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Kurzfassung

In der zweiten Hilfte des vergangenen Jahrhunderts wurde der Begriff der
g-additiven Funktionen geprdgt. Damit im Zusammenhang stehen einer-
seits Michel Mendes-France und Hubert Delange sowie andere Vertreter
der franzosischen Schule. Andererseits beschiftigte sich auch der russische
Mathematiker Aleksandr Ossipovich Gelfond (1906-1968) damit. In einer
seiner letzten Publikationen [15] hat er diese spezielle Art von Funktionen
wie folgt definiert:

Sei g cine beliebige fest gewihlte ganze Zahl grofer als oder gleich
zwei. Eine Funktion f : N — R heifit (vollstindig) g-additiv,
wenn fir beliebigea > 1und 0 < b < ¢

flag +b) = f(a) + f(b) (1)
gil¢.

Seit den Anfingen in den spéten 60er Jahren des 20. Jahrhunderts wurden
viele Fortschritte erzielt, und so sind heute bereits zahlreiche Ergebnisse
rund um g-additive Funktionen bekannt.

In der vorliegenden Arbeit beschreiten wir einen neuen Weg und fiihren die
sogenannten (J-additiven Funktionen ein. Dabei handelt es sich um eine
Verallgemeinerung der obigen g-additiven Funktionen, die folgendermafien
definiert ist:

Sei K ein endlicher Kérper und Q@ € K|[T] ein beliebiges Poly-
nom mit positivem Grad. Eine Funktion f auf K[T] heifit
(vollstindig) Q-additiv, wenn fiir beliebige A,B € K[T] mit
grad(B) < grad(Q)

f(AQ + B) = f(A) + f(B) (2)

gilt.




11

Ziel dieser Dissertation ist es, das Verteilungsverhalten von @Q-additiven
Funktionen zu untersuchen. Genauer gesagt werden wir drei Resultate (von
Kim, Bassily & Katai bzw. Drmota) iiber g-additive Funktlonen fiir den
Polynomring iiber einem endlichen Kérper adaptieren.

In Kapitel 1 wird zunéchst ein kleiner Uberblick iiber verschiedene Ergeb-
nisse vorangegangener Untersuchungen zahlreicher Mathematiker gegeben.
Besonderes Augenmerk wird dabei auf jene drei Resultate gelegt, die wir im
Laufe der Dissertation in unserem Sinne verallgemeinern werden.

Weiters werden die wichtigsten Eigenschaften des additiven Charakters E
zusammengestellt.

In Kapitel 2 verallgemeinern wir ein Resultat von Dong-Hyun Kim [20] iiber
die gemeinsame Verteilung von g-additiven Funktionen in Residuenklassen.
Der Beweis unserer Verallgemeinerung (Theorem 4) stiitzt sich dabei teil-
weise auf Kims Methoden, es treten aber andere Schwierigkeiten auf.

In einem zweiten Unterkapitel (2.2) werden noch einige Fragen, die im Laufe
unserer Betrachtungen im Zusammenhang mit oben genannten Theorem 4
auftauchen, behandelt.

In Kapitel 3 werden zwei zentrale Grenzwertsédtze bewiesen. Zum einen
verallgemeinern wir in 3.1 ein Resultat von Bassily und Kdtai [1], einen
zentralen Grenzwertsatz fiir die Verteilung der Folgen f(P(n)), n € N,
und f(P(p)), p € P, wobei f(n) eine g-additive Funktion und P(n) ein
Polynom mit ganzzahligen Koeffizienten ist. Mit Hilfe einer Abschatzung
von E-Summen (siche Lemma 24) sowie der Momentenmethode kann das
entsprechende Resultat (Theorem 5) bewiesen werden.

Im letzten Abschnitt beschiftigen wir uns schlieBlich mit einem Ergebnis
von Drmota [9]. Dieser hat Bassily und Kétais Ergebnisse auf die gemein-
same Verteilung von zwei Folgen f,(n) und f;(n) verallgemeinert, wobei fi(n)
qi-additive Funktionen und die Basen gq;, g, relativ prim sind. Fiir unsere
Zwecke benétigen wir zusétzlich zu den Methoden aus 3.1 den Satz von Ma-
son. Damit gelingt es uns, ein ensprechendes Resultat fiir die gemeinsame
Verteilung von Q- bzw. @,-additiven Funktionen auf dem Polynomring iiber
einem endlichen Kérper zu beweisen, wobei @; und @, relativ prim sind.



Abstract

The notion of g-additive functions was established in the second half of the
last century. On the one hand, scientists like Michel Mendes-France and
Hubert Delange as well as other members of the French school obtained
first results on this concept. On the other hand, it was mainly the Russian
mathematician Aleksandr Ossipovich Gelfond (1906-1968), who studied this
matter. In one of his last publications [15] he defined this special kind of
function as follows:

Let g be an arbitrary fixed integer, ¢ > 2. A function f : N - R
is called (completely) g-additive if

flag+b) = f(a) + f(b) (3)
for arbitrary a > 1 and 0 < b < q.

Since these beginnings in the late 60s of the 20** century much progress
has been achieved. Thus, various results concerning g-additive functions are
known today.

In this thesis we work in the ring of polynomials over a finite field, and in-
troduce the so-called @-additive functions. They constitute a generalization
of the above mentioned g-additive functions and are defined in the following
way.

Let K be a finite field and Q € K|[T] an arbitrary polynomial
of positive degree. A function f on K[T) is called (completely)
Q-additive if
f(AQ + B) = f(A) + f(B) (4)
where A, B € K[T] and deg(B) < deg(Q).
The aim of this thesis is to study the distribution of @-additive functions.
More precisely, we are going to adapt three results (by Kim, Bassily & Kétai

and Drmota) about g-additive functions for the ring of polynomials over a
finite field.

III
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In Chapter 1 we will give a brief survey of different results of previous studies
by various mathematicians. Qur main focus will be on the above mentioned
three results which we are going to generalize in the course of this thesis.
Moreover, we will introduce the additive character E, on which all of our
studies are based.

In Chapter 2 we are first going to concentrate on a work by Dong-Hyun
Kim [20] about the joint distribution of g-additive functions in residue
classes. The proof of our generalization (Theorem 4) will partly rely on
Kim’s original proof, but we have to face some difficulties that are different
from that of Kim.

In a second section (2.2) we are going to deal with several questions which
arise in the course of our study of Theorem 4.

In Chapter 3 we are going to prove two central limit theorems. On the
one hand, we will generalize Bassily & Katai's result in 3.1. They proved a
central limit theorem for the distribution of sequences f(P(n)), n € N, and
f(P(p)), p € P, where f(n) is a g-additive function and P(n) an arbitrary
polynomial with integer coefficients. By the help of an estimate of E-sums
(see Lemma 24) as well as the method of moments the corresponding result
(Theorem 5) can be shown.

In our last section, we finally focus on Drmota’s article [9]. In his work,
Drmota generalized Bassily & Katai’s theorem for the joint distribution of
two sequences f1(n), fa(n) where f;(n) are gi-additive functions, and ¢; and
go are coprime. For our purposes, we also need Mason’s Theorem in addition
to the methods used in 3.1. Thus, we succeed in proving the desired result
for Q.- and @Q,-additive functions on the ring of polynomials over a finite
field, where @, and Q. are coprime.
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Chapter 1

Introduction

The purpose of this chapter is to present basic preliminaries about Q-additive
functions, on which our research in Chapters 2 and 3 is based.

We will start by defining g-additive functions which are concerned with inte-
gers. Of course, one cannot discuss g-additive functions without mentioning
members of the French school like Mendes-France, Delange and Coquet, as
well as the Russian mathematician A.Q. Gelfond. The latter’s basic ideas
and definitions of ¢-additive functions will be given close attention.

While the early work on g-additive functions is still essential with respect
to terminology, the findings themselves have long been extended. Therefore,
we will give a brief survey about several works on g-additive functions. Of
particular interest will be three more recent works, namely one by Kim ([20}),
which is a generalization of Gelfond, one by Bassily and Katai ({1]), who
studied the distribution of g-additive functions on polynomial sequenceé,
and one by Drmota ([9]), which is, in turn, a generalization of Bassily and
Kétai. We will cite these results in a slightly modified form.

After that, we will introduce the new definition of @-additive functions
which are concerned with polynomials and which represent our actual focus.

The main aim of this thesis will be to generalize the results of the three above
mentioned articles. Whereas they deal with g-additive functions defined on
the non-negative integers, we try to translate these findings into Q-additive
functions defined on the ring of polynomials over a finite field.

In the final section of this introduction we will deal with the properties of the
additive character E which is strongly related to the ordinary exponential
function exp : R — R. As our proofs include the study of exponential sums,
E is a basic tool.
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1.1 g-additive functions

The history of research concerning g-additive functions dates back to the
1960s. The first scientists who concerned themselves with this matter were
members of the French school like Michel Mendes-France and Hubert De-
lange as well as the Russian mathematician Aleksandr Ossipovich Gelfond.
They laid the foundation for the following definition.

Let ¢ > 1 be a given integer. Then, every non-negative integer n has a unique

g-ary expansion
n= z £q.i(n)¢
320
with g,;(n) € E, := {0,1,...,9 — 1}. The ¢,;(n) are called digits of n in
base q. If there is no risk of confusion, the index ¢ will be omitted.
{q, E,} is called a number system. There are generalizations of such number
systems, however they are of no concern to the thesis in hand. For further

reference see [22].
A function f : N — R is called g-additive, if f(0) =0 and

f(n) = fleqs(m)d’).

j=20
If f even satisfies
f(n) =Y fleqi(m)),
j20
it is said to be completely q-additive. An example of such a function is the
sum-of-digits function sq : N — N that denotes the sum of the digits of n in

base ¢:

sq(n) = ZEQJ(")-

j20

This particular example, as well as g-additive functions in general, has been
very well studied by several authors.
ManstaviGius [24], for example, extended an idea of Coquet [6]. He focused
on the mean value of g-additive functions and formulated the most general
result so far: Let '

1 qg-1 1 qg-1
we== > f(bd"),  uy== f(bg")?

and
{logg N) {logg N]

TM(N)= ) ome  BIN?= ) i
k=0 k=0
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Then, 1
| + 3 (Fm) — MN))? < cB(NY,

n<N
which implies
1
= " f(n) = M(N) + O(B(N)).
n<N
For the sum-of-digits function sg(n) other much more precise results are
known. For integral N, Delange [8] proved

1 qg-—1
5 2 Saln) = —5—log, N +(log, N),
n<N

where 7 is a continuous, nowhere differentiable and periodic function with
period 1. Without mentioning their results in detail, we want to quote
Kirschenhofer [21], Kennedy and Cooper [19] and Grabner, Kirschenhofer,
Prodinger and Tichy [16] who studied higher moments of s,(n) in the given
articles.

However, we want to present an interesting result by Gelfond [15}:

Assertion 1 Letg > 1,p>1, m>1,l,a € Nand (p,g—1) = 1. Then,
the number of integers n,n < N, satisfying

n=1 (m) and Sq(n) =a (p)v

is given by

N
— +O(NY, A<l
mp

Interestingly, one special case of Assertion 1 can even be found in an earlier
work by Nathan Jacob Fine [14], which dates back to 1965. It deals with
Stanislav Marcin Ulam’s question whether the number of n < N for which
510(n) =n =0 (mod 13) is asymptotically N/132.
This question was affirmatively answered by Fine’s above mentioned article.
Additionally, the latter showed
.1 _ _ 1

A}l_r&) N#{n < N|n=a(p)and sg(n)=c (p)} = i
for arbitrary 0 < a,c¢ < p and for any prime p which must, however, not be
a divisor of (¢ — 1).

Gelfond was certainly not the first scientist to work on such questions. Nev-
ertheless, he and the members of the French school were one of the first
who contributed considerably to the notion of g-additive functions and who
studied them in detail.
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1.2 More recent findings on the distribution
of g-additive functions

As we have learned in section 1.1, Gelfond’s studies led to Assertion 1 about
the sum-of-digits function s,(n). Now let us neglect the residue class which
contains n. Then, due to Assertion 1, Gelfond actually proved the estimate

%#{O <n<N:sy(n)=amodm} = % + O(N*—%) (1.1)

which is valid for any integer o and positive N, where § = d(g,m) is a
positive constant depending only on ¢ and m.

In other words, he showed that the sum-of-digits function s,(n) is uniformly
distributed in residue classes modulo m for an arbitrary integer m > 2
provided that m is coprime to ¢ — 1.

Since the beginnings of g-additive functions, they have been extensively
discussed in the literature. One reason for this can be found in the fact that
Gelfond, Mendes-France and Delange did not only create the pure concept
of g-additive functions, but also made several conjectures concerning these
functions. So, it was only a question of time until other scientists engaged
in studying this field further in order to examine those conjectures and, if
possible, to verify them.

For example, in [15] Gelfond made the following conjecture, which actually
is a generalization of estimate (1.1).

Conjecture 1 Let mi,mz,q: and gz be integers > 2 satisfying (q1,¢2) = 1
and (my,q1 — 1) = (me,q2 — 1) = 1. Then,

%#{0 <n < N :sg(n) =a; mod my, sg,(n) = a; mod ma}

~ 1 jowthy (w1
mimso

holds for arbitrary integers a,,as.

