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Kurzfassung

In der vorliegenden Dissertation ein Verfahren geeignet für Beschreibung der elek-

tronischen Transporteigenschaften in Nanostrukturen ist dargestellt und ist im-

plementiert geworden. Eine Einbettungstechnik bezogen auf die vollrelativistische

spinpolarisierte Korringa-Kohn-Rostoker Methode und auf die Approximation des

kohärenten Potentials ist kombiniert mit einer Realraum-Formulierung der Kubo-

Greenwood Gleichung. Es sind Berechnungen durchgeführt worden für Ag(OOl)

Oberfläche, Ag Bulk, zwei Arten von CuPt und Nio.15Feo.85 Bulk Legierungen in

dem "grossen Cluster" Limes um die Vertrauenswürdigkeit der Methode zu erläutern.

Ausserdem der verbleibende und der anisotropische Widerstand in NiFe Legierun-

gen in dem Ni-reichen Bereich sind berechnet. Als echte Nanostrukturen endliche

Fe und Co Ketten eingebettet in die Oberflächenschicht des Ag(OOl) sind erforscht,

sowie eine detaillierte Untersuchung des elektronischen Transports durch atomar-

skalierten Au Kontakt zwischen halbunendlichen Au(OOl) Systemen ist präsentiert.

Der Fremdatomeinfluss aus Übergangsmetallen (Fe, Co und Pd) in verschiedenen

Positionen in der Nähe des Zentrums eines bestimmten Kontakts ist auch ermittelt.



Abstract

In the present work a method suitable to characterize electrical transport proper-

ties of nanostructures is described and has been implemented. A real-space embed-

ding technique based on the fully relativistic spin-polarized Korringa-Kohn-Rostoker

method and the Coherent Potential Approximation is combined with a real-space

formulation of the Kubo-Greenwood equation. Calculations are presented for the

Ag(OOl) surface, Ag bulk, two types of CuPt and Nio.15Feo.85 bulk alloys in the

"large cluster" limit in Order to illustrate the reliability of this approach. More-

over, the residual resistivity and the anisotropic magnetoresistance of bulk NiFe

alloys are calculated in the Ni-rich regime. As real nanostructures, finite Fe and

Co chains embedded into the surface layer of Ag(OOl) are investigated as well as a

detailed study of the electric transport through atomic-scaled Au contacts between

two semi-infmite Au(OOl) Systems is given. The influence of transition metal impu-

rities (Fe, Co and Pd) placed on various positions near the center of a particular

contact is also studied.
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Introduction

Ab-initio investigations of electric transport in solids attracted considerable interest
in the last decades (see, e.g., Ref. [1]). This interest was stimulated on the one hand
by a spectacular progress in the field of ab-initio band structure calculations, and
on the other hand by a growing demand of experimental physics and technology,
partly, by intensive studies and applications of various complex devices which uti-
lize the anisotropy of the resistivity in magnetically ordered alloys [2, 3, 4, 5, 6] and
heterostructures. Since in complex artificial structures (like spin-valves) there are
several possible contributions to the resistivity and its dependence on the direction
of the current or the external magnetic field (e.g., random impurities, interfaces and
their roughness, phonon scattering etc.), it is often difficult to estimate theoretically
their relative contributions [7, 8, 9, 10, 11]. An accurate account of the residual re-
sistivities and anisotropic (or spontaneous) magnetoresistance (AMR) ratios of the
random magnetic alloys is, therefore, a rather promising, though still challenging
task for ab-initio theories [12, 13, 14]. An ab-initio study of the residual resistivity
and the AMR of Ni-rich NiFe bulk alloys is presented in Chapter 7, focusing, in
particular, on the concentration dependence of these quantities.

The main goal of this work is to describe electric transport in nanostructures. The in-
creasing interest for investigating atomic-sized conductors is driven by the possibility
of using such Systems in future nanoelectronic technologies. Magnetic nanostruc-
tures, especially on surfaces are of Special interest for the production of high-density
magnetic recording devices. It is therefore an important issue to investigate the
magnetic and electrical transport properties of such structures [15, 16]. The fully
relativistic screened Korringa-Kohn-Rostoker (SKKR) Green's function method has
been successfully applied in the past to layered Systems and reliable results have
been provided for the magnetic properties of such Systems [17, 18, 19]. This ap-
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proach was then extended in terms of the coherent potential approximation (CPA),
and, in Order to describe electrical transport properties of such Systems, the Kubo-
Greenwood formula [20, 21] was reformulated using one-particle Green's functions
[22, 23]. This combination of methods has been successfully applied to various disor-
dered layered Systems with the aim of investigating giant magnetoresistance (GMR)
effects [7, 8] as well as evaluating residual resistivities [24]. In order to be able to de-
termine transport properties of nanostructures, the so-called embedding technique
based on the multiple scattering theory [17, 25] is used, presented in Refs. [26, 27],
which provides the description of the scattering properties of a specific region of a
surface, interface or bulk (called cluster), and which can easily be combined with a
real-space formulation of the Kubo-Greenwood equation [20, 21].
In Chapter 6 the reliability of the presented real space method is tested in the "large
cluster" limit with, in particular, calculating residual resistivities of well studied al-
loy Systems. In addition, it should be noted that further theoretical challenges can
be investigated such as the change of electric properties from a nanostructure scale
to thin films or even bulk Systems, as well as comparing for low dimensional disor-
dered structures configurational averages in real space with CPA-averages [22, 28].
As first application, the in-plane transport properties of the surface layer of Ag(001)
are investigated in Chapter 8 by embedding Single impurities and finite chains
(length of 2-10 atoms) of Fe and Co along the (HO) direction (x) into the sur-
face layer. The influence of the direction of the magnetization in the nanostructures
is also studied.

As second application, gold nanocontacts between two semi-infinite Au(001) Sys-
tems are investigated in different geometries as well as the influence of transition
metal impurities on the conductance is studied in Chapter 9. At sufficiently low
temperatures the measurements revealed a quantized conductance for atomic sized
nanocontacts made of various materials, not only pure metals but also alloys [29, 30].
Nanocontacts made of gold are presumably the most studied Systems in the liter-
ature both theoretically and experimentally. A dominant peak very close to the
conductance quantum, 1 Go = 2e2/h, has been reported for gold (and other noble
metals) in the conductance histogram [31, 32], attributed to the highly transmitting
sp-channel across a linear chain connecting the two electrodes. It was also found
that the chain formation is in close connection with surface reconstruction phenom-
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ena [33]. For a comprehensive review of the field of atomic-sized conductors, see
Ref. [34].
In order to understand the mechanism of nanocontact formation, electronic structure
and transport, different theoretical methods have been developed. Some theoretical
studies use tight-binding methods [35, 36], others are based on ab initio density
functional theory [37, 38, 39]. Most of the transport studies rely on the Landauer-
Büttiker approach [40, 41], although Baranger and Stone adopted the more sophis-
ticated Kubo-Greenwood formula [20, 21, 22, 42] for calculating the conductance
between free electron leads [43]. By using this approach a recent study [38] focused
on the effect of transition metal imperfections inserted into an infinite Cu wire show-
ing that the conductance of the wire decreased due to the different conductance for
the two spin Channels (spin-filter effect). This finding was the motivation to inves-
tigate the change of the conductance of a finite contact in the presence of transition
metal impurities in the System.

Fabrication of nanostructures

The experimental investigation of atomic- or nano-scaled Systems demands tools
for manipulation and characterization of structures at this scale. In the first part
of this Section the principle of one possible experimental technique for preparing
nanostructures on surfaces is briefly described, namely the atomic manipulation by
scanning tunnelling microscopy (STM). STM was developed by G. Binnig and H.
Rohrer, and it was initially intended for imaging surfaces down to atomic resolution.
The developers won the Nobel prize in 1986. It was soon realized that the STM tip
often influences the surface due to tip-induced migration of surface particles. This is
an evident disadvantage if one would like to image the surface but this property of
the STM tip provides also a benefit, namely, the position of the surface atoms can
be modified through the tip, thus, it is no more impossible to build nanostructures
on surfaces.

Three different parameters influence the surface modification by means of a STM
tip: the electrical field between tip and Substrate, the tunneling current and the
forces between tip and surface. On working with Single atoms and molecules, verti-
cal and lateral manipulation modes are distinguished. In the former mode, a particle
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is intentionally picked up to the tip and then released back to the surface, while in
the latter mode a particle is moved along the surface without losing contact to the
Substrate. In the lateral mode, three kinds of motions are possible: 1. pulling where
the adparticle discontinuously follows the tip from one adsorption site to another
due to attractive forces, 2. pushing with the same type of motion but here repulsive
forces are applied, and 3. sliding where the adparticle is trapped under the tip and
follows its motion continuously and instantly. All these tools demand a higher sta-
bility and lower thermal drift of the STM than necessary for imaging surfaces.

Widely applied methods for fabricating nanocontacts between macroscopic elec-
trodes are the mechanically controllable break junction (MCBJ) technique [31, 33,
44, 45] and scanning tunneling microscopy (STM) [32, 46, 47] by pushing the tip
intentionally into the surface. The crucial problem for both methods is the presence
of contaminants, adsorbates, oxides on the contacting surfaces because it can pre-
vent the formation of small metallic contacts, and also produce false experimental
results. The second problem is the mechanical stability where MCBJ techniques are
better than STM.

The dissertation is organized as follows: The applied theoretical methods can be

found in Part I, while the results are in Part II. Part III is an appendix.



Chapter 1

Transport theories

In this Chapter a few methods describing electric transport in solid matter are
presented with emphasis on the Kubo-Greenwood approach which has been üsed in
this work to calculate transport properties of nanostructures.
Given a System of N interacting electrons moving in the electrostatic potential of
the nuclei, the Hamilton Operator can be transformed to an effective one-electron
Hamiltonian by means of density functional theory (see Appendix A) which has the
form,

^ > (1.1)

where the first term is the kinetic energy and the second one is the effective one-
electron potential depending on the spin of the electrons (er) as well as on the mag-
netic configuration of the System (M). The corresponding one-electron Schrödinger
equation can be written as

£„<Mr) = Ek^k^r) (1.2)

with notation k = (v, k), where v denotes the band index, k is the momentum, while
Ek,a and </>fc)<T(r) denote the one-electron energies and states, respectively. As it is
well known, a translationally invariant System would not cause any resistivity. For
this reason a perturbed System with Hamilton Operator

H = HQ + Hperturbation (1-3)

is taken, where the perturbation can be, e.g. some scattering potential arising due
to impurities present in the System.

11
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1.1 Boltzmann formalism

In this Section, a quasi-classical approach of transport based on the Boltzmann

equation is briefly discussed where the transport coefficients stem from a microscopic

level. Boltzmann theory assumes the existence of a distribution function, /fc,CT(r)

which measures the probability of charge carriers with spin o in the State k being

in the neighborhood of r. The change of /fc(r) = X /̂fc,<r(r) is described by the
er

Boltzmann equation,

dt Jdiffusion V dt J field V ot J scatteHng

where the terms above correspond to different effects, namely from the left: an

explicit time dependence, diffusion, the influence of external fields and scattering.

Stationarity implies that the total time dependence of /fc(r) vanishes, see Eq. (1.4).

It should be noted that in the following the r-dependence of the distribution function

will be neglected and the formulas will correspond to a magnetic System. Let us

now analyse the scattering term. The local change of electrons resulted from elastic

scattering of independent particles can be connected to the microscopic scattering

probability,

by

[%") E E > ' ( 1 - fk,a)Pk'a'M - (1 - fk',a')fk,aPka,k'a'} • (L6)
scattering

The first term is called scattering-in term and describes the scattering of electrons

from occupied states (&', o') into an empty State (k, a), while the second term typifies

the reverse process, namely the scattering of an electron from an occupied State

(k.a) into empty states (k',a') and is called scattering-out term. It is reasonable to

separate the distribution function into two parts,

fk,* = fk,* + 9k,*, (1-7)

where

~^r\ (1-8)
-EF) 1
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is the Fermi-Dirac distribution function with Ek,a being one-electron energies, see

•Eq. (1.2), Ep the Fermi energy, and ß = 1/kßT with kß the Boltzmann constant and

T temperature, while g^^ denotes the deviation from the equilibrium distribution

function. Making use of the principle of microscopic reversibility implying

Pka,k'(r' = Pk'a'M for the microscopic scattering probabilities and the Separation of

fk,a in Eq. (1.7), the scattering term in Eq. (1.6) can be rewritten as

Y,J2k',c'~gk,a). (1-9)
scattering a k'a'

Neglecting the terms with explicit time dependence of the distribution function and

change caused by diffusion in Eq. (1.4) and keeping only the change of fk Coming from

a homogeneous external electric field, E, the following expression can be obtained,

'(^>' -9k*), (i-io)

where v̂ )CT is the velocity of the electrons with spin er, which can be defined with

help of the one-electron energies as

Assuming that gk,a depends linearly on the external electric field, the following

ansatz is made,

(?§) ME, (1.12)

where Ak,a is the so-called mean free path vector of electrons with spin CT. The mag-

nitude of A^i(7 measures the path of the electron with spin o between two scattering

events. Defining the so-called relaxation time, Tfcj(T, which denotes the time that an

electron stays in the State (k, a) until the next scattering event (scattering life time),

as

JfcV

Eq. (1.10) can be solved with the ansatz of Eq. (1.12) to give

Ajfc)(T = Tk,o- I Vk,a + ̂ 2 Pka,k'a'M',<T' I • (1-14)
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This is a System of coupled integral equations for magnetic Systems. The different

spin-components can be decoupled by ignoring spin-flip scattering processes, namely

assuming that Pkt,k'i — 0 a nd ^U,fc't — 0 in Eq. (1.5). In this case a relatively simple

integral equation applies,

Afc>(y = Tk,a ( Vfc)ff + ^ Pka,k'a^k',a \ , (1-15)

from which Afc!(T can, in principle be obtained.
Let us now write the current density assuming that the total current density is split

into spin-dependent contributions,

j f f = y E fk,*Vk,a , (1.16)
er k,a

where V is the volume of the System. The conduetivity tensor q_ at T = 0 is obtained

by using Ohm's law, j ^ = g^E and Eqs. (1.7), (1.12), (1.16),

2

g = Y l %a = &V 5 Z 5{<Ek^ ~ EF)Vk,* ° Afc,CT , (1.17)
a k,a

where o denotes a dyadic produet (resulting in a 3x3 tensor), and the contributions
to the total conduetivity come from the independent majority (t) and minority (4,)
spin Channels aecording to the two current model [48], where spin-flip scattering
is also ignored. Neglecting the scattering-in term in Eq. (1.14), the conduetivity
becomes

It is important to note that ^2ö(Ek,a - Ep) defines the density of states, n(EF) at
k,a

the Fermi energy, thus it can be concluded that the conduetivity tensor is affected
by three factors: the density of states, the velocities, and the relaxation times of
the electrons at the Fermi surface. The first two are completely determined by the
electronic strueture of the System, while the last one is determined by defects or
impurities present in the solid. Moreover, different approximations can be applied
on the relaxation time in Eq. (1.18), e.g. isotropic r, or only spin-dependent rff,
resulting thus in simplified conduetance expression. The applicability of them are,
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however, strongly limited depending on the System under consideration.
It should be mentioned that the Boltzmann equation can easily be implemented
•within traditional bandstructure methods, since in the quasi-classical interpretation
the velocity is given by the energy dispersion, see Eq. (1.11). As disadvantages can be
mentioned that it is a semi-classical theory, in the form of Eq. (1.18) it is applicable
only for bulk Systems, since the knowledge of the Fermi surface is supposed and the
exact form of the relaxation time, T^^ is unknown.

1.2 Landauer formalism

The Landauer-Büttiker theory [40, 41] is an effective tool for describing transport in
mesoscopic Systems where the problem is viewed from the aspect of scattering theory.
Let us shortly sketch the most general model System which can be considered. A
multiprobe structure is taken which consists of a finite region connected to A^ leads
where each lead is attached to an ideal "reservoir". The electrons are scattered in
the finite region (scattering or interaction region) which can be caused by disorder
or particular geometry characteristics. The transport throughout the scattering
region is completely coherent, no phase breaking is taken into account and inelastic
scattering processes are to be negligible due to low temperature supposed. The leads
are used to inject and drain current or measure voltage, whereas the reservoirs are
assumed to fulfil certain conditions: a reservoir for the nth lead is in equilibrium at
a chemical potential

lin = EF + eVn (1.19)

with Vn being the applied potential on it and EF is the Fermi energy. Furthermore,
a steady-state current flowing from/into the reservoir does not change ßn which
means that the reservoir is large enough relative to the scattering region. Moreover,
it is assumed that no additional resistance is produced by the interface between a
reservoir and the scattering region. The last assumption implies that an electron
entering a reservoir must be scattered inelastically before returning to the coherent
scattering region providing a phase-randomization. The current going through the
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nth lead can be written as

nmVm, (1-20)

where the sum is carried out for all leads except the nth one, and gnm are the con-

ductance coefficients of the System. Introducing incoming and outgoing scattering

Channels which play the same role as incoming and outgoing Bloch states in scat-

tering theory, the conductance can be expressed with the transmission probability

(Tniimj) or the 5-matrix (Sni>mj) as

, / J J- ni,mj — , / J \ *->

ij ij

Here, Tn^mj means the transmission probability from an incoming Channel j in lead

m to an outgoing Channel % in lead n, the factor 2 Stands for the two spin directions

and the sum has to be carried out for all incoming and outgoing Channels in the

corresponding leads.

The advantage of using Landauer formalism is first and foremost seen for two-probe

structures, where only one conductance coefficient g exists, such as for describing

perpendicular transport (current perpendicular to plane-CPP) in layered structures

(magnetic multilayers, GMR and TMR devices, spin valve Systems, heterojunctions)

or even investigating quantum wires or point-contacts connecting two electron reser-

voirs. The point-contacts can be partitioned depending on the features of the trans-

port processes. The main parameters are the characteristic lengths of the System:

the contact diameter (d) and the mean free path for elastic (Ae) and inelastic (Aj)

scatterings. Here, Ae (A;) is the length of the electron's path between two elastic

(inelastic) scatterings. The so-called ballistic point-contact is given if d <̂C Ae, Aj. In

this case the electron travels through the contact without any scattering. If d ^> Ae

the point-contact is in the diffusive regime which means that the electrons experi-

ence a lot of elastic scatterings when travelling through the contact. In both cases

the contact diameter must be much larger than the electron's wavelength.

In the case of two-probe structures the conductance of the System can be written

according to Eq. (1.21) as

ij
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Moreover, T^ is a hermitian matrix, thus it can be diagonalized and the conductance

is obtained in eigenchannel basis as

with iV being the number of conducting Channels through the scattering region and

Tj's are the real eigenvalues of T^, where T; denotes the transmission probability of

the ith Channel, thus 0 < Tj < 1 must be satisfied. For an ideal ballistic point-contact

as well as for a theoretically interesting infinite periodic wire, Ty = 5ij which implies

that the conductance is quantized in units of the conductance quantum Go = 2e2/h,

9 = NchG0 . (1.24)

These quantized conductances have been observed by many experimental groups. It

can be concluded that the conductance depends on the number of open eigenchan-

nels, Nch, which in turn depends on the sample geometry. This means that Nch for

the entire System is determined by the narrowest cross section of the point-contact

or the wire.

1.3 Kubo formalism

In the 1950s, Kubo developed a method of evaluating the response of a quantum

mechanical System to an external potential, in particular, the current in response to

an electric field [20]. To first order, known as linear response, the two quantities are

related by a conductivity (Ohm's law), which is given in terms of the equilibrium

properties of the System, i.e., in zero field. Moreover, conductance coefficients can

be derived from the conductivity, which describe the total current flowing in and out

of the System in response to voltages applied at its boundaries. The conductance

can be measured instead of the conductivity, which is an average property of the

System and is usually obtained by averaging over the sample volume and over the

possible impurity configurations of an ensemble of similar Systems. The configura-

tional averaging in disordered Systems is discussed in Chapter 3. In this Section the

Kubo formalism is presented in some details.
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1.3.1 Linear response theory

Linear response and the Green function

Assuming a time-dependent perturbation, H'(t) in Eq. (1.3), the Hamilton Operator

of the perturbed System has the form,

H(t)=H0 + H'(t). (1-25)

Using grand-canonical ensemble, the density Operator of the unperturbed System

can be written as

Qo - | e - ^ ° (1.26)

with

Ü0 = H0-ßN, (1.27)

where ß is the chemical potential, N is the total (particle) number Operator, and

Z = Tr ( e - ^ ° ) (1.28)

is the grand canonical partition function. It should be noted that the expectation

value of a physical observable A, associated with a hermitian Operator A in the

unperturbed System is

A) = (A) = ^Tr ( i e - ^ 0 ) = Tr (ft,i) • (1-29)

Within the Schrödinger picture the equation of motion for the density Operator reads

as

^[] , (1-30)

where

H(t) = H(t) -ßN = Üo + H'(t) . (1.31)

Clearly, in absence of perturbation, g(t) = g0., therefore, partitioning g(t) as

g(t) = gQ + g'(t) , (1.32)
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%o? Qo\ — 0) w e Se* t° first order in H\

] • (L33)

It is now worth to switch to the interaction (or Dirac) picture,

QD(t) = Qo + Q'D(t) , Q'D(t) = e^tg'{t)e^not ^ ( L 3 4 )

since

= [H'D(t), Qo] • (1-35)

This equation has to be solved with some initial condition. If we turn on the external
field at t — — oo then it is clear that at t = — oo the density Operator of the System
must represent an ensemble of Systems in thermal equilibrium, g(t = —oo) = g0.

