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Zusammenfassung

In der vorliegenden Arbeit wird dditfehlerverhalten von Mehrantennensystemeruntersucht, wobei
der Schwerpunkt der Arbeit auf d&erechnung von Bitfehlerabsclatzungen liegt. Leider sind die
untersuchten Funk-Systeme so komplex, dal’ geschlossestiiislee fUr die exakte Bitfehlerrate nicht
extistieren.

Die Arbeit umfaRt zwei Themenschwerpunkténcodierte und Raum-Zeit codierte DatenUbertrag-
ung uberraumlich korrelierte, echo-freie Funkkanale unter der Verwendung vamptimalen Empfang-
ern. Die raumliche Korrelation wird mit dem so genannten W-Mlbeingebracht, wobei Funkkanal-
Meldaten zur Bestimmung der Modell-Parameter verwendetene

UncodierteUbertragungssystemeBereits firr die einfacheren, uncodiertebertragungssysteme ist ei-
ne obere Bitfehler-Schranke die einzige einfache Moglichkeit, die Bitfehlerrate abeldtzen. Diese
obere Schranke ist einfach die Summe lber alle paarweisbledwahrscheinlichkeiten. Dabei stellt
sich heraus, dal3 das Bitfehlerverhalten mittels einengeri Anzahl vori-ehlertypen vollstandig be-
schrieben werden kann. Die abgeleitete obere Schrankefiwvingerschiedene uncodierte Systeme mit
Simulationsergebnissen verglichen. Es zeigt sich, daBlmiee Schranke unterhalb einer Bitfehlerwahr-
scheinlichkeit von zirkd 0—2 die Simulationsergebnisse sehr genau widergibt.

Um die Diversitatsordnung und denPerformance-Verlust, verursacht durchaumliche Korrelation,
beziffern zu kénnen, wird die obere Schranke fiir hohes@iauschleistungs-Verhaltnis abgeschatzt.
Damit wird eine extrem einfache Beurteilung des Fehlemkehs durch Angabe der Steigung und der
horizontalen Lage der Bitfehlerratenkurven moglich.

In weiterer Folge wird dasptimale Vorcodierungsfilter fir minimalen Performance-Verlust her-
geleitet, mit dem der Einflul? der raumlich Korrelation kampiert werden kann. Das Verhalten des
vorcodierten Systems in korrelierten Kanalen kommt dest&yverhalten ohne Vorcodierung in unkor-
relierten Kanalen sehr nahe.

Raum-Zeit codiertdJbertragungssysteméen zweiten Schwerpunkt bilden Raum-Zeit codiditeer-
tragungssysteme, wobei in groben Zigen die selben Theimerspunkte wie fur uncodierte Systeme
diskutiert werden. Auch furr solche Systeme wird elirere Schrankefir die Bitfehlerwahrscheinlichkeit
berechnet, die fir alle untersuchten Codes und alle Kadiogistypen relativ gut dem simulierten Bitfeh-
lerverhalten entspricht. Mit Hilfe der Signaldistanzerduter oberen Bitfehler-Schranke zeigt sich, dafl3
es Raum-Zeit Block Codes gibt, bei denen #&ahlerverhalten von Mehrfachsymbolfehlern domi-
niert wird (MIMO Paradoxon) . Diese Verhalten steht im diametralen Gegensatz zu deragidsen
bei der Dateniibertragung in Systemen mit einzelnen Amtetieim Sender und beim Empfanger.

Mittels der Bitfehler-Abschatzung bei hohem Signal-Ranlsistungs-Verhaltnis wird diBiversitats-
ordnung und derLeistungsverlust infolge raumlicher Korrelation der Antennenfelder gugntab-
geschatzt.

Ebenso wie fur die uncodierten Systeme, wird auch hiepptimales Vorcodierungsfilter hergeleitet,
welches die Auswirkungen der raumlichen Korrelation dirtd

Zusatzlich wird eineuntere Schrankefir die Bitfehlerwahrscheinlichkeit hergeleitet, digr falle un-
tersuchten Codes gilt und in unkorrelierten Kanalen faakemit den Simulationsergebnissen Uberein-
stimmt. Im allgemeinen kann damit eine Eingrenzung dereBldrrate von unten und oben her erzielt
werden.






Abstract

In this thesis therror performance of multiple antenna systemshas been investigated. Our focus lies
on theanalytical calculation of performance measuresUnfortunately, due to the difficult framework
and the rather unpredictable behavior of the signal dissircrandomly varying channels a closed form
solution of the exact error performance could not be derivéalwvever, tight performance bounds have
been found that can be used to get important performancenptees.

This thesis consists of two main parts concerninguheodedand thespace-time block coded data
transmission over spatially correlated, frequency flat Multiple Input / Multi ple Output (MIMO)
channelsusing Maximum Likelihood receivers. The spatial correlation is modelled by the so-called
W-model, where measured data are used to determine the perdeheters.

Uncoded MIMO-systemsEven for uncoded systems, the only simple to calculateop@idnce measure
is aunion bound, which is simply the sum over all pairwise error probakekti In this thesis it is
shown that the error performance can be described by a fewallsnl Error Types (ETs). The results
of the corresponding union bound are compared with sinalagsults for different system parameters,
i.e., number of transmit antennas, number of receive aatenmodulation formats, and for spatially
uncorrelated and correlated MIMO-channels. The derivedruibpound is tight for Bit Error Ratio (BER)
values belowl 0~ for all systems investigated.

By means of this bound high Signal to Noise Ratio (SNR) approximationfor the BER vs. SNR
performance is calculated. With this approximation diersity order of the system and a so-called
performance lossdue to fading correlation can be figured out. Especiallylaks due to spatial correla-
tion can be quantified. Using two parameters, the slope antdhizontal position of the BER vs. SNR
curves, the error performance can be fully described in itje 8NR range.

An optimal precoder, which minimizes the correlation induced power lossis presented. For the
example discussed in this thesis the error performancegiaghe optimal precoder in correlated fading
is even better than the performance of the standard systéme iow SNR range in uncorrelated fading
channels.

Space-time block coded MIMO-systenighe second main part of this thesis is devoted to the cdionla
of performance measures for space-time block coded dasntiasion. In principle, we follow the same
analysis as for uncoded systems. First, it is shown thatioreschannel typesiultiple instead of single
errors dominate the error performance in MIMO systems (MIMO paradoxon). In deriving the
union boundthe ET concept is applied also. The calculated union bouredsanpared with simulation
results for several codes and several channel correlatmst It turns out that the union bound is tight
for BER values ofl0—3 and below.

Once again, &igh SNR approximation of the union bound is calculated, to determine dinersity
order and thepower lossin case of correlated channels.

An optimal precoder for correlated fading is derived. Simulation results shbet the precoder effec-
tively mitigates the loss induced by correlated fading.

In addition, an extraordinarily tightower bound of the BER is derived that allows for a two-sided

bounding of the BER vs. SNR performance from below and fromvab Several code examples as-
sess the tightness of the lower bound, where, for uncoeetlehannels, an almost exact performance
approximation is achieved.
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Chapter 1

Introduction

In the last decade mobile communication has become a veyrtang part of human life. The demand on
having everything mobile has increased substantially.riffpam voice calls, nowadays video streaming,
video calls, Internet surfing are mobile too. These apptioatneed high data rates to make them fast
and thus comfortable. In the future this trend will go on, #retefore investigating techniques that offer
higher data rates is of utmost importance.

One of the most promising new data communication method snake of multiple antenna elements at
the transmitter and/or at the receiver. In this thesis wadamn such systems, which are called Multiple
Input / Multiple Output (MIMO) systems in the literature. Fig. 1.1 a MIMO system witt transmit
antennas ane g receive antennas is showrk;;(7) is the channel impulse response betweenjthe

h,(7)
h,, (1)

h,,(7)

P h,... (1) : [

n; N,

Figure 1.1: MIMO system witl7 transmit antennas ant receive antennas.

th transmit antenna and theh receive antenna. The enormous research interest i gystems is
justified by recently published impressive results on thg lihannel capacity of such systems [1][2].



2

MIMO Channel Capacity:

The ergodic (mean) channel capacity [1][2] vs. the meand&@ignNoise Ratio (SNR) for several MIMO
systems with 2, 4x4, 8x8 transmit and receive antennas and a Single Input / SinglpuD(5I1SO)
system for uncorrelated Rayleigh fading are shown in F2g.IThe increase in channel capacity for

45

— SISO

— MIMO 2x2

— MIMO 4x4
MIMO 8x8
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Figure 1.2: Ergodic channel capacity vs. mean SNR for sedMO systems (X2, 4x4, 8x8) and a

SISO system for uncorrelated Rayleigh fading.

MIMO systems compared to a SISO system is quite impressifee channel capacity for the SISO
system at SNR=10dB is approximately 2.95 bit /channel usex2 MIMO system almost doubles the
capacity (5.6 bit / channel use), ¥4 MIMO system obtains more than 10.9 bit / channel use and a
8x8 MIMO system promises the seven fold capacity (21.7 bit hokehuse) at the same SNR value.
These improvements have attracted a lot of research ibiarde last years, due to the huge increase in
the MIMO capacity compared to a SISO system. One of the magsbiitant field in the research area of
MIMO systems is how to exploit this promised increase in ciecapacity in an efficient way. There are

a lot of approaches, which can mainly be subdivided intostigations concerning uncoded and coded
MIMO systems.

Uncoded MIMO Systemes:

Uncoded MIMO transmission systems are also called systeiths'8patial Multiplexing”. “BLAST”

[4], is the most prominent realization of an uncoded MIMOtegs. The acronym BLAST stands fBell

LA yeredSpaceTime. Itis an efficient method to transmit uncoded symbolsfeach of thewr transmit
antennas. As shown in Fig. 1.Bdependentiata streams are transmitted over each transmit antenna.
The MIMO channel delivers a superposition of the transngihais to the receiver. As it can already be
seen in Fig. 1.3, the transmitter complexity is very low amlrhain part of the signal processing has to be
done at the receiver. The receiver has to regain the trateshsiymbols from the mixed received symbols.
The maximum symbol rate ®®s = ny symbols per channel use is achieved and the transmittenyis ve
simple to implement. The main disadvantage is its limitedggeance, which strongly depends on the
utilized receiver. Several receiver strategies can bdexghpl

-) ML - detection,
-) MMSE -, ZF - detection,
-) BLAST nulling and canceling.
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Figure 1.3: Uncoded MIMO transmission system with independent data streams.

The ML (Maximum Likelihood) receiver (Sec. 3) achieves thestoperformance, but needs the most
complex detection algorithm. A maximum diversity orderidf= ng can be achieved. Obviously, in
uncoded MIMO systems the transmit diversity is ofily = 1 and thus the total diversit]p is equal to
the receive diversityD g, which is at mosk i for spatially uncorrelated channels (Sec. 2.2).

Assuming full knowledge of the MIMO channel at the receitbe ML receiver calculates all possible
noiseless receive signals by transforming all possiblestrat signals by the known MIMO channel
transfer matrixEL. Then the receiver searches for that signal calculated varae, which minimizes
the Euclidean distance to the actually received signal. Urdisturbed transmit signal that leads to
this minimum distance is considered as the most likely transignal. Note that the above described
detection process is optimum for white Gaussian noise.

Due to the exhaustive search within the complete signaladgty this receiver is very complex. There
exist approximate receive strategies, which achieve dliiasperformance and need only a fraction of
the ML complexity [9] [8] [7].

MMSE (Minimum Mean Square Error) and ZF (Zero Forcing) [4]ewer strategies belong to the group
of linear receivers. The ZF receiver completely nulls oet ithfluence of the interference from signals
coming from other transmit antennas. Then each data streassparately detected. The detection
(quantization) is performed in the same way as in SISO systdrhe disadvantage of this approach is
that due to canceling the influence of the signals from ottagsmit antennas, the noise may be strongly
increased and thus the performance may heavily degrade.tdilne separate decision of each data
stream, the complexity of this algorithm is much lower tharcase of an ML receiver. The diversity
order for ZF receivers in spatially uncorrelated chanretsnly D = np — ny + 1 [10].

The MMSE receiver compromises between noise and signalénéeice and minimizes the mean squared
error between the really transmitted symbol and the dedesyenbol. Thus the results of the MMSE
equalization are the transmitted data streams plus sontuatsnterference and noise. After MMSE
equalization each data stream is separately detectedtizr@dnin the same way as in the ZF case. The
complexity is almost equal to the complexity of ZF receiyénst the performance is better.

BLAST receivers apply a “Nulling and Canceling” or a “DecisiFeedback” strategy. Such receivers are
similar to the “Nulling and Canceling” multiuser detectasplained in [3] or to “Decision Feedback”
equalizers in frequency selective fading SISO channelg [@principle, all received symbols are equal-
ized according to the ZF approach (“Nulling”) and afterwaatide symbol with the highest SNR (that can
easily be calculated with the knowledge of the MIMO channeljletected by a grid decision. The
detected symbol is assumed to be correct and its influencheoreteived symbol vector is subtracted
(“Canceling”). This procedure is iterated until all symbare detected. Instead of the ZF “Nulling”
approach also an MMSE equalizer can be used. Then the terfiirigfus not quite adequate. The
complexity of such receivers is higher than in case of ZF or 88vteceivers, but still much lower than
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in case of ML receivers. The performance of these nulling @amteling receivers lies in between the
performance of linear receivers (ZF and MMSE) and ML reasive

Coded MIMO Systems:

Another transmission strategy is based on Space Time C¢8n@) [56] [57] [58], which is a more
elaborate and thus also more complex way to perform relidata transmission over wireless MIMO
links. STC is especially useful if the channel is only knovirthee receiver and not at the transmitter.
STC is understood as a redundant transmission of symbdlatha@orrelated (repeated) in time and/or
in space over several transmit antennas. Hence, redunggintsoduced in space and time and therefore
the information symbol rate of such systems is lower thamgoded systems but the error performance is
better. The loss in symbol rafés can be compensated by using a higher modulation formasfiriiing
more bits per symbol) and thus the same bit rate as for uncasgeims can be achieved, which is actually
the adequate performance measure. In spite of the highenlatmh format, the performance of coded
systems is usually better than for uncoded systems!

There are several approaches to implement STCs: Space Tigless Todes (STTCs), Space Time
Block Codes (STBCs), Space Time Turbo Codes and so on. A sjpaedrellis encoder with 3 input
bit streams |, I3 and k, two transmit antennas and at least one delay element pstréém is shown

in Fig. 1.4. The coefficients!ab/ and ¢ shown in Fig. 1.4 determine the performance of the coded

Figure 1.4: Space time trellis encoder.

system. Therefore, these coefficients have to be chosen aptanal way. Considering only the first
input bit stream in Fig. 1.4 for example, it can be seen that the correspongiiegrocessing is actually
a convolutional encoder as used in a SISO system. HowevelNtO systems the information of input
stream | is distributed over all (in this case 2) transmit antennak@er more then one time slot. Due
to this spreading of the input information in the spatial éamporal domain, such systems achieve high
diversity and good performance. The main disadvantageadf systems is the high receiver complexity.
The optimal receiver for such a code is the well known Vectibetdi decoder [27]. For low data rates
and few delay elements the receiver complexity is not to ,high if the information bit rate and/or
the encoder memory grows, the number of trellis states &se® exponentially and thus the complexity
reaches the limits of nowadays processors very soon. Amatiee are STBCs, that need a much lower
decoding complexity compared to STTC. More about STTCs ediobnd in [5] [6].

A very simple space time block coding system is shown in Fi. Here, the space time block encoder
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Figure 1.5: Space time block coding system for 4 transmitdareteive antennas.

is rather a signal mapping than an encoding. Thereforenfhd symbols are not that widely spread over
the spatial and temporal domain as in the case of STTCs. Hawe encoder and decoder complexity
is much lower than with STTCs. In general all receivers (ME, KIMSE, ...) that are used in uncoded
systems can also be used for STBCs with some modificationsa Sjpecial case of STBCs, namely the
orthogonal STBCs [51] [49], even a matched filter and a sépdoaid decision” afterwards, which is
easy to implement, leads to the optimum performance. Tiseadat of literature on the topic of space
time block coding and a lot of different code-design stretedave been proposed.

Scope of this Thesis:

Apart from complexity, a very important characteristic afysstem is its Bit Error Ratio (BER) perfor-

mance. Frequently, performance evaluations are done hyaions, which are very time consuming at
high SNR values. For this reason and to get more insight irddoehavior of MIMO systems, analytical

performance approximation or bounds of the resulting BERegare of great interest.

The aim of this thesis is to provide an analytical expressibarror bounds and to get BER approxima-
tions for uncoded and space time block coded MIMO systeniwngi ML receivers for frequency flat
MIMO channels.

The analysis of the BER performance helps to understanahadyistem parameters influence the system
performance essentially and which parameters are of mmpoitance. With this knowledge some
important conclusions for an optimum design strategy caaraen.

The rest of this thesis is organized as follows: The systemtairend the essential properties of the MIMO
channel are presented in Chapter 2. Additionally, the SNiitien used in this thesis is explained in
some detail.

Chapter 3 covers uncoded MIMO systems. A union bound for tBR Bs. SNR performance is derived
for spatially uncorrelated and correlated MIMO channelegidvL receivers. A high SNR approxi-
mation of the union bound is derived, which helps to spedify diversity order and allows a simple
comparison of the error performance achievable in unaedland correlated channels. The simulated
performance is compared to the derived union bound and thitlie SNR approximation for several
MIMO systems with different modulation formats. The dingrdoss and the power loss due to spatial
channel correlation is specified. Additionally an optimedqoding filter is derived that improves the
error performance in correlated fading.

Chapter 4 deals with space-time block coded MIMO systems.niérubound for the BER vs. SNR
performance is derived for spatially uncorrelated andetdated MIMO channels using ML receivers.
A high SNR approximation of the union bound is derived, whitghps to specify the diversity order
and allows a simple comparison of the error performance gouelated and correlated channels. The
simulated performance is compared to the derived uniondand to the high SNR approximation for
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several codes with different modulation formats. The diitgrloss and the power loss due to spatial
channel correlation is also specified. An optimal precoditigr is derived in order to improve the

performance in correlated fading. Additionally, a lowewhd for the BER is calculated. This lower
bound is an extraordinary tight performance measure in chsacorrelated channels. Together with
the calculated union bound a new joint bounding techniquin@BER from below and from above is
derived.

Essential insights and important conclusions are sumetiiz Chapter 5.

Some supplements and details can be found in the Appendix.



Chapter 2

Transmission System and Channel Model

2.1 System Model

2.1.1 Uncoded Data Transmission

The system model for uncoded data transmission is showrgir2Fi

hll

Figure 2.1: System model for uncoded transmission oveu&ragy flat MIMO channels.

and can be described mathematically by:
y=Hs+n. (2.1)

y = (y1y2 --. ynR)T is the receive symbol vectoH is the MIMO channel transfer matrixy =
(5182 --- 8np)" is the transmit symbol vector and= (ny ny ... n,,)" is the additive noise vector.
Note that the system model implicitly assumes a flat fadingil@Ichannel, i.e., the channel impulse
response between transmit antenna j and receive antégyta) = h;;0(7) and thus the transfer function
H;;(jw) is frequency flats(7) denotes a Dirac impulse. Therefore, in the following theagelariable

T is omitted and the complex-valued flat fading channel caefits are denoted by;;. The MIMO
channel matrixH consists ofvz - nr channel coefficients;;. The way in which the realizations of the
channel matriX are modeled, is discussed in Sec. 2.2.

Throughout this thesis, it is assumed that the transmit synextors are uncorrelated: ss? | = P,I,
where R denotes the mean signal power of the used modulation fortestch transmit antenna. This
implies that modulation formats with identical mean poweradl transmit antennas are considered. The

7



8 2.1. SYSTEM MODEL

entries of the noise vectar are independent identically complex Gaussian distribraddom variables
with zero mean and varianeg:
n ~ NoE*H0,02) (2.2)

2.1.2 Coded Data Transmission

The system model for space-time block coded transmissisimitar to the model for uncoded transmis-
sion shown in Fig. 2.1 and can be described by:

Y=HS+N. (2.3)

Y = (y1¥2 --- ¥Ynors) iS the receive symbol matrid§ = (s1s2 ... Spypg) IS the transmit symbol
matrix or space-time block code matrix abd= (n; ns ... n,, ) is the additive noise matrixeors
denotes thé&Number ofOccupiedTime Slots of the code matriXS. The setup of the space-time block
code matrix can be seen in Fig. 2.2. In principle, here théeaysnodel for uncoded transmission is

time

Sit Si2 ¢ ¢ ¢ Sing,
Syt Sy e e« Spn .

transmit
antennas

SnTl SnTZ e SnTnOTS

Figure 2.2: Setup of the space-time block code marix

extended to more than one time slot. The properties ahdn; for coded transmission are the same as
for s andn for uncoded transmission. Note thatis independent frona; for all 7 # 5. In contrasts; is

not independent froms;. This is obvious, because in general codes incorporatelation between the
transmit symbols, e.g. by calculating parity symbols. Swariang, within one transmit symbol vector
s; the symbols are uncorrelated, but different symbol veatbtbe code matrix are strongly correlated.
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2.2 Channel Model

In order to get practically useful results in Sec. 3 and See. r¢alistic channel model has to be used.
There are a lot of possibilities to model the MIMO channelhie temporal and in the spatial domain. In
the following, the models used in this thesis are explained.

2.2.1 Temporal Channel Modelling

The temporal behavior of the channel is very important faliable transmission schemes. For example,
Closed Loop Schemes (CLS) [25] [26] [22] [23] rely on moreasd slowly fading channels, because the
feedback information is no more reliable if the channel geantoo fast and thus the transmitter cannot
be informed about the actual channel parameters.

However, for analytical error performance bounds, the mnalpmodel is not that important. The em-
phasis here lies on spatial correlation of the channel cieffis. Nevertheless some specifications are
necessary. The temporal behavior of the MIMO channel is meddey block fading. The channel is
assumed to be constant for the duration of the transmisg$ioneodata symbol. After each transmission
of a data symbol, the channel changes arbitrarily. A databsyiis a single symbol vector for uncoded
transmission and a code matrix for space-time block codmusinission. This temporal behavior is
called block fading or quasi static fading [29]. It is an apmiate approximation of a slow fading chan-
nel using some form of frequency hopping or time interlegviiviore about the temporal behavior of
MIMO channels can be found in [12].

2.2.2 Spatial Channel Modelling

In this thesis, two different spatial channel models aretariest. In general, we can distinguish between
spatially uncorrelated and spatially correlated channels

2.2.2.1 Spatially Uncorrelated Channels

Spatially uncorrelated channels are modeled by a randomixHtwith independent identically dis-
tributed (i.i.d.) complex Gaussian entries with zero meashanit variance:

H ~ NZEX"(0,1) (2.4)
This frequently used model is called i.i.d. model, first ni@med in [1] [2].

Such a MIMO channel can be observed in scenarios, where tearenelements are located far apart
from each other and a lot of scatterers surround the antemagsaat both sides of the link. Due to the
limited space at the mobile station, the antenna elemeatef@an densely spaced and thus, in realistic
MIMO transmission systems, i.i.d. channels might rarelypbserved even in indoor environments. For
this reason it is necessary to use correlation models.

2.2.2.2 Spatially Correlated Channels

In most cases, the MIMO channel transfer coefficients areelmied. The antenna array at the Base
Station (BS) is quite often mounted above rooftop and tleeeethe number of scatterers around it is
small. Therefore, there are only some distinct waves impggt the antenna array and thus the received
signals at the various receive antennas at the BS are highiglated.
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In principle, correlated MIMO channels can be modeled inweys. There are geometrically-based [30]
[20] and statistically-based [19] [28] channel models. His thesis the focus lies on statistical models.
A very simple and appropriate approach is to assume theesrdfithe channel matrild to be complex
Gaussian distributed with zero mean and unit variance vaithpdex correlations between all entrieg
[19]. The full correlation matrix can then be defined as:

hih#  hhi .. hlhgr
hohf  hoh ... hohf

Ry =E _ _ _ , : (2.5)
h,, h{ h,.hi ... h, hZ

whereh; denotes the i-th column vector of the channel maktiix Knowing all complex correlation
coefficients, the actual channel matkkcan be modeled as:

. T
H=(h; hy ... hy,) with (h{ hl ... h] )" = (Rpn)

D=

g. (2.6)

gisani.i.d.(ng-nr) x 1 random vector with complex Gaussian distributed entri¢h néro mean and
unit variance. In the following this model is callédll correlation model The big disadvantage of this
model is the huge number of parameters necessary to deacdbgenerate correlated channel matrices
H. The number of parameters(isp - ny)>.

Due to the drawback of a huge number of parameters, anothelation model has been introduced,
namely the so-called Kronecker model [14] [15] [16] [19].this model it is assumed that the transmit
correlation and the receive correlation can be separatddcharacterized by the transmit correlation
matrix

Ry = En {HTH} , 2.7)
and the receive correlation matrix
Ry = Ex {HHH} . (2.8)
Accordingly, correlated MIMO channel matricEbare generated as:
1 1/2\T
H=—_Rz;"’G (R , (2.9)
\/tr(RR) ( T )

where the matrixG is an i.i.d. random matrix with complex Gaussian entriewiiro mean and unit
variance. With this approach the large number of model patars is dramatically reduced, namely to
n% + n%. The full correlation matrix simplifies t®u, kron = R7 ® Rg (Eqn. 2.5), and therefore
this model is called Kronecker model. A big disadvantagehisf torrelation model is that MIMO chan-
nels with relatively high spatial correlation cannot be rled adequately, due to the limiting heuristic
assumptiorRu, xron = R ® Rg. Further details, on this topic can be found in [21], [28] &hti].

This deficiency of the Kronecker model led to a novel chanrad@hinvented by Werner Weichselberger
[28] [11]. In the following this novel approach is called Wedel. The advantage of this method is
that the number of parameters is not too much increased cenhpa the Kronecker model (in fact
n%+ng-nr+n2), but the modeling error with respect to measured chanmehckeristics is substantially
decreased [28]. MIMO channel realizations according tofhmodel are calculated as:

H= U (ﬁ ® G) vl (2.10)

® denotes the element wise product of matrix elemefig and Ut are the receiver and transmitter
eigenbasis, which can be interpreted as a characteristitedftructure of scatterers around the receive
and the transmit antenna arr&y.denotes the element wise square roafpk2 being a power coupling
matrix, which describes the average coupling between tteivier and the transmitter eigenbasis. The
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entries ofQ2 can easily be estimated from MIMO measurements [11]. Theixn@t is an i.i.d. random
matrix with complex Gaussian distributed entries with zerean and unit variance. In contrast to the
Kronecker model, in the W-model only the eigenbasis of thadmit (receive) correlation matr&d
(Ug) is assumed to be independent of the receive (transmithaateeights.

Note that this model is a generalization of the Kronecker @hotihus, a Kronecker modeling of MIMO
channels can also be done with this model by specialig@nén this case, the power coupling matfix
of the W-model can be calculated from the parameters of tled&aker model by:

AR(1-AT, 1 AR1°AT,2 ... AR AT,np
. Mmoo A1 Ar2-Ane ... Arz-An
a_ R2. T,1 RZI T,2 . R2.TnT . (2.11)
ARng " AT,1 ARynp " AT,2 --- ARyng " AT,np

Here, Ag,; and Ar,; denote the eigenvalues of the (measured) receive cooelatatrix Rz and the
transmit correlation matriR defined in Egn. (2.7) and Eqn. (2.8).

Note that for all spatial models the same normalization &lus

nr Nt

= {tr (HHH)} :ZZEH{|h,~j|2} = npny. (2.12)

i=1j=

Therefore, the correlation matrRy for the full correlation model, the correlation matrideg andR
for the Kronecker model and the power coupling maf2ihave to be normalized appropriately.

Because of the essential advantages of the W-model digtimsdetail in [28] and the fact that this model
is also capable to realize Kronecker MIMO channels, it isgtederred channel model in this thesis.

In Sec. 3 and Sec. 4, correlated MIMO channels are used tatigage the performance of various
systems. Therefore practically relevant model parametersneeded. In order to use realistic chan-
nel parameters, model parameters are extracted form MIM@Drai measurements, which have been
performed at our Institute. In the following important me@snent parameters are listed:

carrier frequency 5.2 GHz
bandwidth 120 MHz
transmit antenna array virtual 20x 10 antenna array with OASinter element spacing
receive antenna array 8 element Uniform Linear Array (ULA) with O X inter element spacing

More details about the measurements can be found in [24] [$8me measurements have been per-
formed at the 3rd floor of our Institute, where a lot of scepstias been investigated. A detailed map of
the 3rd floor of our Institute is shown in Fig. 2.3. As can bensigeFig. 2.3 the position of the 2010
virtual transmit antenna array denoted by TX has been fixedlfaneasurements. Several positions
of the receive antenna array have been considered and avteddyy RX. At each RX position three
distinct measurements have been performed, where the @eleateive ULA has been looking in three
different directions. These directions are indicated bgaharrows labeled with D1, D2 and D3 at the
left hand side of Fig. 2.3. An example for the notation of a sueament scenario is “14D3". 14 stands
for RX position 14 and D3 denotes that the receive arraysdsida is looking in direction 3.

