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Abstract
In this note we answer positively an open question posed by Yuster in 2020 [14] on the
polynomial boundedness of the perfect sequence covering array number g(n, k) (PSCA
number). The latter determines the (renormalized) minimum row-count that perfect sequence
covering arrays (PSCAs) can possess. PSCAs are matrices with permutations in Sn as rows,
such that each ordered k-sequence of distinct elements of [n] is covered by the same number
of rows. We obtain the result after illuminating an isomorphism between this structure from
design theory and a special case ofmin-wise independent permutations. Afterwards, we point
out that asymptotic bounds and constructions can be transferred between these two structures.
Moreover, we sharpen asymptotic lower bounds for g(n, k) and improve upper bounds for
g(n, 4) and g(n, 3), for some concrete values of n. We conclude with some open questions
and propose a new matrix class being potentially advantageous for searching PSCAs.

Keywords Sequence covering array · Directed design · Min-wise independence · Family of
permutations

Mathematics Subject Classification 05B40 · 05B30 · 05A05 · 05D99

1 Introduction

Set [n] = {1, . . . , n}. Let Sn denote the symmetric group on [n], and define Sn,k as the set
of all ordered tuples (x1, . . . , xk) ∈ [n]k whose entries x j are distinct. Following [14], a
PSCA of strength k and multiplicity λ ≥ 1 on n symbols is a matrix A ∈ [n](λk!)×n with
distinct symbols per row such that each sequence s ∈ Sn,k is contained as a subsequence in
exactly λ rows (s is said to be covered λ times by A). Denote the class of all such matrices
A by PSCA(n, k, λ). Let g(n, k) be the minimum multiplicity λ such that PSCA(n, k, λ) is
non-empty, and call g(n, k) the perfect sequence covering array number (in analogy to [2]).
A PSCA can be seen as a (k, λ)-directed design of blocksize n and order n (cf. [4]). PSCAs
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are particular sequence covering arrays (SCAs), i.e., matrices with permutations as rows
that cover each s ∈ Sn,k at least once [2]. SCAs were introduced in [8] for the purpose of
event sequence testing (cf. also [2, 4]).

Recently, the following two results were obtained by Yuster.

Theorem 1 [14] If k/2 is a prime, then for all n ≥ k we have

g(n, k)k! ≥
(

n

k/2

)
−

(
n

k/2 − 1

)
. (1)

For arbitrary k, provided n � k, the bound g(n, k) > nk/2−ok (1) applies.

Theorem 2 [14] Let n ≥ 3. There exists a constant C > 0 such that

n/6 ≤ g(n, 3) ≤ Cn log2 (n)log2(7) .

We now point to an isomorphic structure being analyzed in the setting of min-wise inde-
pendent permutations [3]. We index families F ⊂ Sn by an index set [d], d ∈ N. The
elements are allowed to occur repeatedly, and hence the cardinality ofF refers to the cardi-
nality of the indexing set. We need the concept of the rank of an element before we get to
the actual definition of interest.

Definition 1 For a subset X ⊂ [n] and arbitrary x ∈ X , we denote the rank of x in X as
rank(x, X) := |{y ∈ X : y < x}|.
Definition 2 A non-empty family F ⊂ Sn is called k-rankwise independent [6, 13], if for
each set X = {x1, . . . , xk} of k distinct elements of [n] and each choice of k distinct values
r1, . . . , rk ∈ {0, . . . , k − 1}, we have

Pr

[
k∧

i=1

rank(π(xi ), {π(x1), . . . , π(xk)}) = ri

]
= 1

k! , (2)

when π is drawn uniformly at random from F .

It is clear that (2) corresponds to the following condition: For each sequence (x1, . . . , xk)
∈ Sn,k and for each permutation π randomly drawn (uniform probability) from F , we have

Pr [π(x1) < π(x2) < · · · < π(xk)] = 1

k! . (3)

Next, we give a proposition that illuminates the isomorphy of PSCAs and rankwise inde-
pendent families. Before that, we need an appropriate mapping and an auxiliary observation
from which the proposition follows. For the sake of completeness we include a proof of the
following Lemma 3 which was already noticed in [4, Lemma 1.1].

In the following, consider for a family F = (π1, . . . , πd) ⊂ Sn the mapping

A : F �→ A(F ) :=
⎡
⎢⎣

π−1
1 (1), . . . , π−1

1 (n)
... . . . ,

...