Only a few years later, Bésineau [2] was able to take a decisive step towards
Conjecture 1 in that his result was already valid for an arbitrary number of
bases q;. However, he did not fully succeed in attaining the error term which
had originally been asserted. Actually, Bésineau showed that for any integers
a,ay,...,04, 38 N — 00,

1 1
— < . = aq my,l<i<d}~ —m— 1.2
N#{O < n < N|sg(n) = a; mod <i<d} e —_ (1.2)
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holds under the condition that the bases ¢; are pairwise coprime and
(miygg—1)=1for1<i<d.

In 1998, Dong-Hyun Kim was able to sharpen Bésineau’s estimate (1.2) to an
estimate with the desired error term O(N'~¢). Moreover, Kim replaced the
sum-of-digits function s4(n) by an arbitrary completely g;-additive function

fi

Theorem 1 (Kim [20]) Suppose that qi,...,q4 > 2 are pairwise coprime
integers, my, ..., mq positive integers, and let f; be completely g;-additive
Sfunctions for 1 < j < d. Set

H := {(fi(n) mod my, ..., fs(n) mod mg) : n > 0}.

Then, H is a subgroup of Zp, X -+ + X Zy, and we have

1

—1\7# {n < N: fi(n) mod m; = ay,..., fa(n) mod my = a4}
_J1/|H|+O(N'%) (ay,...,a4) € H,
“]o otherwise,

where § = 1/(120d*g®>m?) with

g = max g; and T = max m;;
1= 52 1<55<d -

and the O-constant depends only on d and qi, ..., qq4.

In [20] the set H is explicitly determined. Set

F; = f;Q1), |
dj = ng{mjv(Qj—l)F})fj(r)_TF_‘j (ZSTS(]J—l)},

for each 1 < j < d. A d-tuple (ay,...,aq) of integers is called admissible
with respect to the d-tuples (qi,...,qq), (M1,...,mq) and (f1, ..., fa), if the
system of congruences

Fijn=a;modd;;1<j<d

has a solution.

Then, the elements of the set H are exactly these admissible d-tuples in
the above sense. Furthermore, Kim characterizes the admissible d-tuples
(ai,...,aq) by congruence conditions in the following lemma.
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Lemma 1 A d-tuple (a1,...,a4) of integers is admissible with respect to
(@1,-..,94), (m1,...,mq) and (f1,..., fa), if and only-if the following condi-
tions hold:

(F5.dj) le;  (1<j<d),
0iF} = a}F mod (&, &) (i # 1),
where aj = a;/(Fj,d;), F; = F;/(Fj,d;), and d} = d;/(F;,d;). Moreover, if
(a1, ...,aq) is admissible, then

1
N#{O§n<N:anEajmoddj(1 <j<d)}=

1/D+0(1) forall N >1,
1/D i D|N,

where D = [d},d3,...,d}).

The lemma follows directly from the definition of admissibility and the gen-
eralized version of the Chinese Remainder Theorem (see {28}, Theorem 5.4.3
pp. 156-157).

Remark 1 In our next chapter we will generalize Theorem 1 and modify
some of the ideas of Kim’s proof for his theorem. Fortunately, in the case
of polynomials over finite fields some aspects are easier to show than for
integers, so some parts of Kim’s original proof may be neglected. Some other
difficulties appear instead.

During the second half of the 20%* century other fields of research concerning
these functions were explored as well. Thus, one can also find distributional
results for g-additive functions in the literature. In this context we mention
an analogue to the Erdos-Wintner Theorem by Delange {7]. There exists a
distribution function F(z) such that, as N — oo,

1 :
N <Nif(n) <z} — F(z) (1.3)

if and only if the two series 3, px and 3°,5, 43, converge.

Later on, Imre Kétai 18] could generalize this result by proving that there

exists a distribution function F(z) such that, as N — oo,

%#{n < N|f(n) - M(N) <z} — F(=),

if and only if the series Zkzo ug;k converges.
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Once more, the most general result known concerning a central limit theorem
is due to Manstavi€ius [24]. Suppose that, as N — oo,

max |f(bg’)| = o(B(N))

bgi<N
and that D(N) — oo, where

logy N]

1321
D(N)? = Z ol and ol = EZ f(bg*)? — m?
b=0
Then, as N — oo,

%# {n< N|£(ll)’;TIG/I)L1—\—Q <m} - &(x),

where ®(z) is the ordinary normal distribution function.

Again, we content ourselves with just mentioning that similar distribution
results can be found by Dumont and Thomas [12] resp. Drmota and Gaj-
dosik [10].

Some years before Kim’s work was published, Bassily and Kétai [1] stud-
ied the distribution of g-additive functions on polynomial sequences. They
proved a central limit theorem for the distribution of sequences f(P(n)),
n € N, and f(P(p)),p € P, where f(n) is a g-additive function and P(n) an
arbitrary polynomial with non-negative integer coefficients.

This central limit theorem provides the second result which we are going to
generalize at the beginning of Chapter 3.

Theorem 2 (Bassily-Katai [1]) Let f be a completely q-additive function
and let P(z) be a polynomial of degree r with non-negative integer coefficients.
Then, as N — 00,

71,—# n<N: f(P(n)) — riylog, ¥ <zp— ®(z)

1/raf log, N

and

1 oo SPP) —ruglog, N

——# <¢p < N :p prime,
m(N) \/ro%log, N
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where

Zf(r) and of- Zf(r)z—u,

r—O r—O
and

®(z) = \/——12_;/ e /2 dt.

Remark 2 The result of [1] is more general. It even provides asymptotic
normality, if f is not strictly g-additive but the variance grows sufficiently
fast.

It seems to be a natural question to ask whether there are analogue results
for the joint distribution of several g;-additive functions f;(n), 1 < i < d
(if g1,...,94 > 1 are pairwise coprime integers). Drmota [9] quotes A.J.
Hildebrand, who announced that one always has

%#{n < N|fi(n) < z;,1 i < d} > Fi(z) - - Fy(z)

if f; satisfies (1.3) for all 1 < ¢ < d and that there is a joint central limit

theorem of the form
1 fi(”’) luqz'(N) .
N# {n <N N <z;, 1 <1< dy - O(z)P(zy) - - - P(z4)

if By, (N) — o0 and By, (N7) ~ B, (N) for every n > 0 as N — oo.

Drmota [9] used a variation of Bassily and Kétai’s proof; he combined it with
a proper version of Baker’s Theorem on linear forms of logarithms to general-
ize Theorem 2 on the joint distribution of sequences f;(P;(n)) (and f;(Pi(p))
respectively) where f; are g;-additive functions and P;(n) are polynomials of
different degrees. For polynomials of equal degree Drmota could prove a cen-
tral limit theorem only for two sequences f;(P(n)), f2(P(n)) with coprime
1, G2, and linear polynomials Pj(n), Py(n).

The result of his paper will be explained in the following theorem.

Theorem 3 (Drmota [9]) Suppose that ¢, > 2 and ¢ > 2 are coprime
integers and that f and fa are completely q,- resp. q2-additive functions.
Then, as N — oo,

fl (n — U logql ) K, long N

1
N# n< N . >
V ofx log'-h V 95, logtlz

— &(z,)P(z2).
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Remark 3 By adapting Vinogradov’s and Hua’s results on exponential sums
of polynomial sequences, Steiner [81] could extend Drmota’s result to arbi-
trary polynomials Py(n), Py(n) and sequences of primes. However, up to now
it has not been possible to prove a similar property for three or more bases

q5-

_Theorém 3 constitutes the third result we are going to generalize in section
3.2.

1.3 (@-ary expansions and (-additive func-
tions

Contrary to g-additive functions, which deal with integers, Q-additive func-
tions are concerned with polynomials.

Let I, be a finite field of characteristic p (that is, ¢ = |Fy| is a power of p € P)
and let F,[T] denote the ring of polynomials over F,. The set of polynomials
in Iy of degree < k will be denoted by

P, :={A€F,T):deg A < k}.
Sometimes we need a special subset of Py:
P = {A€F,[T):degA<k NA#0}
= P\ {0}.
Analogously to the integer case, we can define the following: Fix some poly-
nomial Q € F,[T] of positive degree. A function f : Fo{T] — G (where
G is any Abelian group) is called (completely) Q-additive, if f(AQ + B) =

f(A) + f(B), where A, B € F,[T)] and deg(B) < deg(Q). More precisely, if a
polynomial A € IF,[T] is represented in its Q-ary digital ezpansion

j=20
where Dg;(A) € P, are the digits, that is, polynomials of degree
deg(Dg ;(A)) < k = degQ, then
f(A) =) f(Da;(A).
j=20
For example, the sum-of-digits function sq : Fy[T] — F¢[T) is defined by
so(A) =) Do;(A).

320
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Remark 4 Note that the image set of a Q-additive function is always finite
and that (in contrast to the integer case) the sum-of-digits function satisfies
so(A + B) = sg(A) + sq¢(B).

This is based on the property that there is no carry over for the single digits
when adding two polynomials, i.e. let

A=Y Doi(AQ, B=3 Do;(B),

>0 320

and C := A+ B, then

C =3 Do;(C)@ with Dg;(C) = Da;(A) + Do (B).

320
Furthermore, deg(C) = max{deg(A),deg(B)} if deg(A4) # deg(B).

In order to be able to analyze more complex results, we need the following
notation introduced by Hayes [17], which we will just adopt.
Let Fo(T") denote the field of rational functions over the finite field Fg:

F,(T) = {%|A,B e F,[T), B # 0} .

On F(T) one has the valuation v associated with the ,infinite prime® of
Fq(T') and defined by

v(0) = oo, (1.4)
v(A/B) = deg(B) — deg(A) (1.5)

for every non-zero rational function A/B. The valuation has the following
properties:

Lemma 2 Let ay,...,a, € Fo(T), then,
1. U(H?:l a,-) = i v(a)
2. v(a;+ag+ -+ an) 2 min{v(a;),v(as),. .., v(a.)}

3. v(a;) = oo if and only if a; = 0.
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Proof.
1. Let a; = A;/B; fori=1,...,n. Then,

I
.M: .
<

—

£

~—r

2. We only prove property 2 for n = 2. The general case follows by

induction.
é + g _ AD+ BC
B' D BD
A C
v E 5) = deg(B) + deg(D) — deg(AD + BC)

> min{deg(B) + deg(D) — deg(A) — deg(D),
deg(B) + deg(D) — deg(B) — deg(C)}
= min{deg(B) — deg(A),deg(D) — deg(C)}

AT L)Y

3. Property 3 follows directly from the definition of v.

The next lemma is an important extension of property 2.

Lemma 3 Let a,...,a, € Fo(T) with pairwise different valuations (i.e.

v(a:) # viay) fori# j), then,

v(ay +az + - - + an) = min{v(as),v(az),...,v(aa)}- (1.6)
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Proof. Again, we will concentrate on n = 2. The general case follows by
induction.

v (g) #v (%) & deg(B) — deg(A) # deg(D) — deg(C)
< deg(A) + deg(D) # deg(B) + deg(C)
< deg(AD) # deg(BC).
If deg(AD) # deg(BC), then deg(AD + BC) = max{deg(AD),deg(BC)}.
Thus,

v (% + %) = deg(B) + deg(D) — deg(AD + BC)

= min{deg(B) + deg(D) — deg(A) — deg(D),
deg(B) + deg(D) — deg(B) — deg(C)}
= min{deg(B) — deg(A),deg(D) — deg(C)}

(@)

Let F,((1/T)) denote the set of formal Laurent series in 1/T". It is well knwon
that F,((1/T)) is the completion of F,(T") with respect to the valuation v.
More precisely, every A € F ((1/T)) can be expanded in a unique way formal
in an infinite series of the form

-3 o (z)

j==o0

O

with a; € F,. Thereby, all but a finite number of coefficients a; with j < 0
are zero. Thus, there exists k € N with

A= ZQJ( > (17)

The extension of the valuation v to Fy((1/T)) can also be determined in
terms of the representation (1.7). If A # 0 and A has the Laurent expansion
(1.7), then,

v(A) = the smallest j such that a; # 0.

Therefore, we can write (1.7) as

- T ()
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1.4 The character F

Throughout this thesis we will use the additive character E defined for all
formal Laurent series (1.7) by

E(A) = eZm‘tr(Res(A))/p' (18)
The residue Res(A) is given by Res(A) = a; and tr is the usual trace function

tr: Fg — F,.

There are some simple properties, which we will resume in the following
lemma.

Lemma 4 For the additive character E : Fo(T) — R defined as in (1.8), we
have
1. For every A, B € F,((1/T)),

E(A+ B) = E(A)E(B). (L.9)
2. For every A € F,[T]: E(A) = 1.
3. For A € Fy((1/T)),

V(A) > 2= E(4) = 1.

4. Let H be a non-zero polynomial and A, B be arbitrary polynomials. If
A and B are congruent modulo H, then,

((B-s)  ow

Proof. The first attribute is trivial and follows immediately from the defini-
tion of the character.

Since the coefficient of 1/T in the Laurent expansion of A is zero in each of
the next two.cases, E(A) = 1.

If A= B mod H, then A= B + RH for some R € Fy[T]. Thus,

(8)-+(252) 5 (3 o8)- (- (3).