In the following it is explained how the model parametersexteacted from the measurement data. The
channel transfer coefficients have been measured betweerirthal 20< 10 transmit array and the 8
element ULA at the receiver at 193 frequency values. Withahge virtual transmit array, it is possible
to find 130 distinct realizations of an 8 element transmiariFor example, one realization is produced
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Figure 2.3: Detailed map of the 3rd floor of the Institute ofn@ounications and Radio-Frequency
Engineering.

by taking the 1st to the 8th element of the first row (out of 2@3pfrom the virtual transmit antenna
array. The second realization refers to the positions 2 tit®eofirst row and so on. Taking into account
all rows, 130 so-called spatially distinct realizations ¢ee found. Note that the inter element spacing
is 0.5\ for each realization. Taking into account the 8 element UL&ha receiver, 130 realizations of
an 8x8 indoor MIMO channel matrix can be obtained for every framyebin. 193 so-called frequency
realizations for each spatial realization are availabkbtans in total 1393 = 25.090 realizations of an
8x8 MIMO channel matrix are obtained, which is considered ta ksefficiently large ensemble.

Extracting the channel parameters for-adMIMO channel, only the first four rows of the® channel
matrix discussed above are considered. Each of these ravesstoof 8 elements, where again only
the first four are used. Thus, a distinck4 matrix out of each 88 matrix is extracted. In order to
obtain the model parameters for the W-model, the correlatiatricesR z andR. have to be calculated
according to Egn. (2.7) and Eqgn. (2.8) by averaging overallizations ofH at a specific receiver
location. Applying an eigenvalue decomposition to the @ation matriceR r andR.r, the eigenbases
Upg andUr are obtained. Having calculated the eigenbases, the pawpticg matrix is obtained by
[31]:

Q = Eu {(UfHUr) © (URH'U) } (2.13)

For the investigations in Sec. 3 and Sec. 4, moderately andgly correlated 44 MIMO channels
are of primary interest. For this reason, the scenarios 1#iB1D3 were chosen to extract the model
parameters corresponding to strongly correlated and ratalgrcorrelated MIMO channels. The model
parameters in case of moderate correlation (scenario 1RB¥#iong correlation (scenario 14D3) are
provided in Appendix D.
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2.3 SNR-Definition

In this thesis the error performance of uncoded and codedrirision is investigated in terms of BER
vs. SNR. Therefore, it is worth to say a few words about the Sigfhition. It is reasonable to define
the mean SNR as the ratio of ttatal received signal power to the total noise power

2
SNR= Egen {%} . (2.14)
In|;

.|, denotes the 12-norm operator. The expectation is with dpethe channel matri¥, the noisen
and the transmit symbol vectsr Due to the independence pfandn, Eqgn. (2.14) is equivalent to

Ex.d 5SS [SE h i
S »
En (s} LAY
SNR= 2 T . (2.15)
En {|n]3} En{z Ing| }
=1

The last step in the numerator expansion holds, because dfidiependence @ from s and because
the vector symbols are assumed to be independent as mentioned in Sec. 2.1. Bheedssumption of
white noise (Sec. 2.1), the denominator is equivalemtge> and thus we get:

(2.16)

P, denotes the mean signal power of the used modulation fortredcn transmit antenna. With the
normalization of the MIMO channel matrix defined in Sec. (2.2), the final result for the mean SNR

is obtained:
nrnr Py npPs

SNR= = (2.17)
nRO;, o;
Note that the SNR definition is symbol based. Other auth@kgfiefer bit based definitions:
SNR
SNRyjt = ——— 2.18

where|.A| denotes the size of the symbol alphabet of the modulationdtr






Chapter 3

Uncoded Data Transmission

In this section the error performance of uncoded MIMO traissian systems is investigated. Only
optimal ML receivers are considered.

3.1 The Maximum Likelihood Detection Rule

Let's remember the detection rule of an ML receiver:
$y1 = argmin {|y - Hs,-|§} , (3.1)

i.e., the ML receiver performs an exhaustive search forudetor symbok;, which leads to the smallest
distance between the received symbol vegtandHs;. Exhaustive search means that the whole symbol
alphabetA™” has to be checked. In order to perform this search, the chematéx H has to be known.

In practical systems the channel matkikhas to be estimated [38][39][40][41]. Throughout this thes
perfect channel knowledge at the receiver is assumed.

Now, consider the case, whenis sent and the ML detector decides in favor of the erronegunbels;.
The probability for this erroneous decision (Pairwise ERwmbability - PEP) can be calculated as:

P(si —»s;) = P(ly — Hs;|3 > [y — Hs;[) . (3.2)

Insertingy = Hs; + n yields:

P(s; »s;) = P(Hs;+n—Hs;3>|Hs;+n—Hs,%)
= P(‘l’l'g > |H (Si - Sj) +n|%) ) (33)
———r
b; j

whereb, ; is called the symbol difference vector. This inequality barfurther simplified to:

Inf; > [Hbi;+nl;
nfin > (bi,jHHH + nH)(Hbi,j +n)
nfn > bi’jHHHHbi,j + nHHbi,j —I—bi,jHHHn—i— nfn
~b;/"H"Hb;; > 2Re{n"Hb,;} (3.4)
2,5

The next step in this derivation is to determine the stastif z; ;. n is a random vector with i.i.d.
complex Gaussian entries (see Sec. 2nlis linearly transformed by the matrid and the vectob, ;.

15
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A linear transformation does not change the Gaussian llisioh and thereforam™ Hb; ; is complex
Gaussian too. Then, the real part operation turns the con@deissian distribution into a real Gaussian
distribution. The meap,, ; of z; ; is:

poi; = Bn {2Re {nHHbi,j}} -0 (3.5)
and the variance of; ; is

02, = En {2Re {b; ;"0 n} 2Re {n"Hb; ;}} = ... = 202b; ;"H"Hb ; (3.6)

%i,j

The dots indicate that the derivation is quite lengthy bratight forward. Now, the complete statistics of
z; j is known and therefore the so-called Pairwise Error PrdipaliPEP) can be calculated:

H
—b; THTHD, ;
1 2

\/2m0%, _[o
- 7 e%(ﬁﬁydg _ 7 e da

1
V 27{-0-2 j H 27T HyH
5] bi,j HHHbi,j bi, Hyy Hbi, .

%5

o (bi,jHHHHbi,j> _q b; ;TH"Hb,
,J \/20’,,% bi,jHHHHbi,j

 HyYtH . a2 . .
Q (\/M) = Q|2 | =PER, (3.7)

This derivation leads to the very important definition of thaclidean distance between the images of
the symbol vectors; ands; observed at the receiver:

Pisi +s;) = Plzi; < —bi;"H"Hb,;) =

g ; =bi;THYHb; j = [Hb; ;|5 = (s; — s;) "H"H(s; —s;) . (3.8)

The subscriptR at d%{i,j indicates that the distance of the vectors is consideretieateceiver. The
distance of signal vectors at the transmitter is defined as:

d7ij =i = [byl5 = (si — ;)" (si —s;) - (3.9)

As can be seen in Eqgn. (3.7) the Euclidean distance at theveeg®verns the statistic of the PEP. For
this reason in the following section, the distance propsrtf receive signals stemming from different
transmit vectors are investigated.
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3.2 Signal Distance Properties: SISO versus MIMO - Systems

In this section important differences in the behavior of MOMystems compared to SISO (Single Input
Single Output) systems with respect to signal distanceaderistics are discussed.

3.2.1 Signal Distances in wireless SISO-Systems

The system model for uncoded wireless MIMO systems (show®einn 2.1) can be easily adapted to
describe SISO systems by using scalars instead of vectdnnatrices. In the SISO-case the system is
described by

y=hs+n. (3.10)

Applying the framework derived above, the distance at toeiver results in:
;= (s —8)"h*h(s — 3) = [h*|s — 31> = [n]* dF, - (3.11)

This implies that the squared distances between all sigratat the receiver are only scaled values of
the squared distances at the transmitter. Actually, tharaiaonly rotates and scales the signal configu-
ration. The following conclusions can be drawn:

-) The smallest (largest) distance of distinct signals attthnsmitter leads to the smallest (largest)
distance at the receiver.

-) The distance of different signals at the receiver is zendy if either the distance at the transmitter
is zero or the channel coefficient vanishes, th&kis = 0.

The first property is very important for the calculation oé ttotal error performance (BER vs. SNR
curve) of SISO systems. Due to the non-linear Gaussian @iamonly the signal points with the
smallest distance values determine the error performatnbigla SNR. Contributions of distances that
are approximately twice the smallest distance can be negleammpletely. Therefore, only the signal
point configuration at the transmitter has to be investwjatefind a very good performance approxi-
mation. These ideas lead to the very famous Nearest Neighfporoximation (NNA) [27]. For this
approximation only the distances to the nearest neighpaignal pointsd%,qNN and the average num-
ber of nearest neighbofgsy y are of essential interest:

2

d
P. ~7iny Q g;‘;N . (3.12)
n

P, is the approximate symbol error probability of a SISO-gyste

Unfortunately, matters are much more complicated in MIMGteins.

3.2.2 Signal Distances in MIMO-Systems

Here, the distance properties of uncoded MIMO systems aatyzed, which are extremely different
compared to the SISO case. The difficulties arising in MIM®Gtegns can be easily and illustratively
explained by an example. In order to operate with two-dirizerad plots, some restrictions have to be
made. In the following, a2 (ng = 2 andny = 2) MIMO system with BPSK modulation (+1,-1) is
considered. Nevertheless, the distance properties aabanthis special case, also apply to all uncoded
MIMO systems of any dimension. Note that the channel coefiitsi of the channel matri in this

1As mentioned in Sec. 2.1 only flat fading channels are corsitie
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Figure 3.1: Signal distortion and the corresponding distarfor uncoded MIMO system#I(; ).

example are real-valued. In the following, three figuresastiee behavior of the distances at the receiver
for different channel realizatioH;,, where each channel is normalized t(Hé{Hk)=2. In the left plot

of each figure, all (four) transmit symbol vectaf® 2 (labeled by “+"-marker) and the modified symbol
vectorsa%) = H;, s at the receiver (labeled by™marker) can be seen. In the right plot of each figure
the squared distances at the receiVgy, ,, d%, 5 andd%, , for the transmit symbols() = (-1 — 1),

s® = (1-1),s6® = (-11) ands(® = (11) are compared to corresponding distances at the transmitter
(d2,, = 4,d%, 3 = 4andd?, , = 8). Note that the subscripts 1 (2) [atz] at the vertical (horizontal)
axis of the left p’lot of each fighre denotes the first (secoptjmI of the vectosy. This is also true for

[s]: and[s]e. Actually, [s]; = s; and][s]s = so.
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Figure 3.2: Signal distortion and the corresponding distarfor uncoded MIMO system#(,).

Note thats” = s;. This is only an alternative notation in order to improve thadability in the presented figures in
Section 3.2.
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Figure 3.3: Signal distortion and the corresponding distarfor uncoded MIMO system#(s).

The three different channel matrices are chosen as:

g _ [ —0-9317 0.3763 . [ —13775 02283 . [ 02484 —0.0095
17\ 0.3942 0.9138 27\ —0.1989 —0.1038 37\ —1.1211  0.8255

Fig. 3.1 shows the signal constellations at the transmitteflabeled by “+’-marker) and at the receiver
s%) = H, s (labeled by %”-marker) in the left plot. In the right plot three groups arb can be seen:
The right bar in each group indicates the squared distantles siansmitter and the left bar in each group
shows the squared distances at the receiver. Both plotgamendor the channel matrik;. As can be
seen in Fig. 3.1H; is a well behaved channel since the distances at the traesmitd the receiver are
almost equal. The signal constellation map is only rotatethb MIMO channel. This special MIMO
channel behaves very similar to a SISO channel. Examplesdthbehaved MIMO channels are:

-) H =1I: The signal constellation diagram remains unchangee: Hs + n = s + n.

-) The channel matrix is a unitary mat@# = U: The signal constellation diagram is rotated, but the
distances remain unchanged. Note that the channel useg.i8.Eiis aimost unitaryd? H; ~ I.
Then, the distance at the receiver resultsff; ; = b/, H"Hb; ; = b/, U"Ub, ; = b/l b; ; =
d7; ;-

Fig. 3.2 shows the signal constellations at the transmitt&flabeled by “+’-marker) and at the receiver
s%) = H, s (labeled by $"-marker) in the left plot. In the right plot three groups afrb can be seen.
The right bar in each group indicates the squared distaric® dransmitter and the left bar in each
group shows the squared distances at the receiver. Both gnletdrawn for the channel mati¥s. In
Fig. 3.2, it can be seen that due to the influence of the spetifinnel matrix, the signal constellation
diagram is extremely distorted. The signal map is not onlgtation and scaling like in the SISO case.
The signal configuration is completely changed. All trarissiginal distances transfer to completely dif-
ferent distance values at the receiver! For example, thartie between the symbai§) ands(® can
even become zero, if two of the four channel coefficientsshani

dh1 = biyH Hb, 5 = (0 2)*HTH(0 N7 = 4(|ho1* + |hoa?) = 0. (3.13)

Due to the small values @f;; andhsos in the channel matrif,, the distancel'j’m,2 becomes very small:
%1 5 = 4(/0.1989|% + |0.1038|%) = 0.2013 (see Fig. 3.2).
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Fig. 3.3 shows the signal constellations at the transmittetlabeled by “+’-marker) and at the receiver
s%) = H;s® (labeled by %"-marker) in the left plot. In the right plot three groups ddrb can be
seen. The right bar in each group indicates the squarechdesaat the transmitter and the left bar in
each group shows the squared distances at the receiver. pBashare drawn for the channel matrix
H;. Interestingly, the largest distance at the transmittetwgers(!) ands(®), d%, , = 8), becomes the
smallest distance at the receiver! This is an important [ty of the MIMO channel. Even worse,
both entries of the symbol vectoss!) ands® are different from each other, therefore this crossover
event () — s(®) corresponds to a double error. For such double errors Stardie between two
signals at the receiver may even vanish, in spite of the fedtthe power of every channel coefficient is
far away from zero! It is sufficient that

d%, 4 =bIHHb, s = (-2 — 2)"HPH(-2 - 2)" = 4(|h11 + ha|*+|ho1 + hao|?) = 0, (3.14)

such that this system shows catastrophic error perfornhdniseeasy to see, how the channel coefficients
have to be set up, in order to get zero distadl?ﬁ;@A, namely:hi1 — h1a = 0 andhgy — hog = 0.

Summarizing the MIMO distance properties:
-) The signal constellation diagram may be heavily disthrthie to the matrix multiplication of the
transmit signal vector with the channel matFk
-) The largest distance at the transmitter may become thieshdistance at the receiver.
-) The distance at the receiver can be zero, even if the poinreoy channel coefficient is far away
from zero.

Due to these facts a simple NNA is hard to derive and therefotiee following a simpler performance
measure namely a union bound is derived.
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3.3 Union Bound for the BER

In this section we focus on the derivation of a tight union tibdior the BER in spatially uncorrelated
and correlated MIMO channels. The essential derivations hiteady been published in [35]. First, we
treat the general case and then an illustrative exampleshadllv some interesting details.

The union bound for the BER is simply calculated by summingalifPEPs. If the symbol vectay;
is transmitted all crossover events are taken into accoumdttlaus the probability of deciding on an
erroneous symbol vector can be upper bounded by:

|A"T
=s;) < Y PER;. (3.15)
i
Actually, we are interested in the mean performance andmigtio the performance i; is transmitted.
Averaging over all possible transmit symbsejgEqn. (3.15)) leads to:

AT AT
P = E{P(s—sz}—ZP ;) P(s;) = |A|"TZP
| AT AT
|.A|"T Z Z PER,; . (3.16)

J#z

Note that Eqn. (3.16) implicitly assumes that the transgmitisol vectors occur equally likelyR(s;) =
1/|.A|"T). The right hand side of Eqgn. (3.16) is the union bound fonibetor symbol error probability.
For arriving at the union bound for the BER, a further defomtstep is necessary. For each crossover
events; — s; a different number of scalar symbols (note the differenceettior symbols) and thus a
different number of information bits is erroneous. For tidgason, a so-called weighting facty; is
introduced. This factor turns the vector symbol error philits into the BER, by counting the number of
erroneous bits g ; in the numerator and the number of transmitted bits per synsazor Id(|.A|) nr

in the denominator:

- NBEi,j
o= ) 3.17
I (A e (3.17)
Therefore, we get:
AT |A]"T
BER < \A|"T Z Z ; ; PER,; . (3.18)

J#z

The final essential task that is still to do, is the calcutatdthe PER;. As can be seenin Egn. (3.7), the
PEP is governed by the Euclidean distance at the recéﬁ/gjr. Therefore, the statistics of the distance
has to be calculated and then we average over the Gaussiamcph with respect to the distance. To
this end, a new random vector is defined:

u; 45 = Hbi’j . (319)

A linear transformation of a complex Gaussian random velataaitrix results again in a complex Gaus-
sian random vector / matrix and therefore the random vag{ens complex Gaussian distributed with
the following first and second order moment:

Bu,; = Ea{Hb;;} =0,

Ry, = Eu{Hb b H"}. (3.20)
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Thereforeu; ; can be modeled as:
U, = Rui,]’g ’ (321)

whereg is an independent complex Gaussian distributed vectortokerwith zero mean and unit vari-
ance an®R., ; reflects the spatial correlation of the channel maHixThend,; ; can be written as:

dpi;=uflui;=g"Ry, 8. (3.22)

In the following case spatially uncorrelated MIMO chanreatsl spatially correlated MIMO channels are
considered separately.

3.3.1 Spatially Uncorrelated Channels

For uncorrelated channeB,,; ; degenerates to a scaled unity matrix:
Ru,; = bij T bi Iy, (3.23)

wherel, , is the unity matrix of dimensionz. Hence, Eqn. (3.22) simplifies to:

d ;= dp (|91\2 +lgal ...+ |gnR|2) . (3.24)

The sum ovemp squared magnitudes of independent complex Gaussian ramdoables with the
same variancé?.,; ; is a newy? distributed random variable withn degrees of freedom. Thus, the
Probability Density Function (PDF) af, ; ; is:

ganl £

T 3.25
(d%1 Z.’j)nR]_—,(,n]%)e J ( )

(&) =

Pq

2
Rij

Now, we know the PDF of the squared Euclidean distad%g’j at the receiver, but actually we are
interested in the mean error performance. The mean PERidat&d as:

- a2 . . 00 ¢ gnr—1 —
PERI _ E Ri,j _ / S e Tijd 3.26
B Qg [ Qo) @ (520
nr—1 k 2
1—uz~j>”’* 2 g —1+k (1+Mz'j) - dri,
( 2 l;) k 2 R A\ PP

The superscript i.i.d. is used to distinguish the PEPs faortnelated and correlated channels. The
integral is taken from [36]. As it can be seen in Eqgn. (3.2farafromn g, the only essential parameter,

which determines the PEP&%M. Investigatingd%i,j for all crossover events can help to simplify the
summation in Eqgn. (3.18).

Definition 3.1 A so-called Error Type (ET) is defined as the set of all crossevents of transmit vec-
tors, which have the same key-parameters. Key-parametersndities, which fully describe the prop-
erties of crossover events and thus the corresponding BT k&j-parameters of an ET adé. i and
n%p ;,; for the uncorrelated case.(The key-parameter for the dateel case are the set of eigenvalues

5?;7) andn% ;.; (defined further ahead) .) Therefore an ET is fully describgdhese two parameters
and they do not depend on the crossover event itself. Therafew indices are introduced for each ET
indexed byk: d2 andn%,. The number of crossover events belonging to thg, Edhich fulfill the
conditionsdj, = di.; ; andny,, = nkp, ;. is denoted byfy.
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At this point, it may be useful to concretize these defingiddy means of a simple example. Let's
consider a 44 MIMO system with BPSK modulation (+1,-1).

For the moment, let us consider a single antenna systemifgcas the modulation format. The differ-
ence variable i$; ; = s; — s; and thus the squared distance at the transmitté%(j%PSK) b; ;bi,;j
For BPSKd%ﬁPSK) is either 0 or 4. In case of a single transmit antenna and BFHSkécbrrespondmg

number of bit errors is either 0 or 1. In Tab. 3.1 the key - patams of a single antenna system with
BPSK modulation are listed. Note, that there are two diffesymbols (+1,-1) and thus the total number

H ETL(BPSK) H d BPSK ‘ f(BPSK) ‘ n%BEPI;S‘K) ‘
ETo(BPSK) 0 2 0
ET1(BPSK) 4 2 1

Table 3.1: ET table for a single antenna system with BPSK riatidn.

of crossover events &- 2 = 4, which can also be identified in Tab. 3.1 as the sum over thenool
(BPSK)

valuesf, :

Having shown the ETs in a system with one transmit antennaB®®K modulatio, the ETs of a

system with four transmit antennas are analyzed in theviiig by means of combinatorics. Due to 4

transmit antennas the key-parameters of the ETs can bdataeltas:

df ), = bibj = bij(1)bi;(1) 4 bij(2) i (2) + b (3)*bi i (3) + bij(4) i ;(4)
_ dQT(]?PSK)( )+d2(BPSK)( )+d (BPSK)( )_i_dT(IfPSK)(Ll)
2)-

fk: = pp- (fk(,BPSK)( )'f]gBPSK)( f(BPSK( ).kaPSK)(4))

BPSK BPSK BPSK BPSK
NBELK = n(BEk )(1)+nSBEk )(2)+ (BEk )(3)"‘”531519 )(4)- (3.27)

pi is defined further aheadd (BPSK)(Z) = b;;(1)*b; ;(1) is the distance corresponding to théh

transmit antennan%BEP,fK)(l) is the number of bit errors anﬂ,gBPSK)(l) the frequency of thé-th
BPSK-ET corresponding to theth transmit antenna and thus to thth position inb; ;. The equations
above show the calculation of the key-parameters for a systih four transmit antennas (Tab. 3.2)
based on the key-parameters of the system with one transteirza (Tab. 3.1). In Eqgn. (3.27), there
are five possible values f@FT . hamely 0, 4, 8, 12 and 16, which are caused by crossover evavitsy
no symbol error, one symbol error, two symbol errors, thyeslmol errors and four symbol errors. Note
that the “positions” of the non-zero entries (erroneousi®yis) in vectorb; ; are not relevant in the i.i.d.
case, i.e., for examplb; ; = (0020) andb; ; = (2000) are equivalent. One question is still open,
namely how often a specific error constellation occurs. This be answered by the aid of binomial
coefficients. Due to the four transmit antennas, there anetfansmit symbols, which can be correctly
detected & ;(I) = 0, ETOBPK)) or wrongly detected¥( ;(I) = +2, ET1BPSK)) Hence, from
the combinatorics point of view, there are four possibleitiss in vectorb; ; to “place” b; ;(I) = 0
(corresponding to ET&SX)) or b, ;(I) = +2 (corresponding to ET#FSK)) (Tab. 3.1). How often
bi.;(1) = 0 (ETOBPSK)) occeurs on these four possible positions in vedtgy is denoted by, and thus
the number of possible constellatiopg havingny, timesb; ;(I) = 0 (ETOBPSK)) arranged over the
four possible positions db; ; is denoted by, and can be calculated with:

pk:< 4 >:+ (3.28)

ng

3In the following called BPSK-ETs.
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For d , equal to O all symbols must be correctly detected and therefach position in vectds;
is b; (1) = 0 corresponding ET&PSK). Thus, there is only one possibility to arrange four times
bi.j(1) = 0 (ETOXBPSK)) on four possible positionsyy = 4):

poz(i)zl. (3.29)

Ford2., equal to 4, one symbol is detected erroneotiglyl) = +2 (ETLBP5K)) and the other symbols
must be correch; ;(I) = 0 (ETOPPSK)). Thus,n; = 3 and the possible number of constellations to
arrange three timds ;(1) = 0 (ETOBPSK)) on four possible positions is:

p1=<§>=4. (3.30)

For the remaining distances. . €qual to 8, 12 and 16 the number of possible constellaticgts ar

e ()0 ()= e () - oo

Note that each of the two BPSK-ETs have frequeyﬁﬁp SK)=2 and therefore the total frequency of
having a specific constellation &f ;(I) (BPSK-ETs) in vectob, ;, i.e., for example the first position
of the difference vectob; ; is b; ;(1) = 0 corresponds to ET§7SX), the second i%; ;(2) = +2
(ETLBPSK) the third isb; j(3) = 2 (ETLBPSK)) and the fourth ish; ;(4) = 0 (ETOPPSK), is
2-2-2-2 = 16. This resulting frequency has to be multiplied with the nemdf possible constellations
pr (according to Eqn. (3.27)) of the BPSK-ETs leading to theesamerall distance? . and to the same
number of bit errorsigg ;. Thus, for example the resulting entire frequerfgyof ET2 is6 - 16 = 96.
The total list of key-parameters for the four antenna system

LETk || iy [ fiu [ mpme ]

ETO 0 |16
ET1 4 | 64
ET2 8 |96

ET3| 12 |64
ET4 || 16 | 16

Table 3.2: ET table for a uncoded MIMO system. uncorrelageling; BPSKny = 4.

AW N|FRLO

The above explained way of finding Tab. 3.2 seems to be rathmplicated but it is actually very
simple. To substantiate the general explanations, | will sbow the detailed calculations for ET2 given
in Tab. 3.2. To get a distana#. , equal to 8, two symbols in the transmit symbol vectorainds,
have to be different. Therefore, the corresponding diffeeevectorb; ; consists of two zeros and two
non-zero terms of value two. The positions of these valuéisaivectorb; ; are irrelevant.

First, let's calculate the numbergg of bit errors in case of ET2. Due to Gray coding of the symboals,
two erroneous symbols lead to two erroneous bit andthys, = 2 (see Tab. 3.2).

Secondly, the frequencys, of crossover events, which have the same distalicg = 8 and the same
number of bit errorsigg 5 is calculated. Due to the BPSK modulation, we know that eddheotwo
BPSK-ETs of Tab. 3.1 has the frequenféf’PSK) = 2. Thus, a specific constellation &f;((), i.e., for
example the first position of the difference vectyy; is b; ;(1) = 0 corresponding to ETHPSK), the
second i$; ;(2) = +£2 (ETLEPSK)), the third ish; ;(3) = £2 (ET1BPSK)) and the fourth i%; ;(4) = 0
(ETOBPSK)) has the frequencg - 2- 2 - 2 = 16. (According to the expression in the brackets of the
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second equation in Eqn. (3.27). The number of possible geraents, of b; ;(1) (BPSK-ETSs) in the
difference vectob; ;, which leads talZ, = 8 andnpp, = 2, results in:

p2=<3>=6- (3.32)

The number of possible arrangemenptsof b; ;(I) (BPSK-ETs) multiplied by the frequency of one
b;, (1) (BPSK-ETs) arrangement results in the entire frequencf®®: f, = 16 - 6 = 96 (according to
Egn. (3.27)).

The sum over all frequency valugs in Tab. 3.2 is 256, which is equal to the total number of cresso
events, because with BPSK modulation and= 4 the number of different transmit vectors2s = 16
and thus the number of crossover eventssis = 256.

Note that matters become more difficult if a higher modufatiormat is applied. In such a case the
combinatorial problem to find the ETs and the correspondagparameters can be solved by means of
multinomial coefficients [42].

An alternative way to find the table of ETs is an exhaustive pater search. This search should also
be subdivided in the two parts discussed above. First fogush the investigation of the ETs for a
system with one transmit antenna and afterwards applyisgktiowledge to the case with more transmit
antennas. In this way a lot of computation time is saved, diiee symmetries of the signal constellation
maps. Nevertheless, the effort of the search can be veryifilgigher modulation schemes are involved.
Think of anny = 4 system with 256QAM modulation, whe@6* - 256* = 2568 ~ 1.8447 - 10
crossover events exist. For such cases the first step (og@esh of the ETs for a system with one
transmit antenna) can be very helpful.

