋) 𝑥 d𝑉(𝑥, 𝑋) = ∫
𝑉RVE

𝜌(𝑥̃, 𝑋)
(
𝑥̃ − 𝑥̃

𝐶𝐺

)
d𝑉(𝑥̃, 𝑋) =

(
𝑥̃

𝐶𝐺
− 𝑥̃

𝐶𝐺

)
∫

𝑉RVE

𝜌(𝑥̃, 𝑋) d𝑉(𝑥̃, 𝑋) = 0 . (37)

Accordingly, a microscopically parallel force field (i.e., one with a uniform direction at the microscale) delivers the
following volume force average rule

𝐹(𝑋) =
1

𝑉RVE(𝑋) ∫
𝑉RVE(𝑋)

𝑓(𝑥, 𝑋) d𝑉(𝑥, 𝑋) . (38)

4 IMPLICATIONS FOR COMPUTATIONAL HOMOGENIZATION: INTERNAL VIRIAL
STRESSES OF ATOMISTIC SYSTEMS, AND CONTINUUMRVES UNDERGOING LARGE
DEFORMATIONS

Our derivation of the stress average rule also has interesting implications with respect to computational homogenization.
The latter is definitely required when it comes to homogenization over discrete mechanical systems, such as atoms repre-
sented bymass points in a molecular dynamics setting [15]. In such a system, hosted within an RVE, the resultant internal
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JIMÉNEZ SEGURA et al. 9 of 12

force acting on the 𝑖th atom of the assembly is the sum of all interaction forces 𝑓
𝑖𝑗
between this atom and all the other

atoms in the RVE. This reads mathematically as

𝑓
𝑖𝑛𝑡

𝑖
=

∑
𝑗(≠𝑖)

𝑓
𝑖𝑛𝑡

𝑖𝑗
, (39)

with the law of action and reaction (Newton’s third law) requiring that [16, 17]

𝑓
𝑖𝑛𝑡

𝑖𝑗
= −𝑓

𝑖𝑛𝑡

𝑗𝑖
, with 𝑓

𝑖𝑗
× 𝑥

𝑖𝑗
= 0 , (40)

whereby

𝑥
𝑖𝑗

= 𝑥
𝑗
− 𝑥

𝑖
(41)

denotes the vector pointing from position 𝑥
𝑖
to 𝑥

𝑗
.

The virtual power density of internal forces acting on the atomic mass points hosted inside an RVE of volume 𝑉RVE

reads as

𝜋𝑖𝑛𝑡
RVE =

1

𝑉RVE

∑
𝑖

𝑓
𝑖𝑛𝑡

𝑖
⋅ 𝑣(𝑥

𝑖
) =

1

𝑉RVE

∑
𝑖

(∑
𝑗(≠𝑖)

𝑓
𝑖𝑛𝑡

𝑖𝑗

)
⋅ 𝑣(𝑥

𝑖
). (42)

where the virtual velocity 𝑣 according to (29) appears as the mathematical tool for homogenizing, over the RVE, the
discrete mechanical systems made of mass points representing single atoms. In this sense, specification of Equation (29)
for specifying Equation (29) for 𝑥 = 𝑥

𝑖
, and insertion of the result into Equation (42) yields

𝜋𝑖𝑛𝑡
RVE =

1

𝑉RVE

∑
𝑖

(∑
𝑗(≠𝑖)

𝑓
𝑖𝑛𝑡

𝑖𝑗

)
⋅
(
𝑉̌ + 𝐃̌ ⋅ 𝑥

𝑖

)
=

1

𝑉RVE

[∑
𝑖

(∑
𝑗(≠𝑖)

𝑓
𝑖𝑛𝑡

𝑖𝑗

)
⊗ 𝑥

𝑖

]
∶ 𝐃̌ . (43)

Setting equal Equation (43) with themacroscopic “homogenized” continuummechanics expression for the power density
of internal forces, see the left portion of Equation (25), yields the macroscopic Cauchy stress as

𝚺 = −
1

𝑉RVE

[∑
𝑖

(∑
𝑗(≠𝑖)

𝑓
𝑖𝑛𝑡

𝑖𝑗

)
⊗ 𝑥

𝑖

]
, (44)

which is fully equivalent with the expressions, which were quite recently provided by Zhou [18] and Chen and Fish [15].
Actually, an only slight formalistic difference in the latter references arises from the use of Equation (41) in Equation (44),
leading to the following alternative format for the macroscopic stresses

𝚺 =
1

2 𝑉RVE

[∑
𝑖

(∑
𝑗(≠𝑖)

𝑥
𝑖𝑗

⊗ 𝑓
𝑖𝑛𝑡

𝑖𝑗

)]
, (45)

whereby we have made use of Equation (40) and, consequently, of 𝑓
𝑖𝑗

⊗ 𝑥
𝑖𝑗

= 𝑓
𝑗𝑖

⊗ 𝑥
𝑗𝑖
.

