TU

TECHNISCHE UNIVERSITAT WIEN

DISSERTATION

Advection-dominated Models for Chemotaxis

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Ao. Univ. Prof. Dr. techn. Christian Schmeiser
Institut fiir Analysis und Scientific Computing (E101)

eingereicht an der Technischen Universitit Wien
Fakultit fiir Mathematik und Geoinformation

von
Dipl.Ing. Yasmin Dolak
Matr. Nr. 9526063

Schopenhauerstraf3e 15/10
1180 Wien

Wien, am 12. Oktober 2004



Kurzfassung

Die vorliegende Arbeit beschéftigt sich mit mathematischen Modellen fiir Che-
motaxis, der gerichteten Bewegung von Organismen, die durch chemische Sub-
stanzen ausgelost und gelenkt wird. Chemotaxis spielt fiir viele biologische und
physiologische Prozesse eine entscheidende Rolle, angefangen bei Wundheilung
oder der Reaktion unseres Immunsystems bis zu Embryogenese und der Bil-
dung neuer Blutgefidfie. Zahlreiche Mikroorganismen beniitzen Chemotaxis, um
Nahrung aufzuspiiren oder toxische Substanzen zu vermeiden.

Wihrend bei der chemotaktischen Orientierung von Bakterien die unge-
richtete, zufillige Komponente ihrer Bewegung eine wichtige Rolle spielt, un-
terdriicken andere Organismen, zum Beispiel zelluldre Schleimpilze, die Zu-
fallshewegungen grofitenteils, was zu einer sehr zielgerichteten Fortbewegung
fihrt.

In einem mathematischen Modell kann letzteres auf mehrere Arten ausge-
driickt werden. In einem sogenannten makroskopischen Modell wird die zeit-
liche Verdanderung der Zelldichte durch Diffusion und Advektion bestimmt -
wird Zufallsbewegung unterdriickt, so dominiert der Advektionsterm.

Ein anderer Ansatz, Zellbewegung zu modellieren kommt urspriinglich aus
der Gasdynamik: in einer kinetischen Transportgleichung werden Richtungs-
wechsel der Zellen durch einen Integraloperator beschrieben. Dominiert die
zielgerichtete Bewegung der Zellen, so legen die fithrenden Terme dieses Inte-
graloperators die Orientierung am Gradienten fest (im Falle, dass der Anteil
der ungerichteten Bewegung tiberwiegt, beschreiben die fithrenden Terme Be-
wegungsanderungen ohne bevorzugte Richtung). Beide Modellierungsansétze
werden in dieser Arbeit behandelt.

Im ersten Teil prisentieren wir ein kinetisches Modell fiir Chemotaxis das
auf der Annahme basiert, dass die Zellen Konzentrationsunterschiede entlang
ihres Weges messen und vergleichen. Nach einer passenden Skalierung des Pro-
blems untersuchen wir den makroskopische Limes fiir dieses Modell. In erster
Ordnung erhalten wir eine reine Konvektionsgleichung fiir die Zelldichte, als
Korrektur hoherer Ordnung wird ein Diffusionsterm hergeleitet. Als Anwen-
dungsbeispiel untersuchen wir das Verhalten des Schleimpilzes Dictyostelium
discoideum. Die numerische Losung der Gleichungen zeigt, dass unser Modell
cinen erfolgreichen Erklarungsansatz fiir das so genannte chemotaktische Pa-
radoxon darstellt.

Im zweiten Teil der Arbeit untersuchen wir ein makroskopisches Advektions-
Diffusions Modell fiir Chemotaxis. Dieses Modell beriicksichtigt die endliche
GroBe der Zellen: ein Sattigungsterm im chemotaktischen Fluss verhindert,
dass die Zelldichte beliebig hoch wird. Wir betrachten die Gleichungen fir
den Fall einer kleinen Diffusivitat und zeigen, dass Losungen des vollen Pro-



blems gegen Losungen der reinen Advektionsgleichung konvergieren wenn die
Diffusionskonstante gegen Null geht. Fiir kleine, positive Diffusivitit zeigen
Losungen ein interessantes Langzeitverhalten: durch den nichtlinearen Advek-
tionsterm bilden Losungen plateau-artige Strukturen, die lange, stabile Peri-
oden aufweisen, die immer wieder von schnellen Ubergingen unterbrochen wer-
den, wihrend denen einzelne Plateaus miteinander verschmelzen. Wir wenden
Methoden der formalen Asymptotik an, um ein System von gewdhnlichen Dif-
ferentialgleichungen herzuleiten, die die Bewegung der Plateaus beschreiben.
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Chapter 1

Introduction

How do predators such as sharks or snakes detect their prey? How can male silk
moths find the females that are willing to mate? How do the white blood cells
in our immune system locate the sites of infection? The answer is always the
same: they are guided by chemical cues from their environment. And whether
we think of the growth of new blood vessels, wound healing or embryogenesis
- many basic processes in our body depend on the ability of cells to orient on
chemical gradients. In this thesis, we will be concerned with the mathematical
modelling of this phenomenon. In particular, we will investigate models aris-
ing if the random component of cell motion is small compared to the active,
directed movement of cells. After a brief introduction on the biological and
mathematical background, we will derive kinetic models for chemotaxis and
investigate their macroscopic limit. In the second half of the thesis, we will
study a macroscopic model for chemotaxis with small diffusion and investigate
the limit of vanishing diffusivity. A more specific introduction into the subject
will be given at the beginning of each chapter.

1.1 Biological background

Several different types of response to chemical stimuli have been classified
(see for instance Fraenkel and Gunn [12]): whereas chemokinesis generally de-
scribes response without a directional component (a classical example are flag-
cllated bacteria, changing their turning frequency according to concentration
changes of the chemical substances in their environment), chemotazis is used
to describe the directed response of an individual to chemical gradients. If the
attractant is an adhesion molecule bound to a substrate, the expression hapto-
taxis is used. However, a straightforward classification is not always possible.
Because all these different mechanisms can lead to the same effects on the popu-
lation level, for instance to aggregation at the site of maximal chemical concen-
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tration, they are sometimes summarized into the term chemosensitive move-
ment (for a more detailed discussion, see Hillen [17]). Nevertheless, the term
chemotazis is still widely used in the literature for all kinds of chemosensitive
responses, and in the following, we will also use the word in this general sense.
One of the best studied creatures dis-
playing chemotactic behaviour is the slime
mold* Dictyostelium discoideum (Dd), one
of the model organisms chosen by the Na-
tional Institutes of Health. The amoeba is
easy to cultivate, has a fast reproduction
rate, and ifs genome contains many genes
that are homologous to those in higher eu-
karyotes. A whole range of molecular bi-
ological tools such as gene knockout or
marker genes can be used with Dd (which
is for instance not possible for end differen-
tiated cells in humans such as neutrophils).
Most importantly, Dd is a fascinating
example of how single cells can develop
into a multicellular organism: Under nor-
Figure 1.1: Two human neu- 1, conditions, the amebae live in the forest
trophils ~ trying to  squeeze g feeding on bacteria. When starved, the
through the pores of a filter in q|q develop the ability to produce and re-
response to a chemoattractant ,.¢ ¢4 the messenger molecule cyclic adeno-
diffusing up from beneath sine monophosphate (cAMP), which also
plays an important role in signal transduc-

tion in the human body. Randomly located cells called pacemakers produce
the chemical in a periodic fashion, and cells around them begin to produce the
chemical themselves, until a negative feedback loop shuts down the produc-
tion again. In consequence, travelling pulses of cAMP in the form of concentric
rings (target patterns) or spirals spread over the cell lawn [1]. Cells move to-
wards the source of the chemical waves and consequently, aggregates of up to
10° cells are formed. Eventually, the aggregates (mound) topple over and be-
come so-called slugs. A slug migrates on the substratum until a suitable place
for the formation of a fruiting-body is found. Differentiation and sorting of
cells already starts during the mound stage, and as the fruiting body is formed,
cells in the forward end of the slug become stalk cells, and cells in the posterior
end become spores. The stalk cells die and form the stalk of the fruiting body,

*Once considered as fungi, slime molds are now counted among the kingdom of protista,
which can be roughly described as unicellular eukaryotes (i.e. in contrast to bacteria, the
cells have a true nucleus).
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(c) Shug (d) Fruiting body

Figure 1.2: Different stages of the life cycle of Dictyostelium discoideum

whereas the spore cells survive inside a spore cap until conditions for survival
are favourable again. Then, the spore cap bursts open, each spore germinates
into an amoeba, and the whole cycle can start anew (Figure 1.2). There also
exists a sexual pathway controlled by chemotaxis, where two amoebae fuse
with each other to form one single, large amoeba (zygote). Other cells are
attracted to its surface by secretion of cAMP, and are endocytosed. When all
surrounding amoebae are ingested, a cellulose wall develops around the greatly
enlarged zygote. The zygote undergoes meiosis and progressive divisions, until
germination takes place and a new generation of amoebae is released.

1.2 Mathematical modelling

Over the last decades, there has been a large number of attempts to describe
chemotaxis mathematically. One of the earliest models for chemotaxis was
introduced by Keller and Segel in 1970. In [27], the authors derive a system of
four coupled reaction-diffusion equations, which is eventually reduced to a sys-
tem of two equations for the cell density o(¢, z) and the chemical concentration
S(t,z), depending on position z € IR" and time ¢ > 0:

St = DsAS-{-ng(Q, S) (12)
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Almost the same equation for the cell density was derived by Patlak [40] in
1953 from a random walk problem. Nevertheless, the above equations have
become mostly known as the Keller-Segel model for chemotaxis. Models based
on this system have been successfully used to describe various phenomena
based on chemotaxis, ranging from pigmentation patterns on fish skins [37] to
embryogenesis [38].

Analytically, especially the case k; (0, S) = xo0, ks = 0— S has been studied
in great detail, and it turned out that for x = const. and space dimension n >
2, solutions of (1.1), (1.2) can become unbounded in finite time. A large effort
has been put into describing the blow-up of solutions and its preconditions -
for a very comprehensive review, see Horstmann [24] and [25]. On the other
hand, there have also been attempts to derive models preventing blow-up:
In Hillen and Painter [21], global existence of solutions of (1.1), (1.2) with
ki(o,S) = pa(o)x(S) and k3 = B(g,S)e — (0, 5)S is proven, where the
functions «(p) and x(S) satisfy

(i) x>0and
(i1)  «(0) > 0, there exists a g > 0 such that a(g) =0
and a(g) >0 for 0 < o < .

In Painter and Hillen [36], the authors derive a chemotaxis model comprising
a chemotactic sensitivity of this form from a master-equation describing a
random walk on a one-dimensional lattice by taking into account the finite
size of cells.

