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1 Introduction

The scattering of waves is a phenomenon that is literally all around us. From

the beautiful interference patterns produced by sunlight in a rainbow to the prop-

agation of acoustic waves in a concert hall, we encounter wave scattering on a

daily basis. In spite of its already very rich history, there are still many open

and interesting scattering problems to be solved from the scientific point of view.

In this thesis we will address two specific problems of current interest, related to

so-called Exceptional Points1 and to the notoriously challenging inverse scatter-

ing problem. To get a handle on these phenomena, we will study them in the

context of scattering in systems of reduced dimensionality. Specifically, we will

work with optical interferometers in which light propagates and interferes along

one-dimensional axes.

Generally speaking, the scattering problem can either be solved in forward or in

the inverse direction. For the forward scattering problem the structure of the scat-

terer is known and one is interested in the connection between the outgoing and

incoming parts. This can for example be used to predict the outcome of a scat-

tering experiment where an incoming wave impinges on a target and one wants

to know which outgoing wave pattern to expect. For the inverse scattering prob-

lem the structure of the scatterer is typically unknown. The goal here is to obtain

information on the target scatterer based on the incoming and outgoing wave com-

ponents. The inverse scattering problem has many different applications, ranging

5
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from seismology2 to bio-medical imaging3.

In this thesis we are solving the forward and the inverse scattering problem for spe-

cial cases. For the forward scattering problem we look at optical interferometers at

a so-called Exceptional Point (EP)1 and shall present strategies for obtaining these

singularities in relatively simple setups that can easily be realized with current-

day technology. EPs only occur in non-Hermitian problems where the eigenvalues

are complex in general4,5,6. If two or more eigenvalues are degenerate the geo-

metric multiplicity may not be equal to the algebraic one, unlike the Hermitian

case leading to a range of unique properties7. EPs and their properties were al-

ready observed8,9, for example in experiments with microcavities10,11. Compared

to microcavities, optical interferometers have an easier experimental setup while

maintaining the properties needed for the occurrence of an EP such as the exis-

tence of multiple modes and coupling between them. In this work we will discuss

the occurrence of EPs in optical interferometers9 and show their properties, spe-

cially the vanishing eigenvectors, the response to perturbations, the characteristic

Riemann sheet structure around them and finally their impact on the scattering

problem. The absence of eigenvectors was already observed in an experiment with

an optical interferometer, which could be explained by linking it to an EP12. In

particular, we will point out how to realize EPs in optical interferometers by just

tuning a few parameters like the reflectivities of mirrors or beam-splitters and the

distance between them. With these properties EPs could also be relevant for sen-

sors like Sagnac interferometers, which could be enhanced by an EP13,14,15.

In the second part of this thesis we will work on the inverse scattering problem in

optical resonators containing a dielectric potential landscape. The task we want

to address is to determine the shape of this potential just from the scattering in-

formation. Motivated by a different project in our group, where this problem was

solved with a machine learning approach, we want to solve this problem with con-
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CHAPTER 1. INTRODUCTION

ventional methods and compare the results. In the machine learning approach the

function which maps the scattering matrix to the potential was obtained by train-

ing a neural network with precalculated samples obtained by solving the forward

scattering problem on random potentials. The machine learning approach can be

seen as high-dimensional data fitting, and therefore we will use similar conventional

methods for comparison. Two approaches which address this problem in a similar

way, are the well known gradient descent16 and simulated annealing17 method. In

both cases we will transform the inverse scattering problem into a minimization

problem. We will find the solutions with the named methods by tuning (fitting)

the potential. We will discuss the quality of these approaches on several examples

and shall estimate their performance, their advantages, disadvantages and limits.
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2 Forward Scattering Problem

If one is interested in the scattering properties of a known system the forward scat-

tering problem needs to be solved. It is a well known and popular problem and has

applications in nearly every part of physics. The problem is defined by a scatterer

and an incoming and outgoing wave field. These fields are linked together by the

scattering matrix, which is uniquely defined by the properties of the scatterer and

the frequency of the incoming wave field. We will look into the forward scattering

problem to obtain the scattering matrix for optical interferometers at an Excep-

tional Point (EP)9. The scattering matrix allows us to predict the behavior of the

optical interferometer under different circumstances, such as when small pertur-

bations are applied to it. Since many sensors realized with optical interferometers

rely on their behavior to perturbations it is particularly interesting to study them

at an EP where the sensitivity is enhanced10. For this purpose we first study EPs

and their properties in a quantum mechanical system. We will then show how

these results apply to optical interferometers. We further need to obtain a method

to find and identify EPs in optical interferometers, which will then allow us to

study how an EP manifests in the scattering matrix.
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2.1. EXCEPTIONAL POINTS