π−1
d (1), . . . , π−1

d (n)

⎤
⎥⎦ ∈ [n]d×n . (4)

Lemma 3 Let F ⊂ Sn be a family of cardinality d ≥ 1. Consider for fixed i ∈ [d] the
i-th element π := πi ∈ F and the i-th row r ∈ Sn of A(F ). Let (x1, . . . , xk) ∈ Sn,k . We
have π(x1) < π(x2) < · · · < π(xk) if and only if (x1, . . . , xk) is a subsequence of r .
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Proof First, we show that monotonicity implies containment as subsequence: If π(x1) <

· · · < π(xk), then the row r = (π−1(1), . . . , π−1(n)) in particular contains
(π−1(π(x1)), π−1(π(x2)), . . . , π−1(π(xk)) = (x1, . . . , xk) as subsequence.

For the other proof direction, if π does not satisfy π(x1) < π(x2) < · · · < π(xk), then
theremust be a permutationψ ∈ Sk\{id} such thatπ(xψ(1)) < · · · < π(xψ(k)), which implies
(as before) that r contains (xψ(1), . . . , xψ(k)) as subsequence. Consequently (x1, . . . , xk) is
not a subsequence of r . 	

Proposition 4 Let n ≥ k. F ⊂ Sn is k-rankwise independent if and only if there exists
λ ∈ N \ {0} such that A(F ) ∈ PSCA(n, k, λ). Therefore, g(n, k)k! determines the minimum
cardinality of a k-rankwise independent family of permutations of [n].
Proof Define Cx := {π ∈ Sn : π(x1) < · · · < π(xk)}, for x = (x1, . . . , xk) ∈ Sn,k .

If F is k-rankwise independent, then for x ∈ Sn,k we can find |F |/k! permutations in
F which lie in Cx . By Lemma 3, this means that x is covered by precisely |F |/k! rows of
A(F ). As a consequence, by choosing λ := |F |/k! we obtain A(F ) ∈ PSCA(n, k, λ).

Conversely, if there is λ ≥ 1 such that A(F ) ∈ PSCA(n, k, λ), then for x ∈ Sn,k there are
λ rows in A(F ) that cover x . By Lemma 3,F must contain λ permutations which all are in
Cx (here permutations are counted with respect to multiplicity). Therefore, a permutation π

chosen uniformly at random fromF satisfies π(x1) < · · · < π(xk) with probability 1/k!. 	

The inverse operation of A(·) in Proposition 4, i.e., the conversion of a PSCA to a rankwise

independent family, is determined by interpreting the rows of the PSCA as permutations and
successively storing their inverses one by one in a family of permutations.

In [6] it is already remarked that k-rankwise independence implies �-rankwise indepen-
dence, for all � ∈ [k]. In other words, a nesting property analogous to the one for PSCAs holds
(if A ∈ PSCA(n, k, λ), then also A ∈ PSCA(n, �, λk!/�!) [14]).We highlight that k-rankwise
independent families can be considered as completely scrambling families1 (introduced by
Spencer [12]) with an additional requirement of regularity. Furthermore, k-rankwise indepen-
dence is a special case of k-restricted min-wise independence (cf. Definition 3). It is known
(cf. [6, p. 139]) that these two notions coincide for k = 3 and that k-rankwise independence
is strictly more specific when k > 3. In [3], k-restricted min-wise independent families were
introduced to efficiently estimate the resemblance of two documents. The latter is motivated
by practice, where the aim is to reduce the computational cost of searching for near-duplicate
documents on the World Wide Web [3].

Definition 3 [3] A non-empty family F is k-restricted min-wise independent if for any set
X ⊂ [n]with |X | ≤ k and arbitrary x ∈ X , any permutationπ drawnwith uniformprobability
randomly from F satisfies

Pr

[
π(x) = min

y∈X π(y)

]
= 1

|X | .

Remark 1 Given a matrix in PSCA(n, k, λ) with n ≥ k + 1, we can utilize it to construct a
matrix in PSCA(n−1, k, λ) by dropping the symbol n in each row (see [14]). Consequently,
we also know how to construct a k-rankwise independent family F ′ ⊂ Sn−1 (with |F ′| =
|F |) from a k-rankwise independent family F ⊂ Sn (this was already noticed and applied
in [6] without referring to PSCAs).

We can now transfer bounds from rankwise independent families to PSCAs (and vice versa).

1 A familyF ⊂ Sn is completely k-scrambling if for any (x1, . . . , xk ) ∈ Sn,k there exists an element π ∈ F
such that π(x1) < · · · < π(xk ).
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2 Lower and upper bounds

In this section asymptotic results for rankwise independent permutations will be stated jointly
with their implications (cf. Proposition 4) for the number g(n, k).

The following result can in particular be analyzed when h is a prime; we can therefore
compare it with Theorem 1 and conclude that it improves the lower bound by the factor !h,
the subfactorial of h,2 being superexponential in h, but independent of n.