Another approach to modeling chemotaxis comes from kinetic theory. There,
the phase space density f(t,z,v) of cells at position z € IR", moving with ve-
locity v € V C IR™ at time ¢ > 0 is represented by a (linear) kinetic transport
equation:

fi+v -Vof = /V[T(v', o) f = T(v,v)f]dv' = Q(f), (1.3)

with f' := f(t,z,v’). The turning kernel T'(v,v’) describes reorientation of
cells, i.e. velocity changes from v to v' and may depend on the chemoattrac-
tant concentration S or on its derivatives. The integral [ T'(v,v")dv’ := A(v)
describes the rate at which particles choose a new velocity.

An advantage of kinetic over macroscopic models is that information about
the individual behaviour of cells can be directly incorporated into the turning
kernel. Transport models have first been applied to chemotaxis by Stroock
[51], Alt [2] and Othmer et al. [33]. Stroock derived a model describing the
motion of flagellated bacteria, which consists of straight forward movement
with almost constant speed intercepted by short stops, where a new direction
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of movement is chosen (run and tumble). Soll and Wessels [50] showed how
these movement rules can also be applied to the behaviour of slime molds.

In spite of the different approach, diffusion based models and kinetic equa-
tions are closely related. How to obtain a drift-diffusion equation as macro-
scopic limit of a kinetic model has been investigated by several authors, for
instance Patlak [40] or Alt [2]. For a detailed discussion of approaches to this
problem see [34]. This macroscopic limit procedure allows to relate informa-
tion about the movement pattern of individual cells from the kinetic model to
macroscopic quantities such as the chemotactic velocity. In Hillen and Othmer
[20] and [34], the diffusion limit of (1.3) with and without external bias is stud-
ied. Using a parabolic scaling, the authors show that the classical KS-equation
can be obtained in the limit for a given smooth chemoattractant concentration.
A rigorous proof for the case of a nonlinear coupling to an equation for the
chemical is given in Chalub et al. [7].

Finally, we also want to mention hyperbolic models for chemotaxis con-
sisting of a system of a cell conservation equation and a momentum balance
equation. These can also be derived from kinetic transport equations. In Hillen
[19], Cattaneo systems are obtained from a kinetic equation via a moment clo-
sure method. Originally derived in 1948 to describe heat transport with finite
speed [5], the Cattaneo model is based on the assumption that the flux adapts
with a certain rate to changes in the density. In Dolak and Hillen [9], such a
model is used to describe aggregation of amoebae and bacteria. In Filbet et
al. [10], a macroscopic limit is used to derive a mass-momentum system mod-
elling angiogenesis from kinetic equations. In particular, the authors assume
that the leading order turning operator preserves momentum.

In order to illustrate the relation between the different classes of models and
scalings described above, we regard the special case of (1.3) in one space di-
mension, with constant particle speed s, i.e. with discrete velocities v € {+s}.
We assume that the turning kernel is given by T'(s, —s) = p*, T'(—s,8) = u~,
which means that particles moving to the right turn to the left with constant
rate pu*, and left moving particles turn to the right with rate p—.

If we write f(t,z,+s) = u*(t,z) for the density of right/left moving parti-
cles, we obtain the equations

uf +suf = pTuT —ptut, (1.4)
uy —su, = prut —p u".

This is the Goldstein-Kac model for a correlated random walk on the real line
[14], [26].

For the special case uy* = u~ = u, we can immediately write down a
Cattaneo system for the macroscopic density ¢ = ut +«~ and the population
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flux 7 = s(ut — u™) (see for instance Hadeler [15]):

Ji+ 5%, = —2pJ. (1.6)

For more than one space dimension, such a straightforward derivation of a
Cattaneo model from a transport equation is not possible, and moment closure
methods must be used (see above).

In order to derive the macroscopic limit of system (1.4), we introduce the
following scaling of space and time: z — z/e, t — t/c®, with € assumed to be
small and o € IN. System (1.4) then reads

pruT — ptut, (1.7)

= ptut —pu”.

euf + esut
e*u; —esug

As a next step, we carry out a Hilbert expansion of the densities u*,

ut(z,t) = ud(z,t) + euf(z,t) + O(?). (1.8)
Using (1.8) in (1.7), we obtain in the limit ¢ — 0
puy — ptud = 0. (1.9)

The vector (u~, ut) spans the kernel of the linear mapping £ : R? - IR,
L(a,b) = p=b— pta. Let F* be the normalized equilibrium distribution in
velocity space given by

Fr=_—* e

and F~ =

= . with FtT4+F~ =1. 1.10
pt+pe pt+p (1.10)

Then, for any function ¢(z,t) depending only on time and space, the vector
c{z,t)(F*, F7) is in the kernel of £. Therefore, we can define a macroscopic
density go(z,t) such that

uF(z,t) = FEoo(z,t) and u(z,t) + ug (z,t) = oo(z,1). (1.11)

Our aim will now be to derive an equation for this macroscopic density.
We add the two equations in (1.7) and obtain

%00 + £(00jr)e = O(?), (1.12)
where jp is the flow produced by the equilibrium distribution F*,

poo—put

ip=sFt —sF~ =3 )
o pt+p

(1.13)
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If 57 # 0, it can be immediately seen that setting a = 1 is an appropriate
choice for our macroscopic scaling. This scaling is often called hydrodynamic or
hyperbolic scaling. Dividing (1.12) by € and letting ¢ — 0 yields a conservation
cquation for the macroscopic density go(z, t):

00t + (00jF)z = 0. (1.14)

In the case of u* = p~ := pu however, the mean velocity of the equilibrium
distribution is zero, and the above scaling would only give go; = 0. Hence, we
must choose a scaling yielding more information about the ongoing processes
and set o = 2. This type of scaling is called diffusive or parabolic scaling. To
derive an equation for the macroscopic density, we employ the expansion (1.8)
in (1.7) with @ = 2 and compare orders of . From the O(1) terms, we already
deduced equation (1.9). Comparing coefficients of the O(e) terms gives

sug, = pluy —uf), (1.15)
—suy, = puf —ul), (1.16)
and hence,
= 1.17
i = uf = 5t (117)

Comparing the O(e?) terms yields

ua:t—%suf’w = pluy —ug), (1.18)

Ugy — SUT, = p(ud —uy). (1.19)
We add these equations and use (1.17) to obtain the diffusion equation

82

Qot = @QO,zz- (1.20)
Hence, depending whether the mean velocity of the equilibrium distribution
is zero or not, either the diffusion equation (1.20) or the convection equation
(1.14) are the corresponding macroscopic equations.

Going back to the convection equation (1.14), we will now derive a diffusion
term as an higher order correction, which will regularize the solution. For this
purpose, we use an approach known as Chapman-Enskog expansion (see for
instance Cercignani [6]). In contrast to the Hilbert expansion (1.8), u® is
not expanded into a power series of €. Instead, the equations themselves are
cxpanded, and the macroscopic density ¢ can actually depend on € in a complex
way. We decompose u* in this form:

ut(z,t) = F¥o(z,t) + eut(z,t), (1.21)
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where we assume that
ut(z,t) +u (2,t) = o(z, t), (1.22)

which implies
ut(z,t) +uj(z,t) = 0. (1.23)

We introduce x(z,t) = vl (=,t) and obtain
ut(z,t) = F¥o(z,t) £ en(z, t). (1.24)
Using this ansatz in system (1.7) with a = 1 yields

e(Fto + sFTo,) + &%k + skz) = —e(u™ + )k, (1.25)
e(F o1 — sF ;) + € (—ky +8k) = e(u + p)k. (1.26)

As we add the equations (1.25) and (1.26) and divide by €, we obtain
0t + (0JF)e + 26565 = 0, (1.27)
where v, is again given by (1.13). The O(1) terms yield again the convection

equation (1.14). For the higher order term, we need to express x in terms of
0. To this end we use (1.27) in (1.25) and (1.26) and conclude

2utu”
sm—ﬁ:l;—_ygz = —(ut +u7 )k + O(e) (1.28)
Hence,
2sp™ "
= —‘_(/1'4""—/1/_)3016 + 0(6) (1.29)

We use this correction term in (1.27) and neglect quadratic orders of € to find
a drift equation with diffusion correction

. 4s?pt
o0t + (0JF)s = €m9m- (1.30)

The solution of this equation o(x,t) depends on € > 0.

We will come across an equation of this type again in the second part
of this thesis; in the first part, we will be concerned with kinetic transport
models. For biological applications, mostly cases where the mean velocity of
the equilibrium distribution vanishes have been treated in the literature ([20],
[34], [7]). This implies that directed movement, for instance towards a chemical
gradient, is small compared to the unbiased, random motion of cells. In the
next chapter, we will investigate the opposite case. Our motivation is the
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observed movement pattern of amoeboid cells like Dictyostelium discoideum
or leukocytes: once the cells respond to the external field, random motion is
almost completely suppressed. In a transport model, this is reflected by the
fact that the dominating part of the turning kernel depends on the gradient
of the chemoattractant. Analogously to the simple, one-dimensional example
presented here, the macroscopic limit is based on a hyperbolic scaling in this
case and the resulting macroscopic model will be a pure convection equation.
Again, we will apply a Chapman-Enskog expansion to derive a diffusion term
as higher order correction.



Chapter 2

Kinetic models for chemotaxis

The kinetic models derived in this chapter will be based on the assumption
that the turning behaviour of cells is not only influenced by the chemical con-
centration or its spatial gradient, but also by its temporal variation. Whereas
it is known that flagellated bacteria like E. coli are too small to measure
spatial gradients directly and thus decide whether a direction is favourable
or not by sampling information along their cell path, the situation is not so
clear for larger cells such as Dictyostelium discoideum. Although they might
be able to measure spatial gradients along their body axis, there is evidence
that they also employ a spatio-temporal mechanism to orient in gradient fields
[55]), [56]. It has been experimentally shown that slime mold amoebae alter
their movement pattern according to temporal variations of the chemoattrac-
tant as well as to spatial ones [54], [58]. A recent study demonstrated that
human polymorphonuclear leukocytes respond to spatio-temporal variations
of the chemoattractant fMLP remarkably similar to the way Dictyostelium
cells respond to waves of cAMP [13]. Static gradients of chemoattractant in
the body would have to remain steep over large distances for long periods of
time, and although there is no evidence that the signal in the human body
shows temporal variations indeed, it is perceivable that is is a wave-like re-
lay of chemoattractant as found in Dictyostelium that attracts leukocytes to
infection sites over large distances.

In the following section, we present a general kinetic model for cell move-
ment incorporating internal degrees of freedom, coupled with an equation for
the chemoattractant. By a moment expansion procedure this model is reduced
to a kinetic equation for the cell distribution on position-velocity space, cou-
pled with transport equations for the average values of the internal degrees of
freedom. A macroscopic scaling of this system is introduced. In section 2.2,
the macroscopic limit of the kinetic equation is discussed. The assumption
that cells have a primitive form of memory leads to a convection equation as a

11
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macroscopic limit, with a chemotactic velocity that depends on the temporal
derivative of the chemoattractant. This approximation is justified rigorously
for general initial data. Moreover, we formally derive a second order approx-
imation, constructing a regularizing diffusion term by Chapman-Enskog type
arguments.

