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Kurzfassung

Diese Arbeit untersucht und vergleicht die Eignung von zwei, auf neuronalen Netzen
basierenden, Ansätzen für die medizinische Bilddiagnose von posteroanterioren Thorax-
Röntgenbildern, wobei die Diagnose als Klassifikationsproblem interpretiert werden kann.
Einerseits trainieren wir ein convolutional neural network basierend auf der standard
Deep Learning Literatur. Des weiteren trainieren wir die selbe convolutional Architektur
mit der energiebasierten Methodik, d. h. der Standardklassifikator von p(y|x) wird als
energiebasiertes Modell für die gemeinsame Verteilung p(x,y) neu interpretiert. Dahinter
steht die Überlegung, dass Deep Learning zwar sehr effizient ist und sehr hohe Genau-
igkeiten erreichen kann, aber im Zusammenhang mit der zuverlässigen Quantifizierung
von Unsicherheiten erhebliche Nachteile aufweist, insbesondere in den Bereichen der
Erkennung von Verteilungsabweichungen und der Modellkalibrierung. Sie liefern oft
ßu sichere"Vorhersagen, was in sensiblen, risikoreichen Anwendungsbereichen wie der
Medizin fatal sein kann. Daher ist die Quantifizierung der Unsicherheit für eine breite
Anwendung in der Praxis unerlässlich. Das energiebasierte Modell ist wesentlich flexibler
und kann zur Erstellung eines hybriden Modells verwendet werden, das sowohl generative
als auch diskriminative Fähigkeiten kombiniert. Das führt zu Vorhersagen, welche die
eigene Unsicherheit des Modells viel besser widerspiegeln. Darüber hinaus ist das Modell
vielseitig genug, um für eine Vielzahl anderer zusätzlicher Aufgaben verwendet zu werden,
die in dieser Arbeit kurz untersucht werden, wie z. B. die Erkennung von Ausreißern
und die Generierung von Stichproben/synthetischen Daten. Die Theorie zu den ener-
giebasierten Modellen in dieser Arbeit basieren zu einem großen Teil auf der von Will
Grathwohl und Yann LeCun durchgeführten Forschung. Das Interesse an energiebasierter
Modellforschung hat in den vergangenen Jahren aufgrund von Verbesserungen in der
Technologie und ihrer Eleganz und Flexibilität stark zugenommen. Mit dieser Theorie
können sowohl die Standardklassenwahrscheinlichkeiten als auch die nicht normalisierten
Werte von p(x) und p(x|y) berechnet werden. Wir vergleichen den Deep Learning classifier
und das energiebasierte Modell im Rahmen des von der Stanford Machine Learning Group
veröffentlichten Lungenröntgendataset CheXpert. Die wichtigsten experimentellen Ergeb-
nisse zeigen, dass das energiebasierte Modell zu starken Klassifikationsergebnissen führt
und die Erkennung von Unregelmäßigkeiten in den Daten und Ausreißer im Vergleich
zu einem standardmäßigen Deep Learning Modell verbessert. Gleichzeitig ist es auch in
der Lage Stichproben von hoher Qualität zu erzeugen. In der bisherigen Literatur wurde
festgestellt, dass energiebasierte Modelle auch die Modellkalibrierung verbessern, was
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jedoch nicht vollständig reproduziert werden konnte. Dieser Ansatz ist der erste, der an
medizinischen Bilddaten getestet wurde und Ergebnisse erzielt, die mit dem generativen
und diskriminativen Stand der Technik in einem Hybridmodell konkurrieren.



Abstract

This thesis investigates and compares the suitability of two neural network based ap-
proaches for medical image diagnosis of posteroanterior chest radiographs, where diagnosis
can be interpreted as a classification problem. On the one hand, we train a convolutional
neural network using the standard deep learning methodology. On the other hand we
train the same convolutional architecture using energy based methodology, meaning
the standard classifier of p(y|x) is reinterpreted as an energy based model for the joint
distribution p(x,y). The rationale behind this is that deep learning, while being very
efficient and able to achieve very high accuracies, has significant drawbacks in the context
of reliable uncertainty quantification, specifically in areas of out of distribution detection
and model calibration. They often give overly confident predictions, which can be fatal
in sensitive, high-risk areas of application such as medicine. Thus, uncertainty quantifi-
cation is essential for widespread real-world adoption. The energy based model is a lot
more flexible and can be used to create a hybrid model that combines both generative
and discriminative capabilities, resulting in predictions that reflect the model’s own
uncertainty much better. In addition, the model is versatile enough to be used for a
host of other accessory tasks that are briefly investigated in this thesis such as outlier
detection and sample/synthetic data generation. The energy-based work in this thesis is
based in a large part on EBM research conducted by Will Grathwohl and Yann LeCun.
Energy based modelling research has recently seen a strong increase in interest due to
improvements in technology and its elegance and flexibility. In this setting, the standard
class probabilities can be computed as well as unnormalized values of p(x) and p(x|y).
We compare the deep learning classifier and the energy based model in the context of
medical image classification using the chest x-ray dataset CheXpert, published by the
Stanford Machine learning Group. The main experimental findings showed that energy
based training results in strong discriminative results and improve out of distribution
detection and outlier detection compared to a standard deep learning model, while also
being able to generate samples of high quality. Previous literature has found that energy
based models improve model calibration as well, this could not be fully reproduced. This
approach is the first to be tested on medical image data and achieves results rivaling the
generative and discriminative state-of-the-art within one hybrid model.
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CHAPTER 1
Introduction

Medical imaging is a crucial tool in modern medicine for the diagnosis and treatment
of various ailments Ostensen (2001). It plays a central role in confirming, assessing and
documenting the course of many diseases in response to treatment. There is a variety
of imaging technologies such as ultrasonography, x-rays, mammography, computed to-
mography (CT scans), and nuclear imaging. X-rays were discovered in the late 19th
century by Wilhelm Röntgen Röntgen (1895) in the course of his investigation of special
tubes that emitted unknown types of radiation. Following the publication of his research,
they quickly became a popular diagnostic method. His research caused a sensation for
giving actual view inside the body. Due to their relative non-invasiveness, they do not
require any surgical procedures to expose afflicted areas, and relative simplicity, they
quickly became vital to generate images of the body and they remain one of the most
important tools today Spelic et al. (2010). Chest x-rays specifically, are the most popular
tool for the evaluation of chest pathologies as they deliver a large amount of important
information about a patient using only one image van Beek and Murchison (2019). The
chest contains several of the body’s most important organs such as heart and lungs,
and x-rays allow for a fast assessment of their status van Beek and Murchison (2019).
Eurostat reports diseases of the respiratory system accounted for 7.5% of all deaths in
the EU in 2016 (not including lung cancer) Eurostat (2020) underlining the importance
of fast and accurate chest pathology diagnostic tools in Europe. But also elsewhere, for
instance in developing countries, 80-90% of imaging needs are covered with x-rays and ul-
trasounds, showing how fast and simple diagnostic tools save many lives Shah et al. (2010).

Early in the second half of the 20th Century, x-rays were began to be digitized, leading
to increased development of tools for automatic diagnostics Litjens et al. (2017). Starting
from the 1970s, the evolution of these systems has seen those which are completely
designed by humans, to those that are trained by computers using machine learning
models and example data Litjens et al. (2017), making it possible to automatically trans-

1



1. Introduction

form input x-rays to diagnoses Litjens et al. (2017). The class of models that has been
shown to be highly adept at image classification are deep learning models, specifically
convolutional neural networks (CNNs) LeCun et al. (1998). They provide a scalable
approach to image classification and object recognition tasks. They are characteristic
for having three main types of layers: the convolutional layer, the pooling layer and the
fully connected layer Goodfellow et al. (2016). This combination useful to detect subtle,
low-level features such as edges or shadows which, when combined on an aggregate level,
makes it possible to identify high-level features and patterns.

Work on CNNs has been done since the late seventies Fukushima and Miyake (1982) and
they were already applied to medical image analysis as early as 1995 Lo et al. (1995).
CNN architectures have become the standard instrument for diagnosing medical images,
achieving high accuracies, the proportion of correctly classified images, that challenge
even the human experts in some tasks Litjens et al. (2017). However, high accuracy
is only one part of a successful diagnosis; another important part is uncertainty Gal
(2016). Models may perform well in experimental conditions, but when classifiers are
used for real-world tasks, they tend to fail when the training and test distributions differ
Hendrycks and Gimpel (2016). Simply put, this means that while the model might
indicate high confidence in their output, they completely fail in detecting input firmly
outside of their validate input range, yielding nonsensical results like tumor scores for cat
images Goodfellow et al. (2014). Ideally, classifiers should be able to correctly quantify
the level of uncertainty attached to the their prediction and thus indicate when they are
likely to fail, since their errors have serious repercussions.

The energy based framework could provide an elegant solution to this problem. An
energy based model is a generative model, meaning that it estimates a distribution
over the input data. In doing so, they capture latent dependencies in the data. This is
done by training a function, the energy function. This function returns a scalar output
that expresses the un-normalized probability density of images, the energy LeCun et al.
(2006). Energy can also be understood as a measure of compatibility between input
and response variables, where lower energy means better compatibility. This means the
computer would be able to learn the entire distribution of chest x-rays, and use this
to make good quality predictions, estimate its own uncertainty, generate good-quality
images and detect whether an input fits to the training distribution Grathwohl et al.
(2019) These models are very flexible and can be used for downstream discriminative tasks.

The main focus of the thesis will be the comparison between the energy based framework
and the classical deep learning approach. Specifically, focusing on how accurately the
two approaches classify x-ray images, and how they behave in the wider context of
understanding the underlying data such as identifying nonsensical input.
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1.1. Motivation

1.1 Motivation
Chest radiographs are still the standard diagnostic tool for the evaluation of chest patholo-
gies Litjens et al. (2017). While not without risks, they are accurate when investigating
the overall status of the heart, lungs and skeletal system van Beek and Murchison (2019).
A chest x-ray is essentially a two-dimensional projection of a three-dimensional volume
where several different types of tissue are overlayed, making exact distinction of features
with the human eye difficult Delrue et al. (2011). Radiologists traditionally evaluate
the images directly, diagnosing conditions, categorizing diseases Drake et al. (2009). In
addition to chest radiographs, technological advances have brought forth new imaging
modalities such as multi-slice (volumetric) and multi- energy CT, multi-parametric and
multi-frame (dynamic) MRI, multi-dimensional (3D+time) US, multi-planar interven-
tional imaging, or multi-modal (hybrid) PET/CT and PET/MRI imaging technologies,
giving radiologists many different diagnostic tools to choose from Suetens (2009).

This advance in the state of technology, the growing amount of images, the implicit
urgency that comes with needing a x-ray and the relative shortage of personnel with
the expertise to make a sound analysis, has put radiologists under pressure, increasing
the probability of errors. In a study evaluating the miss rate of non-small cell lung
cancer in patients who had presented with a lung lesion, 19% of cases were missed
Quekel et al. (1999). These cases typically had small lesions, often with overlaying tissue.
Furthermore, diagnostic delays caused 43% of patients to progress into a higher stage
before being definitively diagnosed. Considering these issues and bottlenecks, improving
and automating the analysis of chest x-rays would have an immediate improvement in
patient care van Beek and Murchison (2019). Building on this notion, a separate study
investigated whether a CAD system could detect cancer in the 89 x-rays of patients
that were previously missed by Radiologists. The system was able to identify missed
lesions in 46 of the 89 images (52%) White et al. (2009). A large study in rural Africa,
involving 46,099 participants for screening of tuberculosis, was designed as a performance
comparison between an automatic software to Radiologists both on site and at a remote,
centralized location Melendez et al. (2017). It showed that the diagnostic accuracy of
all three methods was very close, and the performance of the automated software was
comparable to that of expert readers. Hence, the introduction of this system in a rural
setting would be a major benefit for patient care in underserved areas in Africa. Images
can be interpreted and relevant decisions can be made at the point of care, which is
particularly useful in remote areas van Beek and Murchison (2019).

Thus it is evident that there is a great need for more efficient and reliable automated
methods for medical image analysis. Driven by this need, the state of technology has
developed to such an extent that these methods can realistically be integrated into daily
clinical routine Maes et al. (2019). Machine learning, specifically deep learning, has
developed into a crucial technology since the 2010s Goodfellow et al. (2016). Deep
learning models are designed to automatically go through large amounts of data, focusing
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1. Introduction

on the underlying patterns and using this information to make predictions. Due to
an increased number of datasets, a concurrent increase in the sizes of these datasets
ter Haar Romeny (2019b), better computational resources and more efficient learning
methods, deep learning has been able to achieve near human performance in certain areas
Goodfellow et al. (2016). The advances in the digitization of hospitals and investments
in their information systems, means that large databases of medical images and other
medical information (including demographics, clinical findings, blood tests, pathology,
genomics, proteomics) are being built up. Given an appropriate privacy set-up, these
databases could be more accessible for research Maes et al. (2019), improving the quality
of the systems used. As a result, there has been an organic shift from systems completely
designed by humans to those that are trained by computers both with and without
annotations (supervised/unsupervised learning) Litjens et al. (2017).

Deep learning, specifically learning based on convolutional neural networks (CNNs), has
shown great promise in medical applications Greenspan et al. (2016) ter Haar Romeny
(2019a). CNNs, are able to automatically identify low-level features such as edges and
shadows without previous feature engineering. The aggregation of these low-level features
results in high-level features that drive classification Goodfellow et al. (2016). This has
already made them a valuable tool to radiologists for x-rays and CT scans, among other
things, where the analysis is often time-consuming and subject to significant intra- and
inter-observer variability, which could reduce the significance of the clinical findings
Litjens et al. (2017). Using deep learning solutions for diagnostic purposes often involves
the method of classification Litjens et al. (2017). In 2017, the AI platform Kaggle and the
consulting firm Booz, Allen and Hamilton held the Data Science Bowl, inviting people
to develop machine learning tools for the prediction of lung cancer given a chest CT
investigation ?. The competition was based on a training and validation dataset from
the US National Cancer Institute. One of the winners, the medical imaging startup
Aidence from Amsterdam, received regulatory approval in 2017 and subsequently several
studies were undertaken. Their system demonstrated accuracies comparable to that of
experts. The Aidence model is an example of deep learning being successfully applied
to diagnostic tasks. The full system consists of two separate deep learning models to
generate candidate locations (a classification network) and to filter out false- positive
candidates.

Classification can be roughly split into multi-label classification, where an image could fall
into multiple classes, and multi-class classification, where an image can only fall into one
of at least two classes Goodfellow et al. (2016). When an image is classified as a specific
class, it means that the classifier in question, in this case the neural network, calculates
the conditional probability p(y|x), where x represents the input image and y the output
class, which is expressed as a vector of un-normalized scores given by the network. In
the multi-class case, the softmax function, the multi-dimensional generalisation of the
logistic function Goodfellow et al. (2016), is applied to the network output to create a
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1.1. Motivation

normalized distribution of scores, giving the conditional probability. This means that
scores reflect model certainty, i.e. a prediction with high score implies a model is highly
certain about its prediction. However, softmax scores are not appropriate uncertainty
measures; a model can be uncertain even with a high softmax Gal (2016). In fact, with
modern deep learning models there can be a disconnect between the output a trained
model is delivering and whether this output is representative of the likelihood seen in a
set of test data, i.e. models are miscalibrated Guo et al. (2017). It is not uncommon
in real-world situations, that a classification model can receive an input image that is
significantly different from the data it was originally trained on Hendrycks and Gimpel
(2016). For instance, the test could be from a different domain or can shift and change
over time away from the training data. Considering the dataset as a distribution, this
notion can also be expressed as: the training and testing distributions being significantly
different; an input image that is not part of the training distribution is considered out of
distribution. This could be for instance: a mammogram which is given to a network that
was originally trained on chest x-rays, or even a lateral chest x-ray is given to a network
that was trained on posteroanterior chest x-rays. In both of these cases a classifier might
still deliver a high confidence prediction while being wrong. It has been shown that even
if both distributions (training and testing) deal with chest x-rays, but from different
sources, this can have drastic effects on the model’s performance Pooch et al. (2019).
The fact that the models can silently fail in this way, and give no indication of their own
uncertainty, can be a significant deterrent to the large scale adoption of these tools when
diagnosing chest x-rays, or any other type of medical image, even though the benefits
of widespread clinical use of AI technology in radiological diagnosis could be significant.
Considering the fact that human lives are at stake (for example through misdiagnosed
cancer or heart problems), this has serious implications for AI safety Amodei et al. (2016).
Ideally, a model would behave in such a way that predictions are returned with the added
information that the point lies outside of the data distribution and have low confidence
Jiang et al. (2012). Models should know what they do not know Gal (2016). There are
methods to increase the safety and certainty of classifiers by improving out of distribution
detection, robustness and calibration Gal (2016). However, these methods are often
"add-ons" that add to the complexity of the modeling set up, require more data and
increase the need for hardware Goodfellow et al. (2016). Ideally, a framework could
be used where one model is trained on images, in the case of this thesix x-rays, and it
encompasses all necessary attributes to deliver calibrated predictions/diagnoses of chest
pathologies and perform out of distribution detection, i.e. include information about
uncertainty.

Generative models aim to estimate (joint) distributions and allow for the creation of
new samples and confidence bounds that are useful for analysis and decision making
Ghahramani (2015); whereas classifiers deliver point estimates of parameters and pre-
dictions Gal (2016). Generative models have been used in out of distribution detection
for medical images Chen et al. (2018) and while they have delivered good experimental
results, there remains room for improvement. Recently one type of generative model, the
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energy based model LeCun et al. (2006), has been used to achieve good experimental
results on out of distribution detection Liu et al. (2020). This model is of particular
interest as it is very flexible and can accommodate different mathematical settings,
e.g. probabilistic or non-probabilistic LeCun et al. (2006), meaning they estimate a
distribution and it is possible to calculate probabilities. The use of this framework is
the foundation for the creation of a hybrid model that contains both generative and
classification (or discriminative) abilities, delivering highly accurate predictions while
being naturally calibrated and able to detect out of distribution inputs Grathwohl et al.
(2019). Intuitively, this means the model does not just express a class for an image, but it
understands what this means in the broader context of the entire dataset; the probability
expressed by the model means something deeper. Conversely, deep learning classifiers
are only focused on the classification aspect. The hybrid model in this thesis attempts
to realize the idea that one model can organically encompass all necessary attributes
to deliver trustworthy diagnoses and could thus potentially add a lot of value in the
detection of chest pathology.

1.2 Statement Of Problem
There have been significant benefits in using automated systems when diagnosing chest
pathology and supporting radiologists while they are facing rising pressures van Beek
and Murchison (2019). The advent of deep learning suggests that as systems become
more sophisticated and deliver better results, they can significantly contribute to overall
patient care Maes et al. (2019). However, there are significant drawbacks to state of
the art deep learning classifiers that, given the high risk environment that is medicine,
hinder the roll-out of these models into a real clinical setting Gal (2016). While they
are highly confident, i.e. produce predictions with very high scores, it has been shown
that these predictions are at risk of not representing the true likelihood seen in the data,
that is they are uncalibrated Guo et al. (2017). Furthermore, they show an inability to
distinguish between different training and testing distributions, delivering high-confidence
results while actually being incorrect, i.e. they do not perform well in detecting out
of distribution inputs Hendrycks and Gimpel (2016). Overall, they are not well-suited
to quantify (their own) uncertainty, which lowers trust in the technology and slows
widespread adoption in medicine Gal (2016) Pooch et al. (2019). Generative models,
those which can be used to estimate distributions of data, are a useful tool to quantify
uncertainty and perform well on out of distribution detection Gal (2016) but do not
show (close to) state of the art discriminative performance on their own Grathwohl et al.
(2019). Thus, some approaches combine two or more deep learning models to achieve both
good discriminative and generative performance Lakshminarayanan et al. (2017). One
modelling framework that encompasses both discriminative and generative capabilities,
and performs well in both domains, would be desirable.

This thesis investigates if the concept of a unifying framework, in the form of an energy
based model LeCun et al. (2006), is suitable for medical imaging. Specifically, whether
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it is able to achieve state of the art discriminative results, while performing well on
out of distribution detection and delivering calibrated predictions. The energy based
model is compared to a state of the art deep learning classifier. Both approaches are
based on the convolutional neural network architecture, but interpreted and trained in
different ways. This idea has recently been the central theme in an approach that uses
energy based modelling to implement a hybrid model using CIFAR-10 Grathwohl et al.
(2019) Krizhevsky (2009) that achieves good experimental results by delivering calibrated
predictions and performing well on out of distribution detection.

1.3 Aim
The goal of this thesis is to study the suitability of a hybrid energy based model, as
described in Grathwohl et al. (2019), for medical image pathology classification. The
following questions will be addressed:

1. Does training a neural network classifier in a hybrid EBM scheme reach comparable
results to a standard deep learning discriminative training setup?

2. Can the intrinsic generative model of the hybrid setup be utilised for out of
distribution detection?

3. How does EBM training affect the model calibration?

In a nutshell, this work tries to answer if training the same neural network architecture in
an energy based setup, yields comparable discriminative power while meeting significant
requirements for applications in clinical setups. For this a battery of experiments and
tests are performed, described in detail in the following section.

1.4 Methodology
Set Up A neural network based on the WideResNet architecture is chosen and trained
using SOTA deep learning methodology and EBM methodolgy, respectively. The models
are trained on the publicly available dataset chest x-ray dataset CheXpert Irvin et al.
(2019) to discriminate between the four classes: cardiomegaly, lung lesion, pleural effusion
and fracture. The training images are varied in size, namely the following resolutions:
64 × 64, 128 × 128 and 224 × 224. The discriminative power, the calibration and the out
of distribution capabilities of the two models are compared on the different resolutions.

Evaluation

1. Discriminative Power
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• the DL classifier is evaluated using the area under the Receiver Operating Char-
acteristic curve (AUROC) and compared to discriminative results published
by Stanford in Irvin et al. (2019). To reduce overall variability, randomised
resampling is used and an empirical confidence interval of the overall AUROC
is calculated. In addition, visual evaluation using GradCam is generated. This
is a type of visual explanation to make CNN results more transparent by
showing what regions of the image drive classification.

• the discriminative power of the energy based model is also calculated using the
average AUROC and compared to the results generated by the DL classifier.

2. Out of distribution detection

• In the course of an in-depth exploration of the data, an outlier detection is
carried out on the x ray data using (robust) Principal Component Analysis
Candès et al. (2011).

• Out of distribution detection is investigated based using three different out of
distribution datasets:
a) CXR14 Wang et al. (2017)
b) Inbreast Moreira et al. (2012)
c) ImageNet Russakovsky et al. (2015)

PCA is used to carry out a preliminary, non-model based out of distribution
detection to get a first indication of how well the strongest features in the data,
the principle components, can be used to separate the data. Post-modelling,
the two models are exposed to the out of distribution datasets. The Maximum
Prediction Probability is calculated for both models and based on this the
respective AUROCs are calculated and compared Hendrycks and Gimpel
(2016). This will give an insight into how well the models can tell apart data
not part of the training distribution

3. Calibration

• Calibration for both models is evaluated using the expected calibration
error (ECE) Naeini et al. (2015) and with the use of reliability diagrams.

1.5 Structure
The diploma thesis is composed of six chapters and is organized in the following way:

Chapter 2 Related Works A survey of relevant publications are presented, describing
the current state of the art. It focuses on the usage of deep learning in the context of
medical image classification as a whole, as well as specific to the aims of this thesis. The
current state of research on energy based modelling is also reviewed, giving an overview
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of the concepts and tools used in this thesis.

Chapter 3 Introduction to Deep Learning This chapter introduces the deep learn-
ing framework. It motivates and develops the mathematical theory of the neural network
model and details the training procedure for deep learning, highlighting optimisation
methods, architectures, and loss functions.

Chapter 4 Introduction to Energy Based Modelling This chapter is dedicated to
developing the the energy based framework. It motivates and develops the mathematical
and statistical theory of the energy based model, highlighting the different possible inter-
pretations and problems of the model. Furthermore, the training procedure is developed,
specifically MCMC-based method inspired by Bayesian inference.

Chapter 5 Evaluation and Comparison of Energy Based Modelling and Deep
Learning This chapter evaluates some of the characteristics observed in the two frame-
works and highlights their similarities and differences.

Chapter 6 Methodology and Model Design Describes the way the models used
in the experiments are designed and the overall training process of the two frameworks,
including data generation, pre-processing and model-specific training specifications. Fur-
thermore, it is dedicated to laying out how the experiments are conducted, what metrics
are used for measuring the results and how this will give insight into answering the
research questions.

Chapter 7 Results and Discussion Compares the results achieved by the deep
learning model and the Energy Based Model with respect to the the research questions
formulated in 1.3

Chapter 8 Conclusion Presents a thorough discussion of the results, contextualising
them with the initial research questions, and drawing final conclusions.
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CHAPTER 2
Related Work

This chapter focuses on already published literature that has dealt with the topics
addressed in this thesis. First, an overview of literature on convolutional neural networks
and their applications in image classification is given in 2.1.1. This will be extended in
2.1.2 by presenting works that have successfully used deep learning methods for medical
image classification, specifically chest x-rays. Section 2.2 will review literature on out of
distribution detection and calibration. These are two vital concepts that can determine
whether a model will be adopted into a real-life setting or will remain in experimental.
Section 2.3 will review publications on energy based modelling and how it can be used on
medical image classification with a focus on out of distribution detection and calibration.

2.1 Deep Learning

2.1.1 Deep Learning In General

Deep learning in computer vision has been a widely researched topic in the past 2-3
decades that has seen tremendous growth and yielded solutions that deliver incredibly
high accuracies using deep convolutional networks Krizhevsky et al. (2017), Szegedy et al.
(2015) and He et al. (2016). These early breakthroughs ushered in an ongoing period
of high research activity to address increasingly complex problems, with increasingly
complex modelling architectures and on increasingly varied data. For instance: text-to-
image generation models Ramesh et al. (2021), high dimensional image synthesis models
Niemeyer and Geiger (2021) and learning useful representations for images without
incorporating knowledge of the 2D input structure Chen et al. (2020b) or human motion
prediction Ma et al. (2022), to name a few. While deep neural networks have brought a
lot of experimental benefits, this thesis also elaborates on some of their drawbacks. Yuille
and Liu (2021) provides a survey of how much they have "really helped".
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2.1.2 Deep Learning For Medical Image Classification

Deep learning for medical imaging has been a very active field of research. The most
successful convolutional networks have arguably been the U-Net Ronneberger et al.
(2015) and V-Net Milletari et al. (2016) and their variants. There has been considerable
research with them on different image modalities, e.g. CTs and MRIs, and on different
tasks, such as tumor segmentations on the brain Havaei et al. (2017) and liver Christ
et al. (2017). Chest x-rays are one of the most important image modalities since one
image already contains a large amount of important information about a patient’s most
important organs, and they are relatively non-invasive van Beek and Murchison (2019).
In addition, several large, labelled chest x-ray datasets have been published Irvin et al.
(2019) Bustos et al. (2020) Wang et al. (2017) that have encouraged the medical image
community to publish a variety of specialized research, comparisons and surveys. Wang
et al. (2017) published the first large scale results for the application of deep learning
on chest pathologies which served as an inspiration for many papers. Baltruschat et al.
(2019) compares the performance of various approaches to classify the 14 disease labels.
Rajpurkar et al. (2018) compares the performance of an ensemble of deep learning models
to professional radiologists. Novikov et al. (2018) uses a InvertedNet, a convolutional
architecture, to investigate multi-class segmentation of anatomical organs, namely for
lungs, clavicles and the heart. Junior et al. (2021) uses a DenseNet architecture for
cardiomegaly detection. The COVID-19 pandemic has further fuelled research and
development of chest x-ray diagnostic systems, especially early detection and severity
evaluation. For instance, Samala et al. (2021) trains a GoogleNet to assess severity of
COVID and Ibrahim et al. (2021) proposes a network to diagnose COVID-19, among
other diseases. Diagnostic systems based on deep learning methods do not need to be
trained on x-ray data from scratch. Many publications successfully use pre-training,
or transfer learning. In a pre-trained network, the network is first trained on a large
dataset for a different task (typically ImageNet Russakovsky et al. (2015)), and the
resulting weights are used as an initialization for training the model on chest x-rays
Yosinski et al. (2014). This not only increases efficiency but is also very beneficial for the
performance of a model, as summarised in Çallı et al. (2021). Rajpurkar et al. (2017) uses
transfer-learning with fine tuning, which raised the discriminative results on chest x-ray
multi-label classification even higher. This thesis will leverage the benefits of pre-training
and also generate highly accurate predictions.