The character E has, of course, many more features, see [17].

Due to their importance for the present thesis, we are going to mention two
more properties of the character in the following lemmas. Both proofs pursue
the very same concept.
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Lemma 5 Let H # 0, H,G € F,[T), then:
degH . -
Z E (—G—R) _ { q if H divides G, (1.11)

H 0 otherwise.
deg R<deg H

Proof. If H divides G, G/H € F,[T] and according to Lemma 4(2):
E (£R) = 1. Hence,

H
> E (%R) = ) 1=|H|=g%=t

deg R<deg H deg R<deg H

Otherwise, G = G;H + G, for some polynomials G; and G, with
deg G, < deg H. Thus, by (1.10),

G G,
—R|=E|—=R).
(%) -5 (%)
Moreover, there exists a polynomial Ry with deg Ry < deg H such that

E <%Ro> £ 1. (1.12)

For example, set Ry := T* with i = deg H — deg G5 — 1 < deg H. Then,

S = > E(%R>= > E(%R)

deg R<deg H deg R<deg H
= > E(gZ(R+RO)) =S-E (@Ro> .
H H
deg R<deg H
By (1.12), it follows that S = 0. O

Lemma 6 Suppose that v (g) >0 and thatn > v (g), then,
Y E (gA) =0. (1.13)
A€P,
Proof. Set m := v (&), thus, 0 < m < n. Set Ag = T™! € P,. Again,
' B B B
S=)Y E (5A> =Y E(E(A+Ao)> =S-E(5A0) :
A€Pn A€P,

Thus, the same argument as above holds. O



Chapter 2

Joint Distribution in Residue
Classes

In this chapter, we will generalize Kim’s result (Theorem 1) to the joint distri-
bution of @Q-additive functions on polynomials over a finite field. Therefore,
we will inter alia use methods similar to those in Kim’s article [20] but mod-
ified for the use of polynomials. :

Afterwards, we will answer several questions which occur in the process of
proving our first theorem.

Theorem 4 Let Q,,Q,...,Qq and My, M,, ..., My be non-zero polynomi-

als in Fy[T] with deg Q; = ki, deg M; = m; and (Q;,Q;) = 1 for i # j.

Furthermore, let f; : Fo(T] — Fy[T] be Q;-additive functions (1 < i < d). Set
H = {(fi(A) mod M, ..., f4(A) mod My) : A € F,[T}}.

Then, H is a subgroup of Py, X -+ X Py, and we have
1 .
lllm &_l# {A S ID[ : fl(A) mod Ml = Rl,. . afd(A) mod Md = Rd}

—_ 1/|H| if(Rl)"'aRd)EH)
0 if (Ryy... Ra) & H.

Since the image sets of f; are finite, we can choose the degrees m; of M;
sufficiently large and thus obtain

Corollary 1 Let @Q,,Q2,...,Qq4 and My, M,,..., My be non-zero polyno-
mials in F,[T] with degQ; = ki, degM; = m;, m; sufficiently large and

15
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(Qi,Q;) = 1 for i # j. Moreover, let f; : F[T] — F,[T] be Q;-additive
functions (1 <i < d). Set

H = {(fi(4),..., fa(A)) : A € F[T]}.
Then H' is a subgroup of Pm, X --+ X P, and for every (Ry,...,R4) € H'
we have '

i S (A € P f(A) = Riy.oo fulA) = R}

— 1/IHII if(RI’"-de)EH)
0 if (Ri,...,Ra) ¢ H.

Remark 5 In particular, it follows that if there is A € F,(T]| with fi(A) = R;
(1 <i<d) (fi(A) = R; mod M; resp.), then there are infinitely many
A € Fy[T) with that property.

2.1 Proof of Theorem 4

Let Q1,Q2,...,Qq and My, Ms,..., My be non-zero polynomials in Fg[T)
with deg Q; = k;,deg M; = m; and (Q;,Q;) = 1 for ¢ # j. Furthermore, let
fi be completely Q;-additive functions. For every tuple R = (R;,..., Ry) €
Py X -+ X Py, set

gr(A) = E (%ﬁ(z‘l)) 2.1)
and
d d &
9r(A) = Hgm(A) =E (Z Mﬁ-(A)) : (2.2)

E denotes the additive character defined in (1.8).

With these definitions we can state the following proposition.

Proposition 1 Let Qy,Qs,...,Qq and My, M,, ..., My and R = (R,,..., Ry)
as above. Then, we either have

gr(A).=1 for all A€ F,[T)

or

lim 1 2 gr(A) = 0.

]
1—
& ieh

We will first prove Proposition 1 (following Kim [20]). Theorem 4 is then a
simple corollary.
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2.1.1 Preliminaries

We start with a version of the Weyl-van der Corput inequality.
Lemma 7 For each A € F4[T] let usa be a complex number with |us| = 1,

then,
zuA si, ?z LS Truasn)|.

(2.3)
AP DeP; ¢ AeP,

Proof. Since (P, +) is a group, we have

QTZUA = Z EUA—-B

A€PR BeP, AEP,

= Zl(Zm;-a).

A€eP, BeP,

Hence, using the Cauchy-Schwarz inequality

Sl © S |

A€EP; AEP; A€P, | BeP,

= ¢ Z Z Z UA-BUA-C

A€P, BeP. CePy

= ¢ Z Z Z UA-BUA-B+D

DeP, AcP, BEP,

= q¢ z Z ZﬁA—BUA—IHD

DeP, BeP, APy

— gt
= rE E UsUA4D

DegP, AP,

— ql+r Z |'UA|2 + ql+r Z Z TAUALD.

A€eP, DePp Aeh,

q2r

IA

The desired result follows from |ug| = 1. O

Lemma 8 Let f be a completely QQ-additive function, and t € N,
K,R € F,[T] with deg R,deg K < degQ'. Then, for all N € Fy[T}] satis-
fying N = R mod Q* we have

f(N+K)—-f(N)=f(R+K) - f(R). (2.4)
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Proof. Due to the above conditions, N = A- Q'+ R for some A € F,[T].
Since f is completely @-additive, and deg(R + K) < deg(Q*), we have

fIN+K)=f(N) = f(AQ"+R+K)- f(AQ"+ R)
= f(A)+f(R+K) - (f(A)+ f(R))
= f(R+K)- f(R). (2.5)

a

2.1.2 Some Correlation Estimates

In the next step, we will first prove a correlation estimate (Lemma 9), which
will be applied to prove a pre-version of Proposition 1 (Lemma 10).

Let @ € Fy[T] of deg@ = k, M € Fy[T] of degM = m, and f be a
(completely) @-additive function. Furthermore, set g(A) i= E (% f (A)) for
ReP,.

Unless otherwise specified, n and ! are arbitrary integers, and D € F,[T] is
arbitrary as well. We introduce the correlation functions

8,(D) = qi S s(Ag(A+ D)

and

1
Yun= > l@n(A).

A€P,

Lemma 9 Suppose that |®x(R)| < 1, then,

1
15>

Hep,

2

= > B(guasm- )

A€P,
1 — |2(R)|?
kqk '

< exp (— min{n, [}

Proof. We start by establishing some recurrence relations for ®, and @,

1
s Bin(KQ + R) = Du(R)®a(K) (2.6)

for polynomials K, R with R € P,. By using the relation g(AQ + B) =
g(A)g(B) and splitting the sum which defines ®4,,(KQ + R) according to
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the residue class of A modulo @, we obtain

¢ 0n(KQ+R) = 3 Y JAQTDg(AQ+1+KQ+R)

IEPk A€EP,

= > ) 9(A)g(Dg(A+ K)g(I + R)

IeP, A€Py

= Y 9D +R) Y 9(A)g(A+K)
Iep, A€P, ’

= ¢"®(R)q"Pn(K).

 This proves (2.6). Next, observe that

FHpiihin = Y Y Peyn(AQ + NOppn(AQ + 1)

IeP, AeP,

= 3 S DB A(DE(A)

IeP, AeP,
= Y %(D®(I) Y 2.(A)®.(A)
IepP; A€EF;
= qkék,kql(bl,n-
Thus,
Drsihin = P ®in (2.7)
and consequently, .
‘I’ik+l,ik+n = (‘I)k,k)z ‘I:'l,n- (2'8)

Since |9, ,| < 1, we also get |Pixisikt+n| < |<I>k'k|i.
Hence, if n and [ are given, we can represent them as n =ik +r,l =tk +s
with ¢ = min([n/k], [l/k]) and min(r, s) < k. By definition, we have

1
Qpp = & Z @k (A4))?
A€ePy
with |®,(A4)| < 1 for all A. Since |®,(R)| < 1, we also have
—|® 2 1 — |®x(R)|?
<1 LEBARE o (LSRR

and consequently,

{®; | < I(Dk,kli < exp (— min{l,n} o

S0
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Remark 6 We want to remark that |®x(R)| = 1 occurs very rarely. In
particular, we have |®x(R)| = 1 VR

& VYA€ P,:g(A)g(A+ R) is constant (just depending on R)
o VR,YA,B € P, : g(A)g(A+ R) = g(B)g(B + R)
& VA,B€ P :g(A+ B) =g(A)g(B).

Thus, there ezists R with |®x(R)| < 1 if and only if there exist A,B € Py
with g(A)g(B) # g(A + B).

Next, we will prove a pre-version of Proposition 1.

Lemma 10 Let Q,,Q,...,Qq € Fy[T] be pairwise coprime polynomials,
My, M,,..., My € F,[T], and R = (Rl,Rz,...,Rd) € Py, X% Py, so that
|®k,(R;)| < 1 for at least one j = 1,...,d. Then, :

lim — Z gr(A ' (2.9)

l—00
q Aeh

where gr(A) = Hg=1 gr;(A) with gg,(A) = E (—E’;fj(A)).
Proof. Set B; = Q;j, where b; = t; deg Q; satisfies 7 < b; < 2r with r = .
For given S = (51,5, ...,Sq) and By, B,,. .., By, we define
Ng:={A€ P: A= S mod By,...,A= S;mod By}.
By the Chinese Remainder Theorem we have for [ > Z?zl b;
¢ d

Furthermore, set § := B, x -+ x B,,. By Lemma 8 we obtain for D € P;:

Y 9r(Agr(A+ D) = > ga(A)gr(A+ D)

A€P, S€S AENg

= Z Z HgRj(Sj)gRj(Sj+D)

Ses AENs j=1

= ZHng gR]S+D Zl

SeS j=1 A€Ng
d . ql

= I >_ 9a:(5))9r,(S; + D)=
j=1S;€R, [Ti=1q

d
1 -
= quE Z 9r;(Sj)gr,;(S; + D).

j=1 SjEP,,J.
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According to Lemma 7, we obtain for r <

2
Y gr(A)] < T¢I

> ar(A)gr(A + D)‘

A€P, DeP: | Aep,
d
= @7 Y ([Ta™™ > 9~,(51)gr,(S; + D)| +O(¢*™).
DePy |j=1 S;€Py,
£

Holder’s inequality results in

Zl g'/@+n) fI Z

j=1 \ DeP;}

dr1\ V(d+1)

INA

g% Z 9r;(S;)gr,(S; + D)

S;€Pp;
2) 1/(d+1)

For some j we have |®4;(R;)| < 1, so that Lemma 9 is applicable and thus,

T2

DeP;

IA

" 9r,(5)9r,(S; + D)

SjEij

ol ( >

j=1 DePy

% 3" 9r,(S))9r,(S; + D)

S EPb

1 — I‘I’kj(Rj)l) ,

< exp (—r qukj

as 7 = 1/(3d) — oo. For all other j we trivially estimate by < 1 and obtain

> s - Lol

& q21—r + q2l exp (_

pry
ot d+1 kiq
resp.
r r 1@ (Ry)
Z gr(A)| < ¢ + ¢l exp (— = )
AcP, 2(d + 1) k]q 7
Thus,
1 . r 110 (R;)|
= (> 9a(4) ‘ K g7 +exp (- ry
l ACP, 2(d + 1) k_-,q 7
: I 1% (R))
< =L _ 7
= grtexp ( 6dd+1) kgt
< exp(—nl) (2.10)
with 7 = o2k EL 0

6d(d+l)qu p)
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2.1.3 Proof of Proposition 1

As above, we set gr(A) = H‘;:l gr;(A)=E (Z‘;:l —%fj(A)). We will divide
~ the proof into several cases.

Case 1: There exist j and A, B € Fy; with ggr;(A)gr,(B) # gRj(A + B).

According to Remark 6, we have |®,(R;)| < 1. Thus, this case is
covered by Lemma 10:

> gr(A)| - 0.

1
¢
A€EP,

Case 2: For all j and for all A, B € Py, we have gg,(A)gr,(B) = gr,(A+B).
Due to the additivity property, we also have gg,(A)gr,; (B) = gr,(A+B)
forall A, B € F,[T) in this case, and consequently, g(A)g(B) = g(A+B)"
for all A, B € F,[T].

Case 2.1: In addition, we have g(A) =1 for all A € F [T).

Then,
1
4 > gr(4) =1.

A€eP;
This case is the first alternative in Proposition 1.
Case 2.2: Moreover, there exists A € Fy[T] with g(A) # 1.
Let A= 3,50aT", then we have
g(A) = [Jo(T)% # 1.