Although the principal ideas and techniques presented here may be ap-
plied to describe other forms of eukaryotic chemotaxis, we will use the slime
mold Dictyostelium discoideum as an example for our model, and perform
numerical experiments in section 2.3. Here a model with one internal de-
gree of freedom is used, modelling production and relay of cAMP by a simple
activation-inhibition mechanism. Qur numerical results show that our mod-
clling approach has the potential to resolve the so-called chemotactic wave
paradox.

In section 2.4, we translate formal movement rules for cells as proposed by
Dallon and Othmer in [8] to a kinetic equation. In the macroscopic limit, the
evolution of cell density is again described by a convection equation, where the
flux depends on the temporal variation of the signal concentration.

Finally, we conclude this chapter (section 2.5) by putting it into the context
of other attempts for the resolution of the chemotactic wave paradox.

2.1 Kinetic models with internal degrees of
freedom

Let p(t, z, v, ¢) be the phase space density of cells, depending on time ¢, position
z € IR", velocity v € V and an internal variable ¢ € Z C R*. The components
of ¢ are for instance concentrations of chemicals inside the cell. We assume
that inside an individual cell, this variable evolves according to

¢ =n(¢, S(t,2(t), (2.1)

where S(t, 2) is the outer concentration of the chemoattractant and z(t) is the
ccll path. Then the evolution of p(¢, z, v, () is governed by the equation

Pe+v-Vep+ Ve (np) = / [T(v',v)p' = T(v,)pldv' := Q(p).  (2.2)
1%
We assume that the cell movement is not affected by the internal quantities,

whence T'(v,v’) is independent from ¢. In the following, we will be interested
in the position-velocity and, respectively, position densities of cells

f(t,a:,v)z/zp(t,x,v,() d¢, g(t,x)=/vf(t,a:,v) dv, (2.3)
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and in the average values z(t, z) of the internal variables

@)t.) = | [ cot,m0,0)dca, (24)
vJz
Integrating (2.2) with respect to ¢ gives

fe+v- Vo f =Q(f), (2.5)

where we used the boundary condition p(t,z,v,{) = 0 for ( € 9Z. On the
other hand, multiplication of (2.2) by ¢ and integration with respect to ¢ and

v yields
(02)t + Vg /V /Z CupdCdv = /V/an d¢ dv. (2.6)

In order to be able to write the equations (2.5), (2.6) in a self consistent
form, we need closure assumptions for the two integrals. The first one we

approximate by
/ /(Upd( dv =~ z/ vfdv. (2.7)
v/z 1%

This condition is, for instance, fulfilled for distribution functions of the form

p(ta z,v, C) = f(ta z, U)pl(tv €T, C):

which means that the variables v and ¢ are uncorrelated. This is compatible
with our above assumption that the internal variables ¢ have no influence on
cell movement. The second closure relation

LLw«Mwwma (2.8)

will depend on the form of 7.
For the chemoattractant S(t,z) we choose

St = DsAS + v(S, z, 0), (2.9)

the function v(S, z, ¢) describing production and degradation of the chemical
in dependence on the cell density and the inner state of the cells.

We non-dimensionalize the equations (2.5), (2.6) and (2.9) by choosing
a reference time tg, length z¢ and speed vg. Dimensionless quantities are
introduced according to

T =1xpZ, t=1tt, vV =117,
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Ty is a typical value for the size of the turning kernel, and vy is a typical speed
for velocities in V' assumed bounded (since cells can only move with some
maximal speed). We fix the length scale such that zo = wgtg. The quantity
Tovs can be interpreted as turning rate, i.e. the inverse of the mean free run
time 7; = Ty 'vg®. Furthermore, we choose

i(2.9) = 20(2,2), w(si0) = 25(2, L, 2)

to " \z So to \So g0 2o
—/t =z t x t x
S(t.2) = 505 (. =), 2(t,3) = w3 (), ot z) = 000 =, )
00) =55 (1 2), 2t =23(£2), olte) = 0ot 2

We fix the length scale by setting % = Dg. Dropping the bars, the scaled
version of (2.5), (2.6), (2.9) reads

efi+ev-Vpf = / (T, v)f —T(v, V) fldv’  (2.10)
1%

(02)t + Vg - (z/vvfdv) = pn(z,S) (2.11)
Sy = AS+v(S, z,0). (2.12)

Our main scaling assumption is that the dimensionless parameter

s _ VbTs
E = — = ———
to Ds
is small. Also we assume that the scaled functions 7 and v are of moderate
size.

2.2 Cell movement - macroscopic limit

We assume that cells have a form of short memory, allowing them to compare
present chemical concentrations to previous ones and thus to respond to tem-
poral gradients along their paths. The decision whether to change direction
and turn or to continue moving is then based on the concentration profile of
the chemical S a cell experiences. In the limit of an infinitesimal short time
interval for the sampling of information, this means dependence on the direc-
tional derivative S; + v - V.S. Note that this is the correct scaled form of the
directional derivative, due to the hydrodynamic scaling assumption z¢ = vptg
(as opposed to the diffusion scaling g/ = vgtg) guaranteeing that the terms
Sy and v - V.S are of equal importance. We assume that T'(v, v’) is of the form

T(v,v') = @(S; +v-VS), (2.13)
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with ¢(S; + v - VS) being a monotonically decreasing function. Evolution of
the cell density is therefore described by (2.10) with

QUf) = /V[cp(St +0 V) f — p(Si +v-VS)f]dv. (2.14)

We investigate the limit ¢ — 0 in (2.10), with the turning operator given
by (2.14), and subject to initial conditions

ft=0)=f1. (2.15)
For the data, we make the following assumptions:

Assumption 1
The turning kernel ¢ : IR — IR is smooth, monotonically decreasing, and
satisfies

O0<y<e<TI.

Assumption 2
The functions S(t,x) and fi(x,v) are smooth. Besides, fi(z,v) =0 forz ¢ K,
K compact. The set of velocities V is bounded and rotationally symmetric.

Lemma 1

Let the assumption 1 hold. Then, for given S; € IR and VS € IR", the kernel
of the turning operator Q(f) given by (2.14) is one-dimensional and spanned
by the equilibrium distribution

1 dv’
F = A =
() Ap(S, +v-V38) /V o(S, + v -VI)

satisfying F(v) > 0 and f,, F(v)dv = 1. For g € L*(V;dv/F), the equation
Q(f) = g has a unique solution f € L*(V;dv/F) satisfying [, fdv = 0, iff
fv gdv = 0.

Proof. It can be easily checked that the turning operator ) is symmetric on
the space L*(V;dv/F). Then the Fredholm alternative states that there exists
a solution f = Q7!(g) if and only if g is orthogonal to the kernel of @ in the
space L*(V;dv/F). Requiring [, fdv = 0 determines the solution uniquely.
The solution f can also be calculated explicitly, i.e. f = (;I_‘fl)' This solves the
equation Q(f) = g for every constant ¢ = fv @fdv, provided that g satisfies
the solvability condition. The condition fV f dv = 0 then uniquely determines
the constant, ¢ = [, gFdv. o
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We want to admit general initial conditions f;, which means that Q(f;) =0
cannot be assumed to hold. This leads to an initial layer. Introducing a fast
time scale 7 = £, we make the two scale ansatz

flt,z,v) = f(t,z,v) + f'(T,:c,U) , (2.16)

where /‘— is the outer solution and f a layer correction satisfying f (00, z,v) =0.
Both f and f solve the (linear, homogeneous) transport equation (2.10), and
they are only coupled via the initial conditions f(t = 0) + f(r = 0) = f;. For
both contributions, we shall construct asymptotic expansions: f=fo+efi+
O(e?) and f = fo + ef1 + O(e?), satisfying the initial conditions:

fot=0)+ fo(r=0) = f1, (2.17)
At=0)+f(r=0) = 0. (2.18)
Inserting the expansion for the outer solution into (2.10), we obtain
Qfo) = 0 (2.19)
0f o
5 TV Ve fo = Q(f). (2.20)

From the first equation, we get that fo(¢,z,v) = go(t,z)F(v;t,z) where F
depends on (¢, z) through Si(¢,z) and VS(t, z). The solvability condition for
(2.20) implies that the evolution of the macroscopic cell density gp is given by

92 +V - (oouc) =0, u.= / vE dv. (2.21)
ot v

By the rotational symmetry of V, the macroscopic chemotactic velocity u, is
proportional to VS:

1 1 dv
A|VS| v (S +v1|VS]|)
The non-negativity of the chemotactic sensitivity x is a consequence of the
assumption that ¢ is decreasing.

The first order correction is then of the form

- dfo

h=9 ( ot
For the initial layer correction, we make the dependence of the turning operator
on time t = 7 (through S; and V.S) visible by the notation Q(f) = Q(e7)(f)
and get

(2.22)

Y. Vf0> +oF (2.23)

o~ Qo) (224)
O L0 fy = Q) + QU0 (2.25)

or
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where Q¢ denotes the derivative of the operator ) with respect to time. Inte-
gration of (2.24) and (2.25) with respect to v gives

0 . o . .
E/Vfodv—(), E/Vfldv—i-/vv-vzfodv—o, (2.26)

with the consequence

./vfo(T:o /f1 dv—// v-Vifodrdv=0. (2.27)

Initial conditions for the macroscopic densities gg and g are then derived from
(2.17), (2.18). Actually, g; will be chosen independently of time (o1 = 01()):

=0) = ' d 2.28
aolt = 0) / frdv (2.28)
01 = —/v/ v - Vg fodrdv. (2.29)

0

This in turn fixes the initial conditions for the layer corrections:

Jolr =0)=f; — F / fidv (2.30)

filr=0)=—-Q" (%-I—v meo)(t=0)+F/‘//00;-szocl7dv.(2.31)

Now the approximate solution is constructed in several steps. First we consider
the problem (2.21), (2.28) for gy. By assumption 2, the macroscopic chemotac-
tic velocity u, is smooth, and the same holds for the initial datum gg(t = 0),
which also satisfies go(t = 0) € L!(IR"). By the method of characteristics,
(2.21), (2.28) has a smooth solution go € L*°((0, 00), L}(IR™)).