2.1 Exceptional Points

Exceptional Points (EPs) typically occur in non-Hermitian systems featuring more

than one mode7. They are characterized by two or more coalescing eigenvalues with

one or more vanishing eigenvectors. The eigenvalues are complex in general but

can also be real if, e.g., the system is PT-symmetric18,5,8. Compared to the already

existing experiments with microcavities at an EP, we will study their occurrence

in optical interferometers, since their experimental setup is easier compared to

microcavities. EPs are linked to unique properties. At the EP one eigenstate van-

ishes and only one persists, which is directly linked to the chirality of EPs19. For

every EP there exists a corresponding one with different chirality where the other

eigenstate vanishes20. This chirality translates into a certain sense of direction in

whispering-gallery mode resonators, where one mode is suppressed and only one

survives. With a ring laser, which is similar to a whispering-gallery resonator,

this chirality was already observed experimentally and can further also be linked

to an EP12. A system at an EP reacts highly sensitively to perturbations11. The

eigenvalue splitting follows a root behavior which has a high slope for small per-

turbation strength. Further the eigenvalues in the vicinity of an EP lie on complex

surfaces also known as Riemann sheets21, which are self-intersecting and have a

pole point in its derivative which is directly located at the EP. This is linked to

the root behavior of the eigenvalue splitting and the high sensitivity of a system

in the vicinity of an EP. The characteristic topology of the Riemann sheets can

further be useful to identify EPs.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

2.1.1 Non-Hermitian Hamiltonians

To study Exceptional Points we consider a quantum mechanical system which is

described by the Schrödinger equation:

i
∂

∂t
ψ = Ĥψ (2.1)

For simplicity we use natural units where we set ~ = 1. The conservation of en-

ergy leads to a Hermitian Hamiltonian Ĥ = Ĥ† with therefore real eigenvalues

and an unitary time evolution operator Û(t, t0) = e−iĤ(t−t0). However if one is

only interested in a limited subspace of a system the Hamiltonian is not necessary

Hermitian4,5,1,18. In this case the eigenvalues are complex in general and the time

evolution operator is no longer unitary. This is directly linked to the gain or loss

of this subsystem9. Moreover, if two or more eigenvalues coalesce in such a non-

Hermitian subsystem, the geometric multiplicity may not equal the algebraic one,

unlike in the Hermitian case6. These points are called Exceptional Points (EPs)

and play a major role in non-Hermitian physics22,7. EPs offer unique properties

such as the vanishing of eigenvectors, root behavior of the splitting of eigenvalues

and a characteristic topology of the Riemann sheets around them21,10.

If we now consider a two mode system we can choose a mode basis and the

Schrödinger equation can be written as:23

i
d

dt


a1(t)

a2(t)


 = H


a1(t)

a2(t)




H =


 s1 g12

g21 s2




(2.2)

where a1 and a2 are the modes and H is the Hamiltonian in this mode basis. The

diagonal elements of H, si = ωi + iσi, are the eigenfrequencies and gij are the
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2.1. EXCEPTIONAL POINTS

coupling strengths of the modes which are chosen to be real. For non-vanishing

coupling the modes are no longer independent of each other and are not the eigen-

states of the system anymore. The eigenstates can be obtained by solving the

eigenvalue problem of H.

det(H − Iλi) = 0

(H − Iλi)vi = 0
(2.3)

where λi are the eigenfrequencies and vi are the eigenvectors (eigenstates). De-

manding the coalescence of the eigenvalues leads to the equations:

λ± =
s1 + s2

2
±

√
(s1 − s2)2

4
+ g12g21,

(
s1 − s2

2
)2 + g12g21 = 0.

(2.4)

Solving the equations with g12 and g21 as parameters and introducing s+ = s1+s2
2

and s− = s1−s2
2

leads to the following solutions where we differentiate between

vanishing and non-vanishing coupling strength. For vanishing coupling strength

we obtain the Hamiltonian and eigenstates of a system at a so-called Diabolic

Point (DP).

HDP =


s+ 0

0 s+




λ1,2 = s+

v1 =


1

0


 v2 =


0

1




(2.5)

At a DP the two modes are independent of each other and these points also occur

in Hermitian physics.

For non-vanishing coupling strength we obtain the general form of the Hamiltonian
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CHAPTER 2. FORWARD SCATTERING PROBLEM

and the eigenstates of a system at an Exceptional Point (EP).

HEP± =


s+ ∓ i

√
g12g21 g12

g21 s+ ± i
√
g12g21




λ1,2± = s+

v1± =
1√

g12 + g21



√
g12

±i√g21




(2.6)

There only exists one eigenvector v1±, which is a characteristic property of EPs,

and the Hamiltonian is therefore not diagonalizable. Since every Hermitian matrix

is similar to a diagonal matrix, this can only occur in the non-Hermitian case.

Looking at the Hamiltonian of an EP the parameters g12 and g21 do not fully define

the system, there are two possible solutions HEP+ and HEP−, which is the so-called

chirality of EPs19. The diagonal elements of the Hamiltonian correspond to the

eigenfrequencies of the coupled modes. if s+ is real they have an imaginary part

of same magnitude but opposite sign, which means one mode has a gain and the

other one a loss of the same strength. Whether it is an EP+ or EP- depends on the

placements of the gain and the loss. Looking at symmetric coupling, g12 = g21 6= 0,

an EP+ has the eigenvector v1+ =
(
1, i

)T

and an EP- v1− =
(
1, −i

)T

. In this

case the eigenvector is a superposition of the modes and the chirality defines the

phase between them. In the case of asymmetric coupling, where one coupling

strength vanishes, the two modes have neither gain nor loss. Here the chirality

is defined by which coupling is vanishing. The eigenvector of the Hamiltonian

takes to form of v1 =
(
1, 0

)T

for g21 = 0, and v1 =
(
0, 1

)T

for g12 = 0. In

this case not only one eigenvector but also one mode vanishes. For systems like

whispering-gallery resonators or ring cavities the chirality translates into a certain

sense of direction24.
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2.1. EXCEPTIONAL POINTS