>0

Consequently, there exists i > 0 with g(T*%) # 1. Since g(T") is a p-th
root of unity and g is a power of p, we have

S iy _ L= gD 1= (TP _
29T = 1-g(T%) ~ 1-g(T%) 7

a=0
if g(T") # 1. Otherwise, the sum equals q. Thus,
q-1 . ;
a g if g(T?) =1,
D 9Ty =4 (7°)
0 ifg(T7) # 1.

a=0
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Hence, if [ > i, we always have

-1 ¢q-1 q-1
> g(4) = e Y g(TO) (T - g(TH )
A€P ap=0a;=0 ap-1=0
q-1 q-1 . g—1
= (Z g<T°>“°) (Z g(T’)‘“) Y gty
ag=0 - a;=0 a;.1=0
= 0. (2.11)
This completes the proof of Proposition 1. O

2.1.4 Completion of the Proof of Theorem 4
Before we start, we will define two (additive) groups:
G:={R=(Ri,Ry,...,Ry) € X Pn, : VA€ F,T) gr(4) =1} (2.12)

and
d

HOI—_—{ (Sl,... )EXd IVREGE(Z—S;\{R’L>=1}

i=1

Lemma 11 Let G be defined as in (2.12), then, G is a subgroup of X¢_, Pp,. .
Proof. Let R = (R, Ry,...,Ry) € G,S =(51,52,...,54) € G, then

R R
gr(A) = E (Mfl(m P )+t %MA)) =,

9s(A)=E (;_llfl(A) + As;—zzfz(A) 4.4 Asl—‘zfd(A)) = 1.
Thus,
d d
R; S; R+ S,
— E ——fi(A)) =E ( f,(A)> =1
o (S5 ) s (3 i) -2 (555
and, R+ S =(Ry+ S, Ry + Ss,..., R+ 84) € G. 0

For S = (51,52, ...,S4) € XL, P,,, let the function F(S) be defined as

~_SiR
F(S) =iz - <Z > (2.13)

ReG i=1 1
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By applying Proposition 1, we directly get

%#{A € P : f1(A) = Sy mod My, ..., fs(A) = Sg mod My}

Y= X E(é%w ))

¢ hema¥ s 7 ReXL P,
1 d
T P B o)
777 Rexd P, j= T 4ep,
S;R;
= JZE(Z )+o(1)
q - ReG i=1 J
G
= 1S _psy+on)
q F=1"%1

More precisely, the coefficient F'(S) characterizes Hy.
Lemma 12 We have

1. F(S)=1 for S € Hy

2. F(S)=0 for S ¢ Hy.
Furthermore, |G| - |Hy| = XL, Pr,| = gzi=1mi

Proof. 1t is clear that F(S) =1 if S'e€ H,. ,
Now we suppose that S & Hy. Then, there exists R® = (R, RY,...,R}) € G

with E (zg’:l —%"L) # 1. Since

ZE<i m) _ ZE(i_&(R}-\ZR?))

ReG i=1 M; ReG i=1

().

i=1 ReG i=1

it follows that F'(S) = 0.
Finally, by summing up over all S € X&,P,,,, it follows that |G| - |Ho| =
IX?=1Pme|' O

In fact, we have just shown that (as ! — o)

%#{A € B : fi(A)= S, mod M, .. .,f;,(A) = Sy mod My} = + o(1)

1
| Hol
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if S =(S,,...,S4) € Hy, and (as | — o0)
%#{A € P : fi(A) =Sy mod My, ..., fa(A) = Sqg mod My} = o(1)

if S =(Si,...,54) € Ho. The final step of the proof of Theorem 4 is to show
that

H = {(fs(A) mod M, .. fa(A) mod My) : A € F,[T)} = Ho.

In fact, if S € Hy, then we trivially have S € H.
Conversely, if S € H, then there exists a polynomial A € F,[T] with
fi(A) = Sy mod M, ..., fi(A) = S, mod My. In particular, it follows that

d d
_ R, _ R;S;
gr(A) =FE (Z Efj(A)) =E ( 73 .
j=1 j=1
Moreover, for all R € G we have

Consequently, S € Hy. This proves H = H, and also completes the proof of
Theorem 4.

R;S;
M;

Remark 7 Unfortunately, a finite characterization as Kim gave it in his
article [20] was not possible in our case. We could find no way of defining
an admissible d-tuple so that H turns out to be just the set of all admissible
d-tuples. A reason for this fact is given in subsection 2.2.2.

2.2 Further investigations

The investigations we have made so far raise some interesting questions,
which we are going to study now. Actually, we will focus on several questions
in connection with the sum-of-digits function sg. Note that we launch the
following notation: instead of sg, we will simply write s;.

At the beginning of subsection 2.2.1, we will tackle the question, when
9 = gr = 9gr,9r, = 1. Trying to find a solution, we will make investigations
concerning the additivity of the sum-of-digits function s;, which turns out
to be the actual focus of our first subsection.
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In subsection 2.2.2 we are going to have a closer look at the group H which
appeared in the proof of Theorem 4. First, we will choose two bases ¢}; and
@2, and determine the elements of H. Then, we will give a reason why Kim’s
finite characterization of H does not work in our case.

2.2.1 Additivity of the sum-of-digits function

In the proof of Theorem 4 we applied Proposition 1, which played a decisive
role in the whole proof. We can shorten this proposition to

lim = 3 ga(4) € {0,1}.

l—00 ql Ach

However, no clue can be found anywhere as to which alternative - 0 or 1 -
actually applies. For the sake of brevity we will focus on d = 2 and assume
that

9 =9gr = grgr, = L. (2.14)

Generally, there are two possible cases in which (2.14) is valid. First, gg, as
well as gg, are identically 1 for all A € F,[T].

gR, (A) =F ("R—lsl(A)) =1 & VA€ Pk1 : gRl(A) =1

Q1
A
& VA€ P, :Res (M> =0.
@
If we want to examine whether gg, (A) actually is identically 1, we only have

to make a finite number of tests.

For the sum-of-digits function it is trivial that s;(A) = A for all A € Py,
independent of the base @Q;. It turns out that for the sum-of-digits function
g(A) is not constant equal to 1.

Lemma 13 Letr, := deg Ry, r; > 0, then

R, ki — —1)
Res | =—=T™ ™" 0.
(Ql 7
Proof. Since k; = deg Q1, we have Q7! = a¢gT~% + o, T-(1+D
R, T
= @—b"Th"'"‘ (bo € Fq \ {0})
TrlTkl—rl—l b
o Bpneno_p, T ==+

Tkl + .. T
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Thus, we obtain

S p—— -1)
Res | —T"™" 0.
(Ql #

According to Lemma 13 we have
gr(A) £ 1forall A€l

I ={A €F,T]: s1(A) = T* -1} Since T#~"1"! € B, it follows that
Tk-m1~1 ¢ I, which means I # () and consequently, gg, # 1.

Thus, our first possibility never occurs for the sum-of-digits function, and
we can concentrate on the second scenario: gg,(A) # 1 but g(A) = 1. So,
gr,(A) = ﬁ, i.e. gr,(A) and gg,(A) are Q- as well as Q,-multiplicative:

9r,(AQy + B) = gr,(A)gm (B),  9my(EQs + F) = gry (E)gry(F),
9r, (CQ2 + D) = gp,(C)gr, (D), gr,(GQ2+ H) = gr,(G)gr,(H),

for deg B,deg F' < k; and deg D,deg H < k.

Lemma 14 Let f; be a Qi- and Q,-additive function, and set gg,(A) =
E (gffl(A))- Then, ggr, s @1- and Qq-multiplicative.

" Proof. Let f; be Q- and Q);-additive. Thus,

f1(AQ, + B) = fi(A)+ fi(B),
fi(CQ2+ D) = £(C)+ fi(D).

Since (1.9), the assertion holds for gg, (A) = E (% fl(A)).
O

Hence, if we can show that s; and s; are both @;- and Q),-additive, then we
get by Lemma 14 that gg, (A) and gg,(A) are Q- resp. Q2-multiplicative, a
condition for the occurrence of our second scenario. This is exactly what we
want to achieve by an appropriate choice of @; and Q..

We assume w.l.o.g. that deg @), > deg@); and try to choose ) in such a
way that s; will be Q,-additive (s, is always @,-additive by definition).

Before studying the general case, we will focus on a special case where
deg Q2 = deg @Q,. Therefore, we can state a base (), independent of a specific
base @; so that s, is @,- and Q»-additive.
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Lemma 15 If k; = ko, then there is just one possible choice of QQ; so that
81 can be Qqz-additive: Qy = a@y + (1 — a) for somea € Fy\ {0,1}.

Proof. Since k, = k3, we can write Q; = aQ, + B for some a € Fy, B € P, .
Suppose that s, is @Qs-additive. AQy = aAQ,; + AB, thus,

Sl(AQg) = Sl(G.AQl) + Sl(AB) = asl(A) + Sl(AB)
equals s;(A) by assumption. Hence,
(a - 1)51(A) + Sl(AB) =0

for all A € TF,[T).

If deg(B) = 0, then B = 1 —a € F,. Otherwise choose A = ¢ € F, if
deg(B) > 0, thus, (a — 1) - ¢ = —c- B, which contradicts our assumption. O

| ¢F

€F, 7

Remark 8 Actually, we have only proved the possibility of Qi- and Qo-
additivity for the bases Q1 and Q. as chosen in Lemma 15.

It will turn out later on, that for this special choice of Q) and Q2 both sum-
of-digits functions truly have the desired property (see Ezample 2).

We will come across these two special bases again several times afterwards.
Before we do so, we are going to focus on the general case, where there is no
restriction concerning the degrees of the bases.

We assume w.l.o.g. that deg @, > deg@), and try to establish a criterion
(Lemma 18) for @, and @ so that s; is definitely both @Q;- and @;-additive.

Lemma 16 Let @)y and Q2 be arbitrary polynomials, w.l.o.g. ky > ky. Then,
we consider the Q-ary expansion of Q,

Q=) A0}, (2.15)
=0

with A; € Py, An # 0 and not all A; =0 for 0 < j < n. Furthermore, we
can write Q2 as

Q2= Bi(@ -1y, (2.16)
=0 N
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with B; € Py, B, # 0 and not all B; =0 for 0 < j < n. Then, we have the
Jollowing correlations between Ay and Bj:

Ay = g;(—l)ffk(i)Bj, (2.17)
By = ;(i)Aj. (2.18)

In particular, we have A, = B,,.

Proof. We start with (2.16), and obtain
ngQl 1y = JZ;B 2( (1)t
o (e

- 22 ()
“E(Er@e)e

Thus, (2.17) is valid. Due to (2.15) we get

;AJQ{ = JZ:;AJ-(Ql—lﬂ)J'
-2
=2&i@>

= Xn: (i (z) Aj> Q1 — 1),

k=0 \j=k

k
1

B;Q*

(Q—1)F

(@1 — 1)k.

=B;

and therewith we have proved (2.18). Substituting k = n in (2.17) resp.
(2.18) we finally obtain A, = By, as stated above. a
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The following lemma is rather easy.
Lemma 17 Using the same notation as in the previous lemma we have
30:1®Q1—1|Q2—1. (219)

Proof. Due to (2.16), Q1 —1 | Q2— By. Thus, if By = 1, then, @, —1| Q,—1.
Accordingly, if @2 = 1 mod @; — 1, then it immediately follows that By =
1 mod @, — 1. Since By € Fy,, we have By = 1. O

Finally, we can prove the following criterion:

Lemma 18 Let Q; and Q, be two arbitrary bases, deg(Q2) > deg(Q1), with
expansion (2.15). Then,

Q1—-1|Q; 1<% s; is Qy-additive. (2.20)
Proof. Let s; be @);-additive. Thus,

s1(AQ1 + B) = s1(4) +s1(B),
51(CQ2+ D) = s(C)+ s1(D),
for all A,C € F,[T), B € P, and D € P,. Choose C =1,D = 0. Hence, by

(2.15),
81 (Z AJQ{> = ZAJ = Sl(l) = 1.
j=0 j=0
Since Z;‘ o A; = Bo by (2.18), we get By = 1, and thus, @, — 1| Q2 — 1.

Suppose @; — 1 | @2 — 1. As is normal for Qz add1t1v1ty, it suffices to show
51(BQ3) = s1(B).

$1(BQs) = <BZAQ’>_31 (BZA)
By Lemma 17 resp. by (2.18) we have
1=By=)Y A4
=0

thus, s,(BQ2) = s1(B). Analogously,

s1(BQ3) = (BZA Q) Qz) =8 (BZA @ ) = 51(B).

Finally, by complete induction, we obtain that s; is Q2-additive. O
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Due to this criterion, we can give the following example of two polynomials
Q1 and Q,, deg Q2 > deg @y, so that s; is @1- and @»-additive.

Example 1 Let @, = z+1 and Q3 = z® + z + 1 be polynomials in Fy[z].

Then, we have @y — 1 =z | z(z + 1) = 22 + = = Q2 — 1, and thus, by
Lemma 18 we obtain that s, is Qq-additive.

A very simple case where s; is QJo-additive is, of course, if s; = s3. Due to
Lemma 18 we get the following interesting equivalence:

Lemma 19 Let Q, and Q3 be arbitrary bases, w.l.o.g. ko > ky. Then,
si=syifandonly if Q1 —1|Q2—1and @ —1| Q1 -1, i.e. ky = ko and
@1 —1=0a(Q2 — 1) for some a € F, \ {0}.