The next step is the construction of foz

Theorem 1
Let the assumptions 1 and 2 hold. Then the problem (2.24),(2.30) has a unique

smooth solution fo satisfying
”fo(T, ' ‘)“LI(IRH;LZ(V)) S CG—KTHfIHLl(IRn;LZ(V)), C, K > 0. (232)

Proof. With py = ¢(t = 0) we define the entropy

1 [ .
=5 / f&podv. (2.33)
|4
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By assumption 1, v/ H is equivalent to the L?(V)-norm. We have
dH N
dr = / Q(0)(fo) fopo dv

= ——/ (foeo — fopo)*dv'du

< ——// fo‘Po f0¢0)2dv’dv
1% 900<P0

dv s 22|V
=—f/—/ﬁ%®$~ﬂJH
v Yo Jv r

The partial derivative g; = Q& of fy satisfies the inhomogeneous version
P g oz g

O

Wi _ Q0)(6) + Q0o (2.34)

of (2.24) with an exponentially decaying inhomogeneity. Exponential decay of
g; and then also of the solution f; of (2.25), (2.31) is proven similarly to the
proof above. Finally, ¢ is computed from (2.29) completing the construction
of the approximate solution.

Theorem 2

Let the assumptions 1 and 2 hold and let T > 0. Let f, fo and gy be the
solutions of the problems (2.10), (2.15); (2.24), (2.30) and, respectively, (2.21),
(2.28) for t < T'. Then there exists a positive constant Cr which depends on
the data such that

sup ||f(t,-,-) — oo(t,-)F(:;t,-) — fo( s )Mlevmrxvy < Cre.

o<t<T
Proof. The proof is based on an estimate of the remainder r = f —(fo+ef1) —
(fo + €f1) solving a problem of the form (2.10), (2.15) with vanishing initial
data and an O(e?)-inhomogeneity in the transport equation. The estimation
of r is as in [42], where a problem without initial layer has been considered. O

The above procedure for computing approximations of the outer solution
is the Hilbert expansion. An alternative approach is the Chapman Enskog
expansion which is based on the decomposition

f(t,z,v) = ) F(t,z;v) + ef*(t, z;v), (2.35)
0 = /fm (2.36)
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of the distribution function. The basic idea is to find approximations of the
equation for g (derived by applying the projection (2.36) to the kinetic equation
(2.10)):

ot + V- (ou. + 8/ vftdv) = 0. (2.37)
v

To determine the O(g) correction term in (2.37), we have to compute f=.
Equation (2.10) yields

Q(f*) =v-V(Fp) — FV - (gu.) + oF; + O(e). (2.38)

Neglecting, the O(g) term, we can compute the lowest order approximation to
ft explicitly:
fo=h1-Vo+ ohs (2.39)
with
Q(h1) = F(v—1u.), Qlhy) =v-VF—FV - u.+ F,

/hidUZO.
v

Inserting this into (2.37) yields the drift-diffusion equation

and

00+ V - (o(uc + euy) —eDVp) =0, (2.40)

where the diffusion tensor D and the correction to the chemotactic velocity
are given by

D=—/v®h1dv, ulz—/vhgdv (2.41)
v v

Lemma 2
The tensor D is symmetric and positive definite.

Proof. We write the diffusion tensor D as
D= —/(v—uc)®h1dv: —/ Q) ®m
v 1% F

Using the entropy equality

/v%d” 2A// F‘F F'%)d vdd,  (242)

the symmetry of D immediately follows and we can estimate the quadratic

form 2'"Dz by
-hi)z-h
rpem [ etz "
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The equality sign only applies in the case when z - h; is an equilibrium distri-
bution, i.e. Q(z-h1) = F(v—1u.)-z=0for all v € V. As long as the velocity
space V consists of more than one velocity vector, this never happens, and D
is positive definite. m|

The rotational symmetry of the problem is broken because there is one
distinguished direction, namely the direction of the chemical gradient. Thus,
the tensor D is in general anisotropic and D = PDP~!, with

= _ d1 0
b= (% ur,) (2.44)

and P is an orthogonal matrix whose first column is %. IfVS =0,Dis

isotropic, i.e. dy = ds.

2.3 Application to Dictyostelium discoideum

When starving, the slime mold amoeba Dictyostelium discoideum migrates
towards the source of waves of the chemoattractant cAMP (see Introduction).
This peculiar behaviour gives rise to the so-called chemotactic wave paradox:
If the chemotactic response of cells was only determined by the gradient of the
chemoattractant, cells would move in direction of the source in the wave front
(positive spatial gradient), but change direction and follow the wave once they
are in the wave back (negative spatial gradient). Little or no aggregation of
cells should be expected. This is clearly not what happens: it is known that
cells move in the wave front, but remain more or less stationary in the wave
back [49], see Fig. 2.1.

Experiments where Dd cells were stimulated with shifting, spatially homo-
geneous concentrations of cAMP imitating the temporal dynamics of a natural
wave showed that in the increasing phase, turning is suppressed and cells move
in a directionally persistent way, whereas translocation of cells is dramatically
reduced when the concentration is decreasing (see e.g. [58]). In contrast to
this, experiments showed that constant concentrations of cAMP are not able
to stimulate motility, and that high concentrations actually suppress cell move-
ment.

In the following, we focus on the early stages of the cell cycle, i.e. the
formation of aggregates. We present a kinetic model where the turning ker-
nel describes qualitatively the cell behaviour described above, and solve the
corresponding macroscopic model numerically.
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Figure 2.1: The chemotactic wave paradox [49]

2.3.1 Model equations

Since we are mainly concerned with modeling cell movement and also in view of
the numerical experiments we will carry out later, we confine ourselves to using
a very simple model for cAMP production. It is in fact a further simplification
of a toy model proposed by Othmer and Schaap [35]. Although this model has
no concrete biochemical background, it captures the essential features of the
system. In the framework of the general model presented in section 2.1, the
function S(t,z) now represents the cAMP concentration. We postulate the
existence of an internal chemical with concentration w, which is activated by
external cAMP and inhibited by a second internal chemical with concentration
¢:

w = (wp + h(S) — ()+ (2.45)

1

with h(S) = 135 describing transduction of the internal signal. Our mod-
ifications of the toy model from [35] are in this equation. The first one is
the replacement of an ODE for w by the quasi-steady approximation (2.45).
The second is the cutoff by taking the positive part, allowing to interpret w

an a chemical concentration. The dynamics of the second chemical aims at
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restoring the equilibrium value wy of w (adaption):

: 1

E = (¢,5) = —(h(S) - O). (2.46)
Finally, we assume that the production of external cAMP by the cell is trig-
gered by the first chemical:

S = ow — g(S), (2.47)

where g(S) = %S (1+ 3.5;) models degradation of S. The saturation of h(S) as
S — oo and the quadratic term in g(.S) both stabilize the system. One of these
two assumptions would be sufficient for this purpose, but we keep them both.
After elimination of w by (2.45), one internal variable { € Z = [0, 00) remains.
By the linearity of n(¢, S) with respect to ¢, the moment closure relation (2.8)
is an equality with 77 = n. The above equations are in dimensionless form. The
reference values zy, Sp, 0o (unspecified in section 2.1) have been chosen such
that the number of parameters is reduced.

Our final Dd model is a macroscopic approximation of (2.10)-(2.12):
oo +V-J =0 (2.48)
(02);+V-(Jz) = p——— (2.49)
Sy = AS+ [A(S) -2+ w0]+g —g(5) (2.50)

with

h(S) = 5 and g(S) = ;1—5(1 + 5 (2.51)

1+S Sy )

As a simplification of the macroscopic cell flux in (2.40) derived by the Chap-

man Enskog expansion, we restrict to a constant, isotropic diffusivity D and

neglect the correction eu; to the chemotactic velocity. Thus, the cell flux J is
given by

J = ox(51,|VS|)VS —eDVo. (2.52)

In correspondence to a typical experimental setup (cells in petri dishes), we
consider a two dimensional position domain Q € IR2. Along the boundary of
Q, we impose zero flux conditions:

VS-v=J-v=0 on o1, (2.53)

with the normal vector v. An initial-boundary value problem is completed by
prescribing initial data for p, z and S.



CHAPTER 2. KINETIC MODELS FOR CHEMOTAXIS 23

2.3.2 Dynamics of the chemoattractant

To begin with, we neglect cell movement and chemoattractant diffusion and
investigate spatially homogeneous solutions of (2.48) - (2.50) with J = 0:

5 = @ (2.54)
Se = [W(S) =z +wo],0— g(5). (2.55)

Depending on the choice of parameters, the system displays the important
properties of the signal production and relay mechanism of Dd.

For wy > 0, the steady state (2e0, Soo), uniquely defined by ¢(S) = owy,
Zoo = h{Sco), is unstable iff ph'(Se) — ¢'(Se) — = > 0, which we assume in
the following. By the simple observations ’

z =2 0 for z2=0,

zz < 0 for z2>h(9), (2.56)
S > 0 for §S=0,

S, < [h(S) + w0]+g —g(S) <0 for S large enough,

rectangles of the form [0, A(S)] x [0, S] in the (S, z)-plane contain the unstable
steady state (Se,200) and are positively invariant for (2.54), (2.55), if S is
chosen large enough. Consequently, a stable periodic limit cycle exists by the
Poincaré-Bendixon theorem (sce the phase portrait, Fig. 2.2). For small values
of wy, the steady state is close to the origin and the limit cycle takes the form of
pulses whose separation in time can be regulated by the choice of wy (Fig. 2.3
left). This corresponds to the way pacemaker cells secrete the chemical in
a periodic fashion. With the same set of parameters, but without constant
production of cAMP (i.e., wy = 0), a non-zero initial condition for S elicits
only one single pulse of cAMP, as can be observed in ordinary, relay-competent
cells (Fig. 2.3 right).

For further numerical experiments, we will hence assume that there are
two different types of cell densities: ordinary cells that do not produce cAMP
without external stimulation and ”pacemaker” cells with a nonzero rate of
constant production. Both cell types contribute to the cAMP dynamics, and
both respond to chemical gradients. Consequently, we also have to calculate
the values of the internal variable z separately for pacemakers and ordinary
cells. We put small discs of pacemaker cells inside the domain, surrounded by
ordinary, relay-competent cells. Still neglecting cell movement, we solve the
equations (2.49) and (2.50) with J = 0, ¢ = const. numerically in a rectangular
domain using an operator splitting scheme: first, the reaction terms are solved
semi-implicitly, then the diffusion term in (2.50) is integrated using a standard
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Figure 2.2: Phaseportrait for S and z
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Figure 2.3: Concentration of S (dark) and z (light) as a function of time.
Parameter values: Sy = 1.4, 7¢ = 0.4, 7, = 1.0, wp = 107° (left), wy = 0.0

(right)
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Figure 2.4: Time sequence of cAMP waves on a square domain. Parameter
values: 51 = 14, 7¢ = 04, 7, = 1.0, wg = 0 for ordinary cells. For pacemaker
cells, wg = 1072,

ADI-method, which allows us to take larger time steps. Fig. 2.4 shows the
time evolution of the cAMP concentration. Pacemaker cells are located at two
different sites. From there, wavefronts are initiated and spread over the lawn
of relay-competent cells.