Theorem 5 [1] LetF ⊂ Sn be a k-rankwise independent family. If k = 2h (h ∈ N), then we
have

|F | ≥ g(n, k)k! ≥
h∑

i=0

!i
(
n

i

)
= !h

h!n
h(1 + o(1)). (5)

Otherwise, if k = 2h + 1 (h ∈ N), then

|F | ≥ g(n, k)k! ≥
h∑

i=0

!i
(
n

i

)
+!(h + 1)

(
n − 1

h

)
= !h+!(h + 1)

h! nh(1 + o(1)). (6)

The next Theorem 6 follows from the proof of [6, Theorem 3.2]. It positively answers the
question of Yuster on the existence of non-trivial upper bounds for g(n, k) for fixed k. In
fact, the estimate is polynomial in n.

Theorem 6 (variant of [6, Theorem 3.2]) Let p ≥ n ≥ k such that p is a prime and n ≥
(k − 1)!. Furthermore, let p1 < · · · < pm be the sequence of all primes not exceeding k − 1,
i.e., pm ≤ k − 1. Let (e1, . . . , em) ∈ (N \ {0})m be a minimizer of Q = ∏m

i=1 p
ei
i under the

side constraints that (k − 1)! divides Q, and peii > p, for i = 1, . . . ,m. Then, there exists a
k-rankwise independent family P of permutations of [p] such that |P| ≤ (pk − p)Q�k/2
.
Consequently, cf. Remark 1, there exists a family P ′ ⊂ Sn satisfying

g(n, k)k! ≤ |P ′| = |P| = nO(k2/ ln k). (7)

Remark 2 For the case that (k − 1)! > n (not covered by Theorem 6), it is established in [6]
that a k-rankwise independent family with cardinality of order eO(k3) exists.

Remark 3 The proof of Theorem 6 presented in [6] is constructive: For a prime p and the
finite field Fp of p elements (Fs is to be understood accordingly, when s is a prime power),
the set of univariate polynomials

Fp(ξ, [a, b]) := {
r ∈ Fp[ξ ] : a ≤ deg r ≤ b

}
is used as base for the construction. Under the assumptions of Theorem 6, setting

E := Fp1e1 (ξ, [0, �k/2
 − 1]) × · · · × Fpmem (ξ, [0, �k/2
 − 1]),
a tuple (by)y∈Fp ∈ {0, . . . , Q − 1}p is generated by amanipulation which depends on a fixed
parameter h = (h1, . . . , hm) ∈ E . The tuple (by)y is then used to carry out the so-called
“�k/2
-tie breaking scheme” [6] which serves to identify each of the pk − p elements of
Fp(ξ, [1, k]) with a permutation of {0, . . . , p − 1}. Deriving from each tuple in E (having
cardinality |E | = (pe11 )�k/2
 · · · (pemm )�k/2
 = Q�k/2
) such a collection of permutations,
yields a total of (pk − p)Q�k/2
 permutations. Collectively these permutations fulfill k-
rankwise independence. For a more detailed discussion of the proof of Theorem 6 (and of
the aforementioned scheme) we point to [6].

2 By definition, !m := (m!) · ∑m
j=0(−1) j / j !. By power series representation, limm→∞ !m

m! = 1/e.
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Table 1 Upper bounds for g(n, 4)

n Bound in [5] (best known) Bound by optimization in Remark 4

5 ∗1 1

6 ∗1 672

7 ∗2 672

8–12 18 –

13 234 –

14–17 5040 672

18–21 5040 3139584

22 18480 –

23 425040 –

24 10200960 3139584

25–65 – 3139584

66–257 – 23482368

Entries constituting new best-known values are in bold print. Asterisks indicate optimal bounds

We state more specific results for k ∈ {3, 4}. Originally, the subsequent result concerning
3-rankwise independencewas established for the equivalent property of 3-restrictedmin-wise
independence.

Theorem 7 ([13]) Let n ≥ 4. Then, there exists a 3-rankwise independent family E ⊂ Sn
and a 4-rankwise independent family F ⊂ Sn, with cardinalities

g(n, 3) · 3! ≤ |E | ≤ 12
√
e(1 + o(1))n log2 (n)2 , (8)

g(n, 4) · 4! ≤ |F | ≤ 15e(1 + o(1))n3 log2 (n)6 . (9)

Remark 4 The latter result is obtained by methods from affine/projective finite geometry by
a recursive construction. The bound (8) improves on the bound in Theorem 2 by a factor
of approximately log2 (n)0.81. The bound (9) is obtained by estimating the members of
a recursive sequence which describes cardinalities of 4-rankwise independent families of
permutations of [n], for n = 22q+1. The involved recursion is homogeneous in the cardinality
of the family employed as base case. For the construction it is required to start with a
4-rankwise independent family of F ⊂ S5. In [13], the authors choose F = S5, such that
|F | = 120.