Summing up the PEPs for all crossover events results in thbldasum in Egn. (3.18). Due to the
introduction of the ETs, the summation over all crossovengy can be reduced to the sum over all ETs
and thus Eqn. (3.18) reduces to:

nerT
BER < PERA  with _ _Jfv_mBEE .
< 2, wePER'S with  wk = e A g (3.33)

where PER denotes the PEP for the k-th ET angd is the number of distinct ETs. In the special case
shown abovepgr is 4. ETO is not counted as an error type since it correspandsorrect detection.

By applying Eqn. (3.33), the union bound for the BER for thedfic example summarized in Tab. 3.2
can be written as:

nET .
BER < Y w,PERM
k=1
64 1 g 96 2 g 64 3 g 16 4 .
_ 2= PEp.I.d. J9 PEp.I.d. o= qd. | Y PEp.I.d.
2¢1d(2)4 ! +24Id(2)4 2 +24Id(2)4 3 +24Id(2)4 4
= PER'! +3PER + 3PER 4+ PER (3.34)

The union bound derived in this section, is compared to stian results for several MIMO systems
and modulation formats in Sec. 3.4.

3.3.2 Spatially Correlated Channels

For spatially correlated channels (correlation charadrby the W-channel model) the correlation
matrix Ry, ; defined in Eqgn. (3.20) can be written as:

Ry, = Eu{Hb;;b/;H"} =UrEu{(©0G)UIb, b [U+( Q0 G)" } UL
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= Ugdiag A" A7 AED U, (3.35)
and the eigenvalues can be calculated as:
)\g{j) = ((biijUT) O] Qm) UTHbZ',j* , (3.36)

where€2,, denotes the m-th row of the power coupling mafix The number of non zero eigenvalues
of Ry, ; is denoted by.y z. Hence, in the correlated case Eqn. (3.22) changes to:

drij =191 PA + 192087 o gy PN - (3.37)
The sum over independent random variables correspond# fprtiduct of the characteristic functions
[27]. Since the random variablég | follow a x2-distribution with two degrees of freedom, the charac-

teristic function ofd%; ; is
NNz 1

Ve (w)= ]

Ri,j

. (3.38)
=1 1w’
Applying a partial fraction expansion of Eqn. (3.38), theFPaf d%“.’j is easily obtained by the inverse

Fourier transform ofﬂd%, (—jw), resulting in:
)
NNz (A%J))"NH

AT (A6 - a6)

e
e w7 (3.39)

Note that for the partial fraction expansion it is assumed i eigenvalues are different, which is indeed
the case for “measured” power coupling matri€@sbut can eventually be a problem for synthefic
matrices. Then, with Eqn. (3.7) the mean PEP results in:

NNz —2
d%%~ ) NNz ()\%’j)) o § _%”_)
PERY =Eu{Q 200 | (= 2 (i) _ (i) /o Q( @>e e
n m=1 nl;ll <Am’ —)\n, ) "
n#Em

nNz )\%’j) nyz=l (%,9)
=%an( ) _ (1_ %) (3.40)

m=1 ][ (,\%’9) _ ,\gfﬂ)) 402 + A

nm

The integral has the same structure as the integral in EQR6)(3As it can be seen in Eqgn. (3.40) the
relevant parameters, which influence the PEP are the eilgmké}{j) (m=1, 2, ... nyz). Therefore,
in principle we continue in the same way as in the case of anruelated channel: Again, we list all
ETs with their key-parameters in a new table quite similafab. 3.2. The only difference is that there
are nowny z parameters}\%’j) (m=1, 2, ... nyz) instead of the single parameti%:k. In the correlated
case of the 44 MIMO system with BPSK modulation, there are 40 E®g{ = 40) and therefore the
table is postponed to the Appendix E. Due to the dependendyeoéigenvalues}\%’j) on the power
coupling matrix (Eqn. (3.36)), the tables listing the ETs and their corregiptg key-parameters are
different for distinct spatially correlated channels. &ltitat this table shown in Appendix E has been
found by an exhaustive computer search.

The union bound for the BER, taking into account all 256 avaes events, again can be written as the
weighted sum over all ETs:

BER<nEZTw PERY = Ik IBE
et AT (A

The union bound derived in this section, is compared to sitiran results for several MIMO systems
and modulation formats in Sec. 3.4.

(3.41)
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3.3.3 High SNR Approximation of the BER

In order to get more insight into the BER performance and tapare the results for uncorrelated and
correlated channels, it is helpful to derive a high SNR apipnation for the PEPs. With these approx-

imations for the PEPs, a high SNR approximation for the umioand for the BER can be calculated.

This approximation highlights the importance of the diitgrdegree and quantifies the power loss due
to channel correlation.

First, we focus on the PEP. The principle of calculating ehi&NR (lowo2) approximation is quite
simple. Essentially, a Taylor series expansion of the PERUta is performed. The first term of the
series, which dominates at high SNR is taken as an appraximet the true PEP.

Remember the Taylor series of a functipfr) around the poink is defined as:

X (z — o)™ F™)(z

n!

n=0

where the superscrigi) denotes the n-th derivative ¢f{z). The PEP for the i.i.d. model and for the
W-model are functions of2 and therefore at high SNR the PEPs are approximated argfiad0. For
smalla%, the first non-zero term of the Taylor series, i.e., the teiith the lowest exponent, is the most
important one. In the following we consider uncorrelated aorrelated channels separately.

3.3.3.1 Spatially Uncorrelated Channels at high SNR

Investigating the PEP for uncorrelated channels it turrtstioat the first non-zero term of the Taylor
series has the exponemf, and thus the high SNR approximation of the PEP can be cadclibs:

pepid-—hioh _ (%) (8"RPE3;§'d'> = < : )nR nil<nR_1+k> = ( ” )nR
" 02=0 i) i k dFi,j Cnn

! d(o2)""
(1/cng)"R

nge-

(3.43)
with
—1/7’LR
(3.44)

nr—1
ng—1+k
o= (")

k=0

Due to Egn. 3.43 the PEP mainly dependsrgnandds, ;. nr determines the slope ant}:; ; cny,
determines the horizontal shift of the PEP vs. SNR curve.sThus easy to specify the diversiy of
such an uncoded MIMO system. Diversityis defined as the negative slope of the PEP vs. SNR curve
(in double logarithmic scale) according to [27]:

d(log,,PEP

D=— lim ,
SNR- oo 9(l0g;4SNR)

(3.45)

where the SNR is inversely proportional to the noise vagarjc(see Eqn. (2.17)). Therefore, the slope
for the PEP vs. SNR is the negative slope of the PER¥sind we get:

9(log, PER ;")
020 d(log;y02)

=ng. (3.46)

Note that in the derivation of Eqgn. (3.46) the high SNR appration for the PEP is used.
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A high SNR approximation for the union bound for the BER islgasbtained by inserting the high SNR
approximation of the PEP into Eqgn. (3.33):

. ) nET o2 nR nET
BERz.z.d.fh,zgh < Z wy <d2 n ) Z (3_47)
k=1 Tk Cnr P 7, CnR)
By defining a new distance:
1
&g = — ) (3.48)
n w
Z, @rennT ™
the high SNR approximation for the union bound for the BER loanvritten as:
BERL.z.d.—hzgh — <d‘27n > ) (349)
ii.d.

For the high SNR approximation of the union bound for the BE® $ame properties as for the high
SNR approximation for the PEP are valid, i.e., the slope ®BER vs. SNR curve and thus the diversity
is nr and the horizontal position of the curve is determinedify, .

3.3.3.2 Spatially Correlated Channels at high SNR

In this section essentially the same derivation as for tlieuelated case is done for correlated channels.
Investigating the PEP, it turns out that the first non-zermtef the Taylor series has the exponent;
and thus the high SNR approximation of the PEP results in:

pEFW_—high:(Un)nNZ B”NZPEFW _ U% nzvzn%—l nnz—1+k _ U% NNz
" ! B(UQ)HNZ 02=0 diy i, k=0 k By ijennz)

nNz-: n
(1/enpyz)"N2

(3.50)
with
—1/7‘LNZ
(3.51)

nyz—1
—14+k

k=0

and a new effective distand, ; :

nNZ . T E—
d%/VZ,J — nNZ H A'STZZ’]) — NN det(Rui’j), (352)
m=1

The PEP mainly depends ety and the geometrical mean of the eigenvalmgg) (=12, ...nnz).
The last part of Eqn. (3.52) only holds Ry, ; is regular, otherwise the determinant is zery z

determines the slope awfg}; ; ; and thex{>”) determine the horizontal position of the PEP curves. Thus,
according to [27] the diversityy, of such an uncoded MIMO system in correlated fading is:

D I (|0910PEFW mgh) 353
W= azfr—nm d(log,402) — N7 - (3.53)

A high SNR approximation of the BER union bound is easily ot#d by inserting the high SNR ap-
proximation of the PEP (Egn. (3.50)) into Egn. (3.41). By diefj a new distancd%,v the high SNR
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approximation of the union bound for the BER results in:

2 \ "Nz
- . 1
BERY —high — ( Zn with  d% = . (3.54)
dyy, . [ner w
| & @™

The high SNR approximation of the BER - union bound has theespraoperties as the high SNR ap-
proximation for the PEP, i.e., the slope of the BER vs. SNRe&@and thus the diversity isy 7 and the
horizontal position of the BER vs. SNR curve is determinedify

3.3.4 Discussion

At this point, | want to emphasize the differences and sintiées of the performance of uncoded wireless
transmission systems in uncorrelated and in correlated MtMannels. One very interesting observation
is the fact that the diversity order, that is the slope of tliRB/s. SNR curve at high SNR according to
the definition in [27], is the same for correlated and undateel channels in case afyz = ng. This
holds, if at least one element in each rowf®fis non-zero. If one row is completely filled with zeros,
then a diversity loss of order one is observed, two zero-iowWs cause a diversity loss of two and so on.
Hence, a diversity los& p due to correlation is defined as

LD = MNRrR —NNZ . (3.55)

Note that the diversity definition in [27] is tailored to hi@NR and therefore does not say much about
the observed diversity or slope of the BER vs. SNR curve ataraid values of SNR. Actually, the slope
of the BER vs. SNR curve at reasonable SNR values (or BER spis®f more practical interest than
the slope at SNRso. Nevertheless, with the definition according to [27], ctated and uncorrelated
MIMO channels have the same diversity ordem(ifz = ng).

For correlated channels withy; = ng no diversity loss occurs. However, the detrimental inflgeot
spatial channel correlation shows up in a so-called powssilg.. Due to the same diversity, the BER
vs. SNR curves of correlated and uncorrelated channelsgarallel, but horizontally shifted. This
shift of the BER curve towards higher SNR due to channel tatiom is called power los&p and can
easily be calculated as:

2

Lp = 10log, <d§g-d-) : (3.56)
w

A simple explanation how the spatial channel correlatiod tinis the matriX2 influences theliversity

lossis given above. The influence of the matfixon thepower lossis not that simple to explain. In

the following | will show what properties the matrf should have, to achieve a power loss as small

as possible. Due to Egn. (3.54) the distaﬂé“;,;c for each ET should be as large as possible. To get

large distances, it is important to have well balanced anytlaigenvalues%’j). This is achieved, if the
matrix € is well balanced. This corresponds to large signal distamacel thus to small power losses.
The best balanced matr® is a matrix, where all entries are identical. With such araligebalanced
matrix 2, the W-model degenerates to the i.i.d. model. In this cdmetis no spatial correlation and
thus the best possible system performance (no power loashisved.
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3.4 Examples and further Discussion

In this section the simulated BER performance, the uniomtdar the BER performance and the high
SNR approximation of the BER performance is shown for sé\HO systems, for various modula-
tion formats and for some correlation types.

3.4.1 Uncoded 44 MIMO system with BPSK modulation

SNR /dB
Figure 3.4: BER vs. SNR performance of a uncodedMIMO system with BPSK modulation.

Starting with the 44 MIMO system with BPSK modulation, the simulated BER vs. SiNiR/e is com-
pared with the union bound and the high SNR approximatiodiféerent correlation types (uncorrelated,
1D3, 14D3) in Fig. 3.4.

In Fig. 3.4 the simulated BER vs. SNR curves are the solid)ittee union bounds are the dashed lines
and the dashed-dotted lines are the high SNR approximatidhs red curves (labeled bymarker)
correspond to uncorrelated channels, the green curveddthby-marker) correspond to the moderate
correlation scenario 1D3 and the blue curves (labelectmgarker) correspond to the high correlation
scenario 14D3.

A comparison of the simulation results with the union bouslisws that the bounds are tight for BER
values of approximatel¥0~2 and below. On the other hand, the high SNR approximationgireonly
at BERs below approximately0 5.

3.4.1.1 Performance degradation due to spatial correlatio

The high SNR approximations according to Eqn. (3.49) arg4{3shown in Fig. 3.4 are far away from
the true performance at moderate SNR values, but at verySik even these approximations become
tight and thus they are good indicators for the slope and d¢higdntal shift of the BER vs. SNR curves
and thus for the diversity order and the coding gain (or pdess) of specific transmission schemes.
Even in the case of high spatial correlation the matri@dsave no rows filled with zeros only and thus
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the slope of the BER vs. SNR curves are always equaltoThe only detrimental influence of spatial
correlation is a power loss, which can be calculated with.E§b6). The power loss for the BER vs.
SNR curve corresponding to correlation scenario 1D3 isdB4and for 14D3 it is 4.75dB at high SNR.
These values also show up in Fig. 3.4.

3.4.1.2 Tightness of the union bound

In the following | will explain, why the union bound is strigtabove the true BER performance at low
SNR and why it is so tight at high SNR. Let’s focus on the singplample first discussed in Sec. 3.2.2. To
simplify matters further, an ideal channel matrix is assdniat does not change the signal constellation
map and thus the error performance only depends on the noises + n. The ML-receiver decides in

Syp

Figure 3.5: Exact decision regions (left plot) and the aygping integration areas (right plot). BPSK
modulationnr =2, H=1.

favor of s1,s9,83 Or s4, if the receive vectoy lies in the white, orange, yellow or green decision region
shown in the left plot of Fig. 3.5. Therefore, an error occifrs; is transmitted and the receive vector
y lies outside of the white decision area. The exact prolighifihaving such an error can be calculated
by integrating the shifted PDF of the noise (the two dimemsidGaussian PDF of the complex noise
variablen is shifted to the poing;) over these three areas (yellow, green, orange):

P(s1) = Pe(so[s1) + Pe(ss|s1) + Pe(sals1) , (3.57)

where the error probabilitieB. (s;|s1) are the integrals over the corresponding areas. This exraloap
bility is upper bounded by the sum over the PEPs:

Pg(sl) < PEF{Sl — Sg) + PEF{Sl — S3) + PEF{Sl — S4) . (3.58)

In the left plot of Fig. 3.5 the so-called integration areas be seen. Under integration area | denote
the area over that the shifted noise PDF is integrated tohgePEPs. For example, calculating the
PERs; — s4) the integration extends over the green area (right plot)shsvn in the right hand plot of
Fig. 3.5 applyingunion bound techniques the so-called integration areas are overlapping and thag s
parts of the areas are considered twice or even more ofteprifaiple this overlapping of integration
areas is the reason why the union bound overestimates tirepeobability.
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Note that even the PEPs themselves are union bounds for éleseexor probabilities at low SNR:
P.(s;|s1) < PERs; —s;) atlow SNR. (3.59)

For high SNR, where the overlapping does not essentiallyritorte to the integration result, these PEPs
almost exactly approximate the true values:

P.(s;|s1) =~ PERs; — s;) athigh SNR. (3.60)

In the following, | will show graphically, by means of an expl®, the influence of these multiple in-
tegrations in the union bound approximation. In the left pibFig. 3.6 it is shown that for low SNR
P.(s3]s1) is strictly smaller than the PE® — s3). Due to the high noise variance the area of the first
quadrant substantially contributes to the R&P— s3) but not to the exact error probabili#. (ss|s1 ).

l.e. the integral over the first and the second quadrant (8EP s3)) is considerably larger than the
integral over the second quadradt (s3|s1)) only. Thus the PEP overestimates the exact error probabil-
ity. The lower noise variance (high SNR; SNR, = 4-:SNR,,,) in the right plot of Fig. 3.6 shows that
integrating over the first and the second quadrant (as itne dor the PEP) delivers approximately the
same error probability as integrating over only the secamaticant (as it should be done for the exact
error probability). Therefore, the PEP and the exact errobgbility are almost equal. Note thiat],
denotes the-th entry of the noise vectai. Also for the mathematical point of view, the PEP and the

(A,

Figure 3.6: 2-D shifted noise PDF for low SNR (left plot) arighSNR (right plot) for 4QAM modula-
tion.

exact error probability are approximately equal for highRSgow o2):

PERs; — s3) = Q (U—%) (3.61)
P.(s3|s1) =Q (U_I%) - [Q (Ui%)r (3.62)



CHAPTER 3. UNCODED DATA TRANSMISSION 33

3.4.2 Uncoded Z2 MIMO system with 16QAM modulation

The results for a second example, namelyx@ MIMO system with 16QAM modulation, are shown in
Fig. 3.7. Note that in Fig. 3.7 the simulated BER vs. SNR csiam the solid lines, the union bounds are

10°

BER

10k

10k

5 I I / AN
10 15 20 25 30 35 40
SNR /dB

Figure 3.7: BER vs. SNR performance of a uncode@® MIMO system with 16QAM modulation.

10

the dashed lines and the dashed-dotted lines are the highapiaximations. The red curves (labeled
by o-marker) correspond to uncorrelated channels, the gresas{abeled by.-marker) correspond to
the moderate correlation scenario 1D3 and the blue curabsl@id byx-marker) correspond to the high
correlation scenario 14D3. As can be seen in Fig. 3.7 theeaetislope of the BER vs. SNR curve is
ng (Maximum slope), due to the well behaved matri@sThe calculated power losses for the scenario
1D3 and 14D3 are 1.57dB and 2.89dB at high SNR. In this casertiosm bounds are not so tight as in
the previous example. The reason for this effect is the gtamerlapping of the integration areas due
to the large number of ETsgr=574) and the small number of receive antenngs Additionally, the
influence of the overlapping of the integration areas dese®aery slowly with increasing SNR and thus
a perfect tightness of the union bound as in the previous pkadoes not show up in Fig. 3.7.
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3.5 Optimal Precoding

In Fig. 3.4 and in Fig. 3.7 it can be seen that the BER perfonmategrades if the MIMO channel is
spatially correlated. This loss can be measured by thediiydossL p and the power losE p defined in
Sec. 3.3.3. In order to mitigate the detrimental effect atftisph correlation, a linear precoding filtBrcan
be introduced at the transmitter. The main goal of this aggitds to show what kind of improvement
could be obtained if such a rather involved signal processitthe transmit signal is applied.

With this precoding matrix, the resulting system model ltssia:
y=HFs+n (3.63)

With this modification of the transmit signal, the corretatimatrixR.,,, ; defined in Egn. (3.20) results
in:

Ry, (F) = Ugdiagh{™” (F),\{"(F),..., \(D (F)UR"

AE(F) = ((meFTUT) ® nm) U7 Fb; ;* (3.64)
Now, the distance;, ; ;, the total effective distanag,, and the power los& » depend on the prefiltdr
and thus they are denoted 8y, ; ;(F), diy(F) andLp(F).

The optimal prefiltei ,,; minimizes the power lods

Fop = argmin {Lp(F)} = argmax {d%V(F)} = argmin { > del(Ru ) } (3.65)

with the side constraint (power constraint):

tr (Fg)tFopt) = nr. (3.66)

This constraint assures that no power amplification duedgtkcoding matrix occurs. This minimiza-
tion problem has to be solved for each type of uncoded MIMQesgsseparately, due to the specific
entitieswy, ngr. Therefore, in the following | will focus on the simplest wited MIMO system,
namely a %2 system with BPSK modulation. For this system and for theiapeorrelation scenario
14D3, the ETs and their corresponding key-parameters stegllin the Tab. 3.3. In the last column of

LET] NV 0 [mpme | Je | diyy [ 4]
0 0 0 0] 4] O© 0
1] 6.8640] 1.1565 1| 4[28175] 4
2| 6.7277] 1.1390 1| 4[27682] 4
3| 34735/ 09960 2| 2| 1.8600] 8
4| 23.7098] 3.5951 2| 292325 8

Table 3.3: ET table for a uncoded MIMO system. Correlaticenseio 14D3; BPSKpr = 2.

Tab. 3.3 the distances for the i.i.d. case are shown. Therdoagfor this correlation scenario is 2.8dB
and no diversity loss is observed. With the knowledge of the &d the corresponding key-parameters,
the minimization problem can be written as:

4
. 1
Fopt = argngn {,; ®

— AP @) AP (@)

4Using Eqn. (3.56), Eqgn. (3.54) and Eqn. (3.52)

} = arngin {M(F)} (3.67)




CHAPTER 3. UNCODED DATA TRANSMISSION 35

and the side constraint is
tr (FH F) —9. (3.68)

Such an optimization problem can be solved by the Lagrandéptier technique [43] by solving the
following equations:

G(F,)) = M(F)+\ -t (F'F)
OG(F, \)

A~ (3.69)
0GEN _
o

But even in this simplest possible casex@ BPSK) the optimization problem is still too complex to be
analytically solved.

Therefore, | have solved the optimization problem numéyiday using a gradient algorithm, which is
explained in the following: In the first step a prefilter mafit is chosen randomly. Then the gradient is
approximately calculated by:
OM(F) AM(F)
OF = AF
where M (F) is defined in Eqn. (3.67). In order to approach the minimuerations with small steps
Ag are performed as:

(3.70)

AM(F)
AF
At each step the matri¥'; ; is normalized such that the side constraint is fulfilled. Thlee next
iteration starts and the gradient &f with the updated matri¥;, ; is calculated and so on. Performing
enough iterations, the Algorithm approaches to a local mmimh. Actually, we want to find the global
minimum and therefore the iteration algorithm is repeat@d0D times, i.e., 10000 random start values
are considered. Thus, | guess that the probability of finthegglobal minimum is quite high. The result
of this search for the optimum precoder math,; with 10000 random start values is shown in the
histogram in Fig. 3.8. There are three cluster points,these local minima. The local minimum leading

Fiy1=F; —Ag (3.71)

6000
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Figure 3.8: Histogram of the power loss after optimization.
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to the smallest power loss is supposed to be the global mminithe global minimum corresponds to
a power loss of 0.2dB. The modified key-parameters of the EF isted in Tab. 3.4. As it can be seen

LET] AP M| nmpe | Je| diyy [ dhy
0 0 0 0 | 4.0000 0 0
1| 10.1606| 1.5809| 1.0000| 4.0000| 4.0079 4
2 || 10.1106| 1.5725| 1.0000| 4.0000| 3.9873 4
3 || 13.1983| 2.0010| 2.0000| 2.0000| 5.1390 8

4 || 27.3440| 4.3058| 2.0000| 2.0000| 10.8507 8
Table 3.4: ET table for a precoded MIMO system. Correlaticenario 14D3; BPSKpr = 2.

from the table, the distances are much better than withadagoling and approximately as good as the
distances for the i.i.d. case (last column). This resuth alsows up in the BER vs. SNR curves shown
in the Fig. 3.9. In Fig. 3.9 the black curve is for spatiallycarrelated fading, the blue curve for the

10°

— without precoding
—— optimal procoding |]
— i.i.d. 1

BER

107 i i I
0 5 10 15 20

SNR
Figure 3.9: BER vs. SNR curves for a precoded22MIMO system using BPSK modulation.

correlation scenario 14D3 without precoding and the regecig for the correlation scenario 14D3 with
optimal precoding. The interesting result is that the pdecoMIMO system performs even better in
spatially correlated channels in the low SNR regime tharutimoded system performs in uncorrelated
channels. In the high SNR domain both curves are almosti@@nihe calculated power loss predicts
a performance difference of 0.2dB that will only show up atMeigh SNR. This gain at low SNR was
also observed in [44], although the authors do not use thmaptriteria in their paper.



Chapter 4

Space-Time Block Coded Data
Transmission

In this section we focus on the analytic calculation of theRBerformance of standard Space-Time
Block Codes (STBCs) in quasi static, frequency flat Raylédgling. Spatially uncorrelated and spatially
correlated MIMO channels will be considered. At the begignl will summarize the fundamentals

of space-time block coding. Then a tighhion bound for the BER is derived. Sec. 4.3 covers the
derivation of a very tightower bound for the BER. In the last section results of several STBCsgusin
various modulation formats are presented and discussed.

4.1 Fundamentals of Space-Time Block Codes

As mentioned above, the scope of this thesis are standar@STB this context the term “standard”
means that | do not take into account codes designed edpdoridhst fading, frequency selective fading
or other advanced coding techniques, which do not fit intasytstem model introduced in Sec. 2.1. The
current thesis also does not cover the performance calmlatspace time trellis codes [5], concatenated
codes [47] and space time turbo codes [48]. In the followirgane only concerned with STBCs.

First let's repeat some basic definitions: The code wordedifice matriXB; ; and the corresponding
distance matriX; ; are defined as:

B;,;=S,—-S;, A;;= Bfiji,j , (4.1)

whereS; andS; are two valid STBC matrices. The symbol rdig is defined as the number of in-
dependent symbols;gs transmitted in one code block divided by the number of ocedigimes slots
noTs-: nrs

R, = . 4.2)

nors

Additionally, it is pointed out what we understand undegsin double, ... and multiple symbol errors:
STBC words defined further ahead are functions of the trattestiinformation symbol8i(s, sz, ..., Sn;5)-
A single symbol error occurs if the code matfixs, sz, ..., s, 5 ) is transmitted and the receiver decides
in favor of the code matri$’ (s, so, ..., s, ) With s} # s1. In general, single symbol errors between two
valid code matrices are errors where only one informationtsyl (out ofn;g symbols) is erroneous. If
two symbols (out of.; s symbols) in two valid code words are different, then we spgalouble symbol
errors. An example for a double symbol error$gis1, so, ..., sp, ) is transmitted an@(s’, sb, ..., Sn,g)
is decoded. Multiple symbol errors are all errors excepttfersingle symbol errors. Note that, according

37
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to the above definition, we speak of single symbol errorsn évmore than one entry of the difference
matrix is non-zero, since in general each information syimbshows up in more than one position in
an STBC matrix! The number of non-zero entries in the difieeematrix corresponds to the number of
entries in which this symbol shows up in the STBC matrix.

4.1.1 Space-Time Block Coding Technigques

In the following two special subsets of STBCs are distingeds namely orthogonal and non-orthogonal
STBCs. Additionally, their corresponding properties atplained.

4.1.1.1 Orthogonal Space-Time Block Codes
O-STBCs are defined as:

Definition 4.1 A STBC (defined by the entire set of code wdills called orthogonal if and only if the

2) I

The most prominent representative of an O-STBCs is the Aldintode [49]. The Alamouti STBC is
defined by the following code word matrix:

X
S — < S1 Sz ) ’ (4.3)
S9 31
i.e., the symbols; ands, are transmitted from antenna 1 and 2 in the first time slot-asfland s}

are transmitted from antenna 1 and 2 in the second time slohsi@ering only one receive antenna
(ng = 1), the received signal vector corresponding to two suceessne slots can be written as:

. . . . . 2 2
distance matrix is a scaled identity matriA; ; = (|51 — s s —sh"+... + ‘sms — Sns

for all possible code word indices;.

yT — hTS + l'lT

(1 y2) = (b1 hao) ( 2 _Z ) + (n1 o) (4.4)

An equivalent notation is

Y1 hi1 hio s1 ny

N—_——r ~ ~ e
y H, s i

In this notation the transmission system behaves asx2)(Zncoded MIMO system with a strongly
structured virtual channel matrix:
H, = ( CRENCE ) . (4.6)

2 —hi
Applying a matched filteHZ at the receiver, we get:

HAy = HIH,s + Hn = (|h,11|2+ |h12\2)s+H51n 4.7)

A similar definition holds for “STBCs from the generalizedtmrgonal design”. For these codes the distance matrix is
always diagonalA;,; = D; ; but not necessarily a scaled identity matrix.
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As it can be seen, after matched filtering the signal veHgry results in the noisy transmit vectsr
multiplied by a channel dependent gain fac(q)ﬁz11|2 + |h12\2), i.e., the receiver can detect (quantize)
the symbols; andss independently. In this way, the ML performance is achievéti atrongly reduced
receiver complexity. Additionally, it is easy to recognibat a diversity order of two is achieved, since
the factor in front of the symbol vectsrconsists of twice the squared magnitude of independenbrand
variables representing two independent paths. These wpeeres (full diversity and ML detection by a
linear matched filter) are generally valid for O-STBCs. Tisadvantage of O-STBCsis a loss in symbol
rate, since O-STBCs with symbol rafty = 1 (full rate) only exist forn = 2. For higher values ot -,
O-STBCs only exist with symbol ratd3g < 1. Summarizing the properties of O-STBCs, we get:

-) Very simple ML decoding algorithm
-) O-STBCs always achieve full diversity order Bf= ng nr
-) The achievable symbol rate is one for = 2 only. For highem the symbol rate is smaller than 1.