2.1.2 Eigenmode splitting

The eigenvalues of the Hamiltonian of a multiple mode system can be observed

experimentally and manifest in the scattering properties. It is therefore crucial

to study their behavior. We are now interested in how the system responds to

small perturbations when it is located at an EP and shall compare this situation

to the one encountered at a DP. We are particularly interested in the eigenvalue

splitting as a result of small variations of the system parameters. For simplicity

we will fix the parameter s+ = 0 and assume a symmetric coupling mechanism,

g12 = g21 = 1, for an EP and no coupling, g12 = g21 = 0, for a DP. Since we

describe two resonators, we look at perturbations of their eigenfrequencies and

coupling strengths. For the perturbation of the eigenfrequencies, Pω, we only

consider an asymmetric part since a symmetric one would only effect s+ and will

not result in any splitting of the eigenvalues. For the perturbation of the coupling

strengths, Pg, we consider a symmetric one since we assumed a symmetric coupling

mechanism.

Pω =


1 0

0 −1


 Pg =


0 1

1 0


 (2.7)

Adding one of the perturbation matrices with a perturbation strength of ǫ to the

Hamiltonian, leads to the Hamiltonian of the perturbed system.

H = H{EP,DP} + ǫP{ω,g}

HEP =


−i 1

1 i




HDP =


0 0

0 0




(2.8)
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CHAPTER 2. FORWARD SCATTERING PROBLEM

Solving the eigenvalue problem of the perturbed Hamiltonian leads to the eigen-

values of the system. For Pω we obtain the eigenvalue splitting of

|∆λEP| = 2
√
ǫ
√
−2i+ ǫ

|∆λDP| = 2ǫ
(2.9)

and for Pg

|∆λEP| = 2
√
ǫ
√
2 + ǫ

|∆λDP| = 2ǫ
(2.10)

Comparing the magnitude of the splitting, as shown in Figure 2.1, the eigenvalues

at an EP split with a characteristic square root behavior while the splitting at a DP

is linear. This results in a high sensitivity of systems at an EP. The high slope of the

root function for small perturbation strengths could be exploited to create highly

sensitive measuring systems14,15,13, compared to ones at a DP. The direction of the

splitting in the complex plane is shown in Figure 2.2. For a DP the perturbed

Hamiltonian is still Hermitian, since the perturbations are Hermitian too, and

therefore the eigenvalues remain real. For an EP the eigenvalues are splitting

along the real axis with the perturbation Pg and into the complex plane with Pω.

The splitting along the real axis is explained by the PT-symmetry of Pg. The

eigenvalues of a PT-symmetric Hamiltonian can be real even if the Hamiltonian

is non-Hermitian18,5,8. The high sensitivity of EPs can again be observed by the

distance between the eigenvalues.
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2.1. EXCEPTIONAL POINTS

Figure 2.1: Magnitude of the eigenvalue splitting at an EP and at a DP. We chose
the parameters s+ = 0, gEP12

= gEP21
= 1, gDP12

= gDP21
= 0 with the

perturbation Pω with a varying strength of ǫ. For an EP the splitting
follows a characteristic square root behavior which explains the high
sensitivity of EPs. For a DP the splitting is linear.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

(a) Eigenvalue splitting in the complex plane at an EP.

(b) Eigenvalue splitting in the complex plane at a DP.

Figure 2.2: Comparison of the eigenvalue splitting at an EP and at a DP in the
complex plane with the perturbations Pω and Pg. We again chose
the parameters s+ = 0, gEP12

= gEP21
= 1, gDP12

= gDP21
= 0. The

perturbation strengths ǫω and ǫg were varied from 0 to 0.05 with a
step size of 0.01. At an EP the eigenvalues are splitting in opposite
direction, along the real axes for Pg and into the complex plane for Pω.
At a DP the eigenvalues split in opposite direction along the real axis
for both perturbations with a linear behavior.
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2.1. EXCEPTIONAL POINTS

2.1.3 Riemann sheets

For a better understanding of how a system reacts to perturbations we now look at

the two perturbations of system parameters combined rather than independently.

This allows us to obtain the behavior of the system for more complex perturba-

tions where both the eigenfrequencies and coupling strengths are perturbed simul-

taneously. By plotting the eigenvalues in the two dimensional perturbation space

(ǫω, ǫg), the eigenvalues lie on complex planes, also known as Riemann sheets21.

These sheets reveal the behavior of the eigenvalues and have a different topology

in the vicinity of an EP or a DP. The Riemann sheets of a system are interesting

to study since with their characteristic topology we can decide whether the system

is at an EP or a DP.

The Riemann sheets are obtained by solving the eigenvalue problem of the per-

turbed Hamiltonian with two perturbation strengths, ǫω and ǫg , as parameters.