2.2 Out of Distribution Detection and Calibration In Deep
Learning

2.2.1 Out Of Distribution Detection

Besides creating highly accurate models, this thesis is focused on the context, if there is
any, that network predictions deliver. Specifically, one important question to address
is whether a CNN can discern between images that are from the distribution it was
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trained on and those that are not. This is known as out of distribution detection (OOD).
OOD has been studied in a series of publications which describe the phenomenon and
offer possible solutions. Hendrycks and Gimpel (2016) is the defacto state of the art
reference on this subject and provides ways to measure how well a classifier detects out
of distribution samples. Bevandić et al. (2018) and Chen et al. (2020a) propose ways to
perform robust out of distribution detection. Hendrycks et al. (2018), Hsu et al. (2020)
and Lee et al. (2018) develop various methods to detect OOD samples. The importance
of OOD has greatly increased in the last 3-5 years, especially in sensitive areas such as
medical image classification. Cao et al. (2020) provides a benchmark for medical out of
distribution detection. Pooch et al. (2019) and Chen et al. (2018) investigate the effects
of OOD for the medical images, specifically chest x-rays, and finds that these can have
drastic effects on the generalization of models and hinder real-world use.

2.2.2 Calibration

OOD is often viewed in conjunction with calibration. Calibration describes the situation
whether a model delivers confident predictions, i.e. estimates representative of the true
correctness likelihood in the data. Simply put, if a model predicts a disease with 90%,
then this disease should also have a prevalence of 90% in the data. This can be a major
challenge, especially with the strong class imbalances that often occur in medical data.
Hence, calibration also give an intuition about how uncertain a model’s prediction is.
Rajaraman et al. (2022) publishes a systematic analysis of the effect of model calibration
on its performance on chest x-rays, using deep learning classifiers. Guo et al. (2017)
highlights the phenomenon that the hoghly accurate classifiers of today tend to be
over-confident and miscalibrated, and evaluates the performance of various calibration
methods on state of the art networks with proposals on possible metrics to measure
calibration and possible solutions. Gal (2016) explores the uncertainty of neural networks
and tools to estimate it. Nguyen et al. (2015) elaborates on the phenomenon of highly
confident predictions by neural networks for nonsensical images. Lee et al. (2017) develops
a simple and unified framework to detect miscalibration and out of distribution samples.

2.3 Energy Based Modelling
Energy based modelling in computer vision was prominently represented in the FRAME
model Zhu et al. (1996) - a Markov Random Field model which is a type of energy model.
This work was extended by Xie et al. (2016) where the energy function is parameterized
by a CNN structure, as it is done in this thesis. Work with these types of models has been
published over several decades in academic literature by Ackley et al. (1985), Hinton et al.
(2006b) and Hinton and Salakhutdinov (2006). But implementations remained small
or theoretical until hardware improved. Central to the work in this thesis are, Du and
Mordatch (2019), Mnih and Hinton (2005), Hinton et al. (2006a) implement EBMs where
inputs are directly mapped to outputs, which inspires the creation of models that could
then be used for downstream classification tasks. The most comprehensive collection
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of EBM theory comes from LeCun et al. (2006) which succinctly builds up the theory
behind the learning and optimization problems in energy based modelling. Grathwohl
et al. (2019), who advocates the usage of EBMs to leverage generative capabilities for
downstream discriminative tasks, serves as the bedrock of this thesis. His work is extended
and explored, for first time, to the medical domain. In fact, EBMs have currently not
been tested on medical image data at all.

The different (probabilistic) EBM publications largely differ in their approach to estimate
a partition function. This thesis uses MCMC sampling to approximate the partition
function. Hinton et al. (2006b) and Salakhutdinov and Hinton (2009) apply Contrastive
Divergence, that is MCMC chains initialized from training data, to estimate the partition
function. Tieleman (2008) advocates the use of its extension: Persistent Contrastive
Divergence, which propagates MCMC chains throughout training. This thesis, as in Du
and Mordatch (2019), Welling and Teh (2011) and Grathwohl et al. (2019), initializes
chains from random noise which and uses the idea of PCD, to keep past samples in
a replay buffer to reduce mixing times. To further increase efficiency, Gradient based
MCMC based on Stochastic Gradient Langevin Dynamics is used for sampling, which
was also published by in Teh et al. (2003) and Xie et al. (2016).

In the context of energy based modelling, out of distribution detection and calibra-
tion has been studied in works such as Grathwohl et al. (2019), Liu et al. (2020) and
Wang et al. (2021), where the generative capabilities of the model are used to determine
out of distribution samples at the same time deliver well-calibrated predictions, out of
the box.
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CHAPTER 3
Introduction To Deep Learning

This chapter will develop the mathematical and statistical concepts that form the
foundation of the deep learning (DL) framework. To begin, the most important notation
used in this chapter is briefly outlined. DL will be motivated and contextualised, before
formally defining the neural network model. Section 3.4.2 will investigate one of the most
important applications of this model: the universal approximation of neural networks.
This will be followed by an analysis of the training process and the optimization problem
solved during training. The section will be closed by describing the development of
network architectures and what kind of architectural set up will be used in this thesis.

3.1 Notation
For any learning model, the relevant spaces on which they act need to be defined. A,
B and C ⊂ A × B are used for the general formulation of input, output and combined
spaces, respectively. Unless otherwise stated, they are considered as subspaces of Rd, Rk

and Rd×k, where k, d ∈ N and k ≤ d. Their lowercase counterparts a, b and c :− (a, b)
will be used to describe elements of the respective spaces. The hat notation will be used
to indicate estimators, that is b̂ is the estimate for an element b ∈ B. Arbitrary functions
will be denoted using f and networks will use the notation G. Weights, sometimes also
called parameters, will be denoted using w and ω; the space of all possible weights will
be written as Ω.

It will be necessary to define a relevant topology for the networks to operate on in order
to prove their approximative capabilities: C(K) := {f : K → R : f continuous} is the
space of continuous, real valued d−dimensional functions. ||f ||∞ := sup

x∈K
|f(x)| denotes

the the supremum norm. The norm gives an upper bound on f , and for two functions
f, g it gives a bound on how much f and g differ from one another - an essential tool to
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determine whether approximation to an arbitrarily close degree is possible.

A measure imposes a notion of size or volume on a set, meaning they convey an idea of
how much space that set takes up relative to the larger space in which it lies Kesavan
(2019). Regular measures exhibit, as their name suggests, structural regularity Kesavan
(2019). In other words, the measure of a compact set like C(K), has finite measure when
it is regular. Conversely, it would not make sense if C(K) were compact but at the same
time took up infinite space. In addition, regular measures enable the use of the Riesz
Representation Theorem Rudin (1987) on a compact K. It tells us that the dual space
is the space of finite, signed regular Borel measures on K defined above. Thus it is an
important concept for proving universal approximation.
The space of finite, signed, regular Borel measures is denoted by:

M := {µ : µa signed Borel measure}

Dual spaces are spaces of linear functionals, that is linear mappings from an arbitrary
vector space V to its space of scalars, such as R or C, with addition and scalar mul-
tiplication defined pointwise Rudin (1974). Any vector space V has a corresponding
dual space V � Bourbaki (1966). Their importance for neural networks becomes clear
by re-visiting the above idea that classification can be described by the search for a
hyperplane that separates data into different classes. The equation of a hyperplane
w�x = θ, where w represents the weight vector, x the input vector and θ ∈ R the thresh-
old (see definition 3.2 the definition of the Rosenblatt perceptron), is a linear functional
on Rn: F : Rn → R, x = (x1, . . . , xn) �→ w�x = F (x) = θ. They are an essential tool for
carrying out the linear algebra operations that are involved when training neural networks.

For probabilistic statements, an underlying probability space with probability measure
P is assumed which exists on the probability space (Ξ, B,P). Where B is the Borel
σ-algebra, Ξ is the set of all outcomes and P : B → [0, 1] is the probability measure. For
a random variable X, E[X] as its expectation. The Lebesgue measure is assumed as a
dominating measure.

3.2 Motivation
The over-arching task addressed in this thesis is the training, evaluating and comparing
of two neural network-based models for the purposes of diagnosing, more generally classi-
fying, chest radiographs. Thus, before going into detail about neural networks and the
specifics of the models explored in this thesis, it is necessary to lay out the foundation of
the learning problem considered in this work: classification in a supervised learning setting.

Supervised learning is a field of statistical learning that uses input-output pairs as exam-
ples to train a model for prescriptive or descriptive purposes Hastie et al. (2009). The key
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difference to unsupervised learning is the fact that output information is available during
training. On a high level, supervised statistical learning models can be distinguished
by their type of output b ∈ B for a given input a ∈ A; problems in which a model
is used to produce an outcome measurement where b̂ ∈ B ⊆ R, or in other words a
quantitative output, are typically referred to as regression problems. On the other hand,
if a model is required to produce a qualitative or categorical output, it is referred to
as a classification problem Hastie et al. (2009). The output of a classification model b̂
is typically part of a discrete, finite set of labels of elements with no specific order, for
instance: B := {malignant, benign}.

Mathematically, learning can be considered a problem of function approximation Hastie
et al. (2009). The output is generated from the input by ways of an unknown, underlying
function f . The learning algorithm can be thought of as a procedure that uses the
training data C to fit a model that approximates this function which performs the given
task well on the training data and also generalizes to unseen data, as determined by a
chosen evaluation metric Berner et al. (2021). For classification specifically, the data is
grouped according to an unknown classification rule and training a classification model
can be interpreted as the approximation of that underlying rule Hastie et al. (2009).
The simplest approach in approximating a classification rule is the assumption of linear
class boundaries. More generally, this means that classifying data can be thought of
as a search for an appropriate space and hyperplane that is able to separate the data
into different categories, with no observation assigned to the wrong category. However,
in reality this is virtually impossible, especially in very large dimensions. On the one
hand this leads to soft margins, i.e. boundaries that allow for some mis-classifications
Hastie et al. (2009), and on the other hand this means that the introduction of non-linear
decision boundaries must be considered.

The support vector machine algorithm Cortes and Vapnik (1995) is able to learn separat-
ing hyperplanes through Lagrangian optimization with strong convergence characteristics.
They can use a non-linear projection to transfer the data into a higher-dimensional space
to more easily find a classification boundary for more complex inputs Cortes and Vapnik
(1995). Depending on the data and the task, computation can become very complex
and require a great deal of domain knowledge Hastie et al. (2009). For example: in this
thesis chest radiographs with a size of 224 × 224 of pixels are used. Taking into account
that they are in gray scale (8 bit depth), this means there are 50176 features. With all
second order terms, this would mean more than 25 billion terms that need to be fit. The
features would be used to manually create new proxy features that would still be able to
accurately represent a patient’s condition, and be useful for fitting a model that could
diagnose other x-rays. This is not only highly complex and, due to the domain, highly
risky, but also highly subjective Nielsen (2015).

A more practical solution to estimate a classification rule that accounts for non-linearity
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and is flexible enough to be used in high dimensions, could be to construct a more
general and automatic approach where the model learns the most important features
itself, directly from the data. This could help in learning better/more organic boundaries
Goodfellow et al. (2016). Neural networks can be used to achieve just that kind of
approach Nielsen (2015). On a high level, neural networks are a parametrized family
of functions with differentiable parameters Berner et al. (2021). They provide powerful
solutions for some of the issues faced when fitting traditional statistical models Goodfellow
et al. (2016):

• There is no need for feature engineering Goodfellow et al. (2016)

• Compared to other modelling frameworks, deep learning can easily deal with
complex types of data such as images, videos and text.

• Deep learning makes it possible to carry out efficient inference with a very high
accuracy. For instance, Niu et al. (2019) implements a ResNet which needs 21ms
to perform inference on images. This is especially useful for real time applications.

Neural networks form the basis of DL, the machine learning technique that has established
itself as the dominant force in artificial intelligence Berner et al. (2021). Especially within
the topic of image classification, deep learning has become the state of the art Berner
et al. (2021). There exists a myriad of ways in which to define deep learning; this thesis
refers to deep learning as techniques where deep neural networks are constructed and
subsequently trained with gradient-based methods Berner et al. (2021). This type of
definition allows for a clean distinction to energy based modelling later on. One of the
most compelling characteristics is a network’s capability to approximate any function
Goodfellow et al. (2016), meaning a neural network will be able to learn a mapping that
approximates the true class boundary to an arbitrarily small degree, no matter the shape
or dimensionality Cybenko (1989). Deep learning enables a systematic, versatile and
automatised approach to classification Nielsen (2015). The following section will put
deep learning into historical context and briefly describe its development over the last
decades.

3.3 Historical Evolution
Before formally defining the neural network model, the details of its architecture and the
extension to deep learning, it is important to know its development over time. This helps
to understand why it has its specific structure, how this helps in approximating any func-
tion and how this enables us to construct highly accurate automated classification systems.

Generally speaking, there were three major waves of increased popularity in deep learning
Goodfellow et al. (2016):
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1940-1960 This era was dominated by trying to build biologically inspired discrimina-
tive models Goodfellow et al. (2016). This was triggered by the works of McCulloch and
Pitts McCulloch and Pitts (1943), who built a logical inference machine inspired by the
inference capacity of the brain: the artificial neuron. These accepted binary inputs and
were aggregated and compared to a pre-defined threshold parameter. If their aggregation
exceeded the threshold, then the neuron would fire, i.e. return 1. Otherwise the neuron
would remain inactive. By using the artifical neuron, it became possible to model simple
boolean functions such as AND and OR. While models were influenced by the neuro-
scientific perspective and the function of the brain, they are not meant to be realistic
representations of biological function Goodfellow et al. (2016). The mid-1950s saw the
development of the first linear models, chief among them the revolutionary Rosenblatt
Perceptron Rosenblatt (1958). The perceptron is a binary supervised learning algorithm
that was inspired by the artificial neuron forms the basis of modern network models
Goodfellow et al. (2016). It takes binary inputs x ∈ {0, 1}d, d ∈ N+, with d indicating
the dimension, and assigns each one with a respective weight w ∈ Rd, indicating that
input’s overall influence on the final result. A weighted sum is calculated and the binary
output is determined by comparing the sum to a pre-defined threshold. The model can
be visualised in figure 3.1.

Figure 3.1: The perceptron model visualized

Training is done by adjusting the weights to minimize the difference between output
and the true label. Perceptrons are not limited to one layer, they can be constructed
with multiple layers by linking multiple neurons together, creating the well-known fully
connected architecture. This gave rise to the extension of the perceptron, the Multilayer
Perceptron (MLP) Goodfellow et al. (2016). However, perceptrons in their original form
were binary and only worked on linearly separable data, meaning it could not account
for more complex domains and problems. This becomes evident when considering a
simple example: using the perceptron to learn the XOR function (exclusive or). This
function is an operation on two binary values, x1 and x2. When exactly one of these
binary values is equal to 1, the XOR function returns 1, otherwise 0. A linear model is
not capable to learning a mapping to imitate this; its positive and negative instances
cannot be separated by a line or hyperplane. For instance: When x1 = 0, the model’s
output must increase as x2 increases. When x1 = 1, the model’s output must decrease as
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x2 increases. However, a linear model must apply a fixed coefficient w2 to x2. In addition,
due to the binary nature of the perceptron and other models of that time, gradient-based
methods for the optimization of the weights could not be used, since the computation of
derivatives necessary for these methods was not possible Goodfellow et al. (2016). This
reason, among others, meant that the machines of that time were incapable of carrying
out the calculations necessary for large networks to work well. Therefore, most work
remained small-scale or theoretical and research activity soon waned.

1980-1995 Traditionally, the weights and thresholds would have been adjusted manu-
ally; however, due to the improvements in technology, automatic tuning algorithms were
being created. The algorithms relied on differentiation techniques, which the Rosenblatt
perceptron did not account for. Thus, research moved away from the binary nature of
early models and started using differentiable and nonlinear activation functions instead,
meaning the weighted sum in equation 3.2 became the input to a nonlinear function
instead of the indicator function. The structure is visualised in figure 3.2

Figure 3.2: The artificial neuron including a continuous, nonlinear activation function
f. Inputs xi are weighted by weights wi and added together before being fed into the
activation function.

While many different activation functions are possible, the sigmoid function was, and
still is, widely used for activation, because it can be seen as a smooth version of the
indicator function used in the Rosenblatt Perceptron and thus acts as a natural extension
for MLPs. The inclusion of different types of nonlinear activation functions allowed
the models to learn more complex functions and process more complex input features
Goodfellow et al. (2016). The term Artificial Neural Network (ANN) became popular
to describe the class of models that is built up in a network fashion, often with fully
connected neurons, with the MLP becoming the quintessential ANN. A major milestone
in this era was the formulation and proof of the universal approximation theorem for
ANNs that used sigmoid activation functions by Cybenko Cybenko (1989).

Interest for neural networks significantly re-emerged when Paul Werbos discovered an
efficient gradient-based method to train networks through propagating errors back through
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the layers of the network and modifying the weights at each node to reduce the overall
error Werbos (1974). The algorithm makes use of the continuous and differentiable
activation functions and computes the gradient of the loss function with respect to
each weight using the chain rule. The chain rule helps to identify how much each
weight contributes to the overall cost and the direction to update each weight to reduce
it. It works one layer at a time from the last layer to avoid redundant calculations of
intermediate terms, thus increasing efficiency Goodfellow et al. (2016). Yann LeCun
published the first successful implementation of the back-propagation algorithm in neural
network training LeCun (1987).

1990-1999 this decade saw significantly lower levels of broad Deep Learning research.
Despite this, important breakthroughs were still being achieved, such as the development
of Convolutional Neural Networks (CNNs) by Yann LeCun LeCun et al. (1998) and Long
Short-Term Memory Networks (LSTMs) Hochreiter and Schmidhuber (1997a). CNNs
excel at computer vision tasks and were particularly important for the advancement
of deep learning. They use the convolution operation and specific aggregations called
poolings to take into account that neighbouring pixels often share information. In
other words, CNNs have locally receptive fields, meaning they collect information jointly
from spatially close inputs Berner et al. (2021). In addition, they are invariant under
translation allowing them to share parameters, which makes training a lot more efficient
Goodfellow et al. (2016). A CNN is built by stacking multiple convolutional blocks,
layers consisting of the convolution and pooling operations, on top of a fully connected
architecture known from ANNs that produces the class estimates. Conceptually speaking,
CNNs enable efficient learning based on different levels of composition Goodfellow et al.
(2016), meaning that multiple units, or neurons, work together to identify low-level
features in the data and, when combined, the network is able to make a decision based of
these combined high-level features. These breakthroughs set the scene for the upcoming
third wave of popularity.

2006-Present Improved hardware, mainly the development of GPUs, more structured
and readily available data (ImageNet, MNIST) as well as more efficient algorithms Hinton
et al. (2006b) led to increased research activity and a significant improvement to existing
models. The general trend was to increase the number of layers and go deeper, while
incorporating sophisticated mechanisms to be as efficient as possible Goodfellow et al.
(2016). A trailblazing network implementation was the CNN AlexNet Krizhevsky et al.
(2017). AlexNet won the ImageNet competition in 2012 by an 11% margin with 85%
accuracy. It impressively demonstrated the benefits of CNNs and deeper architectures
running on GPUs. This became the advent of deep learning as we know it today: very
deep networks that are capable to operate in very high dimensional spaces in sensitive
and complex domains, capable of processing the compositional structure of natural data.
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3.4 The Artificial Neural Network
The Artificial Neural Network (ANN) represents a large class of models that are built up
as a network of inter-connected units, called neurons. The term is very broad and has
become synonymous with many different concepts within neural network theory, such as
individual networks and training methodologies Goodfellow et al. (2016). The preceding
historical contextualisation 3.3 showed how the ANN concept grew from the perceptron
Rosenblatt (1958), by combining multiple layers and different activation functions in
order to account for complex domains and features. These networks are considered
an important building block of many more sophisticated architectures, enabling the
development of the deep architectures currently seen in today’s research. The most
recognizable architecture is the fully connected architecture , where all neurons in one
layer are connected to all neurons in the subsequent layer.

A class of ANNs that encompasses many of today’s essential neural network implemen-
tations is feedforward networks Goodfellow et al. (2016). They are characterized by a
directed weighted graph where the information travels only in one direction: forward
Goodfellow et al. (2016). The information travels from input node to output node with
no cycles or loops and each neuron has directed connections to the neurons in the next
layer Goodfellow et al. (2016). The standard and original example of an ANN is the
MLP; ANNs and MLPs are often seen as synonyms. Another important example of a
feedforward network for the context of this thesis is the Convolutional Neural Network
(CNN) LeCun et al. (1998) Goodfellow et al. (2016). Feedforward networks stand in
contrast to another important type of ANN: the Recurrent Neural Network (RNN) and
its extension the Long Short-Term Memory Network (LSTM) Hochreiter and Schmidhu-
ber (1997b). These are derived from feedforward networks and can be used to process
inputs of varying lengths and are particularly useful in speech recognition Hochreiter and
Schmidhuber (1997a) Abiodun et al. (2018). They are characterized by allowing cycles
in the flow of information, meaning they keep information from prior inputs to influence
the current input and output Goodfellow et al. (2016). RNNs will not be a subject of
this thesis.

3.4.1 Definitions
The fundamental component of the Artificial Neural Network is the artificial neuron.
Researchers McCulloch and Pitts developed a mathematical formulation that modelled
the functionality of real biological neurons McCulloch and Pitts (1943). The core logic
behind their work was that neurons communicate with each other by being activated;
the activation of a neuron is binary and depends on whether the combined inputs are
equal or larger than a threshold McCulloch and Pitts (1943) Goodfellow et al. (2016).
This logic is summarised in definition 3.1 McCulloch and Pitts (1943) Petersen (2020):

Definition 3.1 (McCulloch and Pitts Neuron). Let x ∈ {0, 1} be a binary input vector;
1R+ : R → R is the indicator function with 1R+(x) = 0 for x < 0 and 1R+(x) = 1
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everywhere else; furthermore, wi ∈ {−1, 1} are weights for i = 1, . . . , d, where d ∈ N
is the number of inputs; θ ∈ R is a pre-defined threshold, then the artificial neuron is
defined as

x �→ 1R+

�
d�

i=1
wixi − θ

�

The threshold determines whether the neuron in question is activated or not. If the
weighted sum of the inputs exceeds the threshold the neuron is activated, otherwise not.
Hence the name activation function Goodfellow et al. (2016). Frank Rosenblatt extended
the definition of the neuron, making it more flexible and expressive Rosenblatt (1958).
The key difference to the artificial neuron was that he introduced the usage real-valued
weights. This gave the weights actual meaning because it expressed how important the
corresponding input was for the output, this was not possible in the McCulloch Pitts
framework. The Rosenblatt Perceptron is defined in definition 3.2:

Definition 3.2 (Perceptron). Let x ∈ {0, 1} be a binary input vector; 1R+ : R → R
is the indicator function with 1R+(x) = 0 for x < 0 and 1R+(x) = 1 everywhere else;
furthermore, wi ∈ R for i = 1, . . . , d are the randomly initialized weights, where d ∈ N is
the number of inputs; θ ∈ R is the pre-defined threshold, then the Rosenblatt Perceptron
is defined as

classification output =
�

1 if w� · x + θ ≤ 0
0 if w� · x + θ > 0

(3.1)

The Perceptron is also known as a linear discriminator Hastie et al. (2009). On a
high level, it can be thought of as a decision-making device that weighs up the evidence
available to it Nielsen (2015). By connecting neurons such that the output of one becomes
the input of another, the familiar fully connected network structure can be constructed,
see figure 3.3. The model for this network is the Multilayer Perceptron (MLP) model,
see 3.3 Petersen (2020), and is the simplest form of the Artificial Neural Network. By
combining the decision making capabilities of all the perceptrons, this structure should
be able to make subtle decisions, conceptually speaking Nielsen (2015).
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Figure 3.3: The multilayer perceptron model

Traditionally, the weights and thresholds would have been adjusted manually; however,
modern day training algorithms tune are able to tune these automatically. The specifics
of these algorithms will be covered in later sections, but a key component for training and
improving the MLP is the knowledge of how the output changes following incremental
changes in the weights, i.e. the derivative W.R.T. the weights. However, the binary
nature of the perceptron does not allow for this, since the indicator function is not
differentiable. Thus, the MLP model was extended to allow differentiable, non-linear
activation functions, most prominently the sigmoid function which can be seen as a
smoother version of the indicator function Nielsen (2015). Sigmoid functions make up a
class of functions defined by Petersen (2020):

Definition 3.3 (Sigmoid function). A continuous function f : R → R such that f(x) → 1
for x → ∞ and f(x) → 0 for x → −∞ is called sigmoidal.

Figure 3.4: A sigmoidal function according to definition 3.3 Nielsen (2015) Petersen
(2020)

A sigmoid function, shown in figure 3.4, is differentiable and has a non-negative derivative
at each point with exactly one inflection point Han and Moraga (1995); it is often
synonymous with the logistic function. It allows for a broader set of inputs, any real
number, and, since it "squashes" its input to be between 0 and 1, it lends itself to
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express likelihoods Goodfellow et al. (2016). In addition, being monotonically increasing,
continuous, and differentiable at every point, allows for the use of gradient-based methods
of optimization.

The preceding definitions can be used to further formally define the Multilayer Perceptron,
the quintessential neural network and building block of more complex architectures seen
later. Most importantly, it forms the centerpiece of one of the most important aspects of
neural networks overall: universal approximation , see 3.4.2.

Definition 3.4 (Mulitlayer Perceptron).

G : A → {0, . . . , k − 1},

x �→ ALϕL−1(AL−1ϕL−2(. . . ϕ1(A1(x))),
k, L ∈ N,

L ≥ 2

be a network where

• A is the set of input data

•

Al : RNl−1 → RNl ,

x �→ wx + θ,

1 ≤ l ≤ L, (N0 = n ∈ N, NL = k)

are affine mappings with weight matrix w ∈ RNl−1∗Nl and bias θ ∈ Nl.

• ϕi : R → R, 1 ≤ i < L continuous activation functions that act coordinatewise.
As an extension to the Perceptron, these functions are arbitrary.

• L : the number of layers (also called depth) and NL the dimension of the L-th layer
(also called width)

The network according to definition 3.4 produces class labels b̂ ∈ {1, . . . , k} represented
as integers. Alternatively, the function G could give a probability distribution over the
classes. In this case, the range would change to:

{b̂ ∈ Rk : 0 ≤ b̂[r] ≤ 1, r ∈ {1, . . . , k} ∧ Σk
i=1y[i] = 1}

That is, the output b̂ of the function G would be a k−dimensional vector where the r−th
element, corresponding to the r − th semantic label, lies between 0 and 1, and whose
elements sum to 1. The predicted label would then be the maximum element of b̂

Network G is defined as a combination of affine, and non-linear functions, parametrized
by a set of weights w. G characterizes a whole set of networks:
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Definition 3.5 (Set of networks).

ζ := {G : G Network as defined in definition 3.4}

3.4.2 Universal Approximation
In this section the universal approximation theorem for neural networks is summarized.
This theorem was originally formulated and proven by George Cybenko in 1989 Cybenko
(1989). Universal approximation means that, under minor conditions, every continuous
function on a compact set can be arbitrarily well approximated by a network G ∈ ζ.
This is of major importance because it means that a randomly initialized network can be
trained to represent unknown structures that are modelled by some unknown mapping
or distribution Goodfellow et al. (2016). For classification, this means that the true
class boundary for the images, represented by some function f , can be approximated
by a network G to an arbitrarily small degree. Universal approximation is what al-
lows networks to be the powerful tools they have become, since any task that can be
thought of as a function computation can be performed/computed by the neural networks –
be it language translation, caption generation, speech to text, etc Goodfellow et al. (2016).

Cybenko’s proof focuses only on the case of sigmoidal functions, see definition 3.3, and
uses key results from functional analysis. He proved universal approximation by showing
that the set ζ of all networks lies densely in C(K), meaning that any continuous function
f ∈ C(K) has a network G ∈ ζ that is arbitrarily close. Effectively, this means that for
an arbitrary precision ! > 0 a neural network G exists that will approximate a continuous
function f . More formally:

Definition 3.6 (Universality). Let ϕ : R → R be a continuous activation function as
in definition 3.4, d, L ∈ N and K and ζ defined according to the notation above. ζ is
universal, if it is dense in C(K).

However, in order to show definition 3.6, a relevant topology for the networks to operate
on needs to be defined. The notation section 3.1 and definitions 3.4 and 3.5, lay out the
most important components of this. However, additional conditions must be imposed on
the activation function(s) ϕ:

Definition 3.7 (Discriminatory functions). ϕ, continuous as in definition 3.4, is discrim-
inatory if for µ ∈ M, d ∈ N, K ⊂ Rd compact and�

K
ϕ (wx + θ) dµ (x) = 0

for all w ∈ Rd, θ ∈ R then µ = 0

The discriminatory property of a function means that that for nonzero µ, there exist w
and θ such that the integral in definition 3.7 is non-zero. Intuitively, this means that
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no information from the input to the function is "lost" by being mapped to a subset of
measure 0.

With these definitions the correct topological setting for the concrete formulation of the
universal approximation theorem and its proof have been established.

Theorem 3.8 (Universal Approximation - Cybenko). Let d ∈ N, K a compact subset,
K ⊂ Rd and ϕ : R → R be discriminatory. Then the set of all networks, ζ defined in 3.5,
is universal.

Using the condition on activation functions, the universal approximation theorem can be
proven Petersen (2020), Cybenko (1989).