Proof. 1f s; = s, then, s is Q),-additive and s, is @-additive. Due to the
above criterion we get @Q; — 1| @2 — 1 resp. @2 —1]@Q; — 1. All in all we
get @1 — 1 = a(Q, — 1) for some constant a # 0, and especially k; = k,, as
stated above.

Conversely, let @; — 1 = a(Q> — 1) for some pos1t;1ve aclF, Ifa=1, we
have @); = @5, and the result follows immediately. Thus, wl.o.g. Q=
a@s + (1 — a), with a > 2, and

@ = (0Qs + (1 - )y = Z (7)ata - oy

For any arbitrary B we have

k
b3 50t =353 ()t -0
Jj=0 i=

for some polynomials B; € Fy,. Hence, we get

ng <B E( ) (1-a) —") = j:o s2(B;).

i=0
Since B; € P, = Pkl, we have
k

Due to the arbitrary choice of B we have s,(B) = s,(B) for all B € F[T],
and thus, s; = ss. a

Due to the importance of these two bases @; and @5, we want to mention
them once more.
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Example 2 Let Q; = a@) + (1 — a) witha € Fy\ {0,1}, Q1 € F,[T]\ {0}.
Then, we have ky = ky and @; — 1 | Q2 — 1 as well as Q2 — 1 | @, — 1.
Therefore, by Lemma 19, s = sy and thus, s; and sy are both Q- and Q2-
additive.

As already mentioned above, this is the only option if Q, and Q2 are of equal
degree so that the corresponding sum-of-digits functions are both Q.- and
Q2-additive.

2.2.2 The properties of the group H

After these extensive studies on the additivity of s;, we turn to another
interesting problem. In the proof of Theorem 1 two unnatural Groups G
and H appeared, on which we want to focus now.

We take the previously studied example Q2 = a@; + (1 — a) up again and
first have a look at G. More specifically, we ask if G is trivial or not, and if
there is (R;, R2) # (0,0) so that

(B in) -2((8+8) )1

for A € Py, = Py,. Since (@1, Q2) = 1 by assumption, there are R;, Ry € Py,
satisfying R;Q2 + Ro@ = 1.

R R 1
1+2 Co 1

% T 00 TR TR
A ¢ )

Z 0.Q, TR tTRa T

A
= Res =0since k; >0
(Q1Q2> '

A
(Q1Q2> 97,1 (4)

This consideration implies that G # {(0,0)}, which means that G is not

trivial, and hence, H # Pk, X Py,.

We can become more explicit, if we consider Lemma 19. If Q; and Q. are

chosen in this way, we have s1(A) = s2(A4) VA € F,[T). Therefore, we obtain

H={(AA)|Ae P} (2.21)

Due to Lemma 12, we get |H| = |Py,| = ¢* and |G| = ¢*'.
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Let us now turn back to Remark 7 and give a reason why Kim’s characteri-
zation does not work in our case.

First, we repeat the two descriptions of H which we already have, and trans-
form Kim’s group to polynomials.

As mentioned above, the two following groups are identical:

d

H = {S.—_(Sl,Sz,...,Sd)EX?.__IPm‘.: VREG E(Z_SMR‘E):I_},
i=1 *

Hy = {(fi(A) mod M, fo(A) mod M,,..., fa(A) mod My) : A € F [T}}.

Analogy of Kim’s description:
For j = 1,...,d define:

Dj = ged (Mj, (Q] - I)F‘],fJ(R) - RF} (R € .ij)) , (223)

where f;, M;,Q; and R = (Ry,..., Ry) are defined as usual. Furthermore,
set A= (Ay,...,Aq) € FJIT), F = (F,...,Fy) and D = (Dy,...,Dg). A
d-tuple A of polynomials is called ,,admissible with respect to the d-tuples
Q, M and f, if the system of congruences

FN =AmodD
has a solution N € F,(T]. We write
H:= {A=(Ay,...,Aq) : deg A; < m;, A admissible} .

Before we study the relationship of Hand H resp. Hy, we have to prove the
following Lemma according to an analogue to Kim.

Lemma 20 Let Q and M be polynomials with positive degrees k := deg @,
m = deg M, and let f be a completely Q-additive function. Let F' and D
be defined in the same way as the quantities F; and D; in (2.22) and (2.23)
with respect to @, M and f, which means that

D = ged(M,(Q—1)F,f(R) - RF(R € P)).

Then, for an arbitrary N € F,[T) we have

f(N)= NF mod D.
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Proof. Let N € F,[T] be a polynomial with the Q-ary expansion
N = Zizo R;Q* where R; € P,. The complete Q-additivity of f implies

FN) =" f(Ry). (2.24)
i=0
On the one hand, we have
> f(R)=> RFmodD (2.25)
>0 i>0

as f(R) = RF mod D for all R € Py by definition of D. On the other hand,
since @ =1 mod @ — 1, we also obtain

N=) RQ'=) RmodQ-1,

i>0 i>0

and therefore,
N-F=) RF modD, (2.26)

i20

since D | (Q — 1)F. Combining these congruences, we obtain

f) 25 p(r) 2 S RF 2 N - F mod D.

i>0 i>0

Thus, the following inclusion is trivial:
Lemma 21 With the common definitions of Hy and H we have
H,CH.

Proof. Let A € Hy. Then, by definition of Hy, we obtain the existence of a
polynomial N satisfying f;(N) = A; mod M;. Since M; | Dj, it follows that
fi(N) = A; mod Dj, and therefore, by Lemma 20, we have: FN = A mod D
= AcH. \ O

Unfortunately, the other inclusion is not generally true. We have already
mentioned a counter-example where H € Hy. It is our well-known Example
2. We consider the sum-of-digits functions with respect to the two bases,

M; = Q;.
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Determining F; and D;, we obtain F; = D; =1for all j =1,...,d. There-
fore, H = Py, x PB,.
However, this contradicts (2.21), whereby

H={(AA)|A€P,).

So, H cannot generally be equal to or a subset of Hy resp. H, and Kim'’s
idea for a finite criterion to define H does not work in our case.




Chapter 3

Two Central Limit Theorems

In this chapter, we successively generalize Theorem 2 by Bassily and Katai
(into Theorem 5) as well as Theorem 3 by Drmota (into Theorem 6) for @-
additive functions on polynomials over a finite field.

Whereas our Theorem 5 deals with only one Q-additive function f, Theorem
6 covers the joint distribution of two @);-additive functions f; for coprime
bases ;. For both proofs we will use the same tool, namely again exponential
sums; this time, however, in combination with a method of moments. The
latter will be explained later on.

3.1 Generalization of Bassily and Katai
We start with Bassily and K4tai’s [1) central limit theorem, our Theorem 2.
For polynomials over a finite field we obtain the following theorem.

Theorem 5 Let @ € TF,[T),k = deg@ > 1 be a given polynomial,
g9 : Fe[T] = R be a Q-additive function, and set

o= 2 0lA) ol 3 gl -4 (3.1)

AEP A€P;

Let P(T) € Fy[T] with v = deg P, then, if 02 > 0 and as n — oo,

k™9
and .
un kYg

where I, denotes the set of monic irreducible polynomials of degree < n.

36
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Before proving this Theorem, we need some preliminaries again, which we
are going to introduce now.

First of all, we need a method to extract a digit Dg ;(A) of an arbitrary
polynomial A € F,[T]. The next lemma shows how we can do this with the
help of exponential sums.

To begin with, consider the Q-ary expansion of an arbitrary polynomial
A € F,[T] for any fixed polynomial Q € F,[T:

A=) Do;Q’
320
with Dg ; € Pi. Furthermore, let H € P, and
1 Cy C1 Ca
o~ Tt T et

for some ¢; € F,. Therefore, we gradually get

A = Dgo+Dg1Q+ -+ Dg;1Q7" + Dg;Q° + Dg 1@ +---,
A Dgo | Do Dg;j-1 , Do,

Qi+l Qj+’1 + Qi Tt 02 t5 0 + Dgj+1 + -
AH DooH = Do.H Do;H = Dg,H
it = Qi1 + Q7 I Q2 + Q +DQJ’+1H+"'.

Moreover, we have

D H
deg Do H <2(k-1) = Res( o ) =...= Res( Qézl ) 0

- () ()
()5 (4

Together with the ideas of the previous chapter on Kim’s Theorem, the

method is obvious:

Lemma 22 Suppose that Q € F,[T| withdeg@Q =k > 1. For D,H € Py set

1 DH
CHD = E,;E (——') )

then,
_[ 1 ¥ Dq;(A)=D
> ennk (Gm) = { o 40040 70

HGPk
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Proof. Consider the Q-ary expansion

A=>"Dq;(A)Q with Dq;(A)€ P (3.4)

j20

() =2 (5

for H € P;. Consequently, for every D € P, we obtain

> ot (gm) = w52 (2) 7 (6%)

HePp;

It follows that

_ 1 if DQ,]'(A) =D
=~ 1 0 if Dg;(A) # D.

a
What we have found is a very simple method for extracting the digit Dq ;(A).
Therewith, it is possible to determine the number of polynomials whose j-th
digit of P(A) is equal to a given € € P,. P(A) is an arbitrary polynomial,

P(A) € Fy[T). The following studies will finally yield our first result con-
cerning this topic, Lemma 26.

—#{AGPIDQJ (4)) = €}

- 2 X T enk ()

A€P, HEPk
P(A
= Z CHe—o T Z (QS-H)H)
HEPk A€P,

P(A

= _+ > Ce o Z (QS,H)H). (3.5)
HEP; A€P, 5
S:=

Remark 9 For the constants cy p we have

1 1

Coe = o and lche| = e
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In the next section, we will have to write cg u,p instead of cy p, because there
. 15 more than one base involved. As long as there is no risk of confusion, the
parameter Q will be omitted.

Thus, it becomes necessary to study sums of the form S. So, we need the
following estimate of {3], but slightly adapted for our purposes.

Lemma 23 Let n > 0 be an arbitrary integer, then,

712 )

Proof. For proof see [3]. O

< n? " max (|HI_2_k> q—-nZ"‘, IHIz-’cq-nkz-*) ‘

Lemmas 24 and 33 are the variations we require. As an example, we are
going to prove Lemma 24, which takes up Car’s ideas.

Lemma 24 Suppose that Q € F,[T}, deg@Q = k > 1 and that P € F,[T] is
a polynomial with deg P =r > 1. Then,

> 5 (grr)

A€P,
< n? " max (Q-<J'+1>kz", g, q(j+1)k2"‘”’2_r) . (36)

1
q*

In order to prove this estimate we first need the following lemma.

Lemma 25 Let d : F,[T] — N denote the number of primary divisors of a
polynomial, and set d(0) := 1. Then, for j > 0 and n > 0 we have

> d(Ay <n?-lgn, (3.7)

A€Pn

Proof. We will use the following easily shown property of the function d. Let
A, B be some arbitrary polynomials, then,

d(AB) < d(A)d(B).

* If A and B are coprime, we have d(AB) = d(A) d(B). Therewith, the lemma
can be shown by complete induction.

Let 7 = 0, then,
Z 1= qn — nﬂqn’
A€P,
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and therefore, (3.7) is true for j = 0.
Since there is a related idea to the below induction step, we will also study

ji=1
?
Z d(A) < ng™.
A€P,

Thus, we will write the number of divisors of A as the number of pairs (B, C)
with BC = A.

San = ¥ T 1=Y Yo

A€Pn A€P, (B,C), BeP, CeFq[T)
BC=A deg(BC)<n
— n—deg(B) __ n ~deg(B
= § q g(B) — q § q (B)
BeP!, BePy

= ¢"(1 ¢"+q-¢ +-+¢"7 - ¢'7") =ng",

where P! denotes the primary polynomials of a degree smaller than n.
Next, suppose (3.7) is valid for a fixed integer j. Let us study the case j + 1:

dodAaytt = > d)y o1

A€Pn A€P, (B,C),
BC=4

= > > dBCy

BEP, CeF,[T},
deg(BC)<n

2. 2 EBdE)Y

BeP], CcF,4(T)
deg(BC)<n

< SdBy > 4oy

BGP,,I‘ CEPn—deg(B)

IN

For the last sum we can use the induction hypothesis and get

Zd(A);HI < Zd(B)jn2j_lqnq_deg(B)

A€P, BeP},

_ 2J 1 T 2 d(B)J - deg(B)

BeP,
Finally, we consider

Z d(B)jq_deg(B) _ Z Z d(B)jq_i < Zizj_lqiq-i

BeP, i<n deg(B)=i-1 i<n

< Zizj_l < n2j.

i<n
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Consequently,

Z d( ).7+1 < n?-1 T 21 < 27’“—-1qn.

A€P,

Proof of Lemma 24. Set

S=> E ( QJHP(A))

A€Pn

As in the proof of Webb’s Lemma 3 (see [32]), we have

SE =58 = 3 3 B gm(PB) - PA))

BeP, AeP,

- 5 3 B (e - pan),

MeP, A€EP,

41

since A + M; runs over all polynomials of degree smaller than n, while M,

runs over all polynomials of degree smaller than n.
Let P(A) = a, A" +a,1A"" ' + .- + a1 A + ag, then,

P(A+ M) — P(A) = a,(A+M) +a1(A+M) "+ +ag
—(a, A"+ a, AT 4+ a A+ ap)

= 1AM +C, AT 2 +

-+ C1A + G,

where deg(C;A*) < deg(A™'M,) and M, |C;for 0 <1 <7 — 2.