H(ǫω, ǫg) = H{EP,DP} + ǫωPω + ǫgPg

det(H(ǫω, ǫg)− Iλi(ǫω, ǫg)) = 0
(2.11)

This leads to the eigenvalue functions λi(ǫω, ǫg) which are plotted in Figure 2.3. At

a DP the Riemann sheets have a conical form, hence the name Diabolic Point, and

the eigenvalue splitting is linear in every direction. The sheets have the topology

of the absolute function, hence the linear behavior. For an EP the Riemann sheets

are self-intersecting, with the topology of the complex square root function. The

EP is located at the intersection of the sheets. The derivative of the sheets has a

pole point located directly at the EP, which is again linked to the high sensitivity.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

(a) Real part of λ{1,2} at an EP (b) Imaginary part of λ{1,2} at an EP

(c) Real part of λ{1,2} at a DP (d) Real part of λ{1,2} at a DP,
different perspective

Figure 2.3: Riemann Sheets of a system in the vicinity of an EP and a DP. At
an EP the Riemann sheets are self-intersecting. The high sensitivity
at an EP manifests as a pole point in the derivative of the sheets
located directly at the EP. At a DP the Riemann sheets have a conical
form, and the eigenvalues have a linear splitting behavior. Since the
perturbed Hamiltonian of a DP is Hermitian, the eigenvalues remain
real and have no imaginary part.
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2.2. OPTICAL INTERFEROMETERS

2.2 Optical Interferometers

For years, people have been looking at EPs in complicated resonator arrange-

ments where tuning the system to the EP was very difficult10. Here we propose

an interesting and easily accessible alternative to study EPs that just involves

the easy setup of an optical interferometer. Optical interferometers have a wide

range of applications and are often used as sensors, e.g. for distance measuring

or determining refractive indices, and are used in spectroscopy. EPs in optical

interferometers are particularly interesting to study since the properties of an EP,

specially the high sensitivity, can be exploited to create highly sensitive measuring

systems14,15,13. Further EPs itself and their properties can be studied with a simple

setup of mirrors on an optical table, compared to a more complex experiment with

microcavities. Optical interferometers are systems of mirrors and optical parts

with a given geometry. Each part is fully described by its number of ports and its

scattering matrix. The ports of each part are connected to other optical parts with

free space between them and consist of an incoming and outgoing wave part. The

optical wave at each port is given by the superposition of the incoming and outgo-

ing part which are linked together by the scattering matrix of the corresponding

optical part. A port is called closed when it is internally connected to another

optical part, and opened otherwise. Open ports can be seen as external interfaces

and can be monitored in experiments. We will restrict our systems to a set of

fundamental optical parts given in Table 2.1. The path of the optical waves are

defined by the geometry and placements of the mirrors (M1, M2, STM) and beam

splitters (BS) which are connected to each other by free space. To study EPs in

interferometers we show the analogy to quantum mechanical systems and intro-

duce a mathematical model to obtain the scattering properties and eigenstates.

We then introduce an optical interferometer which is similar to the well-known

coupled microcavities system with equally strong gain and loss, where an EP was
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CHAPTER 2. FORWARD SCATTERING PROBLEM

already observed experimentally10. The equivalent interferometer consists of two

optical cavities coupled with a mirror. To achieve an equally strong gain and loss

we additionally introduce a gain/loss medium (G) which is placed inside the cavi-

ties. Except this gain/loss medium the scattering matrices of all parts are unitary,

which is directly linked to the conservation of energy in Hermitian systems. But

even without a gain/loss a system may still be non-Hermitian due to the inter-

action with the environment at the open ports, which couple out radiation. We

further introduce an optical ring cavity, similar to a whispering-gallery resonator,

which can be tuned to an EP without the need of an active gain medium. This

interferometer was already studied experimentally with interesting results12, and

we will show that they can be linked to EPs. At last we will look into interferom-

eters with an EP of higher order25, where more than one eigenvector vanishes and

the sensitivity is enhanced even more.
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2.2. OPTICAL INTERFEROMETERS

Symbol Description S-Matrix Parameters

G
gain/loss
medium

(
0 eh

eh 0

)
h

M1
fully reflecting

mirror

(
−1

)
-

M2
fully reflecting

mirror
at an angle

(
0 −1
−1 0

)
-

STM
semi-transparent

mirror

(
−rSTM i

√
1− r2STM

i
√
1− r2STM −rSTM

)
rSTM

BS beam splitter




0 −rBS i
√

1−r2
BS

0

−rBS 0 0 i
√

1−r2
BS

i
√

1−r2
BS

0 0 −rBS

0 i
√

1−r2
BS

−rBS 0


 rBS

Table 2.1: Fundamental parts of our optical interferometers. The mirrors M1 and
M2 are fully reflecting. They are not tunable and only define the path
of the optical waves. The semi-transparent mirror STM and the beam-
splitter BS have a tunable reflectivity (rSTM, rBS). Their transmission is
defined by the reflectivity and the fact that these parts have a unitary
scattering matrix. We additionally introduce a gain/loss medium which
is the only non-Hermitian one, with the gain h as parameter. The
parameters are used to bring the interferometers to an EP and further
to introduce perturbations.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