2.3.3 Cell Aggregation

Before we can test the full macroscopic model numerically, we have to specify
the turning kernel of the kinetic model and calculate the chemotactic velocity
according to (2.22). In the following, we will assume that cells move with
constant (scaled) speed 1. The velocity space is then given by V = {v € IR?:
lu| = 1}. So far, we have not made any restrictions on ¢(S; + v - V.S) other
than that it has to be a bounded, positive and decreasing function. In the
limit of vanishing V.S, the chemotactic sensitivity is given by

_ 95 / 2
x(St, 0) (50 Vvldv. (2.57)
From the behaviour of cells moving towards a natural source of cAMP, we
know that this expression has to grow in S;. This gives another condition on
the turning kernel ¢, namely that —%/ has to be an increasing function.

In Rivero et al. [46], a one-dimensional model for bacterial chemotaxis is
proposed. There, the probability per unit time for a cell changing its direction
from right-going to left-going and vice versa is proportional to exp(— or 5 —— (S
vS,;)), respectively, with ¢y and ¢; constant. It can be derived by assum-
ing that the logarithm of the mean run time of bacteria is proportional to
the rate of change of the receptors binding the chemoattractant. If we take
up that idea and assume that for two space dimensions, ¢(S; + v - VS) =
exp(— (cﬁs_)?(st + v - VYS)), we see that in this case, —5"— is constant with re-
spect to S; and that the chemotactic sensitivity x (S, ) does not depend on
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St.

For the numerical simulations presented here, we choose the function

St—i—'U-VS-al)

(p(S¢+U-VS')=l—tanh< >
2

(2.58)
with oy, @y constants and a > 0. It is crucial for resolving the chemotactic
wave paradox that this choice of ¢ satisfies the requirement that % is in-
creasing. Apart from that it is bounded, i.e., the mean run time between two
turning events is bounded from below. Computing the chemotactic velocity u,
according to (2.22), we obtain for the chemotactic sensitivity

e%(st_al)Bl (2|VS|)

a2

VS1[1 + e o) gy (A2 |

a2

(2.59)

where By and B; are the modified Bessel functions of the first kind of order
zero and one, respectively. For V.S — 0, we have

1

X(Stvo) = )
@y (1 + e_“%(s‘_‘n))

(2.60)

which is an increasing function of S;.

We solve the full system (2.48)-(2.52) numerically by using a time-explicit
scheme for (2.48) with upwinding for the transport term. The transport of z
along with the cells is treated in a straightforward way, the kinetics of z and
S are computed like described before. Additionally, we update the chemotac-
tic sensitivity at every time step according to the new concentration of the
chemoattractant. Fig. 2.5 shows the evolution of the cell density p. Cells
move towards the source of the chemoattractant waves initiated by pacemaker
cells located at two sites in the domain. The dependence of the chemotactic
sensitivity on the temporal variation of the chemical prevents them to follow
the waves and leads to the formation of two distinct cell aggregates.

In fig. 2.6, we compare, for a different set of parameters, the numerical
solution of (2.48)-(2.52) with the chemotactic sensitivity according to (2.59)
to the case of a constant sensitivity. The centre shows the cell density g
after about 20 waves of cAMP (one of which is shown in the left picture)
have passed. On the right, the solution for identical parameter values, but
a constant chemotactic sensitivity is shown. No significant aggregation effect
can be observed. Fig. 2.7 compares the chemotactic sensitivities and the cell
fluxes for the wave profile shown on the left in both cases (dark for x = const.,
light for x given by (2.59)). The chemoattractant wave is moving to the left.
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- <

Figure 2.5: Numerical solution of (2.48)-(2.50) with the chemotactic sensitivity
given by (2.59) at three different time levels. Parameter values for chemical
pathway like for fig. 2.4, and additionally eD = 0.05, cc; = 0.9, as = 0.2.

Although the total flux is larger for a constant sensitivity, cells reverse their
direction at the back of the wave, whereas the flux in the non-constant case
only points into the direction of the aggregation centre. This eventually leads
to the formation of a cell aggregate, as shown in fig. 2.6.

2.4 A kinetic model based on formal move-
ment rules

2.4.1 Cell movement

In Dallon and Othmer [8], a discrete cell model for aggregation of Dd is pre-
sented. The chemical dynamics are described by the Tang-Othmer model [52],
[63], consisting of four ordinary differential equations for chemical concentra-
tions inside the cells and a diffusion-reaction equation for the outer cAMP-
concentration. The movement of cells is determined by formal rules. We want
to translate their movement rules into a transport equation. Two sets of rules
are discussed. The first one reads:

1. A cell moves if the temporal derivative of the extracellular cAMP con-
centration is above a certain threshold.

2. All cells move for a fixed duration in the direction of the cAMP gradient
at the cell when the motion was started.

3. The cells move with a fixed speed, sg.

In a second set of rules, the fixed duration of movement has been abandoned
and the cells move only if the concentration of one of the internal chemicals
is above a threshold. The authors do not incorporate random migration or
diffusion into their model, arguing that this component is suppressed when
the cells receive a super threshold chemotactic signal.
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Figure 2.6: Numerical solution of system (2.48)-(2.50) (see text). Parameter
values for chemical pathway like in fig. 3.6 and additionally ¢4 = 30, €D =
0005, = 02, Qg = 0.9.

Figure 2.7: Sideview of a cAMP wave traveling to the left, the corresponding
chemotactic sensitivities and the cell fluxes in x-direction (light for x given by
(2.59), dark for x = const.)

To describe these rules by a continuum model, we split the distribution
of cells into two parts: the density r(¢,z) of resting cells and the distribution
density f(z,v,t) of cells moving with velocity v € Sy = {v : |[v| = so}. We
state that the evolution of f(z,v,t) is given by

fot vV =¢(S)8(v —ve)r — 9(S,)f = Qf,7). (2.61)

The function ¢(S;) > 0 is monotonically increasing: the bigger the temporal
derivative of S becomes, the more cells start moving. Assuming that cells
can only move with constant speed sg, we define the microscopic chemotactic
velocity v, by v, = sol—g—g—l. The delta function ensures that cells move only in
the direction of the chemical gradient. The function ¥(S;) > 0 is decreasing

and makes the cells stop again. The density of resting cells is described by

re=— [ Q(fir)dv=1(S) | fdv—¢(Se)r, (2.62)

So So
where dv denotes the surface measure along the sphere S;. In a way, the
equations are a combination of the movement rules described above: duration
of movement is not fixed, but depends on the temporal variation of .S, instead
of an arbitrary internal variable. Note that this model can be put in the general

form (1.3) with V = Sy U {0} and
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T(v,v') = 0 for v,v’ € Sy,
T(v,0) = (S) for v € Sy,
T0,v) = ¢(S)o(v—v.) forwve Sp.

In contrast to the turning kernel from section 2.2, this kernel does not fulfill
the assumption 1.
Scaling the equations like in section 2.1 yields

efe+ev-Vf = ¢(5)6(v — ve)r —P(Sh) f (2.63)

and
ery =— | Q(f,7)dv. (2.64)
So

2.4.2 Formal Limit

In this section, we investigate the formal limit € — 0 of (2.63) and (2.64). In
[18], a similar model, considering also death and birth processes is introduced,
and its diffusion limit is investigated.

Here, the macroscopic density o(t, z) is given by

o=r+ [ fdv (2.65)
So

In the limit ¢ — 0, Q(feq,7) = 0 must hold. Obviously, there is a one-
dimensional set of equilibrium distributions, parametrized by r., and satisfying

feq = g"'eqa(v - Uc)' (266)

Integrating (2.63) with respect to v, adding (2.64) and dividing by ¢ yields the
convection equation

0+ V- (oug) =0 (2.67)

with the macroscopic chemotactic velocity being

¢ Ue = 4 VS . (2.68)
(6 + ) (¢+¥) VS|
In spite of the differences to our first kinetic model, the approximating equation
for the macroscopic density is, in lowest order, again a convection equation.
Importantly, the chemotactic velocity depends in both cases on the temporal
derivative of S. Given that the functions ¢ and ¥ are increasing and decreas-
ing in Sy, respectively, the macroscopic chemotactic velocity here is larger for

Ue =
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positive values of the temporal derivative than for negative ones. Exposed to a
wave of cAMP, the cells would naturally be prevented from following the wave
back, which corresponds to the results of the discrete model in [8].

The model (2.67), (2.68) has to be handled with care, since the chemotactic
velocity is discontinuous at stationary points of S. This leads to immediate cell
concentration at maxima of S and to total depletion of cells around minima of
S (see [43] for a theory of transport equations with discontinuous coefficients).

2.5 Conclusion

There already is a large history of modelling for Dd, and possible resolutions to
the chemotactic wave paradox have been considered in mathematical models
previously. A simple model based on an inhibitory mechanism is introduced in
Rappel et al. {44]. The authors assume that in the presence of a cAMP wave,
an intracellular, rapidly diffusing messenger substance is produced, which leads
to the establishment of cell polarity. This assymetry between the front and
the back of the cell might inhibit a directional change and thus prevent the
cells from following the back of the wave.

In Hofer et al. [22], a modification of the Keller-Segel model considering
adaption of the cellular response is presented. If the chemotactic sensitivity
is proportional to the fraction of active receptors, cells get desensitized at the
back of the wave, which is another possible resolution to the chemotactic wave
paradox. In [23], the authors combine their model with the Martiel-Goldbeter
model equations [30] for cAMP dynamics. It is shown numerically that their
assumptions on the chemotactic sensitivity lead to cell aggregation, and the
resulting patterns are investigated analytically.

Desensitation of cells has also been built into the discrete cell model by
Dallon and Othmer (8] introduced in section 2.4. A theoretical analysis of the
signal seen by the cells, again suggesting a mechanism based on space- and
time-dependent intracellular gradients is discussed in [32].

In spite of the large effort that has been put into understanding the intracel-
lular pathways and mechanisms in Dd both experimentally and theoretically,
the whole machinery is still not completely understood and for other cell types
even less is known. Although Dd can serve as a model organism up to some
extent, chemotaxis models that are not based on specific knowledge concern-
ing the internal dynamics are relevant. The kinetic models presented in this
chapter are only based on the movement patterns of cells and the observation
that slime molds seem to be able to assess the direction of a temporal gradi-
ent. Nevertheless, it turns out that our assumptions on the turning kernel are
adequate to resolve the chemotactic wave paradox.