Taking, therefore, the boundary condition g'D(t) —> 0 results the following integral
t—>—oo

equation,

t

Qoit) = ~ f dt' [H'D(t'),Qo\ , (1.36)
—oo

thus, returning back to Schrödinger picture, the density Operator can be approxi-
mated to first order as

Q(t) « & "

Considering the time evolution of the physical observable A(t), one gets

t

A(t) = Tr (ß(t)i) =Ao-^J dt'Tr [e'^t ^'D(t% g0] e

= A0-
l-J dt'Tr {[H'D(t'), Qo] ÄD(t)) , (1.38)
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where Ao is defined by Eq. (1.29) and the Dirac representation of Operator A,

AD(t) = eL^otÄe-^t (i.39)

is used. Applying the identity,

Tr ([i, ß] C) = Tr [ABC - BÄc) = Tr [BÖÄ - BÄÖ) = Tr (ß [c, i ] ) ,

we get

t

6A(t) = A(t) -A0 = -l-J dt'Tr (& [ÄD(t),H'D(t')}) . (1.40)
—oo

Assuming that the perturbation H'(t) has the form,

H'(t) = BF(t) , (1.41)

where B is a hermitian Operator and F(t) is a complex function (classical field), Eq.

(1.40) transforms into

t

5A(t) = -\J dt'F(t')Tr (& [ifl(t),ßD(f)]) , (1.42)

which can be written in terms of the retarded Green function,

Gr
A

et
B(t,t') = -iS(t - t')Tr (ßo [ÄD(t),BD(t')]) (1.43)

or the so-called generalized susceptibility,

±%(t,t') (1.44)
h

as
oo

1 r
+' J?W\r<ret (+ ±i5A(t) =l-j dt'F(t')GTB(t,t') = I dt'F(t')XAB(t,t') . (1.45)

- O O - O O

It should be noted that since the time-evolution in the Dirac picture is governed by

î O; the Operators AD(t) and BD(t') are equivalent to the corresponding Heisenberg-

operators related to the unperturbed System, as most commonly used in the defini-

tion of the Green function, Eq. (1.43). Supposing that the Operators Ä and B do
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not explicitly depend on time, Gr^ß(t,t') and XAß(t,t') will be functions of (t — t').

Consequently, the Fourier coefficients of öA(t) can be written as

where

ÖA(ÜJ) = l-F(u)Gr*B{uü) = F(U)XAB(CO) (1.46)

oo oo

X(u) = I dtX(t)eiwt , X(t) = — f duX(uj)e-iwt (1.47)

holds for any time-dependent quantity, X(t). It is important to take care by calcu-

lating G™g(u), since it is analytical only in the upper complex semi-plane (retarded

sheet), therefore, for a real argument u>, the limit w —> u + iO has to be considered.

The complex admittance, XAB(W) can be expressed in terms of the retarded Green

function as

oo

XAB(OÜ) = j:GTB(u + i0) = -'-Jdte^^Tr (a, [i(i),ß(O)]) . (1.48)

The appearance of the side-limit, u+iO, in XAB (W) is usually termed as the adiabatic

switching of the perturbation as it corresponds to a time-dependent classical field,

F'{t) = lim (F{t)est) . (1.49)

The Kubo formula

Let us come back to Eq. (1.38),

t

6A(t) = ~lf dUTr {[H'H{Ü), Q0] Ä„(t)) , (1.50)
—oo

where the Operators are taken in the Heisenberg picture with respect to the unper-

turbed System. Employing Kubo's identity,

ß
%- [xH(t),g\ =gJd\XH(t-i\h) (1.51)
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with

g=—4 x-, XH(t) = e*HtX(t)e-*Ht,aiLd X„{t) = - - \XH(t),H ,
j - r (e-ß

ü* n L J

Eq. (1.51) in Eq. (1.50) yields

t /»

ÖA(t) = - f dt' j d\Tr (g0HH(t' - i\h)ÄH(t)
- o o 0

* ß

= - f dt' f dXTr(g0H'(t')ÄH{t-t' + iXh)\ , (1.52)
- o o 0

which is the Kubo formula. For proof of Eqs. (1.51) and (1.52), see Appendix B.

1.3.2 The electric conductivity tensor

The current-current correlation function

In case of electric transport a time dependent external electric field is applied to a

solid. Obviously, this induces currents, which in turn creates internal electric fields.

Let us assume that the total electric field, E(r, t) is related to the perturbation,

H'(i) through a scalar potential, 4>(r,t) as

H\t) = j d3r p(r)0(r, *) , E(r, t) = -V0(r, t) , (1.53)

where p(r) = eip(r)+ip(T) is the Operator of the charge density, with ^(r) being the

field Operator and e the charge of the electron. It should be noted that a derivation

of the conductivity tensor is possible also assuming a vectorpotential, A(r, t), related

to the electric field by E(r, t) = - ^ d A ] t
r | t ) , which in turn leads to an identical result

as derived here. The time-derivative of H'H(t) can be calculated as follows.

±_ [Üo, p(r)] 0(r, t) = - j d\ V J(r) 0(r, t)

_

= J d3r J(r) V0(r, t) = - j d3r3(r) E(r, t) , (1.54)
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with the current-density Operator,

{ f^rip{r)+ ( v — V ) ^(r) in non-relativistic case,
(1.55)

ecip(r)+ aip(r) in relativistic case,

and the Dirac matrices, a . Note that in Eq. (1.54) the continuity equation was

used and periodic boundary conditions were assumed at the surface of the solid,

therefore, when using Gauss' Integration theorem the corresponding surface term

vanished. Making use of Eqs. (1.52) and (1.54), the //th component of the current

density can be written as

oo

Jß(r,t) = J2 I ^ f dt'aßU(r,r';t,t')Eu(r',t'\, (1.56)

where the occurring space-time correlation function is given by

ß

oßl,(r,r';t,t') = e(t-t') f d\Tr (g0 J„(r,0)Jß(r',t - t' + iXh)^ , (1.57)

o

expressing the linear response of the current density at (r, t) in direction ß to the

local electric field at (r', t') applied in direction v. Note that in the above equation

the current-density Operators are assumed to be Heisenberg Operators.

As before, we look for the response of a Fourier component of the electric field,

oo oo

E(q,cj) = f d3r f dtE(r,t)e-i<ir+iwt , E(r , t ) = - ^ f d3q f düüE(q,uj)eicir-iwt ,

—oo —oo

(1.58)

where w — ui + iO and V is the volume of the System. While crßI/(r, r'; t, t') trivially

depends on (t — t) according to Eq. (1.57), in general, it is a function of independent

space variables, r and r'. In cases, if the current density is an average of the local

current density defined in (1.56) over a big region (many cells) of the solid, the

assumption that aßl/(r,r';t,t') is homogeneous in space, i.e.,

aß„(r, r'; t — t') = aßU(v — r'; t — t') can be made, which facilitates a direct Fourier

transformation of Eq. (1.56). Usually this happens if |q| is small, which means
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that long-wavelength excitations are studied. The (q, u) component of the current

density per unit volume,

Jß(q, uj) = ̂ jd3r J dt Jß(v, t)e-^+i^ (1.59)
—oo

can then be determined from Eqs. (1.56) and (1.57),

ßM,u)El/(ci,u) , (1.60)

with the wave-vector and frequency dependent conductivity tensor,
Q

oo p

<V(q,w) = i J dteiwt j d\Tr{gJv{-^)Jß{ciyt + i\h)) , (1.61)
o o

where

(q,*) = j dzr Jß{v,t)e-^T . (1.62)

After some algebra and contour integration tricks, see Appendix B, we arrive at
OO 00

i f f / r i \
aßJq,u) = — dteiwt / dt'Tr[g0 \Jß(q,t'), J„(-q,O)\ . (1.63)

n V l / \ L J /
o t

By introducing the current-current correlation function,

[jM(q,t)>J„(-q>0)]) , (1-64)
o

it is shown in Appendix B that the conductivity tensor can be expressed as

^(q,a;) = ^ ( q ' C 7 ) - ^ ( q ' 0 ) . (1.65)
w

For a homogeneous System with carrier density, n and mass of the carriers, m,
_ S ^ q 1 O ) = .n^_

w mm
i.e., the phenomenological Drude term for non-interacting particles. It is furthermore

clear, that the static, i.e., LO —> 0 (and |q| —> 0), limit has to be performed as

- 0>W - 0) - sh
is dw

'(1.67)

As what follows we shall derive more specific expressions for a System of non-

interacting particles.
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Kubo formula for independent particles

An important Special case arises when the particles are treated to be independent.

Skipping the quite straightforward but lengthy derivation, we can State that formulas

(1.61) and (1.63)—(1.65) apply also for a System of independent particles, when the

corresponding one-particle Operators and the equilibrium distribution function, in

case of electrons and all fermions, the Fermi-Dirac distribution function,

are used. Working in the basis of eigenfuctions of Ho (spectral representation),

Ho\n) =en\n) , (m\n) = 5nm , ^ T | n ) ( n | = 7 , (1.69)

the equilibrium density Operator and its matrixelements are

, (n\go\p) = f{en)5pn (1.70)

and the thermal average of the current-current commutator can be written as

Tr (& [j,(q,O,^(-q,0)]) =£{/(*„) - f(em)} et«»-*»)«1 ̂ m(q)JT(-q) ,
nm

(1.71)

with

j;m(q) = (n | j M (q) |m) and J^ n ( -q) = (m | j , ( - q ) | n) . (1.72)

The derivation of Eq. (1.71) can be found in Appendix B. Substituting Eq. (1.71)

into Eq. (1.64) yields

oo

f ^ ^ . (1.73)
nm 0

The integral on the right-hand side with respect to t is just the Laplace transform

of the identity,

/

°°
-em + hu) - s

o

U(en-em+hu>)-s]t
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therefore, Eq. (1.73) can be transformed to

which together with Eq. (1.63) provides a numerically tractable tool to calculate the

conductivity tensor. It is worth to mention that since

1 1 _ -hw

£n- em + hw en - em (en - em) (en - em + hw)

aßU(q,u) can be written into the compact form,

-(En) - f(Sm)
£n -£m En- em-\- hw

nm

It should also be noted that in calculations of optical spectra a finite, positive value

of 5 is considered in Order to account for finite life-time effects. It is easy to show,

that this is indeed equivalent by folding the spectrum with a Lorentzian of half-width

S. Therefore, we often speak about the complex conductivity tensor, <Jßl/(q,w).

Contour Integration technique

Let us now evaluate £M„(q, w) by using a contour Integration technique, keeping

in mind that we have a finite imaginary part of the denominator in Eq. (1.75).

Considering a pair of eigenvalues, en and em, for a suitable contour C in the complex

energy plane (see Fig. 1.1) the residue theorem implies that

1 1 J \ Z ) r> • J\ßn) /-, r7r7\

(p dz- r~. — — = — 2ITI — £ (1.77)
Jc {z-en)(z-em + hu + iö) £n-em + hu + iö

Ni

+2i5T

where Zk = Ep + i(2k — 1)ST are the (fermionic) Matsubara-poles with Ep being

the Fermi energy, 8T = -nkßT and T the temperature. In Eq. (1.77) it was supposed

that iYi and N2 Matsubara-poles in the upper and lower semi-plane lie within the

contour C, respectively. Eq. (1.77) can be rearranged as

£n - £m + hu + iS

+i—

iS 2?r JC
 Z (z - en)(z - em + hu + iö) ^' '
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Figure 1.1: Schematic view of contours C and C.

Similarly, by choosing a contour C (in fact, C mirrored to the real axis, see Fig.

1.1) the following expression,

— l -
/(£«) = — (b dz

en - em + hu + iö 2TT JC, (Z - em)(z - en - hu - iö)

,0T

-K

(1.79)

/ J ~ £m)(zk - en - hu - iö)

can be derived. Inserting Eqs. (1.78) and (1.79) into Eq. (1.75) and by extending

the contours to cross the real axis at oo and —oo, S ^ q , w) can be expressed as

- en)(z - em + Hüj + iö)
(1.80)

dzf(z) , , . . . ...
c (z - em){z - en - hui-iö)

X I

Oy I v \

^i7 I 2^k=-

Tnm

ß

iö)
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Let us now define the resolvent Operator,

G(z) = (zl - H)-x , (1.81)

and its adjoint,

6{Zy = (z*I - H)~l = G{z*) . (1.82)

By using the spectral representation of the resolvent,

it is straightforward to rewrite Eq. (1.80) as

E^(q, w) = - ^ U dz f(z) Tr (Jß(q) G(z + Hu + iö) J„(-q) G(z)) -

j dz f(z) Tr (^(q) G(z)J„(-q) G(z - hw - i6)) \

Nl

E Tr
k=-N2+l

Tr (J^(q) G(2fc) ^ ( - q ) G(2fe - fiw - i<J)) [ . (1.84)
fc=-iVi+l J

By using the quantity,

^ ( ) , (1.85)

for which the following symmetry relations apply,

^vßyQ] zii zi) = £/u/(qi Z\, z2) ; E / i l /(q; z\, z2) = Ej/M(q; Z\, z2)* = T,ß„(—q; z2, z\)* ,
(1.86)

Eq. (1.84) can be written as

£ / t l / ( q , ZU) = f dz f(z) E M t / (q ; z + hu + iö, z) - (b dz f(z) S M I / (q ; z,z - hu -iö)
Je Ja

-2iöT
• ^ ^ ^ ^ • - - ^ ^ ^ ^ i— ^ —- - - -

(1.87)
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which can be transformed to

/ ( / V
£ M „ ( q , w ) - f dz f ( z ) E A t I / (q ; z + h u + iö , z) - [ i> dz f ( z ) S ^ ( - q ; z - h u + i ö , z ) \

Je \Jc /
-2iöT Yl (Zß„(q; zk +hu + iö, zk) + Zß„(-q-zk - hu + iS, zk)*), (1.88)

because of the reflection symmetry for the contours C and C" (see Fig. 1.1) and the
relations in Eq. (1.86).

Integration along the real axis: the limit of zero life-time broadening

Deforming the contour C to the real axis such that the contributions from the
Matsubara poles vanish and using relations in Eq. (1.86), Eq. (1.88) trivially reduces
to

t

oo

(q, w) = l de f(e) |T,ßl/(q; e + hu + iö, e + iO) - E^„(-q; e + hu + iö,e - iO) \

— 00

00

de f(e) | EMJ/(q; e - iO, e - hu - iö) - £^„(-q; e + iO, e - hu - iö) \ ,
—oo

(1.89)

or by inserting the definition of T,ßU(q; Z\, z^),

'w) = ~2^v Id£ /(£) I T r (^ ( q ) ö ( e + fuj + »*)^(-q)ö+(£)) (L9°)
- Tr (jß{-q)G{e + hu +

- Tr (^Jß{d)G-(e)Jl/{-q)G(e -hu- i

+Tr (jß{-q)G+{e)J„(<i)G(e -hu- iö)) }

with the up- and down-side limits of the resolvent, called advanced and retarded
Green Operators, G+(e) and G~(e), respectively, defined as

G(e)= lim G(e±i9) and obviously G±(ef = GT(e) . (1.91)
ö » + o

G±(e)=
ö-»+o
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It is important to mention that in spectral representation,

= lim
e - e n ± %9o = E fP (

where P denotes the principal part distribution.
By taking the limit 5 —>• 0 in Eq. (1-90), it transforms to

*

- Tr ( ^ ( -q )G + ( e + hu) Jv

- 7Y

(1.93)

In particular, for q = 0, Eq. (1.93) reduces to

oo

S^(w) = - ^ 7 I de f(e) { Tr (jßG
+{e + hw)Ju [ö+{e) - G"(e)]) (1.94)

—oo

+Tr (j^ \ö+[e) - G"(e)] ^ " ( e - Äw)) } • (1-95)

The hermitian part of T,ßI/(u) is

ReE^Cw) = i (E^(a;) + E ^ ^ ) * ) , (1.96)

which can be expressed as
oo

ReE^(a;) = ̂ 7 f de {f(e) - f(e + hüü))Tr (jßlmG+(e + hu>)J„ImG+(e)) ,
—oo

(1.97)

see in Appendix B, with the imaginary part of the resolvent,
+(e)-G-(e)) , (1.98)

which can be written using Eq. (1.92) as

2-£n)\n)(n\. (1.99)
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Since, quite clearly, ReE^O) = 0,

( ) ) (

as used in practical calculations.

The static limit

In order to obtain the correct zero-frequency conductivity tensor, Eq. (1.90) has to

be used in formula (1.67). Making use of the analyticity of the Green functions in

the upper and lower complex semi-planes this leads to the Kubo-Luttinger formula

[20, 42],

oo

h j def(s) (1.101)

x Tr U^^-l [G+(e) - G-{e)] - Jß

Integrating by parts yields

oo

aßU = - j de^S^e) (1.102)
—oo

with

Sß,(e) = - ^ J de' (1.103)
—oo

x Tr U^P-l [G+(e') - G-(e')] - Jß

which has the meaning of a zero-temperature, energy dependent conductivity. For

T = 0, <jßU is obviously given by

<V = SßV{EF) . (1.104)

A numerically tractable formula can be obtained only for the diagonal elements of the

conductivity tensor, see in Appendix B, resulting the widely used Kubo-Greenwood
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formula [21, 22] of the dc-conductivity at finite temperatures,

(1.105)

which can obviously be written at T = 0 temperature as

h Tr (jM [ö+(EF) - G-(EF)] Jß [Ö+(EF) - G~(EF)\)

= 4-Tr(jßlmG+(EF)JlllmG+{EF)) . (1.106)

It should be mentioned that by recalling the spectral resolution of the resolvents,

lmG+(e) = -ir^2\n)(n\5(e-en) , (1.107)

Eq. (1.106) turns to be identical with the original Greenwood formula [21],

On the other hand, Eq. (1.101) can be reformulated as follows,

dG-(e)
aßV = —- \ def(e) Tr Jß^-^±JuG-{e) + JßG+{e)Ju

2nv J \ de de
—oo

oo

def{e) Tr [jß

— OO

oo

2nV
—oo

oo

Tr
de

namely in terms of an equation which is similar to the formulation of Baranger

and Stone [43] but clearly can be cast into a relativistic form. This expression is

reasonable to write if conductance has to be calculated, see Section 4.2.3.



Chapter 2

Multiple scattering theory

In this Chapter, the multiple scattering theory or alternatively called the Korringa-
Kohn-Rostoker (KKR) method [49, 50] for calculating band structure in solids is
presented. This method is also called a Green's function method which makes
the KKR method extremely recommended to combine with the Kubo formalism,
see Section 1.3, in order to investigate electric transport in solids within a fully
quantummechanical description.

2.1 Elements of the formal scattering theory

The resolvent Operator and some of its properties were introduced in the last Chapter
in Eqs. (1.81), (1.82), (1.83), (1.91), (1.92), (1.98), and (1.99). It should be men-
tioned that the coordinate representation of the resolvent Operator is called Green
function [51],

where ipn(r) = (r|n).

2.1.1 The Lippmann-Schwinger equation

Let us define the H Operator of a physical System such as in Eq. (1.3) as a sum of

the Hamiltonian of a reference (unperturbed) System, Ho, and a real perturbation

Operator (potential), V,

H = H0 + V . (2.2)

33
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The resolvent of the reference System and its side limits are

Go(z) = (zl - Ho)~\ G±(e)= lim G0(e±i6), (2.3)

respectively. From Eqs. (1.81), (2.2) and (2.3)

G{z) = (G^W-Vy1 =G0(z)(l + VG(z)) = (J + G(z)v) G0(z) (2.4)

is obtained, which is called the Dyson equation for the resolvent. The above equation

can be rewritten by using successive iterations as

G(z) = G0(z) + Go(z)VGo(z) + Go{z)VGo{z)VGo(z) + ... . (2.5)

Let us introduce the so-called transition Operators (T-operators),

f(z) = V + VG(z)V, f±(e) = V + VG±(e)V. (2.6)

It is obvious from the definitions that the T-operators have the same analytic prop-

erties as the corresponding resolvents. Using Eqs. (2.5) and (2.6),

f(z) = V + VG0(z)V + VGo(z)VGo(z)V + ... = V + VG0(z)f{z) (2.7)

is obtained, thus the following can be derived,

Go(z)f(z) = f(z)G0(z) = VG(z) = G(z)V . (2.8)

Therefore, the resolvents expressed with the corresponding T-operator are

G(z) = G0(z) + Go(z)f(z)Go(z), G±(e) = Gf (e) + Öf (e)f±(e)G±(£) . (2.9)

We are searching for the scattering states of H. They can be found by solving the

following inhomogeneous problem,

£)>> (2.10)

where the Solutions of the homogeneous problem obey

£ . (2.11)
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The solution will be the sum of the general solution of the homogeneous and a

particular solution of the inhomogeneous differential equation, such as

|^Q(e)) = |^Q(e)> + {ei - HQ)-lV\^a{e)) = \<f>a{e)) + G0(e)V\ijja(e)) . (2.12)

Iterating this equation successively we get the Born series,

e)V + ...) \(ßa(e)) . (2.13)

This expression can be rewritten by using Eqs. (2.5) and (2.8) as

|^a(e)> = (/ + G(e)v) \<j>a{e)) = (/ + G0(e)t(e)) |0a(e)> , (2.14)

which is commonly referred to as the Lippmann-Schwinger equation. Here, the

Solutions of the perturbed problem,"|'0Q(e)) are given in terms of the unperturbed

eigenstates, \<f>a(e)).