2.2.1 Mathematical description

To bring an optical interferometer to an EP and obtain its properties we need a

mathematical description of interferometers in general. For this purpose we assume

light propagation and interference only along one-dimensional axes, which allows

us to employ the so-called paraxial approximation. This approximation has many

applications in optics and is specially useful to e.g. describe the propagation of

light emitted by a laser. A paraxial wave can be written as

u(x, z) = E(x, z)eikz (2.12)

where E(k, z) is the envelope of the electric field and k the wavenumber. The

envelope E(k, z) has to fulfill the paraxial optical wave equation8,26,27.

i
∂

∂z
E(x, z) + (

1

2k

∂2

∂x2
+ k0n(x))E(x, z) = 0 (2.13)

where n(x) = nr(x)+ini(x) is the complex refractive index, k = k0n0 the wavenum-

ber and k0 the corresponding wavenumber in free space. Comparing this equation

to the Schrödinger equation in natural units for a quantum particle:

i
∂

∂t
ψ(x, t) + (

1

2m

∂2

∂x2
− V (x))ψ(x, t) = 0 (2.14)

we see a canonical isomorphism between the two equations obtained by the re-

placements z → t, k → m, k0n(x) → −V (x) and E(x, z) → ψ(x, t)8. This

isomorphism introduces a correspondence between an optical interferometer and

a quantum mechanical system and defines an (effective) Hamiltonian. Further the

optical interferometer is at an EP if the corresponding quantum mechanical system

is at one.

To obtain the eigenstates of an optical interferometer we start by solving the scat-
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2.2. OPTICAL INTERFEROMETERS

tering problem. All ports of the interferometer are arbitrarily enumerated and we

refer to them by their port number i and to their outgoing and incoming wave

part as ai and bi. As boundary condition we choose incoming plane waves with

wavenumber k at each open port i with a complex amplitude fi.

ai = fi (2.15)

To obtain the wave inside the interferometer we split it into its free space com-

ponents. We address each part of free space by their adjacent port numbers m

and n, and make the ansatz of forward an backward propagating plane waves with

wavenumber k and complex amplitudes cm,n, dm,n. The wave in each free space

part can be written as:

um,n(z) = cm,ne
ik(z− l

2
) + dm,ne

−ik(z− l
2
) (2.16)

Since we are looking at each part of free space independently we choose the zero

point of z in the middle between the two adjacent optical parts. With this ansatz

we can obtain the amplitudes at the ports m and n, which are located at zm = − l
2

and zn = l
2
.

an = cm,ne
ik l

2

bn = dm,ne
−ik l

2

am = dm,ne
ik l

2

bm = cm,ne
−ik l

2

(2.17)

Eliminating cm,n and dm,n leads to the relation of the incoming and outgoing waves

at port m and n. 
am
an


 =


 0 eikl

eikl 0





bm
bn


 (2.18)
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CHAPTER 2. FORWARD SCATTERING PROBLEM

We will refer to this equation as compatibility condition at free space.

Each optical part, which links together ports p1 . . . pnp
, where np denotes the parts

number of ports, is described by a scattering matrix Sp1,...,pnp
. The scattering

matrix of each part is defined by the parts type (M1, M2, STM, BS or G) and

its parameters, see Table 2.1. This scattering matrix leads to the compatibility

conditions at the optical part.




bp1
...

bpn


 = Sp1,...,pnp




ap1
...

apn


 (2.19)

Combining all equations of boundary conditions, compatibility conditions at free

space and compatibility conditions at optical parts leads to a system of linear

equations, written in matrix form:

M(k)~v = ~f (2.20)

The matrix M(k) is the coefficient matrix of the equations, ~v =
(
a1, b1, . . . , an, bn

)T

contains the incoming and outgoing wave parts of each port and ~f =
(
f1, . . . , fn

)T

is a constant vector which holds the amplitudes of the incoming waves given by the

boundary conditions. Solving this equation with a specific k and ~f leads to the

scattering states ~vscat(k, ~f) =
(
a1(k, ~f), b1(k, ~f), . . . , an(k, ~f), bn(k, ~f)

)T

of

the interferometer. Since only the open ports can be monitored in an experiment

we introduce the scattering matrix Stot(k) of the whole interferometer which links

them together. 


bop1
...

bopn


 = Stot(k)




aop1
...

aopn


 (2.21)
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2.2. OPTICAL INTERFEROMETERS

Here op1 . . . opn denotes the port numbers of the open ports. The elements of the

total scattering matrix (Stot(k))i,j define the connection between the amplitude of

the incoming wave at port opj and the outgoing wave at port opi. They can be

expressed in terms of the scattering solutions.

(Stot(k))i,j = bopi(k,
~fopj) (2.22)

where bopi(k, ~fopj) denotes the amplitude of the outgoing wave at port opi, and ~fopj

represents the boundary conditions with only one incoming wave at port opj with

an amplitude of 1.

Even if the matrix M(k) is regular in general, for some interferometers it can be

singular for a specific k, which leads to non-trivial solutions with no external input

~f = 0. These solutions ~vqb(ki) = ~vscat(ki, 0) are called quasi-bound states and need

to fulfill the equations

det(M(ki)) = 0

~vqb(ki) ∈ ker(M(ki))
(2.23)

By considering the isomorphism between the paraxial wave equation and the

Schrödinger equation, the plane waves with constant amplitude in z-direction cor-

respond to quantum mechanical wave functions with time-independent amplitude.