Therefore,

ISP=> > E (Q —(a,r AT My + C AT
MlEPn AEPn
By Cauchy’s inequality,

119 < >0 12 >

Mlepn M].EPH

H
> E( (e r AT My -
A€P, @

.+co)>.

))‘

= X 5 5 (g (ertar i+

M1€Pn M2€Pn AEP,

—(a,-TAr_lMl +

MlGPn MzEPn AEPn

..)))

=y Y, ZE(QM(a, 1)A”2M1M2+---)).
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Continuing in this way, we get

COISETT < (@)@ (g x

XZZ ZE(élﬁ(ar'r!AMlM2"'Mr—l+"'))

Ml Mr—l AEPn

M, M._) AE€P,
Next, for an arbitrary polynomial M, set

V(M) = {1 ifz/({aﬁ—lM}) > n,

0 otherwise.
So,
r— r=1_.
|S|2 1 .<_ qn(2 +1) Z V(M1 L. Mr—l)'
(MI,...,M,-_l)GP:;-l

Sett=(r—1)(n—1)+1=rn—r —mn, then, by using the function d for the
number of primary divisors, we get

ISP < (g = 1) T N v(M)d(M)
Meh,
One can easily show
gt~ UrDE i (j 4+ 1)k < n,
S V(M) < g ifn<(+1)k<t,
MeP, Uk if t < (5 + 1)k.

Once again, we use Cauchy’s inequality as well as (3.7) and finally obtain

r r— T _ 2r—2 —(1 - ] -
|S|2 < (q _ 1)2 4qn(2 2r+2)t2 qt max{qt (’“)k,qt n’q(]+l)k n}
< q2r—4q'n(2'——2r+2)q2nr—2n-2rtZz"'2 max{q‘(j“)k, q—n, q(j+1)k—nr+r}
— r o2r—2 (4 - ; —-nr
< qr 4qn2 t2 max{q (J+1)k’q n’q(J+1)k n }
<

(Tn)22r—2qn2' max{q"(j+l)k, q—n, q(j+1)k-nr}_
Thus, for |S| we have

8] < g max{q U, g I, gD o7,
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Corollary 2 Let n'/® < j+1 < 2 —n!/®. Then, there ezists a constant

¢ > 0 such that
1 H
1| 2 ()

A€P,

—cnt/8

Ke

uniformly in this range.

Proof. The maximum error in (3.6) occurs at the boundary of the range.
The maximum degree is 2 — n'/3. Thus, by Lemma 24

1 H
LIS E (—.—P(A))
< nzr—2 max (q~nr2"+n1/3k2‘r’ q—n2"’ an2_'—n1/3k2_"—nr2")

- 62""2 logn—nl/3k2-"logq

The minimum degree is just n!/3. Therefore, we get

> (gmr)

A€Py,

1

qTL

—nl/3r2=7 _n2-r n1/3r2_'—nr2")

<« ¥ max (q 4™ g

. —_nl/3 - 1/3 -r_ - . . . . .
Since g~"/°r?" > gn'/°r27"-nr2"" e finally obtain a uniform estimation

> (grmr)

A€P,

3

r—2 _al/3po—r —enl/
<<62 logn—n'/°k2 logq<< e~ "

1
"

a

A similar estimate holds for monic irreducible polynomials of degree < n.
However, we will first of all complete the proof of (3.2) and afterwards focus
on (3.3). Since the proof of both parts of the theorem is very similar, the
latter will be shortened.

Returning to P,, we can use Corollary 2 to bring our thread concerning (3.5)
to an end and forumlate our first extension.

Lemma 26 Let n!/3 < j+1< 2 —n'/3 then,
1 ' 1 e/
# (A€ PilDo,(P(A) =e} = - +0 ()

uniformly in this range.
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As a consequence for the mean value, we get the following lemma.

Lemma 27 Let g : Fj[T] — R be Q-additive. Then,
_Z P(A) =—,U,+O( —cn1/3>
AE€P,

with

PN

e€P;

Proof. According to the range in Lemma 26, we split the whole sum into
three parts

ST APA) = X T g@)#{A€ PalDas(P(A) = ¢}

A€P, JSEF €€EPR,
— E PN + E e + E
j<nl/3 nl/3g;<nr_nl/3 BT _pl/3gjgnr
N’ ~ -~ ) L )
=:5 =:55 =:83

Obviously, S; and S3 can be estimated by |S1| « n!/3 resp. |S3| <« nt/3

Sy = > > gle)—=#{A € Pa|Dg;(P(A)) =€}

nl/3<j<BE—nl/3 e€P;

= Y g EJ: (q—k +0 (am‘”))

c€Py
- % (-T;C—T - 2n1/3) Eezpk g(e) + O (ne"‘”‘l/s)
= %u +0 (ne'c"l/a) .

ad

With the help of estimate (3.6), we can also prove the following frequency
estimate.

Lemma 28 Let m be a fized integer and n'/? < ji +1 < jo+1 < - <
Jm+1< 80— nl/3. Then,

;j;#{A € P.: Do, (P(A)) = Dy, .., Do (P(A)) = Dy}

1
= an- + O (e_ml/ﬁl)
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uniformly for all Dy,..., Dy € Py and for all j;,...,Jm in the mentioned
range.

Proof. By Lemma 22 we have
1
—;# {A€P,:Dg;,(P(A)) =Ds,...,Dgq;,. (P(A) = Dy} =

- Z (Z ca 0, B (JLJ(A)))X...X

AeP, \H eP,

% ( > cHmpnE ( HH (A))
H,,eP; Q"
" o enenng 38 (PO (i ¢+ )

Hyyoo, Hn €Py - A€P,
1
AEP,
* H, H,,

+ D cmpr CHmqun > E (P(A) <Q31+1 +eot Q—,,m))

Hi,.,Hm€Py AEP,

1

=—+5,
qkm
where >_" denotes that we sum just over all (Hy,...,H,) # (0,...,0). In

order to complete the proof, we only have to show that S =0(e /3)‘

Let | be the largest ¢« with H; # 0, then,

H, H,, H
L5 5 (o (s ) - 2 2 5 (el

A€EP,
where H = H,+ H,_, Q% %~ 4+ ... + H,Q% 7. By our assumption, we have
n'/3 < j £ % — n!/3. Hence, by Corollary 2, the result follows. O

The idea of the proof of Theorem 5 is to compare the distribution of g(P(A))
with the distribution of sums of independent identically distributed random
variables. Let Yp,Y),... be independent identically distributed random vari-
ables on P, with P[Y; = D] = El"' for all D € P,. Then, Lemma 28 can be
rewritten as

%#{AePn:DQ,,-l(P<A>)=Dl,.. Do, (P(A)) = D}

=P[Y;, = Dy, .., Y = D] + 0 (™).
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Furthermore, note that this relation is also true if ji, ..., jm vary in the range
n'/3 < j1,d2, .-, Jm < B — n'/3-and are not in the correct order. It is even
true if some of them are equal.

In fact, we will use a method of moments; that is, we will show that the mo-
ments of g(P(A)) can be compared with moments of the normal distribution.
Therefore, we will make use of the following two results of the probability
theory. The first one is well known and needs no further explanation.

Lemma 29 (Central Limit Theorem) Let (£,) be a sequence of indepen-
dent identically distributed random variables with mean p and variance o?.
Define
bty
M = \/HU ’
so that E(n,) = 0 and V(n,) = 1. Then, 1, is asymptotically normal dis-
tributed, i.e.

t
lim Py, <t) = ®&(t) = \/—12= e 2 du.
n-—oo mTJ-oco

Moreover, if the m-th moment E(£,)™ ezists for all m € N, then,

1 [ 2
E®n,)™ - — tmet 2 dt
= 7= |
for allm € N.

The second result is a variation of the Fréchet-Shohat Theorem (see for ex-
ample [27]), which is used for the method of moments.

Lemma 30 Let Z,, be a random variable, and

~ Z,—EZ,
b= =Rz

with EZ =0 and VZ, =1.If

Zn—EZ\™ 1 0 2
E{2_—= — [ tmet/2dt
( VVZn ) - V27T [-oo
for every m € N, then, ~
Z, 5 N(0,1).
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This will show that the corresponding (normalized) distribution function of
g(P(A)) converges to the normal distribution function ®(z).

It turns out that we will have to cut off the first and last few digits, that is,
we will work with

gP(A) = > 9(Das(P(A))
n1/3<j< BT _nl/3
instead of g(P(A)).

Lemma 31 Set )

p=— g(H) = Eg(Y;).
q HePp,

Then, the m-th (central) moment of g(P(A)) is given by

7 2 (00 - (5 -20) )" =

A€P,
=E< > (g(Yj)—u)) +0 (nmem).
nl/asjszlk_"_nl/a

Proof. For notational convenience we only consider the second moment in
greater detail:

2 5 o = (-n),)'-

A€P,
- ZDZD )9(Da) #{A € Pa: Do (P(4)) = D1, Dou(P(A) = Do}
n.J2 Y2
PN Dy)—#{A € Po: Doy, (P(4)) = Di} 2
J1 1
—an;ng)—#m € P, : Doja(P(4)) = Do} + Y 42
_Zzl: J2 2D2P[ _DI,YJZ—Dz]-*-O( 2_cn/3) iz
J1.J2 D1,D2

- ZZQ Dy)P[Y;, = D] Zﬂ
'ZuZZng)P[y,, il DI

1 J2

=E (Z(gm) - u)) +0 (n2em").
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The very same procedure also works in general:

L3 - (-2

q A€P,

= Z Z ger) - glem)

—n# {A € Pu|Dq,;, (P(A)) = &1, .., Dqj.(P(A)) = €m}

= > Z:ﬁ& GlemBlY;, =1, Yy = £ + O (nme™)

.7 1111 m51

T e 5 s

J1yenJm  ElyenEm—1

PlY;, =e1,. ., Vi, = Ema] + -+
(=) (m) 3w 9(e1) - glems)

PIY;, =e1,...,Y; . = €moi] + -

m

= E [( Y ) - u)) m] +0 (nmem).

nl/3sjs%_nl/3
This completes the proof of the lemma. a
Since the sum of independent identically distributed random wvariables con-

verges (after normalization) to the normal distribution (see Lemma 29), it
follows from Lemma 31 that

(8L — 2n1/3)0?

< :c} = ®(z) + o(1).

Due to
|9(P(A)) — g(P(A))] < n'/®
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we obtain

G(P(A) — (=2 g(P(A) +enl® = (5 — 2mo)y

\/ (B — 2n1/3)a? (B — 2n'/3)g?

_ 9PA) - Fptdn R
Vo V(B — 2n1/3) 2
- —"Fl —
g(P(A)) — Fu N dnt/®

N —
—0
Thus,
g(P(A)) = (B =20 g(P(A)) — Fu
- nr .2
\/ (B — 2n1/3)g? I
and finally,

g(P(A)) — Fu

&1;# {A e P, ‘-—\/!%—T < 517} =¢)(:1;)‘+0(1).

Following the same arguments, we will now complete the proof of Theorem
5 by proving (3.3) concerning monic irreducible polynomials. First, we want
to determine the cardinality of I,,.

Lemma 32 The number Ny(n) of monic irreducible polynomials in Fy[T] of
degree n is given by

Ny(n) = % > u (%) ¢ = % > u(d)g™?,
djn dln

where u is the Moebius function.

Proof. For proof see (23] resp. [26]. O

Thus,

n

k
al = D No(k) = (% + O(qk“)) ~ ST

k<n k<n

Furthermore, we need the already mentioned second variation of Lemma 23,
which can also be found in (3].
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Lemma 33 Let ¥n'/2 < j+1 < =—-2nl/3 and H be a polynomial coprime
to Q. Then,

1 H r~2 _pn-2rpl/
m Z E (Qj+1 P(A)> < (logn) 11347 g " (3.8)
A€l
Proof. See Proposition VII.7 in [3]. O

Corollary 3 Let Zn'/3 < j4+1 < ™ — 2tpl/3, Then, there exists a constant
0 h th * ¢ ¢
c > 0 such that

1

L e
Hal

> £ (grr)

A€l,

uniformly in this range.

Proof. By (3.8), we get the uniform estimation

]. H 7/3+22r—2 _,,.2—21'"1/3
0A Y E (WP(A)> < (logn)-n q
nl |4el,
' & eloglogn+(7/3+227"%)logn—r2">"n!/logq
& e—-cnl/3
for some constant ¢ > 0. O

Lemma 34 Let Zn'/® <j+ 1< 2 — 2n!/3 then,

1 1 —enl/3
—# {A € I,|Dg ;(P(A)) =€} = q_k+o (e )

|In|
uniformly in this range.
Proof.'