Proof. Observe that Γ ⊆ C (K) is a linear subspace of C (K). Given 3.4, any network
G ∈ Γ is a composition of a series of continuous activation functions ϕi and affine
functions Al, thus any G is also continuous and therefore Γ a linear subspace of C (K).

In order for Γ to be dense in C (K), the following equality needs to hold for its closure Γ:

Γ = C (K)

By way of contradiction, suppose that Γ #= C (K). Then Γ is a closed, proper subspace
of C (K).

By the Theorem of Hahn-Banach Rudin (1974), there exists a bounded linear func-
tional F #= 0 on C (K)� (the dual space of C(K)), such that F (Γ) = F (Γ) = 0 (Γ = Γ
since Γ is closed).

By the Riesz Representation Theorem Rudin (1987), this functional is of the general form

F (h) =
�

K
h(x)dµ(x)

for some µ ∈ M, ∀h ∈ C(K).

The Riesz Representation Theorem establishes that M = C(K)� is the relevant dual
space, thus the functional is a signed, regular borel measure µ. This, in turn, implies
that the following equality must hold, since ϕ was assumed discriminatory:�

K
ϕ (wx + b) dµ (x) = 0

which implies that µ = 0 and thus F = 0, contradicting our assumption that H #= 0.
Hence, the subspace Γ must be dense in C (K).
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This proves that all discriminatory activation functions lead to spaces of networks that
can universally approximate every continuous function on a compact set K.

However, discriminatory functions are hard to identify directly, which is why it is
useful to identify conditions that are more accessible but at the same time guarantee
that the function is discriminatory Petersen (2020). At this point, the role of the the
sigmoidal family of functions, defined in 3.3, becomes important. Cybenko proved that
sigmoidality is a sufficient condition on the activation functions that still guarantees
universal approximation and makes working with networks a lot easier Cybenko (1989).
The following lemma and proof will formalise this Cybenko (1989):

Lemma 3.9. Any bounded, measurable sigmoidal function f is discriminatory.

Proof. Let d ∈ N, x, w ∈ Rd, λ, θ, ν ∈ R, K ⊂ Rd compact and measure µ ∈ M.

In order to fulfil the definition for discriminatory functions 3.7, it must be shown
that assuming for f : R → R sigmoidal, defined in 3.3, it holds that:�

K
f(w�x + θ))dµ(x) = 0, ∀w ∈ Rd, θ ∈ R

then µ = 0.

Consider the function

γ(x) = lim
n→∞ fλ(x) = lim

n→∞ f(λ(w�x + θ) + ν) =

����
1 for w�x + θ > 0
0 for w�x + θ < 0
f(ν) for w�x + θ = 0

Let Πw,θ := {x : w�x + θ = 0} be an affine hyperplane and let H+
w,θ := {x : w�x + θ > 0}

and H−
w,θ := {x : w�x + θ < 0} be the half open spaces defined by {w�x + θ > 0} and

{w�x + θ < 0}, respectively. Note that f is bounded since |fλ(x)| ≤ max(1, f(ν)) for all
x and K is compact.

Applying the Dominated Convergence Theorem Bartle (1995) gives

lim
λ→∞

�
K

fλ(x) dµ(x) =
�

K
lim

λ→∞
fλ(x) dµ(x)

=
�

K
γ(x)dµ(x)

=
�

H−
w,θ

0dµ(x) +
�

Πw,θ

f(ν)dµ(x) +
�

H+
w,θ

dµ(x)

= 0 + f(ν)µ(Πw,θ) + µ(H+
w,θ)

= 0
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for all ν, θ, w. If ν → ∞ then, using the properties of sigmoidal functions, f(ν) → 1 and
µ(Πw,θ) + µ(Hw,θ) = 0. Similarly, if ν → −∞ then f(ν) → 0 and µ(Hw,θ) = 0.

Consider w fixed and a step function h. Using the Riesz Fisher Representation theorem
Rudin (1987) the corresponding linear functional F : L∞(R) → R has the following form:

F (h) =
�

K
h(w�x) dµ(x)

Note that F is a bounded linear functional on L∞(R) since µ is a finite signed measure,
and is well-defined for any h ∈ L∞(R). This is because when we integrate with respect
to a finite measure, there cannot be an infinite result.

Consider h to be the indicator function for the interval [θ, ∞) such that

F (h) =
�

K
h(w�x)dµ(x) = µ(Πw,θ) + µ(H+

w,θ) = 0

Where the indicator function 1 : X → {0, 1} for a set A ⊆ X is defined as:

1(x) :=
�

1 if x ∈ A

0 otherwise

Similarly, F (h) = 0 if h is the indicator function for the open interval (θ, ∞). By linearity,
F is 0 for the indicator function on any interval, hence for any step function. Step
functions are dense in L∞(R), so F = 0 for every bounded continuous function h.

In particular, the bounded, measurable functions h(x) = sin(wx) and h(x) = cos(wx)
give

F (a + ib) =
�

K
= cos(m�x) + i sin(m�x) dµ(x) =

�
K

eim�x dµ(x) = 0

for all m. Thus, the Fourier transform of µ is 0 and so µ must be zero as well Rudin (1987).

Therefore f is discriminatory by 3.7.

Remark. A key element of this proof is the choice of a specific function h that drives the
measure µ to zero. This was shown to be the Fourier transform.
Remark. The proof shown above only accounts for sigmoidal activation functions. Shortly
after Cybenko’s proof of the the universal approximation theorem, Hornik was able
to extend the theorem to a broader class of activation functions by using arbitrary
non-linearities Hornik et al. (1989).
Remark. The proof is not constructive, i.e. it gives no way to explicitly construct or find
such a neural network or choose its architecture
Remark. A remark on notation: the work thus far has shown that a network G is
parametrized by weights w. Therefore, networks will be written as Gw in the following
sections.
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3.5 Training Deep Neural Networks
The preceding sections have motivated and defined the underlying mathematical concepts
of neural networks classifiers. Deep learning was characterised in 3.2 as techniques where
deep neural networks are trained with gradient based methods, where depth is achieved
by stacking many layers of neurons on top of each other Berner et al. (2021). Increasing
depth can greatly increase a neural network classifier’s performance, however it also
increases their mathematical complexity and computational intensity, making training
much harder Goodfellow et al. (2016). Thus, efficient training methods are necessary
and will be explored below.

The definition a neural network classifier however, does not give any details about the
concrete parts that actually make up an implementation and how it is trained. Goodfellow
et al. (2016) describes all machine learning algorithms as a combination of:

1. a specific dataset: the dataset

2. a model: section 3.4.1 lays out the mathematical foundation of the neural network
model, on which the remaining specific components will now be built.

3. a cost function: training involves continuously evaluating the model’s predictions.
They are measured by the error, loss or cost function, which expresses the deviation
between the model’s predictions and the corresponding ground truth.

4. an optimization procedure: training a supervised model means that the model’s
variable components that parametrize the model, the weights in this case, are
continuously adjusted based on the behaviour of the cost function. Since the
goal is to produce predictions that are highly accurate, training means that the
cost function is minimized. How this happens specifically is expressed by the
optimization procedure.

For the following sections C := {(a1, b1), . . . , (an, bn)}, will be referred to as the training
data. The element bi represents the i − th input’s ai label.

Cost Functions

In supervised learning, the cost function measures the discrepancy between the prediction
a machine learning algorithm produces and the corresponding ground truth. It always
contains a term, usually a type of parameter ω, that makes the learning process, a process
of statistical estimation Goodfellow et al. (2016). Define the cost function as:

J : Ω → [0, +∞]

where Ω ⊂ Rd, d ∈ N represents the set of all possible parameter vectors.
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The choice of a cost function largely depends on the type of problem addressed by the
model Goodfellow et al. (2016). For classification, the neural network G is trained to
produce a class label that most likely corresponds to a given input image. This can
be reformulated as maximising the conditional probability p(b|a) of a label b given an
input a, where the conditional probability is expressed using likelihoods parametrized
by the network weights w. This means that training a classifier can be interpreted as
a Maximum Likelihood estimation problem, where the weights are optimised to yield
the highest probability Fisher (1925) Goodfellow et al. (2016). It is intuitively clear that
finding the most likely label, i.e. maximising the conditional probability, is equivalent to
minimizing the cost between the network’s prediction and the image’s true label, meaning
the optimal parameter estimates ω of J are the same as the optimal weights w of G.
Since maximising a function is equivalent to minimizing the negative of that function,
cost can be expressed by the negative likelihood. Thus, minimizing cost amounts to
minimizing the negative likelihood or, more simply, the Negative Log Likelihood (NLL).
In short, training a neural network classifier is a problem of Maximum Likelihood and
can be accomplished by minimizing the NLL loss W.R.T. the network’s weights. The
NLL loss is one of the most popular cost functions for classification, regardless of the
modelling algorithm used.

The considerations above intuitively describe how the choice of the NLL as a cost function
is an organic fit to this classification task. The underlying statistical theory showing why
its use is justified and what its benefits will be shown. Fisher formalised the concept of
likelihoods and likelihood functions as a tool to carry out inference on unknown popula-
tion parameters, based on a known sample Fisher (1992). He explicitly distinguishes the
concept of likelihood from the concept of probability, the difference can be seen in the
following definition Shao (2006):

Definition 3.10 (Likelihoods and Likelihood Functions). Given a parametrized family
of probability density functions with parameter ω, that is a collection of functions f
characterized by the parameter ω that indicate the relative likelihood of a random variable
being within a range of values.

I �→ f(a | ω)

The likelihood function Λ is defined as a function of the unknown parameter, given the
data which is known:

ω �→ f(a | ω) =: Λ(ω | a)

In other words, when f(a | ω) is viewed as a function of a with ω fixed, it is a probability
density function, and when viewed as a function of ω with a fixed, it is a likelihood
function.

A key theorem used here is the Radon–Nikodym Theorem Billingsley (1986) Bartle (1995).
It states that the probability (measure) can be expressed as the integral of a density
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function over a subset of possible outcomes, W.R.T. to a dominating measure, typically
the Lebesgue measure. The density is also called the Radon–Nikodym derivative.
Remark. The above definition is based on results from measure theory. The Radon–Nikodym
Theorem is a key tool to extend probability densities to probability measures Billingsley
(1986).
Remark. The likelihood can be seen as the joint probability between the data and the
parameters of the underlying statistical model, or in other words the model distribution.

To justify using probability density functions to specify the likelihood function the
following steps need to be considered Billingsley (1986):

Proof. For an observation a, the likelihood for the interval [a, a + h], where h > 0 is a
constant, is given by Λ(ω | a ∈ [a, a + h]). This means that:

arg max
ω

Λ(ω | a ∈ [a, a + h]) = arg max
ω

1
h

Λ(ω | a ∈ [a, a + h])

since h is positive and constant. Because

arg max
ω

1
h

Λ(ω | a ∈ [a, a + h]) = arg max
ω

1
h
P(a ≤ aj ≤ a + h | ω)

= arg max
ω

1
h

� a+h

a
f(aj | θ)daj

where f(aj | ω) is the probability density function, it follows that

arg max
ω

Λ(ω | aj ∈ [a, a + h]) = arg max
ω

1
h

� a+h

a
f(aj | ω)da

Using the fundamental theorem of calculus Spivak (1967) and the l’Hospital’s rule
de L’Hospital (1696) it follows that:

lim
h→0+

1
h

� a+h

a
f(aj | ω)da = lim

h→0+

d
dh

� a+h
a f(aj | ω)da

dh
dh

= lim
h→0+

f(a + h | ω)
1

= f(a | ω).

Then

arg max
ω

Λ(ω | a) = arg max
ω

�
lim

h→0+
Λ(ω | aj ∈ [a, a + h])

�
=arg max

ω

�
lim

h→0+

1
h

� a+h

a
f(aj | ω)da



= arg max

ω
f(a | ω).

Therefore
arg max

ω
Λ(ω | a) = arg max

ω
f(a | ω)
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The reasoning above can be used to formalise the basic idea behind Maximum Likelihood:
f(a | ω) is maximised W.R.T. to the parameter ω and for a fixed input a. The resulting
maximiser, also known as the Maximum Likelihood estimator, is the parameter value
that results in the distribution that delivers the highest probability for that input. The
parameters are estimated based on known quantities, hence the term estimator. More
specifically, an estimator is a rule for calculating an estimate of a given quantity based on
known data Tukey and Frederick (1965 - 1986). While this method makes intuitive sense,
it also provides estimators with important statistical properties Fisher (1992), namely:

• consistency: for n → ∞, where n is the number of samples, the estimator converges
in probability to its true value Fisher (1992).

• efficiency: the variance of the estimator converges for n → ∞ to the Cramer-Rao
bound and is thus the lowest possible variance Cramér (1999).

In other words, the maximum likelihood estimator is, asymptotically, the best estimator,
where "best" is to be understood as the estimator with lowest variance relative to the
Cramer-Rao bound Cramér (1999). The Cramer-Rao bound characterizes the performance
of an estimator; it describes a lower bound for the variance of estimators of the parameter
ω.

In the context of classification, this means that we maximize over all conditional prob-
abilities. Assuming the data is identically, independently distributed (IID), meaning
every sample comes form the same distribution and all are mutually independent, the
likelihood is expressed as:

Λ(ω | a) =
�

Pω (yi | ai) (Likelihood)

or the log-likelihood:

log(Λ(ω | a)) = /(ω | a) = Σn
i=1log (Pω (yi | ai)) (Log-Likelihood)

The Maximum Likelihood estimators ωML are obtained my maximising Likelihood or,
equivalently, Log-Likelihood.

ωML = arg max
ω

Λ(ω | a)

= arg max
ω

n�
i=1

Pω (yi | ai)

= arg max
ω

Σn
i=1log (Pω (yi | ai))
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The likelihood function can also be understood as an expression of the model distribution:

/(ω | a) = pmodel

Intuitively, the search for the Maximum Likelihood estimators is meant to deliver a model
distribution pmodel that best resembles the true underlying empirical data distribution,
p̂data Goodfellow et al. (2016). This implies that, in addition to finding the most suitable
model parameters, it is necessary to quantify the difference between two distributions.
This can be done using the statistical distance Kullback-Leibler Divergence Kullback
and Leibler (1951). Thus, the term "best" can be understood as the model distribution
pmodel with minimal divergence to the true underlying empirical data distribution p̂data

Kullback and Leibler (1951).

Definition 3.11 (Kullback-Leibler Divergence). The Kullback-Leibler Divergence is
a statistical distance measure that describes how (dis-)similar two distributions are
Kullback and Leibler (1951). The divergence is quantified as:

DKL(p̂data||pmodel) = Eai,yi∼p̂data
[log (p̂data (yi | ai)) − log (pmodel (yi | ai))]

While the intuition seems straightforward, the equivalence between maximising the
likelihood and minimizing the Kullback-Leibler Divergence is not. The following proof
will make the equivalence clear:

Proof. Consider the IID training data S = ((a1, y1), . . . , (an, yn)), where the samples are
generated according to a probability distribution, that is S ∼ p̂data. This distribution is
estimated by finding the ωML that will maximize the likelihood pmodel:

ωML ⇔argmax
ω

Λ(ω | S)

⇔argmax
ω

n�
i=1

pmodel

⇔argmax
ω

n�
i=1

log (pmodel)

Since maximising the log-likelihood is equivalent to minimising the negative log-likelihood:

⇔argmin
ω

−
n�

i=1
log (pmodel)

⇔argmin
ω

−1
n

n�
i=1

log (pmodel)

this describes the expectation w.r.t p̂data that assignes each sample the probability 1
n .

Therefore, using the law of large numbers Dekking et al. (2005) and letting n → ∞:

⇔argmin
ω

Eai,yi∼p̂data
[−log (pmodel)]
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using the properties of the logarithm we have:

⇔argmin
ω

Ep̂data

�
log

�
p̂data

p̂data

��
− Eai,yi∼p̂data

[log (pmodel)]

⇔argmin
ω

− Ep̂data
[log (p̂data)] − Ep̂data

[log (p̂data) − log (pmodel)]

The expression above is known as cross entropy. The first term is the average amount of
information contained in p̂data, otherwise kown as entropy. The entropy above is constant.
Since monotonic transformations such as adding/multiplying by a constant do not change
the maximiser, it follows that:

⇔argmin
ω

Ep̂data
[log (p̂data) − log (pmodel)]

⇔argmin
ω

DKL(p̂data||pmodel)

Thus, minimizing the negative log-likelihood, or maximizing the log-likelihood, is asymp-
totically equivalent to minimizing the KL-Divergence, the difference between model
and data distribution, and minimizing the crossentropy Goodfellow et al. (2016). For
a classification problem, the likelihood is expressed using the conditional probabilities
calculated form the model output. The formal expression for the negative log-likelihood
cost function becomes:

J : Ω → [0, +∞] (3.2)
(ω) �→ J(ω) = −E(ai,yi)∼p̂data

[log (pmodel (yi | ai; ω))] (3.3)
(3.4)

where ai and yi are the i−th elements of the training data is the class output by the
classification network as defined in 6.3

The workings in this section show that the learning process involves maximum likelihood
estimation on the parameter ω which is induced by the minimization of the negative
log-likelihood cost function. Looking at the expression 3.4, the parameter ω controls the
conditional probabilities calculated from the network output; the network output is itself
controlled by the weights w of the network, see 3.4. Consequently, the parameters in the
cost functions represent the weights in the neural network, meaning that learning occurs
by minimizing cost W.R.T. to the weights that parametrize the neural network. The
final form of the cost function over the entire dataset can be expressed as:

J : Ω → [0, +∞]
(w) �→ J(w) = −E(ai,yi)∼p̂data

[log (pmodel (yi | ai; w))]
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Remark. Given that the parameter ω represents the weights w of the neural network Gw,
the following sections will omit ω and only reference w to avoid confusion in the notation.
Remark. This thesis chooses to work with the Negative Log Likelihood cost function due
to its statistical properties. Nevertheless, the choice of the cost function is, in principle,
arbitrary and must be chosen according to the specific task and input.

Optimization

The preceding section constructed and formalised the principle of neural network training
through minimization of the cost function. However, the formalisation alone does not
give details as to how the function should be minimized. In general, the optimum of a
function can be approximated with iterative methods or found in closed form algebraically
Bertsimas and Tsitsiklis (1997), which depends on the structure and complexity of the
function. Section 3.5 has established that the cost function depends on the weights w
of the network, see equation 3.4, with deep networks typically having tens of millions
of weights to optimize Niu et al. (2019). This means that the cost function has a very
complex structure, with potentially many local optima in addition to the global optimum
Goodfellow et al. (2016). Optimisation of this kind of functional landscape is not straight-
forward and solvers typically cannot efficiently deliver a closed form solution. Iterative
methods can be successfully used to find approximate solutions; however, these methods
come with the caveat of possibly getting stuck at a point of inflection or delivering only
a local optimum Bertsimas and Tsitsiklis (1997).

Gradient based methods is a popular set of optimization techniques, especially when
training deep learning models Ruder (2016). Central to these optimization methods is,
as the name suggests, the gradient of a function

Definition 3.12. Let f := Rn → R, n ∈ N be a differentiable function. Given a point
x ∈ Rn, the gradient of the function at that point x is expressed by:

∇f(x) := ( ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x))

The gradient ∇f(x) at a point x indicates the direction of steepest ascent, while −∇f(x)
indicates the direction of the steepest descent, respectively. The main reason for the
popularity of these methods is that the accurate and efficient computation of pointwise
derivatives is possible using a method for efficient differentiation, often referred to as the
backpropagation algorithm. Intuitively, these methods iteratively calculate a sequence of
points, starting from a randomly initialized point, until a minimum is reached.

Backpropagation The challenge with (deep) neural networks is the calculation of all
the partial derivatives of the cost function with respect to each individual weight. Directly
calculating the derivatives for each weight is highly inefficient; backpropagation Rumelhart
et al. (1986) enables a methodical calculation of these partial derivatives, making training
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more efficient. On a high level, backpropagation calculates the derivative for the last layer,
and uses it to inductively go "backwards" through the network, calculating the partial
derivatives of each layer until it reaches the first layer of the network. Mathematically,
backpropagation exploits the use of the multivariate chain rule Leibniz (2012).

Theorem 3.13. Let f and g be differentiable, real-valued functions. If y = g(x) and
z = f(g(x)) = f(y), then the chain rule states:

∂z

dx
= dz

dy

dy

dx

Generalizing this to the multidimensional case with x ∈ Rm, y ∈ Rn, g maps from Rm to
Rn, and f maps from Rn to R. If y = g(x) and z = f(y), then

∇xz =
�

∂y

∂x

�T

∇yz

Meaning that the gradient of z with respect to x can be computed by multiplying the n × m
Jacobian ∂y

∂x by the gradient of z with respect to y.

The chain rule allows for the calculation of the derivative of a function that is a composition
of other differentiable functions. This is important for training the network because:
any of the network’s layers is a composition of functions, see 3.4, thus the chain rule is
directly applicable to calculate the gradient of a layer W.R.T. to its weights w. This also
implies that there are several nested differentiations that need to be carried out, with
many of the same calculations being carried out multiple times - this is highly inefficient,
especially for deep neural networks. The backpropagation algorithm is designed to avoid
the continued repetition the number of subexpressions and reuse the expressions that
have already been calculated. It tells us how to incrementally adjust the weights in
response to the difference between the generated and desired output vectors for each
training example. The algorithm is described in the following pseudocode Goodfellow
et al. (2016):

Backpropagation is often wrongly understood to mean the whole optimization process;
however, it is merely a method of efficient differentiation for pointwise partial derivatives
using the chain rule used within an optimization method Berner et al. (2021). There are
countless ways that use backpropagation to optimize the cost function.

Gradient Descent Given a neural network G and training data S, the cost function
J describes, through its graph, a high-dimensional surface called a loss landscape Berner
et al. (2021). The surface may have regions associated with lower cost values which
resemble valleys of a landscape, if they are surrounded by regions of higher values of
cost. Training the neural network includes the minimization of the cost function, which
informally amounts to starting from an arbitrary point on the surface and finding a
path to a minima Berner et al. (2021). Gradient descent is a broad class of optimisation
techniques and the core optimization methodology in machine learning Du et al. (2017).
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Algorithm 3.1: Backpropagation algorithm for a Multilayer Perceptron. The
computation yields the gradients with respect to the parameters of each layer,
starting from the output layer and going backwards to the first layer. These
gradients can be interpreted as an indication of how each layer’s output should
change to reduce error.

1. For a sample (ai, bi), propagate the input ai through the network to compute the outputs
(b̂i1 , . . . , b̂in

) (in topological order).
2. Compute the cost Ji and its gradient

∂Ji

∂bin

. (3.5)

3. For each j = n, . . . , 1 compute

∂Jn

∂wj
= ∂Jn

∂bin

n�
k=j+1

∂bik

∂bik−1

∂bij

∂wj
. (3.6)

where wj refers to the weights in node ij .

The gradient of the objective function is used to identify the direction of the strongest
incline/decline and accordingly moving the parameters in small steps in order to reach
the optimum Cauchy et al. (1847). One iteration of the gradient descent algorithm can
be expressed as:

x(t+1) ←− x(t) − η∇f(x(t))

where η is the step size, otherwise known as the learning rate. The learning rate controls
how large of a step to take in the direction of negative gradient so that we can reach
a (local) minimum Lu (2022). For convex problems, gradient descent converges to an
optimum and the rate of convergence can be precisely characterised Du et al. (2017).
However, the optimisation involved when training a neural network is not a convex
problem Du et al. (2017) and the algorithm may oscillate around a local minimum or even
diverge, this is due to gradient descent not exploiting a function’s curvature- information
contained in the function’s Hessian Matrix Goodfellow et al. (2016). Thus, many variants
of gradient descent have been developed to improve this.

Stochastic Gradient Descent Gradient descent in its basic form typically uses the
whole dataset for calculating the gradient each iteration - this becomes infeasible for large
networks. Stochastic Gradient Descent (SGD) Ruder (2016) selects a random sub-sample
from the dataset, calculates its gradient and determines the update of all the parameters
according to the direction of that gradient. A general formulation of the problem is
Berner et al. (2021):

In algorithm 3.2, if D(k) is deterministic, i.e. D(k) = ∇r(Θ(k−1)), it is the original gradient
descent algorithm introduced above. In stochastic gradient descent D(k) is a random
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Algorithm 3.2: Stochastic Gradient Descent
Input: Differentiable function r : Rd → R, d ∈ N, sequence of step-sizes
ηk ∈ (0, ∞), k ∈ [K], Rd-valued random variable Θ(0)

output: Sequence of Rd-valued random variables (Θ(k))K
k=1

for k = 1, . . . , K do
Let D(k) be a random variable such that E[D(k)|Θ(k)] = ∇r(Θ(k−1))
Set Θ(k) := Θ(k−1) − ηkD(k)

end

variable, reflecting the inherent stochastic nature involved when selecting the sub-sample
for calculating the gradient. More concretely, a parameter update can be expressed as
Berner et al. (2021):

Θ(k) := Θ(k−1) − ηk

m

�
s∈S

∇wJ(w)

where J is the cost function, w the network weights, m is the sub-sample size and the
sub-sample S is selected uniformly at random. SGD is generally noisier than typical
Gradient Descent, because of the randomness in its descent. It requires a higher number
of iterations to reach the minima than gradient descent in its basic form, but it is still
computationally much less expensive than typical Gradient Descent Goodfellow et al.
(2016).

An important issue Stochastic Gradient Descent faces is the fact that one of the most
important hyperparameters, the learning rate, must be set a-priori and remains fixed
Ruder (2016). The learning rate is the step size at every iteration of the optimization;
intuitively, the gradient determines the direction of the strongest decline but the learning
rate determines how large the step in that direction will be, thus representing how fast
the machine learns Goodfellow et al. (2016) - the setting of the learning rate is, inherently,
a trade-off Goodfellow et al. (2016). Extensions to SGD implement adaptive methods
to adjust the learning rate while searching for the minima. This thesis makes use of
the Adaptive Moment Estimation (ADAM) Kingma and Ba (2014) optimizer. In this
optimization algorithm, running averages of both the gradients and the second moments
of the gradients for every parameter are used. Next to its adaptive capabilities, it has
attractive convergence behaviour.

For convex cost functions, basic gradient descent and SGD guarantee convergence to
a global minimum Berner et al. (2021). SGD has a convergence rate of 1√

K
. However,

typically the cost function is not convex and convergence to a global minimum can in
general not be guaranteed and SGD, for instance may converge to a local minimum.
While there is no convergence guarantee, SGD has nonetheless shown that it is the highly
successful at minimizing complex, non-convex cost functions Zou et al. (2020). It has
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been proven that the adaptive extension of SGD, ADAM, converges when applied to
smooth, non-convex cost functions. The gradient of the cost function, averaged over
the trajectory, has an upper-bound which can be made arbitrarily small, with a rate of
convergence of O( ln(K)√

K
).

The specification of the optimization technique, the method for efficient differentiation,
and the cost function complete all of the components necessary to implement a machine
learning algorithm that can be used for the specific task in this thesis. The following
section specifies how the model architecture will look like.

3.6 Network Architecture
The previous sections have formalised the general mathematical and statistical concepts
necessary for the definition and implementation of a deep learning model. However, they
do not give an indication of the specific architecture that model should have beyond
the basic MLP; but they rather represent a large class of different types of algorithms
and architectures that can be used to address any number of questions Goodfellow et al.
(2016). What model is most useful for a given problem is at the discretion of the modeller.

This thesis is focused on the field of computer vision, where the goal is to create
machines that can derive meaningful information from visual inputs such as images
or videos. In general, images are stored as matrices, with each element of the matrix
representing a fraction of the image, known as a pixel. The numeric matrix element
indicates the intensity of a color: either red, green and blue for color images or black and
white for non-color images. The network processes the matrices by applying different
calculations and transformations to the pixels in order to derive characteristics about the
image that are useful for solving the task at hand. Given the large size of the matrices
and the, possibly very, small size of the relevant details within them, especially with
x-rays, the networks need to be large, meaning that they require a large number neurons
to collectively behave in an intelligent way Goodfellow et al. (2016).

Convolutional Neural Networks

A fully connected network like in figure 3.3 can, in principle, be successfully employed
for image classification, see 3.4.2. These networks can have a very large number of
parameters and they do not take spatial structure of images into account. This means the
network treats input pixels which are far apart and close together exactly the same way,
when in image classification it is often the case that neighboring pixels share information
Berner et al. (2021). For fully connected networks, these concepts of spatial awareness
must be inferred from the training data. However, an architecture that takes spatial
proximity into account would be a more natural and efficient approach Berner et al.
(2021). The Convolutional Neural Network (CNN) LeCun et al. (1989) is able to realise
this notion. CNNs are characterised by three basic ideas: local receptive fields, shared
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weights/parameters, and pooling. These ideas will be briefly elaborated before providing
a mathematical formulation

Local Receptive Fields The CNN is particularly good at collecting information
jointly from spatially close inputs Berner et al. (2021). The network does this by making
connections only in a small localized region of the input image, called the local receptive
field. This is a small weight matrix, for instance 5×5, that is incrementally slid across the
input image. At each step, the inputs (pixels) within the sliding window are aggregated
and passed on to one neuron in the second layer, thus each neuron of the second layer
learns about a small area in the input image and how the pixels within it are related
Nielsen (2015). The step size, or stride, is a tunable parameter; however, in practice it is
typical to use a stride of 1 for the input image Goodfellow et al. (2016).