We can improve this base case by making use of a construction due to Levenshtein [9]
allowing to construct a PSCA(n+1, n, 1). It provides us with a PSCA(5, 4, 1), which we can
map via the isomorphism in Proposition 4 to a 4-rankwise independent family F̃ satisfying
|F̃ | = 24. Hence, we obtain an improvement of the bound (9), which reads

g(n, 4) · 4! ≤ |F | ≤ 3e(1 + o(1))n3 log2 (n)6 . (10)

The optimized recursion leading to (10) permits us to improve on some recently obtained
results in [5] (by taking the exact values of the recursion). We state the hereby found bounds
in Table 1.

Remark 5 Recently in [7], analogously to Remark 4, instead of the entire symmetric group
S4 chosen as base case for a similar recursion designed for the case k = 3 [13, Section 3.4],
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Table 2 Upper bounds for g(n, 3)

n Best known bound (with reference) Bound by optimization in Remark 5

4 ∗1 1

5–7 [14];[5, 11] ∗2 10

8 [5] ∗3 _

9 [11] 4 _

10–12 [5] 6 _

13–14 [5] 7 _

15–16 [5] 16 10

17–19 [5] 19 180

20–32 [5] 96 180

33–64 – 180

65–256 – 340

Entries constituting new best-known values are in bold print. Asterisks indicate optimal bounds

a 3-rankwise independent family of cardinality 6 has been used (such a family exists due to
PSCA(4, 3, 1) �= ∅, cf. [9]). The bound

g(n, 3) · 3! ≤ 3
√
e(1 + o(1))n log2 (n)2 , (11)

slightly improving upon (8), is obtained. By evaluation of the respective recursion, bounds
for g(15, 3) and g(16, 3) have been improved (see Table 2).

3 Conclusion and open questions

In our discussion, we have found that the theory of PSCAs and the theory of min-wise
independent permutations can benefit considerably from each other. Despite the isomorphy
of many concepts in these theories, strong interconnections seemed not to be exploited in the
past (perhaps because one theory consistently uses probabilistic language). By combining the
latter theories, we have improved several bounds and established polynomial boundedness
for g(n, k), which Yuster asked for in [14]. Furthermore, we achieved progress in another
question appearing in [14] which asks to find the right order of magnitude of g(n, 3): The
quasi-linear upper bound (established in [14]) is tightened by a factor of log2 (n)0.81 (cf. (8)).
It remains open by how much lower and upper bounds for g(n, 3) can still be improved.

The great difficulty, already for k ∈ {3, 4} and small n, to determine existence of PSCAs
(on a certain number of rows) manifests itself in some works, which come up with com-
putationally intensive search procedures [5, 11]. It would be highly interesting to find out
whether the regularity, that PSCAs have compared to SCAs, facilitates the determination of
the complexity class of the problem of calculating g(n, k)k!, the minimum number of rows
able to host a PSCA. For SCAs the respective problem concerning the minimal row count is
still open (even if in [2] NP-completeness has been established for an altered problem).

Aiming to calculate further exact values of g(n, k), we experimentally tried, for n being
a divisor of λk!, to seek small PSCAs by restricting the search space to a class of matrices A
(having permutations as rows) and satisfying the following “reflection symmetry” property:
For any column indices j1 < j2, the ( j1, j2)-submatrix of A satisfies that if h rows coincide
with (a, b) ∈ [n]2, then alsoh rows coincidewith (b, a). Themotivationbehind this additional
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assumption is that recently PSCAs being unions of cosets of Sn have successfully been found
(cf. [11]) for several parameter constellations (n, k, λ). We suspect that our proposed kind of
symmetry induces a suitable balancing of symbols being advantageous for finding PSCAs,
too.

It appears that within the class of matrices having uniform columnwise distribution of
symbols (cf. [5]), this latter constraint still allows to find representatives of PSCAs. Indeed,
by a recursive search for strength k = 3, appending column to column, we find that such
special representatives exist for the parameter constellation (n, k, λ) ∈ {(3, 3, 1), (6, 3, 2)}.
Existence for the constellation (9, 3, 3) could no longer be determined due to computational
limitations and we would find it interesting to investigate this case with more dedicated
computational effort. The representative of PSCA(6, 4, 1) presented in [10, Proposition 2.22]
is reflection symmetric, too. For strength k = 4, the constellation (n, k, λ) = (8, 4, 3) is next,
for which it is still open whether it possesses such a special representative (since it was shown
in [5] that PSCA(8, 4, 2) = ∅).

Combinatorial aspects (e.g. enumeration for small n and efficient constructions) of the
class of matrices satisfying the latter reflection symmetry might be of independent interest.
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