2.1.2 Expectation values and Lloyd's formula

Let us consider a hermitian one-particle Operator Ä which is an observable physical

quantity and its expectation value restricted to a given energy ränge (£a,£b) can be

written as

Aab = JdeTr(ÄJ2ö(e-£n)\n)(n\\ , (2.15)

which, in turn, can be reformulated using Eq. (1.99) as

£& Eb

Aab = -- f deTr (ÄlmG+(e)) = --Im [ de Tr (ÄG+(e)) . (2.16)
7T J \ > TV J \ )

Using complex contour-integral techniques and some theorems from the theory of

complex functions, see e.g. [52], the expectation value Aab can be expressed as

A,ab = --Im f dz Tr (ÄG(Z)) , (2.17)

where rx means the Integration over a semi-circle contour in the upper complex

semi-plane with the lower and upper limits at ea and £(,, respectively.
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The Charge density can be calculated in terms of the Green function, see Eq. (2.1),

as

ie/m[G±(e )r )r)] , (2.18)

£a

as well as the orbital and spin magnetization densities,

£6

l(r) = T- [delm [ßLG±{e, r, r)] , (2.19)

£6

m(r) = =F- f delm [ßSG±(e, r, r)] , (2.20)

respectively, where L and S are the irreducible vector Operators of orbital and spin
moments.
The density of states (DOS) per unit volume can be expressed using Eqs. (1.92) and
(1.99) in terms of the side limits of the resolvent as follows,

n(e) ̂ y^Tr {8(e - en)\n)(n\} = T-Tr (lmG±(e)) = T-ImTrG±(e) , (2.21)
n

where Im is an Operator and Im denotes the imaginary part of an expression. Sub-
stituting Eq. (2.9) into Eq. (2.21) and using the interesting property of the resolvent,

= -G{zf , (2.22)
dz

the following is obtained,

ImTr(p
7T \ de

(2.23)

where no(s) is the free electron contribution to the DOS. The second term of the
right part of the equation can be rewritten using the following identity [53],

. ( , 2 4 )
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With this, the integrated density of states can be written as

£ £

de'n(e') = de' \ no(e') + -Im Tr ( — lnf +(e') I \
J l n \de' J)

—oo —oo

= N0(e) + -Im Tr flnf +(e)) = N0(e) + -Imlndet (f+(e)) , (2.25)

which is Lloyd's formula [54], [55].

2.2 The muffin-tin approach

The formalism of scattering theory described above can be applied to a collection
of individual scatterers. If we assume that these scatterers can be characterized by
non-overlapping, spatially bounded, spherically Symmetrie potentials Vi, centered at
the lattice position R^ (i=l . . . N) where N denotes the number of scatterers in the
System, the following can be written,

N

(2.26)

constant otherwise

If the spheres do not overlap, we speak about the mufün-tin approach and Si is called
the muffin-tin radius of the ith sphere. In the so-called atomic sphere approximation

(ASA) the spheres are chosen to have the same volume as the Wigner-Seitz cell, thus
they overlap, but the effect of overlapping is neglected. In the region between the
Potential spheres V(r) = constant which is commonly set to zero. The restriction
of the shape of the potentials to be spherically Symmetrie is a simplification which
will be used in the following although the expression of the Green funetion we are
going to derive is valid for arbitrary shape of the potential. The muffin-tin approach
allows us to work with the well-known eigenfunctions of the angular momentum
.Operator and the solution for the multi-site problem can be expressed in terms of
potential dependent and independent parts.
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2.3 Single-site scattering

The main purpose of this Section is to write down expressions for the matrix elements

of the transition Operator (denoted as t-operator) when the System contains only one

spherically Symmetrie scatterer. In the absence of effective fields the Kohn-Sham-

Dirac equation in Eq. (A.31), see Appendix A, takes the form [56, 57],

] (2.28)
(V{r)+mc2)I2 car(-g-+x--1-ßk)\

(V(r)-mc2)I2

where öT — f • & with f = r / | r | ) , W is the total energy of the particle which satisfies

W2 = p2c2 + vn?cA with p being the momentum of the particle,

K = a • L + hl2 , and ß = (^ °f ) . (2.29)
\0 -Ix)

The wavefunetion \ip) can be decoupled into two bi-spinors: \ip) = \<j>,x)- The

total angular momentum Operator is defined as J = L + S, where L is the angular

momentum Operator and S = \a is the spin momentum Operator.

We can recognize that K commutes with J, in addition it can be easily checked that

H commutes with J2, Jz and K, therefore, the following eigenvalue equations are

fulfilled,

Jz\(ß) =

k\<f>) = -hK\<j>), k\x) = hK\x),
 K = T(J + \) • ( 2 - 3 0 )

Let us introduce the spinor spherical harmonics as

C(l,j,l/2\n-s,s)\l,ß-s)$s, a n d | - « , ^ ) = |Q>, (2.31)
s=±l/2

where C(l,j, 1/2|// - s, s) are the Clebsch-Gordan coefficients [58],

(l,p- s\i) = Yt
ß-S(r) and (r\l,ß - s) = y,"-*(r)* denote the complex spherical

harmonics and $s are the bispinor basis funetions [56],

*i/2 = (J) , *-i/2 = (J) • (2.32)
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In the following we shall use the weak-relativistic limit of the total energy,

„2
W - mc2 = \Jp2c2 + m2c4 - mc2 « ^ - = £ « m c 2 (2.33)

The non-relativistic Green function of the free electron in angular momentum rep-

resentation can be written as, [51],

( ^ ) ( ^ ) YL(r)YZ(r>) , (2.34)
L

.where L = (l, m), r< = min(r, r'), r> = max(r, r'), and hf = ji ± in\ is the spherical
Hankel function with ji and rii being the spherical Bessel and Neumann functions,
respectively [52]. The regulär solution is ji and the irregulär solution is nj.
In relativistic case the Green function of the free electron in angular momentum
represeritation takes the form [51],

Gr
0(W,v,v') = ~ipW£™f ^MW,r)H+(W,ry9(r' - r) + H+(W,T)fQ(W,r>)9(r - r')}

(2.35)

where the Solutions of the free Dirac-equation (V=0) in angular momentum repre-
sentation [56] are

FQ(W,T) = ( 2 '3 6 )

and their adjoints are

(2.37)

with SK = A , / = l — SK , in addition FQ = JQ, NQ and HQ with // = ji, n/
and hf, the spherical Bessel, Neumann and Hankel functions, respectively, which
are the Solutions of the radial Schrödinger-equation in the non-relativistic and zero
Potential case.

Now we are looking for the general solution of Eq. (2.28) using the following as-
sumption for the radial wavefunction,

Q L J«V i
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Using the real-space representation of Eq. (2.14) with the free solution of the Dirac-

equation, JQ(S,T) and the form of the relativistic Green function in Eq. (2.35), we

can write the solution outside the muffin-tin sphere as

RQ(E,T) = JQ(s,r) - ipY,H%,(£,r)tQ,Q(e) , (2.39)
Q'

where tQ'Q(e) denotes the matrix element of the T Operator of the single-site prob-

lem, called usually the single-site t-matrix,

= I d"r I d3r'fQI(e,r')t(E,r\v)JQ(e,v) . (2.40)I I fQ
r<S r'<S

We can write the Solutions for the radial wavefunctions outside the muffin-tin sphere

(where V=0) as

gK(e,r) = cos6K(e)ji ( y ) - s i n ^ n , (^) (2.41)

cfK(e,r) = pS^cosS^e)^^) -sin6K(e)ni(^)] , (2.42)

where 5K(e) is called the K-dependent phaseshift. If we require the continuity of both

components at the muffin-tin radius S, we obtain the following for the phaseshift,

T (F <7W (2^-} — TW i- (pS\
ttm5K{e) = L*,' ,l,j!sl s

Kn_\Os\ '

where

LK(e,S) = CfK^'^ • (2.44)

Let us define the so-called scattering Solutions as

Z(e,r) = YJZQ{E,T) = Y,RQ'{^v)rQ}Q{e) . (2.45)
Q Q'Q

Using Eq. (2.39) and the form of the Hankel-function we can write ZQ(E,T) as

ZQ(e, r) = J2 JQ'(e, *)K$Q{e) + PNQ(e, r) , (2.46)
Q'

where KQ-Q(z) is the so-called reactance-matrix defined by

KQQ> (£) = tqw (£) ~ *P6QQ' • (2-47)
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It is easy to check that the reactance-matrix is hermitian,

K{e) = K\e) . (2.48)

Moreover, in the spherically Symmetrie case, without external magnetic field, the

single-site i-matrix and KQQ'(E) become diagonal and independent of the quantum

number //,

tQQ,{e) = tK(e)6Q(y , tK(e) = -p~l sinSK(e)eiS^ (2.49)

KQ<y{e) = KK(e)öQQ, , KK(e) = - p " 1 tsmSK{e) . (2.50)

2.4 Multiple scattering (KKR)

Let us now consider more than one spherically Symmetrie scatterers in the System.

The total potential of these muffin-tin scatterers can be written as in Eq. (2.26). By

inserting the shape of this potential into Eq. (2.7), we obtain

e)Vk + ... (2.51)

where (i, j,k,...) are site indices and e = p2/2m in the weak-relativistic limit, see

Eq. (2.33). Let us introduce the Qi(e)-operators,

Qi(e) = Vi ^
j 3,k 3

(2.52)

with this, T{e) can be written as

Yi{e). (2.53)

It is easy to check that Qi(e) can be expressed as

Qi{e) = U{e) + U{e)G0(e) Y,Qj(e) . (2-54)

where ii(e) denotes the single-site ^-Operator corresponding to a particular site i. By

substituting the above expression of Qi(e) into Eq. (2.53), the following is obtained,

ii{e)Go{e)ij{e)Go{e)ik{e) + . . . .

(2.55)
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Let us now introduce the so-called scattering path Operator (SPO), fy(e) [59] as

fiM = UWij + U(e)G0(e) ^ f f c i ( e ) = Ue)8i3 + J>*(e)Go(e)t;(e) • (2-56)

The SPO can be interpreted to give the scattered wave from site i resulting from
an incident wave at site j . The matrix-elements of the scattering path Operator in
relativistic case are

rgQ , (e)= [ d'n [ <Pr>jfQ(e,ri)T(e,Titr'j)JQ,(e,T'j). (2.57)

Using the SPO, T(e) and G(e) can be expressed as

T(e) -

G(e) = Go(£) + Go(e)J2fij(c)Go(e). (2.59)

Applying the addition theorem of the Bessel functions [60] in Eq. (2.34),

-iphl (e, r + r') = ^ G\L, (e, v')^, (e, r) (2.60)
v

is obtained where

G°LL,(e,r) = -47n^l>+%J2C^'l"hL"(e,T) , (2.61)
L"

CL
W, = IdrYL(f)Y*,(f)YLII(r) , (2.62)

with the notations jL{e,r) = jt ( f ) FL(f) and ̂ ( e . r ) = ji ( f ) y/(f), in addition
/&£,(£, r) and ^ ( e , r ) are defined similarly. Cf̂ ,, are called the Gaunt coefficients
and GO

LL,(S,T) denote the so-called non-relativistic free structure constants.
Using this addition theorem, G£r(£,r,r') can be expanded in terms of the Bessel
functions centered around the ith and jth site (i ̂  j) as follows,

j^(e,T'j) ., (2.63)
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where the notation G°£^,(e) = G°LL,(e,Hj — Rj) is applied.

The relativistic Green function can be expressed similarly as

S Q j , (2.64)
QQ'

where the relativistic free structure constants are obtained from the non-relativistic

ones as

W^f - s , s ) . (2.65)

Substituting Eq. (2.64) into Eq. (2.56) and applying Eq. (2.57) leads to [51]

^Q'(e) = t^m, + E E W ^ Q ^ ^ S Q ' ^ ) , (2.66)
k& Q1Q2

which can be expressed in a supermatrix formalism [18] as

{ f o y , (2.67)
with the notations,

t(e) = {f(e)öi3} , g{e) = {z^e)} , g,(e) = {£?»} , (2.68)

and the underlined quantities are matrices of momentum indices (Q, Q'). Eq. (2.67)

is usually referred to as the fundamental equation of multiple scattering in superma-

trix notation (or simply KKR-equation). The inverse of the r-matrix is commonly

called the KKR-matrix. It is important to mention that the geometrical informa-

tion of the lattice contained by Q^e) and the scattering properties of the individual

scatterers described by t(e) are completely separated.

The Green function from Eq. (2.59) can reformulated as

(2-69)
Q,Q'

where ZQ(E,T) and /g(e,r) denote the regulär and irregulär Solutions of the Dirac

equation in cell i. At the muffin-tin radius of the ith cell (Si) the following have to

be satisfied,

4(e,50 = 5] fe ' ) " l J Q'(^5 i ) -^p^ i (£ ) 5 ^ ) , (2.70)
Q'

rQ(e,Si) = Me^i). (2.71)
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2.4.1 Layered Systems

Layered Systems are Systems with (at least) two-dimensional translational symmetry.
In the case of a surface or an interface, the translational symmetry is broken along
the direction perpendicular to the plane. Suppose such a layered System corresponds
to a parent infinite (three-dimensional periodic) System consisting of a simple lattice
with only one atom per unit cell, then any lattice site Rpi can be written as

R p ^ C p + Ti ; TieL2 , (2.72)

where Cp is the "spanning vector" of a particular layer p and the two-dimensional
(real) lattice is denoted by L2 = {Ti} with in-plane lattice vectors, Tj and the
corresponding set of indices I(L2). It should be noted that Cp points into the origin
of layer p but it does not necessarily mean that it must be perpendicular to the plane,
e.g. in a body centered cubic (BCC) lattice for the (OOl)-plane Cp = p • a • (|, | , | )
where a is the three-dimensional lattice constant.
The real-space structure constants can be written as

T ^ ( 2 7 3 )

BZ

where QBZ denotes the volume of the two dimensional Brillouin-zone, k|| lies in the
first 2D Brillouin-zone and 'hat' denotes a layer-indexed quantity (angular momen-
tum representation of an Operator) in order to distinguish from a site-indexed one.
The 2D lattice Fourier transform of the structure constants is defined as

^T i )e*« T ' . (2.74)

Introducing a new matrix notation in terms of layer indices where 'hat' denotes here
matrices with layer indices,

t(e) = {tp(e)5pq}, fio(c>k„) = {g*(e,k„)>, £(e>k||) = {^(e.k,,)} , (2.75)

the KKR-equation can be written in the same form as in Eq. (2.67),

1 , (2.76)

but the dimension of the matrices are different from the matrices in Eq. (2.68).
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2.5 The screened KKR-method (SKKR)

For Systems containing several atoms per unit cell as well as for layered structures

severe difficulties arise from the long ränge of the structure constants. For such

Systems, tight-binding (TB) methods seem to be better suited. However, it can be

shown that applying the so-called screening transformation, the KKR-method can

be transformed into a TB form [17, 25, 61].

It is known that the free space structure constants decay exponentially for negative

energies since no eigensolutions of the Schrödinger-equation exist in free space in

that energy ränge. This fact implies that we should find a reference System which

has the same properties as described above. In [25] the muffin-tin approach is used

.as a reference System with a repulsive potential, Vr which is about 1-2 Ry above

the valence band within the non-overlapping muffin-tin spheres and zero otherwise.

In the following, r-indexed quantities are of the reference System and quantities

without index are of the physical System. The so-called structural Green's function

matrices can be written as

o(e))~1, £ » - g,(e) (l~ f(e)g,(e)) "' ' (2-77)

and the reference Green function, G_r(e) is found spatially localized in real space.

Defining the difference of the inverse of the t-matrices as

±A(e) = t=(e)-f(e) (2.78)

and the screened scattering path Operator as

) ~ 1 ' (2-79)

the unscreened (physical) scattering path Operator can be calculated from the screened

one using the invariance property [25],

Q(e) = fl(e)z(e)f1(e) - tT^e) = £ (e)zA(e)£ (e) - £{e) (2.80)

Z(e) = [L-f(e)t-l(e)]zA(e) \l - r1 (e)f (e)} + [f (e) - f (s)r\e)f (s)} .
(2.81)



CHAPTER 2. MULTIPLE SCATTERING THEORY 46

Thus in a layered System first the 2D lattice Fourier transform of the screened

scattering path Operator must be calculated as

pq

Because of the screening, Gr can be truncated for \p — q\ > n, n

Systems, so Gr becomes block-tridiagonal,

mOi(e,k||)

3 in bcc and fcc

g (er, k„) =
mOi(e,k||)

mlo(e,k||) rrioo(e,k||) mOi(e,k||)

v •/

(2.83)

The blocks are related to the so-called principal layers containing n atomic layers.
If the layers lie on the top of a semi-infinite bulk (substrate) or between two semi-
infinite bulks the so-called surface Green function method [17] must be considered
to ensure proper boundary conditions.
We get the real-space physical r-matrix by performing the 2D BZ-integral,

rA(e, R^ - Hqj) =
" BZ

(2.84)

BZ

and by transforming it using Eq. (2.81). For a 2D translational invariant medium,
the physical real space r-matrix can now be written as

= - i - [ cPk^
" B Z J

(2.85)

BZ

We obtain the Green function of the layered System by substituting the physical
r-matrix into Eq. (2.69). This allows us to calculate one-particle observables as in
Eq. (2.17) or even the non-local conductivity tensor at T = 0 temperature as in Eq.
(4.4). The non-local conductivity can be expressed also in terms of the real-space
r-matrix, see Section 4.1.
For surface and interface problems, the computational complexity of the SKKR-
method scales linearly with the number of layers, N taken into account. Compared
to other methods which usually have an JV3 scaling this method provides us consid-
erable savings in Computer time especially in large Systems.
For a more detailed description of the SKKR method, see [27].
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2.6 The embedding technique

The embedding technique was developed by Podloucky et al. [62] and Weinberger

et al. [63]. Considering a layered System serving as unperturbed host, arbitrary po-

sitions can be prescribed in the lattice where impurity atoms substitute the original

,ones. In this Section a description of the scattering properties of this perturbed

System is presented. In our calculations three types of embedding were performed:

1. The so-called "self-embedding", see Chapter 6, where arbitrary atoms in the host

are substituted by themselves, which, in turn, means simply a real space calculation.

2. Magrietic impurities are embedded into the surface layer of a non-magnetic metal

surface forming finite chains, see Chapter 8.

3. Noble metal atoms are embedded into the vacuum region between two semi-

infinite leads of the same metal, thus, forming a nanocontact between them, see

Chapter 9. The conductance for different atomic arrangements of the contact was

studied as well as the effect of transition metal impurities on the conductance by

embedding them into diverse positions of the contact.

It should be mentioned that the vacuum region consists of empty spheres. Com-

bining the embedding technique with the SKKR method, the unperturbed host is

chosen to be the reference System. It is also important that the host System and

the perturbed one have the same lattice geometry which means that no lattice re-

laxation effects were taken into account in our calculations. Moreover, as described

in details within the Coherent Potential Approximation (CPA) in Chapter 3, the

calculation of restricted ensemble average of the real space r-matrix can be obtained

by performing an embedding of a Single impurity (site-diagonal r) or two impurities

(site-offdiagonal r) into the coherent medium.

2.6.1 The r-matrix of a finite cluster

A finite cluster is defined as a geometrical arrangement of a set of scatterers. Let C

denote the set of position vectors pointing to sites in the cluster,

i = l,...,N, (2.86)
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where N is the number of atoms in the cluster taken into account and i labeis these

sites. A set which contains the site-indices is defined as

CJV = {i | Ri e C, i = l,...,N}. (2.87)

For the host System the potential can be written as

Vhost(r) = Y^ Vihos\ri) , (2.88)

while for a System with an embedded cluster as

Vdus(r) = J2v<Uus(ri) , V^fo ) = { . (2.89)
{ f ) if i G CN

Consequently, the t-matrices of the perturbed System have the form,

t?host\£) ü i f- CN
(2.90)

It is important to emphasize that by performing real embedding, a cluster usually

contains the investigated impurity atoms, some sites from the host material, for

which the changes caused by the impurities can be studied and even empty spheres

(vacuum in the case of a surface or nanocontact) which can contain also some electron

density, thus Vr.imp
: f are different for each cluster-site corresponding to the above

classification. By performing real Space calculation ("self-embedding"), V^fa) =

yhost^^ £ i ^ _ ^^ f0T t n e w n o i e SyStem, there is no need of a self-consistent

calculation of the cluster. Moreover, it should be noted that v/103*, thost could be

different for different sites. In the present calculations Vfost, tl
host are different for

different layers due to the choice of layered Systems serving as host.

Let us write the KKR-equation for the unperturbed and perturbed Systems,

rr1 (e) = C1 (e) - O,(e) , r"1 (e) = t'1 (e) - G(e) , (2.91)
=hostK ' =hostK ' =0K ' =clusy ' =clusK ' =0^ ' ^ '

respectively, with

Z(e) = {r«(£)} , T?(e) = {r^QI(e)} , tje) = {f{e)&v} > £{e) = {fate)} •
(2.92)
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Defining

if i £ CV
(2.93)

and manipulating Eq. (2.91) results

äL L-^f1® (2-94)

Inverting this leads to the embedding equation,

(2.95)

It should be noted that this equation is a generalization of the KKR method where a

non-free space reference System is considered (here: host), which has some theoret-

ical applications (SKKR, CPA, embedding). For studying local physical properties

of impurities embedded into a host material, the diagonal blocks of r matrix have

to be calculated, while for non-local conductivities the füll r , matrix is needed,
=clus

see Section 4.1. Moreover, by performing real space calculation ("self-embedding"),

At"1 = 0 which results that z^^ = Zhoat , a cluster means here only a region under

consideration in a specific material, there is no real embedding.

At this point it is important to write down the expression of the real space r

once more. For a 2D translational invariant host medium, it has the form,

| (2-96)

BZ

It should be mentioned that specifically, for a Single impurity at site i$ the embedding

equation reduces to

Li0'i0(e) = rJä(e) [/ - A f ^ ) - 1 ! » ) ] " " " 1 • (2-97)
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2.6.2 Self-consistent calculation for a cluster

An iterative method is carried out in order to find the solution of the non-linear

Kohn-Sham-Dirac equation (A.31) which usually follows the scheme,

y(o) _^ T(o) _). V{i) _^ r( i ) _^ . . . _ ) . v{n) -> T<n> -+ y ( n + 1 ) -> . . . (2.98)

where r ( i ) (Vw) is the SPO matrix (potential) after the ith iterative step. In the

LSDA approach, see Appendix A, the potential is determined by the charge- and

magnetization densities, see Eqs. (2.18) and (2.20). A self-consistent potential or

charge density in a solid can be obtained as a fix-point of the iterative method,

lim V{n)(r) = V(T) , (2.99)
n—>oo

lim p ( n )(r)=p(r) , (2.100)
n—>oo

which also implies for the r-matrix,

lim r{n)(z) = T(z) . (2.101)
n »n—»oo —

Let us specify the scheme sketched in Eq. (2.98). The input potential for the next

iteration (n + 1) is obtained by the Output from some of the previous iterations

"mixed" with each other,

^ln+1 V) = V£?(r) + ]Tßj {V^\r) - V&>(r)) . (2.102)
3 = 1

The following notations have been used, V-^ is the input potential of the ith step,

V^/t is the corresponding Output potential, m is an arbitrarily chosen integer and

ßm is a weighting (mixing) factor for the previous Output potentials. There are

various potential mixing schemes the complexities of which can be different due

to the different choice of m and the method of optimizing ßj (e.g. simple-mixing:

m = 1 and ßi arbitrary; Anderson mixing [64]: m = 1 and ß\ is determined by a

least-square deviation process). In the present calculations the so-called modified

Broyden mixing as proposed by Johnson [65] is used. It should be noted that the

mixing procedure can be performed equivalently for the charge and spin densities.