Since these stationary states are the eigenstates of the Hamiltonian we can identify

the quasi-bound states as eigenstates of the interferometer. Similar to the eigen-

values of the Hamiltonian we can assign an algebraic and geometric multiplicity

to the quasi-bound states.

aki = min
l∈N

( lim
k→ki

det(M(k))

(k − ki)l
6= 0)

gki = dim(ker(M(ki)))

(2.24)
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CHAPTER 2. FORWARD SCATTERING PROBLEM

With the introduced method we can describe optical interferometers, solve the

scattering problem and obtain the eigenstates. With the definitions of the algebraic

and geometric multiplicity we can determine if an interferometer is at an EP.

This further allows us to study the behavior of the eigenvalues and also how they

manifest in the scattering matrix. In the following sections we will look into specific

interferometers, tune them to EPs and study their properties.

2.2.2 Double cavity

The occurrence of EPs in optics was already studied experimentally, but not in

optical interferometers. They were mainly observed in experiments with microcav-

ities with a more difficult experimental setup. A well-known example for an EP in

optics is an experiment with two coupling microcavities28. The two equally shaped

microcavities have perfectly balanced gain and loss values and are coupled to each

other in a symmetric way. They are described by an operator that is very similar

to the Hamiltonian in Equation 2.6. To introduce EPs into optical interferometers

we choose a setup similar to the coupled microcavities. We need two cavities with

gain and loss, and a symmetric coupling. The cavities are formed by a system of

two mirrors where gain or loss is inserted between them. To introduce a symmetric

coupling we place them next to each other where the share one mirror. Choosing

a semi-transparent mirror the two cavities couple to each other with a coupling

strength defined by the reflectivity of the common mirror. The schematic of this

interferometer is shown in Figure 2.4. The mirrors STM1, STMC form the first

cavity and SMT2, STMC the second one. Similar to the microcavities the two

cavities need to have the same shape and we therefore choose the same distance

between their mirrors. We further choose a high reflectivity of the out-coupling

mirrors, STM1 and STM2, since they introduce an additional loss to the system.

With these restrictions only two parameters, the magnitude of the gain/loss and
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2.2. OPTICAL INTERFEROMETERS

the reflectivity of the coupling mirror, remain undefined and will be used to tune

the system to an EP. Similar to subsection 2.1.1 the interferometer can also be

tuned to a DP. DPs were already studied in optical interferometers, but they are

nevertheless interesting for the comparison to the system at an EP.

Figure 2.4: Schematic of a coupled cavity system, consisting of three semi-
transparent mirrors and two gain/loss media. The first cavity is formed
by STM1 and STMC, and the second by STM2 and STMC. Gain is
placed inside the first cavity and loss with equal strength in the second
one. The coupling mirror, STMC, is responsible for the coupling be-
tween the modes. The blue and red arrows represent the modes in the
first and second cavity. The green and yellow arrows are the external
in and out-coupling of the interferometer at the open ports, which can
be monitored in an experiment.

Vanishing eigenvector

The coalescence of two or more eigenvalues of an interferometer is necessary but

not sufficient for the occurrence of an EP. Additionally at least one eigenvector has

to vanish which is an essential property that occurs at every EP. We therefore rely

on this property to find and identify EPs in optical interferometers. In the previous

section we introduced a method to obtain the eigenvalues and eigenvectors. To

tune the interferometer to an EP we obtain the eigenstates as function of the two

undefined parameters rc and h. Demanding the coalescence of both the eigenvalues

and eigenvectors will then lead to the equations which have to be fulfilled to reach

an EP.

We start with the eigenvalues that are obtained by solving the eigenvalue equation
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CHAPTER 2. FORWARD SCATTERING PROBLEM

of optical interferometers, Equation 2.23, with respect to k,

1− rcroe2l(ik+h) − rcroe2l(ik−h) + r2oe
4ikl = 0. (2.25)

We did not assign a numerical value to ro and l yet, but treat them as constants and

will not tune them to reach an EP. Demanding the coalescence of the eigenvalues

leads to the connection of rc and h,

h =
1

4l
ln(

1 + tc

1− tc
). (2.26)

where tc =
√

1− r2c is the transmission of the coupling mirror. The eigenvalues

are now degenerate, which means the system is either at an EP or a DP,

k1,2 =
i

2l
ln(ro). (2.27)

Comparing the eigenvalues with the ones in subsection 2.1.1, λ1,2 = 0, only their

real part is vanishing but not the imaginary one. This is linked to the additional

loss introduced by the out-coupling mirrors and does not occur with fully reflecting

mirrors and no out-coupling, ro = 1. It is notable that the eigenvalues no longer

depend on rc itself, only on other parameters of the system.