1 1 P(A
—# {A € I,JDQJ(P(A)) = 6} = — Z z cuelE ( S-H) H)
|In| |1"| A€In HEP; Q

1 (P(A) )
= CHeT T - H
HEP; || A€l Q!
1 P(A
= S+ ) cne ZE( (.+1)H)
T ner || A€l @’
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Due to Corollary 3 we have § <« e‘C””s, thus, the required result follows. {J

As a consequence for the mean value, we get a similar lemma, as for A € P,:

Lemma 35 Let g : ]Fq[T] — R be Q-additive. Then,

] 2 9P = Tk 0 (")

with

o Z g(e).

EEP;

Proof. According to the range in Lemma 34, we split the whole sum into
three parts.

Y aPA) = 3 3 gle)# (4 € hlDay(PUA) =)
Ml Aer, JSBre€P;
R D Y
j<%n1/3 Z,fﬂllasjﬁ%—g,fﬂl/s v;: 2rnl/3<J %
=‘:g'1 =7§2 =:Sa

Obviously, S; and Ss can be estimated by |S;| < n!/3 resp. |S;| < n!/®
Due to Lemma 34 we have

S = % T eegg#{AcLiDas(P(A) = ¢}

1/3<_7<——'n,1/3 EEP’:

— S ) zj: (?k +0 (e-m"“))

EEP;

1 (nr 4r —enlf3
= 7 (—k— - 7n1/3> EEZ})’:g(e) +0 (ne )
- Furofw)

O

With the help of estimate (3.8) we can prove the following frequency estimate.
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Lemma 36 Let m be a fized integer and ¥n'® < ji+1 < ja+1< - <
Jm +1< B — 201/3 Then,

I, I#{AGI DQm(P(A))=D1""’DQyjm(P(A))=Dm}

1
o)

I

uniformly for all Dy,...,D,, € Py and for all 7,,...,jm in the mentioned
range. -

Proof. By Lemma 22, we have

T |#{A €l, DQ]I(P(A)) Dl)""DQ,J'm(P(A)) = Dm} =

|1 | ) (Z cu,0, B (QZLIP(A)» X - X

A€el, HIEPk

H,,
" (Hmzepk Cttmn & (Q’ + P(A)>)
H H,
= Z CH1D1 CHmDmIn|ZE(P(A) (QJ—:‘I++_Q-7'"+1>)

Hy,..., HnePy Ael,
= copy QD 3 1
Ael,
: III Eﬁn
+ Z CHy,D, * chD’"‘n'Z ( (Qj1+1+.”+_Qjm+l>>
HypsHm€Py A€l
1
= qk_m + S,
where Y.* once more denotes that we sum just over all (Hi,...,Hn,) #
(0,...,0).

Let | be the largest ¢ with H; # 0, then,

7 2 B (P (e + i) ) = g 3 2 (P )

A€ln Ael,

where H = H; + H_,Q#* - + ... + H Q% 7. By our assumption, we
have Zn!/? < 5y +1 < 2¢ — Zn!/%  Hence, by Corollary 3, we obtain
S = O(e~='"?). O
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Note that Yp, Ys, . .. are independent identically distributed random variables
on P, with P[Y; = D] = % for all D € P. We rewrite Lemma 36 as

1
l—j—l# {A €l DQ,jl(P(A)) =Dy,.. ')DQyjm(P(A)) - Dm}
= IP[}/JI = Dl)"',}/jm _ Dm] +0 (e—cn1/3) ’
whereby this relation is also true if j;,...,jm vary in the range Zk—’nl/3 <
Jiyd2s - Jm < 35 — 2n1/3 and are not in the correct order. It is even true

if some of them are equal.

As already mentioned, our methods of proving Theorem 5 for A € I, are
absolutely the same as for A € F,. We will show that the moments of
g(P(A)) can be compared with moments of the normal distribution. So, it
will be shown that the corresponding (normalized) distribution function of
g(P(A)) converges to the normal distribution function ®(z), independent of
whether A€ P, or A € I,,.

Again, it turns out that we will have to cut off the first and last few digits.
However, this time we will study another range, that is, we will work with

g(P(A)) := > 9(Dq,;(P(4)))

%nl/ssjgﬂ’f_%‘nlﬂi
instead of g(P(A)).

Lemma 37 Set )

=2 > o(H) =Eg(¥;).
HeP,

Then, the m-th (central) moment of G(P(A)) is given by

=3 (st - (- T )u) -

A€l

=E ( > (9(¥;) - u)) o (n"‘e-c"" 3) :

2r,.1/3¢ i BT __ 27 11/3
Enl/3<i<nr-nt/
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Proof. The procedure is identical to the proof of Lemma 31, thus, we content
ourselves with the general case.

|n|,,ez, (st~ (% 47”) 8) =
= 2 D 9(e)glem)

A I#{AGI n|Dqi (P(A)) = €1,..., Dq,jn(P(A)) = €m}

= Z Z 9(61) -g(em)IP’[le = €1y, }/jm = Em] +0 (nme-cn‘/a)

J1yeeadm E1yeeey Em—i
P[}/n =€1,...,ij_‘. =€m—i] + .-

=E [( > () - u)) m} +0 (nmeme ).

n1/3<]<nr 2rn1/3

O

Since the sum of independent identically distributed random variables con-
verges (after normalization) to the normal distribution, it follows from
Lemma 37 that

_ (nrt _ 4r 1/3
|11 |# {A I g( (\/zir (41‘ /3) )M < :L‘} = CI)(:I,‘) + 0(1)
¥~ anil)e’

Due to
5(P(4)) - g(P(A))| < n'/?
and n!/3/n1/? = =1/ — 0, we obtain
BPA) - (F — £nif)  g(P(A)) ~

nr

JeE = o
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and finally,

1 {Ae[n:wgm}=®(m)+o(l).

IInI \/%02

~ This completes both the proof of Theorem 5 and this section on Bassily and
Katai’s central limit theorem. '

3.2 The joint distribution of two @;-additive
functions

After studying the situation for one @), we are now interested in the distri-
bution with respect to several different basis-polynomials Q,, ..., Qq.
We are going to prove a generalization of Theorem 3 for two bases @, Q2.

First, our result:

Theorem 6 Suppose that Q, € F [T and Q2 € F,(T| are coprime polynomi-
als of degrees ky > 1 resp. ky > 1 such that at least one of the derivatives @),
Q5 is non-zero. Furthermore, suppose that g, : Fo[T] — R and g2 : Fy[T] - R
are completely Q.- resp. Q2-additive functions.

Then, as n — o0,

91(A) — 2t < 92(A) — 1hyg,

2 =T n 2
[n [n
%0 %2792

a]il-# AEPn: S.’Eg

Remark 10 Theorems 4 and 6 assert that Q-ary digital expansions are
(asymptotically) independent if the base polynomials are pairwise coprime.

Apart from some properties of v resp. the character £ (see Lemmas 2, 3 and
6 in Chapter 1), Mason’s theorem (see [25]) is an important tool for proving
Theorem 6.

Lemma 38 (Mason’s Theorem) Let K be an arbitrary field and
A,B,C € KI[T| relatively prime polynomials with A+ B = C. If the
derivatives A’', B, C' are not all zero, then, the degree deg C' is smaller than
the number of different zeros of ABC (in a proper algebraic closure of K ).
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We present an alternate proof of this theorem which was found by Noah
Snyder [29]. Therefore, we define ng(F) as the number of distinct zeros of a
non-zero polynomial F € K{[T).

Lemma 39 Let F be a non-zero polynomial in K(T|. Then,
deg(F) < deg(F, F') + no(F),
where (G, H) denotes the greatest common dwisor (g9cd) of G, H.

Proof. Let ay,...,an be the roots of F' with multiplicities aq, ..., an, so
that F = ¢(T — o;)® - - - (T — @y )®. Then, due to the product rule,

F' = cay(T —a))* YT — ) - (T — ap)™"
+c(T — o)™ % (T — ax)® - - (T — am)™™).

Therefore, (T — o) ™! | (F, F'). Similarly, (T — a;)*~! | (F, F'). So we see
that (T — o)~ (T — )1 | (F, F'). Therefore, since F is non-zero,
deg(F) — no(F) < deg(F, F'). The lemma follows immediately. O

Using this lemma, we can prove Mason’s Theorem, Lemma 38.

Proof of Lemma 38. A+ B = C. Therefore, A’ + B’ = C’. Multiplying
the first equation by A’, the second by A, and subtracting, we find that
A'B — AB' = A'C — AC'. Therefore, (A, A'), (B, B'), and (C,C") all divide
A'B — AB'. Since they are relatively prime,

(A, A')(B,B')(C,C") | (A'B — AB').

We claim that the right-hand side is non-zero. If A’'B — AB’ = 0, then,
A | A'B. Since A and B are relatively prime, A | A’. Therefore, A’ = 0.
Similarly, B’ and C’ would also be zero, thus contradicting the assumption.
Therefore, the right hand side is non-zero, and

deg(A, A’) + deg(B, B') + deg(C, C’) < deg(A) + deg(B) — 1.

We move everything to the right-hand side and add deg(C) to both sides to
find that

deg(C) < deg(A)—deg(A, A')+deg(B)—deg(B, B')+deg(C)—deg(C,C")—1.
The application of Lemma 39 yields the required result. O

We will use Mason’s Theorem in order to prove the following property.
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Lemma 40 Let Q,,Q; € T,[T] be coprime polynomials with degrees
deg(Q:) = k; > 1 such that at least one of the derivatives Q}, Q5 is non-
zero. Then, there exists a constant ¢ so that we have

deg(H,Q5? + HoQ1") > max{deg(H1Q3?), deg(HQ1")} — ¢
for all polynomials H, € Py, and H, € Py, with (Hy, Hy) # (0,0) and for all

integers my, my > 1.

Proof. Set A = H1Q3?, B = HQ7", and C = A+ B. If A and B are
coprime by Mason’s Theorem, we have deg(A) < ng(ABC)—1 and deg(B) <
no(ABC) — 1, where ng(F') is defined as the number of distinct zeros of F,
as above. Hence,
max{deg(A), deg(B)}

IA

n()(ABC) -1
no(H1HyQ1Q:C) — 1
deg(H,H2Q1Q2) + deg(C) — 1

IA

and consequently,
deg(C) > max{deg(A),deg(B)} — deg(H1 H,Q1Q2) + 1. (3.9)

This shows that (in the present case) ¢ = 2k; + 2k, is an absolutely proper
choice.
If A and B are not coprime, then we can write the common divisor D in the
following two ways: i
D = Dy,Dq, = Dy, Dog,,

where Dy, stands for the part of D dividing H,, and analogously Dy,. Dg,
divides Q7" and Dg, | Q7. Since (Q1,Q2) = 1, we have (Dg,, Dg,) =1,
and thus,

D Q2 I Dy, | H,

D (2} | Dy, I Hy
Therefore, there are only finite possibilities for D, Dy,, Dy,, Do, and Dg,.
Thus, 3 m} : Dg, | Q;"IQ for all finitely possible Dg,. Analogously,
I m{ : Dg, | Q'l"'1 for all possibilities. Hence, there exists m' > 0,
m’ := max{m/, m}} so that D? is a divisor of H; H(@,Q2)™ . Consequently,
we have

}=>D|H1H2

(A/D)(B/D) = (HiHy(@Q:Q2)™ /D*)QT" ™ Q5™
and by the same reasoning as above we get

deg(C/D) > max{deg(A/D),deg(B/D)}~deg((HiH3(Q:Q2)" /D*)Q1Q2)+1
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or

deg(C) > max{deg(A),deg(B)} — deg((H1H2(Q:Q2)™ /D@1 Q) + 1.

Since there are only finite possibilities for H,, Hy, and D, the lemma follows.
g

Convergence of Moments The idea of the proof of Theorem 6 is com-
pletely the same as the one of Theorem 5. We prove weak convergence
by considering moments. The first step is to provide a generalization of
Lemma 28.

Lemma 41 Let m,, my be fized integers. Then, there exists a constantc’ > 0
so that for all0 < 4 < i3 < -++ < iy, < F";—d and 0 < j < o<+ <
Jmg £ 7 — ¢ we have

1
q_n#{A € b DQlyil(A) = Dl""’DQlyiml(A) = Dml’

Da,.j: (A) = Ey, ... ’DQz,jmz (A) = Emz}
1

- k1m1 ksz ‘

a1 "4

Before giving the complete proof of this lemma we will concentrate on the
cases m; = my = 1 and m; = my = 2. Thereafter, the main idea will have
become clear, and the rather complex notation of the general proof will no
longer disorient.

First, let m; = my = 1. Thus, we have

1
—;#{A € Pa: Dg,4(A) = D, D, (4) = E}

AH.
= —-——Z Z CQ;,H;,DE (ggi) Z CQ2,H2,EE (Q]+21>

A€Pn HyEPy, H2€Py,

1 H,
-t 2 oy 3 B (4 (g ) )

(H11H2)?‘:(010) A€P,
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Now, we can apply Lemma 40 and obtain

( H |, H ) _ (Hng“ +H2Q§+1>
Qz+l QJ-H Q§+1Qg+l
< k(i+1)+k(G+1)
— max{deg(H;) + ka(j + 1),deg(Hs) + k1(i + 1)} + ¢
< min{ki(i +1),k(j + 1)} + ¢

So, there exists a constant ¢’ > 0 such that
min{k,( + 1), k2(j + 1)} +c<n

foralli,j with0<¢< :—1 —cdand0<j< :—2 — . Hence, by Lemma 6
> e (a(gh+ 2%)) o
A€P, 1 @&

This completes the proof for the case m; = my = 1.