As an illustrative example | show an O-STBC fey = 4 and Rg = 3/4 that is investigated further
ahead [52]:

s1 —S5 —S3 0

* *

| s2 s 0 —s3
SOTth - S3 0 ST 3; - (48)

0 83 —S89 S1

4.1.1.2 Non-Orthogonal Space-Time Block Codes

Non-Orthogonal Space-Time Block Codes (NO-STBCs) areth#roSTBCs that do not obey the con-
straints given in Def. 4.1. The important properties of staties are that they can achieve higher symbol
rates than O-STBCs, however they do not achieve the fulksityeadvantage and ML decoding is more
involved than for O-STBCs. Some NO-STBCs that are of spégiatest in the rest of this chapter are
listed below. The first and here most often used NO-STBC isyiabc STBC [34]:

S1 S84 83 82
S92 81 S84 83

Scyclic = 3 (49)
83 82 81 84

S4 83 82 81
which offers Rg = 1 information symbol per time slot. The name cyclic comes fdhm cyclically
shifted columns and rows in the code mat8¥,.;.. Another NO-STBC is the so-called Extended
Alamouti (EA) code [46], which is also of interest in this &
s1 85 53 S4
sy —s7| si —s3

Spa = (4.10)

—s] —S9
-85 81

s$3 Sy
*
Sa _33

This code has also full ratBs = 1. It essentially consists of two independent pairs of thepfni2x 2)
Alamouti code. The first Alamouti pair consists of the synsixglands, and the second af; andsy.

The last code discussed in detail in the current thesis issthealled Double-Space Time Transmit
Diversity (D-STTD) code proposed in [45], which consistdwb independent Alamouti code blocks

s1 85
*
S2 —85
Sp strp=|— | > (4.11)
S3 Sy
84 —83

achieving a ratdzg of 2 information symbols per time slot.
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4.1.2 Code Design Criteria

Code Design Criteria are on one hand very important in oaldesign good codes and on the other hand
to get more insight into the behavior of existing STBCs. Idasrto find meaningful design criteria, the
overall BER has to be calculated and afterwards conditiawe ko be found to minimize the BER. As it
is already known from the derivations in Sec. 3, the over&lRB:an be upper bounded by the sum over
all possible PEPs. Therefore, minimizing the total BER ltssa optimizing all individual PEPs. For
this reason, we start with calculating the PEP by following $ame strategy as in Sec. 3.1 resulting in:

P(Si = 8;) = P(IY —HSi[[7 > |Y - HS;|[7) = P(IN|7 > |[H(S; - S,) +N[7) ,  (4.12)
————

Bz"]
This inequality can be further simplified to:
2 2
INlz > [HB:;+ N5
nR nRr
Y ming > ) (h{Bi;+np)(hiB;; +np)”
k=1
ngr ngr
> nin; > > (h{B;;n; +nin; +h{B; ;B h; + n; B/ /h})
k=1
NnR R
=Y ufB;;Bfh; > 3 2Re{b]B;;n;} (4.13)
= k=1

of
n is thek-th row of N andh] is thek-th row of H. Let’s assume for the momehg, andB; ; to be

fixed and let’s focus on the statistics gf; with respect to the channel noisg. Linear manipulations
do not change the Gaussian statistic and therefgrés a real Gaussian random variable with mean:

nR
pzi,; = En {Z 2Re {h{Bi,jn;;}} =0 (4.14)
k=1
and variance
ngr npr
02, = En {Z 2Re { b} Bi n} } 2Re {n{Bffjh;}} —...=202> hlB;;Bh;, (4.15)
k=1 k=1

resulting in the following PEP (8; — S;) = PER,;):

E”R hTB BHh* d2 o
PER,; = P(zi; < — ZhTB Bflh;)=Q J k 5oz =Q % (4.16)
n n

The squared distance at the receir, ; is now defined by
ng
d%; ;=Y hiB;;Bh; = |[HB, || = r(HB, ;B; ;TH") = tr(HA, ;H") . (4.17)
k=1

The distance between the code matri8gandS; at thetransmitter is defined as:

dF;; = IIBijl3 = tr(B;;B; ;) = tr(A;) . (4.18)
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Obviously, the dlstancé§z . at the receiver governs the error performance in Egn. (41thé@he follow-

ing the PEP is averaged W|th respect to the distance as adoraftthe channel parameters, in order to
get a mean PEP. For this reason, the statistics of the sqditadce has to be known. For this purpose,
we focus on uncorrelated quasi static Rayleigh fading cbhiannThe distance at threceiver can be
further simplified to:

ng
%, = ZhTB B/ hk_ZhT A;; hk—ZhTU,]D UfLhy
’ — N~ N —r W—/
Ai,j Ui,jDi,jU!{ k=1 h(i,j)T h(i,j)*
( SRS (i (i) (i)
- Zh” "Dnf =3 % [/ ‘ A = Z BN (4.19)
k=1 I=1k=1 =1
—_—
o)

whereD; ;=diag(\;’ (6.0) )\ n) 5«1? ), theA(z’]) are the eigenvalues of the so-called distance matyix

r;,; denotes the rank of; ; and the row vectohg’” =(h{") B$") . h{:D). Note that the multiplication

h!'U; ; does not change the Gaussian statistibhpfand therefore the random variableg’” are?
distributed with2n p degrees of freedom with variance 1. Their PDF is thus the sesrie Eqgn. (3.25).
In order to get meaningful but not too complicated desigteds, the well known Chernoff bound [27]
is used to approximated the Gaussian Q-function:

Qz) < e /2. (4.20)

With this approximation, the union bound for the mean PERBIte&Y:

" _cﬁ“,. ~ Sbd al(i,j)Al(i,j) ri; _al(i,j)/\l(i,j)
PERY) < Bu{e *. ;=En{e a7 =[[Bule = }=
=1
N L W ) SNR) ~"#
<1 4 = > = H (1+/\ bJ) ) ) (4.21)

Rewriting the above product we get:

ub) SNR e R SNR o
PER") <1+ Z/\ 2 H)\ 7 . (4.22)

With this equation it is possible to formulate two code desigteria, namely on one hand for low SNR
and on the other hand for high SNR. The first design rule i®duibr the low SNR regime where the
first two terms in Eqgn. (4.22) are essential.

Design Rule 4.1For the low SNR regime the trace of the distance matijy for all code pairs {, j)
should be as larger as possible (Trace Criterion), si@?jl Al(“) =tr(A; ;).

The code design criterion described in Theorem 4.1 has begoged first in [5].

The more widely known design criterion is suited for the higNR domain, where the last term in
Eqn. (4.22) is the most important one leading to:

°Note that the modulation format has mean power= 1.
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Design Rule 4.2For the high SNR regime we have two aims: Firstly, the rgnkof the distance matrix
A; ; should be as large as possible for all code pairgj] (Rank criterion). Having optimal rank, the
second aim is to maximiZg, -} /\l(z’J)=det(AZ-,j) for all code pairs {, j) (Determinant Criterion).

This code design criterion has been introduced by Tarokh [29

The best one can do with respect to a good code design is ta diothadesign criteria. For example, for
the code design in the high SNR domain RenkandDeterminant Criteriashould be maximized first.
If the code search results in more than one optimal solutiibh respect to these two criteria, then the
final optimum is that code, which maximizes theace Criteriontoo.

A further conclusion of the derivation above is that only éigenvaluesxl(i’j) of the distance matrix
AJ) govern the error performance of STBCs.

Additionally, aloose union boundbr the PEP can be found by neglecting the one-term in thekbtauf
the last term in Egn. (4.21) resulting in:

) —TijNR
i, . —ng Tiy TM'A@J) J
PEFéf;-”) <11 (Al(”)—SNR) _ <—<f DR SNR) . (4.23)
=1

dnp dny

The factor in front of the SNR is called coding advantdg&he exponent in Eqn. (4.23) determines the
slope of the mean PEP vs. SNR curve and is called diversity gai

®Note the slight difference between coding gain and codinguaitige. In principle the term coding gain only exists in non
fading channels. In fading channels the coding theory gpégesics a diversity gain and an coding advantage.
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4.1.3 Block Coding: SISO vs. MIMO

In this section | want to point out the main differences betw&ISO and MIMO block coding, to get a
feeling for the error mechanism in both cases.

4.1.3.1 Distance Properties

SISO Block Codes:

Consider first a simple repetition code, where the inforamaymbolss; to s,,, are simply repeated
once:
S=1(s182 ... Sp;q 8152 ... Snyg) - (4.24)

The distance betwee® and another vali®’ with
S'=(s) sy ... 8 _s\sy...8 ) (4.25)

(at the transmitter) is:

2
d2. = (2|31 — 3’1|2 + 2|59 — 3’2|2 +...+ 2‘3,”5 — Spys ) . (4.26)
With channel gairh the distance at the receiver is simply
2
d% = |h)? (2|31 - s'1|2 + 2|59 — s'2|2 +...+ 2‘5‘”]5 — Spyg ) = |h|?d% . (4.27)

The distance at the receiver is simply a scaled version afdde word distance at the transmitter and thus
code pairs that have the smallest (largest) distance atthenitter, have the smallest (largest) distance at
the receiver too. In the following, this behavior is calleé Distance Proportion Preservation Property
The second interesting observation is that the distandesaeteiver can become zewds,(= 0) if and
only if the channel gain is zer¢h(]2 = (). The third property is that the distance (irrespective tivbeit

is measured at the receiver or at the transmitter) of code wairs with single symbol errors is always
smaller than the distance between code word pairs with daufinultiple symbol errors. Therefore, we
can conclude that the error performance is governed byesgghbol errors. These properties are not
new but useful in the following discussion.

O-STBCs:

In the following the distance properties of pairs of validdeovords are discussed for O-STBCs. As
defined in Def. 4.1, O-STBCs have a scaled identity distaragixfor all code pairs:

!
S”IS - STL[S

A= (|31—s'1|2—|—|32—3'2|2+...—|—

2) I (4.28)

With this knowledge and the aid of Eqn.(4.17) and Egn.(4th8)distance at thigansmitter reads as:

nrs

2
2 —tr(A) = (|s1 R T O P ) (4.29)
and the distance at threceiver:
d% = tr((HAHY)

= (Ihual® + B + .-+ s ) (|31—sg|2+|32—s'2|2+...+\sn,5—s'

nrs

)

= (Iml +1h2l + -+ g |”) & (4.30)
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Comparing these distance equations with the distance iegadbr the SISO case, it can be seen that
O-STBCs have essentially the same properties as the blagsén SISO channels.

Thus, we can summarize the distance properties for blocksiwdSISO channels and O-STBCs:

-) Distance Proportion Preservation Property
-) Zero distance at the receiver is possible if and only ifcthannel gain vanishes
-) Single symbol errors lead to the smallest distances aettwiver

Due to property 3 it can be concluded that the BER performarficeich codes is governed by single
symbol errors.

NO-STBC:

For NO-STBC things are quite different. In fact, these thdistance properties cited above are not valid
in general. It is not easy to show that these properties aréutitled for the entire set of NO-STBCs.
Therefore, | will show two difference matrices for a simpl©MNTBC as examples to illustrate these
different distance properties. Let’s discuss the follayvaimple NO-STBC:

S — ( 51 82 ) , (4.31)
S92 81

which could be used in a2l MIMO system using BPSK modulation for example. Choosiregydbde
matrix S andS’ in such a way that the difference matrix for a double symbareresults in

e w22
B, =S s_<22>, (4.32)

the distance at the transmitter for this specific differemeerix is:
d% = tr(Ag) = 16 . (4.33)
Choosing the channel vecthr= (1 — 1), the distance at the receiver is:
d% = tr(hAsh) = 0. (4.34)
Note that the distance at the receiver vanishes if and only if
HB =0. (4.35)

A necessary condition for getting an all zero matrix as thseilteof a matrix multiplication is that both
involved matrices have to be singular, i.e., the determiméreach matrix is zero [50]. A vanishing
determinant is equivalent to the fact that the correspandiatrix is rank deficient.

Let's consider a second difference matrix from the STBC a@efim Eqn. (4.31). For a single symbol
error, withs; erroneously, the difference matrix is:

e w_ (20
B, =S s_<02>. (4.36)

The distances at the transmitter and at the receiver are:

& =t(A’)=8 d=tmAn")=8§. (4.37)
With these two simple examples | have illustrated that tmeettproperties, which are valued for SISO
block coding and O-STBCs, are not valid in case of NO-STBQ® flrst property, Distance Proportion
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Preservation Property, says that if the distance of one pailés larger than the other at the transmitter,
then it must also be larger at the receiver. Consider the bsle pairs above, this is not true for the code
in Egn. (4.31) and thus it is not true in general for the erdageof NO-STBCs.

The next property is that the distance at the receiver caorbezero if and only if the entire channel gain
vanishes. Considering the first exam@®,], the distance at the receiver is zero, although the channel
gain is not zero}h|? = |hi1|? + |k12|* = 2. Thus, the second property does not hold in this case.

The third property, the smallest distance correspondsigiessymbol errors, is also not valid here, since
the distance at the receiver By corresponding to a double symbol error is smaller (actuadhp) than
the distance at the receiver in case of a single symbol error.

Therefore, we formulate a so-called MIMO-paradoxon:

The distance properties valid for block codes in SISO systerd for O-STBCs are in general not valid
for NO-STBCs and most important: large distances at thedmstter can be transformed into small
distances at the receiver.

Therefore, in case of data transmission over MIMO systemsddmental question arises: What kind
of errors dominate the BER performance in case of NO-STB®aratus levels of SNR. This question
will be answered in the following section.

4.1.3.2 Dominating Errors

In this section we want to find out what kind of errors domintie BER performance of NO-STBCs.
Unfortunately, this cannot be solved in general. Therefaefirst focus on the simple example shown
in Sec. 4.1.3.1, Egn. (4.31). As shown in Sec. 4.1.2 the PE®sgly depend on the eigenvalues of the
distance matrix. Thus calculating the eigenvalues of thadce matrix can help to get more insight into
the BER performance of NO-STBCs. The eigenvalues correkpgrio the single symbol error (differ-
ence matrixB;, Eqn. (4.36)) are\gl) = Agl) = 2 in this example, and the eigenvalues corresponding to

the double symbol error (difference matiBe, Eqn. (4.32)) are\gz) =16 and/\g) = 0. Asiitis already
known from Sec. 4.1.2, at low SNR the traceAfdetermines the BER performance. Thus, in the low
SNR regime the single symbol error is dominating due to thallsirace ofA; (tr(A1)=4), whereas for
the double error case we haveAr)=16. In contrast, in the high SNR domain a high ranldois impor-
tant and thus the double error case dominates the BER. IMRighe PEPs vs. SNR corresponding to
the single symbol error and the double symbol error areqaotEor this purpose the PEP approximation
of Egn. (4.21) is used. Fig. 4.1 confirms the expected behafithe PEPs. The single symbol error
(B1, blue line) dominates the BER at low SNR and the double syratyor (B, black line) dominates
the BER at high SNR.

This behavior, hamely that single symbol errors dominageBER at low SNR and multiple symbol
errors dominate the BER at high SNR, has been observed N TBCs we have investigated. This
is not a prove in a mathematical sense, but it is an integstimpirical result that strengthens our general
claim and philosophy.

Moreover, Fig. 4.1 confirms the code design criteria derineSec. 4.1.2. The PEP is minimized in the
low SNR domain if the trace of the distance matAxis maximized. In the high SNR domain a high
rank of A reduces the PEP.

In the following we show an alternative explanation why riplét errors can dominate the performance
in some SNR regions, which is based on the distance digtisibf code word pairs at the receiver.
Once again, we focus on the simple code example presenteaghin(€31). According to Eqgn. (4.19) the

distance at the receiveryg distributed with 4 degrees of freedom and a total varian@&(af = Xy = 2)
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Figure 4.1: PEP vs. SNR performance for the cyclic STBC. BR®&idulation;nr = 2, ng = 1.

for the single symbol error. The code word distance at theivec for the double symbol error jg
distributed with 2 degrees of freedom and total variance6ofX, = 16). The PEP is the expectation
value of the Gaussian Q-function with respect to the digdrtbat means

Per= [ Q (%) per (€)dt (4.38)

i.e., the Gaussian Q-function has to be multiplied by the PDthe distanc& and the area under the
weighted Q-function is the mean PEP. The distribution ofdbée word distances at the receiver for a
single symbol errorB;) and a double symbol erroBg) is shown in Fig. 4.2. Including the Q-functibn

0.25

T
—— double symbol error
— single symbol error

0.2 4

0.05

I
0 5 10 15 20

3

Figure 4.2: PDFs of the code word distances at the receivethéocyclic code. BPSK modulation;
nr = 2, nrp = 1.



CHAPTER 4. SPACE-TIME BLOCK CODED DATA TRANSMISSION

47
for different SNR values in a zoomed version of Fig. 4.2 fom#imaalues of¢, leads to the curves in

Fig. 4.3. In Fig. 4.3 one can easily estimate the multipicaof the PDF and the Q-function simply by
looking at the curves. The resulting product has to be iategr over the entire range éfto find the

mean PEP. Let’s consider the Q-function for SNR=6dB andwleeRDFs of the distance corresponding

0.5 I
" — double symbol error
! — single symbol error
! — Q-function SNR=6dB
0.4 - - Q-function SNR=16dB ||
: 1
1
1
— 1
W 1
N5—0.3 “
2 '
NR= 1
o] \
N \
& oz
O 1
1
1
\
0.1 '
\
\
A}
A
0 > ~ I - A
0 0.5 1

Figure 4.3: PDFs of the code word distances at the receiveéhéocyclic code using BPSK modulation
and the Gaussian Q-function.

to a single symbol error and a double symbol error. The prodfithe black solid line and the blue
line is much higher than the product of the black solid lind #me red line. Thus the integral over the
resulting product is also essentially larger for the pradavith the blue line and thus single symbol errors
dominate at low SNR (6dB). At 16dB SNR, where the dashed bngsed as a weighting function for
the blue and the red line, the contribution of the red curvaidates and therefore double symbol errors
dominate the BER at high SNR (16dB).

A further general conclusion can be drawn, namely that ¢isdlgrnthe distance distribution around
small distance valuesletermines the error performanaehigh SNR, which has already been observed
in [53].

“The unusual shape of the Q-function is due to the linear doadgtical axis.



48 4.2. UNION BOUND OF THE BER

4.2 Union Bound of the BER

In this section we derive a tight union bound for the BER parfance of STBCs in spatially uncorrelated
and correlated MIMO channels. The essential results haeady been published in [54]. First, all
derivations are performed for the general case and aftdexmsimple example illustrates the results.

The union bound of the error probabilitly. is simply calculated by summing up all PEPs as already
performed in Sec. 3:

AT Ars
Fe < s > 2 PER;. (4.39)
=1 j=1
J#i

Note that Eqn. (4.39) implicitly assumes that the code wosir equally likely. In order to obtain a
union bound for the BER, a further step is necessary. For e@ssover everf; — S; a different num-
ber of symbols and thus a different number of bits are ernosieBor this reason, a so-called weighting
factoruw; ; is introduced. This factor turns the code word error prolitgbinto the BER, by counting the
number of erroneous bitsgg ; j in the numerator and the number of transmitted bits per cantd what

is Id(|.A|) nzs, in the denominator:
NBE,j

b — _ 4.40
"9 (A s (449
Then, we get:
|A"IS | A"
BER < AT > Y wi;PER;. (4.41)
i j=1

J#i
The final essential task to do, is the calculation of the eR&® ;. As can be seen in Eqn. (4.16), the PEP
is governed by the Euclidean dlstam‘% at the receiver. Therefore, the statistics of the distamse h

to be calculated and afterwards the Gau35|an Q-functiondhas averaged with respect to the distance
distribution. Due to the different methods to calculate Bi#gFs of the distances at the receiver, the two
spatial correlation types are considered separately.

4.2.1 Spatially Uncorrelated Channels

In this section, the union bound for spatially uncorrelatbdnnels is derived. For uncorrelated channels,
the code word distance at the receiver is (Eqn. (4.19)):

: (4.42)

R“ Z’\ i.4) Z‘h irj) |2

Where)\l(“) are the eigenvalues of the distance masix;. Here, two cases are considered separately:
There are code pairs with distance matridgg that lead ta-; ; equaleigenvalues and matrices; ; that
have different eigenvalues, i.e., the eigenvalues of thedce matrix can be different from each other
or there can be two eigenvalues that are equal and addliidmad different eigenvalues, and all other
combinations of eigenvalues.

In the case where all non-zero eigenvalues are equal, ttundajR” is x2-distributed with2r; jn g

degrees of freedort
é‘Ti,j'anl &
pa, . (&) e A6 (4.43)

Ry o1 T (NG R (g )

*The index! at)\l(i’j) is omitted, because all eigenvalues are equal.
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Averaging over distancesin the Gaussian Q-function results in the mean PEP:

. . 00 Ti,j NR—1 _&
PEpld (Z,]) » — / i — 6 .‘] " TG
e ()\ , T ,]) 0 Q 20_% (A(Z’]))“’J nR Iw(lri’j ')’[,R) e AnJ df

.. i -1
1— pig """ ’Jg rignr—1+1\ (14piz)
2 l 2 ’
=0
A(9)
107 + A

with Kij = (4.44)

The solution of the integral is taken from [36].

For other code pairs with a general set of eigenvalue& of, we start with an example. Consider the
case where\(" = (") then this eigenvalue is denoted by™”, and if A\{”) = {7, then this
eigenvalue by\;(”) (assuming; ; = 4). Then, the distance at the receiver (Eqn. (4.42)) reads as:

de _ ,J Z‘h(w +)\gi,j)nZR‘h(m| —I—)\ i.5) Z‘h ,J)| —I—)\ i.5) Z‘h irj)|?
_ ) (z\hw\ +z|h ) ) 4 269) (z\h i +z\h )
2 .].czan )
= ZA;@J)Z‘M , (4.45)
g=1 n=1

wherehg) summarizes the elemen‘tg,’f) andhg”:{) forallk (k=1,2,...,ng) andhﬁf) summarizes the
elementshg,’g) andh,(j,;f) forallk (k= 1,2,...,nR).

For general considerations we denote the number of diffeigenvalues by(-/) and the frequency of

the g-th eigenvalue is denoted lﬂi’j). Then, the distance at the receiver (Eqn. (4.45) can bettewri

as:

e(”) f(q, J)

drij = ZA ) \h(q\ : (4.46)
1

n=
where the elements,”) are a subset of the set of all elemehﬁ) as explained in the example above.
Thus, the Characteristic Function (CF) of the squared ttnhmatdf[z results in:
1

ed) (1 _ 5 \'(0:4) i nn
q=1 —JWAq

\I/d2 (w) =

Ri,j

After a partial fraction expansion the CF can be written i fibrm::

elid) [ np i)
T Pq___
sy z:: pzl (1-jward)’

Knowing the CF we can calculate the PDF of the squared distéycapplying the inverse Fourier
transform o . (—w) resulting in:
5]

e(id) f{np

(4,5) ¢p—1 -5
_ Kpq™ &P CED
pd?h] (6) - qgl p;l (A’q(Z’J))p(p . 1)'€
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with

qg=1

> > (4.5)
dféz,])anp ( n )\ (Z’])) q( J)TLR e(f_[ﬂ) 1 q nRr
. (Z’])nR—p oo 1+IA;(1’])

1
T=—"TF7 v

(4,5)
)‘q

pg " T (i)

(f g — p) AT

Averaging over the distances in the Gaussian Q-functiontse®s the mean PEP:

PEF%;iéd'()\;(i’j), fq(i,j)) = /Ooo Q <1 / 25 ) de” (&)d¢ (4.47)
e(i:d) f( g (Z,j) Pp-1 1 (i,3)\ !
, -1+ 1+ pq
Loz () 5 ()

)\q(ivj)
402 + )\;(i’j )

nrR—p

with {9 =

Investigating the eigenvalues &; ; for all crossover events can help to simplify the summation i
Eqgn. (4.41). According to Def. 3.1 the key-parameters deiteing the BER-performance are the eigen-
values ofA; ;.

In order to show the entire calculation of the union boundtfer BER in all details, | will concretize
my investigations by focusing on one specific example. I8 #kample, the cyclic codewf = 4)
defined in Eqn. (4.9) is used. BPSK is used as the modulationaio For most codes the Error Types
(ETs) and their corresponding parameters can only be foyrahbexhaustive search. Exceptions are
for example orthogonal codes, the cyclic code and the EA ,deglsause their eigenvectors are the same
for all crossover events and therefore we can easily findytioa@xpressions for the eigenvalues. With
these expressions it is possible to list all ETs and the spaoeding key-parameters in a similar manner
as it has been shown in Sec. (3.3.1). If an exhaustive sesngged to find the key-parameters of the
various ETs, it is advantageous to utilize the symmetrigh®funderlying modulation format, in order
to save computation time. The ETs and their correspondiggpkeameters of the cyclic code defined
in Egn. (4.9) are shown in Table. 4.1. Here, the key-paranuftthe ETs are: the sets of eigenvalues,

H ETk H A ‘ Ay ‘ Ay ‘ Ay ‘ Ik ‘ NBEk H

k 0 0 0 0 |16 0
1 4 4 4 4 | 64 1
2 16 8 8 0O |64 2
3 16 | 16 0 0 |32 2
4 36 4 4 4 |32 3
5 20 | 20 4 4 |32 3
6 16 | 16 | 16 | 16 | 8 4
7 32 | 32 0 0 4 4
8 64 0 0 0 4 4

Table 4.1: ET table for the cyclic STBC. BPSK modulatian; = 4.

the numberf, of crossover events leading to a certain ET and the corresppmumberngg, of
different information bits. In this example it can be seeattthe ETs with numbek=1,3,6,7,8 have
equal eigenvalues and therefore the EIS‘R)\(i’j),ri,j) given in Egn. (4.44) is used to calculate the
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corresponding PEP. For the remaining ETs with numibe2,4,5 the PER: (A", £{%) given in
Eqn. (4.47) is used. Due to only two different eigenvaluesREP is governed by only four parameters
and therefore it is denoted by PEB (X, 709 3\ [(03) £(:3)y instead of PER,- (A7), £{89)).

Summing up the PEPSs for all crossover events results in theld@um given in Egn. (4.41). Due to the
introduction of the ETs, the summation over all crossovenéy can be reduced to a single sum over all
ETs and thus Eqn. (4.41) reduces to:

nET
BER< > wy PERM  with wj = 2k __TBEE 4.48
< 2 vPER ¢ A (Al nrs (4.49)

where PEP'9- denotes the PEP for the k-th ET angy is the number of distinct ETs. In the special
case of the cyclic STBCup = 4) discussed hereygr is 8 (ETO is of no relevance, since it corresponds
to a correct code word detection).

Inserting the parameters given in Table. 4.1 the union bdanthe BER of this cyclic coden; = 4)
can be written as:

BER< 1-PEP"Y(4,4)+2.-PEP.%(16,1,8,2)+1-PEP;" (16, 2)+g-PE%2d'(36, 1,4,3)+

. 1 . 1 - 1 .
g-PEFZ'éd'(20,2,4, 2)+§-PEFg'-d-(w,4)+Z-PEF;-'-d-(32,2)+Z-PEF5'-O'-(64, 1). (4.49)
The union bound derived in this section is compared to thé kmelwn and commonly used, but rather
loose Tarokh union bound and to simulation results for tpiscgic code using BPSK modulation in

Sec. 4.2.5.