We again differentiate between vanishing and non-vanishing coupling and com-

pare the geometric multiplicity of the eigenvalues for these cases. Based on the

geometric multiplicity we can decide whether the interferometer is at an EP or a

DP.
rc = 1 : gk1,2 = 2

rc < 1 : gk1,2 = 1
(2.28)

For vanishing coupling the interferometer is at a DP with one eigenvalue and two

eigenvectors. The eigenvectors are the two modes in the cavities and are indepen-
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2.2. OPTICAL INTERFEROMETERS

dent of each other. With non-vanishing coupling there is only one eigenvector left

and the system is at an EP. The remaining eigenvector is a superposition of the

two modes in the cavities and they are no longer independent. We can conclude

that EPs can indeed occur in optical interferometers and we will further study

their properties.

Eigenvalue splitting

As we will see in the following sections the eigenvalues of an optical interferometer

manifest as pole point in the scattering matrix. If the eigenvalues are real, which

is only possible with a gain medium, the system can be seen as a laser where the

lasing frequencies corresponding to the eigenvalues. Many sensors realized with

optical interferometers rely on the behavior of the eigenvalues at perturbations of

the system. It is therefore essential to study their behavior. To reinforce our claim

of the existence of EPs in optical interferometers we will use perturbations similar

to the ones in subsection 2.1.2, an asymmetric perturbation of the eigenfrequencies

of the cavities and a symmetric perturbation of the coupling strengths. The real

part of the eigenfrequencies of optical cavities depends on the distance between

the mirrors. By moving the coupling mirror, STMC, we create a perturbation

similar to Pω. Since the coupling strength in the cavity system only depends on

the transmission of STMC we choose tc = tc0 + dt as second perturbation which

corresponds to Pg. To obtain the eigenvalues of the perturbed interferometer we

use numerical root finding methods to solve the eigenvalue equation, since it is

no longer solvable analytically. Comparing the splitting of the eigenvalues, by

varying the position of STMC, at an EP and at a DP, shown in Figure 2.5, we

obtain the square root behavior at an EP and the linear behavior at a DP. Not

only the splitting of the magnitude but also the splitting in the complex plane,

shown in Figure 2.6, have the same behavior as in the calculations of quantum
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CHAPTER 2. FORWARD SCATTERING PROBLEM

mechanical systems in subsection 2.1.2. This observation is again explained by the

correspondence between optical interferometers and quantum mechanical systems.

Figure 2.5: Magnitude of the eigenvalue splitting of a double cavity interferometer
at an EP and DP, with dl as perturbation. At an EP the eigenvalues
have a square root behavior with a high slope for small perturbations.
At a DP the splitting is linear.
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2.2. OPTICAL INTERFEROMETERS

(a) Eigenvalue splitting in the complex plane at an EP.

(b) Eigenvalue splitting in the complex plane at a DP.

Figure 2.6: Comparison of the eigenvalue splitting of an double cavity interferome-
ter at an EP and a DP in the complex plane. We chose the parameters
ro = 1, l = 1 and tc = 0 for a DP, tc = 1√

2
for an EP. The perturbations

dl and dt were varied form 0 to 0.0005 with a step size of 0.0001. The
splitting has the same behavior as in Figure 2.2. At a DP the two
perturbations have again the same splitting behavior and we therefore
only plotted one.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

Riemann Sheets

If one is interested to study more complex perturbations it is not sufficient to

obtain the behavior with only one perturbation parameter, but one needs to obtain

the Riemann sheets of a double cavity system in the two dimensional perturbation

space (dl, dt). We are particularly interested in the topology of the Riemann sheets

in the vicinity of an EP and a DP, which will be an additional indication of EPs

in optical interferometers. The Riemann sheets are again obtained by solving the

eigenvalue equation with dl and dt as parameters numerically, and the eigenvalues

are plotted in the perturbations space shown in Figure 2.7. As in the predictions in

subsection 2.1.3 the Riemann sheets have a square root topology in the vicinity of

an EP and are self-intersecting. In the vicinity of a DP the sheets have a conical

form and the topology of the absolute function. The high sensitivity of an EP

manifests as pole point in the derivative of the sheets located directly at the EP,

while the derivative of the sheets in the vicinity of a DP is finite.

Scattering properties

We obtained the behavior of the eigenvalues of a double cavity system under

different perturbations. However the eigenvalues themselves can not be directly

observed, but manifest in the scattering properties. To look into the impact of

the eigenvalues into scattering we solve and discuss the scattering problem of the

interferometer. Since the eigenvalues at an EP react highly sensitively to pertur-

bations, it is particularly interesting how they can be used in optical sensing. With

the introduced mathematical model we are able to obtain the scattering matrix

of the whole system. Since we want to know what impact the eigenvalues have

on the scattering problem, we compare the eigenvalue equation to the scattering

matrix, which leads to the conclusion that the eigenvalues of the interferometers

correspond to pole points in the scattering matrix. Considering that the eigen-
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2.2. OPTICAL INTERFEROMETERS

(a) Real part of λ{1,2} at an EP. (b) Imaginary part of λ{1,2} at an EP.

(c) Real part of λ{1,2} at a DP. (d) Real part of λ{1,2} at a DP,
Different perspective.