Figure 3.5: visualisation of a local receptive field Nielsen (2015). The small window of
input pixels is weighted and aggregated and passed to a single neuron in the second layer.

The weight matrix used to process a local receptive field is called a kernel or filter.

Parameter Sharing The weights used within a kernel are designed to identify a
specific feature, such as an edge. Thus, the layer of neurons receiving the information
from the local receptive fields is called a feature map. The weight matrix applied to a
local receptive field is the same for the whole input matrix, meaning all neurons in the
subsequent layer share their weights. In addition, this implies that the weight matrix
characterises the feature map. Since the weights are designed to detect characteristics
in the image, using the same weights implies that all the neurons in the second layer
learn to detect the same feature, but in different locations of the image. Once this
feature is detected, the location of the feature becomes irrelevant, implying that the
network is invariant to translation in the image. Depending on what features are being
looked for, many different kernels can be used to create many different feature maps
that make up a convolutional layer. Sharing the weight parameters in this way greatly
reduces the complexity of the network, speeds up the learning process and reduces the
chance of obverfitting Nielsen (2015). The weights are processed using the convolution
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(a)

(b)

Figure 3.6: (a) Graphical representation of creating a feature map. (b) Application of a
filter Goodfellow et al. (2016)

operation. Convolution expresses the amount of overlap of one function g as it is shifted
over another function f ; in other words "blends" one function with another. When used
in image processing, this means interesting features are highlighted and others removed.
In practice, the function f is the input image expressed as a matrix and g is the kernel
or filter, where each filter is specific to a certain characteristic, like an edge or a shadow.
The process of sliding the kernel over the image is visualised in figure 3.6a, and the result
of a filtered image is shown in figure 3.6b.

Pooling Pooling is an operation that is used to simplify the information contained
in the feature maps of a convolutional layer. Summary statistics such as the max or
average are used to downsample the feature maps and reduce dimensions. This is again
beneficial for the efficiency of training by using summary statistics.

Mathematical Formulation A CNN is constructed by multiple convolutional blocks,
which are made up of a series of convolutions and poolings across channels. More
specifically, consider a group P , the cyclic group of order d ∈ N defined by the equivalence
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classes [d] = Z dZ for one-dimensional convolution or [d] = (Z dZ)2 for two-dimensional
convolution, the convolution of two vectors is defined as Berner et al. (2021)

Definition 3.14. Let x, y ∈ RP be two vectors, where RP is the space of mappings from
P to R. Then (group) convolution is defined as

(x ∗ y)i =
�
j∈P

xjyj−1i, i ∈ P

Based on this, a convolutional block is defined as Berner et al. (2021)

Definition 3.15. Let P̃ be a subgroup of P and let p : P → P̃ be an operator known
as the pooling operator with t ∈ N representing the number of channels. For a series of
kernels κi ∈ RP , i ∈ [t], a convolutional block can be formulated as

Ψ: RP → (RP̃ )t

v �→ (p(v ∗ κi))P
i=1

Simply put, the output of a convolutional block Ψ is the composition of the convolution
with kernels κi and a pooling operation p, along the channel dimension t. Intuitively
this means that t convolutions are carried out on the same image with different kernels
and then downsampled by a pooling operation such as max or average. This concept is
also called grouped convolutions which is expressed in the group theoretical approach to
the definition Berner et al. (2021). A CNN is built by stacking multiple convolutional
blocks, possibly with non-linear activation functions between them. At a certain point,
the output is mapped to a single vector and is fed into a fully connected structure which
can either be one layer or another network of arbitrary size. The concept is shown in
figure 3.7.

Figure 3.7: Illustration of a convolutional neural network Berner et al. (2021)

Following these considerations, it is important to address whether CNNs can also be
considered as universal approximators. Yarotsky (2022), Oono and Suzuki (2019) and
Zhou (2020) were able to prove the universality of Convolutional Neural Networks,
meaning that it can be used to approximate any continuous function to an arbitrary
accuracy when the depth of the neural network is large enough, thereby mimicking the
universality of fully connected networks.
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Residual Network Implementation

Using sophisticated optimization and differentiation techniques, auch as SGD and back-
propagation, it has become a lot easier to train very deep networks, with many publications
noting the superiority of deeper networks Bianchini and Scarselli (2014). Thus, the last
decade has seen a strong increase in network depth Krizhevsky et al. (2017) Szegedy
et al. (2015) He et al. (2016) and a concurrent strong increase in performance in different
areas, such as image recognition Goodfellow et al. (2016).

Though it became feasible and efficient to train deep networks, it was observed that, at a
certain point, with increased depth, model performance started to degrade Zagoruyko
and Komodakis (2016). One of the reasons this occurred was the vanishing gradient,
where the gradients of the cost function shrink to zero after several applications of the
chain rule, meaning the weights never update and no learning occurs Goodfellow et al.
(2016). Another reason is a problem called degradation, which refers to the phenomenon
where accuracy gets saturated and then rapidly sinks Niu et al. (2019)

In 2015, the ResNet He et al. (2016) introduced a new framework based on resid-
ual learning to address these problems. This type of learning refers to the process of
learning residual mappings instead of directly learning the overall desired function, im-
plying that the overall desired function is implicitly learned. Directly learning the overall
mapping by passing an image through many layers is very computationally intensive
and quickly becomes inefficient He et al. (2016). This is because, when an image is
passing through the deeper layers of the network, the marginal changes done to the
matrix from one layer to the next, or equivalently the added information learned, are
very small. In other words, if one views the pass through any one layer as learning a
small sub-mapping that assigns the layer input to its output, the network continuously
tries to learn a function whose output only deviates slightly from its input. The overall
mapping is learned by the composition of all of the sub-mappings, in line with 3.4, but
this is highly inefficient when considering the full scale of a very deep network. Instead,
the ResNet architecture is constructed by stacking residual blocks, which are collections
of (convolutional) layers surrounded by a "short cut" known as skip connection. The
intuition to use these connections is that for each block the network learns the small
changes between the block’s input x and output y, represented by a residual function
F(x) defined as F(x) := H(x) − x, where H(x) is the the actual underlying mapping
the block is trying to learn, thus the input is simply added to the residuals to give the
acutaly underlying mapping. Formally, these can be expressed as:

y = x + F(x, wx)

where y represents the output of the block, x the input into the block, F the function
representing the residuals of the block and wx are the weights within the block. This
technique counteracts the accuracy degradation and the vanishing gradient because:
if the changes within a block approach zero, the identity mapping is learned which
results in at least no higher training error than a shallower counterpart. This allows for
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Figure 3.8: The architecture of the ResNet with the residual blocks bordered by the short
cuts (loops). In practice there are different types of residual blocks depending on the
dimensions of the convolutional layers within. Niu et al. (2019)

deeper structures that can still be trained more efficiently. A full ResNet architecture
implementation, including skip connections, is visualized in figure 3.8

Using skip connections, residual networks were able to achieve great depths, with less
parameters and better accuracies than their predecessors He et al. (2016). An important
architectural detail is that the ResNet is focused more on its depth and less so on its
width Zagoruyko and Komodakis (2016). This could be because the ResNet reduces
parameters while increasing layers and wider networks would result in more parame-
ters. However, wider networks are found to have very useful mathematical properties:
Berner et al. (2021) Lu et al. (2017) report on the benefits of wider networks in terms
of optimization, with Lee et al. (2019) even finding that wide networks evolve as linear
models under gradient descent. Zagoruyko and Komodakis (2016) notes how residual
blocks with a skip connection can be seen as a weakness in terms of optimisation. For
instance, it is possible that only a few blocks learn useful representations, or many blocks
learn very little information, also known as diminishing feature reuse Srivastava et al.
(2015). Considering these drawbacks, Zagoruyko and Komodakis (2016) created the Wide
Residual Network (WRN), a wider, shallower variant of the ResNet. He showed that
widening ResNet blocks can provide a more effective way of improving performance of
residual networks compared to increasing their depth. For instance, they report a wide
16-layer deep network as having the same accuracy as a 1000-layer thin deep network and
a comparable number of parameters, while training several times faster. This thesis aims
to leverage these mathematical and computational benefits of (wide) residual networks
and will implement a WRN as a backbone for the subsequent experiments.

Sophisticated architectures and optimisation algorithms have enabled the efficient training
of deep neural networks, helping them achieve state of the art successes and giving rise
to the dominance of deep learning in areas such as image recognition. However, research
has also shown that there are significant disadvantages attached to deep learning that
decidedly affect its adoption in the real world. The following section will highlight the
specific aspects this thesis focuses on and how a possible solution could look like.
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CHAPTER 4
Introduction To Energy Based

Modelling

The previous chapters have described the motivation and the fundamental theory of a
state of the art neural network classifier, as well as a description of the most widely used
architectures and how they can be optimized. Neural networks are so-called universal
approximators, meaning that under minor conditions, every continuous function on a
compact set can be arbitrarily well approximated Petersen (2020). For efficient training,
they are optimized using gradient based methods such as stochastic gradient descent,
or one of its variants. This chapter will introduce the Energy Based Model (EBM) and
elaborate on its role in the context of the task presented in this thesis. The concept of
energy-based learning will be thoroughly introduced and motivated by expanding on its
historical origin. The model is defined and explored, starting from the definition of the
core component of this framework: the energy function. It will subsequently be applied
to the context of structured probabilistic modelling, with a special focus on sampling and
its challenges. The probabilistic form of the energy based model will be derived and the
effects on the learning process will be elaborated, especially considering loss functions
and their optimization.

4.1 Concept And Origin of Framework
Energy based modelling is in itself not a new field of research. In fact, theoretical
foundations go back to the late 19th century to the time of Ludwig Boltzmann. The
characterising element of energy based modelling is the scalar-valued energy function E,
it assigns individual states/observations an energy value. The terms energy and energy
function are very abstract and do not immediately give a clear picture of what an EBM
is or how it can be used. Their exact specification always depends on the underlying task,
which implies that the energy based framework is very broad and versatile, encompassing
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4. Introduction To Energy Based Modelling

many models that can be applied to many different types of problems LeCun et al. (2006).
Boltzmann saw energy as the actual, physical energy of a system, with the energy function
describing the way states in that system behave Boltzmann (1868). However, it can also
be viewed in a less physical and more statistical sense: the energy function’s purpose is
to encode latent dependencies within the data LeCun et al. (2006). The distinguishing
feature of the energy function is that it has a-priori no restrictions and its form is always
specific to a given task, allowing for a lot of flexibility when designing the model LeCun
et al. (2006). These considerations imply that an EBM can be categorised as a type of
generative model, where the energy function is trained to capture the underlying (joint)
distribution of data. Thus, energy can be understood as a type of likelihood, or in other
words an expression of how well a state or observation fits into the data overall LeCun
et al. (2006). However, given the lack of a-priori restrictions, energy does not necessarily
need to be normalised, meaning it is interpreted as an unnormalised probability LeCun
et al. (2006). In this case the EBM is known as a non-probabilistic model, since its output
is not a real probability. On the other hand, if a specific task requires the calculation
of actual probabilities, a normalisation constraint can be defined and the the energy
output simply normalised. Conversely, this case is known as a probabilistic model. This
demonstrates how the energy-based framework can be elegantly used to express both
probabilistic and non-probabilistic output, depending on a specific purpose. Equation
4.5 is an example of a probabilistic model, meaning the energy function is normalised to
produce probabilities.

A purely discriminative model, as in definition 3.4, will try to fit a hyperplane that can
be used to separate and classify data Cortes and Vapnik (1995). But the generative
model learns how to do more: it gives a complete understanding of how the data was
generated and imitates this by fitting a model distribution Foster (2019). The trained
model knows how the real data is placed within the space and can be used to generate very
similar synthetic/fake data, by pulling random samples from the model distribution using
sampling algorithms such as Monte Carlo Markov Chain methods (MCMC)Foster (2019).
In addition to generating data, a generative model’s knowledge of the data can be used
to express likelihoods Foster (2019). This means that the distribution is modelled by the
energy function and energy can be understood as an indicator of how well an observation
fits into the data overall LeCun et al. (2006). A-priori the energies are not normalised,
meaning the general form of an EBM is a non-probabilistic model; in the probabilistic
case, meaning if a specific task requires the calculation of actual probabilities, the EBM’s
flexibility allows for the energy function to be normalised. The model distribution in this
case is given by the Boltzmann distribution, see equation 4.5 below. These probabilities
are "real" in the sense that they are rooted in the real underlying data, thus delivering
valuable context LeCun et al. (2006). The EBM’s deeper understanding of the data and
its ability to express real probabilities can be exploited for downstream discriminative
tasks, leading to better quality predictions than a purely discriminative model could
deliver Grathwohl et al. (2019).
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Overall, energy based modelling is a framework that encompasses a broad class of models
LeCun et al. (2006). One prominent example of a probabilistic EBM is the Boltzmann
machine, developed by Geoffrey Hinton in the 1980s Hinton et al. (1984). Its energy
function to capture interesting underlying features, and models them into a distribution
using the Boltzmann distribution. The input is binary and the energy function takes
the shape of a neural network with two layers. The network structure for a Boltzmann
machine is special because all neurons are connected to each other, both within a layer
and between layers. In a fully connected network, neurons are usually connected to each
neuron in the subsequent layer, i.e. only connected between layers, and not within a
layer.

While this was an elegant concept, the interconnectedness of the Boltzmann machine
meant that training was very difficult and highly inefficient Goodfellow et al. (2016).
Thus, Boltzmann machines were extended into different variants to reduce this inefficiency,
chief among them the Restricted Boltzmann Machine (RBM), another important example
of an EBM Goodfellow et al. (2016). The key difference between Restricted Boltzmann
Machines and Boltzmann machines is the restriction on the energy function, i.e. the
underlying neural network. In a RBM no intra-layer connections are allowed, meaning
neurons are no longer connected within a layer but rather only in a fully connected
fashion between layers. This resulted in significant efficiency gains and increase the
model’s versatility Goodfellow et al. (2016). For instance, RBMs lend themselves to be
easily stacked, thus allowing for the construction of deep generative networks to learn
distributions over the inputs very well (the restriction of no intra-layer connections is key
here).

RBMs were initially invented by Smolensky in the mid 1980s Smolensky (1986) as a
model for information theory, originally known as the Harmonium. However, with the
publication of Geoffrey Hinton’s fast learning algorithms in 2006 Hinton and Salakhutdinov
(2006), they became commonly known as RBMs. Being an extension of the Boltzmann
machine, it is also an unsupervised learning model trained on binary inputs that uses
the Boltzmann distribution to assign probabilities to various states of, what Smolensky
called, harmony. He referred to harmony as a synonym for energy to underline the
strong connection between cognition/information theory and physics Smolensky (1986).
Boltzmann machines and restricted Boltzmann machines are compared in figure 4.1.
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4. Introduction To Energy Based Modelling

Figure 4.1: Comparison of the energy functions, i.e. the underlying neural networks, for
the Boltzmann and restricted Boltzmann machines. The original Boltzmann machine
(left) has every neuron within a layer and between layers connected to every other neuron.
The restricted Boltzmann machine has no intra-layer connections. Every neuron in a
layer is only connected to every other neuron in the subsequent layer. O’Connor et al.
(2013)

RBMs have a series of attractive characteristics that make them a particularly important
inspiration for the work done in this thesis. One of these is the possibility of stacking
multiple layers, thus building energy functions that are deep neural networks. In addition,
these networks can be further combined with a classifier that exploits the distributional
properties of the generative model to make highly accurate classifications that include
important context about the underlying data Smolensky (1986) Hinton and Salakhutdinov
(2006). We want to exploit these aspects and use the RBM as a foundation for our
EBM to build a model on chest radiographs that can compete with a state of the art
discriminative classifier, and use the "built-in" generative capabilities for higher quality
predictions, more on this below.

4.2 Energy Function
The energy based framework is a-priori very broad and abstract, meaning the model has
no restrictions or conditions concerning the form of the energy function or the inputs
LeCun et al. (2006). This offers a lot of flexibility when designing a model; however, in
order to make use of it for real-world problems, further specification is needed LeCun
et al. (2006). The EBM is characterized by the shape of its energy function LeCun et al.
(2006). Its purpose is to capture the underlying dependencies in a dataset and based on
these assign a scalar energy to different states LeCun et al. (2006). The interpretation
of the information contained in energy is always specific to an underlying task. One
interpretation of energy is as a measure of how well an observation fits into the dataset
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4.2. Energy Function

Figure 4.2: Visualisation of how the energy function can be applied to a x-ray image for
classification. The function’s output can be understood as a measure of compatibility
between the x-ray image and each of the possible diseases. A scalar energy for each of
the combinations is calculated, with the lowest resulting energy representing the best
combination. The disease that determined that the lowest energy, becomes the predicted
class.

overall; another is how well a given input/output combination fit together, relative to
the dataset overall.

Definition 4.1. Let A once again be the set of inputs, see section 3.1. Each input a ∈ A
has a corresponding label b describing the class the input belongs to, where b ∈ B. The
energy function E is defined as:

E : A × B → R (4.1)

The energy function in definition 4.1 is constructed W.R.T. the underlying classification
task. How images are classified is outlined by the following intuition: given a trained
energy function, an input image is combined in a pairwise manner with each of the
possible labels that the EBM was trained on. Each pair represents a different state of the
system and is assigned an energy. A low energy implies higher stability, and thus better
compatibility LeCun et al. (2006). The combination that results in the lowest energy
corresponds to the predicted class. For the specific case of chest radiograph classification,
this procedure is visualised in figure 4.2.

The definition of the energy function alone does not give a clear idea of how this model can
be trained and used for predictions and other tasks. This is elaborated in the following
section.
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4.3 Training and Inference
Training Procedure Training the energy function means shaping the function’s
landscape, i.e. determining the location of peaks in valleys. To train an EBM is to search
for a function E within a family of energy functions E that gives the best b for any a
LeCun et al. (2006), with b and a defined as in definition 4.1. The family of energy
functions can be defined as:

Definition 4.2. E := Ew(I, y) : w ∈ W

where w describes an index parameter.

There is no restriction on the structure of the elements in E , b, a or w; for example, E
could contain functions that are a linear combination of basis functions LeCun et al.
(2006). Section 4.1 introduced the RBM model and its ability to have an energy function
approximated by a many-layered network. Building on this idea, the energy function in
this thesis will have a CNN architecture, the same as the state of the art neural network
classifier, meaning the backbone of the two models is the same, but they are trained in
different ways. The key differences are: the form of the loss function and the optimization
technique.
Remark. The parameter in definition 4.2 formally represents an index parameter. In this
thesis, the energy function is defined as a CNN, meaning the index parameter w will be
interpreted as the weights of the network. In short: the energy function is parametrized
by the weights of the network.

Finding the best energy function, no matter the underlying architecture, includes the
use of a tool that assesses the quality of the fit LeCun et al. (2006). In other words,
the task of training an EBM includes choosing an appropriate cost function, similar
to training the state of the art classifier. Considering the fact that the training data
C := {(a1, b1), . . . , (an, bn)} ⊂ A × B defined as in 6.3 is labelled, i.e. contains information
about which diseases are in each radiograph, the model can be trained in a supervised
fashion. The relevant cost that takes label information into account is defined by the
following functional LeCun et al. (2006):

Definition 4.3.

L(E, C) := 1
P

P�
i=1

L(Yi, Ew(Xi, Y)) + R(w) (4.2)

where L is the loss functional, i.e. a function of a function, L is the cost of prediction
and R(w) is the regularizer that represents any prior knowledge about energy functions,
e.g. prior restrictions like non-negativity.

Overall, the loss functional is the average over the training set of a per sample loss. The
per sample loss is described by a function that quantifies the deviation between the model
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prediction for an input ai and its corresponding true label bi:

L(bi, Ew(ai, B))

The model prediction Ew(ai, B) is determined by the input/output combination that
gives the smallest energy, see figure 4.2. The image ai is combined in a pairwise fashion to
all classes and their respective energies are calculated. The class responsible for the lowest
energy becomes the model prediction. This means that for each sample of the training
data (ai, bi), a slice of the energy surface is evaluated LeCun et al. (2006). However,
calculating the loss using each sample can be infeasible for large datasets. Thus, the loss
can also be aggregated to a per batch level. Training a model using mini batches not
only increases efficiency, but larger batches result in more stable gradient estimates than
smaller batches Goodfellow et al. (2016).

Considering that the energy function has a CNN architecture parametrized by weights
w, choosing an appropriate loss functional can be simplified to defining a loss function
that is optimized W.R.T. the weights of the network. Thus, the learning problem can be
formally described as LeCun et al. (2006):

Definition 4.4.
w∗ = min

w∈W
L(w, C) (4.3)

In other words, training the EBM is an optimization problem to find the set of network
weights w that minimize the loss function in definition 4.3. The specific form of the loss
function and how it will be optimized, is detailed further below.

Inference Intuitively, inference for a classification EBM involves finding the class label
that results in the lowest energy for a given input image. Mathematically, this can be
stated as:

b̂ = argmin
b∈B

E(ak, b) (4.4)

Thus the inference problem is also interpreted as a minimization problem LeCun et al.
(2006). In general, the appropriate technique for solving equation 4.4 depends on the
form of C and, by extension, that of the energy function LeCun et al. (2006). In the
discrete case where C has a low cardinality, as is the case in this thesis, finding the
optimum is straightforward since it consists of finding the label that results in the lowest
energy output, see figure 4.2. In general though, exact, exhaustive searches within B
are infeasible for very large cardinalities. Thus, the inference procedure also depends on
the choice of an optimization technique LeCun et al. (2006). Typically gradient based
methods such as stochastic gradient descent are used.
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4.4 Probabilistic Model
The preceding sections have laid out the general principles of the energy based framework.
It has been shown that the framework is very flexible and its exact form is always use-case
specific. Flexibility implies the lack of prior constraints on the energy function, including
normalisation constraints. This means that the energy function is a non-probabilistic
model. If a task requires the calculation of real probabilities, the energy function can
re-interpreted as a probabilistic model using the Boltzmann distribution equation, see
equation 4.5 LeCun et al. (2006).

pi ∝ 1
Z

exp(−Ei

kT
), Z normalization denominator k, T constant (4.5)

Remark. pi is the probability of the system being in state i, Ei is the scalar energy of
that state, and a constant kT , the product of Boltzmann’s constant k and temperature
T .

The distribution expresses the probability that a system (a collection of atoms, for
instance) will be in a certain state, as a function of that state’s energy and the temperature
of the system. The intuition is that the probability of a state is specified by the scalar
energy of that state Ei: the lower the energy, i.e. the more stable the state, the higher
the probability of that state. This serves as an inspiration for the work done by Will
Grathwohl in his energy-based paper Your Classifier is Secretly an Energy Based
Model and You Should Treat it Like One Grathwohl et al. (2019). This thesis
applies his findings to the medical image field. The fact that probabilistic models are
a special case of the general EBM, is another facet of the flexibility of this framework.
This section will elaborate on this specific aspect of energy based modelling. Expression
4.5 can be derived in the following way Boltzmann (1868)

Proof. There are N states where a state is understood to be an image/label combination
or just an image. Each of these states has a scalar energy !j attributed to it. Some
states could have the same energy, i.e. I1 and I2 could both have energy !1 while I3
takes up the rest. Or I1, I2 and I3 could all have different energies. In general, the
number of states that have the j − th energy level !j is given by nj ; therefore, the total
energy Etot = �

j nj!j and the total number of states is N = �
j nj . There are clearly

many different ways to arrange the energy among the different states, such that the total
energy remains constant. Using combinatorics, the total number of ways to distribute
the energy among these different states is:

Υ = N !
n1! . . . nj !

Taking the logarithm of Υ and using Stirling’s approximation of ln(n!) = Nln(N) − N
Dutka (1991):

ln(Υ) = ln(N !) − (
�

j

ln(nj !)) = Nln(N) − N −
�

j

ln(nj !)
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Under the constraints of total energy and total number of states, we seek to maximise this
expression W.R.T. the nj , because out of all possibilities to group the states according to
their energy nj , we want the one that will give the highest probability. We can construct
the following Lagrangian:

L = ln(Υ) − α(
�

j

nj − N) − β(
�

j

nj!j − Etot)

= ln(N !) − (
�

j

ln(nj !)) = Nln(N) − N −
�

j

ln(nj !) − α(
�

j

nj!j − Etot) − β(
�

j

nj − N)

Taking the derivative and setting equal to zero gives for nj :

∂L

∂nj
= −ln(nj !) − αnj − β!jnj = 0

⇒ nj = exp(−α)exp(−β!j)
nj ∝ exp(−β!j)since exp(−α) is a constant

This is normalised using the constant Z =
�

j
exp(−β�j)

N which yields:

nj ∝ 1
Z

exp(−!jβ)

This is the exact expression in 4.5 with nj = pj ; !j = Ej and β = 1
kT

In very general terms, any statistical model is meant to approximate a dynamic and
complex system in order to help describe or infer different types of situations Hastie
et al. (2009). The model must learn to encode interesting latent dependencies in the data
and any a-priori knowledge/assumptions about model parameters. Considering that the
model is an abstraction, all inferences derived from the model are inherently uncertain
Bishop and Nasrabadi (2006). A probabilistic model takes the inherent randomness into
account. This approach makes intuitive sense for real world problems, especially for the
one addressed in this thesis, simply because the model cannot account for every single
detail and all of the circumstances surrounding the diagnosis of every single x-ray and its
subtle details. The probabilistic approach incorporates distributions into the model.

A state of the art discriminative classifier, as defined in section 3.4.1, produces a dis-
tribution across the classes via the final softmax layer, and can also considered to be a
probabilistic model. The distribution across the classes is an example of the categorical
distribution, a special case of the multinomial distribution Bishop and Nasrabadi (2006).
These classifiers are known to deliver highly accurate results Baltruschat et al. (2019);
however, it is a common misconception, because of this high accuracy, to consider the
softmax output a probability representative of the underlying data and a real expression
of uncertainty with deeper meaning attached to it. In fact, the softmax output gives no
deeper insight into the data and its generation process, see 5.1.1 Hendrycks and Gimpel
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(2016).

The probabilistic EBM differs from the state of the art classifier because it is a generative
model and learns to emulate the data generation process delivers as output a distribution
estimate for the original raw data, making it possible to express likelihoods and confi-
dence intervals. The EBM’s output is directly representative of the underlying data and
contains actual insight about the uncertainty attached to a prediction, making it useful
for downstream discriminative tasks. Another aspect of the energy based framework’s
flexibility and (mathematical) elegance. The energy function, in this case represented by
a CNN, is re-expressed using the Boltzmann distribution Boltzmann (1868) LeCun
et al. (2006), see also 4.5, by simply "inserting" it into the distribution and appropriately
normalizing. The most important question in this probabilistic point of view, aside from
the definition of the energy function, will be how the function is normalized - this is one
of the key differences to the state of the art classifier.

The mulit-class classification setting for the EBM is defined by LeCun et al. (2006) in
the following way:

Definition 4.5. Let Ew be an arbitrary energy function indexed by the parameter w
and a and b represent input and output, respectively. Then

Pw(a, b) = exp(−βEw(a, b))�
b∈B

exp(−βEw(a, b))da
(4.6)

is the joint probability distribution over input and output. E is represented by a CNN
architecture parametrised by weights w, see 3.4. Furthermore, a and b represent an input
and its corresponding label, respectively, −β represents a tempering parameter, usually
set to β = 1, that controls the distribution’s shape. The integral in the denominator
normalizes the expression.

The probabilistic interpretation of an EBM is a form of a structured probabilistic model
Goodfellow et al. (2016). These models represent distributions by using graphs to describe
the dependencies of random variables in a probability distribution, thus they are also
called graphical models. Structured probabilistic models reduce the computational costs
of training, inference and sampling compared to unstructured models Goodfellow et al.
(2016). Only direct interactions between random variables are modelled, instead of every
possible interaction, which results in a lot less parameters to be estimated, while retaining
reliability in the distribution estimates. This also has effects on statistical efficiency: since
there are less parameters, the model will tend to overfit less and require less training data
Goodfellow et al. (2016). Given the fact that there is typically no clear direction of influ-
ence, or causality, in the dependencies between the random variables encoded in the energy
function, EBMs are undirected graphical models. Undirected graphical models are of-
ten also called Markov Random Fields or Markov Networks Kindermann and Snell (1980).

56



4.5. Cost Functions

The output of the energy function in 4.5 represents an un-normalized distribution over
an un-directed graph and must be normalized, so that it integrates to 1. Thus, to
successfully transform an energy function to a probabilistic model, i.e. re-formulate it as
the Boltzmann distribution, proper normalisation is essential. In theory, this is achieved
by the partition function:

Definition 4.6.
Zw =

�
b∈B

exp(−βEw(a, b))da (4.7)

The partition function is an integral over all possible combinations between input images
a and elements of B. Depending on the structure of B, this is typically intractable to
calculate Goodfellow et al. (2016) which, in turn, creates difficulties in training and
ultimately also hinders using the probabilistic EBM for inferential purposes, such as
sampling and calculating likelihoods. So, while expressing the EBM as a distribution is
mathematically straightforward, it is intractable to carry out probabilistic inference. For
this reason, approximative methods need to be used to solve the intractable integration
and deliver an approximate solution. How the model is trained and how the problem of
the partition function is approached in this thesis is detailed in the following sections.