Chapter 3

The Keller-Segel model with
small diffusivity

Motivated by the results from the last chapter, we investigate a macroscopic
model for chemotaxis with small cell diffusivity. More precisely, we consider
(1.1), (1.2) in one space dimension,

0t + (x(0)0Sz)s = Dsa, (3.1)

with z € (0, L) and ¢t > 0. The diffusion D is assumed to be constant and the
chemotactic sensitivity x(o) to be of the form

x(e) = xo <1 - g,fax) , (32)

the maximal cell density gm.. and xo being positive constants. Thus, the
chemotactic response of the cells is shut off when a maximal density is reached.
The evolution of the chemoattractant S is described by

Sy = BS — ao. (3.3)

This elliptic equation, instead of the more frequently used parabolic equation,
is appropriate if we assume that diffusion of the chemoattractant is large in
relation to the characteristic time and length scales of the problem.

We non-dimensionalize the equations (3.1) and (3.3) by choosing reference
values for time, length, cell density and the chemical concentration, respec-
tively:

- 1 : 1 g — Xomaz
0= 7> 0= —""""> 00 = Omaxzx, 0= .
\/E AX00maz :6

By introducing the dimensionless quantities
x —_ t _
IT=—, t=—, §=£ and S = —
To to 0o So
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and immediately dropping the bars, we obtain the non-dimensionalized system

ot + (Q(l - Q)Sz:)a: = EQzx (34)
Sex = S—0o. (3.5)

The only remaining dimensionless parameter is now

Dp

E= ——.
QX00max

and in the following, we will be concerned with ¢ <« 1. The initial condition
is given by
o(z,0) = or. (3.6)

We choose homogeneous Neumann boundary conditions, i.e.
0:(0,t) = 0z(L,t) =0, Sz(0,t) = S(L,t) =0. (3.7)

In the next section, we will analyze the limit € — 0 of system (3.4), (3.5).
By deriving estimates which are uniformly valid for ¢ > 0, we will, by a
compactness argument, show convergence of ¢ and S to entropy solutions of
the corresponding hyperbolic system,

with
5.(0,t) = S,(L,t) =0 (3.10)

and subject to the initial condition
o(z,0) = or. (3.11)

As a consequence of (3.10), the characteristics of (3.8) are parallel to the
boundary and no boundary conditions for g are needed.

In section 3.2, we will study the long time behaviour of solutions of both
the hyperbolic and the parabolic system. In the latter, the formation of so-
called pseudo-stationary steady states can be observed. We will use formal
asymptotics to derive a system of ordinary differential equations to describe
the movement of these patterns. Finally, in section 3.3, we will investigate the
long-time behaviour of solutions numerically.
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3.1 Convergence of Solutions

In this section, we investigate the limit ¢ — 0 in (3.4), (3.5), (3.6), (3.7). A
similar problem from semiconductor physics is considered in Markowich and
Szmolyan [29]. There, however, the non-linearity of the flux is only due to a
coupling with an electric field (the equivalent to the chemical concentration
here), and the formation of shocks in the hyperbolic problem is not observed.
The equations (3.4), (3.5) can be seen as a special case of the system
analyzed in Hillen and Painter [21] (in particular, parabolic instead of elliptic
equations for S are treated in [21]). The authors show the existence of an
invariant region for (p,S) in IR? and thus prove global existence of smooth
solutions. In our case, the corresponding proof will be rather straightforward.
We make the following assumption on the initial data or(z) = o(z, 0):

(A1) or € WHH0,L), 0< gy <1, uniformly in €.

Theorem 3
Let assumption (A1) hold. Then there exists a unique, global, smooth solution
of (34), (3.5), (3.6), (3.7) satisfying

L L
0 < o), S(z,£) <1 and / olz, t) dz = / or(z) dz (3.12)
0 0
and
S € L™((0, 00); W2>(0, L)), (3.13)
uniformly in € as € — Q.

Proof. Local existence of smooth solutions can be shown by standard tech-
niques (see for instance [39]). Then global existence follows from a comparison
principle: writing (3.4) as

o + (2Q - 1)SZQIE + 9(1 - Q)(S - Q) = €0z,

it can be immediately seen that o = 0 and p = 1 are lower and upper sclutions,
respectively. The bounds for S are an obvious consequence of (3.5) and the
maximum principle. We continue with estimates for the derivatives of p.

Lemma 3
Let assumption (A1) hold. Then the solution of (3.4)-(3.7) satisfies

0 € L2.((0,00); WH(0, L)), uniformly in €.
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Proof. Differentiation of (3.4) with respect to z yields
0wt + ((1 = 20055z + 0(1 — 0)Suz)z = €02z (3.14)

We define an approximation of the sign function by o5(z) = 0(2/6),0 < d < 1,
with o smooth, increasing, 0(0) = 0 and o(z) = sign z for |z| > 2zp. Then, with
abss(z) := [} 05(£)d€, the convergence of abss(2) to |z] as § — 0 is uniform in
z € IR. Multiplying (3.14) with o5(g,) and integrating with respect to z yields

/0. U(S(Q:E)Q:vt dzr + /0 U5(Qz)(@z8m(1 h 2@))1: dz

L L
T /0 o5(0s)(e(1 = 0)(S — @))adz = ¢ /0 05(02) 0ses da.
(3.15)

We integrate (3.15) by parts. The boundary terms vanish and we obtain

d [*

L
E absé(gw) dr — / U:S(Qz)gzg:z::csa:(l - 2-9) dz
0 0

. 5 (3.16)
+ / o5(0a)(e(1 — 0)(S — 0))e dz = —e /O o(0s)et, dz < 0.

The function f5(z) = os(2)z — abss(z) satisfies fj(z) = o5(2)z and converges
to 0 uniformly in z € IR. We integrate the second term in (3.16) by parts,
which gives
d L L
G absstede <= | file)(S:1 — 20))ada
0

dt Jo (3.17)

L
- /0 o5(es)(e(1 — 0)(S — 0))s da.

The last term can be estimated by

L L
- / o5(e:)(e(1 ~ 0)(S — 0))e d = — / o5(0s)e(l — 0)Sa do

L L
- / 05(0z)0:(30% — 2008+ 1)+ S)Ydz <1 + cz/ loz| dz.
0 0

In the limit § — 0, the first term of the right hand side of (3.17) vanishes and
we obtain

d L L
E/ |0z dx < ¢ + c2/ |0z|dz. (3.18)
0 0

The assertion of lemma 3 now follows from the Gronwall inequality. m]
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Lemma 4
Let (A1) hold. Then the solution of (3.4)-(3.7) satisfies

VE0z, Sut € L2, ((0,00) x [0, L]), uniformly in .

Proof. We write (3.4) as

Ot = (691: - Q(l - Q)Sz)m (319)
Multiplication by ¢ and integration with respect to z leads to

1d

L L
57 Q dz +s/ o2dz = / o(1 — 0)S; 0, dz. (3.20)
0 0

Since the integrand in the last term is in L*((0, L)) uniformly in ¢ and € by
the previous result, we obtain the boundedness of \/eg, by integration with
respect to t. As a consequence, the flux density J = (1 — 0)S, — €0, is also
uniformly bounded in L% ((0, 00) x [0, L}). Differentiating equation (3.5) with
respect to x and t and using g; + J, = 0, we obtain

Sa;a::l:t - S:vt = J:z:a:

Thus, Sz = (02 — 1)7192J. Since the expression on the right hand side is a
bounded operator applied to a function in L2 _((0,00) x [0, L]), the proof is
complete. O

Theorem 4
Let the assumption (A1) hold, (g, S) be a solution of (3.4) - (3.7), and T > 0.
Then, as € — 0 (restricting to subsequences),

o — ¢ in C([0,T); L*((0,L))) and S — S in C([0,T);C*([0,L])). (3.21)

The limit (p,S) € L®((0,T); BV((0,L)) x W2=((0, L))) solves (3.8), (3.9),
(3.10), where gy € BV((0, L)) is an accumulation point of o;. Moreover, g is
an entropy solution of (3 8) ie.

1(8)e + (¥(8)Sz)a + (8(1 — 2)7'(2) — ¥(2)) (S - 8) < 0 (3.22)
holds in the weak sense for every smooth, convex n and with ¥'(8) = (1 —
20)7'(2).

Remark: Note that the entropy inequality does not give rise to a decaying
entropy functional.
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Proof. The boundedness of the flux density (proof of lemma 4) gives g, €
L?((0,T); H71((0, L)). Together with lemma 3 this implies that g is in a com-
pact set in C ([0, T]; L*((0, L))) (see Simon [47]). From theorem 3, lemma 4
and an anisotropic generalization of the Sobolev embedding of W? in CO1—7/7,
p > n (see Haskovec and Schmeiser [16]), it follows that S, is uniformly
bounded in C%¥/3([0,T] x ), T > 0. An application of the Arzela-Ascoli
theorem concludes the proof of (3.21). The strong convergence of ¢ and S,
allows to pass to the limit in the weak formulation of (3.4)-(3.7) giving the
weak formulation of (3.8)-(3.10) for 5 and S. The entropy inequality (3.22)
follows analogously. O

3.2 Asymptotic behaviour of solutions

3.2.1 Long-time behaviour of the hyperbolic system

In this section, we investigate the stability and the asymptotic behaviour of
entropy solutions of the hyperbolic system. Stationary solutions of (3.8), (3.9),
(3.10) satisfy

o(1-2)8: = 0 (3.23)

TTx S_@ (324)

|

It can be immediately seen that § = S = const is a solution.

Lemma 5 ~
The constant solution, g = S = ', where 0 < m < L is the total mass, of
system (3.8), (3.9), (3.10) is unstable.