4.2.2 Spatially Correlated Channels

Here, | will show a summary of the essential calculationshitaim the union bound of the BER perfor-
mance in spatially correlated channels. The channel atiwel is modelled according to the W-model,
introduced in Sec. 2.2 Again, the code word distances atdbeiver are the essential parameters de-
termining the BER and therefore | will start with calculajidﬁhyj in the case of spatial correlation
(Egn. (4.17)):

d%;; = tr(HA,; ;H") = hT A, jh*, (4.50)

whereh” = (hf h ... hl ) andh! is thei-th row vector ofH. The matrixA; ; is a block-diagonal
matrix includingn g-times the matrixA; ;: Ai,j =diagA; ;,A; j,-.-,A; ;). The next step is to model the
statistical behavior of the vectdr, which is done as follows:

51/2
n? = g"RY/?, (4.51)
whereR.z can be calculated as:
> _ *1.17 | — 771%* ~ T
Ry = Ex {h h } = U; Dy, UL . (4.52)
where
Uf{H = (URH 1,1 uRH 2,1 " uRH ng,l " uRH Ly "° uRH nR’nT) , (453)

andug_,; = ugk ® ur;. ® denotes the Kronecker product (in fact stacking weightedions of
ur,;). The vectorug is thek-th column vector ofUg and the vectomur, is thel-th column vector
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of Ur. Both matrices are defined in Sec. 2.2. The diagonal mm@g{ consists of power coupling
parameters; ;:
Df{H = diag(wl’l, W1,2y -+ s Wings---sWnp,1y--- ,wnT’nR) . (454)

With these parameters the distankg, ; can be written as:

DY2UL g*.  (4.55)

T1/2 1/2H*_T* 12417 X . 7%
dR” Ry “A; R g Ui, Pi. Uxi iUR, Ry URn

RH RH £

Z; ;

Remember that the statistics of an i.i.d. complex Gaussiadam vector does not change by a multipli-
cation with a unitary matrix. Eqn. (4.55) can be further difred to:

(l ])

Rz,y Z |gm| (4.56)

where/\( 3 are the eigenvalues @; ;, the variablegy,,, are the elements @ andn ¢ ’”Z) is the number
of non-zero eigenvalues of the matix ;. The matrixZ; ; can be written as:

D11 D12 . DlnT
D21 D22 . D2
Zij=| . o (4.57)
Dy,1 Dag2 -.. Dypng
and
‘/wklu%kAi,ju%l,/wll 0 0
0 Ver2ug A ,J“Tl\/wl 0
Dy = : . :
0 0 Y i |V AP W1 APy s

(4.58)
Now, it is possible to calculate the P@Ez ( ) of the distance at the receiver. According to Eqn. (4.56)

dR” is the sum over weighted, mdependeﬁt distributed random variables. The CF of the sum of
independent random variable is the product of the corraipgnCF’s. Thus, the CF of the distance
d%; j atthe receiver results in:

(4,4)
n
NZ 1

Ri,j il —]u)/\zg?)

Note, thatngf;]Z) = ngry;, if the matrixR g is non-singular.r; ; is the rank ofA; ;. The matrixRx
is non-singular, if all elements & are non zero (Eqn. 4.54). The maximum valuen@f; = ngnr
is achieved, if and only if both matrices; ;, Ry are regular. Applying a partial fraction expansion
to Egn. (4.59), the PDF odR” is easily obtained by the inverse Fourier transformIJgﬁ ,( Jjw),

resulting in:

-
SO = Z = e i (4.60)
pd2 — T > . .
e (o
I (Mg =250
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Note, that for the partial fraction expansion it is assunteat &ll eigenvalues are different, which is
the case for “measured” power coupling matrié@sbut can eventually be a problem for synthefic
matrices.

The mean PEP results in:

(3,5)
&y nNz (Azgm)> 0 £\ N
= _freg — i, S
PEF; = Em (@ 202 zn(i,j) /0 Q 202 )¢ d§
n m=1 "Nz n
()x (m) — )\Z(n))
n=1 7 i,

(4.61)

The integral has the same structure as the integral in EQ®6)(3The superscript W in P#indicates
that this PEP corresponds to the W channel model.

With the results for the exact PEP the general derivatioasnaw finished and again the cyclic code
is considered as an example, in order to show all detailsssacg to calculate this union bound. For
spatially correlated channels, the key-parameters gigethe BER are the eigenvalues Bf ;. The
eigenvalues of; ; depend on the channel correlation type, e.g. 1D3,14D3, lzewfore the ET-table
has to be constructed for each correlation type separdielg. to the large number of key-parameters,
the ET-tables for the correlation types 1D3 and 14D3 are slinvAppendix F.

Instead of summing up the contributions of all crossoventsjeonly the weighted PEPs of the smaller
number of ETs are summed up:

neErT
. fx NBEk
BER< N w, PEPY with w, = . 4.62
< 2 e PER E = AP d(JA) nrs (4.62)

where PE%’ denotes the PEP for the k-th ET angr is the number of distinct ETSs.

The union bound derived in this section is discussed and aoedpto simulation results for this specific
code with BPSK modulation for several correlation typeséc.31.2.5.
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4.2.3 High SNR Approximation

In order to get a better insight into the BER performance arambtnpare the results for uncorrelated and
correlated channels, it is helpful to calculate a high SNRr@aximation for the PEPs. With these approx-
imations for the PEPs, a high SNR approximation for the umiound for the BER can be calculated.

This approximation highlights the diversity degree and-aalted power loss due to channel correlation.

First, let us consider the PEP. The principle of calculatifgigh SNR (lowo2) approximation is fairly
simple. A Taylor series expansion of the PEP formula is peréal. The first term of the series, which
dominates the BER at high SNR is taken as an approximatidmedftie PEP.

Let's remember the Taylor series for a functipfr) around the poink:

® (z—z)" f)(z

n!

n=0

where the superscrigt:) denotes the n-th derivative ¢fz). The PEP for the i.i.d. channel model and
for the W channel model are functions @f and therefore the PEPs have to be approximated around
o2 = 0, in order to get a high SNR approximation. For small valags the first non-zero term of
the Taylor series, i.e., the term with the lowest exponenthé most important one. In the following
uncorrelated and correlated channels are treated sdgarate

4.2.3.1 Spatially Uncorrelated Channels

There are two different PEP formulas (Eqgn. (4.44) and EqAa7{ for the spatially uncorrelated channel.
The high SNR approximation of the PEP formula for equal eigkres (Eqgn. (4.44)) reads as:

pEpid-—high _ (0F)"" [ O"HimRPERS
] (rm-nR)! 8(0’%)ri’jnR

2 _
o;=0

_ (e T T”%_l rigne=14k) _(__on N\ e
— \3@p k BSErEE '

(1/cti-d)) i "R

T inR—1
X rijnr—1+k
1) — [ Z ( is] f >

k=0

with
—1/(rijnr)

(4.65)

Due to Eqn. (4.64) the PEP mainly dependsmn, nr and A7), r; ;nr determines the slope and
A7) ¢(17) determines the horizontal position of the PEP vs. SNR cuFherefore, the diversity that is
defined as the negative slope of the PEP vs. SNR curve or the sfahe PEP vsa2 curve according
to [27] is:

a(loglopEFg.i..d.—high)
D; ;g4 = lim .
Note that in the derivation in Eqn. (4.66) the high SNR appration for the PEP is used.

= 7; "R - (4.66)

The derivation for the PEP formula for different eigenval(g&qn. (4.47)) could be done in the same way
as in the previous case. But due to the complicate form ofRER formula, | describe another way, in
order to simplify the necessary calculation. By expres#iiegGaussian Q-function according to [53] by:

2

1 /2 __—2®
Qz) = - / ¢ TE@ 4 (4.67)
0

T
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| get the following result for the exact PEP:

1 [m/? 1
PEP=- [ Op [-—ds, (4.68)
7 Jo “Rij \  jasin®(¢)o?

where\Isz is the Characteristic Function (CF) of the dlstamﬁg The CF can be expanded in a
power series and the integral could be calculated for ath$enf the series. For a high SNR approxima-
tion of the PEP only the term with the lowest exponentdgris of interest and therefore a high SNR
approximation of the CF is used and the integration in Eqi&8yconsiders only the dominating term,
to come up with an high SNR approximation for the PEP:

Ti MR
pEp--d-—high _ n (4.69)
1, .. ;o '

J i H""z,] 1 )\7(%7]) C(Z,j)

m=

Comparing the two high SNR approximations for the PEP (E4164) and Eqn. (4.69)), it is easy to see
that they are almost identical. The only difference is thateigenvalue\("¥) in Eqn. (4.64) is replaced
by the geometric mean of the eigenvalues. The effectivanlist, irrespective of which type of PEP is

considered, can be defined as:
7i,j
g ij= "5 H AEd) (4.70)

A high SNR approximation for the union bound for the BER isilgasbtained by taking only those ETs
into account, which have minimum diversity. Minimum divigyss achieved by ETs with minimum rank
Tmin- N the following the number of ETs, which have minimum raslkdenoted byi,,;,. Then, the
high SNR approximation for the BER result€in

TminTR
. ) Nmin 2
BERL.z.d.—hzgh < Z w In . (4.71)

It is rather convenient to define a new distance paranagtey:

1
dz i.d. . (4.72)

Nmin

Tmin™R E ok Tmin™R
mn k=1 ( "min [T] min A c(k))
m=1

With this new parameter, the high SNR approximation of thembound for the BER can be written as:

2 TminMR
BER--d-—high _ (;’_n> : (4.73)

44,
For the high SNR approximation of the union bound for the BE#&Rdame properties hold as for the high
SNR approximation of the exact PEP, i.e., the slope of the BERSNR curve and thus the diversity is
rminr @nd the horizontal position of the curve is determinedihy, .

®Note that we now focus on ETs instead of crossover eventsharsdthe index, j is replaced byk.
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4.2.3.2 Spatially Correlated Channels

In this section essentially the same derivation as for threuslated case is done for correlated channels.

Investigating the PEP, it turns out that the first non-zermtef the Taylor series has the exponeﬁxz
(number of non-zero eigenvalues) and thus the high SNR ajppation of the PEP results in:

(02)"N7 (an%é)PEFW )

»J n(z,])‘ ngvé)
NZ: \ 0(d3) 20
(1.9) , (6.4 n'd)

B 0'% NNz "Nz~ (z,g) 14k 0_721 NNz 174
- \&,. Z Tk dyiican | @74
Wi,j k=0 Wij “niyl

v

2 G6rd)
(/e @,5)) N2
"NZ

with
(i.9) ~1/nyy)

mwz (i)
o nyy —1+k 475

where a new effective distandg, ; ; has been introduced:

(4.76)

The PEP mainly depends j9) andA(") (n=1,2, ..n\9)). n9) determines the slope agy, ; ;, and

thus the elgenvaluelsZ determine the horizontal position of the PEP curve. Thospwling to [27]
the diversityDyy of such a coded MIMO system in correlated fading is:

(IoglOPEFW highy (id)
Dy = i o) 4.77
v 035510 9(logyg07) B @70

By defining a new distancé?, the high SNR approximation of the union bound for the BER ltesn’:

0.2 nNZmin ]_
BERW ~high — ( ") with  d%, = . (4.78)

d? w = net, . B
RS :

) \TNZ

k=1 (d%Vk NZ men

Here,nyz, ., denotes the minimum number of non-zero eigenvaluesiang . is the number of ETs,
which have this minimum number of eigenvalues. For the higR&pproximation of the union bound
for the BER the same properties as for the high SNR approiomé#&br the PEP are valid, i.e., the slope
of the BER vs. SNR curve and thus the Diversityiigz,,,, and the horizontal position of the curve is
determined byf, .

min

"Note that we now focus on ETs instead of crossover eventsharsathe index, j is replaced byk.
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4.2.4 Diversity Loss and Loss of Coding Advantage due to Chauel Correlation

At this point, | want to emphasizes the differences and sintiés of the BER performance of coded
wireless transmission systems in uncorrelated and in ledece MIMO channels. One very interesting
observation is that the diversity order and thus the slofibedBER vs. SNR curve at high SNR (accord-
ing to the definition in [27]), for correlated and uncorrethichannels is the sameqik z,,., = TminnR.
This is at least the case for power coupling matri€esf the W-channel model with non-zero entries
only. All matrices2 extracted from measurement data have only non-zero elggéesAppendix D).
Hence, a diversity los&p due to correlation can be defined as

Lp = TminMR — "N Z,pi,, - (4.79)

Note that the diversity definition in [27] does not say muchwtihe really observed diversity or really
observed slope of the BER vs. SNR curvaraiderate values of SNR. Actually, the slope of the BER
vs. SNR curve at medium SNR values (or BER values) is of maaetigal interest than the slope at
SNR=00. However, with the definition according to [27], correlai@ad uncorrelated MIMO channels
have the same diversity order fifvz,.;, = Tmin"R)-

For correlated channels withyz, . = rminngr NO diversity loss occurs. However the detrimental
influence of spatial channel correlation shows up in a skedglower losd.p. Due to the same diversity,
the BER vs. SNR curves of correlated and uncorrelated cteanein parallel, but horizontally shifted.
This shift towards higher SNR due to channel correlationaied power loss.p and can easily be

calculated as:

2
Lp = 10log, <d§;-d-) : (4.80)
w

A simple explanation how the spatial channel correlatiod s the matrixX2 influences theliversity
lossis given above. The influence of the matfixon thepower lossis not that simple to explain. In
the following | will explain what properties the matrf2 should have, to achieve a power loss as small
as possible: Due to Eqn. (4.78) the distaﬂé@c for each ET should be as large as possible. To get
large distances, it is important to have well balanced algblaigenvalueszg,,). This is achieved, if the

matrix €2 is well balanced. Then the largest distances occur and eusnallest power loss is observed.
The best balanced matr is a matrix, where all entries are identical. With such araligebalanced
matrix €2, the W-model degenerates to the i.i.d. model. Then, theme g&patial correlation and thus the
best possible performance (no power loss) is achieved.

8Note that there are other matricsthat lead to the propertynz_ ;. = rminnr, but these matrice® are different for
different codes.
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4.2.5 Examples

In this section, | want to discuss our results regarding tB&®REs. SNR performance of four different
codes specified in Sec. 4.1. The tight union bounds are cadparsimulation results and to high SNR
approximations.

4.2.5.1 Cyclic Code

In Fig. 4.4 the BER vs. SNR performance of the cyclic code @effin Eqn. (4.9) for BPSK signaling in
a uncorrelated 44 MIMO system is shown. In this figure, the Tarokh union bounthe dashed-dotted

10 \

T
- == Tarokh union bound
R — tight union bound
. - = simulation

~,
~,
~

BER

-4 -2 0 2 4 6 8 10 12
SNR /dB

Figure 4.4: BER vs. SNR performance of the cyclic STBC. BPSKlulation;n = ng = 4; uncorre-
lated MIMO channels.

green curve, the tight union bound according to Eqn. (4.49né solid blue curve and the simulated
performance is the dashed red curve. As it can be seen th&hTardon bound is quite far from
the simulation results. This bound only reflects the behltavidhe BER performance as a function of
the SNR. Our tight union bound is tight for BER values belbdv 3. The interesting s-shape of the
tight union bound comes from several contributions of diffé PEPs with different slopes. In order to
illustrate this fact, the dominating PEPs at low and at hijlRS/alues corresponding to ET1 and ET8
listed in Table. 4.1 are shown in Fig. 4.5. As it can be seanfl#t slope of the BER curve at high SNR
results from ET8, which is a rank-one ET and corresponds ttipteisymbol errors. At medium SNR
the performance is dominated by ET1, which is a full rank E@ eorresponds to single symbol errors.
This flat slope of the BER curve is only visible for BER valuesvér than10~¢ and thus it is of no
practical relevance.

Now, let’s focus on the BER performance in correlated fadiFige tight union bound (solid blue curves),
the high SNR approximation (dashed-dotted black curved}l@simulated BER vs. SNR performance
(dashed red curves) in correlated fading are shown in Fég.7he curves corresponding to uncorrelated
channels are labeled with~amarker, the curves corresponding to correlation sceriddi® are labeled

The Tarokh union bound is in principle the same approxinmagithe tight union bound Eqn. (4.49). The difference is that
in the Tarokh bound the exact PEPs are replaced by the Cliéowid approximation derived in Egn. (4.21).
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— ET1
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S = = union bound
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Figure 4.5: Influence of the dominating ETs on the BER vs. SMRopmance of the cyclic STBC.
BPSK modulationny = ng = 4; uncorrelated MIMO channels.

with ao-marker and the curves corresponding to correlation saethdbD3 are labeled with &-marker.
The tight union bounds approximate the simulated perfooaaery well. The high SNR approximations
are obviously only valid for high SNR and they are only tighthis SNR domain. From the high SNR
approximations it is possible to draw the following conabms: The slope of the BER curves at high
SNR is equal to the diversity ordé? = nr = 4 for all correlation scenarios, due to the rank one ETs.
Therefore, there is no diversity loss due to channel cdiosla However, the calculated power loss is
Lp = 6.89dB and7.33dB for the spatially correlated scenarios 1D3 and 14D3. Ittiergsting to note

10 \&
N,
e =+ - correlated - 14D3
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\-o. ‘::\ - A - uncorrelated
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Figure 4.6: BER vs. SNR performance of the cyclic STBC. BPSilulation;nr = ng = 4; several
correlation types.
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that both correlation scenarios achieve almost the sanferpance at high SNR, but quite different
results for medium SNR. For the correlated case the flat sdbpige rank one ETs is already visible at
high BER values (low SNR - values).

In the following | will explain why the BER performance foreltyclic code for both correlation types
is very similar. The dominating ETs and the union bound fe& BER are shown in Fig. 4.7 for the
scenario 1D3 and 14D3. In principal, the PEPs have the saapesis in the uncorrelated case, i.e., for

10 ¢ 10° ¢
— ET1 L — ET2
— ET12 AN — ET9

N = =_union bound S - = _union bound

4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24

SNR/dB SNR /dB
a.) b.)

Figure 4.7: Influence of the dominating ETs on the BER vs. SHRopmance of the cyclic STBC in
correlated fading. BPSK modulationy = nr = 4; a.) correlation type 1D3. b.) correlation type 14D3.

all correlation types the BER vs. SNR curves are flatteningabhigh SNR - values. In order to show
the influence of correlation it is better to display all doating PEP curves in one figure (Fig. 4.8). In

- -4 - uncorrelated
>l -6 - correlated - 1D3
1074 o Tk , ‘ -+ correlated - 14D3 |

BER

Figure 4.8: Comparison of the dominating ETs of the cycli@€Tin correlated fading. BPSK modula-
tion; nr = ng = 4;

Fig. 4.8 the red solid lines are the PEP vs. SNR for ETs thaimkeat high SNR (ET8 for uncorrelated,
ET12 for 1D3, ET9 for 14D3). The blue dashed curves are the \RERBSNR for ETs that dominate at
medium SNR (ET1 for uncorrelated, ET1 for 1D3, ET2 for 14DBhis curves are plotted for several
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correlation types: uncorrelated-marker), 1D3 ¢-marker) and 14D3--marker). Interestingly, the
effect of correlation is different for different ETs. Foretlcorrelation type 1D3 the shift towards higher
SNR for the ET that dominates at high SNR is larger than forBfid¢hat dominates at medium SNR.
The ET dominating at medium SNR is shifted by approximatel SNR but the high SNR dominating
ET is shifted by almost 7dB. Thus, the flattening of the BERSMNR curve occurs already at high BER
values. For the correlation type 14D3 both ETs are shiftqutaqimately by the same amount: 5dB
for the ET dominating at medium SNR, and 7.5dB for the ET dating at high SNR. Therefore, the
flattening out of the BER curve occurs at lower BER values foacorrelation type 1D3.

Note, that the performance of the ETs dominating at mediurR Siteriorates proportionally to the
amount of correlation, whereas the performance loss of Treed&minating at high SNR is almost equal.
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4.2.5.2 Extended Alamouti Code

In this section, | will discuss the performance of the EA cdééined in Egn. (4.10) witkzp = 4 and
ny = 4 using QPSK modulation. As already explained in the previexemple (cyclic code) the per-
formance of the code (the shape of the BER vs. SNR curve) carfdained by means of the ET table.
For this reason, | have analyzed #fe= 65536 possible distance matrice$;; and the corresponding
sets of eigenvalues. Due to the structure of the code andgherrmodulation format, there are all to-
gether only 20 different sets of eigenvalues (ETs) listethible 4.2, wherg, is the number of crossover
events leading to a certain ET ang g, is the corresponding number of different information biiete
that the minimum rank is 2 (only 2 non-zero eigenvalues),timstrank deficiencies (full rank is 4) are
very seldom (only 2080 crossover events corresponding & ET9, ET17 and ET20 out of all possible
65536 crossover events have rank 2).

LETR [AD [N IXY [N ] e [ nsms |

k 0 0 0 0 256 0
1 2 2 2 2 2048 1
2 4 4 4 4 6144 2
3 6 6 6 6 8192 3
4 8 8 8 8 4864 4
5 8 8 0 0 1024 2
6 10 | 10 2 2 6144 3
7 12 | 12 4 4 | 12288 4
8 14 | 14 6 6 8192 5
9 16 | 16 0 0 768 4
10 18 | 18 2 2 3072 5
11 20 | 20 4 4 3072 6
12 10 | 10 | 10 | 10 | 3072 5
13 12 | 12 | 12 | 12 | 3072 6
14 16 | 16 8 8 768 6
15 18 | 18 | 10 | 10 | 1536 7
16 16 | 16 | 16 | 16 96 8
17 24 | 24 0 0 256 6
18 26 | 26 2 2 512 7
19 24 | 24 8 8 128 8
20 32 | 32 0 0 32 8

Table 4.2: ET table for the Extended Alamouti STBC. QPSK ntaiiton; n = 4; uncorrelated fading.

According to Sec. 4.2, we can calculate a tight union bouritth tle aid of the ET table. In Fig. 4.9 the
simulated BER vs. SNR performance (dashed red curve) is amdwith this union bound (solid blue
curve). Here we can see, that the bound is tight for BER vaetsv10—3. A diversity order of almost
8 shows up at high SNR.

Focusing on the ET table, we can see that there are two ddngriats. As we already know, the product
of the non-zero eigenvalues determines the horizontatipnsif the BER vs. SNR curve (remember
design rule of Eqgn. (4.22); high SNR approximation Eqn.4%#&nd Eqgn. (4.69)). Considering first the
ETs with full rank, ET1 has the smallest product of eigengaland thus will strongly contribute to the
total BER performance. For the rank 2 ETs, ET5 has the smadlgenvalues and therefore has the
strongest influence on the BER. Focusing on these two domingil's (ET1 and ET5), we can see how
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Figure 4.9: BER vs. SNR performance for the Extended Alam®UBC. QPSK modulationnr =
ngr = 4; uncorrelated MIMO channels.

this BER performance in Fig. 4.9 evolves. The BER contringidue to the 2 dominating ETs and the
resulting union bound are shown in Fig. 4.10. ET1 dominateselium SNR whereas ET5 dominates
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Figure 4.10: Influence of the dominating ETs on the BER vs. $HRormance of the Extended Alam-
outi STBC. QPSK modulatiom = nr = 4; uncorrelated MIMO channels.

the BER performance at high SNR. The resulting slope of thR B&ve stems from the superposition
of the BER contributions of ET1 and ET5. The ultimate slopeasponding to diversity.g rmin = 8
only is achieved in the limit of SNR oco. In fact, this slope would only be visible at BER values of
10~'? and below.

In Fig. 4.11 the simulation results (dashed red curves)utten bounds (solid blue curves) and the high
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SNR approximation (dashed-dotted black curves) accorttirgec. 4.2.3 for several correlation types
are shown. The spatial correlation types are: uncorrel@gtedarker), 1D3 ¢-marker) and 14D3+-
marker). For these correlation types too, the union bounelgjaite tight for BER values below) 3.

m“i

BER

|| =& uncorrelated
-@ - correlated - 1D3
-+ correlated — 14D3

-4 -2 0 2 10 12 14 16

4 6 8
SNR /dB
Figure 4.11: BER vs. SNR performance of the Extended Alam®TGBC. QPSK modulationp; =

ngr = 4; several correlation types.

The slopes of the BER vs. SNR curves in the practical SNR rangelifferent for different correlation
types, but for really high SNR (high SNR approximations) va@ see that the slope of the curves are
equal. Therefore, we can conclude that the diversity oslegir,,;, = 8 irrespective of the correlation
type. Additionally we can determine a so-called power lassoeding to Egn. (4.80). For correlation
type 1D3 we observe an SNR loss of 2.81dB and for 14D3 we obse#v91dB loss.

Fig. 4.12 shows how the union bounds are assembled by thendting ETs (a.) for 1D3 and b.) for
14D3). Note, that for correlated MIMO channels the ET talaesdifferent. The main point is that in
case of correlated channels the eigenvalues of the mat(&qn. (4.57)) are essential, instead of the
eigenvalues of the code word distance mafix For each correlation type we get a different ET table.
Due to the hugeness of these tables they are not listed hiasendt really relevant, which ET-number
k is used, but to show a correspondence to the uncorrelatedveasise the same ET-numbers. For
correlated channels we again number the ET dominating &t 8dR also by ET5 (although ET5 is
nowhere specified). In Fig. 4.12 we show how the dominating &E influenced by spatial correlation.
It can be seen why the slope is betweepnr = 16 (ET1) andr,,;, ng = 8 (ET5). ET5 becomes
dominant at very low BER values and therefore for practigatems ET5 is not relevant. Itis interesting
to note that the high SNR dominating ET (ET5) for the EA codeddntrast to the cyclic code) has
not much influence on the data transmission in the range ofipadly relevant SNR values (in spatially
correlated and uncorrelated channels).

In Fig. 4.13 the red solid lines show the PEP vs. SNR for ETsdbainate at high SNR (ET5) and
the blue dashed curves show the PEP vs. SNR for ETs that d@rahanedium SNR (ET1). These
curves are plotted for several correlation types: uncateel (\-marker), 1D3 ¢-marker) and 14D3«-
marker). Note that the power loss for different ETs is ddfer i.e., focusing on Fig. 4.13 it can be
seen that the curves for ET1 are almost equidistant. In ashtthe curves corresponding to ET5 do not
show this property. Comparing the correlation type 1D3 il uncorrelated case, it can be seen that
the power loss regarding ET5 is essentially higher than tveep loss regarding ET1. Comparing the
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Figure 4.12: Influence of the dominating ETs on the BER vs. $HRormance of the Extended Alam-

outi STBC in correlated fading. QPSK modulationj = nr = 4; a.) correlation type 1D3. b.)
correlation type 14D3.
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correlation type 14D3 with 1D3, it can be seen that the loganding ET5 is essentially smaller than the
loss regarding ET1.
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Figure 4.13: Comparison of the dominating ETs of the Extdnéliamouti STBC in correlated fading.
QPSK modulationnr = ng = 4;
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4.2.5.3 Specific Orthogonal Code

In the following | will discuss the performance of a specifithmgonal STBC defined in Eqn. (4.8) using
4 transmit antennas. First we focus on all possible crogssexents in order to find the ET table. The
result is listed in Table 4.3, where we can see that thererdyded's with full rank and equal eigenvalues,
as itis typical for all orthogonal codes defined in Def. 4flis the number of crossover events leading to

LETR AP [N [P [N ] £ [ msme |

k 0 0 0 0 64 0
1 2 2 2 2 384 1
2 4 4 4 4 960 2
3 6 6 6 6 | 1280 3
4 8 8 8 8 960 4
5 10 | 10 | 10 | 10 | 384 5
6 12 | 12 | 12 | 12 64 6

Table 4.3: ET-table for the specific orthogonal STBC. QPSKluafation;n = 4; uncorrelated fading.

a certain ET ana.gg . is the corresponding number of different information b&ts.it can be seen from
the ET table, there is only one dominating ET, namely ET1 withsmallest eigenvalue\él) = 2. This
is one specialty of orthogonal codes, that it can be chaiaetefully by only one ET. This is contrary to
the previously discussed STBCs.

In Fig. 4.14 simulation results (dashed red curve), the umtiound (solid blue curve), the high SNR
approximation (green solid curve) and the performanceefldminating ET (black dashed-dotted curve)
are compared. The union bound is tight for low BER valueg fix all code examples considered up

10°

— high SNR approximation
-10| | = union bound

- - simulation

== ET1

4 6 8 10 12 14
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Figure 4.14: BER vs. SNR performance of a specific orthog8i&C. QPSK modulatiomr = ng =
4; uncorrelated MIMO channels.

to now. The performance of the dominating ET coincides withéxact performance. Due to the high
diversity degree, the slope of the high SNR approximatiorery steep and the exact performance or the
union bound only shows this slope at very low BER values, Wigmot visible here.
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The influence of spatial correlation is shown in Fig. 4.15.e @ashed red curves show the simulated
performance, the solid blue curves are the union boundshendashed dotted black curves are the high
SNR approximations. The spatial correlation types areouptated £-marker), 1D3 ¢-marker) and
14D3 (+-marker). The union bounds are tight for BER values bel6w?, also for the spatially corre-
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Figure 4.15: BER vs. SNR performance of the Extended Alaim®UBC. QPSK modulationpr =
ng = 4; several correlation types.

lated case. The high SNR approximations show that there iiveosity loss due to spatial correlation.
Correlation only leads to a shift of the BER vs. SNR curvesrasponding to some power loss. The
power loss for scenario 1D3 is 2.98dB and 5.45dB for sceriatios.