4.5 Cost Functions

Training an EBM, much like traning a classical DL model, see section 3.5, involves opti-
mizing a cost function. Considering the overall flexibility of the energy based framework,
there are many types of cost functions for the different ways an EBM can be interpreted
and trained LeCun et al. (2006). When training the EBM, the goal is to shape the energy
function in such way that it assigns "good" inputs low energy and bad ones high energy,
the general formulation of this optimization problem is shown in 4.3. Thus, the loss
function needs to be optimized in such a way that it pulls the energy function up for
wrong combinations, and pulls it down for right ones LeCun et al. (2006).

This thesis uses the Boltzmann distribution model to formulate the EBM as a proba-
bilistic model, meaning it becomes possible to calculate likelihoods. The natural way
to train this type of model Goodfellow et al. (2016) is using maximum likelihood to
minimize the negative log likelihood loss, analogously to section 3.5. This gives
the set of parameters that maximises the likelihood under the distribution for given
inputs. Furthermore, minimizing NLL equivalently minimizes the distance between the
distribution estimated by the model, pmodel and the true data distribution pdata. However,
the following derivation by LeCun et al. (2006) shows how the EBM also involves some
additional considerations that differentiate its NLL cost function:
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The likelihood to be maximized over training data S := {(ai, bi)|i = 1 . . . n} is:

Pw(a|b) =
n�

i=1
Pw(bi|ai) (4.8)

This is equivalent to minimizing:
n�

i=1
−log(Pw(bi|ai)) (4.9)

Using the Boltzmann distribution 4.5 this becomes:

n�
i=1

−log(Pw(bi|ai)) =
n�

i=1
βEw(ai, bi) + log

 �
b∈B

exp(−βEw(ai, b))da

 (4.10)

Averaging over the data set and dividing by β yields the expression for negative log
likelihood loss

Lnll(w, S) = 1
n

n�
i=1

Ew(ai, bi) + 1
β

log

 �
b∈B

exp(−βEw(ai, b))da

 (4.11)

The derivation shows how the loss is decomposed into two key components, the positive
phase and the negative phase Goodfellow et al. (2016):

• Ew(ai, bi) the energy between the i − th input and i − th response (positive phase).

• log

� �
b∈B

exp(−βEw(ai, b))da

�
the log of the partition function definition 4.6 also

referred to as free energy (negative phase). This term contains the energies between
the i − th input and all possible responses b ∈ B (even the wrong ones).

Minimizing the negative log likelihood loss requires the calculation of the gradient of
definition 4.11. The gradient of the likelihood for one sample can be expressed as LeCun
et al. (2006):

∇wLnll(w, (ai, bi)) = ∇wEw(ai, bi) −
�

b∈B
∇wEw(ai, b)Pw(b|ai) (4.12)

It is not straightforward to evaluate this gradient due to the intractability of the partition
function, which directly impacts the calculation of the gradient for the whole likelihood
function LeCun et al. (2006); thus, the gradient must be approximated. Considering
that Pw(b|ai) is given by the probabilistic definition of the EBM 4.5, the gradient of the
negative log likelihood objective function can be re-expressed using an expectation over
the model distribution:

∇wLnll(w, (ai, bi)) = ∇wEw(ai, bi) − EPw [∇wEw(ai, b)] (4.13)
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The gradient 4.13 contains an inherently random term, implying that minimising the
loss function using maximum likelihood becomes difficult and requires a different set of
methods to find a solution Goodfellow et al. (2016). The problem of approximating the
partition function and its gradient is a central topic when training a EBM. How this
problem was approached in this thesis will be explained in the next section.

4.6 Approximating The Partition Function
The previous section has shown the importance of evaluating the (gradient of the)
partition function for optimising the loss function and training the model. The partition
function is given by �

b∈B
exp(−βEw(ai, b))dI (4.14)

From 4.13, one can see that the gradient of the partition function can expressed by the
expectation:

EPw [∇wEw(ai, b)] (4.15)

This expression forms the the basis for Monte Carlo Markov Chain methods (MCMC) to
approximately maximize the likelihood with intractable partition functions Goodfellow
et al. (2016). MCMC methods are a class of techniques that rely on random sampling to
calculate numerical results, for instance for intractable integrals. A brief outline is given
below.

4.6.1 Monte Carlo Markov Chain Methods
Classical Monte Carlo methods can be used to solve any problem of a probabilistic
nature. They are mainly used in three problem classes Kroese et al. (2014): optimization,
numerical integration, and generating draws from a probability distribution. In all
cases, random numbers are repeatedly sampled and evaluated for statistical analysis.
In machine learning, they are especially popular for approximating expected values of
random variables whose computation is intractable Ahn (2015). Hence, the rationale
of using Monte Carlo methods to evaluate the gradient in equation 4.15. In a nutshell:
Many independent, random samples are drawn and evaluated using the random variable.
The expected value/integral is approximated by calculating the arithmetic mean of
the resulting functional values which, by the law of large numbers, converges to the
expected value. Thus, the more random trials that are performed, the more accurate
the approximated quantity will become Goodfellow et al. (2016). This implies, that the
number of samples provides control over the precision of the quantity that is being approxi-
mated, often limited by the computational complexity of drawing a sample Murphy (2012).

However, sampling from target distributions can be very difficult and independence of
samples is not always a correct assumption, especially in high dimensions with probabilistic
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models Goodfellow et al. (2016). This makes calculating equation 4.15 with classical
Monte Carlo methods difficult. In these cases, Markov chains can be used to generate the
samples. Markov chains are stochastic processes where the current state only depends
on the state that came immediately before. The mathematical formalisation of this is
known as the Markov Property and is the defining element of the Markov chain Norris
and Norris (1998):

P (Xt = i|Xt−1 = j)

The probability is also knows as transition probability. MCMC methods unify Markov
chains and the random sampling of Monte Carlo methods: a Markov chain is used to
sample from a distribution of interest, and the Monte Carlo method uses these samples
to approximate an expectation using the arithmetic mean. The distribution the Markov
chain samples from, i.e. the model distribution, should be invariant or stationary, meaning
transition probabilities do not change the distribution Ahn (2015). In practice, the chain
is modelled by an algorithm called a sampler. The most popular algorithms to generate
samples for MCMC are the Gibbs sampler and the Metropolis-Hastings algorithm Norris
and Norris (1998).

The Markov chains are arbitrarily initialized and they move around randomly, looking
for places with a high contribution to the integral, also known as modes, to move into
next, assigning them higher probabilities Norris and Norris (1998). MCMC algorithms
are sensitive to their starting point, and often require a warm-up phase or burn-in
phase to move in towards an area of high probability, after which prior samples can
be discarded and useful samples can be collected. The burning-phase is very costly
because it takes time until the chain finds useful samples. In addition, it can be chal-
lenging to know whether a chain has converged and collected a sufficient number of
steps. Often a very large number of samples and multiple chains need to be run for a
large predefined, fixed number of steps to produce a representative sample Murphy (2012).

The main problem with traditional MCMC is that they do not scale well to large scale
problems Ahn (2015), meaning they they are too computationally intensive for a lot of
data, which is a significant disadvantage for machine learning. The variance of MCMC
estimates converges to 0; however, the amount of real-world data necessary to achieve
this is too much for traditional algorithms considering their failure to scale Ahn (2015),
meaning their estimates will have high errors.

4.6.2 Applied MCMC - Gradient Approximation
In general, problems where the function that needs to be solved is the expected value
of another function, as in equation 4.15, can be solved using stochastic approximation
techniques, that is without using MCMC, created by Robbins and Monro Robbins and
Monro (1951). This is a class of iterative techniques that use noisy observations to find
the root of a function. Stochastic approximation can be applied to optimisation, if the
function in question is the gradient of a function; it works by finding local optima using
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noisy subgradient observations ?. In practice, these methods work by processing small
batches of data at each iteration, updating model parameters by taking small gradient
steps in a cost function Welling and Teh (2011).

wt+1 = wt + !t∇f

Stochastic approximation techniques are particularly useful because they are guaranteed
to converge in L2, given constraints on the step size !t of the iterations Robbins and
Monro (1951).

∞�
t=1

!t = ∞
∞�

t=1
!2
t < ∞

However, these do not capture parameter uncertainty and can potentially overfit data
Welling and Teh (2011).

The benefit of using MCMC methods is that in addition to approximating the intractable
likelihood gradient, they allow for the expression of uncertainty by generating samples
from the model distribution and they do not overfit the data Welling and Teh (2011).
This makes them especially interesting for training a probabilistic EBM. One of the most
popular gradient approximation algorithms in deep learning is the contrastive divergence
algorithm Hinton et al. (2006b). It is a special case of standard MCMC methods because
it does not initialize the chains with random points in space but instead with random
points from the data distribution, thereby reducing burning-in time and increasing ef-
ficiency. Naively, every time a gradient approximation is needed, a mini-batch of data
is randomly selected and a chain is run for a pre-defined number of steps. During each
step, a random sample is generated, using a Gibbs sampler for instance, that depends on
the previous sample Hinton et al. (2006b). While this method does increase efficiency
slightly, it still can become computationally infeasible because in every gradient step
new chains are initialized Goodfellow et al. (2016). Contrastive divergence converges
to the set of parameters that minimize the Kullback-Leibler divergence between model
distribution and data distribution, which is equivalent to minimizing crossentropy and
the negative log likelihood.

A strategy that further increases effciency is the Persistent Contrastive Divergence
algorithm Younes (1999) Tieleman (2008). The intuition here is to create a so-called
replay buffer to store states from earlier running Markov Chains and use these to initialize
the new Markov chains, meaning the chains are not reset every time. In essence, the
gradient estimates happen continuously, or online Tieleman (2008). This method reduces
the time for the current chain to reach equilibrium, since the distributions in the individual
steps are similar. The algorithm works better with smaller learning rates, which improves
the gradient estimations. Conversely, the method becomes inaccurate and training
diverges.
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4.6.3 Stochastic Gradient Langevin Dynamics
The preceding sections have highlighted some of the main benefits, drawbacks and
applications of traditional MCMC methods. The main drawback is that these methods
do not scale well to large amounts of data, making them uncompetitive compared to
optimization techniques such as SGD. An algorithm that can approximate the gradient
in equation 4.15 while combining the distributional benefits of traditional MCMC and
the efficiency/convergence benefits of optimization, would be particularly useful to train
the EBM. One such method is a class of MCMC methods called Stochastic Gradient
Langevin Dynamics (SGLD) Welling and Teh (2011). This algorithm was used to train
EBMs successfully by Grathwohl et al. (2019), enabling efficient training and sampling of
probabilities from the target distribution which happens to be the Boltzmann distribution
Langevin (1908). This thesis uses the same methodology to train an EBM.

Langevin Equation and Langevin Dynamics

The Langevin equation is a stochastic differential equation describing the motion of a
particle when subjected to a combination of deterministic and random forces Langevin
(1908):

m
∂2x

∂t2 = −mγ
∂x

∂t
+ Ft (4.16)

x is the particle’s position, m its mass, ∂2x
∂t2 its acceleration, ∂x

∂t its velocity and Ft a
random fluctuating force; mγ ∂x

∂t can be understood as the viscous friction force on the
particle that is proportional to its velocity (Stokes’ Law). The fluctuating force Ft is
assumed to be a Gaussian process such a Brownian motion MacKay et al. (2003). We
can rearrange the terms, rename the variables and write a discrete approximation of the
stochastic differential equation, since continuous time cannot be simulated by computers
Ahn (2015):

xt+1 = xt − α

2 ∇E(xt) + !, x0 ∼ U(−1, 1) ! ∼ N (0, α) (4.17)

where x0 is sampled uniformly. Since via Stokes’ law, velocity is proportional to the
viscous friction force, ∂2x

∂t2 becomes the gradient of the force E, which can also be consid-
ered as the energy; ! is normally-distrbuted noise; α is the step size and the standard
deviation. In practice the step-size α and the standard deviation of ! is often chosen
separately because it allows for faster training Grathwohl et al. (2019). Expression 6.1 is
the discretization of the stochastic differential equation.

The Markov chain defined by SGLD is non-stationary, such that the t − th step transition
will have as its equilibrium distribution the posterior Welling and Teh (2011). Since the
chain is not stationary, it is not immediately guaranteed that it converges to the posterior,
or target, distribution. However Borkar and Mitter (1999) proves that this holds, and
the stationary distribution is equal to the target distribution Welling and Teh (2011).
The solution of the Langevin equation is the Boltzmann distribution Langevin (1908),
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meaning the stationary distribution of the Markov chain is the Boltzmann distribution.

Remark. Stochastic gradient langevin dynamics is an inherently Bayesian method Welling
and Teh (2011). Expression 6.1 can be adapted using likelihoods, priors and posteriors
to have the following form Welling and Teh (2011):

ωt+1 = ωt
!

2

�
∇log(p(ωt) +

N�
i=1

∇log(p(xi|ωt)
�

+ ηt (4.18)

where ω are the distribution parameters; ! the step size; η Gaussian noise

Stochastic Gradient Langevin Dynamics

When we approximate 4.15 with stochastic gradient langevin dynamics, we run Markov
chains across the Boltzmann distribution and average the resulting samples in order to
approximate the expectation/gradient. This information then flows into the original
maximum likelihood problem for the cost function. Overall, training the EBM involves
implicitly generating samples from the target distribution and improving by minimizing
the resulting loss Du and Mordatch (2019). To leverage the efficiency of stochastic opti-
mization techniques, generating the samples can also be done batch-wise Welling and Teh
(2011). The proof that the properties of the Markov Chain and the Langevin dynamics still
hold is given by Borkar and Mitter (1999). As with all MCMC methods, the burn-in phase
is inefficient. It can be extended analogously to persistent contrastive divergence to keep
a replay buffer of useful samples from previous chains and initialize new chains using these.

Stochastic gradient langevin dynamics is an extension of both stochastic optimization
and traditional MCMC methods. Not only is it computationally efficient Welling and
Teh (2011) and enables efficient training of EBMs Du and Mordatch (2019), but it allows
us to directly sample from our target distribution, the Boltzmann distribution.

4.7 Benefits And Drawbacks Of The Energy Based
Framework

This chapter has introduced energy based modelling and how it can be used in an image
classification setting. The energy based framework is an elegant, unifying framework that
gives the modeller a lot of freedom and flexibility when designing a model; however, it is
also a very abstract concept that needs exact specification, meaning it is not an "out of
the box" algorithm but needs a lot of architectural work.

The central element of an EBM is the energy function. It encodes the latent variables
within the dataset and assigns states, for instance images or image/label combinations, a
scalar energy that indicates how well this state fits into the data. In other words the

63



4. Introduction To Energy Based Modelling

energy function is an unnormalized density. This thesis considers the special case of
the energy function beeing re-formulated as a probabilistic model using the Boltzmann
distribution.

Following the work of Grathwohl et al. (2019), MCMC techniques from Bayesian inference
to train it to fit a distribution over the data Du and Mordatch (2019). This allows for
reliable uncertainty quantification, sample generation and the expression of likelihoods
Welling and Teh (2011). Overall, the goal is to create a hybrid model which delivers a
fits a distribution over the data that can then be used for downstream discriminative
tasks Du and Mordatch (2019)Grathwohl et al. (2019).

While the energy based framework is mathematically elegant and flexible, its realisation
has some key drawbacks that make the widespread/commercial use difficult.

• The biggest drawback of EBMs is the fact that training is very difficult and
time consuming, especially in very high dimensions. The reason for this is the
computations necessary for the stochastic gradient langevin dynamics training
algorithm. The number of steps a Markov Chain must take to reach stable solutions
is not known. Samples from the estimated distribution are highly correlated,
meaning that a representative sample can only be achieved with many parallel
chains, which adds to the computational effort.

• The partition function that normalizes the energy function is typically intractable,
which necessitates the use of approximative methods to calculate the gradient of
the cost function, increasing the complexity of training.

• Training the EBM as a hybrid model creates a trade off between fitting a high-
quality distribution and producing class predictions the meet the state of the art
in accuracy. Typically, some of the accuracy will be sacrificed in order to produce
higher quality out (class predictions or probabilities).
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CHAPTER 5
Evaluation And Comparison Of

Energy Based Modelling And
Deep Learning

This chapter will highlight the similarities and differences of the deep learning and energy
based frameworks. Special attention is paid to how the interpretation of their their
respective outputs differ.

5.1 Energy Based Modelling Compared to Deep Learning
Chapters 3 and 4 have introduced the deep learning and the energy based framework,
respectively, showing the differences in their motivation and training. The two modelling
frameworks share a significant similarity: a CNN architecture as their backbone. The
CNN is the state of the art model for computer vision tasks, especially classification.
They are able to far outperform their well-known discriminative counterparts such as
the support vector machine or logistic regression models Goodfellow et al. (2016). This
is because their usage of local receptive fields, the convolution operation and efficient
downsampling allows them to be particularly good and efficient at finding specific patterns
within an image and memorizing them Goodfellow et al. (2016).

Training a CNN using deep learning methodology has delivered unprecedented results to
many different types of highly complex problems and domains, including the medical
domain. It has re-defined the state of the art in classification accuracy in experiments,
even on medical image data Baltruschat et al. (2019); however, they have also been shown
to have specific characteristics that potentially slow down, or even hinder, widespread
adoption.
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5.1.1 Deep Learning
Black Boxes While networks are able to approximate any function, see section 3.4.2,
the approximation does not give any details about the underlying structure, thus they
are often referred to as black boxes. In other words, when a network generates a class
prediction, the interpretation of these results is non-trivial, meaning there is no intuitive
indication what specifically drives the prediction, which reduces trust in the network
Adebayo et al. (2018) Rudin (2019). This lack of transparency invariably creates issues
of accountability and can have severe consequences Rudin (2019). One possible way
forward is to produce separate solutions that aim to explain the behaviour of the black
box, known as explainable machine learning Rudin (2019). Proper explanations could
potentially help users improve the quality of follow up tasks and, perhaps, reveal bias or
other unintended effects learned by a model Lakkaraju et al. (2017). In computer vision,
there has been a lot of research and development into the creation of such, for instance
GradCam Selvaraju et al. (2019). This uses the gradient of the class output flowing
into the final convolutional layer to produce a coarse localization map highlighting the
regions in the image where the model is looking when predicting the class. However,
these methods typically cannot explain why a prediction is the way it is, i.e. it is an
inaccurate representation of the original model and not completely faithful to what the
original model computes Rudin (2019). A combination of inaccurate explanations and an
opaque model lowers trust in the approach overall.

Data and Hardware Requirements Networks need a lot of data for training in order
to learn the underlying dependencies well and produce accurate predictions Goodfellow
et al. (2016). In addition, supervised learning problems require the data to be labelled
data which requires extra effort to create and maintain. Furthermore, training networks
requires sophisticated hardware Goodfellow et al. (2016). For computer vision tasks,
GPUs have become indispensable to carry out efficient, high-dimensional calculations.
State of the art deep learning algorithms can take several weeks to train completely from
scratch Goodfellow et al. (2016). Inferior hardware hinders proper training because it
cannot carry out the necessary calculations and it does not have the capacity for the
amount of data needed to train the model, even if a significant amount of data exists.

Uncertainty A high accuracy is only one part of what a successful deep learning
implementation should include; a model should have the ability to capture model un-
certainty, or epistemic uncertainty Gal (2016). This type of uncertainty is linked to the
knowledge that is available, or lack thereof. More specifically, many different types of
models can be used to solve a specific type of problem: the architecture chosen and
the way the parameters are estimated, all induce uncertainty into the predictions Gal
(2016). Failure to capture this can have severe effects, especially when human lives are
involved Gal (2016). Overall, quantifying uncertainty is important information for both
modellers and end-users Gal (2016). This includes understanding if a model is over- or
underconfident, i.e. uncertainty estimates are too small or too large, which can help get
better performance Gal (2016). In addition, it is very important in real world applications
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for a model to understand when a testing observation is too different from the overall
training data Hendrycks and Gimpel (2016). Intuitively, a model should not make a
highly confident prediction on an image that is completely different than the data it was
trained on, otherwise wrong information could be derived from that prediction Gal (2016).
Unfortunately, deep learning classifiers often do deliver highly confident predictions for
nonsensical inputs and do not account for this uncertainty information Hendrycks and
Gimpel (2016). This scenario is not purely theoretical. Aside from human error, training
and testing distributions can naturally shift over time, implying that models would need
to be continuously re-trained, which can be very costly. Alternatively, a model could
be trained to include an expression of high uncertainty or low confidence to flag these
observations for human intervention Gal (2016). The softmax output of a classification
network is often erroneously interpreted as such an expression of model confidence Gal
(2016), or even a real likelihood relative to the entire dataset, but this is false Guo et al.
(2017) Gal (2016). The uncertainty attached to predictions implies a certain level of
context and knowledge within these predictions, which can deliver valuable insights;
this means: the numerical output for a class should be in line with the ground truth
occurrence of this class in the dataset and can in fact be interpreted as a likelihood Gal
(2016).

The topic of uncertainty in neural networks is a central focus in this thesis. Specifically,
the experiments focus on the following two aspects:

1. Out of Distribution Detection (OOD) capabilities of the model Hendrycks and
Gimpel (2016)

2. The calibration capabilities of the model Guo et al. (2017)

These will be elaborated separately below.

Calibration

If neural networks are to be entrusted with sensitive decisions such as medical diagnosis,
they should be able to indicate when they are likely to be incorrect Guo et al. (2017).
This means the score produced by a network for a specific class, should reflect its ground
truth likelihood Nixon et al. (2019), this is known as calibration. More intuitively: given
100 chest x-rays, each with a score of 0.8 for having a fracture. If the model in question
is well-calibrated, it can be expected that the ground truth shows that 80% of the chest
x-rays also have a fracture present and are correctly classified. This is essential in machine
learning applications, especially in high stakes tasks like medical imaging where confident,
but incorrect, predictions could have disastrous consequences Minderer et al. (2021).
Even though neural networks and their output are considered as black boxes and cannot
be fully explained, confidence calibration provides a way for avoiding major mistakes
by associating each prediction with an uncertainty/confidence score that reflects the
ground truth data. Calibrated probability scores associated with each prediction allow
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low-quality predictions to be identified and discarded Gal (2016).

Convolutional Neural Networks have been able to achieve excellent accuracies on image
tasks but, paradoxically, this has resulted in a rising level of miscalibration as well
Guo et al. (2017). The softmax scores produced by classification networks are typically
interpreted as confidence scores, i.e. the softmax is interpreted as a probability backed
by the ground truth data. In other words: a classification model produces a softmax
score for a class of 0.996, does this mean the chance that the input belongs to that
class is truly 99.6%? Networks often make poor/incorrect predictions with softmax
scores of nearly 100%, meaning they are over-confident and there is a risk of actual
misinterpretation of these values and how likely the correctness truly is Guo et al. (2017).
The reason for this cannot be distilled into one causal driver, but rather a combination
of different factors, including: the large increase of model depth, models commonly
have 100s of layers with 100s of convolutional filters per layer, and the regularization
techniques that enable efficient training of these very deep networks, such as weight decay
(adding a penalty term to the cost function) and batch normalization (normalizing across
batches) Guo et al. (2017). In addition, the use of softmaxes also contribute to the high
confidence predictions Hendrycks and Gimpel (2016). Softmax scores are computed with
the exponential function; minor additions to the inputs can already lead to substantial
changes in the output distribution. Rising miscalibration in the face of near-human
accuracy seems counterintuitive and poses a severe risk to open adoption of deep learning
models, as it greatly reduces trust in them Chen et al. (2020a).

Formally, perfect calibration is defined as Guo et al. (2017):

Definition 5.1 (Calibration). Let A and B be the sets of inputs and their corresponding
labels as laid out in section 3.1, respectively. a ∈ A and b ∈ B can be considered as
random variables that follow a joint distribution π representing the ground truth in the
following way:

π (a, b) = π (b|a) π (a)
The joint distribution is based on the probability measure P.

Let Gw be the network defined in definition 3.4 and consider the output

Gw(a) =
�
b̂, q̂

�
where b̂ is a class prediction and q̂ is its associated confidence, or in other words
the score, like the softmax, indicating to what degree this prediction is correct, e.g.
(3(= fracture), 0.8). Ideally, q̂ is calibrated, meaning it is equal to the ground truth
likelihood of the predicted label. A model is perfectly calibrated if:

P(B̂ = b|Q̂ = q) = q ∀p ∈ [0, 1] (5.1)

This means that the probability of predicting a label, given that the corresponding
confidence score is the likelihood of that label in the ground truth, is exactly the observed
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likelihood of that label in the ground truth Guo et al. (2017). Achieving perfect calibra-
tion is virtually impossible, due to time constraints and the fact that the probability
in 5.1 cannot be computed using finitely many samples since Q̂ is a continuous ran-
dom variable Guo et al. (2017). This motivates empirical measures to evaluate calibration.

Reliability Diagrams A simple and easily accessible visual indicator of a model’s
calibration are reliability diagrams Degroot and Fienberg (1983). These diagrams plot
expected sample accuracy as a function of confidence. Predictions are grouped into
interval partitions, called bins, based on the prediction confidence value (softmax),
and the accuracy for each bin is calculated. Any deviation from the diagonal repre-
sents miscalibration. Expected prediction accuracy can be estimated by Guo et al. (2017):

For a given set of predictions from a classification model, group the predictions into M
bins each of size 1

M . Let Bm be the set of indices of the predictions whose score falls into
the m − th bin defined as rm =

�
m−1

M , m
M

	
.

Definition 5.2. The accuracy of Bm is

acc(Bm) = 1
|Bm|

�
i∈Bm

1(yi = ŷi) (5.2)

where yi and ŷi are the predicted and true class labels for prediction i and 1 is the
indicator function. acc(Bm) is an unbiased and consistent estimator of P(ŷ = y|P̂ ∈ rm),
meaning E[acc(Bm)] = P(ŷ = y|P̂ ∈ rm) and acc(Bm) converges in probability to the
true value of the accuracy Guo et al. (2017).

The average confidence within a bucket Bm is defined as:

Definition 5.3. Let Bm be the set of indices of predictions that fall into the m − th bin.
The average confidence of Bm is

conf(Bm) = 1
|Bm|

�
i∈Bm

p̂i (5.3)

where p̂i is the confidence of the i − th prediction Guo et al. (2017).

A perfectly calibrated model’s output will reflect ground truth likelihood, thus for a
given bin, the confidence expressed by the prediction score will be equal to the accuracy,
i.e. conf(Bm) = acc(Bm), ∀m ∈ M . If confidence and expected prediction accuracy
are plotted against each other, the resulting histogram can be used to visually assess
calibration. Perfect calibration corresponds to the alignment of the bars with the 45
degree line. 5.1 show an example of a very well calibrated reliability curve for a state of
the art classifier 5.1a and an over-confident classifier 5.1b, respectively.
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(a)

(b)

Figure 5.1: An example visualization of reliability curves. An alignment with the 45
degree line indicates perfect calibration. Under the the 45 degree line indicates over-
confidence of the classifier. Over the 45 degree line indicates under-confidence of the
classifier. (a) shows a very well-calibrated classifier and (b) a very poorly, over-confident
classifier70



5.1. Energy Based Modelling Compared to Deep Learning

Reliability curves are an important tool in quickly and simply assessing a classifier’s
calibration. However, it does not numerically quantify the level of miscalibration. A
more convenient method may have a scalar statistic that expresses how the classifier
behaves. (Mis-)calibration can be numerically measured by calculating the Expected
Calibration Error Naeini et al. (2015) and the Maximum Calibration Error Naeini
et al. (2015).

Definition 5.4. The Expected Calibration Error expresses the expected value of a
classifier’s confidence and accuracy:

EP̂

�
|P(Ŷ = y|P̂ = p) − p|

	
(5.4)

We can approximate miscalibration using 5.4 by binning the model’s predictions into
M equally spaced bins and taking a weighted average of the bin’s accuracy/confidence
difference Guo et al. (2017):

ΣM
m=1

|Bm|
n

|acc(Bm) − conf(Bm)| (5.5)

n being the number of predictions.

Proof. The exact definition of miscalibration is

EP̂

�
|P(Ŷ = y|P̂ = p) − p|

	
Let FP̂ be the cumulative distribution function of P̂ such that FP̂ (b) − FP̂ (a) = P(P̂ ∈
[a, b]). Using the Riemann-Stieltjes integral on to re-express the expectation:� 1

0
|P(Ŷ = y|P̂ = p) − p|dFP̂ (p)

≈ ΣM
m=1|P(Ŷ = y|P̂ = pm) − pm|P(P̂ ∈ rm)

where rm represents the interval of bin Bm. Looking at the summand and comparing
it to the defintions 5.2 and 5.3 it can be seen that for large n |P(Ŷ = y|P̂ = pm) − pm|
is approximated by |acc(Bm) − p̂(Bm)| Hence expected calibration error using M bins
converges to the M -term Riemann-Stieltjes sum of EP̂

�
|P(Ŷ = y|P̂ = p) − p|

	

It is also useful to analyze, and minimize, the maximum difference between confidence and
accuracy versus the mean in 5.4 if reliable confidence measures are absolutely necessary
Guo et al. (2017).