Proof. We multiply (3.8) by S and differentiate (3.9) with respect to ¢ to
obtain

1d L _ _ L _

——/ (52+53)dx=/ o(1 — p)Sidx. (3.25)
2dt J, 0
For small non constant perturbations, the right hand side of this equation is
positive V ¢, hence fOL(5'2 + S2)dz is increasing in time. We rearrange this
integral by writing

[ sie = [(2r5-2) 4 stas 526
2

= Tz [R5 Dars [([(5-7) 4 as
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Since the total mass is conserved, we consider only perturbations with mass 0.
Thus, we have fOL Sdr = fOL odz = m V t, and the second term on the right
hand side vanishes. Hence,

2

i [(#+8)m="",

which is only achieved for S = 7. As the integral on the left hand side is

increasing in time, lemma 5 follows O
Lemma 6 B
Ast — oo, p(1 — 5)S? — 0 in the following sense:
oo pL _ .
/ / o(1 — 9)S2dz dt === 0. (3.27)
T J0
Proof. Integration of (3.25) from ¢ = 0 to oo shows that
o pL _
/ / o(1 — 9)S2dzdt < oo, (3.28)
o Jo
which implies the assertion. O

From this, and the steady state equations (3.23), (3.24), we expect convergence
to piecewise constant steady states, with g = 0, 8 = 1 or S, = 0. Going
back to the time-dependent problem (3.8), (3.9) and applying the method of
characteristics, we find that along characteristics given by & = (1 — 29)S.,
0 evolves according to p = (g — S)a(1 — p). It immediately follows that
0 = S = const, with 0 < const < 1, is unstable. If 5 gets sufficiently small
such that S > g, then § = 0 is attracting, and a similar argument holds for
0 = 1. Hence, we expect solutions to approach (as ¢ — oo) functions of the
form

_ _J1 z € P:=(zok-1,22%), 1<k<N
Oo() = { 0 zeZ:=(0,L\P (3.29)
with 0 < 2y < 3 < ... < 29y < L and
5-'oo,ar:ar: = 500 — Ooos goo,;z; =0 at zz=0,L. (330)

Clearly, not all possible stationary solutions g, are indeed entropy solu-
tions. In order to derive an entropy condition, we consider a stationary solution

of the form
_ 0 r<a
Qoo = { 1 T > a, (3.31)
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for some 0 < a < L. Then, the entropy inequality (3.22) becomes

(¥(8s0)So02)s < ¥(Boo0) (S0 — Bso)- (3.32)

We multiply (3.32) by a smooth testfunction ¢(x,t) chosen such that as k —
00, @ approaches a function that is 1 in the interval (a — ¢,a + ¢) and zero
everywhere else. Integrating (3.32) by parts and letting &k — co yields

a+e
R N S R A (O [CEF PR CE D)

T=a+t¢e
We specify the entropy flux by ¥(g.) = &;& — 2%5& (this corresponds to choosing

the entropy 7(fs) = ézﬂ) Then, if S, .(a) # 0, we let € — 0 in (3.33) to
obtain the inequality Seo(a) > 0. Similarly, considering a stationary solution
000 With a jump from 1 to 0 leads to the inequality S'oo,m(a) < 0.

If Seoz(a) = 0, we use the Taylor expansion S’oo,z(a te)= :i:S'oo,m(a:h)s +
O(e?) in equation (3.33). Dividing by € yields, after using (3.9) and letting
€ — 0, the relation 1 — S(a) < 0. Obviously, this inequality can never be
fulfilled, and hence, a jump of § is not allowed if S, = 0 at the jump
location. Summarizing these results, it follows that for an arbitrary number
of jumps of de, the asymptotic solution S., has to satisfy

(=1)"Seoz(x:) <0, 1<i<2N. (3.34)

Furthermore, it follows from mass conservation that

N

L
Z(CC% — ZTog—1) = / ordx.
0

k=1

Next, we investigate the stability of the stationary solution (ges, Seo) With
respect to a particular class of perturbations. We introduce the initial data

~ N 1+ EU,[(.’E) x € (IEQk_l + Efgk_l(O), Tog + Eﬁgk(O)) = Ik(O)
or(z) = ‘
eur(x) else,
(3.35)
where u; is a piecewise smooth function and |e| < 1. Then, solutions of (3.8),
(3.9) have jumps at z; + &(t), and

o -{ Lm0 VO e

The Rankine-Hugoniot jump condition reads

e&lo] = [8(1 — 2)S,

r=x;+€e&;
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which in leading order yields
&(t) = — (u(zi+, t) + u(@i—, 1)) Sco(®s).
Using (3.36) in (3.8), it follows that u(z,t) approximately satisfies

U+ (USeoz): = 0 in Z.

By the method of characteristics, we derive
&= —S8ps U= ugoo,m =u(Se—1) inP

T = Sooz; U= —USoozz=—USe in 2.

Since Sy, is concave in P and convex in Z, exactly one extremum z, +} exists
between x; and z;.;. All of the characteristics except those starting at Tiyl
go into one of the z;, and u decays along characteristics. The length of the
kth plateau for t — oo is given by

I(Ix(00)) = 1(1x(0)) + 6/000 (é% - é?k—l) dt

— (o) +< [ T (o) (@2 t) — (uSaos) (226 —)

(uSooz Top—1+) + (USooz)(-’L’zk 1—)]dt

T2k+1/2 _
=1(Ix(0)) —-e/ / (S0 z) d:Ldt+€/ / (USeo,z)sdzdt
T2k—1 B
+E/ / Seoz)zdxdt
Lok~ 3/2

T2k 00 T2k41/2 00 T2k-—-1 [e’S)
=1(1x(0)) — 5/ u' da;—s/ U d;z:—s/ ul dz
Top—y =0 Tok t=0 @ak—asz 00
Since u == 0, we obtain
T2k+1/2

T2k—-3/2

Thus, as { — oo, each plateau gets all the mass initially distributed between
the neighbouring minima of S,,. We can interpret this as a neutral stability
of the N plateau steady state with respect to perturbations of the type (3.35).
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Figure 3.1: Temporal evolution of the cell density g, starting from random
initial data g; € [0.3,0.31] and with L = 1.

In Fig. 3.1 and 3.2, we solved the problem (3.8) - (3.10) numerically. At each
time step, first the new chemical concentration is calculated from the old cell
density, then the cell density is updated using an upwind method. In Fig. 3.1,
we can observe the formation of shocks and rarefaction waves, until, in the last
picture, the stationary state is reached and no further movement of the plateaus
can be observed. In Fig. 3.2, the corresponding chemical concentration S is
shown. Note that as discussed above, the chemical follows the course of the
cell density g, even in the case of the slim plateau on the right side of the
domain.

3.2.2 Long-time behaviour of the parabolic system

In this section, we will be concerned with the stability and the asymptotic
behaviour of solutions of the parabolic system. Now, stationary solutions are
given by

o(1-0)S; —eg. = 0 (3.38)
Szz = S - g- (3-39)
Typically, either stationary solutions themselves or the solutions together with

their reflection with respect to one of the boundaries are periodic. In Popatov
and Hillen [41], the long-time behaviour of a similar system of equations is
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Figure 3.2: Cell density g (dark) and chemical concentration S (light) at ¢ =
100.

studied. The main difference to the system considered here is that in [41], S
is given by a parabolic equation and that the diffusivity of o is assumed to be
O(1). The authors study bifurcations from the spatially uniform stationary
solution in dependence of a bifurcation parameter inversely proportional to €.
It turns out that the constant solution can be stabilized by adding enough
diffusivity. After a first bifurcation its stability is transferred to a bifurcating
solution. Related to these results is

Lemma 7
The constant solution of system (3.4), (3.5) is stable for e > 1.

Proof. Similarly to the proof of lemma 5, we multiply (3.4) with S and
differentiate (3.5) with respect to ¢ to obtain, after integration by parts of the
last term on the right hand side,

1 d £ 2 2 L 2 L 2 2
s 2 | (8 + 52 = / o(1 — 0)Skdz — & / (S2+ SL)dz.  (3.40)
t 0 0 0

We can estimate the left hand side by

1d

L L
5= (SZ+S2)da: - / o(1 — 0)S2dz — ¢ / (S2 +52,)dz (3.41)
0 0

< (;11—8) /0 *(5% + 52, )da.

For € > %, the right hand side of (3.41) is negative. Integration from 0 to ¢

yields
/S2xt)dz<(——26 // S2dm+/(52+52da:
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Applying Gronwall’s lemma, it follows that ||Sz| 120,y — O and as a conse-
quence, S — const as t — oo. a

Fig. 3.3 shows the numerical solution of system (3.4) - (3.7) with ¢ =
2x 1074, We used the same numerical scheme as in the previous section with an
explicit discretization of the diffusion term. Starting from homogeneous initial
data with small perturbations, a pattern with several plateaus is formed as for
the hyperbolic problem. Once this pattern has formed, it remains structurally
stable for a long time, with the plateaus moving very slowly. Eventually,
neighbouring plateaus merge with each other. This merging process occurs on
a comparatively fast time scale. The new pattern, now with one peak less,
undergoes the same coarsening process.

Experimentally, this so called metastable behaviour is a well known phe-
nomenon in many fields, for instance solid-state physics. Mathematically, it
has been studied in various contexts such as the movement of viscous shocks
[28], [45] or the Cahn-Hillard equation (for instance (3] and [4]). A chemotaxis
model featuring the formation of spike solutions is considered in [48].

The peculiar long-time behaviour of system (3.4), (3.5) can be interpreted
as follows. Each pseudo-stationary state of the parabolic system is exponen-
tially close to a stationary entropy solution of the hyperbolic system. In con-
trast to the latter however, the small diffusion allows plateaus to communicate
with each other, and smaller plateaus are attracted by neighbouring larger
ones producing more chemoattractant. The whole phenomenon depends on a
non-zero diffusion coefficient €. Eventually, plateaus will get so close to each
other that in general, the corresponding stationary solutions of the hyperbolic
system cannot satisfy the entropy condition any more. Then, a fast transi-
tion takes place and the smaller plateau merges with the larger one. On this
fast time scale, solutions behave practically like in the hyperbolic case, and a
smoothened version of a rarefaction wave can be observed.

After the two peaks have merged, it is again diffusion that dominates the
behaviour. The whole process repeats itself, until only one single plateau is
left, which will typically move to one of the domain boundaries. Thus, the only
stable stationary state seems to be one plateau at the left or right boundary
of the domain.

By construction of approximate solutions, it is shown numerically and ana-
lytically in [41] that the eigenvalues describing the slow movement of the peaks
exponentially approach zero as the length of the domain increases. These ex-
ponentially small eigenvalues are typical features of metastable systems. The
authors also derive an ODE describing the dynamics of a structure with two
plateaus at the domain boundaries. Here, we will use exponential asymptotics
to formally derive a system of ordinary differential equations describing the
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Figure 3.3: Numerical solution of the parabolic system (3.4), (3.5) with random
initial data or € [0.3,0.31], L =10 and e = 2 x 10~%.

slow movement of the plateaus. This method has been successfully used in
various applications, see for instance Ward [57] and references therein.

Metastable dynamics of the parabolic system

In the following analysis of the long-time behaviour of system (3.4), (3.5), we
will assume that the formation of patterns from the initial data has already
taken place, and that a quasi-stationary pattern with NV plateaus has formed.
Our aim will be to derive a system of equations describing the evolution of the
positions of the plateau boundaries.