The performance of the dominating ET is compared to the ubmmd and the simulation result in

Fig. 4.16. The performance of the dominating ET coincidek ttie exact performance, also for spatially
correlated channels.
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Figure 4.16: Influence of the dominating ETs on the BER vs. $dRormance of a specific orthogonal

STBC in correlated fading. QPSK modulationj = ng = 4; a.) correlation type 1D3. b.) correlation
type 14D3.
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4.25.4 D-STTD Code

The last code discussed in this thesis is the D-STTD schemktfansmit antennas witRg = 2 infor-
mation symbols per time slot defined in Egn. (4.11). Startinge again with the ET table (Table 4.4),
we can see that all ETs have only rank 2. Therefore, therelysame dominating ET, that is ET1, due
to its small eigenvalues. Herg, is the number of crossover events leading to a certain ETafig; is

LETR [ A [ [N [P [ i [ noee |

k 0 0 0 0 256 0
1 2 2 0 0 2048 1
2 4 4 0 0 7168 2
3 6 6 0 0 | 14336 3
4 8 8 0 0 | 17920, 4
5 10 | 10 0 0 | 14336 5
6 12 | 12 0 0 7168 6
7 14 | 14 0 0 2048 7
8 16 | 16 0 0 256 8

Table 4.4: ET-table for the D-STTD code. QPSK modulatiop;= 4; uncorrelated fading.

the number of different information bits. In Fig. 4.17 thesiation results (dashed red curve), the union
bound (solid blue curve), the high SNR approximation (greaid curve) for the BER vs. SNR perfor-
mance and the performance of the dominating ET (black dadb&tdd curve) are compared. The union
bound is tight for BER values dfo—2 and below. The dominating ET approximates the performance
quite well.
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Figure 4.17: BER vs. SNR performance of the D-STTD code. QR&idulation;nr = ng = 4;

uncorrelated MIMO channels.

In Fig. 4.18 the simulated BER vs. SNR performance (dasheédaueves), the tight union bounds for
the BER vs. SNR performance (solid blue curves) and the higR Spproximation for the BER vs.
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SNR performance (dashed-dotted black curves) for D-STTiedar = ng = 4) utilizing QPSK
modulation are shown. Several spatial correlation typescansidered: uncorrelated-(arker), 1D3
(o-marker) and 14D3+«-marker) . The union bounds are also very tight for spatiedigrelated channels.
The high SNR approximation indicates identical slopes foc@relation scenarios. The power losses
are 2.37dB and 4.59dB for the scenarios 1D3 and 14D3, régpkgct
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Figure 4.18: BER vs. SNR performance of the D-STTD code. QR®HKulation;n; = ng = 4; several
correlation types.

In Fig. 4.19 the dominating ET for the correlation types 1D®l 44D3 are shown. One interesting
observation is that the dominating ET is not that tight adtieruncorrelated case.
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Figure 4.19: Influence of the dominating ETs on the BER vs. $éRormance of the D-STTD in
correlated fading. QPSK modulation; = nr = 4; a.) correlation type 1D3. b.) correlation type
14D3.
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4.2.6 Optimal Precoding

In the preceding section it has been shown that the BER peaface of the system degrades, if the
MIMO channel is spatially correlated. This loss can be difiadt by the diversity losd.p, and even
more appropriate by the power logg defined in Sec. 4.2.3. In order to mitigate the detrimentalcef

of spatial correlation, a linear precoding matflxcan be introduced at the transmitter. Then, the resulting
system model can be described by

y = HFS +n (4.81)

With this modification of the transmit signal, the mat#y ; defined in Eqn. (4.57) can be redefined as:

1/2 A 1/2
Z:;(F) =D/>U} A;,;(F)U;, DY’ (4.82)
where A; ;(F)=diag(FA; ;F? FA,; ;F7 . FA; ;F7). Note thatZ; ;(F) not only depends off, but
also on the distance matriX; ;. In principle,F can be optimized for each; ;1°. Obviously, improving
the PEP vs. SNR performance for one specHic by a specific precodeF, can lead to a worse per-
formance of the PEP corresponding to other distance matAgdl = 1,2, ...,ngr;l # k). Thus, an
optimization ofF for one specific ET does not make sense. The optimal soludaroaoly be found by
taking into account all distance matrices (all ETs). Thus have to find a cost function, which includes
all ETs.

In contrast to the approach in this thesis, in [55] the agloncentrate only on the distance matrix that
leads to the minimum distance. This is in general not the Mgly, as explained above. Fortunately, the
authors of [55] apply this precoder only to orthogonal codgsere the optimization of the ET corre-
sponding to the minimum distance, does not degrade therpsfe of the remaining ETs. However,
in general this is not true.

In order to find a performance measure, which takes into axtdte overall performance and can be
used to solve the entire optimization problem, | define a gaized power loss parameter according to
Eqn. (4.80):

(nnz;) d%.i.d. T
Wnnz,
wherer; = nyz,/ngr andd;, , . is the effective distance representing all ETs with repin the i.i.d.
case:
1
&g = . (4.84)

NET r;
rimn w

& @0
neTr; 1S the number of ETs with rank. For example, for the cyclic code ang= 2, ngr,, = 2 (see
Tab. 4.1).d%,V nyz 1S the effective distance representing all ETs witlyz, non-zero eigenvalues in the
correlated case:

1
dz = 4.85
Wnnz, NET NZ, ’ ( )
Nzl Y g
k=1 (d%[/k Cg\]f)z) '

wherengr N z; IS the number of ETs, which havey z, non zero eigenvalues. For example, for the cyclic
code anthyz, = 8, ngrnz, = 3 (see Tab. C.1 or Tab. C.2).

19n the following I will focus on ETs instead of crossover etggras it is often done in this thesis, and thus the inéx
used instead dof, j.
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With these definitions all ETs corresponding to a specifipesl@yz,) of the PEP curve can be charac-

terized by a single number, namely the power lﬁgs”i). In order to find a single measure assessing
the entire performance, | simple sum up all power losses;lwtasults in the overall power logss 4;:

npr

Lpa(F) = 32 LY (F) (4.86)

wherenpy, is the number of different power losses or slopes of PEP v& 8MNves for the code under
investigation (e.gnpr, = 4 for the cyclic code).

At this point | want to explain what the overall power loss Sapout the cyclic code in correlated
channels. The PEP vs. SNR curves of the ETs of the cyclic chdessonly four different slopes,
namely 4,8,12 and 16 BER decades / 10dB SNR. SummarizingeRs Rith slope 4 for the i.i.d. and
the correlated channel and calculating the SNR differemteden these curves leads to the power loss
for the ETs with slope 4. This is also done for 8,12 and 16. Terall power loss is thus the sum over
all SNR shifts between the i.i.d. and the correlated chanfegrefore, it shows somehow the potential
of improvement, if the overall power loss is zero, the i.pdrformance is achieved.

Note that the total power los¥ (F') does not say much about the performance of the entire sybtém,
it is merely used in the following as a cost function for théimization problem. The “optimal” prefilter
can be found be solving the following minimization problem:

nprL
Fopy = argmin { > LY NZ")(F)} — argmin { M (F)} (4.87)
7
with the side constraint:
tr (Fﬁ,tFopt) =nr . (4.88)

This constraint ensures that the precoding matrix doesmuaiduce any power gain. WitR,,; the
individual power losses are jointly optimized. Note, thaEign. (4.87) all power losses are considered to
be equally important. This is an ad hoc approach and therbtrh&chances for further improvements.

Unfortunately, this minimization problem has to be solveddach type of code separately. Therefore,
in the following | will illustrate the main results for the cljc code utilizing a 4«4 MIMO system
with BPSK modulation. For this system and for the spatiakelation scenario 14D3, the ETs and
their corresponding key-parameters are listed in the Tah. @W/ith the knowledge of the ETs and the
corresponding key-parameters, the minimization problambe written as:

Fopt = argmin {LP®) + LD ®) + LG? (F) + LLV @)} = argmin { M (F)} (4.89)

with the side constraint
tr (FHF) —4. (4.90)

The above stated optimization problem can be solved by thgaloge multiplier technique [43] by
solving the following equations:

G(F,)) = M(F)+/\-tr(FHF)
OG(F, \)
OF
OG(F, \)
E))

0 (4.91)

= 0
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Unfortunately, the problem is too complex to be solved diwdily. Therefore, | have solved it numeri-
cally by using a gradient algorithm, which is explained ia following: In the first step a prefilter matrix
F is chosen randomly. Then the gradient is approximatelyutatied by:

OM(F)  AM(F)
OF ~ AF

In order to approach the minimum, a small step towards the negative gradient is performed:

(4.92)

AM(F)
AF

Then the matrid¥;; is normalized such that the side constraint (power norragdia) is fulfilled. Then
the next iteration starts and the gradient of the updatedixnBt; is calculated and so on. Going
through enough iteration steps, the algorithm approachessabminimum. Actually, we want to find the
global minimum and therefore the iteration algorithm hasrbepeated 500 times, i.e., 500 random start
values ofF have been chosen arbitrarily. In this way, it can be assuimatdthe probability of finding
the global minimum is quite high. The surprising result ¢ tiptimum search with 500 random start
values is that always the same minimum is found. Therefocenjecture that | have found the global
optimum!

Fip1=F; —Ag (4.93)

Applying the optimum prefilter in data transmission simiglas lead to the results shown in Fig. 4.20.
Here, the black curve corresponds to spatially uncorreléding, the blue curve corresponds to the
correlation scenario 14D3 without precoding and the regdecgprresponds to the correlation scenario
14D3 with optimal precoding. The interesting result is tinahe low SNR regime the precoded MIMO

— without precoding
—— optimal precoding
— i.i.d.

-2

10 "k

BER

107°

10 'k

107
-4 -2 0

2 4 6 8 10
SNR / dB

Figure 4.20: BER vs. SNR performance for the precoded c¥liB coded system. BPSK modulation;
nt = ng = 4; correlation scenario 14D3; medium SNR.

system performs even slightly better in spatially coredathannels than the system works without
precoding and operating on uncorrelated channels. In tie BNR domain the i.i.d. performance is
better than the performance of the precoded system in atetethannels. Assessing the performance
difference by a single number is not really reasonable, dube peculiar shape of the BER vs. SNR
curves. In Fig. 4.20 an SNR improvement of roughly 2 dB dué&dptimal precoder can be seen. In
Fig. 4.21 the black curve corresponds to spatially uncateel fading, the blue curve corresponds to the
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— without precoding
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Figure 4.21: BER vs. SNR performance for the precoded c®TBC. BPSK modulationpr = np =

4; correlation scenario 14D3; high SNR.

correlation scenario 14D3 without precoding and the redecgorresponds to the correlation scenario
14D3 with optimal precoding. Considering the union bourtagn| (4.62)) shown in Fig. 4.21 at very
high SNR, a small power loss of 0.5dB compared to the unaigelcase is visible, which results from
the power loss for the ETs with slope foﬂﬁf) (Fopt), Which is 0.9dB. Note, that a different weighting
of the different power losses in Eqn. (4.89), can help to ouprthe optimization in different SNR
regions. For example, if the goal is to improve the BER at Id0WRSthe power loss for the slope 16 ETs
ngm)(Fopt) should be weighted more. The curves shown in Fig. 4.22 havétlowing meaning: The

-A - jid.
- -© - optimal precoding
+< o -+ - without precoding

Figure 4.22: Dominating ETs for the precoded cyclic STBCSBRnodulation;n = nr = 4; correla-
tion scenario 14D3.
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red solid lines are the PEP vs. SNR for ETs that dominate &t 8)dR. The blue dashed curves are the
PEP vs. SNR for ETs that dominate at medium SNR. The curvegnfoorrelated channels are labeled
by a-marker, the curves for correlated channels (14D3) anangbtprecoding are labeled by-(arker)
and the curves for correlated channels (14D3) without miecpare labeled by-marker). In Fig. 4.22,

it can be seen that the dominating ET at high SNR (red curvy eptimal precoding is almost equal
with the corresponding ET for the i.i.d. case. Thus, withpees$ to high SNR the improvement due
to precoding is quite substantial. The improvement of thedBminating at low SNR is not that large,
but nevertheless a remarkable improvement of the overaR B&formance due to precoding is visible.
As stated above, for practical systems it would be bettemptonize for low SNR, i.e., to weight the

L%G) (Fopt) more. | have shown here the principle way of finding optimaicading filters for general

space time block coded systems, but finding solutions fociap8NR domains is beyond the scope of
the current thesis.
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4.3 Lower Bound for the BER in case of STB coded MIMO System

In Sec. 4.2 a tight union bound for the BER for space-time lbloaded transmission is calculated.
Inspired by the so-called Nearest Neighbor ApproximatidhA) [27] used for the BER calculation in
Additive White Gaussian Noise (AWGN) and Single Input Sen@utput (SISO) channels, we derive
now a Minimum Distance Lower Bound (MDLB) for the case of spdime coded MIMO systems.

4.3.1 Nearest Neighbor Approximation
In the following we discuss the properties of the NNA for tH8S-AWGN case [27]. In the remaining
sections the generalization for the space time block cade$mission in MIMO systems is presented.

Let's assume a very simple system model using an AWGN chghnel1):
y=s+n, (4.94)

wherey is the receive symbok is the transmit symbol andlis the complex Gaussian distributed channel
noise with zero mean and varianeg.

The best way of clarifying important BER-properties is tmsioler an illustrative example. To do so, we
focus on a quite general, complex modulation format, nari6l AM. The modulation signal constel-
lation is shown in Fig. 4.23 (bit to symbol mapping is done Wgray code).

Im{s} A

s, s, s, S,
0000 | 0010 | 1010 | 1000

Ss S, S, Sq
0001 | 0011 | 1011 | 1001  Re{s}

Sl ose | s | se
0101 | 0111 [ 1111 | 1101

§'\3 §1A §15 §]6
0100 | O110 | 1110 | 1100

Figure 4.23: Signal constellation map of a 16QAM modulafiarmat.

The exact Symbol Error Probability (SEP) can be written as:

Al A
Peg =) > P(si — s5) P(s;) . (4.95)
=
|A| is the size of the modulation alphab&ts; — s;) is the exact crossover probability ais;) is the
probability of transmittings;. In contrast, the NNA can be calculated in a much simpler way:

myy denotes the average number of nearest neighboring symbgis,is the distance between the
nearest neighbors and PEP is the pairwise error probahilitye that the PEP is not the exact crossover



76 4.3. LOWER BOUND FOR THE BER IN CASE OF STB CODED MIMO SYSTEM

probability, since it neglects the influence of the other Bgta and thus only two remaining symbols are
considered. This approximate crossover probability iswdated as if we would have BPSK modulation,

i.e., integrating over the entire opposite half plane.

Let’s focus on one specific symbol of the 16QAM map in orderttove that the NNA is a upper bound
for the SEPPg,. For the symbokg shown in Fig. 4.24 the exact symbol error probability is okdted
by taking into account all decision regions excluding theiglen region forsg.

Im{s} A
\/‘\h
s, S, S, S,
0000 | 0010 | 1010 | 1000

85 sb s7 SS
0001 | 0011 | 1011 | 1001 | Re{s}

S| ose | so | Se
0101 [ 0111 [ 1111 | 1101

Sis §14 fls Sie
0100 | O110 | 1110 | 1100
]

Figure 4.24: Decision regions for calculating the exact.SEP

In Fig. 4.25.a.) we can see the overlapping integrationsi@gecision regions) of the 16QAM modulation
and in Fig. 4.25.b.) the areas that are counted twice andthesponding number of bit errors are shown.
In the course of calculating NNA for the symbg] the integration areas are overlapping as shown in
Fig. 4.25.a.) and therefore some error probabilities aumtsa twice as shown in Fig. 4.25.b.). For this
reason the approximated SEP for the syn¥adk always larger than the exact symbol error probability.
This holds in a similar manner for all symbais (i=1,...,16) and therefore the NNA in fact is a upper
bound for the SEP. The simulated SEP vs. SNR performanceh@tNA for a uncoded transmission

Im{s;} Im{s}

: b.)
Figure 4.25: Overlapping integration areas for a 16QAM niation.

over a AWGN channel using 16QAM are compared in Fig. 4.26.i¢n £26 we can see that the NNA
is indeed a upper bound for the SEP for the entire SNR ranghdéaexample of 1L6QAM modulation.
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Figure 4.26: SEP vs. SNR performance for uncoded transmnis8WGN channel; 16QAM modulation.

Now let's focus on BERs. The exact BER can be calculated as:

Al 4
BER= Y} BELI o (an 56 = 50) Pls) (4.97)
i=1 j=1 IOgQ |~A|
J#i

ngEi,; IS the number of bit errors corresponding to the crossoventay — s;. The NNA for the BER
is:
1

BER > nNN|092(|A|) PERdmin) - (4.98)
Due to the Gray mapping the number of bit errors correspgntbnnearest neighbor symbols is one
and thus we have 1 over lpg.A|) in the above equation. Consider once again Fig. 4.25.b.JneSo
decision regions are counted twice. Keeping in mind thattierexact calculation some regions have
to be weighted by 2, 3 or 4, due to the distinct numbers of bitrer the NNA, which counts some
regions twice underestimates the BER in the case of morezlwrerrors per symbol error. The region
corresponding te; is counted twice by the NNA, which is also done using the egaldulation, because
of the two bit errors. The region correspondingsias counted twice by the NNA, but is weighted by the
factor 3 using the exact calculation, because of three tuit®r This underestimation holds for all regions
and for all symbols; (:=1,...,16). Therefore the NNA is a lower bound for the BERe Ehmulated BER
vs. SNR performance and the NNA for an uncoded transmissienaAWGN channel using 16QAM
are compared in Fig. 4.27. In Fig. 4.27 we can see that the MNiAdieed a lower bound for the BER for
the entire SNR range for the example of 16QAM modulation.
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10 T T T I
— simulated
- = NNA

10_4 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
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Figure 4.27: BER vs. SNR performance for uncoded transanissAWGN channel; 16QAM modula-
tion.

Summary:

-) Nearest Neighbor Approximation is a upper bound for thalsyl error probability.
-) Nearest Neighbor Approximation is a lower bound for thiedlior ratio.
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4.3.2 Minimum Distance Lower Bound of the BER
4.3.2.1 Fundamentals

In this section | will generalize the NNA for the AWGN channdiscussed in Sec. 4.3.1, to the case
of space-time block coded transmission. Remember Eqr8)(4uwéhere we can see, which entities are
necessary to calculate the NNA. These entitiestafe, 1/l0g,(|.A|) (which represents the number of
erroneous bits divided by the number of transmitted bitssgerbol) andd,,,;,, .

First, | will focus on the principle of calculating the MDLBd afterwards | will show a simple example
toillustrate the general theory. By applying this concegiitMO systems, the following problem comes
up: The distances between space time block code words cliamg the distortion introduced by the
MIMO channel matrix. More details of MIMO distance propegihave been discussed in Sec. 4.1.3.1.
The main point of Sec. 4.1.3.1 is that the smallest / largssamnce at the transmitter (without channel
influence) isnot necessarily the smallest / largest distance at the recg@inttr channel influence). l.e.,
theDistance Proportion Preservation Propertipes not hold. For this reason we do not know the nearest
neighbors at the receiver beforehand. Therefore, we hdugdtthe minimum distance at the receiver out
of all crossover events. For this minimum distance crossevent, the error probability is calculated.
This error probability is weighted with the correspondingmber of crossover events, which have this
minimum distance (equivalent to the number of nearest heig) and the corresponding number of bit
errors.

To concretize these ideas about finding a generalizatidrediNA of the AWGN channel to a space-time
block coded MIMO system, we have to refresh the Error Type) @hcept introduced in Def. 3.1. We
know that there are several ETs contributing to the BER pevdmce. An ET is specified by the distance,
the number of bit errors and the frequency of these crossexamts corresponding to the number of
nearest neighbors. For the generalization of the NNA we tavimd the minimum distancd?,;,, out

of the ngr (number of error types) distancd%. Actually, we want to know the PDEdi‘cp:dz - of
the minimum distance resulting from a certain ET, in ordesaizulate an average error probabi -
Additionally, we have to know, which ET leads to the minimuistance (in order to do the accurate
weighting) and the probabilitf’di:dgnm of the case that the minimum distance results from a certéin E
with numberk. According to the above explanations the MDLB for the BER bartalculated as:

nNET
; fx NBEk
BER > Pe Pp_ with = . 4.99
= kglwk Ex d%_dgnm W ‘A|’n15 Id(lADn[S ( )

Remember thaf; is the frequency of crossover events, which correspond to, g, is the corre-
sponding number of bit errors,;s is the number of independent symbols contained in a spame-ti
block code word an¢l4| denotes the size of the modulation format.

The corresponding average error probabilify, can be calculated by averaging over all distanées

that are equal ta?
P, 2/0 Q (y/%) Pa2az=az,,, (£)dE . (4.100)

min:
The probability of havingi; = d?,,,, can be calculated as

men

o
Py, = [ pga-a, O, (4.101)
where P s
d2,d2=d2 .

min
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In this way we can adapt the NNA to the MDLB for space-time klooded transmission.

Next, | want to present an illustrative way back from the MDid MIMO systems to the NNA for
SISO systems. Remember that we know beforehand, that in#@ the nearest neighbors always have
the same minimum distance and that the number of differésicbiresponding to the nearest neighbors
is one (due to Gray mapping). Equivalently, we can say thahyd the same ET corresponding to the
nearest neighbor crossover event leads to the minimumndista.e., the distances of other crossover
events corresponding to other ETs are always larger. Toverethe probability that the minimum dis-
tance comes form the ET corresponding to nearest neighbesaver events is 1 and thus the BER is
equal to the NNA of Eqn. (4.98):

nNEgT
1
BER> Y wy Pe, Pp_pp = wy Ps, = ainy————PERdmin) - (4.103)
kgl b = min : log, (JA)

Example: Cyclic Code

The strategy how to calculate the MDLB according to Eqn.@esented above is probably not quite
obvious. Therefore | want to explain the essential stepaltutate the MDLB in more detail by means of
an example in a slightly different way. Note that for the cédtion of the MDLB for this example we go
an alternative way compared to the strategy explained adodelo not apply the results obtained above.
Going this alternative way, it becomes more clear that theLBefined above is a generalization of
the NNA. Additionally the alternative strategy allows usvrify the general expression in Eqn. (4.99).
To keep matters as simple as possible the cyclic STBC withrsinit antennas and one receive antenna
using BPSK modulation is considered in the following exaenpl

The code words of this cyclic STBC are defined as:

S = ( 5152 ) . (4.104)

So S

For the different code word matric8g, S; we can calculated the difference matri@&g and the distance
matricesA;; (Eqn. (4.1)). As already mentioned in Sec. 4.2 the eigergabf the distances matrices
A;; determine the BER performance. Therefore, we analyze gfiab8ible distances matricds;; to
find the error type table. Due to the specific structure of thdecand the modulation format, there are
only 3 different Error Types (ET). The corresponding keyapaeters are listed in Tab.4.5. Note that the
number of different information bits is denoted by, and the number of crossover events leading to
a certain ET is denoted bff,. Note that in contrast to the union bound calculation in ez the order

LETR [ XY [ 287 | fi [ noes |

k 0 0 4 0
1 4 4 8 1
2 16 0 2 2
3 0 16 | 2 2

Table 4.5: ET table for the cyclic STBC. BPSK modulatian; = 2.

of the eigenvalues is now in general of importance for thewation of the PDFs of the distances and
therefore we have to distinguish between ET2 and ET3. Ttsoreahy we have to distinguish ET2 and
ET3 becomes more clear following the explanation regardirgdistance calculation (Eqn. (4.120)).
For the union bound ET2 and ET3 in Tab.4.5 would be summatzeshe ET with the sum frequency

f'=fat fs.
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Using this code S, defined in Eqn. (4.104), the receive vactan be calculated with:

(y1 y2)=<h11 h12)<2 Z?)—i—(nl ng). (4.105)
N y -~

v ~

e N e’
yT hT 4 nT

An equivalent description is:

Y1 hi1  hio 51 ny
= + . 4.106
<y2> <h12 h11><82> <n2> ( )
———r \._I_\I,_/\“,_/ ~————’
y v S n

In vector-matrix notation the above equations can be wriis
y=Hy,s+n, (4.107)

whereH,, is called the virtual channel matrix, which depends on ttenakel and on the code! Eqgn. (4.107)
essentially describes an equivalent virtual MIMO systeimaihighly structured (2) MIMO channel.

As already shown in Sec. 3 it is possible to visualize the sjinabnstellation at the transmittef®
and at the receiver With%) = H,s(® by using real valued channel matrix entries. This simplifiza

is only introduced for reasons of visualizing. The caldola performed in the following (beginning
with Eqgn. (4.108)) are obviously also valid for complex \educhannel matrix entries. Fig. 4.28 shows
all 4 possible code words of the example c&&léom Eqn. (4.104). Where the four possible symbol

2

15 4
<@ NE)
1r + +
0.5
—N
n 0
-0.5
-1 + +
s® s@
_1.5,

_2 i i i i i i
-2 -15 -1 -05 0 0.5 1 15 2

Figure 4.28: Signal constellation at the transmifék. cyclic STBC; BPSK modulation;

vectors ars() = (=1 —1)T,s® = (1 - 1)7,s®) = (11)T ands® = (-1 1)”. [s], means the-th
component of vectos. Therefore, the horizontal axis in Fig. 4.28 correspondh¢obinary symbok,
and the vertical axis in Fig. 4.28 to the binary symbsl

Due to the multiplication of the symbol vectos§) with the virtual channel matrif, the symbol

constellation is distorted by the transmission. An exanfiglex symbol constellation at the receiver can
be seen in Fig. 4.29. In this example the symbols are stradigtgrted by a specific channel matrix. The
symbols labeled by “+” are the symbols at the transmiterand the corresponding symbols labeled

by “o” are the symbols at the receive%). The colors denote the relationship, i.e., for example #uk r
symbol labeled by “+” belongs to the red symbol labeled &% “
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Figure 4.29: Signal distortion according b, : sg) = H,;s%. cyclic STBC; BPSK modulation.

Note that we already distinguished 3 different ETs. Foausin this symbol constellation it is also
possible to identify 3 different ETs, which correspond teethdifferent distances. These three distances
are shown in Fig. 4.30. As it has already been explained irgdreeral part of this section, we are

2

15F @)
@ °R
(S
1t R
d
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Figure 4.30: Three relevant symbol distances at the recaiyelic STBC; BPSK modulatiorL,; .

only interested in the minimum distandg,;,, crossover event. Due to the channel distortion all, out
of the three distances can become the minimum distance diegeon the specific channel realization.
Therefore it is necessary to distinguish three differesesanamelyd; = dpin, do = dpin O d3 =

dmz'n .

In the following we derive lower bounds for the conditiondEBs for the three different cases. Then
the BERs conditioned on the channel matrix are averagedregbect to all channels, which fulfill the
conditiond; = d,,;,. Afterwards, the total probability theorem is used to metgethree average lower
bounds for the BER together to get one overall lower boundhferaverage BER.

Starting with the first case, namely = d,.;,,, this is the case for a certain channel vedipror equiv-
alently a certain virtual channel matrid,;. The symbol constellation for this case can be seen in
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Fig.4.31.a.). Now let’'s derive a modified version of the NNgkined in Sec. 4.3.1. The modification

2 2 2

2
s s®
15 " s® 15 OP 15 o R
s
1 R ° 1 1
4

05 05 5@ 05 Sg)

o~ d1:dmin d =d R O, =
~ - 2~ %min - DN
Lo & oo &0 \)
-05 -0.5 (1) -05 )
Sq Sr
©
-1 s;) -1 <@ -1
N R
-15 ‘ S(R) -15 ; ° 15 05(3)
R
% s 05 0. 05 1 15 2 S 15 -1 05 0 05 1 15 2 % s 1 -5 0. 05 1 15 2
[sgh [sgly [sgly
a.) b.) c.)