Definition 5.5. The Maximum Calibration Error expresses the greatest deviation
between confidence and accuracy:

max
p∈[0,1]

|P(Ŷ = y|P̂ = p) − p| (5.6)

The approximation of this summary statistic also involves binning:
max

m∈{1,...,M}
|acc(Bm) − conf(Bm)| (5.7)
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Out of Distribution Detection

When deep learning classifiers are deployed in real-world situations, they often fail because
they cannot distinguish when the distribution of data used differs too greatly from the
distribution of the training data, i.e. it is out of distribution Cao et al. (2020). With
medicine specifically, failure could result in wrong diagnoses or introduce biases that
affect a healthcare professional’s judgement Gal (2016). Despite the failure of classifiers,
they still provide high confidence predictions while being effectively wrong Hendrycks
and Gimpel (2016). These weaknesses significantly amplify the associated danger of using
deep learning in a real clinical setting Goodfellow et al. (2014). Trying to classify an
input as out of distribution, meaning it was sampled from a different testing distribution
compared to the training distribution, is what is known as Out of Distribution Detection
(OOD).

Figure 5.2: Visualisation of OOD: the goal is to classify an input as out of distribution,
meaning it was sampled from a different testing distribution compared to the training
distribution. If a model is trained on dog breeds, can it successfully distinguish between
the blueberry muffing and the chihuahua?

Image 5.2 visually describes the OOD problem. The network in this example has been
trained on images of dog breeds and can distinguish between them. The important
question to consider: if it is given an image of a blueberry muffin, will it be able to
distinguish between whether it is a muffin or a chihuahua? While this is a light example,
it shows the principle of OOD very well. It is obvious to a human observer that blueberry
muffins and chihuahuas are different; however, they do share some striking similarities
that would lead a network to possibly classify a muffin as a dog. This can be easily
extrapolated to more serious domains, such as chest radiographs with pathologies a
diagnostics system has never observed before, leading to wrong diagnoses and follow up
treatments that could be potentially harmful.

Before formally defining what Out of Distribution Detection is, it is necessary to un-
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derstand how data is viewed in a statistical sense. The general assumption is that the
population is generated by an underlying, unknown process Goodfellow et al. (2016). In
order to derive information about the population, this process can be abstractly modelled
by a probability distribution based on a known sample, the data. Thus, it is often useful
to consider the dataset a distribution when dealing with probabilities/uncertainties. An
observation, in this case an image, is considered in-distribution if it is part of the training
data and out (of) distribution if it is not.

Out of Distribution Detection is in essence a separate binary classification problem
that is applied after to a classifier after model training. In an abstract sense, OOD can be
thought of as separating a test dataset into those examples that are part of the training
distribution and those that are not. While there are different approaches to do this, Lee
et al. (2018), this thesis focuses on the work of Hendrycks and Gimpel (2016) which uses
a classifier’s predictive score, such as the maximum softmax probability, more on this
below. The score from the original model is used to assign in and out of distribution
labels to the observations. The formal definition of the problem is as follows Chen et al.
(2020a) Bendale and Boult (2016) Sehwag et al. (2019):

Definition 5.6. Chen et al. (2020a) Let P (I) and Q(I) be the in- and out-distribution
on the space I of images, respectively. P and Q are sufficiently different and Q has a
label set that is disjoint from that of P .

The out of distribution problem is characterised by a function that separates in and out
of distribution samples. It is defined as

D := X → {0, 1}
this is a binary classifier that assigns in-distribution samples a 1 and out of distribution
samples a 0, based on their classification scores. in-distribution samples are originally
drawn from P (I) and denoted as Din; out-distribution are samples drawn from Q(I)
and are denoted as Dout

Threshold Free Metrics An important issue with this concept is the fact that if one
class is more prevalent than the other, the model could have a high accuracy based on
always guessing the class with the higher frequency - this can be misleading Hendrycks
and Gimpel (2016). Inadvertently, this will lead to the issue of choosing a threshold that
reflects a certain trade-off between false positives and false negatives. Therefore, one tool
to assess OOD is the use of the Area Under Receiver Operating Characteristic (AUROC),
which is a threshold-free metric Davis and Goadrich (2006). A ROC curve plots true
positive rate against false positive rate.

Maximum Softmax probability baseline The baseline metric used in this thesis, the
defacto standard metric developed by Hendrycks and Gimpel (2016), takes the maximum
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probability from of a softmax distribution to determine whether an input can be classified
as out of distribution or not. The metric is called maximum softmax probability metric.
The rationale here is that incorrect and out-of-distribution examples have lower softmax
scores than the prediction probability for correct examples Hendrycks and Gimpel (2016).
Specifically, the test set consists of in and out of distribution examples and for each
example, the maximum softmax probability is recorded. From this, AUROC values can
be calculated and the score distributions for the two different groups can be visualized to
assess the OOD capabilities.

Another approach to OOD is the use of models that estimate a data density to understand
the data generation process. The idea is that a sample is out of distribution if it lies
within low density regions Kingma and Welling (2013). The benefit of this method is the
assumption that the density captures elements of the data generation process and has
more information about the underlying structures and dependencies.

Ideally, there should be one modelling framework that can fit an accurate model and at
the same time deliver the valuable uncertainty information that deep learning classifiers
do not, possibly by ways of a combined density estimation. For instance, in addition
to a class prediction, the model could produce a measure that conveys a high level of
uncertainty, or low level of confidence if the image lies outside of the training distribution
Gal (2016). Having more structural information about the data embedded into the
modelling could increase trust in these methods an contribute to AI safety Amodei et al.
(2016). Specifically autonomous detection of OOD examples has become an important
component for trustworthy AI Amodei et al. (2016). Such frameworks exist and this
thesis will focus on the development of one such framework called Energy Based Model.

In the case of the EBM, the intuition is that the energy function E is approximated by a
CNN, meaning the (negative) energies in Ew(a, b) are given by the logits. A natural then
question is: how is the joint distribution and the (marginal) data distribution derived
from the logits? The following derivation based on Grathwohl et al. (2019) explains this
central connection.

Gw : RD → RK

Let Gw(a)[b] be the projection onto the y-th component of Gw(a), known as the logits.
Given that the energy function E in equation 4.5 is being interpreted as a neural network,
−Ew(a, b) can be understood to represent the logits Gw(a)[b], with the parameter β = 1.
The logits Gw(a)[b] are not normalized, which fits into the energy based framework since
energy is a-priori without any restrictions, especially normalization restrictions. Thus,
equation 4.5 becomes:

Pw(a, b) = exp(Gw(a)[b])�
b∈B

exp(Gw(a)[b])da
(5.8)

giving the joint distribution of inputs and labels. From this joint distribution we can
construct the marginal distribution of just the inputs Pw(a) by summing 5.8 across the
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labels b, i.e. marginalizing b out:

Pw(a) =
�

b

Pw(a, b) =
�

b exp(Gw(a)[b])�
b∈B

exp(Gw(a)[b])da
(5.9)

Which defines the distribution over the inputs. The joint and input distributions can be
used to express the conditional distribution Pw(b|a):

Pw(b|a) = Pw(a, b)
Pw(a) = exp (Gw(b)[a])�

b� exp (Gw(a)[b�]) (5.10)

The expression in equation 5.10 is the familiar softmax function Gibbs (1902), the
multidimensional extension of the logistic function,

σ : RK → [0, 1]K

z �→ σ(z)b = exp(zb)�K
j=1

where z = Gw(a)[b]. The softmax function normalises the network output to a probability
distribution over the K different possible responses. It is the typical output layer for
classification networks and assigns decimal probabilities to each class, where the proba-
bilities must add up to 1. The class corresponding to the highest probability is selected
as the class for the image in question. However, the number itself has no deeper meaning
for the image, or the prediction in relation to the dataset overall.

The derivation above, formulated by Grathwohl et al. (2019), shows how a generative
model lies hidden within a standard classification model, in this case a "normal" CNN’s.
The negative logits from the CNN are the output of the energy function, that is they
are interpreted as energy. The energy is normalised based on the whole dataset to give
the joint probability distribution P (a, b), this is the key difference to the state of the
art classifier that does not do this. The joint distribution can be marginalised to give
the data distribution P (a); the joint and data distributions can be used to express the
conditional probability P (b|a). The EBM in this context is considered a hybrid model
and has come to be known as the Joint Energy Based Model (JEM) constructed by Will
Grathwohl Grathwohl et al. (2019).
Remark. This treatment of logits to define a generative model within a classification
model is not limited to neural networks. Any classifier can be used.

A deep learning classifier is trained in such that the pattern recognition skill of the CNN is
leveraged to approximate a function/hyperplane that will group the data into the relevant
classes and minimize the cost of misclassification. Classification occurs by producing a set
of output scores and selecting the maximum one as the class for the specific image. The
output score itself however, does not have any deeper meaning that could be attached
to the image or related to the dataset overall. For instance, one cannot conclude that a
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patient is more ill than another patient because they have a higher classification score.
One can also not determine whether a given test image fits into the data distribution
overall or not. Even so, the classification score is often erroneously interpreted as a
reliable uncertainty measure for the specific image Guo et al. (2017). On a high level,
the score itself is the result of a series of weighted sums passing through the different
transformations, such as convolutions and activation functions, before being normalised
by a softmax function across the number of classes. More formally, DL classifiers give
point estimates for the weight parameters that minimize a specific loss. This works well
in a tightly controlled, very specific domain but often does not reflect reality and the
overall data distribution well which can result in significant drawbacks that directly
influence real-world adoption. This includes the phenomenon where the model produces
highly accurate predictions in experimental settings, but the predictions do not reflect
likelihoods found in the data, i.e. the model is not well calibrated an over-confident. In
addition, the model does not have the ability to identify when it is given an image that
is significantly different to the training distribution, either through distribution shift or
false inputs, also known as Out of Distribution Detection.

5.1.2 Energy Based Modelling
The key difference between the models is the way they quantify uncertainty. The EBM
is trained in such a way that it learns the distribution of the data, i.e. it is a generative
model, and this knowledge about the data is then used in downstream discriminative
tasks, hence the term hybrid model.

The role of the CNN is to approximate the energy function, the representation of the latent
dependencies within the data. The energy function by is an unnormalized distribution
that can be transformed and normalized to a probabilistic model, i.e. it gives reliable
probability estimates, using the Boltzmann distribution. The distribution is fit by using
MCMC methods typically used in Bayesian model training and inference, where random
samples are generated by many Markov chains and updated stochastically using the
information about the function’s gradient. This allows for a comprehensive quantification
of uncertainty. The samples are compared to real images and the divergence/difference
is minimized; in addition to learning the patterns present in the data, the model learns
deeper structural information about the data.

The function’s flexibility can be leveraged to subsequently produce classification scores
that benefit from this deeper knowledge; as the distribution estimate iteratively improves,
so do the class predictions. Because of this procedure, the classification scores contain
deeper meaning and can be used to make reliable conclusions and assumptions about the
inputs. Furthermore, the model can be used to make more reliable out of distribution
estimates and deliver more calibrated predictions.

The distributional properties can be used to conclude how well an image fits into the
data overall and generate new and realistic samples of data. While it does have many
benefits, the EBM has key deficiencies that could make widespread use impractical.
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EBMs are very difficult to train, especially in very high dimensions LeCun et al. (2006).
It involves a lot of manual effort to find the correct hyperparameters for all of the involved
components (the network, the markov chains etc). In addition, EBMs need a lot more
time and computational power to deliver useful results, compared to "traditional" deep
learning. Since it is a growing field of research, at present there are only few established
best-practices for training.

5.1.3 Summary
The similarities and differences of the deep learning and energy based frameworks is
summarised in table 5.1

Deep Learning Energy Based Modelling

Pros

A lot of resources and best practices are available Very flexible and applicable to many different
types of problems and types of data

Highly accurate on image recognition tasks,
pattern recognition,
outlier detection fast inference/prediction times

Allows reliable uncertainty quantification

A lot of resources and best practices are available
One unifying framework that allows a
generative model to also be used
for discriminative purpose

Scale well No prior restrictions
Fast and efficient training algorithms available Increases model interpretability

Cons

Black Boxes Not a lot of best practices available
High data and hardware requirements Highly computationally intensive
Lack of reliable uncertainty quantification
which influences OOD and model calibration

Requires a lot of manual tuning
and high mathematical complexity

Tend to only work well in very specific,
narrow areas of application

High hardware requirements
and do not scale well
Can be unstable to train,
i.e. loss often diverges

Table 5.1: Comparison of the deep learning and energy based frameworks
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CHAPTER 6
Methodology And Model Design

This chapter is divided into three sections, each will describe a different aspect of the
experiments carried out in the course of this thesis. To begin, section 6.1 will recall the
overarching goals of this thesis and view them in the context of the theory developed in
the previous chapter. The following section, section 6.2, is dedicated to all data used
in the experiments. It will detail the chest x-ray data used for training, as well as the
additional datasets, both medical and non-medical, used the evaluation phase of the
model. In the final section of this chapter, section 6.3, the implementations of both the
state of the art classifier, 6.3.4, and the EBM, 6.3.4, are addressed. This includes a
detailed description and formal justification of the choices made when constructing the
two pipelines, such as the reasoning behind the choice of pre-processing, what network
architecture was used, how the different models were trained and, finally, how the results
were evaluated such that they can be compared to the aim of the thesis.

6.1 Contextualization Of Research Goals
The rationale for conducting the research in this thesis is to study the suitability of a
hybrid energy based model, as constructed in Your Classifier is Secretly an Energy
Based Model and You Should Treat It Like One by Will Grathwohl Grathwohl et al.
(2019). The idea is to leverage the information captured by the generative model to create
a medical image classifier that delivers highly accurate predictions that also contain un-
certainty information, hence the hybrid nature of the EBM. An additional innovation this
thesis brings, is the fact that EBMs have never been applied on the medical domain before.

In relation to the aims formalised out in 1.3, a chosen state of the art deep learning classi-
fier is trained on posteroanterior chest x-rays. The same neural network architecture will
be reinterpreted within the energy based framework and examined for its discriminative
and out of distribution capabilities. Specifically:
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• the discriminative power of the models will be compared using the respective
AUROCs, where the AUROC is the area under the ROC curve and an aggregate
measure of performance across all possible classification thresholds.

• a significant benefit of the EBM, especially compared to a classical state of the art
deep learning classifier, is the ability to detect of wrong inputs very well, which is
also known as Out of Distribution Detection Hendrycks and Gimpel (2016), see
also 5.1.1. OOD will be evaluated with maximum prediction probability score,
according to Hendrycks and Gimpel (2016) because it allows comparability between
the state of the art classifier and the EBM.

• the distributional properties should allow for the "out of the box" calculation of
calibrated likelihoods, that is the predicted confidence such as a logit is representa-
tive of the true likelihood seen in the data. Calibration will be compared using the
Expected Calibration Error, see 5.1.1.

In all of the above aspects, the EBM will be compared to a a state of the art discriminative
classifier. The hypothesis is that the energy based setup yields comparable discriminative
power while meeting significant requirements for applications in clinical setups.

The foundational theory on EBMs, presented in 2.3, details how the models in question
work and how they can be used to address the above points. EBMs were presented as
a useful and flexible tool for generative modelling, which is what this thesis hopes to
leverage for downstream discriminative tasks. They estimate a, not necessarily normalised,
density over the data, which allows for the calculation of likelihoods, confidence intervals
and other quantities that rooted in the data and quantify uncertainty. As a special case,
they can be viewed in a probabilistic way, meaning they give a probability distribution,
which allows for the calculation of likelihoods and the construction of confidence intervals
to assess uncertainty - all of which gives the user valuable understanding about the latent
connections in the data. This thesis focuses on exactly this special case of the energy
based framework. These models have become increasingly popular to explore, due to
their mathematical simplicity Du and Mordatch (2019), especially how well the estimated
density can be used for downstream discriminative tasks, such as multiclass classification
Grathwohl et al. (2019). The motivation is to use the added information the generative
nature of the model provides for better quality predictions. In short, EBMs allow to
correctly quantify uncertainty, which has potentially large benefits for AI safety and
real-world adoption of the concept Amodei et al. (2016). This idea forms the central
part of the research carried out in this thesis, with the capabilities of the EBM directly
compared to a state of the art classifier.
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6.1.1 Network Definition
After presenting the foundational theory and providing the context for the research in
this thesis, it is important to understand what learning means conceptually and provide
the specifics of our set up within that concept. Tom Mitchell Mitchell and Mitchell (1997)
defines (machine) learning in the following way:

Definition 6.1. A computer program is said to learn from experience with respect to
some class of tasks and performance measure, if its performance at the tasks, as measured
by a relevant measure, improves with experience.

This definition can be applied in the following way:

• The Task: the task in this thesis is to classify chest radiographs. Thus, the task
of finding a classifier means approximating a function G that will correctly map
x-rays to their disease or category. Mathematically, this function can be defined as:

Definition 6.2. Let I := {I1, ..., In} be the set of n ∈ N chest radiograph
with pixels x = (x1, x2) on a discrete grid m × m, m ∈ N, and intensities
Ii(x) ∈ A ⊂ R Novikov et al. (2018). Each image I ∈ I has a corresponding
label l describing the disease present, where l ∈ L := {l1, . . . , lk}, k ∈ N. Let
Y := {y : y ∈ {0, . . . , k − 1}, where k ∈ N}, be the set of integers such that yi ∈ Y
represents the i − th radiograph’s label li. The values in Y correspond to the labels
L of the images I. Let ŷ be the network G’s predicted label, based on the image,
then

G : I → {0, . . . , k − 1},

�→ G(I) = ŷ

Alternatively, the function G could give a probability distribution over the classes.
In this case, the range would change to:

{ŷ ∈ Rk : 0 ≤ ŷ[r] ≤ 1, r ∈ {1, . . . , k} ∧ Σk
i=1y[i] = 1}

That is, the output ŷ of the function G(I) would be a k−dimensional vector where
the r−th element, corresponding to the r − th semantic label, lies between 0 and 1,
and whose elements sum to 1. The predicted label would then be the maximum
element of ŷ

• The Performance Measure: In order to determine the performance of an
algorithm, an appropriate quantitative measure must be selected. For classification
this is often accuracy, the proportion of correctly classified inputs Goodfellow et al.
(2016). However, accuracy can be a misleading measure depending on the dataset
and its balance. Measures that are particularly important in medical classification
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are: sensitivity/recall, or the true positive rate, i.e. the probability of a positive
test, or no. of true positives

no. of true positives + number of false negatives , conditioned on being truly positive,
and specificity, or the true negative rate, i.e. the probability of a negative test , or

no. of true negatives
no. of true negatives + number of false positives conditioned on being truly negative Hastie
et al. (2009). These rates are used to construct threshold-free metrics such as the
Area Under Receiver Operating Characteristic (AUROC) which are more reliable
when datasets are unbalanced Hastie et al. (2009). The area under the curve that
shows a classifier’s true positive rate against its false positive rate.

• The Experience: models are differentiated by what information they are exposed
to during training. Generally speaking, the main methods for training models
are: unsupervised and supervised learning, though there are also other important
methods such as semi-supervised or reinforcement learning. This thesis only deals
with supervised learning, meaning that the model receives information about the
true class label, or disease type, of each chest x-ray. This can be formalised as:

Definition 6.3. Let S := {(I1, y1), . . . , (In, yn)} be a finite sequence of pairs made
up of images and labels known as the training dataset, where S ⊂ I × Y with I
and Y defined as above in 6.2. The element yi represents the i − th x-ray’s label as
an integer that corresponds to the labels L.

6.2 Data Exploration
All data used within this research is publicly available data. Training the models is
carried out using the chest radiograph dataset CheXpert Irvin et al. (2019). During
evaluation, both medical and non-medical images were used, depending on the specific
research question under consideration:

• To evaluate the discriminative power of both models, a test set from CheXpert is
separated out before training. When carrying out the random partitioning of the
data, it was made sure that the test set has no overlapping patients.

• To evaluate the calibration of both models, the test set from CheXpert is used.

• To evaluate and compare the OOD abilities of the models, three different datasets
that increasingly differ in similarity to the original CheXpert data. The intuition
behind using three increasingly dissimilar datasets for the evaluation of OOD, is
that it allows us to gauge how, if at all, the models progressively improve separating
the original data, the in distribution data, and the out of distribution data, the
data that is completely different than the training data. It is expected that the
EBM, with its deeper understanding of the latent connections within the data, will
be able to separate all the datasets very well. The out of distribution datasets
include:

1. ChestXray14 Wang et al. (2017)

82



6.2. Data Exploration

2. INbreast Moreira et al. (2012)
3. ImageNet Russakovsky et al. (2015)

Figure 6.1 shows a small extract from each of the out of distribution datasets.

Figure 6.1: samples of the out of distribution datasets; top is the ChestXray14 data;
middle is INbreast data; bottom is ImageNet data

6.2.1 CheXpert
Both the EBM and the state of the art classifier are trained on CheXpert data Irvin et al.
(2019). CheXpert is a dataset consisting of 224,316 chest radiographs of 65,240 patients
who underwent a radiographic examination from Stanford University Medical Center
between October 2002 and July 2017, in both inpatient and outpatient centers. The
radiographs are labelled for the presence of 14 common chest radiographic observations.
The experiments in this thesis are concentrated on only four different pathologies:
cardiomegaly, pleural effusion, fracture and lung lesion. These were chosen because their
respective manifestations in the radiographs are typically all sufficiently different from
each other, so that a non-medical professional could differentiate between them.

Technical details

The dataset consists of a mixture of frontal and lateral images. The resolution is, in
general, not standardised across the dataset. The original raw images typically have a
size of at least 1024 × 1024; however, to efficiently work with them a separate, downsized
dataset is also available for download. In this version of the dataset, also known as
"CheXpert small", the images are reduced to a size of at at least 320 × 320, this is also not
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standardised across all images. For the purposes of our experiments we used "CheXpert
small". The images were originally saved in the DICOM format, the standard for storing
medical images, but were converted to 8 bit .png images before being made publicly
available, and the corresponding paths are stored in accompanying csvs that also include
and information about the 14 pathologies. Each row of the file represents an image with
each column describing the patients age, gender and what (if any) pathologies are present.
A pathology-column can contain one of four labels:

• -1 = uncertain

• 0 = negative

• 1 = positive

• NA/blank = unmentioned

The labels were assigned by a separate labelling model developed by Stanford, whose
output was evaluated by two board-certified radiologists. A key decision in the set up
for the classification task is how to deal with the uncertainty and unmentioned labels.
Unmentioned cases are interpreted as the patient in question not having a certain illness.
The authors of the original CheXpert paper explored different ways of dealing with
uncertainty labels, before ultimately carrying out their discriminative experiments by
mapping the "uncertain" (=0) labels to the "present" (=1) labels. This is similar to zero
imputation and aims to mimic approaches where missing examples are used as negative
labels Kolesov et al. (2014). This approach is more risk-averse and makes intuitive sense
considering the sensitivity of the medical domain. In this thesis the choice was made
to emulate the CheXpert authors and consider the uncertain cases as cases that have
the specific pathology. This also makes sense in an experimental setting; the state of the
art discriminative classifier is intended to reproduce the CheXpert results and act as a
benchmark for the EBM. Taking similar steps in data manipulation ensures comparability
amongst the models.

Exploration

The following section delves into the data to explore its attributes. To understand the
overall structure of the data, first patient-specific variables such as age and gender will
be analysed, followed by more general structural variables such as and x-ray type will be
explored.

Gender Amount
Male 132764
Female 90883
Unknown 1

Table 6.1: Table showing the distribution of gender in the CheXpert data
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The distribution of gender is shown in table 6.1; male patients significantly outnumber
the female patients. The distribution of age is shown in figure 6.2. It is skewed towards
the right, with most of the mass located at 40 years and up and the mean being at
approximately 60 years of age.

Figure 6.2: Histogram of ages in CheXpert

Moving on from patient-specific attributes to look at more general structural aspects such
as image type and the prevalence of different uncertainty labels. The images themselves
are made up of both frontal and lateral views, but not for all patients equally.

View type Amount
Frontal 191229
Lateral 32419

Table 6.2: Table showing the distribution of x-ray views in the CheXpert data

Table 6.2 shows that the number of frontal views dwarfs the number of lateral views.
They will be filtered out in pre-processing to maintain comparability to the state of the art.

Table 6.3 splits the frontal and lateral views by the relevant pathologies. We can see
that there is a large imbalance between the pathologies. Lung lesions and fractures
are the two pathologies with the lowest prevalences, with each at around 8000 frontal
images. Cardiomegaly appears around 4×, and pleural effusion over 10× more often,
respectively. Considering this, the pre-processing of the data and evaluation of the results
will need to be performed such that the imbalance is taken into account. For instance:
after randomisation, there must still be enough images of each category in the training
data to train the model on.
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Pathology Frontal Lateral
No Finding 17000.0 5419.0
Cardiomegaly 30158.0 4997.0
Lung Lesion 8149.0 2526.0
Pleural Effusion 86541.0 11341.0
Fracture 7935.0 1747.0

Table 6.3: Table showing the occurrence of pathologies, split by the type of view
(frontal/lateral)

Table 6.4 shows the prevalence of the "uncertain" (= −1.0) labels in the data before
imputation. As described in the previous section, "uncertain" labels will be changed to
the "present" label. This means we remain conservative, which makes intuitive sense in a
sensitive environment. In addition, we also remain comparable to the literature, that
also employed this data preprocessing step Irvin et al. (2019) Baltruschat et al. (2019).

Pathology -1.0 0.0 1.0 prevalence (-1)
No Finding – 201229.0 22419.0 0.0
Cardiomegaly 8087.0 188493.0 27068.0 3.6
Lung Lesion 1488.0 212973.0 9187.0 0.7
Pleural Effusion 11628.0 125766.0 86254.0 5.2
Fracture 642.0 213966.0 9040.0 0.3

Table 6.4: Table showing the prevalence of the "uncertain" label in the data before
imputation

Figure 6.3 shows a small subsample of images from each illness, that is cardiomegaly,
lung lesion, fracture and pleural effusion, the ’No Finding’ category is also included.
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Figure 6.3: Grid of images showing sample images of each illness

It can be seen that some of the images contain imperfections, which can happen when
the patient moves or the technician does not carry out the x-ray properly. If these images
are too contaminated, they could be considered as anomalies. The following section will
delve into another important structural aspect of data exploration: outlier detection.

6.2.2 Outlier Detection
Real world data almost always contains imperfections ?, that is it contains a subset of
observations that appear to be inconsistent compared to the majority of the remaining
data Rousseeuw and Leroy (2005). These elements, in this case images, are known as
outliers Barnett and Lewis (1984). Formally, observations are considered as outliers if
their values are outside the range of variance estimated from the data Huber (2004). For
chest x-rays, outliers often come in the form bad quality images as is seen in 6.3. Any
learning model will be affected by outliers in some way Rousseeuw and Leroy (2005). How
and to what extent depends on the model ?. Neural networks are universal approximators
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3.4.2 and may be at risk of overfitting by learning from outliers. For instance, a feature
has a variance orders of magnitude larger than others, it might dominate the objective
function, meaning it is unable to learn from other features LeCun et al. (2012). Thus, in
order to better understand the data, it is important find and analyse outliers. In this
thesis we will be using one of the most widely used statistical tools to identify outliers:
Principal Component analysis (PCA). Due to PCA’s sensitivity to very strong outliers
Huber (2004), its robust version of PCA is also used Jolliffe (1986), Hotelling (1933),
Eckart and Young (1936).

Given a data matrix M ∈ Rn×n and its decomposition: M = L0 + S0 into a low-
rank matrix L0 and (sparse) matrix of perturbations S0, PCA seeks to find the best
rank-k estimate of L0 by solving

min
L

||M − L||subject to rank(L) ≤ k

Where || · || denotes the Frobenius Norm. This problem can be efficiently solved via the
singular value decomposition (SVD) Candès et al. (2011).

Applying PCA reduces the dimensionality of the data down to the chosen number
of principal components. The components can then be used in the inverse transform to
re-transform the data from the PCA space back into the data space. Using the inverse
transform inevitably causes information from the remaining dimensions to be lost Jackson
(2005). In the context of outlier detection, this can be interpreted as applying a filter to
find those images with the noisiest features. The pixel-wise MSE between each image in
the original data and the inverse-transformed data allows us to find those images in the
original dataset that show the highest inconsistency Singh and Kumar (2016). Carrying
out PCA on the CheXpert dataset for outlier detection was carried out in Python by:

• calculating the PCA transform for a given number of principal components; this
was done by converting the images to their matrix form and linearising them row
by row, such that the final dataset before applying PCA contained one image per
row with 224 × 224 columns.