We note the brevity and elegance of our approach to the homogenized stresses of Equation (45), when compared to
the more expensive derivations of Zhou [18] and Chen and Fish [15]. In fact, Chen and Fish [15] applied an asymptotic
expansion-based homogenization approach to a periodic discrete system of atomic mass points, while Zhou [18] started
with formulating the balance of linearmomentum in terms of themacroscopic spatial gradient of the homogenized stress,
on the one hand, and of a discrete system of mass points, on the other hand. Subsequent Fourier transformation of the
aforementioned formulation, followed by a particular inversion technique [19], yields an explicit formula for the macro-
scopic stress, which eventually turns out to be fully equivalent to Equation (45). In this context, Zhou [18] particularly
emphasizes that the macroscopic Cauchy stresses according to Equation (45) are only related to the interaction forces
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10 of 12 JIMÉNEZ SEGURA et al.

between atomic mass points, and do not depend on an additional kinetics energy term, which is often motivated by the
famous 1870 paper of Clausius [20]. Zhou’s reasoning is fully consistent with our derivation of Equation (45); and we
may also note that, already as early as 1897, Finger [21] pointed out that mechanical stresses are only associated with the
internal virial, that is, the interaction forces between point forces, and not with additional kinetic energy terms. In this
sense, the macroscopic stresses Equation (45) may be appropriately called “internal virial stresses” or “interatomic virial
stresses.”
Computational homogenization in the classical narrower sense relates to continuous systems undergoing large defor-

mations; and the average rule for the Cauchy stress according to Equation (30) is indeed valid, regardless of whether
the system has undergone small or large deformations leading to its current configuration. Still, for the study of actual
material behavior, the stress average rule needs to be complemented by relations pertaining to geometric compatibility
and (micro-)constitutive behavior. As regards the former, the virtual strain rate average rule (23) naturally motivates to
introduce an actual strain rate average rule of the format [22, 23]

𝐃(𝑋) =
1

𝑉RVE ∫
𝑉RVE

𝐝(𝑥, 𝑋) d𝑉(𝑥, 𝑋) , (46)

and temporal integration over an arbitrary succession of such strain rates allows for the representation of any large
strain deformation [22, 23]. As regards constitutive modeling, Equation (46) can be complemented by thermodynami-
cally consistent, microscopic hypoelasticity, where microscopic strain rates arise from the action of objective micro-stress
rates [22–25]

𝐝 = 𝜌
𝜕2𝐺𝜌

𝜕𝝈 𝜕𝝈
∶ (𝝈̇ + 𝝈 ⋅ 𝝎 − 𝝎 ⋅ 𝝈) , (47)

with the spin tensor 𝝎, the microscopic Gibbs potential per unit mass, 𝐺𝜌, and the partial temporal derivative of the
stress tensor, 𝝈̇. Based on the stress average rule (30), as well as on kinematic compatibility (46) and (micro-) constitutive
behavior (47), a complete formalism for up and downscaling of stresses, strain rates, and spins can be derived [22, 23,
26]. This formalism allows for rigid body motions of microstructural entities, which may evolve independently of the
overallmacroscopic deformation state. The latter phenomenon is called non-affinemicrostructural deformation, and such
deformation patterns are repeatedly encountered, typically so in biological materials [27]. In the more particular case of
affine deformations where the overall elastic energy is fully governed by the deformation gradient (linking the current to
the reference configuration), the Cauchy stresses can be transformed into Piola–Kirchhoff stresses, along with the very
popular hyperelastic formulations linking Piola–Kirchhoff stresses to Green–Lagrange strains. For this case, there exists a
very rich scientific literature on stress and strain averaging rules, as collected in pertinent review papers, such as the one
provided by Saeb et al. [28].

5 DISCUSSION AND CONCLUSION

Widening the perspective on the classical stress average rule in micromechanics, beyond Hashin’s idea [2–5] of an equi-
librated RVE subjected to homogeneous stress boundary conditions (so that the strain average rule becomes a mere
definition) and also beyond the straightforward identification of an RVE with a mechanically tested sample on which
average traction forces are measured [6], we here derived the stress average rule from the PVP. In this context, we note
that we applied the PVP not only to the microscopically finite RVE itself, but also to the macroscopic system consisting
of infinitely many such RVEs seen as infinitesimal volume elements. This way, our derivation does without prescribing
(micro-)tractions at the boundary of the RVE, be they related to homogeneous (macroscopic) stresses or to experimental
measurements. The main theoretical tool enabling this independence are the relations (22) and (23), linking macroscopic
andmicroscopic virtual velocities and their symmetric gradients. In this sense, our derivation obviously extends the appli-
cation range of the stress average rule beyond the confines resulting from its classical derivation, and our new derivation
also upgrades the stress average rule from a “useful definition” to a theoretically sound result arising from the most
fundamental principle in continuum mechanics.
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JIMÉNEZ SEGURA et al. 11 of 12

This gives further conceptual credibility concerning the use of this rule formanymaterial systems described by classical
Mori–Tanaka [29, 30] or self-consistent [3, 31] homogenization schemes. These schemes are based on the stress average
rule, and they are applied all the way from construction materials, such as concrete or wood [32–34], to biological and
biomedical materials, such as bone or ceramic tissue engineering scaffolds [7, 35, 36].
We are aware that both the stress average rule (30), and even the less classical volume force relation (32) have been

reported in the open literature, often in the context of the so-calledHill’s lemma [37], andmost clearly so byNicot et al. [38].
However, the key aspect of the present contribution is to not take the stress average rule as granted (Nicot et al. [38]
introduce it as a definition), but to employ the PVP as a theoretical means for exploring the (micro-)equilibrium of an RVE
the virtual kinematics of which is fully governed by two macroscopic quantities: the macroscopic virtual velocity and its
symmetric gradient (i.e., themacroscopic virtual Eulerian strain rate tensor). Then, the stress average rule and the volume
force average rule for a microscopically parallel volume force field arise as results.
This use of the PVP to explore equilibrium conditions (or in the dynamic case, motion rules) is the target already of the

original paper of Germain [9], where he covered classical and second-order continua. This example has been followed by
very many examples from different branches of the rich field of mechanics and beyond, such as second-order fluid–solid
interaction or poromechanics [39, 40], structural mechanics [41–43], bio-macromolecule homogenization [44], or elastic
parameter homogenization [45].
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