Figure 4.31: Minimum distancé,,;, for three different channel realization; al) = d,;, for Hy1, b.)
do = dpmin for Hyo, C.) d3 = dpun for Hys; cyclic STBC; BPSK modulation;

is, that not all nearest neighbors are considered, but dwiget nearest neighbors with the minimum
distance. Keeping this in mind we start calculating the lobaund for the BER (conditioned di):

B — NBE
BERIB(h) = vy 100, (1A] PERdmin) - (4.108)
At this point we have to determine the values for the unknoamablesd,,;, and7yy in the above
equation. Obviouslyd,.;,, is d; in this case. The second unknown variable, the average ruafbe
nearest neighborgy v, is also very easy to determine. Focusing on the symbol elhaisbn shown
in Fig.4.31.a.), we can see that all symbols have 2 nearggthas with minimum distance, therefore
nmnny = 2. The number of bit errors is 1 for this cross over event. Heweeget:

BERFB(h) = 2%PEF{d1) =Q ( dﬂh)) : (4.109)

2
205

This method is repeated for the case, when= d,,;, holds. Once again the modified NNA is used to
calculated the lower bound for the BER, where the unknowialsbes are determined with the aid of
Fig.4.31.b.). Obviously,,, is in this casel,. Focusing orsg) we can see only one nearest neighbor
with minimum distance. This nearest neighbor has two difiebits. The same holds for the symbol
sg’). For the symbolsg) and sg) all nearest neighbors appear at distances larger than thienom
distanceds. Thereforenyy =1/4(1+0+ 0+ 1) = 1/2 andnpg = 2. Thus we finally get:

12 1 d%(h)
BERZ(h) = ZZPE = 2 . 4.11
Ry¥(h) = 5 5 PERd,) 2Q( 20%) (4.110)
For the third and the last case, with = d,,,;,, Mmatters are quite similar to the second case and we get:
1 d3(h)
B _ - 3
BERVE(h) = 5Q ( 207 ) . (4.111)

As explained some paragraphs above, the lower bounds faotiditioned BERSs are averaged over all
channel realizationh for thatd; = d,,ip:

ﬁlsB = En|(dy=dmin) {BERﬁB(h)} — Wk AOO © (V %) Payay=d; ;, (§)de (4.112)
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wherew; = 1, we = 1/2 andws = 1/2. The last step for the calculation of the total lower bouie, t
so-called MDLB, is to use the total probability theorem:

S=sLB S=sLB —

BERwnLs = BER;” Ppr_p2  +BERy” Ppa_pp  +BER Pp_pp (4.113)
whereP;_ ;2 is the probability thaty; = d7,;, with respect to all channel realizations. The final result
can be written as:

3 00
BERwDLB = ) wk [/0 Q (\/ %) P2 d2=d2,, (5)035] Pp—g, (4.114)

k=1

Inserting the key-parameters of Tab. 4.5 in Eqn. (4.99), araecto the same result as above with the
same weightsuy, therefore this specific example verifies the general regudn in Eqn. (4.99). With
this simple example it becomes clear, that the MDLB is onlyeaeagalization of the well known NNA
and that in principle it is not too difficult to be found.

So far matters are fairly simple, but calculating the cqroesling PDFs of the distances is quite chal-

lenging. Asin Sec. 4.2, the distances and their statisiimgty depend on the channel model and thus in
the following spatially uncorrelated and correlated cl@@ame considered separately. The corresponding
calculations and explanations can be found in the follovgections.

In general, for the calculation of the MDLB it is not necegstr investigate the symbol constellation
as shown in the example above. The essential points forlatitay the MDLB can be summarized as
follows:

-) Find the ET table (ETs plus key-parameters).
-) Calculate the PDF of the distancq§2|di:d2

-) Calculate the corresponding probabilitid@b;]zc:dz .

-) Apply the total probability theorem: Eqn. (4.99).
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4.3.2.2 Spatially Uncorrelated Channels

In order to calculate the distances corresponding to @iffeETs, we have to adapt Eqn. (4.19) to end up
with Eqgn. (4.115). Here, we are no longer interested in aesevents but in ETs. Thus, the distance
corresponding to theth ET can be calculated as:

nR nRr
2 = h,B,BZh =Y " h . hZ? =5 " h,U,D; UfLnY
; kzl k kzl k z k kgl Ic. ¢ g Uy
A; U,D;UH h® @ H
13 k hk:
= 3 npn®" | A = SIRING 4.115
Z K ZZ => a'N, (4.115)
k=1 =1 k=1 =1

——

(2)
all

At this point the set of STBCs can be subdivided into two sets.

Code Set 1: STBCs corresponding to Code Set (CS) 1 are codes with thewioly property: The
eigenbasedJ; of the code word distance matricas for different ETs is the same. Consequently, the
random varlable&l( ") are also independent of the ETs and thy’% = oy holds. Representatives of CS1
are for example: orthogonal codes (for example the codeatefmEqQgn. (4.8)), the Extended Alamouti
code defined in Eqgn. (4.10) and the cyclic code defined in Zg8).(

Code Set 2:STBCs corresponding to CS2 are all codes that do not belofigiq i.e., the do not have
this advantageous property explained in the paragraph &l A representative of CS2 is for example
the D-STTD code Eqgn. (4.11).

In the following, | will show the calculation of the necesg&®DFs of the random variable& for the

general case and afterwards | will concentrate on the cgolite as a simple example. For the general
derivation the following is assumed: Regardless, which STi8 considered, always the property of
CS1 is assumed, i.e., it is assumed that the random variaﬁl)eare independent of the ET and thus

al(z) = oy holds. Because of this assumption no error is made for coelesiding to CS1. For codes
belonging to CS2 this assumption causes an error in thetireg#DF. In spite of the error in the PDF,
the resulting BER approximation is still a lower bound. Thads, because although in this case the
random variables for different ETs are different and thesrésulting minimum distance will be smaller
than with the assumption of CS1. Therefore, the BER in redithigher than using this assumption.
Hence, the BER in reality is larger than the calculated orek thos the resulting BER performance
approximation is still a lower bound.

Calculating the PDF of the distancesf; with d2 = d?

min*

As shown in Egn. (4.115), the distance of #¢h ET is a weighted function (a linear function @f) of

the random variables;. In the following we introduce the short notation for the glaied sum (linear
function of ;) given in Eqn. (4.115)d; = fi(a1, a2, ..., an,.). We know that the random variables
«; are independently? distributed with2 nr degrees of freedom. Hence, the joint PDF of the random
variablesa; to ay,, results in:

pa1,a2,---,anT (617 527 ERRS) €nT) = Pay (61) Pas (&2) '-'panT (fnT) (4116)

In order to calculate the PDF of the distant,{efrom the joint PDF of the random variables to «, .,
we have to bring the distane into play. The conditional PDF of the distandg can be calculated by
the aid of a linear PDF transformation according to the lifeaction f;, and the PDF ofy; 1*:

Pa2|as, ..oy (M€2: -+ €nr) = Tp {Pas (61)} (4.117)

Mt is not important, which random variabtg is used for the transformatior; is only an arbitrary choice
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Due to the independency of the random varialblgthe joint PDF of the random variablé$, a; to ay,,
reads as

Py (1621 nn) = P2l (1121 s ) Py (€2) - Pay () (4118)
= 7}19 {pal (51)} Pa, (&2) - Pon, (gnT) )

The desired PDF is obtained by averaging over the remaigingam variablesy; (I # 1). Note that
the integral is not over the entire domain of valid valuesdgro «,,,. ((a2,-..,an,.) plane), but only
over the regiorR; of the (g, ..., an,) plane wherel2 = d2,. . The regiorRy, is determined by using
the other linear functiond? = f;(a1, az, ..., any) With i # k, which are the distances corresponding to
the remaining ETs. Obviously, if there atig;r different ETs, there are alsog different distances and

ngr different linear functions defining these distances. Haehed®?DF can be calculated as:

Pa2 a2=a?

min

(7]) = /R pd%,QQ,---,anT (771 621 . fnT)de, . dfnT i (4119)
k

After showing the principal way of calculating the PDFs of tistancesl; with di = d2,,,, | want to
concretize this algorithm for the cyclic co®&defined in Eqn. (4.104) with two transmit antennas and

one receive antenna using BPSK modulation:
Example: Cyclic Code for two transmit antennas

Remember the ETs (Tab. 4.5) an the distance calculationrin @dL15). Accordingly, we can find three
distances corresponding to the three different ETs:

& = /\§1)a1+A§”a2=4a1 +4az = fi(a1, o)
d% = )\gl) a1 = 16 a1 = fQ(al,OZQ)
dg == )\gl) a9 = 16 Qo = fg(al, 042) (4.120)

Note that due to only one receive antenna, the random vesablare x? distributed with 2 degrees of
freedom:

Py (&) =€ % 0(8) (4.121)
whereo (¢;) denotes the Heaviside step function.

Starting with the calculation qf2 42_s2 (n), the joint PDF reads as:
P2, (M:62) = Tp {Pai (61)} Pas(é2) (4.122)
The PDF transform according 1 (Eqn. (4.120)) is a simple affine transformation:
& =4o1+4& (4.123)

therefore the conditional PDF of the distantfecan be expressed as PDFaf as:

i o 1162) = 370 (3~ €2) (4.124)

Accordingly the joint PDF reads as:

1 1 _pa_ _
P2 0, (M, 62) = 7P (Z - §2> Pay (§2) = 1€ /1=8)5(n/4 — &)e S 0(8) (4.125)
Before evaluating the integral in Egn. (4.119), we have td fime corresponding regioR, for that
d? = d? . is fulfilled.

min
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Forpg 42—q2 . the realizations offf andd3 must fulfill the conditiond} < d3 and thus we get:

46 +4& < 166
2 < 3& (4.126)

At this point the distance equatigf is inserted in Eqn. (4.126). Note that we focus on the retidiza
of the random variables (instead of the random variableserdfore, the functiorf; (regarding real-
izations) isp = 4& + 4¢&; instead ofd? = 4a; + 4a,. More concrete, we insety = 7 — & in

Eqn. (4.126):
& < 3 (— —52)

3
16 <
3n
4.127
& < 16 ( )

From the second conditiaff < d3 we get in the same way:

A
& > 16 (4.128)
Therefore the desired PDfzz 322 . (7)
1 3n/16 /4
Pz, ) = [ Papan(n.&2)de2 = ze /" [ " otnja - )o(e) des = S o)
min R 1 4 77/16

(4.129)
For the remaining two distance-PDRgg g2z = (7 )andpdz‘dz a2 (m), the calculation is very similar.
Therefore, the results of the two PDFs are shown in Eqn 04 48d Egn. (4.131) without going into
details.

The PDFp g g2_q2  (n) results in:

1 o0
Paz—a2. (1) = / P 0, (1, €2) dEo = —e /16 / e 820(n/16)0(£) déa = —e 4 o) ,
‘min Ro 27 16 3”/16
(4.130)
and
1 _ 00 _
P, )= [ Poaln e = e [~ Som/i6)o(e) e = s o).
‘min Rs 3 16 37]/16
(4.131)

Having calculated these PDFs, we proceed with the caloulaif the probabllltlessz —q2 . according
to Eqgn. (4.101):

R/ ) 1
Poce, = [ pag—e, o= [ L o= ;. (4.132)
min mzn 0
sz 22 —/ Pa3, 2= )dn:/ —e " o(n)dn = -, (4.133)
min mzn 0 16 4
1 4 1
P—g2 —/ Pa2,d2= )dn:/ —e M o(n)dn = — . (4.134)
min mzn O 16 4
With these probabilities the desired PDFs according to Eqa02) result in:
Pa2 g2—gq2
P dpmp, =~ min = L=/t () (4.135)

min Pd2 d2 1 6

min
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Pady=az, 1 _
P, = Py = 30" o) (4.136)
d2:dmin
Paa2=a2, 1 _
PRlE=t, = p. = 4C "o (n) (4.137)
dSdein

Knowing these PDFs we can calculate the average error pilibieabof the three ETs according to
Eqgn. (4.100):

Pe, = /0 Q (,/é) Pai@=a,, (Mdn :/0 Q (,/22%> 1%6‘"/40(77)

P /OOOQ< 222) ie"’/‘*o(n)dn _ (1—?”) , (4.138)
o0 1 1-—
o = [0 f5g) e o= (55). 159

with

1
o 4.140
= ( )

Now we are almost done. By applying the total probabilityotteen Eqn. (4.114) we obtain the final
results:

BERvpLE = éwk [/OOO Q (\/%) Pa?|2=d2 (f)d€] Pe—a . (4.141)
{5 [ () sy i { (5
=) e () ()

In Fig. (4.32) the calculated MDLB is compared to simulatiesults and the union bound calculated
according to the approach described in Sec. 4.2. As we carttee®DLB underestimates the BER
vs. SNR performance compared to the simulation result, visiconsidered here as the exact or true
BER-performance. The union bound for this example is tigtitan the MDLB. For other examples,
shown in Sec. 4.3.2.5, the MDLB becomes tighter or similgittto the simulation results as the union
bound. With the MDLB and the previously calculated union mbeEqn. (4.48), a two-sided bounding
of the true BER vs. SNR performance is possible. For the apease that both bounds are tight, as for
most examples analyzed in this thesis, we can even speéfgxhct performance, at least in the high
SNR domain.

|
—
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T
— union bound
- = simulation
— MDLB

0 5 10 15 20 2 30
SNR/dB

Figure 4.32: BER vs. SNR performance of the cyclic STBC. BRS¢dulation;nr = 2, ng = 1;
uncorrelated channels.

4.3.2.3 Spatially Correlated Channels

For spatially correlated channels the MDLB-calculatiorpiinciple is performed in the same way, but
distance calculations are slightly different comparedh ¢ase of spatially uncorrelated channels. In
order to calculate the distances corresponding to diftedis, we have to start with Eqn. (4.55). Again,
we are no longer interested in crossover events but in ETgs, Tthe distance corresponding to ik

ET can be calculated according to Eqgn. (4.55) as

~1/2 % 1/2H H * 1/2 31T Xy 1/2 ++T _H

Z;
Taking into account that multiplying a Gaussian randomaeby a unitary matrix does not change the
Gaussian statistic, we get:

Z ‘g A“" (4.143)
m= lw—/(l)
Qm

wheregﬁ,? are complex Gaussian random variables with zero mean andranénce. For correlated
channels the eigenbases for different ET is different iigas of the specific code. The only exception
are orthogonal codes, which always have specific propeffesthis reason an exact calculation of the
the distances and the corresponding PDFs in general is sstigd@ In order to make the calculation
of the MDLB feasible, the same assumption as for CS2 for ustated channels is made, namely it
is assumed that the eigenbasis is the same for all ETs anefdheithe realizationgf,? = gm are
independent from the specific ET.

In principle all steps to calculate the necessary PDFs atldlvant distances are the same as for uncor-
related channels. The difference in deriving the PDFs hiesoime detail and therefore | will now show
the PDF-derivation for a specific example.
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Example: Cyclic Code for two transmit antennas

In this example, | will show some details of the PDF calcalatior the cyclic code with two transmit an-
tennas and one receive antenna using BPSK modulation. isautinelated channel, scenario 14D3 with
strong spatial correlation has been chosen. The ET tablewgdifferent compared to the uncorrelated
case, because now we have different ET-key-parametergh&oncorrelated case the key-parameters
are essentially the eigenvalues of the distance matfiand for thecorrelated case the key-parameters
are the eigenvalues of the mat#x. We start by investigating all 16 crossover events to findbeified
ET table. Again, there are 3 different ETs and the corresipgnkey-parameters are listed in Tab. 4.6.
Note that the key-parameters for each channel correlagiom are different! The number of crossover
events leading to a certain ET is denotedflyand the number of different information bitsrig g .

The model parameters extracted from measurements peddamseenario 14D3 are:

B 0.7076 —0.6790 + 50.1956
Urx = < 0.6790 + 50.1956 0.7076 ) ’ (4.144)
Q= ( 0.1516 1.8484 ) . (4.145)

Ugx degenerates to 1, because only one receive antenna is used.

LETR | 25 | Ay | S| nos |
Z 0 0 [4] 0
1 [ 06064 7.3936 | 8 | 1
2 | 2.9560] 0.0000 | 2 | 2
3 2| 2

0.0000| 29.0439

Table 4.6: ET table for the cyclic STBC. BPSK modulatian; = 2; correlation scenario 14D3.

Accordingly, we can find 3 distances corresponding to thdf8rént ETs:

d? = 0.60640; +7.3936 ap = fi(a1, )
3 = 2.95600; = foar, )

d3 = 29.0439 ap = f3(u, az) (4.146)

It is assumed thatxgi) = o and a@ = a9 as explained above. The random variabigsare y?
distributed with 2 degrees of freedom:

Py (&) =€ % 0(&) (4.147)

whereo (¢;) denotes the Heaviside step function.

Starting with the calculation qfd%’d%:dz ~(m), the joint PDF results in:

Pa2 a, (M:62) = Tp {Pai (€1)} Pas(é2) (4.148)
The PDF transform according 1§ (Eqn. (4.146)) is a simple affine transformation:
d? = 0.6064 a; + 7.3936 &5 (4.149)

therefore the conditional PDF of the distantiecan be expressed by means of the PDRpfesulting
in:

1 n
pd%|a2(77|§2) = mpal <m — 12.1926§2> , (4.150)
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Accordingly the joint PDF results in:

1 n
= —12.192
P2 0, (1, 62) 0.6064 P (0.6064 9 6§2> Pa (&2)
1
= 70.6064e—(n/0.6064—12.1926 52)0(77/0.6064 —12.1926 52)6—620(52) . (4.151)

Before doing the integration according to Eqn. (4.119), wechto find the corresponding regi@y for
thatd? = d2,;,, is valid.

min

The realizations of? andd3 must fulfill the conditiond? < d3 and thus we get:

0.6064&; +7.3936& < 2.9560&;
£ < 0.3178& (4.152)

At this point the distance equatigh is inserted in Eqn. (4.152). Note that we focus on the reiidiza of
the random variables (instead of the random variables)reftwe, the functioryf; (regarding realization)
isn = 0.6064¢; + 7.3936 & instead ofd? = 0.6064 a1 + 7.3936 ap. More concrete, we inseé, =

oever — 12.1926 &> in Eqn. (4.152):

n
0.3178 —12.1926
& < <0.6064 52)

4.8748¢, < 0.52417
& < 0.10757 (4.153)

From the second conditiad? < d3 we get in the same way:
€5 > 0.0344n (4.154)

Therefore the desired PDfzz ;22 (n) results in

min

P2 a2—q2. (M) = / P2 0, (1, €2) dE2
R1

0.1075 7

e / 219208261 /0.6064 — 12.1926 &) (&) dEy
0.6064 0.0344 7

= 0.1473 (6—0-4459” - e—l-%‘““) o(n) . (4.155)

For the remaining two distance PDF|42—a2 (n) andpdg‘d:%:dz _ (n) the calculation is very similar.
Therefore, the results of the two PDFs are shown in Eqgn. 63.48d Eqgn. (4.157) without going into
details.

The desired PDPpgz 4242 (n) results in:

Pa3ig=az, (M) = /73 Pa2 0, (1, €2) d&2 (4.156)
2
1 e}
= 76777/2'9560/ e 20(n/2.9560)0 (€9) déy = 0.3383 ¢ 04497 5 (p)) |
2.9560 0.10757
and
Paza2=az. (M) = /R Pay,az(§1,m) d&1 (4.157)
3
1 00
= oo /29019 ~615(1/29.0439 déy = 0.0344 72041 5 ()
29.0439° /1.2293ne i\ Jo(6r) dti ¢ o)
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Having calculated the necessary PDFs of the minimum disg&vee proceed with the calculation of the
probabilitiesPd%:dz ~according to Eqn. (4.101):

(e}
Pp_p = / P, =gz, (mdn = / 0.1473 (6—0-4459" - e—1-2641") o(n)dn = 0.2138 ,

min 0

(4.158)
(o] (o]
Pp—q —/ Pag2=d2 . (n)dn :/0 0.3383 044597 5 (1)) dn = 0.7561 (4.159)
o0
Pp_p = / Piz.iz =, (n)dn = /O 0.0344 ¢ 126417 () dy = 0.0272 . (4.160)
With these probabilities the desired PDFs according to E4a02) result in:
D2 2
P = i =Tnin — (6890 (704159 — ¢=1.26010) () (4.161)
min Pd2 d’l2'n’L’I’L
D2 42—g2
Paigz—gz, =~ min = 04459 M9 5 () (4.162)
min Pd2 a2 .
D2 42—42
Pa|di=d2, = — Dl =nin _ 1 9641 e~ 12040 5 () | (4.163)

min sz dl

min

Knowing these PDFs we can calculate the average error pilibieabof the three ETs according to
Eqgn. (4.100):

o
Pe = / Q( 202>pd2d2_dfnm(77)d77

Qﬁﬁ

_ ( ) 0. 6890 e 0:4459n _ ,—1.2641 n) 0(7)) dn
_ _ — M2
= 15451( 2 ) O5451< 2 >,
o0 1—
P, = Q( 2"2> 0.4459 e~ 044597 5 () dy = ( 2“1) , (4.164)
0 oF
°° n ~1.2641 1—p2
Pe, = 1.2641 n dn = 4.165
&3 0 Q( 20_3) 6 € ( ) ui 9 ’ ( )
with
Y R S AR S (.16
M=\ 40204459 +1 "7 40212641 + 1 '

Now we are almost done. By applying the total probabilityotteen (Eqgn. (4.114)) we obtain the final

result:
BERvDLE =  wk / Q 252 | Pé2iz=az, (E)d€| Pp_g (4.167)
) 0 O'n k min k min

— 1 {1.5451 (%) — 0.5451 (%) } 0.2138
A ) Jors 3 {(75)])
- . - 0272
+2{( ; 0.7587 + 5 0.027

1—- 1
— 0.7097( 2‘“)—0.1029( 2“2) ,
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Figure 4.33: BER vs. SNR performance of the cyclic STBC. BR&&dulation;ny = 2, ng = 1;
correlation scenario 14D3.

In Fig. (4.33) the calculated MDLB is compared to simulatiesults and a union bound calculated ac-
cording to Sec. 4.2. As we can see, the MDLB underestimaeBHR vs. SNR performance compared
with the simulation results, which are considered as thetesatrue BER curves. In contrast to the
uncorrelated case, for the correlated case the MDLB isdigtitan the union bound. Hence, with the
MDLB and the previously calculated union bound, a two-sidednding of the true BER vs. SNR per-
formance is possible. For the special case that both bouedsght, as for most examples analyzed in
this thesis, we can predict the exact BER performance vegigely, at least in the high SNR domain.
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4.3.2.4 Hybrid Method to calculate the MDLB

As it has been shown in Sec. 4.3.2.2 and Sec. 4.3.2.3, thela@dns of the PDFs for the ET-distances,
necessary to determine the MDLB, are rather complicated.cbmplexity of the calculation-algorithm
increases with increasing system complexity, i.e., withribmber of transmit and receive antennas and
the modulation format. In order to circumvent lengthy datiens, | would like to propose a so-called
Hybrid Method which combines both, the analytical calculation and nucagevaluations. Instead of
the conventional method of finding the BER by numerical satiahs, where data are transmitted and at
the receiver the bit errors are counted, the analyticalagmbr for calculating the MDLB (explained in the
previous section) is used. However, the tedious evaluatidhe integrals are performed numerically.

The structure chart for thidybrid Methodis shown in Fig. 4.34.

input parameters: ET Table

averaging over N values of H

randomize H

d’=f(H)  (i=l..n,)

i’=argmin(di2)
SBER=SBER+w,.Q(d.’/25.")
BER=SBER/N

Figure 4.34: Structure chart for the MDLB determination.

With this approach we can easily get a very good approximatiothe BER performance (MDLB),
without performing difficult calculations. In some caseis ihot necessary to get an analytical result, but
we only want a BER vs. SNR curve. For such casesHyiarid Methodis a very powerful technique to
save a lot of computation time.

Obviously, the calculation of the union bound, which hasrbdiscussed in Sec. 4.2, is much easier
compared with the calculation of the MDLB. Neverthelesss tmion bound can also be calculated
according to this hybrid method.
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4.3.2.5 Examples and Discussion

Note that for the following examples the union bounds andMiitd_Bs are not calculated analytically,
because of the huge calculation effort, especially foruaitaig the MDLB. Instead, in this section the
Hybrid Methodis used to evaluate both bounds.

Cyclic Code:

The cyclic code for 4 transmit and 4 receive antennas usin§KBRiodulation, already discussed in
Sec. 4.2, is analyzed at this point. The cyclic code beloagsode Set (CS) 1. Therefore, the eigenbasis
is the same for all ETs and a very accurate distance calonl&ipossible. The corresponding ETs are
listed in Table 4.1. In Fig. 4.35 the simulated BER vs. SNRgearance (dashed red curve), the tight
union bound for the BER vs. SNR performance (solid blue duavel the MDLB for the BER vs. SNR
performance (solid black curve) for this cyclic coder(= ng = 4) utilizing BPSK modulation for
uncorrelated MIMO channels are compared. As we can see irdR3§ the MDLB is extremely tight.

In this case and for all codes corresponding to CS1 the MDLUiger than the union bound. As we

10° , :

— union bound
- = simulation

— MDLB

BER

SNR/dB

Figure 4.35: BER vs. SNR performance of the cyclic STBC. BRS8&dulation;ny = nr = 4;
uncorrelated channels.

can see, the lower bound and the union bound coincide for Bifies of10~3 and below. Obviously
if a lower bound and a union bound coincide, both bounds gid.tiThis result is confirmed by the
simulation results shown in Fig. 4.35.

In case of correlated fading all codes have distinct eigeedbéor all ETs. Thus, an exact calculation of
the distances and their PDFs is not possible. For this redisenightness of the MDLB is much worse
compared with the case of uncorrelated fading. The simiilBER vs. SNR performance (dashed red
curves), the tight union bounds for the BER vs. SNR perforeaisolid blue curves) and the MDLB
for the BER vs. SNR performance (solid black curves) for tlyislic code . = nr = 4) utilizing
BPSK modulation are compared in Fig. 4.36 for several spatiaelation types: 1D3«marker) and
14D3 (-marker). As it can be seen in Fig. 4.36, for correlated cklnthe union bound is tighter
than the lower bound. Only for the BER beld® 5 the lower bound and the union bound coincide.
Nevertheless, the lower bound helps us to bound the BER fedowband from above. Note that in this
case the union bound is already tight for BER values bdlow? in contrast to the lower bound.



96 4.3. LOWER BOUND FOR THE BER IN CASE OF STB CODED MIMO SYSTEM
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SNR/dB

Figure 4.36: BER vs. SNR performance for the cyclic STBC. R®dulation;nr = ng = 4; several
correlation types.

Extended Alamouti Code:

The EA code also belongs to CS1. The MDLB for this code is atsexraordinary tight performance
approximation. In Fig. 4.37 the simulated BER vs. SNR pentamce (dashed red curves), the tight
union bound for the BER vs. SNR performance (solid blue cjraad the MDLB for the BER vs. SNR
performance (solid black curves) for the Extended Alam&mBC (v = nr = 4) utilizing QPSK
modulation are compared for uncorrelated MIMO channelss. dssentially tighter than the union bound
in the low SNR range. For BER valuestdf—3 and below the union bound and the lower bound coincide.

100
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Figure 4.37: BER vs. SNR performance for the Extended Alain®TBC. QPSK modulationpy =
ngr = 4; uncorrelated channels.
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In Fig. 4.38 the simulated BER vs. SNR performance (dash@ddueres), the tight union bounds for the
BER vs. SNR performance (solid blue curves) and the MDLBlerBER vs. SNR performance (solid
black curves) for the Extended Alamouti code-(= nr = 4) utilizing QPSK modulation are shown for
several spatial correlation types: 1D3rarker) and 14D3+-marker). In contrast to the cyclic code,
the lower bound is also very tight in spatially correlatedrahels.

BER

Y
-10 1 1 1 1 1 1 1 1 1 ]

10
-4 -2 0 2 4 6 8 10 12 14 16

SNR /dB
Figure 4.38: BER vs. SNR performance for the Extended Alain®UBC. QPSK modulationpr =
ng = 4; several correlation types.

Orthogonal Code:

In Fig. 4.39 the simulated BER vs. SNR performance (dasheéaueves), the tight union bounds for
the BER vs. SNR performance (solid blue curves) and the hiR &pproximation for the BER vs.
SNR performance (solid black curves) for a specific orthe)@TBC ., = ng = 4) utilizing QPSK
modulation are compared for uncorrelated MIMO channels.gdneral, orthogonal codes belong to
CS1. Orthogonal codes have an additional nice propertyehathat the distance matriA is always

a weighted identity matrix. For this reason, the eigenbfmiglifferent ETs is the same and thus the
performance approximation is very tight for correlatedrigdoo. As already explained the performance
of orthogonal codes can be calculated more easily in a difteway, but in order to show that the more
general framework developed in this thesis holds also fergpecial case, | want to show results for the
orthogonal code defined in Egn. (4.8) gained with this fraorkw

In Fig. 4.39 it can be seen that the MDLB is tighter than theariound. The MDLB coincides with the
simulated performance in the entire SNR range.

In Fig. 4.40 the simulated BER vs. SNR performance (dashe:dueves), the tight union bounds for the
BER vs. SNR performance (solid blue curves) and the MDLBHierBER vs. SNR performance (solid
black curves) for a specific orthogonal coaeg-(= ng = 4) utilizing QPSK modulation are shown for
several spatial correlation types: 1D3roarker) and 14D3«-marker).