• applying the inverse transform on the transformation back to the original space.

• calculating the pixel-wise MSE between each image in the original and the inverse-
transformed data

This method yields the outliers shown in figure 6.4
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Figure 6.4: A grid of the top 9 outlying images in the chexpert dataset as determined by
PCA

However, PCA itself is sensitive to grossly miscalculated observations Candès et al. (2011).
This brings up the need to robustify PCA. Following Candès et al. (2011), robust PCA
is achieved by solving the following convex optimisation problem:

minimize
L,S

||L||∗ + λ||S||1
subject to M = L + S

The above problem is called Principal Component Pursuit (PCP) and can exactly
determine L and S Candès et al. (2011). || · ||∗ is the sum of singular values (the nuclear
norm) and || · ||1 is the /1 norm. That is, the maximum (absolute value) column sum
of a matrix. The PCP problem can be solved efficiently, at a cost similar to classical
PCA. Empirically, Candès et al. (2011) has shown that this works under broad conditions
for many types of real data. Using the same methodology to find outliers as like in the
classical case, applying PCP to CheXpert yields the outliers shown in figure 6.5.
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Figure 6.5: A grid of the top 9 outlying images in the chexpert dataset as determined by
robust PCA

Looking beyond the finding of individual outliers, (robust) PCA can also be used to
compare datasets. By plotting the distributions of the MSEs that occur when the inverse
transform, the reconstruction of the dataset based only on the principal components, is
compared to other image datasets, PCA’s ability of detecting different types of datasets
can be visualized. This implies, that PCA can, in a way, also be seen as a simple,
non-parametric, non-modelling tool for OOD. It is an interesting theoretical approach to
consider alongside the more sophisticated modelling approaches.

Overall, PCA and robust PCA was used to extract and visualise some of the most
outlying elements.

6.2.3 ChestXray14
This dataset, published by the U.S. Department of Health and human Services, also
contains chest x-rays. It contains over 100.000 anonymized chest x-rays from more than
30,000 patients across 14 different illnesses. The scans were collected at the NIH clinical
center, the US’s largest hospital devoted entirely to clinical research. The x-rays im-
ages are directly extracted from the DICOM file and resized as 1024×1024 bitmap images.

This dataset was used as part of the out of distribution experiments. Although this
dataset also contains chest x-rays, these images were created under completely different
circumstances as the CheXpert data, thus this dataset constitutes a separate distribution.
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The differences can be technological or epidemiological, meaning the machines that took
the images, the post processing, the population under consideration, all have an effect
that distinguishes it from CheXpert. The rationale behind using this dataset is to observe
whether the models are sensitive enough to distinguish between these different types of
chest radiograph datasets and pick up on these differentiating factors that are not visible
to the naked eye.

6.2.4 INbreast
The INbreast dataset contains mammographic scans from a breast center located in a
university hospital in Portugal. The data includes 115 cases (410 images) of breast cancer
of various degrees of severity, as well as mastectomy patients. The scans were made
with a MammoNovation Siemens full-field digital mammography machine. The image
sizes were 3328 × 4084 or 2560 × 3328 pixels, depending on the breast size of the patient.
Images were originally saved in the DICOM format, but later saved as the NumPy arrays
for more efficient data loading.

This dataset was used as part of the out of distribution experiments. The rationale
behind using this dataset is that, although the domain is once again x-rays and, in
general, a medical one, mammograms and chest x-rays are completely different types of
medical images. We expect to see that the models are able to distinguish these from the
CheXpert chest x-rays.

6.2.5 ImageNet
ImageNet is an image database of over 14 million images in over 20.000 categories that
has been instrumental in advancing computer vision and deep learning research. The
images are annotated by humans and each category can have thousands of images under
it. ImageNet contains high quality, full resolution images with an average size of around
400 × 350 pixels, saved in the .jpeg format.

This dataset was used as part of the out of distribution experiments. The expecta-
tion behind giving the models images so far away from the medical domain is that they
should easily be able to separate the datasets.

6.3 Implementation
6.3.1 Environment
The programming language used for all coding work was Python, specifically Python
version 3.9. A lot of advanced and high-performance frameworks for deep learning and
image processing are available in the environment. The machine learning framework
used in this thesis was PyTorch Paszke et al. (2017), an open source machine learning
framework based on the Torch library. It is an optimized tensor library for deep learning
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using GPUs and CPUs used for applications such as computer vision and natural language
processing, primarily developed by Meta AI.

The network training was carried out on two GPUs; one NVIDIA GeForce GTX1080 Ti
GPU with 11 GB and CUDA version 11 and one with an NVIDIA A-100 GPU with 40
GB memory and CUDA version 11.

For the data pre-processing functionalities within PyTorch were used, as well as data
processing packages NumPy and Pandas. In order to deal with the image data, the
Python Imaging Library (PIL) was used, as well as OpenCV.
The following section will describe how the models in question were implemented. The
training procedures can be broken down into distinct phases, where some are shared
among the different approaches and some are relevant only to a specific framework.

• Data Pre-processing: This covers loading and augmenting the images and
gathering the image-label pairs in preparation to be fed into the model. The same
steps are required for moth modelling approaches

• Model Training: Training is done on CheXpert images following 1. state of the art
deep learning and 2. EBM methodologies for the classes pleural effusion, fracture,
lung lesion, cardiomegaly.

• Evaluation: the models’ discriminative power, calibration and out of distribution
detection is evaluated by calculating various metrics.

6.3.2 Data Pre-Processing
For all types of statistical learning and all types of data, the quality of the training data
significantly influences the performance of the model. Thus, model quality is highly
dependant on data preparation Litjens et al. (2017). By adding pre-processing steps, data
inconsistencies such as outliers and noise can be corrected, as well to improve generalization
and reduce over-fitting Kotsiantis et al. (2006). Based on the data exploration in 6.2, it
is evident that the dataset is mainly made up of frontal x-ray images. In order to be
comparable with the state of the art Irvin et al. (2019), lateral images will be filtered out
in pre-processing.

Data Augmentation

Formally, data augmentation is a technique where transformations are applied to the
training data to artificially create new training examples Perez and Wang (2017). In the
training process for each type of model, the data was augmented in exactly the same
way. The images were expanded to three channels and randomly split into batches, each
with a size of 32 images, based on Baltruschat et al. (2019), before being augmented the
following way Baltruschat et al. (2019):
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• Horizontal Flipping: images in a batch were randomly flipped along the horizontal
axis with a probability of 0.5 Baltruschat et al. (2019).

• Rotations: images in a batch were randomly rotated between ±7◦ Baltruschat
et al. (2019)

• Re-Scaling and Normalisation: Networks process their inputs using small
weights meaning that inputs with large pixel values can disrupt the learning process
leading to lower accuracies and prolong convergence during loss minimization or, in
extreme cases, cause the loss to diverge. Furthermore, images are standardised to
z-scores, subtraction of the mean and division by the standard deviation, to make
training more stable. This is done on a per channel level Goodfellow et al. (2016).

6.3.3 Model Design
This section describes how the two modelling setups were designed and trained. This
thesis compares the classic state of the art approach with the energy based approach,
thus the following sections cover the training of both models with a specific focus on how
they differ and what this implies for the resulting predictions.

Model Architecture

At the heart of both the classical deep learning approach and the energy based ap-
proach, is the Convolutional Neural Network. Multiple CNN architectures were setup
and tested in different ways during experimentation, including DenseNet Huang et al.
(2017), ResNet He et al. (2016) and WideResNet Zagoruyko and Komodakis (2016). As
explored in 3.6, the overall benefit of these networks is that firstly, they are very good
at recognising features in visual inputs, thus achieving very high accuracies. Secondly,
they efficiently solve issues that can arise when adding more and more layers to a network.

Considering accuracy, efficiency, and model complexity, our experimentations showed
that the WideResNet (WRN) architecture performed better than the other two in terms
of discriminative power, confirming findings in Zagoruyko and Komodakis (2016). In
addition, the WideResNet has also been successfully employed in an energy based context
Grathwohl et al. (2019) Du and Mordatch (2019). Thus, the WRN will be trained as a
state of the art deep learning classifier and as an EBM for our final experiments. The
deep learning classifier was trained from scratch as well as using a pre-trained network,
while the EBM was trained from scratch. Using a so-called pre-trained network means
that the network weights from a network that was previously trained on a very large,
general dataset are loaded and subsequently trained on the task-specific data, this is
known as transfer learning . Using pre-trained networks is proven to greatly increase
efficiency in training while also delivering highly accurate results in the specific domain by
taking advantage of previously learned features Shen et al. (2017). In practice, networks
are typically pre-trained on the ImageNet dataset Russakovsky et al. (2015) as it is
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the largest, most general dataset currently published. This method as also successfully
been used on classifiers trained on the chest x-ray data Baltruschat et al. (2019). This
technique also helps solve the problem of too little data, something often faced in the
medical domain and it makes the OOD comparisons with ImageNet very interesting.

The final network was WideResNet 50 × 2, meaning the network was 50 layers deep and
2 layers wide. For the DL model a WRN implementation from PyTorch is used. For the
EBM model a custom network is created that realised the idea of the hybrid model, see
figure 6.6.

Figure 6.6: The hybrid model visualised schematically. The wide basic blocks each follow
the structure shown in the detail diagram on the bottom left. The factor k defines how
wide the network is. What sets this architecture apart is the hybrid output; the network
has both an energy and classification output layer

The custom network has a WRN architecture with two output layers: one for energy
output and one for class output. As the model improves its density estimate, the
subsequent classification accuracy improves as well. The model definition is characterized
by the widening factor k. If k = 1 the network is a standard ResNet.
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6.3.4 Model Training
Statistical Considerations

In order to ensure the validity of the experiments, various statistical considerations
had to be made. The considerations encompass correct preparation of the data and
randomisation. The relevant steps were applied to both modelling approaches and
developed based on literature such as Baltruschat et al. (2019) and Hastie et al. (2009).

Preparation of The Data
The raw dataset is structured in a multi-label format meaning that an image may belong
to multiple classes. In line with the literature used for the purposes of this thesis,
the dataset is recast to a multiclass format ?. Furthermore, the labels are encoded so
that each category is represented by an integer that corresponds to the index of the
respective class in the list of class names. In other words, the set of all responses is
Y := {y|y ∈ {0, 1, 2, 3}}. This is done for both approaches.

Data Randomisation
Neural network parameters are initialized randomly, this can result in increased variance
of the resulting estimator which can impact the generalization capability of the model
Hastie et al. (2009) Molinaro et al. (2005). In order to control for the inherent randomness,
a resampling scheme is performed Baltruschat et al. (2019). The data is re-sampled
10-times; within each sample, the data is randomly partitioned into training (90%),
validation (5%) and test (5%). This methodology was adapted from Baltruschat et al.
(2019) and Ahn (2015). Furthermore, it is necessary to ensure that there is no overlap
between between patients. This ensures that the model does not receive information
that actually should not be available to it, also known as target leakage. The data is
organized by patient IDs and subsequently randomised as described above.

There is no clear directive in the literature as to the how many re-sampling rounds
and what size of splits to use, this is highly dependant on the data and the specific use
case. For instance, in Baltruschat et al. (2019), the number of re-samples is only 5, with
a smaller training set and larger test and validation sets. In principle, a higher number of
re-sampling rounds typically implies that the results are more stable. Thus, the decision
was made to re-sample and run the model 10-times, which was deemed as a sufficiently
large number to guarantee stable results. However, training these big, complex models
many times becomes very time consuming which makes running the models multiple times
infeasible - this is case with the EBM where one Epoch could take up to a week to train.
The complexity of the calculations needed to estimate the distribution, the many parallel
markov chains generating samples, calculating gradients etc, are such that training an
EBM multiple times becomes too time consuming and ultimately infeasible, especially
for the scope of this thesis. However, while the calculations used in the approximations
are computationally intensive, the MCMC methods used typically already deliver stable
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results.

The size of the data partitions was chosen with respect to the prevalence of the in-
dividual pathologies. Table 6.3 shows how often the pathologies occur, categorised by the
type of view. Looking at the number of frontal views, the only view under consideration
in this work, the amount of lung lesion and fracture images is small compared to the
other pathologies. In order to ensure that the network also sees enough examples of this
type of illness, the training data is made up of 90% of the data.

Consideration of Dataset Size
The experiments were conducted in a two stage process: an initial proof of concept on a
small subset of the data was conducted to pre-determine whether the hybrid EBM would
deliver useful results on this type of image data and to observe how difficult the training
would be, given that the existing literature often reported unstable training.

Resolution

The models are trained on three different image sizes in order to investigate what, if
any, effect the image size has on accuracy and efficiency. The image sizes will become
progressively smaller, starting with 224 × 224 pixels before getting reduced first to
128 × 128 and finally to a resolution of 64 × 64.

Training A SOTA discriminative Deep Learning Classifier

CNN Model
The architecture used for the training of the deep learning classifier is a WideResNet,
originally implemented by PyTorch Zagoruyko and Komodakis (2016). The network is
considered in two variants: pre-trained and "from scratch". For the pre-trained network,
all layers re-trained, i.e. fine-tuned, and the final layer is adjusted to give a softmax
output for each class. Previous experiments on chest x-ray data, such as in Baltruschat
et al. (2019), have shown that the method fine tuning delivers highly accurate results
and also makes intuitive sense, as the network needs to learn the specifics new domain.

The raw x-ray images only contain 1-channel, however the network is designed to
expect 3-channel images, meaning either the network or the images must be modified
to fit together. Ultimately, it was decided to modify the x-rays to be 3-channel images,
mainly due to flexibility reasons. In the OOD evaluation phase, different types of datasets
will be considered, including the 3-channel ImageNet dataset. In this setup, the network
can easily be applied to the ImageNet data without larger manipulations to the images.

Loss Function
This thesis uses the negative loglikelihood loss for training the DL model, the defacto
standard loss function for multi-class classification problems. As elaborated in section
3.5, minimizing NLL is equivalent to minimizing KL-divergence and crossentropy loss.
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Given n sample pairs (Ii, yi), i = 1, . . . , n, with Ii being the i − th image, yi the
corresponding label encoded as an integer, and weights w, the NLL loss J is expressed
by:

J : Ω → [0, +∞]
(w) �→ J(w) = −E(Ii,yi)∼p̂data

[log (pmodel (yi | Ii; w))]

Optimiser

The optimization algorithm was chosen to be the popular Adam optimiser Kingma
and Ba (2014), with an initial learning rate of 1e−4. In this optimization algorithm,
running averages of both the gradients and the second moments of the gradients for every
parameter are used. The best model with the lowest validation loss of all epochs is saved.

Training An Energy Based Model

There are very few best practices for EBM hyperparameter tuning in the existing
literature, meaning they had to be monitored and adapted manually using a "trial and
error" approach which could increase instability in the training process and cause the
loss function, see below, to diverge.

Energy Function
In this thesis the energy function is parametrized by a CNN, specifically a WideResNet
of the form shown in figure 6.6. The model is trained from scratch for 200 Epochs on all
three aforementioned resolutions. Training networks from scratch, especially this type
of generative model, takes up a lot of time; typically, the longer it trains the better.
However, given that spending exorbitant amounts of time on training a single network is
not feasible, there is a trade off: the number of epochs must be set such that training
is long enough to ensure proper, but does not take too long and becomes inefficient.
The network is designed so that it reflects the hybrid nature of the approach. This
is done by creating two separate output layers, a classification output layer that gives
conditional probabilities and a layer that gives likelihoods based on the estimated input
data distribution.

Approximation and Random Sampling
Applying the methodology presented in Grathwohl et al. (2019), this thesis also uses
stochastic gradient langevin dynamics to train the EBM Welling and Teh (2011). Gen-
erating samples happens via a series of Markov chains. For every step of the Markov
Chain the following update rule is applied. The full algorithm is shown in 6.1.
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xt+1 = xt − α

2 ∇E(xt) + !, x0 ∼ U(−1, 1) ! ∼ N (0, α) (6.1)

where x0 is sampled uniformly; ∇E is the energy’s gradient; ! is normally-distributed
noise; α is the step size and the standard deviation. In practice the step-size α and the
standard deviation of ! is often chosen separately because it allows for faster training
Grathwohl et al. (2019). The standard deviation is denoted as σ.

This is a method typically seen in Bayesian inference; it has as its posterior distribution
the Boltzmann distribution, and is highly adept at efficiently approximating (the gradient
of) the partition function as Grathwohl et al. (2019) and Du and Mordatch (2019) show.
In every step the energy function’s gradient is added to Gaussian noise. The energy
function is represented by a CNN which means its gradient can be efficiently calculated
using back-propagation.

Loss Function
Given the fact that the goal is to calculate probabilities, the loss function used for network
training is again the negative log likelihood loss. This makes it possible to use maximum
likelihood estimation, giving the set of parameters that maximises the likelihood under
the distribution for given inputs. Furthermore, minimizing NLL equivalently minimizes
the distance between the distribution estimated by the model, pmodel and the true data
distribution pdata. While it is tempting to assume that, because of their shared name,
the loss functions for deep learning classifier in 6.3.4 and the energy based model have
the same form, that would be a mistake, this can be seen in detail in 4.5. The negative
log likelihood loss for the energy based model is based on the energy function and takes
the following form:

Lnll(w, S) = 1
P

P�
i=1

�Ew(Ii, yi) + 1
β

log

� �
y∈Y

exp(−βEw(Ii, y))dI

�
�

The loss is decomposed into two key components, the positive phase and the negative
phase Goodfellow et al. (2016):

• S, I and Y defines as in 6.2.

• Ew(Ii, yi) the energy between the i − th x-ray image and the i − th label (positive
phase).

• log

� �
y∈Y

exp(−βEw(Ii, y))dI

�
the log of the partition function, definition 4.6, also

referred to as free energy (negative phase). This term contains the energies between
the i − th x-ray image and all possible responses/diagnoses (even the wrong ones).

• w are the weights, P is the size of the training data
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Optimiser
Similarly to the optimiser for the state of the art deep learning model, adaptive learning
rate algorithms are used to update the weights. These usually generalise better than tra-
ditional optimisers like SGD, since they adapt parameters individually and automatically.
Furthermore, traditional optimisers can be slow to converge and require manual effort to
set the relevant hyperparameters. The EBM also uses the Adam Kingma and Ba (2014)
algorithm, with an initial learning rate of 1e−4. Whenever the loss diverged mid training,
learning rate and the number of steps the Markov chains take, had to be manually
decreased and increased, respectively. The balance of these two hyperparameters was the
deciding factor for stable training. The best model with the lowest validation loss of all
epochs is saved.

Algorithm
The training algorithm used is based on the works of Grathwohl et al. (2019) and Du
and Mordatch (2019):

Algorithm 6.1: EBM Training Algorithm Given network Gw, SGLD step-size
α, SGLD std σ, replay buffer B, SGLD steps η, reinitialization frequency ρ

while not converged do
/* Sample x and y from dataset */
Lclf (w) = loss(Gw(x), y)
Sample x0 ∼ B with probability 1 − ρ, else x0 ∼ U (−1, 1) // Initialize
SGLD

for t ∈ [1,. . . , η] doxt+1 ← �xt + α · +N (0, σ) // SGLD
end
Lgen = LogSumExpy�(G(x) [y�]) − LogSumExpy�(G( xt+1) [y�])
// Approximation derivative log likelihood

L(w) = Lclf (w) + Lgen(w)
Calculate gradient of L(w) to minimize loss
Add xt+1 to B

end

Where Gw is the CNN in question; α and σ are the step size and standard deviation for
SGLD, respectively; B is the buffer of past samples; η is the number of steps to run the
chain; ρ is the frequencey for resampling.

For the experiments, the number of SGLD steps, i.e. the steps for the Markov chains, are
40, buffer size, the number of states saved, is 10000, SGLD step-size 1 and SGLD noise
0.01. The reinitialization frequency ρ is the probability at which samples are drawn; it is
set at 0.05 As an alternative, uniform sampling could also be used.
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6.3.5 Evaluation
The deep learning classifier and the EBM are compared to answer the initial research
questions, see 1.3. The focus is on the following three main themes: comparing discrim-
inative power for both modelling approaches and on all resolutions; analysing the out
of distribution detection capabilities using three different out of distribution datasets;
evaluating the ability to produce calibrated predictions.

The state of the art deep learning classifier and the Energy Based Model were both
trained using a WideResNet architecture as a backbone. Both models undergo the same
data generation and pre-processing steps. The deep learning classifier was trained using
the resampling scheme described in 6.3.4, thus it is trained 10 times to ensure stable
results. Given the complexity of the necessary calculations, training the EBM is highly
time consuming, making training it more than once infeasible for the scope of this thesis.
However, the MCMC methods used are constructed such that they deliver stable results.

Discriminative Power

The discriminative power for both the deep learning and energy based approach are
assessed using the AUROC. The average across all four classes is calculated and sub-
sequently compared to the benchmark for state of the art, as published in the original
CheXpert paper Irvin et al. (2019). The average AUROC must be at least at 91%, with
no individual class being under 90%. These values were chosen to be comparable with
state of the art literature Irvin et al. (2019)

For each individual resampling round of the deep learning classifier, the average AUROC
for all classes is calculated. After training all 10 models, the average AUROCs are once
again averaged over all rounds to deliver the final result. Both a pre-trained and "from
scratch" network are trained and compared to the EBM. This shows 1. the effect of
pre-training on the classifier and 2. allows an evaluation of which "from scratch" model
fares better out of the box and 3. whether the EBM can compete with pre-trained
networks. All accuracy scores are delivered with 95% confidence intervals. For the state
of the art deep learning classifier, these were calculated as bootstrap intervals by finding
the relevant percentiles in the distribution of AUROC values. For the EBM, average
accuracy was calculated based on the best 10 model checkpoints saved during training
and a quantile-based confidence interval was calculated, again based on state of the art
literature Irvin et al. (2019).

Out Of Distribution Detection

Trying to classify an input as out of distribution, meaning it was sampled from a different
testing distribution compared to the training distribution, is known as Out of Distribution
Detection (OOD). In other words, it is investigated how well the models can separate the
data it knows, i.e. was trained on, from the data it does not know, i.e. was generated
under a different distribution. The evaluation of OOD is structured according to two
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main approaches: 1. PCA, a non-modelling approach, applied before training and 2. the
state of the art deep learning classifier and EBM models applied after training.

Non-Model Approach
As expressed in 6.2.2, PCA can be seen as a simple, non-parametric tool for OOD that
is an alternative to deep learning. By calculating the pixel-wise MSEs that occur when
the inverse transform, the reconstruction of the dataset based only on the principal
components, is compared to other image datasets, PCA’s ability of detecting different
types of datasets can be expressed. More specifically, the inverse-transform is used to
calculate the pixel-wise MSEs compared to the original CheXpert dataset, and compared
to the out of distribution datasets. Intuitively, this explores whether the strongest latent
features found by PCA are truly representative of the CheXpert data. The distribution
of both sets of errors are plotted and compared. Significant overlap of the distributions
would imply that the features found by PCA are not representative of the data.

PCA can be seen as an interesting OOD baseline alongside which the modelling ap-
proaches can be viewed. However, while PCA can be used as an effective exploratory tool
to get a fast understanding of the data before modelling, its main drawback in the context
of the aims of this thesis is that cannot be used for downstream discriminative tasks. In
addition, the principal components are the strongest features in the data; for image data,
often very low-level features, that PCA would miss, can strongly contribute to an image.
This is not the case for CNNs, that are very good at identifying these low-level features.

PCA and robust PCA were applied to the chexpert dataset, identifying the top 5 principle
components. The data was transformed back into the original data space, based only
on the 5 principle components. The original dataset and the dataset with reduced
dimensionality were compared by aggregating the pixelwise mean squared error for each
corresponding image from each dataset. A high mean squared error between images
implies that this image was not adequately explained by the principle components that
were identified as the most important, indicating a large difference to typical images in
the dataset. This logic was used for an "internal" analysis to find outliers (see 6.2.2),
or between datasets to test whether this method is capable of identifying datasets with
different underlying features than the original one.

Model approach

One way to measure out of distribution detection once a model is fitted, is to con-
sider OOD as its own binary classification problem applied to the predictions from the
models. When training is complete, this thesis follows the work of Hendrycks and Gimpel
(2016) to evaluate the OOD; however, the deep learning classifier and the EBM must be
treated slightly differently.

For the deep learning classifier, the maximum softmax probability over the network
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output is taken can be classified as in (= 1) or out (= 0) of distribution, based on a
threshold of 0.5 in order to be comparable with existing literature.

The EBM can directly be used to express probabilities, thus the approach in Hendrycks
and Gimpel (2016) is slightly modified by not using the softmax as a scoring function on
the output. The output is again classified as in (= 1) or out (= 0) of distribution, based
on a threshold of 0.5.

The classification results are then summarised by calculating the corresponding Area
Under Receiver Operating Characteristic (AUROC) Davis and Goadrich (2006). A high
AUROC indicates a successful classification, meaning that the model under investigation
can successfully identify which images are sampled from the training distribution and
which are not. Conversely, an AUROC of 0.5 indicates that the model under investigation
cannot successfully identify which images are sampled from the training distribution and
which are not.

OOD results are computed for every model, using each of the three OOD datasets
described in 6.2 on each resolution. The datasets become progressively dissimliar to the
original training data, giving insight into how well the model can discern within and
between domains sensitive to model is at finding foreign inputs.

Calibration Metrics

Calibration was measured by calculating the Expected Calibration Error and Maximum
Calibration Error 5.1.1. The Expected Calibration Error expresses the expected value of
a classifier’s confidence and accuracy. We can approximate 5.4 by binning the model’s
predictions into M equally spaced bins and taking a weighted average of the bin’s accu-
racy/confidence difference. Maximum calibration error is not the weighted average but
the maximum of the bin’s accuracy/confidence difference.

It can be further visualized by using reliability plots. These diagrams plot expected
sample accuracy as a function of confidence. They give a clear and transparent view of
how confident a classifier is in its predictions. Predictions are grouped into bins based on
the prediction confidence value and the accuracy for each bin is calculated and plotted.
For perfect calibration, the diagram should plot the identity function. Any deviation
from a perfect diagonal represents miscalibration.

Outlier Detection

We qualitatively analysed the scores of the two models to determine which of the
frameworks shows more potential for correctly identifying outliers. For the DL classifier,
the maximum softmax probability is once again used as an indicator of uncertainty.
Ideally, these images would have produced low(-er) confidence predictions. In order
to explore whether the EBM was able to identify outliers, we take the small sample
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of outliers found in 6.2.2 and produced their corresponding scores. A high energy, in
absolute terms, indicates low compatibility/probability and higher uncertainty, implying
that the image may be an outlier.
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CHAPTER 7
Results And Discussion

This chapter presents the results of the conducted experiments; there will be a thorough
analysis of the findings to assess whether the initial research questions, see 1.3, were
answered. The results are structured into three main sections. Section 7.1 will report the
findings on discriminative power for both modelling approaches and on all resolutions.
Section 7.2 will elaborate on out of distribution detection; this section will also include the
results on the outlier detection carried out during data exploration using PCA. Section
7.3 will detail the findings on the calibration experiments. The final section will showcase
the samples that can be generated from the distribution estimated by the energy based
model.

7.1 Discriminative Power

The discriminative power for both the deep learning and energy based approach are
assessed using the AUROC on all three image resolution sizes. Table 7.1 summarises all
of the discriminative results for all three different image sizes on the complete dataset.
For the deep learning classifier, both the results of a pre-trained network and a network
trained "from scratch" are reported and compared to the results for the EBM. This allows
for a comparison of the frameworks on multiple levels.
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Model 64×64 128×128 224×224
CNN (pretrained) 0.797 (0.768,0.813) 0.923 (0.921,0.926) 0.938 (0.936,0.941)

CNN (from scratch) 0.777 (0.762,0.781) 0.821 (0.815,0.826) 0.861 (0.858,0.865)
Hybrid EBM 0.81 (0.76,0.83) 0.85 (0.80,0.88) 0.67∗ (0.61,0.69)

Table 7.1: Mean AUROC scores, including confidence intervals, across all four pathologies
for all models, organized according to the three different resolutions. Both the results of
a pre-trained network and a network trained "from scratch" are reported and compared
to the EBM. The "winning" model is indicated in bold. ∗interim results gathered before
full training run completed due to the fact that the full run would take around 3 months
which was beyond the scope of this thesis

AUROC The initial experiments showed that the pre-trained DL model had the best
discriminative performance on the two larger resolutions, and reaches the benchmark
derived from the CheXpert results on the 224 × 224 resolution. The EBM achieved the
highest AUROC on the smallest resolution and consistently improves as the resolutions
rise. While at 90% it did not reach the CheXpert benchmark, it managed to achieve
high, though not competitive, results compared to the state of the art. However, it is also
important to remember that the EBM is not pre-trained; the EBM can clearly outperform
the deep learning classifier that was trained "from scratch". This comparison directly
shows us the positive effects of the EBM training scheme and how well the WideResNet
architecture is utilised. The MCMC/Bayesian learning approach employed in the EBM
captures the statistical, latent dependencies in the dataset vs the deep learning classifier
trained via SGD where the network memorises the patterns in the images. The better
EBM’s approach leverages its knowledge of the data overall to deliver more accurate
predictions.