Moreover. the above described procedure have been used also for determining the

self-consistent potentials of the layered Systems serving as host. A more detailed

description of the embedding technique can be found in Ref. [27].



Chapter 3

Disordered Systems

The theoretical methods discussed in the previous chapters, with exception of the
embedding procedure, are restricted toordered matter, i.e. Systems with well defined
two- or three-dimensional translational symmetry. However, disordered Systems are
quite important in technological applications, thus the theoretical investigation of
alloys is highly desirable. In this Chapter, the scattering properties of substitutional
binary alloys are described within the Coherent Potential Approximation (CPA)
[18, 66, 67] which can be combined with the SKKR electronic structure method,
see Section 2.5. Electrical transport properties of substitutional binary alloys are
described in Section 4.1.1 and 4.3.

3.1 Configurational averages

Suppose a binary bulk alloy is of composition AcBi_c with CA = c being the con-
centration of species A and Cß = (1 — c) the concentration of species B. Supposing,
moreover, the total number of atoms in the above System is N and the number of
A atoms and B atoms is NA and Nß, respectively, the following can be written,

N = NA + NB , NA = cN , NB = (1 - c)N . (3.1)

A substitutional binary alloy means that there is no positional disorder, all atoms
are in a position of an underlying ideal simple lattice £ which is characterized by
the set of indices, / (£). Such alloys can be identified experimentally because the
diffraction pattern of them have a specific feature, namely sharp Bragg maxima.

51
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Assuming substitutional binary alloys, the potential can be written as

V(T)= Y, yi (* - ^ ) > (3-2)
i€l(C)

+ (1 - &) VB (n - Ri) , (3.3)

where & is an occupational variable such that & = 1 if site R^ is occupied by species

A and & = 0 if this site is occupied by species B. For a completely random alloy

the probability for £ = 1 is CA and correspondingly for & = 0 the probability is cB.

In Eq. (3.3) V^r* — Rj) and VB(I-J — Rj) are the individual (effective) potentials of

species A and B at the site R ,̂ respectively. Then {& | i G / (£)} is one particular

arrangement of atoms A and B on the positions of C Such an arrangement is

called a configuration. Quite clearly for one particular configuration the Kohn-Sham

equation can be solved, see Appendix A,

H {&} V>n (r, {&}) = en {&} ̂ n (r, {^}) , (3.4)

where H is the Hamiltonian of the System and n labeis the eigenstates. Observables,

however, in general do not map a particular configuration but an average over all

configurations. Let {Ann>) be the configurationally averaged matrix element of a

Hermitian Operator A. Then

(Ann') = J > ({£}) (il>n {Zi} W ^W {6}) , (3-5)

where P ({&}) is the microcanonical probability for a particular configuration {^}.

It is assumed that the occupational probabilities for different sites are independent

from each other, i.e., that

= n P i K«) -

Obviously the calculation of averages such in Eq. (3.5) is greatly simplified by di-

rectly calculating the configurationally averaged Green function (G+(e,r,r')) from

which typical one-particle physical properties can immediately be obtained. similarly

as presented in Section 2.1.2. The expression of configurationally averaged conduc-

tivity is more complicated which will be given in Section 4.3. First, the restricted
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ensemble averages denoted by (... )( i=a) have to be introduced. It has the following

meaning: in cell i the occupation is fixed to atom a ( a £ {̂ 4, B}) and the averaging

is restricted to all configurations for the remaining N — l sites. Without any details,

by using restricted ensemble averages the configurational averageis partitioned into

two subsets, whereas the following condition has to be satisfied,

(G+(e,ruri))= £ ca ( G + ^ r ^ ) ) ^ . (3.7)
a€{A,B}

3.2 The electron self-energy Operator

The aim of this Section is to find a translationally invariant effective System with a

resolvent being identical with the conngurationally averaged resolvent of a disordered

System. The averaged resolvent (ö(z)\ of the Hamiltonian H in Eq. (3.4) can

formally be written as

) / ( ) ' 1 ^ [ y r (3.8)

with T,(z) being the so-called electron self-energy Operator. Assuming that in the:

System under consideration no positional disorder is present, H can formally be

rewritten as

H = Ho + V - W(z) + W(z) = H{z) + V{z) ,

H{z) =H0 + W(z) , V(z) = V- W{z) . (3.9)

where V is given by a superposition of (real) individual site potentials Vi, see Eq.

(3.2), and W(z) as a superposition of energy-dependent translationally invariant site

quantities Wi(z) as

W(z) = Yßfi(z) » [E\*U] Wi(r, z) = Wi(r, z) ; V [E \ R,] G T . (3.10)
i

V(z) - Yfi(z) = X) (V* - Wi(z)) . (3.11)

'Using the above expressions, the resolvent G(z) can be written as
-i

G(z) = [z/ - H(z) - V(z)] . (3.12)
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Let G(z) be the resolvent of H(z),

G{z)=[zi-H(z)]~ , (3.13)

the resolvent G(z) and the corresponding T-operator f(z) are then given by the

Dyson equations, similarly as in Section 2.1.1,

G(z) = G{z) [i + V(z)G(z)] = G(z) [/ + f(z)G(z)] , (3.14)

f(z) = V(z) [i + G(z)V(z)] = V(z) [i + G(z)f(z)] . (3.15)

It should be noted that the scattering processes are now much more complicated

because the scattering from the individual site terms Vi(z) is in relation to a gen-

erally non-hermitian reference medium. Moreover, G(z) is translationally invariant

because of Eq. (3.10). Averaging Eq. (3.14) over all configurations therefore gives

= G(z) + G(z) (f(z)) G{Z) =[l + G(z) (f(z))] G(z) . (3.16)

3.3 The coherent potential approximation (CPA)

Let (T f z\ W(z) ] \ denote the averaged T-operator for a particularly chosen medium

W(z), and let G (z;W(z)j be the corresponding resolvent of H(z) = Ho + W(z).

Then from Eq. (3.16) it is obviously seen that

(G{z))=G(z\W{z)) (3.17)

if and only if

(f(z;W(z))) = 0, (3.18)

and consequently, the self-energy Operator £(z) is simply given by

t(z) = W{z) . (3.19)

Equations (3.17) and (3.18) serve both as definitions and as practical tools: if on

average there is no additional scattering because of W(z), i.e., the condition in

Eq. (3.18) is met, then the averaged resolvent (ä(z)\ is indeed the translationally
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invariant resolvent G(z) of an (in general non-hermitian) Operator H(z) = H0+W(z)

corresponding to the complex potential Operator W(z). Therefore, in order to fulfil
Eq. (3.17), Eq. (3.18) has to be solved self-consistently. The condition in Eq. (3.18)
is usually called the Coherent Potential Approximation (CPA).

3.4 The CPA single-site approximation

The total T-operator can be written in terms of Qi(z), see also Section 2.4,

Qi{z) = U{z)G(z) (3.21)

where

ii(z) = Vi(z) + Vi(z)G{z)ii{z) (3.22)

according to Eq. (3.15). The average of the T matrix, (T(z)\ is therefore given by

(3-23)

Averaging Qi(z), the following is obtained,

(3.24)

[U{z) -

The first term on the right-hand side consists only of single-site quantities, whereas
the second term is a kind of fluctuation or correlation term. The omission of the
second term is called the single-site approximation for the conngurational average.
Within this approximation (Qi(z)) is given by

(3.25)
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Let f (z;W(z)j be the T-operator for a given periodic complex function W(z).

Then the CPA equation in Eq. (3.18),

(f (z; W(z)) ) = J2 ( 4 (*; W{z)) ) = 0 , (3.26)
i

in the single-site approximation requires that

(Ql[z;W(z))) = 0 ; Vi e / (£ ) . (3.27)

From Eq. (3.25), however, it is obviosly seen that within the single-site approxima-

tion the CPA condition is simply reduced to

(ti(z;W{z))) = 0 ; Vi e /(£) . (3.28)

It should be noted that by applying the single-site approximation short-range-order

effects are explicitly excluded. Multiple scattering effects, however, are implicitly

included since the single-site approximation is based on the idea of a Single scatterer

immersed in an average medium, i.e., on the very concept of a 'mean field theory'.

It is also worthwhile to mention that by satisfying Eq. (3.28) the lowest order corre-

lation in terms of the £-matrices neglected with respect to the condition Eq. (3.26)

is of fourth order [68].

From the definition of the SPO in Eq. (2.66) it is immediately seen that the condition

in Eq. (3.28) can be rewritten for the site-diagonal SPO matrix with the effective

medium as reference as

(rü(e;W(e))) = 0 ; Vi G/(£) . (3.29)

From Eq. (3.7) and the relation of the site-diagonal SPO to the Green function

G(e, r,r '), it is clear that for a binary System AcBi_c (simple lattice, one atom

per unit cell) the restricted averages (zlt(£))(i=Q), a G {A,B}, have to meet the

condition,

% ) ( iB) (3-30)

Since Eqs. (3.29) and (3.30) are valid for all site indices i G /(£), it is sufficient to

restrict Eq. (3.30) according to the symmetries of the System, for example, to i = 0

(0=origin of the underlying lattice) for a bulk or to i = pO (Vp, p0=origin of the

pih. layer) for layered Systems. The question arises how to calculate the restricted

averages. This will be given in the next Section.
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3.5 CPA condition for layered Systems

Layered Systems were introduced in Section 2.4.1. For a given interface region of n

layers, containing also disordered layers, the coherent scattering path Operator rc(e)

is given by the following 2D BZ-integral,

f "'00 = 7T- /
BZ

, k„) d\ , (3.31)

where pi and qj denote site i in layer p and site j in layer g, respectively. Moreover,

is the {pq)th block of the supermatrix,

- i

(3.32)

Here, the notation 'hat' is used as it was introduced in Section 2.4.1 and G_ is a

layer-angular momentum representation of the resolvent in Eq. (3.13) in Fourier

space, similarly calculated as in Eqs. (2.73) and (2.74). Moreover, Eq. (3.31) implies

two-dimensional translational invariance of the coherent medium for all layers of

the interface region, i.e., that in each layer p for the coherent single-site t-matrices

the following translational invariance applies,

• Vz G 7 (L 2 ) . (3.33)

It should be noted that numerical recipes to evaluate f£9(e,k||) in Eq. (3.31) for

layered structures are provided by different variants of multiple scattering theory,

see Chapter 2. Let us now write the supermatrices for better understanding,

0 0 \

100 = (3.34)

V o
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and

lT(e)

p , q = l,.

Quite clearly, a particular element of r (e),

(3.35)

(3-36)

refers to the unit cells at the origin of Li in layers p and q. Suppose now, in general,
the concentration for constituents A and B in layer p is denoted by c£ (p = 1, . . . , n;
a G {A, JB}). By defining the so-called impurity matrices (see Eqs. (51),(52) of Ref.
[22]), that specify a Single impurity of type a in the translational invariant coherent
host formed by layer p, as

= [L- - i

with

= <(e) = = Z(e)-1 - Z(e)~\ a € {A, B} ,

(3.37)

(3.38)

(3.39)

where ££(e) is the single-site i-matrix for constituent a in layer p, the coherent
scattering path Operator for the interface region, r (e) is obtained from the following
inhomogeneous CPA condition,

ae{A,B}

(3.40)

(3.41)

i.e., from a condition that implies solving simultaneously a layer-diagonal CPA condi-
tion for layers p = 1, . . . , n. Once this condition is met then translational invariance
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in each layer under consideration is achieved,

fe^>^Q) > (3-42)

It is obviosly seen that the restricted ensemble averages can be calculated by em-

bedding an atom of type a into the 2D translationally invariant coherent medium,

(^°'pO(£))(Po=a) = S ( e ) l f pO0O = lf'p0(e)K(e) • (3.43)

Similarly, by specifying the occupation on two different sites the following restricted

averages are obtained,

) y (3.44)

™* (e)BJ(e) , (3.45)

where {l!?'q:i(£))(pi=a,qj=ß) ^ a s t^ ie meaning that site (subcell) pi is occupied by
species a and site (subcell) qj by species ß.

In a more general case, if no translational invariance is present at all, the restricted

averages can be written as

M{e) , (3.46)

{pta,qjß) ß , (3.47)

with the impurity matrices defined similarly as in Eqs. (3.37) and (3.38) with the

exception that they are not equal to all sites in a given layer because of the absence

of the 2D translational invariance.

3.6 Numerical solution of the CPA equations

In this Section, 3D translational invariance of the effective medium is assumed in

order to get simpler formulas but the presented method is applicable also for other

Systems. It is worth to introduce the following quantity [22],

1 , (3.48)
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which plays here the role of the single-site t-matrix of a tight-binding formalism.

With this, the impurity matrices can be written as

^°(£)=l-r c
O O(e)2CQ(e) and E^{e) = 1- 2L(s)T^(e) , (3-49)

and the single-site CPA condition in Eq. (3.30) can be reformulated as

(e) + (l-c)X™(e) = 0, (3.50)

which is usually called the KKR-CPA equation. An efficient numerical solution of

this expression of the CPA condition, generalized for m components,

m

Q = 1 a=l

was originally proposed by Mills et al. [69] and then implemented first by Ginatempo

and Staunton [70]. Suppose the condition in Eq. (3.51) is not satisfied in the n-th

step of the iteration. Then the following matrix, X^\E) can be defined as

(3-52)

where

Ä'OO = [(Ue)-1 -^(e)" 1 )" 1 + ^ ) ( e ) ] " 1 . (3.53)

The subsequent guess for ^(e) can be estimated as follows,

Xin)(e) = [ ( ^ ( s ) - 1 - ^ + 1 ) ( ^ ) - 1 ) " 1 +Ic°°(n)(e)]"1 , (3-54)

therefore,

i + 1 \ 1 i \ 1 [ i ^ 1 ^ ] ' 1 , (3.55)

which can be used to calculate the next guess for i^°(e). As was shown by Mills et

al. [69] the above iterative scheme guarantees a stable convergency for tj^e) when

starting with the initial guess,

)> (3-56)
a=l

the so-called average f-matrix approximation (ATA).



Chapter 4

Transport coefficients

In this Chapter, the applied methods for calculating transport properties in different

structures are presented. In the first parts, the real Space formulation is found,

which have been implemented into a new Computer code, while in the second part,

conductivity for disordered layered Systems is described.

4.1 Non-local conductivity

The definition of the non-local conductivity tensor can be obtained by rewriting the

total conductivity in Eq. (1.106) as

, [G+(EF) - G-(EF)]^PqjJß [Ö+(EF) - G-(EF)]
pi qj

where ß G {x, y, z}, NQ is the total number of sites in the System with total volume

of V — NoVat (assuming no lattice relaxation, thus Vat is the same for all sites), and

Ppi is a projection Operator which projects to site i in the pth layer. It is obvious

that

pi

It can be shown that the non-local conductivity,
h

< r = ~^t
Tr {PviJ, [G+(EF) - G-(EF)] PqjJß [6+(EF) - G-{EF)])

(4.3)

61
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can be expressed as the following,

at
J Srpi I d3r'qj (4.4)

x Tr (Jß [G+(EF;rpi,T'qj) - G-(EF;Tpi,Tqj)} Jß [G+(EF]r'qj,rpi) - G-(EF;r'qj,rpi)])

with up- and down-side limits of the Green's function in configurational space rep-

resentation, see Eq. (2.69). Moreover, the integration is carried out over the iih unit

cell in layer p, Q,pi, and the jth unit cell in layer q, Qqj, while Tr denotes here a trace

over four-component spinors (relativistic formulation). The non-local conductivity

can be written in terms of the real space r-matrix by substituting Eq. (2.69) into

Eq. (4.4), thus, the diagonal elements between site i in layer p and site j in layer q

can be partitioned into four parts, the so-called "up" and "down" side limits,

7 [°ßii \£ >£ ) + °ßß \£ ) £ ) ~ aßß \£ 5 £ 1 °ßß

where each term can be expressed using Eqs. (2.69) and (4.4) in terms of the cluster-

SPO as

t [Ji()S£()JS()S£^)] (4.6)
" *at

where the underlined quantities are matrices in angular momentum space where

trace is also performed and the r-matrix of the cluster according to the embedding

equation, Eq. (2.95) is used. Inherent to the SKKR method, a finite imaginary part,

6, of the Fermi energy has to be applied,

£i>2 = e± = EF ± i5 , (4.7)

which, however, has to be continued to zero (5 —> 0) in Order to ensure current

conservation. Concomitantly, the number of k\\ points for calculating the real space

host r-matrix in Eq. (2.96) has to be considerably increased.

The current matrices are given in a relativistic formulation by

Jp;(eue2) = JiQQI = ecI Z^(rpi:eiyaflZ^(vpue2)d
3rph Q = («,/*) , (4.8)
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where aß are the Standard 4x4 Dirac matrices, while in the non-relativistic case,

S < ~ [ Zl\rpi,eJ-^-Z%(vpue2)d%, A = (l,m) ,

(4.9)

where Zpi(rpi,e)'s are properly normalized regulär scattering Solutions of the Dirac
equation, see Section 2.4. It is important to mention that in the calculations the
relativistic current matrices have been used.

4.1.1 Non-local conductivity in disordered Systems

In order to be able to perform real Space calculations ("self-embedding" of coherent
sites, r - = r . — T ) in a 2D translational invariant substitutional binary allöy,

' =clus =host =cJ J -"

configurational averages have to be performed in Eq. (4.6) [22, 23], e.g., for the
site-diagonal terms in the following manner,

t=a) , (4.10)

where ca denotes the concentration of the a-th component, a G {A,B}, ofa binary
alloy and the current matrix J" can be similarly written as in Eqs. (4.8) and (4.9)
with the only difFerence that the regulär scattering Solutions of type a must be
taken. Omitting vertex corrections the above expression reduces to

(4.11)

and (zpi'pi(£))(Pi=a) can be calculated as in Eq. (3.43). By using the property of a
trace,

trjABC] = tr[CAB] , (4.12)

for (pi) = (qj) the following is obtained,

(4.13)
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By defining the following quantity,

Jr°(ei,e2) = gZ(ei)JZ(eue2)Dg{e2) , (4-14)

it can be rewritten as

J2 [ ^ ^ ] • (4-15)

For the (pi) ^ (qj) case,

(4-16)

which by omitting vertex corrections reduces to

a,ß
(4.17)

Using the restricted averages by specifying the occupation on two different sites
in Eq. (3.44) or (3.45) and the property of a trace, Eq. (4.12), the configurational
averaged non-local conductivity tensor between different sites can be obtained,

a,ß

or using Eq. (4.14),

E [ Z Q ^ r ; ß ^ i ] . (4.19)
a,ß

4.2 Conductivities, resistivities, conductance

Transport properties characteristic to a specific physical System can be obtained
by choosing different ways to sum up the non-local conductivities. The summation
depends strongly on the System itself. In this Section real Space summations are
presented which have been used in the calculations. It should be noted that all the
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studied Systems are related to Systems with 2D translational symmetry: either the

System under investigation ("large cluster" limit in Chapter 6, AMR in Chapter 7)

itself or the host for some embedding procedure (finite magnetic chains in surface

layer in Chapter 8, nanocontacts in Chapter 9). In the calculations two current

geometries have been taken into account, namely current in plane (CIP) and current

perpendicular to the planes (CPP). The applied current direction is explicitly shown

for each studied System.

4.2.1 "Large cluster" limit

If only unperturbed host atoms form the cluster, then by increasing the size of

the cluster, the physical properties characteristic for the bulk or surface host can

be expected. As a rigorous test for the proposed method, therefore, such a "self-

embedding" procedure has been used, i.e., r , = r, (or = r for a disordered
° ^ ' ' =clus =host v =c

System) has been taken and the quantities

pßß = lim pßß(r0; 5) , pßß(r0; 6) = lim pßß(r; 5) (4.20)
o—>0 r—>ro

have been calculated, where r0 is a sufficiently large radius of the cluster, while

pßß(r;S) = K M ) ] " 1 , al(r-5) = ̂ Ta%(5) , (4.21)
3

where p is a resistivity, aQJß denotes the /ith component of the non-local conductivity

tensor between the origin of the lattice (0) and site j and is defined by Eq. (4.5),

and the summation over sites j is restricted to those, which are not further from the

origin than r, with formula |Ro — Rj | < r. Moreover, 5 refers to the imaginary part

of the Fermi energy, see Eq. (4.7). Performing the 8 —> 0 limit at the stage of Eq.

(4.20) actually means that the side limits in Eq. (4.5) are taken at the last possible

step. Two kinds of summation are considered: It is possible to involve sites in the

summation only from a specific layer p (e.g. surface layer), where in the r —> oo

limit

lim pßß(r,5) = fPfJö) , pZp(5) = [app(6)\ (4.22)
r—^oo

must be satisfied where a^p
u is the layer-diagonal conductivity of layer p,

, (4-23)
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and each term can be calculated directly using a 2D lattice Fourier transformation,

BZ
(4.24)

For the calculated convergence of the real space summation in 2D, see Section 6.1.

Another possibility is to sum up over sites within a sphere with r being its radius.