A first approximation to a solution of the parabolic problem with N plateaus
is the stationary solution of the hyperbolic problem (oo, Seo) solving (3.29) and
(3.30). However, we change the numbering of the plateau boundaries, counting
only interior ones: 0 < z; < ... < Ty < L with 2N -2 < M < 2N. For a
better approximation, we introduce the boundary layer variables

T —T;

h=——n) i=1.,M (3.42)

at each point z; where g, is discontinuous. Then, for each boundary layer, we
obtain from (3.38) an equation of the form
do;
—= = 5;(1 — ;)8 (z 3.43
= (1 - )5 @) (34



CHAPTER 3. THE KS-MODEL WITH SMALL DIFFUSIVITY 44

where S, (z) = Sy(z;+en;) is approximated by S'(z;) := S’oo,ﬂ,(xi). The solution
can be calculated explicitly,

1

1 + ce—S'(z)m (344)

Gi(mi) =
If we fix the solution such that §;(0) = %, then ¢ = 1. The shape of § depends
on the sign of S'(z;): for S(z;) > 0, 6 — 1l asn — oo and ¢ — 0 as
7; — —o0, for S'(z;) > 0, the opposite holds. Thus, an appropriate boundary
layer solution can be constructed for jumps satisfying the entropy condition
(3.34). We now construct an approximate solution with N plateaus by

£

(% 31, ooy Tar) :i@i <I'$) ~ (M — N), (3.45)

and

5’M=g—é, Sy;=0atz=0,0L.

Note that S and S, are uniformly (in ) close to Sy and S’m,z, respectively.

Fundamental for the following asymptotics is the assumption that this ap-
proximate solution depends on time only through the positions of the boundary
layers. Therefore, we write the exact solution p(z,t) as

o(z,t) = o(z; z1(t), ..., zm (1)) + 7(z, 1), (3.46)
with 7 <« ¢ and, additionally, r; < g;. Boundary conditions for r are given by
Ty = —0z at x =0, L. (3.47)

The corresponding ansatz for S is
S(z,t) = S(z,t) + o(z,1t). (3.48)

Then o satisfies
Oez=0—71, ogy,=0atz=0,0L.

Thus, we can write o as

L
ofr] = / Gz, v)r(w)dy, (3.49)

with an appropriate Greens'’s function G(z,y) (which is symmetric in z and
y). An approximate version of (3.4), (3.5) can now be written as

Lr=h:=p ~ b+ (6(1 — 8)S:)a (3.50)
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with
Lr = ergy — [(1 —25)8,r + 5(1 — @)a[r]w] . (3.51)

T

Here the time derivative 7, has been dropped according to our assumptions
together with quadratic terms in r. Multiplying (3.50) by a test function
¥(z,t) and integrating we obtain

L L L -
e(vry — wmr)io—f—e/ Yo7 AT + / (1 — 20) Sy, dx
0 L 0 . (3.52)
+ [ e - dobltads = [ hdn
0 0
With (3.49), the last term on the left hand side of (3.52) can be written as

L L L
/0 5(1 — B)olrlutpy dz = /0 / 6(1 — 0)Gala, y)r(y)budyds.  (3.53)

We exchange z and y and integrate by parts. Using the symmetry of the
Green’s function G(z,y) = G(y, x) yields

/0 /o o1 = 8)Ga(z, y)r(y)¢e dy dx
:_/0 ri@) /0 Gy, 2)(8(1 — 0)1hy (y))y dy dz

+ [ 6w 2a0 - dv,)], da

2, .
= | g [ et - o, dyds +ov.0- o)
— [ @l e + ov.i - B,
where @[] solves
Poo = — (1 = 0)ths, o =0atz=0,L. (3.54)

Hence we conclude

/L Lridr =e(yr, — wmr)lj-l-s /L Yo dT
0

0

L ~ L
+ /0 r(1 = 28) 810 do — / rolpls dz.
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In order to dispose of the left hand side in (3.52) containing the unknown
residual 7, we choose for ¥ approximate solutions of the adjoint problem

LYY = ey + (1 — 28)Seths — ©[)]e = 0 (3.55)
together with the homogeneous Neumann boundary conditions

Then, considering the boundary conditions (3.47), equation (3.52) becomes

L L L B L
/0 Goh d = 6/0 Busth da —/0 (001 - )8 do —egi] . (357)

Similarly to the construction of ¢ above, ¥ will be constructed by combining
several boundary layer solutions.

We will approximate (3.55) by disregarding the last term (this will be
justified below) and by replacing S, by Seoz. The chemoattractant density
Se has in general M — 1 interior extrema Z, ..., Zps—; with the ordering 0 =:
Tp < X1 < Ty < Ty < ...<Zpm_1 < xpy < Zp:= L. An interesting behaviour
of solutions can be expected near these extrema and near the boundary layer
positions z;, where g =~ % At these turning points, the factor in front of ¥, in
(3.55) changes its sign. In the vicinity of z = z;, solutions are decreasing for
z < z; and increasing for z > x;. Near x = Z;, the opposite is the case. Thus,
it can be anticipated that v, is a so-called spike-layer solution: it is large only
in the vicinity of the extrema of Sy, and small everywhere else .

This gives an a posteriori justification for our decision to neglect the term
@, in equation (3.55): the term g(1 — p) is exponentially small at extrema of
S0, Which means that the function ¢ as a solution of (3.54) is exponentially
small everywhere.

We approximate Su 4 close to its extrema Z, ..., Zps—1 by linear functions

Seoz & Seoza(z = T3)(x — 7;), for |z — 3] < 1.

Near minima of S, § is very close to 0, around maxima it is close to 1. Sim-
plifying (3.55) according to our observations, we obtain M layer equations of
the form

& 5 dis = _
p?ﬁz + aizid—qﬁj =0, a; = lSoo,m($ = :Ei)[, (3.58)

with the solutions

i = i(—00) + C\/z—la: (1 + erf <\/%'z>) . (3.59)
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Figure 3.4: Example for an approximate solution ¢ with two plateaus for
€ =5 x 107 and the functions 19, ;.

Thus, 1/3,~ varies rapidly in a boundary layer of thickness O(Ve) and is almost
constant everywhere else. If we fix 4:(Z;) = 3 and 9;(—o0) = 0, ¥;(c0) = 1 or
vice versa, we obtain two sets of M boundary layer solutions,

b ovoe( ) =3 o)

with ¢ = 1,..., M. Each of these functions solves the original equation (3.55)
up to exponentially small terms. Finally, we combine two of these boundary
layer solutions at a time such that

Y=t (a) + 97 () =1, i=2,.,M-1 (3.60)
At the boundaries,
W =9 (z) and 1ty = ¢t (2n).

We use the %; in (3.57), which will lead to equations for the positions of the
plateau boundaries. The left hand side of (3.57) reduces to

[awint S [%( 2= 0))

Ty N Zi—z4

.o A € . 1

~—— 0;dz = —:0; |, _, ~ Ti(-1)"
Zi—1 €

We integrate by parts on the right hand side of (3.57). The boundary term
from the first integral cancels with the last term in (3.57), and we obtain

(-1~ [ e (20 - 5 - 2. do (3.61)
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In a first approximation, we can write the function ;5,2 =2,..., M —1 as the
difference between two delta-distributions, ¥; ; ~ 6(Z;—1) — 6(Z;). Then, the
right hand side of (3.61) can be evaluated at leading order by

L 3,
/ iab(l — 8)udz ~ —5(1 - 0)S|" |
0

Zi
L
_ /0 i i ~ £ (80(E:) — Bu(Fir)),

where, by the factor S, the first term is small compared to the second and
will therefore be neglected. For further calculations we use

~ é; + @il_l at © = Ti_1
EQg ~ A1 N =
0; + 041 at z =17,.

Calculating the leading order terms using (3.44), we obtain a set of M coupled
ODEs for the plateau boundaries z;,

iy~ (_1)j+1 [S’(xl)e(_l)jﬂsl(zl)ﬁz_zl + Sl(x2)e(—1)j+15/(w2)_]u :T ] (362)

Ty~ (—]_)’H-j [S/(Ii)e(—l)i+jsl(zi)ii;zi i S,($i+1)6(_1)i+jsl(xi+1)ii_:i+1
. z 3.63
— §'(m;) VTS EITET g (g )l DTS ) B (3.63)
fOI' 1= 2) 7M —1 and
S [ o) (3.64)

+ ‘S/($M_1)e(—l)jJrM_IS'(CCM—l)4—21‘4_1?1”_1 ] ’
where 7 = 1 if the first plateau touches the boundary and j = 0 otherwise.
Due to mass conservation, the equation

M

> ()i =0

=1

holds. Therefore, only M — 1 equations are needed in order to determine the
dynamics.

The whole asymptotic approach is based on the fact that the movement
of the boundary layers is exponentially slow. It is valid only as long as all
plateaus are spatially well separated and far from the boundaries, i.e.

|ji—$i|, |S-Ci_1—l'1;| > €, 1= ].,...,M. (365)
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Figure 3.5: Comparison of the numerical solution of system (3.4), (3.5) with
€ = 2x 107 obtained with an upwind-scheme with grid size Az = At = 0.0012
(light) and the numerical solution of the corresponding ODE-system (dark)

choose two different sets of initial conditions close to this stationary point and
calculate the temporal evolution of the boundary layers according to (3.62)
- (3.64) with 7 = 4. After a plateau has moved to the domain boundary or
merged with the other plateau, we solve the system for ¢ = 3 and ¢ = 2
respectively.

In Fig. 3.6(a), the left plateau is initially closer to the boundary. The
system passes relatively quickly into another pseudostationary state with two
plateaus at the domain boundaries. The larger of the two plateaus attracts
mass of the smaller one, until finally, the stable steady state of one plateau at
the domain boundary is reached.

In Fig. 3.6(b), the left plateau is initially closer to the second plateau.
Now, the plateaus merge first and then move towards the boundary. Dashed
lines represent points where the asymptotic approach is no longer valid (z;,
&2 ~ €) and full solutions of (3.4), (3.5) have to be calculated. Fig. 3.7 shows
the evolution of the cell density during this time interval. As the left plateau
moves towards the right one, a rarefaction wave starts to form when the entropy
condition for the corresponding hyperbolic system becomes violated. The outer
plateau edge of the right plateau is not affected by this merging process and
does not move, since locally, the entropy condition is still satisfied. As a
consequence, it is sufficient to solve the equations for the plateau boundaries
if one is only interested in the long-term dynamics of the parabolic system. If
the dynamics of the coarsening process itself should be captured too, a hybrid
numerical-asymptotic approach is the method of choice.
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(a) 71 = 0.14, zo = 0.33, z3 = 0.64, z4 = b) z; = 0.16, z; = 0.36, 23 = 0.65, z4 =
0.85 0.85

Figure 3.6: Solutions of the ODE-system (3.62) - (3.64) with different initial

conditions and € = 2.7 x 1074.

(b) t = 20379834

(a) t = 20379820

o o= 203 203 & ) o 253 20 20 29

(c) ¢ = 20379849 (d) t = 20379852

Figure 3.7: Fast dynamics of the parabolic system, corresponding to the dashed
lines in Fig. 3.6(b). The first picture shows the cell density calculated according
to the asymptotic approximations (3.62) - (3.64) and (3.45) shortly before the
hyperbolic dynamics start to dominate. The middle pictures show a rarefaction
wave obtained by solving (3.4), (3.5) with an upwind scheme until, as shown
in the last picture, only one plateau is left.
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