Next, suppose that m; = my = 2. Thus, we have

1
_#{A € P,: DQl,i1(A) = DlaDQl,iz(A) = D27DQ2,J'1(A) = EI)DQ2,12(A) = Ez}
H H
= Z ( Z CQiHu,0, E <Q;11-+1-1 )) ( Z CQ: Hi2, D2 (Ql:jl A)) X
A€EP, \ HnEPy Hy2€Py,

H, Hyy
X Z CQ2|H2hEl < _7141.1 > Z CQz,sz,Ez (Q:’2+1 A)
H21€Py, Q2 Ha2€Py,

= § : CQ1,H11.D1 €Q1,H12,D2 CQa,H21,E1 CQ3 Ha2, B2 X
Hyy H12€P,
Hzl.H'zzEPkg

Hy, Hy, Hy, Hyy ))
x— E < ( Tt mat oat S .
Z Q11+1 Q12+l Q.;1+l Q,;Z‘Fl

A€Pn

Of course, if Hy; = Hip = Hy = Hjy = 0, then we obtain the main term

1

2ky 2ko
US43

Otherwise, we will distinguish between four cases. Note that we assume
w.lo.g. that all polynomials Hyy, Hy2, H21, H22 are non-zero. If some (but
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not all) of them are zero, the considerations are even easier.

Case 1 i3 — 1) < ¢1,j2 — J1 < ¢ for properly chosen constants ¢;, ¢, > 0.
In this case, we proceed as in the case m; = my, = 1 and obtain
Hy + Hyy Hy " Hj,
v QuiT T QEHl T onH T R
_ (HuQY ™ + Hi)QP™' + (HaQF ™ + Hyp)QE"!
v Qi2+1sz+l
1 2

IA

ki(i2 + 1) + ka(jz + 1)

— max{deg(H11Q7 ™" + Hiz) + k2(j2 + 1),
deg(Hp QF ™7 + Hag) + ka(iz + 1)} + c(c1, c2)

< min{k (41 + 1), k2 (51 + 1)} + é(c1, ¢2)

for some suitable constants ¢(c, ¢;) and &(cy, ¢2).

Case 2 iy — 1) > ¢1,J2 — J1 > ¢, for properly chosen constants ¢;,c3 > 0.

First, we recall that

< Hll H2l
v

W W) < min{kl(z’l + 1), kg(jl + 1)} + c.

Furthermore,

v

H :
v (QTI'?‘I) kl('Lg + 1) - deg H12
1

H22
v Q12'2+1

Thus, if ¢; and ¢, are chosen in a way that ¢ k; > ¢+ k; and cxk2 > ¢+ ko,

then,
Hy, Hy, . Hy, : Hj,
v 611711- + ———Q]2.1+1 < min§ v Q?H ,V ——ngﬂ

and consequently, by Lemma 2,
Hy, Hy, Hj Hoy ) ( Hy Hy )
v ——+ ==+ =g+ = = V|l t+t =57
(Q111+1 Q112+1 Q_;1+l Q_;2+1 le+l Q%H-I
min(kl (21 + 1), kz(jl + 1)) +c.

> kl(ig — i1) + klil > kl(il + Cl)

\%

ka(jy + c2).

IA
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Case 3 i; — i1 < 1, j2 — J1 > ¢ for properly chosen constants ¢;,cy > 0.

First, we consider
Hy Hy, Hy )
v - + — + —
(Q111+1 Qzlz+1 Q%lﬂ
| (HuQP ™ + Hip)Qht + Hu QP!
=V Qi12+1Q.;'1+1
<ki(ia+1)+ ka(j1 + 1)
— max{ki(iz — 91) + k2(j1 + 1), k1(i2 + 1)} + c(c1)
= min{kl(il + 1), kz(jl + 1)} + C(C]).

Furthermore,

- |
U(Q]—{ﬁl) > ky(jz + 1) — deg(Hy,)
2

ka(32 — j1) + kag1 > ka(1 + c2).

v

Hence, if ¢, is sufficiently large, then,

Hll H12 H21 H22 _ Hll H12 H21
v Qti;+1 + QiTH + Q_;'l-H + Q,;z-f-l =V Q‘iﬂ-l + Q‘Liz+1 + Qgﬁ-l

< min(kl(z’l + 1), k2(j1 + 1)) + C(Cl).

Case 4iy; —1; > 1,52 — Jj1 L ¢ for properly chosen constants ¢;,c; > 0.
This case is completely symmetric to case 3. Let us consider
Hy, Hy Hj,
v (Q§1+l + Q%1+1 + ng-i-l
| HuQP + (HnQF ™7 + Hp)QP !
=V Qil+1Q£2+1
< ki(in +1) + ka(G2 + 1)
- ma.x{kz(]g + 1), kl(il + 1) + kz(jz -_ ]1)} + C(Cz)
= min{kl(il + 1), kz(jl + 1)} + C(Cz).

Hy;
v 'Q;T'l'

Furthermore,

v

ky(ig + 1) — deg(H,2)

> k‘.l(iQ - 'Ll) + kity > kl(’il + Cl).
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Hence, if ¢, is sufficiently large, then,

Hy, Hy, Hy Hy, > ( Hy Hy Hp, )
Tt ot e T = = ot
<Q111+1 Q12+1 le+1 ng-l-l QIH-I Q%I-H Q§2+1

< min(ki (1 + 1), k2(51 + 1)) + c(ez).

Putting these four cases together, we show that (with suitably chosen
constants ¢;,cy) there exists a constant ¢ so that for all polynomials
(Hy,, Hys, Hoy, Ha) # (0,0,0,0) we have

Hll H12 H21 H22
(Q‘;l"‘l + Qtiz+l + Q£1+1 + ng-f-l

Thus, there exists ¢ > 0 such that

) < min(k; (3, + 1), ko(j1 + 1)) + &

foralli),j, with0<4 <2 —cdand 0<j; < & —c Hence, by Lemma 6,
Hy, Hyp Hy Hy, ))
E (A ( e i el dis Sllecur o pilee- = 0.
A%;n Q11+1 Q12+1 Q_;1+1 QJ22+1

This completes the proof of the case m; = my = 2.

Now, the general proof of Lemma 41 follows. Let m;,my > 1 be arbitrary
positive integers, and consider

1
E#{A € P.: Dg,4s(A) = Dy, ..., Dgy i (A) = Dpn,,

DQ2’j1 (A) = El’ o Dsz.‘imz (A) = Emz}

= — Z H E ch,Hu,Da (QI{.I:IA)

A€P, s=1 HI,EPkl

1 Hy
XH Z CQy Hoe B (QJ‘HA)

t=1 H2¢6Pk

Z H CQ1,H1,,Ds H CQz,Ha¢, By

Hiy.\Him, € Py, 8=1
Hay,.oyHom, € Py,

my Hs ma Ht
v e(a(Xa ZQ))

A€EP, s=1 t=1
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For Hyy =+ = Hyp, = Hyy = -+ = Hyp, = 0 we obtain the desired main
term
1
ghimigpme

Again, we only consider the case where all polynomials H;; are non-zero, and
define integers e; and e, for properly chosen constants c; resp. ¢, by

’I:z—’t.1<"'<'1:el—i1 <c < ie1+1—'i1<"'<iml_i1, (310)
=< <Joa—Jt LC2< Jet1 =N < <Jmy=7J1. (3.11)

Therewith, we look at

e €2
Hls H2t
B = Z Qz.+1 Z Q%}H

t=1

and determine the numerator of B € F,(T')

nmm(B) = (Hn@Qy ™"+ HpQ 7+ + Hi )@ +
‘le1+l(H21Q.7c2_]l + H Q]eg—.h R Hzez).

By Lemma 40, we get

deg(num(B)) > max { deg ((Z HlsQul—:,) J=2+l) ’
deg < ie; +1 Z H. tQJez—Jt> } —c

2 ma‘x{kl(iex - z1) + k2(]e2 + 1)) k2(.7e2 - .71) + kl(iel + 1)} -

Following the same principle as the example (m; = my = 2) above,

v(B) = deg(den(B)) — deg(num(B))
S kl(im + 1) + k2(jez + 1) + C,
—max {ki(ie, — %) + k2(Je, + 1), k1 (i, + 1) + ka(de, — 51)} - (3.12)

There are two possible cases:

Case 1
kl(iel - 7'1) + k2(je2 + 1) Z kl(iel + 1) + k2(jez - j1)1

which is equivalent to k;(i; + 1) < k(51 + 1). Due to (3.12), we get

I/(B) < kl(il + 1) + CI.
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Case 2
kl(iel - 7;1) + k2(jez + 1) S kl(iex + 1) + kz(jez - jl);

which is equivalent to k;(3; + 1) > k2(j1 + 1). Due to (3.12), we get
v(B) <k(ji+1)+ (.
Summing up, we have
v(B) < min{k(i; + 1), ka(jh + 1)} + €.

Let s be an arbitrary integer greater than e;. We consider

V( Hi, ) > ky(is + 1) — deg(Hy,)

Q’ia"H.
> ki(is — t1) + katr.

Hy, ,
v (iQ—ll’I?> > k‘]('L] + C]).
Analogously, for t > es, e, defined by (3.11):
H .
v (@%) > ka(j1 + c2).

Thus, if ¢;,c; are chosen in a way that c,k; > ¢ + k; and coky > ¢ + ko,
then,

Since (3.10), we get

v Z s +i—Hi < (3:13)
Q'is'f'l QJZ"+1 *

s=1 t=1

min { v H151+1 v Hlml Y H2e2+1 v H2m2
QEnt 0 imy+1 [ Jegr1 ¥l |1 gmp 1 | (2
1 1 2 2

(3.14)

and consequently, by Lemma 2,

m) ma
Hls H2t
v (Z O+ + Z Q12‘¢+1>

s=1 t=1

(3] €2
Hls H2t
v (Z 0t + Z th+‘1)
s=1 %1 t=1 %2

min{k; (i + 1), ka(51 + 1)} + ¢

IA

Hence, there exists a constant ¢” > 0 so that

min{kl(il + 1),k2(j1 + 1)} + CI S n
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forall 0 <i4; < o c,0<j; <& - Hence, by Lemma 6
— Hls — H2t
> 5 (4 (z S 2] o
A€P, s=1 ¥1 t=1 %2

which completes the proof of Lemma 41.

As in the proof of Theorem 5 we can rewrite Lemma 41 as

1
q—n# {A € Pn : DQl,‘il(A) = Dl, e ,.Dthm1 (A) = Dml,

Dq,,(A) = B, ..., Dy jm,(A) = Em, }
=IPD/1~1=D1,...,Y =Dm”Z1_—_Ej“._.,Z‘

tm,y

Fmg =

65

where Y; and Z; are independent random variables that are uniformly dis-

tributed on Py, resp. on F,.

Moreover, we need a variation of the Central Limit Theorem, of Lemma 29

as well as a variation of Lemma 30.

Lemma 42 Let (¢,) and ((,) be sequences of independent identically dis-
tributed random variables, independent of each other, with mean values pg

resp. p¢ and variances of resp. of. Define

bt o+ o — i
= dd, =
K J/noe an V/noe

so that E(n,) = E(9,) =0 and V(n,) = V(J,) = 1. Then,

n—ooo

G4t Gn— i

lim P(n, < 5,9, <t)=®(s)®(t) = / / e~ ¥ 12e/2 du du.

Moreover, if the moments E(£,)™ and E((,)™ exist for all my,m; € N,

then, as n — o0,

E (n072) = (1) ™ E(9,)™ — % / / §migma p=52/2,=/2 go it

for all m;,m, € N.

Lemma 43 Let Y, and Z, be random variables, and

v _Ya-EY.,  ~ Z,-EZ,
TN, O T TNz,
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with BY,, = EZ, = 0 and VY, = VZ, = 1. If

Y, -EY,\™ (Z,-EZ,\™ 1 [ [= 2 2
L. L n __CTn - myma ,—s2/2 —t%/2
EK ) (Baee) |-w L [emrerre e

for every my,my € N, then,
(Vn) ZNn) 5 (Nl(oa 1)’N2(0: 1)))
- where Ny and N, are independent of each other.

This will show that the corresponding (normalized) joint distribution of g,
and g, is asymptotically Gaussian.

It turns out that we will have to cut off the last few digits, that is, we will
work with

gvl(A) = Z gl(DQlyjl(A)))
VRS el

G(A) = > g2(Dg,;(A)),

J2

IA

n
k; €

where ¢” is the constant we have obtained above. Then, Lemma 41 immedi-
ately translates into

Lemma 44 For all positive integers my, mo we have

51; ) (g;(A) - %Mmyl (gE(A) - ,%ugz)

A€P,

=E( > (gl(le)—ug,)) E( ) <92(ij>—ugz>)

hSg - Ja< g —c”

ma

for sufficiently large n.

Of course, this implies that the joint distribution of g, and g, is asymptot-
ically Gaussian (after normalization). Since the differences g;(A) — g1(A)
and gy(A) — g2(A) are smaller than a constant, the same is true for the joint
distribution of g; and g,. This completes the proof of Theorem 6.
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