In the r —> oo limit the summation must provide the total conductivity of the bulk

System,

UmaJ>,5)=<7<(<5). (4.25)

Taking the <5 —>• 0 limit of this expression, and inverting crt°*al, the resistivity of a

bulk System is obtained, which is zero for pure metals. This behavior is shown in

Section 6.2.1. Alloy bulk Systems do not have zero resistivity due to disorder, and

the so-called residual resistivity of them can be obtained performing real space sum-

mation in 3D, which is shown in Section 6.2.2. Moreover, this method has also been

tested for determining the anisotropic magnetoresistance of permalloy, see Chapter

7.

Quite clearly there are more efficient methods to evaluate resistivities for bulk or

layered Systems by making use of three- or two-dimensional lattice Fourier transfor-

mations, respectively. For disordered layered Systems, see, e.g., Section 4.3. How-

ever, once it comes to determine, e.g., the electric properties of magnetic islands on

surfaces, these methods are no longer applicable, and one has to rely on real space

approaches as presented in Sections 4.1 and 4.2. It should be noted that the calcula-

tions in "large cluster" limit are only illustrations of the reliability and applicability

of the real space approach.

4.2.2 "Residual resistivity" for nanostructures

If no translational symmetry is present in the System, which holds if impurities are

embedded into the 2D translational invariant host medium, then in principle one

has to sum over all sites in the System including leads, contacts, etc., i.e.,

1 No No

ollß(eue2) = — J2 ^Zo^ieuez) (4.26)
0 i=i j=\
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with iVo ~ 1023. Here, i and j denote sites without labelling layers explicitly. As

such a procedure is numerically not accessible, the following quantity can be defined,

1 n n

^(ei,e2;n) = - ] T ^ ^ ( e 1 , e 2 ) (4.27)
n *=i 3=1

with n being the number of sites in a chosen region ("cluster"). This implies, how-

ever, that the convergence properties of or/JM(e1,e2;n) with respect to n have to be

investigated. Clearly enough, the most useful test cases are pure (bulk) metals or

binary bulk substitutional alloys, see Sections 4.2.1 and 6.2.

The embedding of impurities forming a finite chain into the surface layer of a sub-

strate was investigated. Since clearly enough a summation over all sites including

the semi-infinite Substrate would yield only the resistivity of the Substrate, namely

zero in the case of a pure metal, a kind of "residual resistivity" for finite clusters has

to be defined,

N(r)

k £ £
idchain j=l

- 1

(4.28)

where n denotes the number of atoms in the chain of type a and N(r) is the number

of atoms involved in the cluster (chain + environmental atoms up to the furthermost

distance of r) . Using this formula, in-plane resistivities depending on the orientation

of the magnetization of magnetic finite chains in the surface layer of a non-magnetic

Substrate have been investigated, see Chapter 8.

4.2.3 Expression of the conductance

Linear response theory applies to an arbitrary choice for the perturbating electric

field because the response function is obtained in the zero limit of perturbation. Let

us assume, therefore, that a constant electric field, Ej, pointing along the z axis,

i.e., normal to the planes, is applied in all cells of layer q. Denoting the z component

of current density averaged over cell % in layer p by j?1, the microscopic Ohm's law

reads as

'at
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where Vat is the volume of the unit cell in layer p. Note, that in neglecting lattice

relaxations, Vat is uniform in the whole System. According to the Kubo-Greenwood

formula at zero temperature, Eq. (1.106), the zz component of the non-local con-

ductivity tensor, CT{?*>W' can be written as

d^fdZr'v (4'30)
x Tr (Jz [G+(EF-vpi,v'qj) - G-(EF;vpi,v'qj)] Jz [G+(EF]v'qj,rpi) - ( T f e r V ,

with the same quantities as in Eq. (4.4). The total current flowing through layer p

can be written as

(4.31)

where the summation has to be carried out for all sites in layer p. Here, the applied

voltage U is

U = Eq
zd± , (4.32)

and A\\ and d± denote the area of the 2D unit cell and the interlayer spacing,

respectively (Vat = A\\d±). Combining Eqs. (4.29), (4.31) and (4.32) results in an

expression for the conductance,

-L

(4-33)

where the summations should, in principle, be carried out over all the cells in layers

p and q.

An alternative choice of the non-local conductivity tensor is suggested by Eq. (1.109).

This type of non-local conductivity is more precise to use for calculating the conduc-

tance in the CPP geometry of a layered System than non-local conductivity in the

Kubo-Greenwood approach because, as shown by Baranger and Stone [43] for free

electron leads. the second term appearing in Eq. (1.109) becomes identically zero

when integrated over the layers, p ^ q. This means also that the terms o^/f
j(e+,e+)

and cr%?j(e~, e~) should vanish after integration. It should be noted that very re-

cently Mavropoulos et al. [71] rederived this result by assuming Bloch boundary
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conditions for the leads. According to these theoretical results, at T = 0 temper-
ature the diagonal elements of the non-local conductivity tensor between site i in
layer p and site j in layer q can sufficiently be expressed as

°%qj = -bp
zi'"

j(e+, £-) = • £ - [ d3rpi [ d3r'qjTr [JZG+(EF; xph r'qj)JzG-(EF; v'qj, vpi)}

in order to calculate the conductance in Eq. (4.33). Using this expression, the
conductance can be written as

E E / ^ I d%Tr [J*G+{EF- vpu v'qj)JzG-{EF- v'qp vpi)] ,

(4.35)
nqj

or in terms of the SPO in Eq. (2.95),

2 £ $ £ ] (4.-36)
i j

where trace have to be performed in angular momentum space and 5 —> 0 limit
has also to be taken. It has to be emphasized that because of the use of linear
response theory and current conservation, the choice of layers p and q is arbitrary in
the above formula. The numerical test of the method will clearly demonstrate this
feature. It can be established that the conductance is a suitable quantity to describe
transport through nanocontacts. Moreover, the effects of impurities present in the
contact can be easily studied with help of the above described tool, see Chapter 9.
On the other hand, as shown in Ref. [71], when the layers p and q are asymptotically
far from each other, the present formalism naturally recovers the Landauer-Büttiker
approach [40, 41], see section 1.2.

4.3 Conductivity for disordered layered Systems

First, it should be noted that the here described method was used for different ori-
entations of magnetization supposed to be uniform in all layers of bulk permalloy
'Systems in Order to determine the anisotropic magnetoresistance of them, see Chap-
ter 7.
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Suppose the electrical conductivity of a disordered System, namely a^, can be par-

titioned into four parts using the Kubo-Greenwood formula (Eq. (1.106)) similarly

to Eq. (4.5) as

[ ( + + ) ( ~ ~ ) (+~)(~+)] (4-37)

with the energy arguments defined by Eq. (4.7) and

— / \ T"1*» / f f^(er \ f C^(' c \ \ (A *̂ Ä̂

where No is the number of atoms, Vat is the atomic volume, and (• • •) denotes an

average over configurations. Employing the expression of the Green funetion within

the KKR method, a typical contribution to the conductivity can be expressed in

terms of real space SPO,

:2) = (4.39)

n ^—\

at p=l
EE E

where the total number of sites in the interface region can be written as iV0 = nN,

as given in terms of the number of layers in the interface region (n) and the order

of the two-dimensional translational group N (number of atoms in one layer) and tr

denotes now the trace in angular momentum space. Moreover, it should be noted

that

2f(ei Ie 2 ) = J j ' Q ( £ 1 , £ 2 ) = 4 0 ' Q ( e 1 , £ 2 ) - 5 Q ( e 1 , £ 2 ) , Vi G 1(1«) (4.40)

with a> G {A,B}, being one component of the binary alloy. From the brackets

in (4.39), it can be easily seen that for each layer p the first sum over L2 yields

TV times the same contribution, provided two-dimensional invariance applies in all

layers under consideration. Asumming this kind of symmetry, a typical contribution

o /̂i (£i) £2) to the conductivity is therefore given by

J E E | E t
p=l 9=1 [j6/(L2)

(4.41)
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where pO specifies the origin of L2 for layer p. This kind of contribution can be split

up into a (site-) diagonal and a (site-) off-diagonal part,

owfci,e2) = o°ßll{£i,e2) + o^fci,e2) • (4.42)

4.3.1 Site-diagonal conductivity

By employing the CPA condition in (3.40) and omitting vertex corrections, for the

diagonal part (pO = qj) one simply gets in terms of the definitions given in (3.42)

and (3.45),.

h n

P = l Q

I" X ^ V ^ r t , . I -r / \ Tl« / \ W " / \ ^T>n f \ I / , . . \

where

J_ß (^2,^1) = D_a(£i)lß (^2,£1)^0(^1) (4.44)

is the same quantity as in Eq. (4.14) with the notation that here, 2D translational

invariance is applied.

4.3.2 Site-off-diagonal conductivity

According to (3.44) and (3.45) the off-diagonal part can further be partitioned into

two terms,

with

^ „ ( £ 1 , ^ 2 ) = (4-46)
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and

E
p = l q=l

As it can be seen a^(ei,e2) arises from pairs of sites located in different layers,

whereas az JEI, £2) corresponds to pairs of sites in one and the same layer, excluding

the site-diagonal pair already being accounted for in a°ßß(£i,£2)- In general the

averaging of a^/x(£1,e2) is given by

-w E
jeI(L2) a,ß

x tr {JTfo.ei) <i:p0'9J(^)^(^^2)r^0(e2))(p0=Qg.^)} . (4.48)

By employing the CPA condition and omitting vertex corrections, o2
ßß(e\, £2) is found

to reduce to

p=i g=i

x tr {Za(£^) (Z^^))^^ Zß(£l,£2) {r^(£2)){p0=aqj=ß)} , (4.49)

or, by using (3.44), to

1-w E
p=i g=l

f l

x tr | l ß (e2,ei)rS°'«(ei)^ ( e i , ^ ) ^ ' ' 0 ^ ) j . (4.50)

Since the site-off-diagonal scattering path Operators rP°>w'(e) are defined as

iki'T>iT(e, k„) d2^, , (4.51)BZ

the orthogonality for irreducible representations of the two-dimensional translation

group can be used,

E l?'q3(^)ltJ'P°&) = 7?- f ^ i > h)lT(^ h)d% . (4.52)
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For a^ß(ei,€2), therefore, the following expression is obtained,

fc n n
~2 / \ " V ^ Y ^ / i X \ V^ a ß I
auu\£li£2) — / o xo / , / , (.1 — ÖpgJ > CpCT ('

X

BZ

r (~pa

From the above discussion of alß(si,e2) it is easy to see that ^ ( e i , ^ ) is given by

n

: i ,£ 2 ) , (4.54)

where a^o r r(ei,£2) arises from extending the sum in (4.47) to Vj e -^(^2) and

subtracting a corresponding correction term of the form,

—3,corr / \

(4.55)

4.3.3 Total conductivity for layered Systems

Combining now all terms, a typical contribution oßß{ei,e2) to the conductivity is

given by

3 w ( e i , e 2 ) = (4.56)

h

p=l

9=1 a,ß
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which, as far as the summations over layers are conserved, can be partitioned into

'single' and 'double' terms [23],

p,q=\ p=l P,Q=l
(P/9)

Quite clearly, the layer-diagonal contributions are defined as

ß ^ (4.58)

and the layer-offdiagonal (p ^ q) terms as

(4.59)

It should be noted that the latter expression is computationally very expensive due

to the integration over the 2D Brillouin zone.



Chapter 5

Computational details

Self-consistent calculations for both the 2D invariant host and the finite clusters
were performed within the local spin-density approximation (LSDA) [72], see Sec-
tion A.3, by using the atomic sphere approximation (ASA), see Section 2.2, applying
the method described in Section 2.6.2. In both cases, for calculating Eq. (2.17), 16
complex energy points were taken on a semicircular contour in the complex energy
plane which were sampled according to an asymmetric Gaussian quadrature, as il-
lustrated in Fig. 5.1 with e.g. ea = Eg and £(, = EF-

0.5-

N

s

EB
-0.1-

o

o

EF

Re(z)

Figure 5.1: Semicircle contour sampled using an asymmetric Gaussian quadrature.

By performing real embedding (Chapter 8 and 9), for the self-consistent cluster cal-
culations a sufficiently large number of atoms from the neighboring host (including
sites in the vacuum) was taken into account in order to serve as a buffer for Charge
fluctuations.
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It should be noted that the above described methods do not include lattice relax-
ation effects, the structure of the studied Systems correspond to an underlying parent
lattice. For the calculation of the real space SPO in a self-consistent method, see Eq.
(2.96), 45 k\\ points were taken from the irreducible wedge of the 2D Brillouin zone
(IBZ), forming an equidistant sampling of the IBZ as shown in Fig. 5.2 for fcc(OOl)
or bcc(OOl) planes. By determining the non-local conductivity in the cluster, more
precise /cy-integration should be performed. The number of k\\ points, taken for
calculating transport properties, are explicitly written for each studied System. Fur-
thermore, it can be stated that they are strongly dependent on the imaginary part
of the Fermi energy (8) and on the size of the investigated cluster.

0.0 0.2 0.4 i 0.6 0.8 1.0

Figure 5.2: Irreducible Brillouin zone of a 2D Square lattice with an equidistant
mesh. kx and ky are in units of = a 2D =

For the angular momentum expansion lmax = 2 was used, which means that all
scattering Channels up to and.including a maximal angular moment quantum of two
were taken into account. Furthermore, all matrices in angular momentum space in
a relativistic formulation are of size 18x18 (18 = 2(lmax + l)2), while the superma-
trices in site-angular momentum representation are of size (18N)x(18N), where N
denotes the number of sites taken in a specific cluster.

The orientation of magnetization (M) was chosen to point to direction z (perpendic-
ular to the layers), exceptions are the determination of AMR in permalloy (Chapter
7) and the surface magnetic chains (Chapter 8).



Chapter 6

"Large cluster" limit

In this Chapter calculations of transport properties in the so-called "large cluster"
limit are presented. The results, as the first application of the newly developed
computational code, are compared to former calculations and experiments in order
to check the reliability of the presented method.

What does "large cluster" limit mean? A real Space formalism allows to study the
interesting transition of physical properties between nanoscaled and macroscopic
(mesoscopic) Systems, namely, the change of electrical transport properties from a
nanostructure scale to thin films or even bulk Systems can be investigated considering
a set of clusters with increasing size. For the applied method, see Section 4.2.1.

6.1 Surface layer of Ag(OOl)

The studied System can be seen below, on Fig. 6.1. The fcc structure was taken

with lattice constants a^D = 7.789 a.u. and a2o = 5.508 a.u.

semi-infinite vacuum

5 layers vacuum
s=— surface

7 layers Ag

interface region

semi-infinite Ag

Figure 6.1: Geometrical setup of the studied semi-infinite Ag(001) System.
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•It should be mentioned that Ag(OOl) surface can be prepared by homoepitaxial
growth [73].
Let us first take a look at the non-local conductivities in the surface layer. They
were calculated according to Eqs. (4.5) and (4.6) with real space SPOs obtained
by taking 1830 k\\ points in the 2D IBZ, see Eq. (2.96). In Fig. 6.2 the xx and zz

components of the non-local conductivity tensor &%(xj,yj) are shown, where site 0
is fixed to the origin (0,0) of the surface layer, while the position of site j is varied in
the (OOl)-oriented surface plane. As can be seen, for the out of plane conductivity
(zz), only scatterers are important which are not too far away from the origin, while
in the in-plane case (xx) also scatterers at farther distances do add non-negligible
contributions to the corresponding component of the conductivity. Moreover, it
should be noted that the yy component is not shown because it has similar form as
xx: only the diagram of o®{(xj,yj) has to be rotated by 90°.

a°j[(mQcm)-1]

1.21

-4

0.77

-6

-2
xjfa2[J

Figure 6.2: Non-local conductivities <J%(xj,yj) in the surface layer of Ag. 6 = 1 mRy.
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The shape of the non-local conductivities suggest that by performing the summation
according to Eq. (4.21) only for the layer sites, it should converge, namely Eq.
(4.22) should hold true. In order to show that, two different square-shaped planar
clusters were investigated, see Fig. 6.3, both having Civ symmetry which implies
that PnU(r;ö) has two independent components, namely

Pxx = p y y , Pzz , and pßU = 0 if JJ, ̂  v. (6.1)

The characteristic size (r) of the investigated clusters are given by the distance
between the origin (0) and the farthermost atom from the origin, i.e. it can be
written for the clusters with increasing size and fixed shape as a series, rn = n- a^n

for type 1 (see Fig. 6.3) and rn = n\[2 • aiv for type 2 in the nth step of the
cluster-building. The number of atoms involved in the cluster can be obtained by
the formulas, N(n) = (2n2 + 2n + 1) for type 1 and N(n) - (An2 + An + 1) for type
2. It is obviously seen that the clusters in Fig. 6.3 refer to n = 3.

Square type 2

3

2

1

-1

-2

-3

Square type 1
. . . . .

1 .
T

|
-4 -3 -2 -I 0 2 3 4 - 4 - 3 - 2 - 1 0 1 2 3 4

x[a2DJ

Figure 6.3: Different shapes of clusters in the surface plane of a fcc(OOl) Substrate.

It should be emphasized that this procedure is performed in order to show the
validity of Eq. (4.22), there is no real experimental setup which means that pzz

can not be measured, there is no current flowing from the Substrate to the vacuum
region. As can be seen from Fig. 6.4, a reliable convergence of the resistivity can
be achieved for r > 15 Ü2D- It should also be noted that, in particular, for the
resistivity normal to the planes the visually faster convergence for clusters type 2
(also see Fig. 6.3) is due to the larger number of atoms forming these clusters than
those of type 1.
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Figure 6.4: Real space study in the surface layer of an Ag(001) semi-infinite System
is performed. The in-plane (xx) and perpendicular to the plane (zz) resistivity
components for two different cluster shapes are shown versus the characteristic size of
the cluster (r). The horizontal line refers to the layer-diagonal resistivity calculated
by Eqs. (4.22)-(4.24). Diamonds correspond to type 1 in Fig. 6.3, Squares to type
2. 5 = 1 mRy is applied.
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6.2 Bulk resistivities

The studied Systems can be seen below, on Fig. 6.5.

82

\

semi-infinite Ag or CuPt alloy

interface region: ^

33 layers Ag or CuPt alloy |"

semi-infinite Ag or CuPt alloy

Figure 6.5: Geometrical setup of the studied Ag and CuPt bulk Systems.

Non-local conductivities were calculated according to Eq. (4.5) with the side limits

in Eq. (4.6) for Ag and in Eqs. (4.15), (4.19) for CuPt alloys with real Space SPOs

obtained by taking 630 k\\ points in the 2D IBZ, see Eq. (2.96) for Ag and Eq. (3.31)

for the alloys.

In the following, three-dimensional clusters were taken in the above bulk Systems,

and real Space summation of the non-local conductivity tensor were performed ac-

cording to Eq. (4.21). In addition by increasing the size of the clusters the con-

vergence of Eq. (4.25) was studied, and our results were compared to known bulk

resistivities (see Refs. [24, 28]). It is quite clear that for large clusters their resistivity

has to approach to the corresponding bulk value, namely to zero for pure metals and

to the residual resistivity for alloy Systems. The clusters were chosen to be spheres

with increasing radius, where the center of the spheres is the site denoted by 0 in

Eq. (4.21) and sites j are within the sphere. Table 6.1 shows the number of atoms

(iV) involved in the sphere versus n which denotes a step of cluster-building. In the

nth step, the sphere has a radius rn = -j= •

n
N(n)

Cluster
0
1

1
13

2
55

3
177

4
381

5
767

6
1289

7
2093

8
3055

9
4321

10
5979

11
7935

Table 6.1: The number of sites (JV) in the considered spherical clusters.
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If we assume the following behavior of the elements of the resistivity tensor with

respect to the size of the cluster (r),

^ (6.2)

o a n d Pi are constants) it is obvious that

(6.3)

which means that the residual resistivity, po(S) can be obtained by a linear fit of

rpßß{r\5) with respect to r. In the case of substitutional alloys, the slope (po(5),

5 —y 0) corresponds then to the residual resistivity, while for pure bulk it should be

zero.

It should be noted that Eq. (6.2) is more or less an empirical finding which was used

also quite a bit in the experimental recording of resistivities. There all kinds of fits

are proposed to extrapolate to infinite thickness.

6.2.1 Ag bulk

The fcc bulk Ag structure has the same lattice constants as mentioned in Section

6.1.

In principle it is sufficient to evaluate only one component of the resistivity because

the System and also the clusters have cubic symmetry, which means that by choosing

the coordinate System properly, the resistivity tensor has only one independent ele-

ment, namely the diagonal components must be identical (pxx = pyy = pzz) and all

non-diagonal elements have to be zero. Deviations from this behavior can be used

to estimate numerical errors inherent to the calculational scheme and the fitting

procedure. The actual fitting, see Eq. (6.3), was performed for each calculated value

of 5 (S = 1, 2,3 mRy) considering the last three points of rpzz(r; 6), see top part of

Fig. 6.6. These points have been chosen because they refer to the biggest clusters

considered, see Table 6.1. In order to obtain the real physical residual resistivity

an extrapolation to 5 — 0 is needed, see Eq. (4.20). This extrapolation for Ag bulk

structure is illustrated in the top part of Fig. 6.7 and demonstrates that we made

an absolute error of roughly 0.05 ßVtcm in our fitting procedure.



CHAPTER 6. "LARGE CLUSTER" LIMIT 84

Q

o

a

X
X

Q.

a

X
Q.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

• 8=1 mRy

D 5 = 2 mRy

• 8 = 3 mRy

_ 1

'_
-
—'
—
—
__
" • • l

II

1 ' 1
Pt

SO 0

*

1 1 1

1

50

*

1 ' 1

i

1

1 1
4
5

i 1

1 \JA

-
—

_L
_J

—

J_
l

, 1 , •

O

a

Q.

' I ' I ' I '

^U0.50 0.50

I 1 !

i
i

*

_ *
• * i . i , i • i • i • i , i , '

1 1 '

,
1

,
1

,
1

,

—
'- *
- 1 * 1 ,

1 1

75P t

J

| ,

| •

0.25

1 *9

| ,

1 ' 1 ' 1

1 . 1 . 1

1 '

-

_

J_
L.