D-STTD Code:

The D-STTD code discussed in this paragraph belongs to G54t has not the nice property of the same
eigenbasis for all ETs. In Fig. 4.41 the simulated BER vs. §¢Rormance (dashed red curves), the
tight union bounds for the BER vs. SNR performance (solie ldurves) and the MDLB for the BER vs.
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Figure 4.39: BER vs. SNR performance for a specific orthop®m8C. QPSK modulationyr = np =

4: uncorrelated channels.
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Figure 4.40: BER vs. SNR performance for a specific orthob®m8C. QPSK modulationyr = ngp =
4; several correlation types.

SNR performance (solid black curves) for the D-STTD cade € ng = 4) utilizing QPSK modulation
are compared for uncorrelated channels. In Fig. 4.42 thalated BER vs. SNR performance (dashed
red curves), the tight union bounds for the BER vs. SNR peréorce (solid blue curves) and the MDLB
for the BER vs. SNR performance (solid black curves) for tR8DID code tr = ngr = 4) utilizing
QPSK modulation are compared for several spatial coroslaiypes: 1D3 ¢-marker) and 14D3-
marker).

The lower bound for uncorrelated channels (Fig. 4.41) igeqight compared to the results for correlated
channels (Fig. 4.42).
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Figure 4.41: BER vs. SNR performance for the D-STTD code. IQR®dulation;ny = ng = 4,
uncorrelated channels.

For the correlated scenarios the MDLB becomes tight for BEReas belowl0~8. In the low SNR
domain the lower bound is tighter than the union bound, buBfR values belovt0—2 the union bound
coincides with the simulated performance.

BER

-4 -2 0 2 4 6 8 10 12 14 16 18 20
SNR/dB

Figure 4.42: BER vs. SNR performance for the D-STTD code. IQR®dulation;nr = nr = 4;
several correlation types.

Summarizing the results shown in this section, we can sayttielaMDLB is an extraordinary tight

performance approximation for spatially uncorrelatedneteds. In case of correlated fading, the MDLB
is in some cases very loose. The first reason for the looseh#ss bound is that the calculated distance
PDFs are no longer exact and the second reason is that felated channels not only the minimum
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distance is of importance but also other crossover eveotddive considered. Due to the large number
of similar ETs and thus similar distances, not only the minimdistance is of essential importance, but
also distances that are not far away from the minimum distaonitribute to the mean BER. Thus, for

correlated scenarios the union bound is better suited tmajppate the BER performance of STBCs. In

spite of these deficiencies of the MDLB it is still a lower bduand together with the union bound it

provides a bounding of the BER performance from below anchfabove.



Chapter 5

Summary and Conclusions

At last | want to summarize the main results and conclusidtisi®thesis. The main scope of this thesis
was to find appropriate and tight performance measures farttensmission over MIMO systems that

can be given in closed form. The motivation for this work wasvoid time consuming data transmis-

sion simulations and to get more insight into the error meidm. The derived performance measures
are calculated for frequency flat MIMO channels using ML neees, where spatially uncorrelated and

spatially correlated channels have been investigated. sbhealled Weichselberger Model is used to
simulate spatially correlated MIMO channels. The paramseiar this model are extracted from actual

MIMO channel measurement data.

In chapter 3, we start with the distance properties of undddEVO systems. The essential difference
between MIMO and SISO systems are elaborated: The sigrtahdiss in SISO systems behave “good-
natured” in contrast to distances observed at the recefM#MO systems. FoISISO systems we can
summarize:

-) The smallest (largest) distance of signal pairs at thestrdtter transforms to the smallest (largest)
distance at the receiver.

-) The distance of a signal pair at the receiver is zero ohBither the distance of the signal pair at
the transmitter is zero or the channel gain is zero, thi|fs= 0.

These properties are essential in calculating the errdoimeance of a SISO system. One very good and
simple-to-calculate BER performance approximation isgbecalled nearest neighbor approximation,
which cannot be applied in a straightforward way to MIMO sys$. In contrast, MIMO systems show

a much more involved distance behavior. BIMO systems the following properties hold:

-) The transmit signal constellation may be heavily digtdrtdue to the matrix multiplication of the
transmit signal vector with the channel matEk

-) The largest distance at the transmitter may be transfbime the smallest distance at the receiver.
-) The distance at the receiver can be zero, even if everynehhaoefficient is far away from zero.

The most common possible approach to approximate the BERBrpamce is a union bound. A union
bound is simply the sum over all Pairwise Error Probabgi(iBEPS). In the course of deriving this union
bound, | discovered that the performance of a MIMO-systemfadly and more easily be described
by so-called Error Types (ETs). An ET is essentially the $etllacrossover events that have the same
key-parameters. The key-parameters depend on the cask gftdanel correlation type is considered,
i.e., whether the MIMO-channel is spatially uncorrelatedspatially correlated. This union bound is
compared with simulation results for several uncoded MIMGtams, i.e., for different modulation
schemes, different number of transmit and receive antemméglifferent correlation types. It turns out
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that the union bound is tight for BER valuesléf 3 and below. In the low SNR range, the overestimation
of the BER by the union bound can be quite substantial.

In order to compare the results of different MIMO-systemslifferent correlation types it is helpful to
find a high-SNR approximation, which specifies the positind the slope of the BER vs. SNR curve
for infinitely high SNR. In this way the error performance dfystem can be specified by two numbers,
the system diversity and the coding advantage. Comparitog performance curves for different cor-
relation types, this concept allows to specify a diverditysland a power loss due to spatial correlation.
Interestingly, the high SNR approximation for uncorredbéad correlated channels, according to the pa-
rameters extracted from measurement data, show that nsidgv®ss occurs due to spatial correlation.
The influence of spatial correlation only shows up in a powses, which can be guantified with the aid
of the high SNR approximation.

Furthermore, a new precoding filter that minimizes the powes is derived. This filter can be found
analytically by Lagrange multiplier techniques, but duette involved cost function, this optimization
problem is solved numerically. The derived optimum prengdilter is tested in simulations. The sur-
prising result of this investigation is that the performaraf the precoded system in correlated fading
is even better than the performance of the standard systého(w precoding) iruncorrelated MIMO
channels in the low SNR regime. For high SNR values the sysitiginout precoding operating in uncor-
related fading is only slightly better than the precodeddraission performed over spatially correlated
channels.

The second main part of this thesis is the performance aralfspace-time block coded systems, de-
scribed in Chapter 4. Starting with the investigation of dignal distances, | have found out that in
MIMO systems multiple errors can dominate the BER perforten call this specialty of MIMO sys-
tems“The MIMO-Paradoxon” . This fact is in sharp contrast to block coded SISO systerhsyavonly
single symbol errors dominate the performance. This MIM@gaxon can be confirmed by looking at
the results of the union bound, where for some codes the ETsspmnding to multiple errors cause a
flattening out of the BER vs. SNR curve (e.g.: Cyclic Code eded Alamouti Code).

The tightness of the derived union bound is checked agaimimparing it with simulation results. The
union bound is tight for BER values af)~2 and below for all investigated codes and correlation types.
Our results show, that for some codes a flattening out of thR B& SNR curve occurs at high SNR.
This effect comes from rank deficient ETs corresponding tdtipte errors. In most cases these rank
deficiencies occur quite seldom and thus the flattening aubnly be observed at very low BER values,
so that it is practically not very relevant. In correlatedifey it has been observed that the BER vs. SNR
curves show this flattening out at quite low to medium SNR eslu

A high SNR approximation of the union bound is derived thaives to specify the diversity order and
the power loss of a system. As for uncoded systems, the amalthe code performance, especially the
high SNR approximation, shows that no diversity loss dugédial correlation of the MIMO channels is
observed, even though realistic parameters for the ctioelenodel (extracted from measurement data)
are used.

Next, an optimal precoder adapted to the spatially coedlahannel is derived. Unfortunately, the opti-
mization problem here is very complex and thus the optirfopait solved numerically. Unfortunately,
the numerical solution is not easy either, mainly becausheofarge number of local minima. Including
the precoding filter in the coded data transmission simanati some performance improvement can be
achieved, but it is by far not that large as in the uncoded.case

The last main point discussed in this thesis is the so-calledmum Distance Lower Bound (MDLB),

where only that Error Type (ET) is considered that suffessnfithe minimum distance out of all possi-
ble distances. This bounding principle is easy to undetistard the results are very tight (tighter than
the union bound), but the calculation complexity is veryhhid herefore, sometimes a so-called hybrid
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method is used to perform the nasty analytical calculatramaerically. In the derivation of the MDLB
the entire set of STBCs is subdivided into two sets. For Cad€S) 1 (cyclic code, Extended Alamouti
code, orthogonal codes) an exact calculation of the distaand thus an extraordinary tight BER perfor-
mance approximation is achieved. For codes not belongif@Stb (CS2) the resulting approximations
are not that tight. It is also possible to calculate the MDbBdorrelated channels, but the results show
that, for this case, the MDLB is very loose for some codes hatefore the union bound is better suited
to characterize the BER performance of a MIMO-system tharMBLB (the union bound is tighter and
is easier to calculate). However, together with the unicmnicthe MDLB allows a two-sided bounding
of the BER performance from above and from below, which mayabeable in certain applications.

For practical applications we can say that in order to obtaBBER-performance characteristic of a
MIMO-system without performing time consuming data traission simulations, the union bound is
the more appropriate means than the MDLB. This suggestibased on the fact that the union bound is
a lot easier to calculate and nevertheless it is quite tight.






Appendix A

Notation

]|

Al
1d(.)
Re{.}
I

a boldface capital letter denotes a matrix

a boldface lower case letter denotes a vector

matrix with independent identically distributed compleau@sian entries
with meany and variancer? consisting of- rows ands columns
transpose operator

complex conjugate transpose operator (Hermitian op@rator
complex conjugate operator

trace operator applicable on matrices

determinant operator applicable on matrices

expectation with respect

Frobenius norm operator

I2-norm operator

symbol alphabet of the modulation format

size of the symbol alphabet

base 2 logarithm

real part operator

denotes an identity matrix

Kronecker matrix product

element-wise matrix product

i-th element of a vector

Gaussian Q-function

Dirac impulse

Heaviside step function
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Appendix B

Acronyms

BLAST
UMTS
BS

BER
SNR
MIMO
SISO
CLS
ii.d.
ULA

ML

ZF
MMSE
STC
STTC(s)
STBC(s)
O-STBC(s)
NO-STBC(s)
STB
MDLB
ET

EA
D-STTD
BPSK
QPSK
16QAM
RX

™

PDF
NNA
PEP
SEP

CF

bell layered space time

universal mobile telecommunication system
base station

bit error ratio

signal to noise ratio

multiple input multiple output

single input single output

closed loop scheme

independently identical distributed
uniform linear array
maximum likelihood

zero forcing

minimum mean square error

space time coding

space time trellis code(s)

space time block code(s)
orthogonal space time block code(s)
non-orthogonal space time block code(s)
space time block
minimum distance lower bound
error type

extended Alamouti

double space time transmit diversity
binary phase shift keying
quadrature phase shift keying

16 quadrature amplitude modulation
receive
transmit

probability density function
nearest neighbor approximation
pairwise error probability

symbol error probability
characteristic function
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Appendix C

Important Variables

Q power coupling matrix

H channel matrix

H, virtual channel matrix

Nr number of transmit antennas

Ngr number of receive antennas

Nnors number of occupied time slots

Nrs number of information symbols

noise variance

b difference vector

B code word difference matrix

A code word distance matrix

T rank of the distance matriA

dz. squared distance at the transmitter
ds squared distance at the receiver

ngg  humber of bit errors

fr frequency of crossover events leading to kil error type
ngr  number of error types

Nnyz  nhumber of non zero eigenvalues

D diversity order

Lp diversity loss due to spatial correlation
Lp power loss due to spatial correlation

S code word matrix

Rg information symbol rate
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Appendix D

Model Parameters

Here, the model parameters for the W-model of two measurdd®ithannels with 4 transmit and 4
receive antennas are shown.

Scenario 1D3 (moderate correlation):

Ug

Ur

—0.1801 + j0.5078
+0.5883

—0.1449 — 50.3855
—0.2784 + 50.3412

—0.6267 + j0.1581
—0.0400 — 70.0876
+0.0066 — 70.1041
+0.7498

4.6077 3.1241 2.2073
1.1409 1.0368 0.5792
0.3107 0.2949 0.1678
0.7222 0.6310 0.3523

0.5668
0.1384
0.0501
0.0806

+0.1658 — 50.1171
+0.5037 — §0.1540
+0.6891

+0.4483 + j0.0737

+0.6186
+0.4797 + 50.1452
—0.1513 — j0.1072
—0.4204 — j0.3937

Scenario 14D3 (strong correlation):

Ur

+0.0856 + 70.3895
+0.3635 + 50.3481
+0.5252 + 50.1216
+0.5449

+0.7500

+0.1558 — 50.2166
—0.1838 + 50.2130
+0.0462 + j0.5338

9.3684 1.5098
1.8690 0.3816
0.4698 0.2008
0.1341 0.0496

0.7868
0.3365
0.2451
0.0630

0.3238
0.0868
0.0636
0.0417

+0.4399 — j0.1712
—0.4977 + 50.0977
+0.5180

—0.4935 — j0.0898

+0.6255
—0.1957 — j0.3155
—0.3487 — §0.0714
+0.2282 + j0.5406
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—0.1156 — 50.3503
+0.6734

—0.3578 + j0.3938
+0.0710 — 50.3497

+0.6378
~0.2410 — j0.2361
—0.3965 + j0.0494
+0.5316 + 50.1928

—0.3496 — j0.3387
+0.5582

+0.1511 — 50.3523
—0.1422 + j0.5332

+0.5631

+0.3838 + 50.2954
—0.1628 — 50.3559
+0.0996 — 50.5341

+0.3917 + j0.0495
+0.4332 + j0.0589
+0.7324

+0.3405 — 50.0252

(D.1)

—0.4089 — 50.0457¢
+0.5980

—0.5733 + 70.0482
+0.3645 — 70.0959

—0.0303 + j0.2013
—0.3493 — j0.4919
+0.6952

—0.2620 + j0.2068

(D.2)

1+0.1218 — 50.2326
4+0.4979 — 50.3498
+0.6722

+0.2973 + j0.1433






Appendix E

Error Types for Uncoded MIMO Systems

In this section the Error Types (ETs) for &4 MIMO system in spatially correlated fading with BPSK
modulation are tabulated. For every correlation type theesponding ET table is different. Tab. E.1
and Tab. E.2 correspond to scenario 1D3 and 14D3.
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LeT] M1 0] AV A [npee| S| diyy | dfy |
0 0.000 0.000| 0.000 0.000 0 16 0 0
1| 11.0960| 3.1376| 0.8910| 1.9300 1 16| 2.7816 4
2| 11.3431| 2.8631| 0.8042| 1.7903 1 16| 2.6150 4
3| 10.0675| 2.7693| 0.7891| 1.7109 1 16| 2.4769 4
4| 9.5168| 2.8113| 0.8096| 1.7126 1 16| 2.4679 4
5| 31.9519| 8.5297| 2.3572| 5.3349| 2 8| 7.6514 8
6 | 20.5239| 5.1545| 1.4568| 3.2249, 2 8| 4.7216 8
7| 31.9301| 8.0789| 2.2234| 5.0772| 2 8| 7.3460 8
8 || 21.8655| 5.8023| 1.6475| 3.5716| 2 8| 5.2271 8
9 || 19.3190| 5.0258| 1.4304| 3.1275| 2 8| 4.5652 8

10 || 26.9198| 7.9856| 2.2468| 4.9171| 2 8| 6.9809 8
11| 12.9264| 3.4716| 1.0333| 2.1059| 2 8| 3.1435 8
12 | 21.8032| 6.6593| 1.9034| 4.0571| 2 8| 5.7866 8
13| 19.3600| 6.0955| 1.7537| 3.7137| 2 8| 5.2653 8
14| 10.8913| 3.1860| 0.9632| 1.9253| 2 8| 2.8323 8
15| 22.4008| 6.3230| 1.7972| 3.8785| 2 8| 5.6055 8
16 || 12.2489| 3.1757| 0.9505| 1.9300| 2 8| 2.9064 8
17| 51.8992| 12.9931| 3.5531| 8.2057| 3 4| 11.8413|| 12
18 | 41.1804| 10.5459| 2.9303| 6.6010| 3 4| 9.5736| 12
19 | 38.6289| 10.2241| 2.8614| 6.3600| 3 4| 9.2075| 12
20 || 47.2414| 12.6465| 3.4977| 7.9079| 3 4| 11.3379|| 12
21| 34.1530| 9.4398| 2.6758| 5.8088| 3 4| 8.4136| 12
22| 19.6495| 5.7809| 1.7126| 3.5140| 3 4| 5.1133|| 12
23 || 37.4027| 12.0221| 3.4142| 7.3343| 3 41 10.3011|| 12
24| 11.8349| 3.0421| 0.9689| 1.8248| 3 4| 2.8246| 12
25| 25.2368| 6.7849| 1.9732| 4.1230| 3 4| 6.1093|| 12
26 | 29.2844| 9.0509| 2.6043| 5.5070| 3 4| 7.8521|| 12
27| 32.1396| 9.6051| 2.7395| 5.8860| 3 4| 8.3996| 12
28 || 41.7568| 12.1362| 3.4033| 7.4940| 3 4| 10.6624| 12
29| 25.2372| 6.9191| 2.0118| 4.2051| 3 4| 6.1996| 12
30 || 11.5317| 2.9438| 0.9413| 1.7689| 3 4| 2.7419| 12
31 || 21.4525| 5.7074| 1.6713| 3.5149| 3 4| 5.1787| 12
32 || 35.6524| 9.1338| 2.5683| 5.6718| 3 4| 8.2990| 12
33 || 68.4632| 17.4141| 4.7743| 10.9653| 4 2| 15.8060| 16
34 || 48.2116| 14.1540| 4.0032| 8.7105| 4 2| 12.4200|| 16
35| 31.4808| 8.7604| 2.5569| 5.3354| 4 2| 7.8318| 16
36 || 49.2800| 15.6165| 4.4337| 9.5387| 4 2| 13.4316| 16
37 || 34.0327| 9.2163| 2.6645| 5.6585| 4 2| 82926\ 16
38 || 11.2226| 2.9465| 1.0001| 1.7393| 4 2| 2.7539| 16
39 || 39.1280| 10.3482| 2.9675| 6.3324| 4 2| 9.3396| 16
40 || 54.3687| 14.1946| 3.9510| 8.8712| 4 2| 12.8245|| 16

Table E.1: ET table for aX44 MIMO system in correlated fading for BPSK modulation (saém 1D3).
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LeT] ] MV M A [npme | e | diyy | dhy |
0 0.000 0.000| 0.000| 0.000 0 16 0 0
1| 12.5765| 2.8414| 1.0663| 0.2959| 1 16| 1.8324 4
2| 11.8874| 2.5624| 0.8710| 0.2830| 1 16| 1.6553 4
3| 11.6918] 2.5782| 0.9183]| 0.2862 1 16| 1.6777 4
4| 11.7996| 2.7136| 1.0613| 0.2886| 1 16| 1.7696 4
5 5.4916| 1.8279| 1.2295| 0.4120| 2 8| 1.5017 8
6 || 38.9203| 8.0499| 2.3444| 0.7230| 2 8| 4.8005 8
7 5.1637| 1.3438| 0.8076| 0.3557| 2 8| 1.1882 8
8| 11.3435| 3.1279| 1.7102| 0.4540, 2 8| 2.2910 8
9| 37.7662| 7.8275| 2.3002| 0.7105| 2 8| 4.6883 8
10 6.0771| 2.0744| 1.3932| 0.4297| 2 8| 1.6575 8
11| 43.4362| 8.9797| 2.6451| 0.7456| 2 8| 5.2664 8
12 9.6163| 2.7892| 1.6249| 0.4411| 2 8| 2.0939 8
13| 37.4087| 7.9822| 2.5449| 0.7149| 2 8| 4.8278 8
14 || 41.9947| 8.9374| 2.7710| 0.7827| 2 8| 5.3415 8
15 9.6079| 2.7246| 1.5643| 0.4327| 2 8| 2.0517 8
16| 40.9057| 8.5092| 2.5659| 0.7199| 2 8| 5.0355 8
17| 13.4199| 3.2397| 1.5259| 0.6257| 3 4| 2.5383| 12
18| 18.3378| 4.6659| 2.2414| 0.7091| 3 4| 3.4149) 12
19| 20.2730| 5.1190| 2.4020| 0.7360| 3 4| 3.6803| 12
20| 13.6282| 3.3915| 1.6505| 0.6381| 3 4| 2.6414) 12
21| 22.0605| 5.1307| 2.2220| 0.6774| 3 4| 3.6128|| 12
22| 82.3476| 16.6719| 4.4917| 1.3035| 3 4| 9.4687| 12
23| 17.0342| 4.7126| 2.5171| 0.7150| 3 4| 3.4669| 12
24| 88.1955| 17.9850| 4.9049| 1.3863| 3 4 10.1909|| 12
25| 28.1241| 6.7147| 2.9210| 0.7649| 3 4| 45322| 12
26| 22.3009| 5.8822| 2.8779| 0.7873| 3 4| 41521 12
27| 20.9469| 5.5726| 2.7698| 0.7708| 3 4| 3.9732| 12
28| 16.2446| 4.4173| 2.3402| 0.6922| 3 4| 3.2835| 12
29| 25.7976| 6.2931| 2.8552| 0.7444| 3 4| 43099 12
30| 85.2878| 17.4199| 4.7866| 1.3553| 3 4| 99083 12
31| 81.1668| 16.4082| 4.4094| 1.2871| 3 4| 9.3241| 12
32| 20.2984| 4.7234| 2.0872| 0.6505| 3 4| 3.3778| 12
33 8.8518| 2.8602| 1.9514| 0.7776| 4 2| 2489\ 16
34| 43.5575| 9.6055| 3.4822| 1.0902| 4 2| 6.3130|| 16
35| 55.4691| 12.5026| 4.5945| 1.2604| 4 2| 7.9607| 16
36| 14.2856| 4.9445| 3.2941| 0.9058| 4 2| 3.8102| 16
37| 51.2074| 11.6279| 4.3681| 1.2130| 4 2| 7.4946| 16
38 || 144.5212| 28.8946| 7.3379| 2.0893| 4 2| 15.9067| 16
39| 24.1627| 6.0832| 3.0843| 0.8418| 4 2| 4.4199| 16
40 || 41.5872| 9.0465| 3.2229| 1.0509| 4 2| 59746\ 16

Table E.2: ET table for aX¥44 MIMO system in correlated fading for BPSK modulation (saém 14D3).
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Appendix F

Error Types for the Cyclic STBC

In this section, | show the ETs and the corresponding kegpaters for the cyclic code utilizing ax4 MIMO system and BPSK modulation in spatially
correlated fading. For each correlation type the ET tabtifisrent. Tab. C.1 and Tab. C.2 correspond to the scen@®ahd 14D3.

[Er [ [ [ oa [ [ i | o [ [ [ [ [ o [ [0 [ [ w7 ] o | ]
| o] o.000] 0000] 0.000] 0.000] 0.000] 0.000| 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0 [16] o] o]
| 1] 18431] 12496 8.829| 4.563| 4.147| 2.888| 2.523] 2.317] 2.267] 1.409 | 1.242] 1.179 ] 0.671 ] 0.553 | 0.322 | 0.200 | | 64| 201] 400

2 69.941 | 24.676| 18.048 | 17.638 | 11.123| 8.020 | 4.895| 4.826 | 4.737 | 2.882| 2.276 | 1.371 | 0.000 | 0.000 | 0.000 | 0.000 32| 7.78 | 10.08
27901 | 18.834| 8.851| 8.690| 5.409| 4.950| 3.024| 2.512| 2.126 | 1.424| 1.240| 0.763 | 0.000 | 0.000 | 0.000 | 0.000 32| 4.12| 10.08
68.513 | 17.434| 11.172| 10.977| 4.780| 2.925| 1.727| 0.994| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 16 | 6.58 | 16.00
50.853 | 37.554| 16.081| 9.883 | 9.833| 6.037| 4.558| 2.843| 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000 | 0.000 | 0.000 16 | 11.12| 16.00

1
2
2
2
2
64.482 | 47.604 | 20.262 | 15.998 | 12.552 | 12.395| 7.685| 5.738 | 4.157 | 3.598 | 2.599 | 2.346 | 1.150 | 0.573 | 0.334 | 0.207 3 32 4.50 8.94
154.602 | 39.271| 24.734| 12.954 | 10.763| 9.121| 4.188| 2.558 | 2.395| 2.271| 1.458| 1.186 | 0.692 | 0.554 | 0.322 | 0.200 3 16 3.49 6.93
3
4
4
4
4

28.415| 18.015| 9.553 | 8.484| 8.014| 4.803| 4.539| 2.865| 2.683 | 2.541| 2.237 | 1.602 | 1.350 | 1.239 | 0.852 | 0.660 16 | 3.49| 6.93

73.723| 49.985| 35.316| 18.254 | 16.589 | 11.554 | 10.095| 9.268 | 9.068 | 5.636 | 4.971 | 4.718 | 2.684 | 2.213 | 1.289 | 0.801
10 || 101.707| 75.108 | 32.162 | 19.766 | 19.666 | 12.075| 9.116| 5.686 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
11 || 273.852| 69.656 | 43.861| 19.097| 0.000| 0.000| 0.000| 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000 | 0.000| 0.000 | 0.000
12 44.890| 11.786| 6.957| 4.000| 0.000| 0.000| 0.000| 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000

Ol (N|[fOo|lO| bW

8.05 | 64.00
22.24| 32.00
63.22 | 64.00
11.02 | 16.00

NN

Table F.1: ET table for a¥#4 MIMO system utilizing the cyclic code defined in Eqn. (4.8)orrelated fading for BPSK modulation (scenario 1D3).



[er T T ow [ [ w o [ ow [ e [ Dy Dy D D Dy g Dg [ross [ [ | o0 |

o] o0000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000 | 0.000| 0.000 | 0.000] 0.000] 0.000| 0.000] 0.000] 0 |16] 0o | o |

1] 37.473] 7.476] 6.039| 3.147| 1.879| 1526 | 1.345| 1.205| 0.980 | 0.803 | 0.536 | 0.347 | 0.254 | 0.252 | 0.198 | 0.166 | | 64| 114 | 4.00 |

2 15.860 8.594| 4.238| 3.620| 3.128| 2.710 | 1.693 | 1.007 | 0.813 | 0.736 | 0.432| 0.405| 0.000 | 0.000 | 0.000 | 0.000 32| 1.96 | 10.08

146.535| 29.261| 12.010| 7.390| 5.199 | 3.065| 2.107 | 2.081 | 1.686 | 1.450 | 0.456 | 0.399 | 0.000 | 0.000 | 0.000 | 0.000 32 | 3.89 | 10.08

145.390| 29.050| 7.982| 7.360| 2.704 | 2.097 | 1.929 | 0.769 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 16 | 6.17 | 16.00

27.694| 10.753| 6.766| 4.261| 3.426| 2.951| 0.914| 0.833 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 16 | 4.00 | 16.00

48.413| 23.445| 12.979| 10.349| 6.092 | 4.844 | 4.337| 3.889| 1.749 | 1.565| 1.150| 1.076 | 0.489 | 0.436 | 0.318 | 0.184 32| 255 | 894

40.984 | 16.923| 8.789| 5.621| 5.454| 4681 | 2.129| 1.839| 1.764 | 1.507 | 0.818 | 0.663 | 0.528 | 0.480 | 0.220 | 0.196 16 | 1.98 | 6.93

Ol N|o||lg|bd|w

35.407| 11.440| 7.805| 3.110| 0.000 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000 | 0.000 | 0.000 9.96 | 64.00

10 55.389| 21.507| 13.533| 8.522| 6.853 | 5.903 | 1.828 | 1.666 | 0.000 | 0.000 | 0.000 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 8.01 | 32.00

11 || 578.084| 115.578| 29.351| 8.357| 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 63.63 | 64.00

1
2
2
2
2
3
326.327| 65.217| 16.536| 6.214| 4.709 | 3.160 | 1.569 | 1.350 | 1.295| 0.983 | 0.819| 0.347 | 0.254 | 0.252 | 0.202 | 0.166 3 16 | 1.98 6.93
3
4
4
4
4

OINIA~IN

12 || 149.894| 29.904 | 24.156 | 12.589 | 7.516 | 6.106 | 5.383 | 5.180 | 3.922 | 3.212 | 2.145| 1.388 | 1.017 | 1.008 | 0.794 | 0.666 4.56 | 16.00

Table F.2: ET table for a4 MIMO system utilizing the cyclic code defined in Egn. (4.8)orrelated fading for BPSK modulation (scenario 14D3).
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