The experiments on the full dataset, results shown in table 7.1, showed a similar picture.
The pre-trained DL model had the best discriminative performance, indicating that it
scales well to larger dataset sizes. At ∼ 94% it reaches the benchmark derived from the
CheXpert results on the 224 × 224 resolution. The DL classifier trained from scratch also
showed a similar results compared to the initial experiments. It scales well in terms of
training time, but at 86% it falls far below the CheXpert benchmark. The hybrid EBM
on the other hand does not scale well. With a projected training duration of at least 3
months, not including time spent for manual adjustment of hyperparameters, the training
time on the 224 × 224 resolution grew exponentially with the additional data. Since this
goes beyond the scope of this thesis, interim results were generated and reported. In order
to gain a more complete understanding of the training process and how final results could
look, the trends in loss and AUROC between the initial run and the full run were compared.
This comparison is shown in figureXXX. It can be seen that, while volatile, the behaviour
for both training situations is very similar for both metrics; though it is a slow iterative
process, loss continuously declines while AUROC steadily rises in both cases. It is therefore
not unreasonable to assume that, given more time, the hybrid EBM on the full dataset
would produce the same high quality discriminative results as it does for the smaller subset.
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Figure 7.1: Comparison of loss and accuracy behaviour for the EBM trained on the full
dataset (above) and the small subset (below). It can be seen that the behaviour of the
two modelling runs are very similar. Thus, it is a reasonable assumption that, given
more time, the model trained on the full dataset will achieve results similar to the model
trained on the subset
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The AUROC estimate is surrounded by a very slim confidence interval of (0.936, 0.941)
for the pre-trained deep learning classifier, indicating high certainty. A similar picture is
seen with the DL model trained from scratch, though it performs worse. The AUROC
estimate for the EBM is surrounded by a slightly wider confidence interval of (0.61, 0.69),
indicating a slightly larger uncertainty attached to the estimate. This is in line with the
expectation that the EBM has a more realistic sense of uncertainty compared to the deep
learning classifier. The state of the art classifier clearly benefits from the pre-training
on ImageNet. It uses its pre-existing knowledge of features to learn about the data very
fast; it achieves the highest scores in the larger resolutions and clearly outperforms the
EBM. However, the performance of the "from scratch" classifier shows that, when the
pre-training is taken away, the EBM is has a higher auroc, showing that leveraging the
generative capabilities of the EBM has a positive effect on classification. The MCMC
methods running in the background work to deliver estimates that capture the latent
connections which, in turn, clearly benefits the downstream classification task. The best
performing discriminative model on the 224 × 224 resolution, the pretrained DL model,
was used to create a visualization called GradCam Selvaraju et al. (2019), see 7.2. This
is a type of ’visual explanation’ to make the results more transparent; it is a matrix,
also called a localization map, which highlights important regions in the image were
particularly important for the prediction. It works by taking the un-normalised network
output for an arbitrary class and differentiating it by backpropagation with respect to
the feature maps produced by the final convolutional layer. The gradient matrices, one
matrix for each feature map, are averaged to produce a weight for each feature map.
Finally, the GradCam matrix/localization map is calculated as the weighted sum of the
feature maps, using the average gradients as weights. The visualization can be seen in
figure 7.2
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Figure 7.2: Selection of GradCam images on a sample of x-rays using the DL model.
The ground truth label, the predicted probability are shown in the left column. The
middle column shows the original image and the right column shows the localization
map overlayed onto the image, indicating which areas played an important role in the
classification. The image on the top shows an example of a patient with Cardiomegaly.
The image on the bottom shows a patient with pleural effusion. The model correctly
classifies the images

GradCam can give an indication into the generalisability of the model and whether
it is biased Selvaraju et al. (2019). If the localization map highlights a discriminative
region that does not make intuitive sense, e.g. the radiograph contains a patient with
heart problems but lights up in the background, we know that there must be a certain
characteristic within the data that the model is learning and reproducing. The provenance
of this phenomenon should then be searched for in the data. Figure 7.2 shows that the
pre-trained deep learning classifier uses the intuitively correct areas of the image to make
its prediction for these classes.

A Remark on Resolution The results show that the models trained on larger images
deliver higher AUROCs. All models are the most accurate on the highest image resolution,
224 × 224. Table 7.2 shows how much accuracy is lost, in percent, as the image size
is progressively reduced from 224 × 224 down to 64 × 64. This can be explained when
considering that smaller images make the smaller details in the images harder for the
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network to discern, especially when the presence of a condition could depend only on
individual pixels.

Model 64×64 128×128
CNN (pretrained) 15% 2%

CNN (from scratch) 9% 4%
Hybrid EBM 9% 5%

Table 7.2: Percent loss of accuracy as the models are trained on progressively lower image
resolutions. The largest reduction for each image size is indicated in bold. All models
have the highest accuracy on the highest image resolution, 224 × 224.

7.2 Out Of Distribution Detection
The evaluation of OOD, detailed in section 5.1.1, is structured according to two main
approaches: 1. using PCA, a non-modelling approach, before training and 2. using the
deep learning classifier and EBM models after training.

7.2.1 PCA
For our analysis we selected the top 9 most outlying images to give an indication of
what outliers there could be. The calculations of the principle components can be very
sensitive to strong outliers, thus robust PCA is also employed.

Figure 7.3: The top outliers in the CheXpert data found using PCA and robust PCA,
respectively. The outliers are often images where the patient is not placed correctly or
the image is cut off or blurred (a) Outlier found using PCA (b) The outliers found using
robust PCA

It can be seen in figure 7.3, that the outliers are often images where the patient is not
placed correctly or the image is cut off or blurred or rotated. The MSE can also be
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used as a metric to compare the datasets. Using the inverse-transform, the pixel-wise
MSE is calculated and compared to 1. the original CheXpert dataset, and 2. the out
of distribution datasets to assess whether the strongest latent features found by PCA
are truly representative of the CheXpert data. The inverse-transform of robust PCA
is used and the distribution of both sets of errors are plotted and compared in 7.4.
Significant overlap of the distributions would imply that the features found by PCA are
not representative of the data.

CXR14

InBreast

ImageNet

Figure 7.4: Distributions showing PCA’s capability to find a specific representation of
the CheXpert data. The x-axis represents the MSE
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The distributions show that there is some overlap between the MSE distributions when
comparing the CheXpert with CXR14 which shows that PCA has some difficulty finding
features that uniquely represent CheXpert when compared to a dataset that is very
similar. However, as the datasets become less similar to CheXpert the distributions move
further apart, indicating that the CheXpert features found by PCA are representative
enough to recognise completely different domains. However, the representation is not
sensitive enough to distinguish within a domain.

7.2.2 Modelling Approaches
One way to measure out of distribution detection once a model is fitted, is to consider
OOD as its own binary classification problem applied to the predictions from the models,
as detailed in 6.3.5. The deep learning classifier and the EBM must be treated slightly
differently according to their scoring functions. The deep learning classifier softmax
applied to its output while the EBM natively calculates probabilities. OOD scores are
calculated for each model, at every resolution for each of the out of distribution datasets.
Training was once again carried out in a two step approach, first on a small subset and
then on the full dataset.

Model Dataset 64x64 128x128 224x224
CNN (pretrained) CXR14 0.5 0.61 0.63

Inbreast 0.56 0.68 0.69
Imagenet 0.61 0.72 0.74

CNN (from scratch) CXR14 0.5 0.56 0.58
Inbreast 0.53 0.56 0.58
Imagenet 0.56 0.59 0.63

Hybrid EBM CXR14 0.94 0.96 0.98
Inbreast 0.97 0.98 1.0
Imagenet 1.0 1.0 1.0

Table 7.3: AUROC scores for the Out of Distribution Detection classification. Each model
is exposed to all three OOD datasets, at every resolution. A high AUROC expresses a
successful classification of in and out of distribution elements; an AUROC of 0.5 indicates
that the model was not able to detect out of distribution elements

Table 7.3 summarises the AUROC scores for the Out of Distribution Detection classifica-
tion on the full dataset; a higher value indicates that the model is better at separating the
individual datasets. The standard DL classifiers are both far inferior at OOD compared
to the performance of the EBM, even though the training was cut short (explanation
see aove under discriminative power). The scores show that distinguishing between the
CheXpert data and another, separate chest x-ray dataset, i.e. within the domain, is not
successful. As the out of distribution datasets become more and more different to the
original dataset, the out of distribution performance slightly improves. In contrast, the
EBM outperforms the other implementations in all datasets and on all resolutions. The
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EBM can easily distinguish between the two chest x-ray datasets and can perfectly tell
the other datasets apart. To further showcase this, figure 7.5 plots the score distributions
of the two models.

113



7. Results And Discussion

CNN EBM
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Figure 7.5: Visualisation of score distributions from the pre-trained DL model and the
EBM. The first row shows the distributions of softmax (DL model) and energy-based
(EBM model) probabilities between the CheXpert dataset and the CXR14 dataset; the
second row the the distributions between the CheXpert dataset and the InBreast dataset
and the third the distributions between the CheXpert dataset and the ImageNet dataset.
The bottom row shows the distribution probabilities from the energy model between
the CheXpert dataset and the out of distribution datasets. The degree of overlap is
indicative of how well the respective model can find fake data. The x-axis is the score,
softmax or energy, and the y-axis in the frequency
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Figure 7.5 plots the respective scores of the pre-trained DL model and the EBM models
in order to compare how well each model can find the out of distribution data. The top
row shows the distribution of softmax probabilities; it can be seen that there is significant
overlap for all datasets, with high probabilities are assigned to images even though they
are completely different to the CheXpert data.

In other words, this is interpreted as the model is saying that there is a high probability of,
for instance, a dog being an element of the CheXpert dataset, a serious error. It may be
considered correct that the DL model produces similar scores for the CXR14 data, the first
image, in fact the distributions are almost completely the same. However, the DL model
was only trained on four pathologies, while the CXR14 data contains 14. This strongly
emphasises the importance of accurate OOD, especially in the medical field. Simply put:
the deep learning classifier operates outside of its validated configuration, meaning that
if a chest x-ray showing atelectasis is given to the network, it might confidently predict
pleural effusion, a potentially fatal mistake.

The bottom row of figure 7.5 shows the distribution probabilities from the energy model
trained on the full dataset. It can clearly be seen in all three images that the mass related
to the CheXpert is located to the far right, meaning that high probabilities are assigned
to these images. On the other hand, the out of distribution images are all assigned lower
probabilites. Simply put, this means that the representation them model learns can
effectively tell what is part of its distribution, the images assigned high probability, and
what is foreign, the images assigned low probability. The model is even sensitive enough
to filter out the CXR14 data.

7.3 Calibration
Producing calibrated probabilities is an essential requirement for discriminative tasks.
Well calibrated predictions provide a valuable extra bit of information to establish trust-
worthiness with the user – especially for neural networks, whose classification decisions
are often difficult to interpret Guo et al. (2017). Section 6.3.5 details how calibration was
measured by calculating the Expected Calibration Error and Maximum Calibra-
tion Error, and subsequently visualized using reliability plots. Calibration was tested
on various portions the dataset, to check whether there was any dependency on dataset
size. Reliability plots, plot expected sample accuracy as a function of confidence. If the
model is perfectly calibrated, the identity function should be plotted Guo et al. (2017).

Figure 7.6 visually summarises the calibration for the predictions of the different modelling
set ups split by dataset sizes. The x-axis is the binned predictive confidence and the
y-axis the corresponding accuracy. Ideally, highly confident predictions should also be
highly accurate. The blue bars indicate the accuracy of the specific confidence bin, the
red bars indicate the gap between the achieved accuracy and the ideal calibrated value.
In general, all models provide miscalibrated, overconfident predictions. This was expected
for the DL model, where the accuracy bars are at a consistently low level, or even slope
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downwards, indicating that high confidence predictions are not accurate. This confirms
the hypothesis about the DL model behaviour.
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CNN EBM

Figure 7.6: Reliability Plots on different dataset sizes for the pre-trained CNN and the EBM.
The first row indicates the complete dataset, the second 60% of the complete dataset and the
third 30%. The x-axis is the binned predictive confidence and the y-axis the corresponding
accuracy. Ideally, highly confident predictions should also be highly accurate. The blue bars
indicate the accuracy of the specific confidence bin, the red bars indicate the gap between the
achieved accuracy and the ideal calibrated value.
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However, the performance of the EBM was unfortunately not as expected. Based on
the literature, specifically Grathwohl et al. (2019), it was expected that the EBM would
deliver well-calibrated predictions out of the box. There is a noticeable upwards trend,
i.e. the bins are becoming more accurate with increasing confidence, however it is still
far from ideal. The reason for this could be because EBMs need a lot of time to train to
estimate a distribution that also delivers calibrated predictions, especially considering all
the operations and approximations that need to be optimised in the course of training.
The corresponding ECE and MCE are reported in the table 7.4.

Percentage of
complete dataset

Model ECE MCE

100 CNN 29.41 84.74
EBM 12.27 55.59

60 CNN 26.29 60.30
EBM 19.18 70.39

30 CNN 29.29 67.78
EBM 22.14 54.90

Table 7.4: Comparison of ECE and MCE
between CNN and EBM

Figure 7.7 shows the development of accuracy and ECE during training. The average
AUROC consistently increases as training progresses, while the calibration error consis-
tently decreases. It stands to reason that with longer training times, the distribution
estimate would further improve and deliver better calibration results.

Figure 7.7: Diagram showing the trajectory of accuracy and ECE during training. There
is a clear downward trend of the calibration error (orange) and a clear upward trend of
the AUROC (blue). The x-axis shows the number of epochs.
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7.4 Outlier Detection
The analyses so far have largely been focused on comparing different datasets. Outlier
detection is a task that is purely focused on comparisons within the dataset. In section
6.2.2, PCA and robust PCA was used to identify the most outlying points. The top 9
images found with robust PCA have been selected to observe whether the model-based
approaches would classify these images as outliers as well.

Figure 7.8: Top 9 most outlying images in CheXpert as found by robust PCA

The images in figure 7.8 were fed into the pre-trained DL model and EBM models in
order to observe what kind of scores they would produce for these outlying images. We
qualitatively analysed the respective outputs to determine which of the frameworks
shows more potential for correctly identifying outliers. For the DL model, the maximum
softmax probability, see section 5.1.1, is once again used as an indicator of uncertainty.
The DL model produced very high scores. This indicates that the pre-trained DL model
could not be used to filter out these outliers. Ideally, these images would have produced
low(-er) confidence predictions. For the EBM, outliers were determined by looking at
the probability output for the individual images. A high energy, in absolute terms,
indicates low compatibility/probability and higher uncertainty, as elaborated in 2.3,
which would imply that image be an outlier. The above 9 images all showed high energies,
or equivalently low probabilities, implying that the EBM found something significant,
but negative in these images. Using this quantification of uncertainty, the model could
be used to identify outliers.
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7.5 Sample Generation
The EBM is a generative model, enabling us to estimate a distribution over the data.
While generating random samples plays a pivotal role in the training of the model, see
section 4.6.3, the resulting probability distribution can also be used to generate completely
new random samples/synthetic data. To do this SGLD is again employed to generate
the samples; Markov chains where the next step step is determined by the update rule
6.1 are run to produce a set of images that are based on the features the model learned
during training. More specifically, this means that the model can be used to generate
images chest radiographs, based on the characteristics it has learned from the training
images.

Figure 7.9: Random samples generated in the course of training the EBM. During
training, samples were periodically generated from the data distribution at that point
in time. The top row shows samples at the beginning of training and resemble random
noise. The second row shows samples midway though the training; outlines of torsos
can be discerned but the images are still very blurred, indicating that the distribution
does not represent the data well yet. The third row shows the samples generated with
the trained model and the final row shows real CheXpert samples; model has clearly
learned the most important characteristics of chest radiographs and can reproduce them
to generate compelling samples.

Figure 7.9 shows a series of samples generated throughout the training process. The
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samples were taken at the start of training, in the middle and at the end and show
how well the data distribution represents the data at that time. Finally, the samples
are compared to real chest radiographs to visually assess their quality. The top row
shows samples at the beginning of training and resemble random noise. The second
row shows samples midway though the training; outlines of torsos can be discerned but
the images are still very blurred, indicating that the distribution does not represent the
data well yet. The third row shows the samples generated with the trained model and
the final row is a samples of real chest radiograophs; the model has clearly learned the
most important characteristics of chest radiographs and can reproduce them to generate
compelling samples.

7.6 Discussion
The collected results have been analysed to assess whether the initial research questions
have been successfully answered. The goal of this thesis is to study the suitability of a
hybrid energy based model, as described in Grathwohl et al. (2019), for medical image
pathology classification. The following questions were addressed:

1. Does training the classifier in a hybrid EBM schema reach comparable results to a
standard discriminative training setup

2. Can the intrinsic generative model of the hybrid setup be utilised for OOD detection

3. How does EBM training affect the model discriminative calibration

Discriminiative Power The pre-trained deep learning classifier was the best per-
forming model. The EBM was successfully used for a downstream discriminative task
and performed with high accuracies; however, it could not compete with the pre-trained
deep learning classifier. Compared to the deep learning classifier trained from scratch,
the EBM was able to achieve far greater discriminative results, showing the benefits of
exploiting the distributional properties of the EBM.

Out of Distribution Detection In a pre-modelling exploration, PCA and robust PCA
were used to derive representations from the CheXpert data and compare their quality
to different types of datasets, as type of indicative OOD method. The representations
learned by PCA were effective when comparing the CheXpert data to different domains,
such as ImageNet and INbreast. However, within a domain the features were not sophisti-
cated enough to properly distinguish between CXR14 and CheXpert. Overall, considering
the relative simplicity of the method, it performed well and makes for an interesting
alternative next to the highly complex models, though it cannot be considered as a sub-
stitute for a diagnosis system. It has no discriminative abilities and the representations
it learns are not sensitive enough to be considered for a high-risk domain such as medicine.
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When applying the trained models for OOD, the deep learning classifier was not able to
distinguish between datasets in a useful way, assigning high probabilities to inputs that
were not part of the original training data distribution. Specifically, when looking at the
way the deep learning classifier compares the two chest x-ray datasets, the importance of
accurate OOD, how classical deep learning classifiers fall short, and how significant it is
in the medical setting, is emphasised. The EBM on the other hand, excelled at this task.
The model clearly learned the latent dependencies very well and was able to leverage this
to identify different inputs even within a domain. Its capabilities make it very useful for
applications in sensitive areas and it hows that it is clearly superior to the deep learning
classifier.

Model Calibration The EBM was not able to deliver, as expected, perfectly calibrated
predictions. However, the predictions were better calibrated than the ones produced by
the deep learning classifier. It is important to note that the EBM was trained "from
scratch", with a highly complex training algorithm working in the background. Thus,
possibly more training time would have improved the calibration. The predictions made
by the pre-trained deep learning classifier delivered moderately calibrated, but if the
pre-training was taken away, the model was grossly miscalibrated.

Additional Analyses Finally, the models were explored for their outlier detection
abilities. A set of 9 outliers from the CheXpert data was selected and fed to the models
in order to test whether their output would indicate that they were outliers. There
was discernible change in the deep learning classifier’s output that would indicate an
outlier. In a larger sense, this indicated a failure to quantify uncertainty for a given
image. The EBM’s output showed strong signs of uncertainty for these images, implying
that it realised these images something significant, but inadequate, was contained in
these images.
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CHAPTER 8
Conclusions

This chapter presents a thorough discussion of the results, contextualising them with the
initial research questions, and drawing final conclusions to assess what was gained and
what was lost when applying the energy based framework. Limitations of the experiments
and of energy based modelling as a whole are also discussed, as well as a description of
possible clinical usage.

This thesis investigated if the concept of an Energy Based Model is suitable for medical
image diagnosis on posteroanterior chest radiographs. The work in this thesis is based in
a large part on EBM research conducted by Will Grathwohl and Yann LeCun Grathwohl
et al. (2019) LeCun et al. (2006). The conducted experiments address some major
challenges for state of the art deep learning classifiers. While they have a proven track
record of being highly accurate, both on medical data as well as in other domains, there
are drawbacks that limit their large scale real world application. Some of these drawbacks
include not delivering out of the box calibrated predictions, and not having the ability
to identify when they are given an image that is significantly different to the training
distribution, also known as Out of Distribution Detection. The root of this problem
is that the training scheme of state of the art deep learning classifiers does not equip
them to accurately quantify uncertainty. In other words, their output scores cannot be
used to make statements/assumptions about how well an observation fits into the data
overall. This is because deep learning classifiers are very good at learning the patterns
that minimize a loss criterion to distinguish between chest pathologies, thus appearing to
have some powerful, deeper understanding. But it does not have an understanding of
what it really means for a patient to have this pathology in relation to the rest of the
cases. It does not know what is does not know Gal (2016).

The work in this thesis is laid out as a comparison between the state of the art deep
learning classifier and energy based modelling, with a special focus on the respective
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discriminative, out of distribution and calibration capabilities. A chosen Convolutional
Neural Network is trained, establishing a benchmark to evaluate the performance. The
connection between the EBM and the deep learning classifier, is that both methods
are based on the same CNN architecture, but use different methods of training to fit a
model. Both modelling approaches are trained on chest x-ray data that contains four
different pathologies: cardiomegaly, pleural effusion, lung lesions and fractures. For
the investigation into the fulfilment of the research goals, a selection of metrics and
visualisations are used.

Discriminative power, summarised in table 7.1, is evaluated by comparing average
AUROC values on three different resolutions. The EBM is pitted against both a pre-
trained CNN and a CNN trained "from scratch". he experiments were conducted in a two
stage process: an initial proof of concept on a small subset of the data was conducted to
pre-determine whether the hybrid EBM would deliver useful results on this type of image
data and to observe how difficult the training would be, given that the existing literature
often reported unstable training. On the small subset of data, the EBM was successfully
used for a downstream discriminative task and performed with high accuracies. However,
it could not compete with the pre-trained CNN which dominated the experiments. When
the pre-training is removed, the EBM was able to outperform the CNN trained "from
scratch", showing the benefits of exploiting the distributional properties for discriminative
tasks. On the complete dataset, both deep learning approaches scaled well and replicated
their discriminative performances compared to the proof of concept on the small subset.
The EBM on the other hand did not scale well. The additional data prolonged the
duration of training to such an extent (∼ 3 months for a complete training run, not
considering a parameter search and divergence of the loss function) that final results
could not be calculated in a feasible amount of time. In order to assess discriminative
performance of EBM on the full dataset, loss and accuracy behaviour for the full and
initial runs were compared. The comparison showed similar trends in both metrics for
the two respective runs, which allows for the reasonable extrapolation that, given enough
time, the model on the full dataset would generate similarly good discriminative results
as on the smaller subset.

Out of Distribution Detection, summarised in table 7.3, was investigated in both a
pre- and post modelling approach by using different datasets to test how well the ap-
proaches would be able to distinguish between in and out of distribution data. The out
of distribution datasets were deliberately picked to progressively differ from the training
dataset, thus showing how well the approaches were able to differentiate between domains
and within a domain. The datasets under consideration were: a different chest x-ray
dataset ChestXray14 Wang et al. (2017), a breast mammogram dataset INbreast Moreira
et al. (2012) and a random subsample from the ImageNet dataset Russakovsky et al.
(2015). In a pre-modelling exploration, robust PCA was used to derive representations
from the CheXpert data and compare their quality to different types of datasets, as type
of indicative OOD baseline method. The features learned by PCA were effective when
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comparing the CheXpert data to different domains, such as ImageNet and INbreast.
However, within a domain the features were not sophisticated enough to properly distin-
guish between CXR14 and CheXpert. Overall, considering the relative simplicity of the
method, it performed well and makes for an interesting alternative next to the highly
complex models, though it cannot be considered as a substitute for a diagnosis system.
The post-modelling exploration was again carried out in a two step approach, i.e. the out
of distribution datasets were first applied to the models were trained on a small subset of
data as a proof of concept, and then to the model trained on the full dataset. In both
cases the EBM far outmatched the DL classifier. The latter was not able to distinguish
between datasets in a useful way, assigning high probabilities to inputs that were not part
of the original training data distribution. The importance of accurate OOD is emphasised
when looking at the way the DL models compare the two chest x-ray datasets. The
model assigns high probabilities to chest x-rays with completely different pathologies
than present in the training data, a potentially fatal flaw. The EBM on the other hand,
excelled in both cases. It clearly learned the latent dependencies very well and was able
to leverage this to identify different inputs between domains and even within a domain.
Its capabilities make it very useful for applications in sensitive areas and it hows that it
is clearly superior to the CNN. Interestingly, the EBM on the full dataset was already
able to achieve excellent OOD results, even though its training was cut short. This can
be interpreted in the following way: the distribution is estimated very quickly in the first
epochs with already with good quality. Figuratively speaking, this means the general
shape of a fitting energy function is determined quite fast. The remaining training time
goes into fine tuning this shape. This would also explain why the improvement of the
discriminative performance is a long and iterative process, that becomes very evident
with such a large dataset: the model uses the information learned from its generative side
to then develop and improve its discriminative side, i.e. the discriminative will always lag
behind the generative and only when the generative is good, will the discriminative start
to improve. This also gives rise the phrase "downstream discriminative capabilities/tasks".

Both modelling approaches did not deliver well-calibrated predictions. While the EBM
was observed to perform better than the CNN approach, it was still miscalibrated. Since
the EBM was trained from scratch, it stands to reason that calibration would improve
given longer training time. The deep learning classifier, though also not delivering
well-calibrated predictions, behaved as expected: they deliver highly confident predictions
that are not in line with ground-truth likelihoods observed.

The main contribution of this work is the investigation into whether energy based
modelling, previously untrained on medical data, can competitively deliver accurate
predictions while also supplying ’context’, i.e. the user can get a sense of the uncertainty
attached to a prediction. Simply put, the EBM output has a deeper meaning in relation
to the data, something the deep learning classifier does not have. This is the result of
the main benefit of these models: they estimate entire distributions and thus naturally
output probabilities, whereas deep learning classifiers give point estimates for parameters
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8. Conclusions

that minimize a specific loss. The EBM was shown to use this to distinguish between
nonsensical inputs, a huge benefit for the medical domain where wrongly diagnosed
outputs can have fatal consequences. In a tightly controlled domain, for a very specfic
case, the deep learning classifier may seem superior because it can achieve high accuracies.
However in reality, diagnosing medical images is a complex task with many contributing
factors and different points of view. The EBM sacrifices some discriminative power
compared to the pre-trained deep learning classifier, but this is more than made up when
seeing that it can model more areas of the diagnostic process.

Overall, the experiments have shown that, energy based modelling can be employed in
medical image classification and improve some of the drawbacks attached to classical deep
learning. In contrast to classical deep learning classifiers, they know what they do not
know and they push the topic of explainability and interpretability of artificial intelligence
forward. While the benefits of generating a distribution on medical images and being able
to use it for a downstream discriminative tasks are significant, notable limitations could
also be observed. Estimating a distribution is always hard Goodfellow et al. (2016); train-
ing the EBM often exhibited instability, requiring a lot of manual work to find appropriate
settings to fit the model, especially considering the approximative tools needed to express
the distribution. The way to efficiently train an EBM is an active field of research. Many
of the published training methods, including work done by Grathwohl et al. (2019), rely
on approximative tools like Monte Carlo Markov Chain. While these methods generally
work, the calculations done "under the hood" are highly complex and are the reason for the
instability. Moreover, the process of training was highly time consuming and inefficient,
meaning that EBMs do not scale well. This was especially obvious when the EBM was
trained on the full dataset and training time increased exponentially. In addition to the
computational complexity, a key factor in training EBMs are the hardware requirements.
Training the model was only possible on GPU with sufficient memory, especially using
larger image sizes such as 224 × 224 or 128 × 128. Given a lot more training time, it can
be hypothesized that the quality of samples generated from the distributions, as well as
the discriminative power and calibration would improve. On the other hand, training
the classical deep learning classifiers was comparatively easy, especially considering the
benefit of pre-trained weights. With minimal manual effort, the models were trained in
a short amount of time and were very stable, though they also required the GPU hardware.

Given the benefits observed in the experiments, EBMs do show signs of potential to be
integrated into a real-world clinical application. For instance, an automatised diagnostic
system based on an EBM could not only give high quality predictions, but its deeper
understanding of uncertainty could be used to give an indication of faulty images, or
if there are specific features present in the image that are highly highly pronounced
compared to the rest of the population. This indication, more specifically a likelihood-
based metric, could be combined with an uncertainty that, when breached automatically
raises a flag signifying the need for human intervention. This could significantly support
radiologists in analysing chest x-rays by reducing their workload, thus allowing them to
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be more attentive to more serious cases. In addition, it gives the users the power to be
as strict as they want by adjusting the uncertainty threshold. Furthermore, this tyoe of
framework can be used to create a reliable ranking of patients relative to the severity of
their illness, with high uncertainty indicating urgent cases and low uncertainty indicating
non-urgent cases. These implementations would contribute to the safety of using an
automatic system, promoting wider clinical use.
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