1 , "

Q -

- B -

N
N

Q.

_ 1 • 1

- C U0.75, 
1 , 1 . 1

—

1 1 '
Pt0.25

I 1 ,

1 ' 1

i *

1 i 1

1 1

i 4

, |

1 i •_

_:

—

. i i •

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Figure 6.6: Real space study in bulk Systems is performed. The characteristic size
of the cluster (r) times the resistivity is shown versus the size of the cluster for
three different imaginary parts (5) of the Fermi energy in order to evaluate the slope
(residual resistivity), see Eq. (6.3). The zz component of the resistivity is shown for
fcc bulk Ag (top), while xx and zz components for fcc bulk CuPt alloys (bottom).
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84

48

1f 46

£ 44
I 42
co 40
3 38

36
34

Cu0.50Pt0.50

^U0.75Pt0.25

Figure 6.7: Extrapolation to ö = 0 for the investigated bulk Systems. Open circles
are obtained from the fitting procedure in Eq. (6.3), while füll circles refer to the
extrapolated values and Squares to experimental results measured at room temper-
ature [24].
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6.2.2 CucPti_c bulk

More interesting than pure bulk metals are disordered bulk alloys because the ac-

curacy of the present approach can be directly compared with experimental data

and results of previous calculations. For this reason fcc Cuo.5oPto.5o and Cuo.75Pto.25

have been chosen with lattice constants a^0 5°P t°5 0 = 7.140 a.u. and a^ 0 7 5 P t ° 2 5 =

6.995 a.u. in order to test the reliability of the present approach. Again the fitting

to a linear form has been applied {Eq. (6.3)} to the last three points of rpßß(r)

function for each 6, in turn, see bottom part of Fig. 6.6.

Extrapolating to 5 = 0, we get the residual resistivity for the bulk Systems shown

in the lower parts of Fig. 6.7. As can be seen, the extrapolation can easily be per-

formed because in the region 0 < 5 < 3 mRy the resistivity depends linearly on 6. In

comparing the present results with previous calculations and available experimental

data, see in particular Ref. [24], we find that there is good quantitative agreement for

both concentrations of CuPt. The results of Dulca et al. [28] are 80.2 and 31.5 fj,Qcm

for Cuo.5oPto.5o and Cuo.75Pto.25, respectively.

As already stated the numerical uncertainty of the present approach can be seen

best by evaluating the difference between the in-plane and the perpendicular to the

plane elements of the residual resistivity, since the residual resistivities, pxx and pzz,

must be the same in cubic bulk Systems. It can be seen from Fig. 6.8 that this

difference is more or less independent of 5 and is of order of a few tenth of a /j,Qcm.

It should be noted that in a recent paper Dulca et al. [28] applied real space scatter-

ing via the KKR method to the Kubo equation for bulk alloys. Although it might

appear that formally their approach looks very similar to the one presented in here,

fundamental conceptual differences have to be pointed out. The Embedded Cluster

Method (ECM) used by them is restricted to infinite Systems (three-dimensional

translational invariance, see Eq. (10) in Ref. [28]), i.e., can only be used in the

case of bulk Systems, while in here only two-dimensional translational invariance for

the Substrate is assumed, which facilitates a correct embedding into semi-infinite

Systems (systems with surface or interfaces). Furthermore, as stated by Dulca et

al. [28] their ECM necessarily is (charge) non-selfconsistent, whereas in the present

case for substitutional alloys serving as Substrate the embedding problem is solved

(charge) selfconsistently. The results shown in here for bulk Systems have to be
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viewed entirely as an illustration of the accuracy of the present approach. The

approach suggested by Dulca et al. [28] is perfectly suited to discuss short-range

order effects in bulk binary substitutional alloys; it cannot be used for evaluating

electric properties of nanostructures in or at surfaces of semi-infinite Systems.
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Figure 6.8: Difference between the residual resistivity for the in-plane (xx) and the
perpendicular to the plane (zz) component are shown versus the imaginary part (5)
of the Fermi energy for Cuo.5oPto.5o and Cuo.75Pto.25-



Chapter 7

Anisotropie magnetoresistance in
Nii_cFec bulk alloys

Among the compounds showing high AMR, because of their low coereivity and high
magnetic moment, Ni!_cFec alloys are perhaps most commonly used in technological
applications. Due to this fact, for these Systems a large amount of resistivity data
from high quality measurements is available in the literature [2, 3, 4, 5, 6]. The aim
of this Chapter is to determine the anisotropic magnetoresistance of Ni!_cFec bulk
alloys for diverse concentrations within framework of the presented theoretical ap-
proach. Besides to experiments, our results are compared with the earlier theoretical
work of Banhart and Ebert on the same System [12]. These authors also pointed
out [13, 14] the importance of spin-orbit coupling for the residual resistivities in
magnetic binary substitutional alloys. In addition to AMR investigations, the de-
pendence of the resistivity with respect to the angle between the magnetization and
the current is also studied and the obtained results are successfully connected to the
general formulation of Döring [74]. Two methods have been used to obtain the to-
tal conduetivity of the Systems with different orientations of magnetization, namely
real space summation of non-local conduetivities taking 3D clusters as described in
Section 4.2.1,

N

ä (7.1)

where N is the number of sites considered in the cluster, /x € {x, y, z), and M is the
direction of the magnetization, which is assumed to be uniform in all the layers of
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the bulk alloy. Furthermore, the concentration of Fe, c is also fixed and identical in
all layers.
The second method applies layer summation [23],

aw l(n;c;M)= (7.2)
p,q=l

where n is the number of layers considered. For more details see Section 4.3. The
corresponding resistivity is defined by

pßß(n\ c; M) = l/aßß(n; c; M) , (7.3)

where n — N or n depending on the type of summation, see Eqs. (7.1) and (7.2).
Clearly, the calculated conductivity (and/or resistivity) of such layered Systems con-
verges to the bulk value in the limit of N —>• oo or n —> oo. Note, that the above
formulation for layer summation is, in general, valid only for the current-in-plane
(CIP) geometry (i.e., for // e {x,y}). Since, however, in the present study bulk
Systems are represented by a sequence of identical layers,

iVi1_cFec(001)/(A''z1_cFec)n/A
rii_cFec(001) , (7.4)

namely, n monolayers of permalloy capped from both sides by semi-infinite leads of
the same material, see also Fig. 7.1, translational symmetry of the electric fields and
currents is retained in the direction normal to the planes and, therefore, Eq. (7.2)
and Eq. (7.3) with n — n apply also in the case of ß — z.

l

\

semi-infinite NiFe alloy

interface region: ^
\z

n layers NiFe alloy |

semi-infinite NiFe alloy

Figure 7.1: Geometrical setup of the studied NiFe bulk Systems.
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7.1 Real space summation

90

In order to perform real space summations in bcc Ni0.i5Fe0.85, the System in Fig. 7.1
with n = 33 layers in the interface region was chosen. The bcc structure was taken

with a lattice constant ÜZD = 5.442 a.u.

Non-local conductivities were calculated according to Eq. (4.5) with the side limits
in Eqs. (4.15), (4.19) with real space SPOs obtained by taking 1830 fc|| points in the
2D IBZ, see Eq. (3.31).
The clusters were chosen to be spheres with increasing radius, where the center of
the spheres is the site denoted by 0 in Eq. (4.21) and sites j are within the sphere.
Table 7.1 shows the number of atoms (N) involved in the sphere versus k which de-
notes a step of cluster-building. In the fcth step, the sphere has a radius rk = k

k
N(k)

Cluster
0
1

1
15

2
65

3
259

4
537

5
1067

6
1837

7
2891

8
4285

Table 7.1: The number of sites (N) in the considered spherical clusters.

Again the fitting to a linear form has been applied (Eq. 6.3) to the last three points
of rpßß(r) function for each 5. The results with different orientations of magnetiza-
tion (M = z and M = x) are summarized in Table 7.2.

8
(mRy]

0.0
0.5
1.0
2.0
3.0

Pxx(z)

15.9
18.6
21.3
26.7
32.2

Resistivity [/ixficra]
Pzz(z)

15.7
18.4
21.0
26.3
31.8

Pxx(x)

20.7
23.0
25.3
29.8
34.2

Pyy(x)

20.3
22.6
24.9
29.5
34.1

Pzz
20
22
25
29
33

Je)
.7
.9
.1
.5
.9

Table 7.2: Calculated resistivities for Nio.15Feo.85 bulk System. The values for 5 = 0
are obtained by extrapolation of data from the calculations.

It can be stated that the resistivity pzz(z) is in good agreement with previous cal-
culation. see Ref.[8], and the difference pxx(z) - pzz(z) agrees also with our finding
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.in CuPt alloy System, see Fig. 6.8, while pxx(x) differs much from pzz(z). The rea-

son can be the insufficient fy-integration in the 2D IBZ. Furthermore, it should be

noted that the results obtained by real space summations are less accurate than the

ones by layer summations with equal Computing time, thus, it is better to use layer

summations to determine the AMR in permalloy bulk Systems.

7.2 Layer summation

In this Section Nii_cFec alloys in the Ni-rich regime (0 < c < 0.5) are investigated.

Note that the experimental lattice constant of the structures were used. In addition,

self-consistent potentials and effective fields were taken from Ref. [75].

The numerical procedure of performing the limit n —» oo for the resistivity in Eq.

(7.3) and the overall stability of the method is discussed in length in Ref. [8]. As

compared to the value of n = 45 taken in Ref. [8], in the present calculations a larger

number of layers was used, namely, n = 60 that allowed us to perform a more stable

fit for the resistivity of the bulk System.

When performing the configurational average within the CPA, no vertex corrections

were taken into account [22, 23]. The electrical conductivity was calculated using

3160 k\\ points in the 2D IBZ [23]. For some concentrations the stability of the

obtained results was checked by increasing the number of k\\ points up to 4950. In

fact, we found that the 2D Brillouin zone summations converge faster for pzz(n; c; M)

than for pxx(n;c;M.), therefore, all the results presented in this Section refer to a

current flowing normal to the planes (z), while we varied the orientation of the

magnetization, M, with respect to this direction.

Because of computational reasons a finite imaginary part, S, of the Fermi energy

has to be used in the calculation of conductivity, see Section 4.1, Ref. [8]. The actual

"bulk" resistivity is defined, therefore, as the following double limit,

pßß(c; M) = lim lim pc
ßf(n; c; M; 6) . (7.5)

o—»0 n—>oo " ^

In Ref. [8] it was argued that for large enough n the slope of npc
ßß(n; c; M; S) behaves

linear in S. This observation greatly simplifies taking the ö —>• 0 limit in Eq. (7.5).

In Ref. [8] the lowest value of S = 2 mRy produced a resistivity still 3-4 times larger

than expected in the limit of 6 —> 0, leading, therefore, to some uncertaintity in
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determining the bulk resistivity. In the present Section much smaller values of 8 were

used ((5min = 0.1 mRy), providing thus a more careful justification of the proposed

numerical procedure. Fig. 7.2 shows the calculated resistivities, pc
z
a

z
l(c;M]S), of

Nio.8oFeo.2o fc>r <5= 0.1, 0.25, 0.5 and 1 mRy and for two different directions of the

magnetization (M = z and M = x), together with a linear least Square fit to the

data. The estimated relative error of the residual resistivity turned out to be about

1%. This accuracy of the fitting procedure applies in the entire concentration ränge,

0 < c < 0.5.

0.2 0.4 0.6 0.8

5 (mRy)
1.0

Figure 7.2: Calculated resistivities, pzz(M;S), of the Ni0.8oFe0.2o alloy with various
choices of the imaginary part of the Fermi energy, ö. Circles and triangles refer
to the cases when the current^ is perpendicular or parallel to the direction of the
magnetization, M = x and M = i, respectively. The solid lines stand for a least
Square fit to the data. The residual resistivity is provided by the interception of the
lines with the Ordinate axis.
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We adopted the commonly used definition [12, 76] for the AMR ratio of bulk alloys,

Ap{c) = P| |(c)-p±(c)

Pav(c) Pav(c)

with

(7.6)

Pav{c) = 2p±(c)) , p\\{c) = pzz(c;z) , p±(c) = pzz{c;x) . (7.7)

Experimentally the above quantities are defined as an extrapolation of the measured

results to zero applied magnetic field.

0-
50

Figure 7.3: Calculated (open Symbols) and experimental [2, 3] (diamonds) residual
resistivities of Nii_cFec alloys with respect to the concentration, c. For the definitions
of p|| (up-triangles) p± (down-triangles) and pav (circles), see the expressions (7.7)
in the text.

In Fig. 7.3 the calculated bulk resistivities, p\\, p± and pav of the Nii_cFec alloys

are displayed in the concentration ränge, 0 < c < 0.5. In füll agreement with ex-

periments, for all concentrations the resistivity for the current parallel to the field
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is found to be larger than the perpendicular one, indicating that the AMR ratio
defined by Eq. (7.6) is always positive. The shape of the curve pav(c) compares
well to the experimental observations: for small concentrations it rapidly increases
and reaches a flat minimum at about c = 0.25. The calculated magnitudes of the
averaged residual resistivity, pav, are significantly larger for c < 0.1 and by about
30-40% lower for c > 0.1 than the measured data. Similar observations were also
made in the ab-initio calculations by Banhart and Ebert [12], with the exception
that in the concentration ränge 0 < c < 0.1 they found a rather moderate increase
of the resistivity. This difference between the two theoretical results can be fairly
well understood, as in Ref.[12] vertex corrections were taken into account, which, in
particular, for small concentrations (weak disorder) should considerably lower the
resistivity. The systematic error of about —30 to —40% of the calculated resistivities
with respect to the experimental data can be partially attributed to additional scat-
tering mechanisms, such as grain boundaries, short-range Order, etc., not taken into
account in the ab-initio calculations, giving rise, however, to an additional resistivity
contribution. Clearly enough, missing correlations in the local density functional ap-
proximation (LDA) in particular for the Ni constituent may add to the discrepancy
between the measured and the calculated averaged residual resistivity. As presently
no ab-initio method is available that takes into account these correlations for calcu-
lating transport properties, it is very questionable to estimate its importance with
respect to the above mentioned imperfections.

As can be seen from Fig. 7.4, both the functional shape and the magnitude of our
calculated concentration dependent AMR ratios are in excellent agreement with the
experimental data. In satisfactory agreement with experiments and the present cal-
culations, the AMR ratio communicated in Ref. [12] shows a maximum at about
c = 0.1 and a steady decrease for larger concentrations, however, in particular, for
small concentrations its magnitude is largely overestimated. Supposing that excess
scattering effects give rise to an isotropic resistivity contribution, in that work the
AMR ratios were corrected by taking the measured pav, keeping, however, the calcu-
lated Ap in Eq. (7.6). Although, the Overall agreement of the AMR curve improved
as compared to experiments, for c < 0.1, the corrected AMR ratios were still too
high by a factor of about two [12].
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45-

CL

10 20 30 40 50

Figure 7.4: Calculated and experimental AMR ratios of Nii_cFec alloys. Füll circles:
present work, füll Squares: calculations of Ref.[12], up-triangles: experiment [2],
down-triangles: experiment [4, 5]. The solid lines serve as a guide for eyes.
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The good quantitative description of the AMR of the Nii_cFec alloys provided by
our theoretical approach indicates that the effects not considered in the calculations
do contribute to the average resistivity as well as to p\\ and p± in equal terms and,
therefore, the AMR ratio can safely be calculated by neglecting them. In fact, ran-
dom structural imperfections (grain boundaries or clusters) are not expected to give
an anisotropic contribution to the resistivity [12]. However, chemical fluctuations
in the System (short-range order) and correlation effects alter the electronic struc-
ture whithout destroying the global cubic symmetry which, in combination with the
spin-orbit coupling, is responsible for the observed anisotropic magnetoresistance.
Of course, the AMR is only a particular transport property of the System that
might be insufficient to rule out the dominance of the latter effects as compared to
the structural imperfections.

By varying the direction of the magnetization, the dependence of the resistivity on
the angle between the directions of the current and the magnetization can be stud-
ied. During the third decade of the last Century Döring [74] put forward a general
expression which describes the anisotropy of the resistivity in cubic crystals with
respect to the direction of the magnetization and of the current relative to the crys-
tallographic axes. In the Special case, when the direction of the current is fixed
along a certain crystallographic axis and the direction of the magnetization is varied
between this and an other crystallographic axis, the Döring expression reduces to

p(d) = Po + Bcos2d + Ccos4ti , (7.8)

where d is the angle between the magnetization and the current.
In Fig. 7.5 the results obtained for Nio.8oFeo.2o and Nio.85Feo.i5 alloys are presented.
In these calculations the current is fixed along the (001) direction of the fcc crystal
and the magnetization is rotated from the (001) to the (110) direction within the
(110) plane. Note that the cases d = 0 and $ = ?r/2 correspond to p\\ and p±,
respectively. As inferred from Fig. 7.5, the calculated results almost perfectly fit the
functional dependence given in Eq. (7.8). Looking at the fitting parameters listed in
Table 7.3. it should be noted that even the cos4 d term has a non-negligible weight
which cannot be omitted in the fitting procedure without a drastic loss in the overall
quality of the fit.
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2.6-

0 10 20 30 40 50 60 70 80 90

Figure 7.5: Calculated resistivities with respect to the the angle, •#, between the
current and the magnetization for Nio.85Feo.15 (triangles) and Nio.8oFeo.2o (circles)
alloys. Solid lines visualize the results of least Square fits according to Eq. (7.8), see
text.

Nio.85Feo.15

Nio.8oFeo.2o

Po B C
2.693 0.437 0.138
2.620 0.315 0.156

Table 7.3: Parameters (in units of
to the function Eq. (7.8).

of the fit of the data presented in Fig. 7.5



Chapter 8

Magnetic finite chains in the surface
of Ag(OOl)

In Chapter 6 and Section 7.1 the reliability of the presented real space method for
calculating transport properties was checked. It can be stated that the method works
well in "large cluster" limit. As it is clear, real Space methods have to be applied for
investigating Systems without any translational symmetry, such as nanostructures
on top of a surface or nanocontacts between two leads. In this Chapter Single
impurities and finite chains (length of 2-10 atoms) of Fe and Co embedded along
the (HO) direction (x) in the surface layer of Ag(001) are investigated. The host
System is the same as in Section 6.1, see Fig. 6.1. In this Chapter, the notation,
e.g., C04 for a Co chain of four atoms is used. The y = 0 plane-section of the System
with a chain of four atoms is shown in Fig. 8.1, while the arrangement of the atoms
in the xy plane (in the surface layer) is found in Fig. 8.2.

"7 V V H B f l D k / V y

C j vacuum

( | ) Fe/Co

surface layer

Figure 8.1: Chain of four atoms in the surface layer of Ag(001). y = 0 plane-section.

98
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-4 8 10 12

Figure 8.2: Chain of four atoms in the surface layer of Ag(001). xy plane-section in
the surface layer.

The geometry of the self-consistently calculated clusters (chains+environment) is

summarized in Table 8.1, while the applied method for calculating the self-consistent

Potentials of them can be found in Section 2.6.2.

Chain
length
1
2
3
4
5
6
7
8
9
10

Fe/Co
S
1
2
3
4
5
6
7
8
9
10

Ag
S-1 S
4 4
6 6
8 8
10 10
12 12
14 14
16 16
18 18
20 20
22 22

Vac.
S+l
4
6
8
10
12
14
16
18
20
22

No. of
atoms
13
20
27
34
41
48
55
62
69
76

Table 8.1: The setup of self-consistently calculated clusters "chain + 1 shell". The
number of sites in the cluster are shown for each type (Fe/Co, Ag, vacuum) and
each length of chains in the corresponding layer. Layer S denotes the surface layer,
layers S — i are located in the semi-infinite Ag, while layers 5 + i in the vacuum
region (Vz £ Z+ ) . The total number of atoms in each cluster is also explicitly shown.
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8.1 Magnetic properties

The orbital (L) and spin moment (S) of site i can be calculated by integrating the

orbital and spin magnetization densities defined by Eqs. (2.19) and (2.20) over the

ith atomic cell (fij), as

1/ = /d 3 r l ( r ) , S< = f d3r m{r), (8.1)

respectively.
Calculations showed that the magnitude of the spin moments is considerably insensi-
tive to the direction of magnetization (M), while for the orbital moments remarkably
large anisotropy effects apply in füll conformity with the findings of Ref. [26] where
the magnetic clusters were located in the first vacuum layer. For a magnetization
along the z axis (M = z), the calculated moments can be seen in Figs. 8.3 and 8.4
for Co and in Figs. 8.5 and 8.6 for Fe chains. As can be seen, the changes of the spin
moment within the Co chains are smaller as compared to Fe chains where the atoms
on the brink of the chain (with one Fe neighbor) have a spin moment systematically
nearly 0.03 \XB larger than the other Fe atoms (with two Fe neighbor) in the chain.
Comparing the results to Ref.[26], it is found for chain lengths n=l,2,3 that both the
orbital and spin moments are smaller than the moments of a corresponding structure
located in the first vacuum layer. A detailed study [77] on magnetic properties of
Fe chains at Cu(001) surface, with similar electronic structure as Ag(001), confirms
this Statement also for longer chains. It is remarkable to mention that both the
spin and orbital moments are smaller in Fe chains embedded in the surface layer of
Cu(001) than the moments of the corresponding chain located in the surface layer
of Ag(001). One reason for this behavior can be that the lattice constant of fcc Cu
structure is smaller than of fcc Ag.

A relatively weak magnetic polarization of the Ag atoms adjacent the magnetic
chains were found. The calculated spin moments of these host atoms are about
0.01 HB adjacent Co and about 0.005 ße adjacent Fe, while the orbital moments are
less than 10~3 ßB-

It should be noted that the analyse of magnetic properties of nanostructures at the
surface of a Substrate is not subject of this work. For a detailed study, see Ref. [27].
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Figure 8.3: Calculated spin moments (Sz) of the Co atoms in Con (n=l,...,10) chains
in the surface layer of Ag(001) with M = z.
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Figure 8.4: Calculated orbital moments (Lz) of the Co atoms in Con (n=l,...,10)
chains in the surface layer of Ag(001) with M = z.



CHAPTER 8. MAGNETIC FINITE CHAINS 103

N 3.
2 3,

3,

3.
3
3.
3,
3.

3
3
3
3.
3

30
28
26
24

22

30
.28
26

24
22

30
.28
26
24
.22

30
.28
.26
.24
.22

30
.28
.26
.24
.22

• 1 ,

. 1 '

: \
• i ,

. i •

: \

• ir 
i. i

r\
_ Js
• 1

. 1

• 1

1

1
1

?
/

1
1

r^
1
1

»-°
I
1

I

• 1 • 1

, 1 . 1
1 " •
n = 3

, 1 . 1

PV
1 U ' 7 '

, 1 . 11 U'

O—t,—O O^

. 1 . 1

.1
.1

.
• 

1 
• 1

.
1

.
1

.
.1

.1
.

1
.

1
.

. 1 . •
1 1 ' .

—

. 1 . •
1 1 ' .

. 1 . •

. 1 ' 1 '

" 1 , 1 ,
. 1 ' 1 '

7(3 0: w
" i , i ,
. i • i •

• 1 • 1

- 1 • 1 .

. 1 ' 1 '

- i , i ,

• • • •
n = 2

1 , 1 .

U1 '

1 , 1 .

U' '
f

J
1 . 1 ,

1 , 1 ,

Uo1 '

/-* y-* r\ -f>

1 , 1 ,

,1
.1

.
• 

1 
• 1

.1
.1

.1
1

1
1

1
.

1
.

1
.

.
1

.
1

-

1 . •
.

1
.

1
.

1
.

1 . •

10 0

x[a2D]
6 8 10

Figure 8.5: Calculated spin moments (Sz) of the Fe atoms in Fen (n=l,...,10) chains
in the surface layer of Ag(001) with M = z .
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Figure 8.6: Calculated orbital moments (Lz) of the Fe atoms in Fen (n=l,...,10)
chains in the surface layer of Ag(001) with M = z.
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8.2 Transport properties

8.2.1 Non-local conductivities

The influence of the chains to the in-plane transport in the surface layer was in-

vestigated, also CIP geometry is assumed. Non-local conductivities were calculated

according to Eq. (4.5) with the side limits in Eq. (4.6), where the SPO of a spe-

cific cluster is obtained by the embedding equation, Eq. (2.95). The real Space host

SPOs were calculated by taking 210 k\\ points in the 2D IBZ, see Eq. (2.96). The

non-local conductivity was tested by increasing the number of self-consistently cal-

culated atoms for Fei, Fe2 and Coi, C02. Since the relative difference between the

conductivities by taking self-consistently calculated cluster "chain + 1 shell" and

"chain + 2 shell" is below 0.2%, we decided to use the "chain_ + 1 shell" configura-

tions to perform self-consistent calculations for longer chains, see Table 8.1, thus,

saving Computer time.

Let us fix a site and denote by 0 in the origin of the surface (x = 0, y — 0), see Fig.

.8.2. In the impurity case the fixed site is the impurity. The xx-component of the

non-local conductivity tensor between the impurity as fixed site (0) and all other

atoms in the surface plane is shown in Fig. 8.7. The corresponding component of

the non-local conductivity tensor of the pure Ag surface (Fig. 6.2) is also presented

and rescaled in Fig. 8.7 in order to be able to compare the magnitudes of the site-

diagonal conductivities. As it can be seen, the site-diagonal conductivity component

of the fixed site at the origin (the peak) for Co is larger than for Fe, causing in turn

of higher resistivity of Fe chains after performing summation in Eq. (8.2). Moreover,

the height of the peaks are shown in decreasing order Coming from Co to Ag. It can

be stated that the studied magnetic impurities have 3-4 times more site-diagonal

conductivity (Fe 3.2, Co 4.6) than an Ag atom in the pure Ag surface.

Let us have a look at the chains. Here, the atom on the brink of the chain is the

fixed site (0), i.e. it is located in the origin of the surface. The zrc-component of

the non-local conductivity tensor between this fixed site and all other atoms in the

surface plane is shown in Fig. 8.8 for Co and in Fig. 8.9 for Fe chains, including

the results of the impurities (chain length=l), too. It can be seen that in the im-

purity case the shape of the conductivity is Symmetrie to the x = 0 plane, while

in the chain cases the tensor-elements along the +x direction (where the chain lies)
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are much larger than in other directions, causing an asymmetry. This shape also
means that by summing up the non-local conductivity o^x over sites j in a three-
dimensional cluster around the chain, a significant contribution is Coming from the
magnetic atoms, e.g. for a Co chain with length of six atoms the contribution from
the magnetic atoms is 63%. This is not surprising because the contribution Coming
from site on the other brink of the chain {pos.(5,0)} is larger than from the second
neighboring Ag atom in the other direction {pos.(-2,0)}. Furthermore, it can be
seen that the magnitude of the site-diagonal conductivities decrease for the atoms
forming a chain comparing to the Single impurities embedded into the surface layer
for both Co and Fe.

1

Figure 8.7: Non-local conductivities (J%(XJ, yj) in the surface layer of Ag in presence
of Co or Fe impurity Jaeing the fixed sites (0) or without any impurities (pure Ag
surface). 5=1 mRy, M = z.
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Figure 8.8: Non-local conductivities (T°i(xj,yj) in the surface layer of Ag with Co
atoms in a Con chain in positions (0,0),..., (n — 1,0). 6 = 1 mRy, M = z.
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Figure 8.9: Non-local conductivities cr°3
x(xj,yj) in the surface layer of Ag with Fe

atoms in a Fen chain in positions (0,0),..., (n — 1,0). 5 = 1 mRy, M = z.
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8.2.2 "Residual resistivities"

In Section 4.2.2 a "residual resistivity" for finite clusters was defined,

N(r)

(8.2)
i£chain J = l

where n denotes the number of atoms in the chain of type a (Fe or Co) and TV(r)
is the number of atoms involved in the cluster (chain + environmental atoms up
to the furthermost distance of r). It should be noted that here, three-dimensional
clusters were taken. Obviously, the convergence properties of p%ß(r) with respect to
r can be investigated by taking clusters with increasing size. This is shown in Fig.
8.10 where all data refers to 5 — 0 which can be obtained by extrapolation of the
calculated data in diverse 5 values. In our calculations 5=1,2,3 mRy were taken.
As can be seen in Fig. 8.10, for all chain lengths (n) pxx(r) decrease monotonously
and can in principle be extrapolated to large values of TV by considering them as
products with the cluster size, see Eq. (6.3), while the difference, p^(r) ~ Pxx(r) IS

finite and varies slowly with respect to the cluster size. Furthermore, chains with
length of three or five atoms differ distinctly from the rest, namely there is almost no
difference wheter Fe or Co atoms form the chain, i.e., the difference, p^{r) ~Pxx(r)
is nearly vanishing for all cluster size considered.

The "residual resistivity" of finite clusters defined in Eq. (8.2) is a practical tool to
study the influence on in-plane transport properties with respect to the orientation
of magnetization (M) in the above described finite chain structures. The calculated
results of the xx-component of the resistivity are listed in Table 8.2. As can be
seen, M = x, i.e., M parallel to the orientation of the chains provides the smallest
resistivity for all Fe chains and for the most Co chains. There are two exceptions
where this is not true, namely C02 and C03 chains. In these chains the smallest
resistivity is obtained with M = y. This behavior is quite surprising if we watch the
resistivities for the other chains. It can be stated that in most cases the direction
of magnetization M = y provides the highest resistivity, however, the orientation of
magnetization perpendicular to the chain (y and z) results in minor differences in
the resistivity. Moreover, in the impurity case, p^xiv)1S by 13.6% larger than p^(x),
while Pxxiv) is only by 5.7% larger than p^(x) which means a higher sensitivity
with respect to the orientation of the magnetization for the Fe impurity.
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Figure 8.10: "Residual resistivities" of Fe (circles) and Co (triangles) chains. Open
Squares refer to p^(r) ~ Pxx(r)- The length of the chains (n) is explicitly shown.
6 = 0 mRy (extrapolated), M = z.
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length
1
2
3
4
5
6
7
8
9
10

Co
x y z

120.1
162.6
151.4
109.0
122.6
94.9
85.6
86.1
74.0
73.4

1!26.9
162.2
140.1
113.7

123.5
165.4
143.9
113.2

126.6
100.1
89.7
89.4
78.6
77,2

128.8.
97.0
88.3
87.8
77.6
74.9

Fe
x y z

198.3
200.5
142.0
166.7
122.2
132.3
119.5
108.0
110.2
91.3

225.3 219.6
213.1
153.8.
176.4
.130.1
138.6

213.2
152.0
176.2
129.7
137.6

125.9
iii.9

127.3
111.7

114.7
93.4

117.1
94,9

Table 8.2: "Residual resistivities" versus orientation of magnetization (M),
in Co and Fe chains. 5 = 0 mRy (extrapolated). MAX, and

MIN. I resistivity values for a given chain are explicitly shown.



Chapter 9

Gold nanocontacts

As mentioned in the Introduction, nanocontacts made of gold are presumably the
most studied atomic-sized conductors in the literature both theoretically and exper-
imentally. A dominant peak very close to the conductance quantum, 1 GQ — 2e2/h,

has been reported for gold in the conductance histogram [31, 32], attributed to the
highly transmitting sp-channel across a linear monoatomic chain connecting the two
electrodes. In this Chapter gold contacts are investigated in different geometries as
well as the influence of transition metal impurities on the conductance is studied
within the real-space approach described in Sections 4.1 and 4.2.3.
The host System for the embedding is shown in Fig. 9.1. It should be noted that
all of the considered sites (Au, vacuum and impurities) refer to the positions of an
underlying ideal fcc structure of gold with a lattice constant of a3o = 7.681 a.u.

semi-infinite Au

NAu layers Au

Nv layers vacuum

NAo layers Au

semi-infinite Au

interface region

Figure 9.1: Geometrical setup of the studied host Au(OOl) System. Nanojunction
between the two semi-infinite Systems is built by embedding Au atoms into the
vacuum region, see e.g., Figs. 9.2 and 9.3. The host characterized by NAu and
can be different for different contacts.

112
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A schematic view of a typical contact is displayed in Fig. 9.2 with Nv=5 vacuum

layers considered in the host System, see Fig. 9.1. As follows from the above, atomic

sites refer to layers for which the following notation is used: C denotes the central

layer, C — 1 and C + 1 the layers below and above, etc. For the contact shown

in Fig. 9.3a, e.g., the central layer contains 1 Au atom (the rest is built up from

empty spheres), layers C — 1 and C + 1 contain 4 Au atoms, layers C — 2 and C + 2

contain 9 Au atoms and, though not shown, all layers C — n and C + n (n > 3) are

completely filled with Au atoms, i.e., denote füll layers.

Non-local conductivities were calculated according to Eq. (4.34) with the side lim-

its in Eq. (4.6), where the SPO of a specific cluster is obtained by the embedding

equation, Eq. (2.95). The real space host SPOs were calculated by taking 210 k\\

points in the 2D IBZ, see Eq. (2.96).

Figure 9.2: Schematic side view of a point contact between two semi-infinite leads
embedded into the vacuum region (number of vacuum layers Nv=5). The layers are
labelled by C, C ± 1, etc.
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a) b)

Figure 9.3: Perspective view of some of the studied contacts between two fcc(OOl)
semi-infinite leads. Only the partially filled layers are shown. a) point contact
(no. of Au layers in the interface region taken from one side: ^ „ = 5 , no. of vacuum
layers between the leads: Nv=b, see Fig. 9.1), b) slanted linear finite chain-(ATi4u=7,
Nv=7), c) 2x2 finite chain (NAu=6, Nv=9).

9.1 Numerical tests on different gold contacts

As mentioned in Section 4.1 a finite Fermi level broadening, <5, has to be used for

non-local conductivity, thus, also for conductance calculations. As an example, for

the point contact depicted in Fig. 9.3a, the dependence of the conductance on 5 is

investigated. The summation in Eq. (4.36) was carried out up to convergence for the

first two (Symmetrie) füll layers (p = C — 3, q = C + 3). As can be seen from F. ig.

9.4, the calculated conduetances depend strongly but nearly linear on 5. A straight

line fitted for 5 > 1.5 mRy intersects the vertical axis at 2.38 GQ. Assuringly enough,

a calculation with 5 = 1 ^iRy resulted in g = 2.40(?o. Although the nearly linear

dependence of the conductance with respect to S enables an easy extrapolation to

5 = 0, as what follows all the calculated conduetances refer to 8 — 1
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Ü

co
V

2.4<MnRyd

2.3
o
C
cd
o 2.2

2.1

8.0 0.5 1.0 1.5 2.0 2.5 3.0
5 [mRy]

Figure 9.4: Calculated conductance as a function of the Fermi level broadening, 5,
for the Au contact shown in Fig. 9.3a. The dashed straight line is a linear fit to the
values for S = 1.5, 2.0, 2.5, and 3.0 mRy.

For the same type of contact (Fig. 9.3a) the convergence of the summation in Eq.

(4.36) over the layers p and q was also investigated, whereby different Symmetrie

pairs of füll layers were chosen. The convergence with respect to the number of

atoms in the layers is shown in Fig. 9.5. Convergence for about 20 atoms can be

obtained for the first two füll layers (p = C — 3, q = C + 3), whereas the number

of sites needed to get convergent sums gradually increases if one takes layers farther

away from the center of the contact. This kind of convergence property is qualita-

tively understandable since the current flows from the contact within a cone of some

opening angle that cuts out sheets of increasing area from the corresponding layers.

As all the calculations were performed with 8 = 1 /xRy, current conservation has

to be expected. Consequently the calculated conductance ought to be independent

with respect to the layers chosen for the summation in Eq. (4.36). As can be seen

from Fig. 9.5 this is satisfied within a relative error of less than 10%. It should be

noted, however, that for the pairs of layers, p = C — n, q = C + n,n>6 convergence

was not achieved within this aecuraey: by taking more sites in the summations even



CHAPTER 9. GOLD NANOCONTACTS 116

a better coincidence of the calculated conductance values for different pairs of layers
can be expected. Fig. 9.5 also implies that an application of the Landauer-Büttiker
approach to calculate the conductance of nanocontacts is numerically more tedious
than the present one, since, in principle, two layers situated infinitely far from each
other have to be taken in order to represent the leads.

Ü

D
O

I
eo

0.0
0 20 40 60 80 100 120
Number of atoms in the corresponding layers

Figure 9.5: Conductance versus the number of sites included in the sum in Eq. (4.36)
for the contact in Fig. 9.3a. The different curves show conductances as calculated
between different pairs of layers. For a definition of the layer numbering see Fig.
9.2.

Although only one Au atom is placed in the center of the point contact considered
above, see Fig. 9.3a, the calculated conductance is more than twice as large as the
conductance unit. This is easy to understand since the planes C — 1 and C + 1,
each containing four Au atoms, are relatively close to each other and, therefore.
tunneling contributes quite a lot to the conductance through the contact. In order
to obtain a conductance around 1 GQ, detected in the experiments, a linear chain
has to be considered. The existence of such linear chains is obvious from the long
plateau of the corresponding conductance trace with respect to the piezo voltage in
the break-junction experiments. Since, as mentioned in Chapter 5, our method at
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present can only handle geometrical structures confined to three-dimensional trans-

lational invariant simple bulk parent lattices, as the simplest model of such a contact

a slanted linear chain was considered as shown in Fig. 9.3b. In here, the middle layer

(G) and the adjacent layers (G ± 1) contain only one Au atom, layers C ± 2 and

C ± 3 four and nine Au atoms, respectively, while layers C ± 4 refer to the first two

füll layers. The sum in Eq. (4.36) was carried out for two pairs of layers, namely for

p = C-A, q = C + 4 (füll layers) and forp = C-2, q = C + 2 (not füll layers). The

convergence with respect to the number of atoms in the chosen layers can be seen

from Fig. 9.6. The respective converged values are 1.10 Go and 1.17 GQ. In the case

oip — C — 2, # = C + 2we observed that the contribution Coming from the vacuum

sites is nearly zero: considering only four Au atoms in the summation already gave a

value for the conductance close to the converged one. The small difference between

the two calculated values, 0.07 Go, can most likely be attributed to an error caused

by the ASA. Nevertheless, as expected, the calculated conductance is very near to

the ideal value of 1 Go-

1
o

Ö
o
o

1.4

1.2

1.0

0.8

0.6

0.4

0.2-

0.0
0 20 40 60 80 100
Number of atoms in the corresponding layers

Figure 9.6: Conductance versus the number of sites included in the sum in Eq.
(4.36) for the slanted linear chain shown in Fig. 9.3b. Füll circles are the results of
summing in layers p = C — 4 and q = C + 4 (first füll layers), while Squares refer to
a summation in layers p — C — 2 and q = C + 2 (layers containing four Au atoms).
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Another interesting structure is the 2x2 chain described in Ref.[38]. Here we consid-
ered a finite length of this structure sandwiched between two semi-infinite Systems,
see Fig. 9.3c. The conductance was calculated by performing the summation for 100
atoms from each of the first two füll layers. As a result we obtained a conductance
of 2.58 Go- Papanikolaou et al. [38] got a conductance of 3 Go for an infinite Cu
wire to be associated with three conducting Channels within the Landauer approach.
For an infinite wire the transmission probability is unity for all states, therefore, the
conductance is just the number of bands crossing the Fermi level. For the present
case of a finite chain, the transmission probability is less than unity for all the con-
ducting states. This qualitatively explains the reduced conductance with respect to
an infinite wire.

Finally, the dependence of the conductance on the thickness of the nanocontacts was
studied. All the investigated structures have C\v symmetry and the central layer of
the Systems is a plane of reflection symmetry. The set-up of the structures is sum-
marized in Table 9.1. Contact 0 refers to a broken contact which is embedded into
a host with NAU=1 and Nv=7 layers, see Fig. 9.1, while the others have different
thicknesses from 1 up to 9 Au atoms in the central layer, and are embedded into a
host characterized by NAu=b and Nv—b, see Fig. 9.1.

layer
Position

C±4
C±3
C±2
C±l

C

Contact
0

Füll
9
4
1
0

1
Füll
Füll

9
4
1

4
Füll
Füll
16
9
4

5
Füll
Füll
21
12
5

9
Füll
Füll
25
16
9

Table 9.1: Set-up of various nanocontacts. The Table shows the number of Au
atoms in the layers as labelled by C, C ± 1, etc., see Fig. 9.2. Contact 1 refers to
Fig. 9.3a.

In Fig. 9.7 the calculated conductances are displayed as performed by taking nearly
100 atoms from each of the first two füll layers: p - C - 4. q = C + 4 for the
broken contact and p = C - 3, q = C + 3 for all the other cases, see Table 9.1. It
can be seen that the conductance is nearly proportional to the number of Au atoms
in the central layer. This finding can qualitatively be compared with the result of
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•model calculations for the conductance of a three-dimensional electron gas through
a connective neck as a function of its area in the limit of z?o = 90° for the opening
angle [78]. In the case of the broken contact, the non-zero conductance can again
be attributed to tunneling of electrons.

0 2 4 6 8
Number of atoms in the central layer

10

Figure 9.7: Conductance versus the number of Au atoms in the central layer for the
Au contacts described in Table 9.1.

9.2 Gold contact with an impurity

In recent break junction experiments [29] remarkable changes of the conductance
histograms of nanocontacts formed by AuPd alloys have been observed when varying
the Pd concentration. Studying the effect of impurities placed into the nanocontact
are, in that context, at least relevant for dilute alloys. The interesting question is
whether the presence of impurities can be observed in the measured conductance.
For that reason we investigated transition metal impurities such as Pd, Fe, and
Co placed at various positions of the point contact as shown in Fig. 9.3a. For the
notation of the impurity positions see Fig. 9.8.
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A B C

Figure 9.8: Impurity positions (light grey spheres) in a Au point contact, see Fig.
9.3a.

The calculated spin and orbital moments of the magnetic impurities are listed in
Table 9.2. They were calculated with assuming the direction of magnetization to be
parallel to the z axis (M = z), i.e., normal to the planes. Additional calculations
of the magnetic anisotropy energy confirmed this choice. As usual for magnetic
impurities with reduced coordination number [26], both for Fe and Co remarkably
high spin moments, and in all positions of a Co impurity large orbital moments were
obtained, see also Section 8.1. In particular, the magnitude of the orbital moments
is very sensitive to the position of the impurity. This is most obvious in case of Fe,
where at positions B and C the orbital moment is relatively small, but at position
A a surprisingly high value of 0.47 ßß was obtained.

position

A
B
C

SZ[HB]

Fe
3.36
3.46
3.42

Co
2.01
2.17
2.14

i:[flfll
Fe

0.47
0.04
0.07

Co
0.38
0.61
0.22

Table 9.2: Calculated spin and orbital moments of magnetic impurities placed at
different positions in a Au point contact, see Fig. 9.8. M = z.
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The summation over 116 atoms from each of the first two füll layers (p = C — 3, q =

C + 3) in Eq. (4.36) has been carried out in order to evaluate the conductance. The

"calculated values are summarized in Table 9.3.

impurity
position

A
B
C

pure Au

Conductance [Go]
Pd

2.22
2.24
2.36

Fe
2.67
2.40
1.95

Co
2.97
2.26
1.75

2.40

Table 9.3: Calculated conductances of a Au point contact with impurities on differ-
ent positions, see Fig. 9.8.

A Pd impurity (independent of position) reduces only little the conductance as

compared to a pure Au point contact. This qualitatively can be understood from

the local density of states (LDOS) of the Pd impurity {calculated by using an

imaginary part of the energy of ö = 1 mRy and the real Space SPO was obtained

by taking 1830 k\\ points in the 2D IBZ, see Eq. (2.96)}. The LDOS of site i (m)

can be calculated by using Eq. (2.21) and integrating over the zth unit cell fi;,

(9.1)

In Fig. 9.9 the corresponding LDOS at positions A and C is plotted. Clearly, the

change of the coordination number (8 at position A and 12 at position C), i.e.,

different hybridization between the Pd and Au d bands, results into different widths

for the Pd d-like LDOS. In both cases, however, the Pd d states are completely filled

and no remarkable change in the LDOS at Fermi level (conducting states) happens.

The case of the magnetic impurities seems to be more interesting. As can be inferred

from Table 9.3, impurities at position B change only a little the conductance. Being

placed at position A, however, Fe and Co atoms increase the conductance by 11 %

and 24 %, while at position C they decrease the conductance by 19 % and 27 %,

.respectively. In Ref. [38] it was found that single Fe, Co (and also Ni) defects in

a 2x2 infinite Cu wire decreased the conductance. By analyzing the DOS it was
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-0.5 -0.4 -0.3 -0.2 -0.1
E-EF [Ry]

0 0.1

Figure 9.9: Local density of states of a Pd impurity in position A (solid line) and in
Position C (dashed line) of a Au point contact, see Fig. 9.8.

concluded that the observed reduction of the conductance is due to a depletion of
the s states in the minority band. The above Situation is very similar to the case
of an Fe or Co impurity in position C of the point contact considered, even the
calculated drop of the conductance (~ -20 % for Fe and ~ -28 % for Co) agrees
quantitatively well with our present result. Our result, namely, that Fe and Co
impurities at position A increase the conductance can, however, not be related to
the results of Ref. [38]. In order to understand this feature we have to carefully
investigate the LDOS calculated for the point contact.

In Fig. 9.10 the minority d-like LDOS of the Fe and Co impurities in positions A and
C are plotted as resolved according to the canonical Orbitals dx2_y2, dxy, dXZt, dxy and
d3z2_T2. We have to stress that this kind of partial decomposition, usually referred
to as the (£, m, s) representation of the LDOS, is not unique within a relativistic
formalism, since due to the spin-orbit interaction the different spin- and orbital
components are mixed. However, due to the large spin-splitting of Fe and Co the
mixing of the majority and minority spin-states can be neglected.
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As can be seen from Fig. 9.10, the LDOS of an impurity in position A is much

narrower than in position C. This is an obvious consequence of the difference in the

coordination numbers (8 for position A and 12 for positions C). Thus an impurity

in position A hybridizes less with the neighboring Au atoms and, as implied by the

LDOS, the corresponding d states are fairly localized. Also to be seen is a spin-orbit

induced Splitting of about 8 mRy (~ 0.1 eV) in the very narrow dx2_y2-dxy states of

the impurities in position A. The difference of the band filling for the two kind of

impurities shows up in a clear downward shift of the LDOS of Co with respect to

that of Fe.
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Figure 9.10: Minority-spin orbital-resolved d-like local density of states of Fe and
Co impurities in position A (upper panels) and in position C (lower panels) of a Au
point contact, see Fig. 9.8.
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In Fig. 9.11 the difference between non-relativistic and relativistic calculations are

seen. The Splitting in the dx2_y2 and dxy states vanishes by turning off the spin-orbit

coupling. Furthermore, the very narrow states can be better observed as well as a

2-1-1-1 Splitting of the orbitals is detected which is due to the reduced crystal field

symmetry (C±v) of the Co atom in position A. This kind of Splitting in the non-

relativistic case is in füll conformity with group theoretical forecasts [58].
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Figure 9.11: Minority-spin orbital-resolved d-like local density of states of a Co im-
purity in position A, see Fig. 9.8. On the left non-relativistic, on the right relativistic
calculations are seen.

In explaining the change of the conductance through the point contact caused by

the impurities in positions A and C, the s-like DOS at the center site, i.e., at

the narrowest section of the contact, is plotted in the top half of Fig. 9.12. As a

comparison the corresponding very flat s-like DOS is shown for a pure Au contact.

For contacts with impurities this s-like DOS shows a very interesting shape which

can indeed be correlated with the corresponding d3z2_r2-\ike DOS at the impurity

site. see bottom half of Fig. 9.12. Clearly, the center positions and the widths of

the d3z2_r2-\ike DOS peaks and those of the respective (anti-)resonant s-like DOS

shapes coincide well with each other. This kind of behavior in the DOS resembles

to the case studied by Fano for a continuum band and a discrete energy level in the

presence of configuration interaction (hybridization) [79]. Apparently, by keeping

this analogy, in the point contact the s-like states play the role of a continuum and

the rf322_r2-like State of the impurity acts as the discrete energy level. Since the
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two kinds of states share the same cylindrical symmetry, interactions between them
can occur due to backscattering effects. It should be noted that similar resonant
line-shapes in the STM I-V characteristics have been observed for Kondo impurities
at surfaces [80, 81] and explained theoretically [82].

Inspecting Fig. 9.12, the enhanced s-like DOS at the Fermi level at the center of the
point contact provides a nice interpretation to the enhancement of the conductance
when the Fe and Co impurity is placed at position A. As the peak position of the
d322_r2-like states of Fe is shifted upwards by more than 0.01 Ry with respect to
that of Co, the corresponding resonance of the s-like states is also shifted and the
s-like DOS at the Fermi level is decreased. This is also in agreement with the
calculated conductances. In the case of impurities at position C, i.e., in a position
by Ü3D — 7.681 a.u. away from the center of the contact, the resonant line-shape
of the s-like states is reversed in sign, therefore, we observe a decreased s-like DOS
at the Fermi level, explaining in this case the decreased conductance, see Table 9.3.
Since, however, the s-like DOS for the case of a Co impurity is larger than for an Fe
impurity, this simple picture cannot account correctly for the opposite relationship
we obtained for the corresponding conductances.
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E-EF [Ry]
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E-EF [Ry]

Figure 9.12: Top left: minority-spin s-like local density of states at the center site
of a Au point contact with an impurity at position A, see Fig. 9.8 (solid line: Co.
dashed line: Fe). Top right: the same as before, but with an impuritiy at position C.
As a comparison, in both figures the corresponding LDOS for the pure Au contact
is plotted by dotted lines. The solid vertical lines highlight the position of the Fermi
energy. Bottom: minority-spin d3z2_r2 local density of states of the impurities (solid
line: Co, dashed line: Fe) at positions A (left) and C (right). Vertical dashed lines
mark the center positions of the d3z2_r2-LDOS peaks.



Chapter 10

Conclusions

In Chapter 7, by using the Kubo-Greenwood formula within the fully relativistic

spin-polarized Screened KKR-CPA method for disordered layered Systems ab-initio

calculations of the residual resistivities and anisotropic magnetoresistance ratios of

bulk fcc Nii_cFec alloys in the Ni-rich regime were performed. Resistivities in satis-

factory agreement with experiments were obtained. The differences relative to the

measured data most likely have to be attributed to the missing vertex corrections

within the single-site CPA and/or to additional scattering effects due to imperfec-

tions present in the experimental samples. Quite surprisingly, practically in the

entire concentration ränge under consideration, the calculated AMR ratios were

found in excellent quantitative agreement with the measurements, indicating that

an accurate computational scheme, which includes spin-polarization and relativity

on the same level, can indeed account for magnetoresistive effects of alloys with high

precision. In addition to the AMR ratios, for two permalloy Systems, namely, for

Nio.8oFeo.2o a n d Nio.85Feo.15, the dependence of the resistivity on the angle between

the current and the magnetization was calculated. The results fit well the general

phenomenological expression given by Döring for the resistivity of saturated ferro-

magnetic cubic crystals.

Corresponding to the main topic of this work, a real Space method is presented and

has been implemented which uses a real-space embedding technique within the KKR

Green's function method and the CPA and which is combined with the real-space

Kubo-Greenwood formula in order to describe electric transport in nanostructures.

In Chapter 6 the reliability of the presented real space method was checked. It can
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be stated that the method works well in "large cluster" limit. Good convergence to
the surface resistivity was achieved for Ag(OOl) surface layer by increasing the size of
planar clusters, and quite reliable bulk resistivities were obtained in the case of sub-
stitutionally disordered binary alloys (CuPt), while the resistivity of pure Äg(OOl)
bulk was calculated with an absolute error of roughly 0.05 lÄlcm.

In Chapter 8 in-plane transport properties of the surface layer of Ag(001) were in-
vestigated by embedding Single impurities and finite chains (length of 2-10 atoms)
of Fe and Co along the (110) direction (x) into the surface layer. By defining a
"residual resistivity" for finite clusters it was obtained that chains made of Co have
less resistivity than those made of Fe. Moreover, by studying the influence of the
direction of magnetization on the resistivity, it was found that in most cases the
magnetization parallel to the orientation of the chains (M = x) provides the least
resistivity, while there is not much difference between resistivities calculated with
magnetization perpendicular to the chains M = y and M = z.

In Chapter 9 the conductance of gold nanocontacts was studied depending on the
contact geometry and transition metal impurities placed at various positions. Sev-
eral numerical tests were performed that proved the efficiency of our method. In
good agreement with experiments and other calculations a conductance of 1.1 GQ

was obtained for a finite linear chain connecting two semi-infinite Au leads. The
calculated conductance for a thicker 2x2 wire, 2.58 Go, can be related to a recent
result for an infinite 2x2 chain (3 Go) [38]. Also in agreement with quantum me-
chanical model calculations [78] a nearly linear dependence of the conductance was
found on the "thickness" of the contact. By embedding magnetic transition metal
impurities into a point contact both enhancement and reduction of the conductance
was found depending on the position of the impurities. On analyzing the local den-
sity of states we concluded that the effect of the impurity is mainly controlled by the
interaction of the minority d-like and s-like states giving rise to a resonant line-shape
(Fano-resonance) in the s-like DOS at the center of contact. We suggest that this
line-shape should also be observed in / — V conductance characteristics providing
thus an "experimental" tool to detect magnetic impurities (even their position) in a
noble metal point contact.



Appendix A

Density Functional Theory

Density Functional Theory (DFT) has the main purpose to investigate ground-state
properties of a System of interacting electrons which is shortly discussed in this
Appendix.

A.l The Hohenberg-Kohn theorems

Let us consider an iV-electron System in a solid (N is fixed). The Hamilton Operator
of the electrons within the Born-Oppenheimer approximation can be written as

*-9 N N

where m is the electron mass, T corresponds to the kinetic energy Operator, Ü is the
external potential containing the electrostatic potential between the electrons and
nuclei, and W contains the potentials of the electron-electron interaction of form

w(r- - * > = d b • i ^ n • (A-2)
Let the wavefunctions, \&(ri, r 2 , . . . , TN) denote the coordinate representations of N-
electron states, which are antisymmetric against the permutation of their variables
(Pauli's exclusion principle). The density of electrons is defined with wavefunctions
as

n
r ) = Y l I d 3 r 2 - - - I d 3 r N - \ y ( T , a ] T 2 , a 2 ; . . . ; T N , a N ) \ 2 . (A.3)
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Let us define the so-called class of pure-state v-representable densities [83] as

AN = {^(r) | n comes from an iV-particle ground-state}.
We can define the class of the proper potentials as well as
UN = {«(r) | u G Cp for some p, p=oo is also allowed, H[u] has a ground-state}.
Assuming a fixed form of the interaction Operator, W as w(r) defined in Eq. (A.2),
H can be regarded as a function of u(r) like H = H[u(r)}. The ground-state energy
can be defined as the lowest expectation value of H as

} (A.4)

where |\t)-s are iV-electron states with finite kinetic energy. Let |\&o[u(r)]) denote
the ground-state of a Hamiltonian with u(r) as

flHr)]|*0[u(r)]> = E0[u(r)} |*o[ti(r)]>. (A.5)

We will call two potentials, t*i(r) and 1*2(1*) physically different from each other if
,they obey ui(r) — U2(r) ^ const. in the whole real space. If they differ only in
a constant the corresponding ground-states will be the same. Let us now list the
Hohenberg-Kohn theorems [84],

Theorem 1: The external potential u(r) is a unique function of the ground-state
density no(r) apart from a trivial constant. In other words, for a given n(r) there is
only one u(r) for which n(r) is the ground-state density.

Theorem 2: The total energy, E is a unique function of n(r) and the exact ground-
state electron density no(r) minimizes the functional -Ej^r)] like Eo = E[no(r)].
Theorem 3: The ground-state expectation value of any observable is a unique
function of the exact ground-state electron density roo(r).

These theorems can be proved by reductio ad absurdum. The so-called Hohenberg-
Kohn density functional as the functional Legendre-transformation of the ground-
state energy in Eq. (A.4) is defined as

F„K[n) = E0[u[n}} - J d3r • u[n(r)]n(r). (A.6)

Using this functional the ground-state energy can be expressed as

E0[u] = min l FHK[n]+ J d3r-u(r)n(r)\, (A.7)
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which, together with the Hohenberg-Kohn theorems follows that the ground-state

energy can be written as a functional of the ground-state density, no(r) instead of

the external potential u(r). There are problems remained, namely neither the classes

UM and AN nor the functional FHK[n] are known explicitly.

A.2 The Kohn-Sham equation

The main trick that Kohn and Sham [85] introduced into DFT is that the ground-

state density of an interacting System can be identified as the ground-state density

of a non-interacting System with an effective one-particle potential, us(r). If this

potential is found, only a one-particle problem has to be solved.

In the Kohn-Sham theory the ground-state of an electron (or more generally a

fermion) System is written as a Slater determinant of the lowest N one-particle

Solutions, 0i(r) of the Schrödinger equation with total potential US(T), as

#o(ri> r 2 , . . . , TN) = -j== d e t ^ r * ) ] , (A.8)

VJV!

which implies the form of the electron density,

N

ns(r) = y ^ (j)*(r)(j)i(r) (A.9)

and the kinetic energy,

The Hohenberg-Kohn functional of a non-interacting System (W(T) = 0) is the kinetic

energy in the ground-state which is in turn a functional of the ground-state density,

Ts[n] = Es
0[us[n}} - f d3r • us[n(r)]n(r). (A.ll)

Even this functional is not explicitly known, but its existence is guaranteed by the

Hohenberg-Kohn theorems. We can write the Variation of any functional of n with

respect to <f>* according to Eq. (A.9) as
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therefore, the Variation of Ts in Eq. (A.10) with respect to </>* may be compared to

that of in Eq. (A.ll) and can be written as

If we calculate the Variation of EQ[TI] in Eq. (A.ll) with respect to (p* we obtain

8
~ Si

8n(r)

where we introduced Lagrange multipliers, E{ in Order to take into account the

constraint of a fixed number of particles, N. If we calculate the expression

we get the ground-state energy of the non-interacting System,

Es
0[u}=Yel,

where the summation is over the lowest N eigenvalues. In the interacting case

(w(r) ^ 0) we can decompose the Hohenberg-Kohn functional as

= Ts[n) + EH[n] + Exc[n]

with defining the Hartree energy as

and the exchange-correlation energy as

Exc[n] = FHK[n] - Ts[n] - EH[n). (

Inserting Eq. (A.17) into (A.7) and similar to the non-interacting case, taking the

Variation with respect to 0*(r) we get the Kohn-Sham equation,

~ ^ V 2 + u e / /(r)) &(r) = e^r) (A.20)
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with the effective potential, ue//( r) = w(r) + UH{T) + uxc(r), where u(r) means the
external potential, the Hartree potential is given by

6EH[n] e2

Sn(r)

and the exchange-correlation potential is defined as

f 3 n(r')
/ d r -
J |r - r'|

[A.Zl)

]

T • ( }

The exact form of Exc is not known thus some kind of approximations are needed.
The uniform electron gas problem resulted the so-called Local Density Approx-
imation (LDA), which was, in the mostly used form, elaborated by Gunnarson
and Lundqvist [86]. Despite the fact that LDA is exact only for uniform densi-
ties, it works quite well for calculating ground-state properties of atoms, molecules
and solids. The exchange-correlation energy and the exchange-correlation potential
within LDA can be written as

Exc[n] « fd3r- exc[n(T)]n(r) (A.23)

and

uxc(v) = exc[n(r)} + ̂ f f i W ) , (A.24)
respectively, where exc[^(r)] is the density of the exchange-correlation energy of a
uniform electron gas with density of n(r).

Having an assumption of the form of uxc or exc, the Kohn-Sham equation has to be
solved and as second step n(r) from the wavefunctions as well as UH(T) and uxc(r)
can be recalculated. Repeating this procedure successively a self-consistent solution
to the ground-state of the interacting System is obtained.

A.3 The Kohn-Sham-Dirac equation

A relativistic generalization of DFT is needed in Order to be able to treat mag-

netic Systems in a non-perturbative way. The Dirac-Hamiltonian can be written in

presence of an external magnetic field as

H = -ica • V + ßmc2 - ecß^Aß , (A.25)
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where Aß (//=0,l,2,3) is the vector potential, c is the velocity of light and a, ß, 7^

are the common Dirac matrices,

• ' * = V o i

The Pauli matrices are <TI = ( 1 , <j2 = I . ) , CT3 = I ) . (A.26)

It should be noted that in this Section no Special units will be used because of the

simplicity of the formulas.

Let us now briefly present the Current Density Functional Theory (CDFT), first

described by Rajagopal and Callaway [87, 88] and later by MacDonald and Vosko

[89] as well as by Vignale and Rasolt [90, 91]. In CDFT new variables are introduced,

namely the four-current, Jß — •0(r)7M'0(r), where tp denotes ip+ß, and the four-

density, (n(r), M(r)), where the magnetization density is defined by

- e J ( r ) = V x M(r) (A.27)

with J(r) being the three-current density, in stationary states of form

J(r) = — V x (L(r) + 2S(r)). (A.28)
w 2m v v ' v " v '

Here L(r) is the so-called angular momentum density,

V x L(r) =-0(r) f - i V + i V + 2eA(r)j-0(r) (A.29)

and S(r) the spin density,

1 - (er 0\
S(r) = -t/)(r)S^(r) with S = . . (A.30)

It is important to mention that for a homogeneous electron gas the angular mo-

mentum density is zero, which, in turn results the total neglection of inter-orbital

current-current interactions within LDA. The Kohn-Sham-Dirac equation can be

derived by varying the total energy functional with respect to ^(r) and

[-ica • V + ßmc2 + uext{v) + uxc(v) + ^ S ( B e I t ( r ) + Bxc(r))]

(A.31)
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is obtained, where the exchange-correlation field is defined by

ßoBxc{r) = §{7) • (A-32)

Local Spin(-polarized) Density Approximation (LSDA) was elaborated by Vosko et

al. [72] and MacDonald et al. [92] in order to approximate BIC(r). In this approach

the independent variables are the spin-projected densities, n-f and n^, with them

n(r) = n-f(r) + n±(r) and 5(r) = n-j-(r) — n^(r) can be easily defined. For collinear

spin structures with spin quantization axis pointing along the 2-axis, J5XC can be

expressed as

—B x c (n t ( r ) , n ;(r)) = [ v t K W , ^( r ) ) - M,a(
nt(r)> nl( r))l ez • (A.33)

f IL



Appendix B

Kubo formalism

In this Appendix, some derivations of equations and proofs of formulas taken from

Section 1.3 are presented.

Proof of Kubo's identity, Eq. (1.51):

ß ß ß

Q I dXXH(t - iXh) = -%-Q I dX \eXHXH(t)e-xä,H] = %-Q dX— (exklff(t)e"AÄ)
J n J L i n J dX \ /
0 0 0

- l Ue^Xz(t)e-^-ßXH(t) = l- [xH(t),

\ XH{t)Q )

Derivation of the Kubo formula, Eq. (1.52):

Tr ( £0 HH(t' - iXh)AH(t) I = Tr (g0 e*{t -*xh)no

= J r I On -" l ' J 6 ftV ' -AHvt) cR = J T \ Qo -" (t ) -Äff(c — t + ?Aft)
\ / \ /

Derivation of Eq. (1.63) starting from Eq. (1.61):

ßß

fdXTr (& J„(-q,0)J/x(q,* + iAft)) = / dX^Tr [e'^ Jv(-q,0)
o

ß

= J dX^Tr (e"**° J,(q, t) c^-«*> J,(-q, 0))
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p

-1
0

ß

-I
dXTr

d\Tr

J,(q, t)

jß(<l,t)e -x'ko

(-q, 0))

0

= J dXTr (&, J^t - iXh) J,(-q, 0))

t-tÄ/3

t
oo

= l-Jdt'Tr[
t
oo

= *-j dt'Tr[
t
oo

= l-Jdt'Tr[ g0

where it was assumed that the integrand is analytical.
Derivation of Eq. (1.65) starting from Eq. (1.63):
Integration by part yields,

oo oo
1 f deiwt f ,

cr„^(q,ui) = —— / dt—— / dt
aVw J dt J

o t

dte^Tr [g0 [j^(q,t), J„(-q, 0)] }
o o

oo

[./„(q,*), J,(-q,0)]} - j dt'Tr [QO [j,(q,t'),l(-q,O)]]

with definition of the current-current correlation function.
(1.64).

, w) taken from Eq.
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Derivation of Eq. (1.71):

Tr (ä, [ , ( q , ) , X ( q , ) ] )
nmp

mnp

Derivation of Eq. (1.97) using Eq. (1.94):

—oo

v \ö
+{e) - G"(e)]) +Tr

-Tr (j„ [G+(e) - G-(e)] J, [(?+(e - hu) -

x {Tr(j / iImG+(e + no;)JI/ImG+(e)) - Tr (jM Im G+(e)X ImG+(e -
00

= -^ [ de (/(e) - /(e + M ) ^r (jMImG+(e

where the last step was obtained by shifting the argument of integration by hu in

the second term of last but one row.
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Derivation of Eq. (1.105) starting from Eq. (1.101):

i

def(e)

x Tr | Jß^Mjß \ö+(e) - G-(e)] - J„
oo

h def(e)Tr (j^
2nV

—oo

oo
h räeHe)^Tr[Jr

— OO

h

4nV

Jn
de

Jß

Jß

=o

h de ir T r
-

ö
~

{ £ )
\ ) •
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