Figure 2.7: Riemann sheets of the double cavity system at an EP and DP, by
varying dl and dt. We chose the parameters ro = 1, l = 1 and tc = 0
for a DP, tc = 1√

2
for an EP.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

states correspond to the quasi-bound states, which have outgoing waves without

incoming ones, also explains that the eigenvalues correspond to pole points in the

scattering matrix. The eigenvalues can therefore be seen as peaks in the transmis-

sion or reflectivity of the interferometer. The peaks are located at the real part

of the eigenvalues and their width depends on their imaginary part. This can be

used to study EPs in interferometers experimentally and confirm their sensitive

behavior for perturbations. At an EP the peaks of the reflectivity, shown in Fig-

ure 2.8, can be distinguished at a lower perturbation compared to a DP. Since

they correspond to the eigenvalues the position of the two peaks also have the

characteristic root behavior and the linear behavior at a DP.
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2.2. OPTICAL INTERFEROMETERS

(a) Normalized reflectivity at an EP.

(b) Reflectivity at a DP.

Figure 2.8: Comparison of the reflectivity of a double cavity interferometer at an
EP and DP. We chose the parameters ro = 0.99, l = 1 and tc = 0 for
a DP, tc = 1√

2
for an EP. The real part of the eigenvalues manifest as

peaks in the reflectivity, and can be observed experimentally. Com-
pared to a DP at an EP a lower perturbation is sufficient to observe
the two different peaks. The reflectivity at an EP is normalized since
due to the gain medium it can exceed 1.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

2.2.3 Ring cavity

We introduced EPs into optical interferometers by the example of the double cavity

system, but we still needed an active gain medium to bring the system to an EP. To

make the experimental setup even easier we need to introduce an interferometer

which can be brought to an EP without the need of a gain medium. For this

purpose we look at the Hamiltonian at an EP, given by Equation 2.6:

HEP =


s+ − i

√
g12g21 g12

g21 s+ + i
√
g12g21




λ1,2 = s+

v1 =
1√

g12 + g21



√
g12

i
√
g21




(2.29)

The reason why we needed equal gain and loss values in each cavity is explained by

the diagonal elements of HEP. For non-vanishing coupling strengths the imaginary

parts have the same magnitude with different sign. On the other side both coupling

strengths vanishing will just lead to a DP. The interesting case is an asymmetric

coupling where only one coupling strength vanishes, g21 = 0, g12 6= 0, and the other

one persists. In this case the diagonal elements have the same value but the system

is still at an EP. Further the eigenvector v1 reveals that in this case the eigenstate of

the EP is not a superposition of both modes, like in the case of symmetric coupling.

Only one mode, which is the eigenstate of the system, persists and the other

one vanishes. In other words we are looking for a system with two modes, with

equal eigenfrequencies, and an asymmetric coupling mechanism. Such systems

were already realized and studied in experiments with microcavities29,30,24,31. A

microcavity can be seen as two mode system with a clockwise (CW) and counter-

clockwise (CCW) mode. Without any coupling between them the microcavity is

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.2. OPTICAL INTERFEROMETERS

at a DP. Placing two nano scatterers near the microcavity, with a specific angle

between them, introduces an asymmetric coupling between the modes, and the

microcavity is at an EP. Only the mode which is not backscattered remains as an

eigenstate and the other one vanishes. This sense of direction is a consequence of

the chirality of EPs29. The experimental setup of microcavities is fairly difficult,

since once manufactured they are not tunable anymore. We therefore ask the

question if there exists a simpler setup where EPs and their chiral behavior can be

observed, and are looking into optical interferometers. To create an interferometer

similar to a microcavity, we choose a ring cavity as shown in Figure 2.9. The

ring cavity has a clockwise (CW) and counter-clockwise (CCW) mode. Without

any coupling between them, the ring cavity is at a DP similar to the microcavity.

To reach an EP we need to introduce an asymmetric coupling mechanism, which

is achieved by a back-reflecting mirror (BRM). The back-reflecting mirror only

couples the CCW mode into the CW one. Due to the similarity of the two systems,

we expect to be able to tune the ring cavity to an EP and observe the chiral and

directional behavior.

The ring cavity we are looking into, shown in Figure 2.10, consist of two mirrors

and a beam-splitter which form the ring cavity itself. Similar to a whispering-

gallery resonator the cavity has a clockwise (CW) and counter clockwise (CCW)

mode. Since the both modes in this system propagate along the same paths but in

opposite direction, they have the same eigenfrequencies. The two back-reflecting

mirrors, BRM1 and BRM2, introduce an asymmetric coupling between the modes.

At the mirror BRM1 the CW mode couples into the CCW mode and vice versa

at the mirror BRM2. Since we demand one vanishing coupling strength, only one

of the back-reflecting mirrors is present at an EP, which we choose to be BRM1.

The other one (BRM2) will act as perturbation of the system to again study the

behavior of the eigenvalues. As it turns out, this ring cavity was already studied
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CHAPTER 2. FORWARD SCATTERING PROBLEM

(a) Microcavity at a DP.

CW

CCW

MC

(b) Ring cavity at a DP.

BSM

M

CCW

CW

(c) Microcavity at an EP.

CW

CCW

MC

g

(d) Ring cavity at an EP.

BSM

M

CCW

CW

BRM

g

Figure 2.9: Schematic of a microcavity (MC) and a ring cavity at a DP and an
EP. Both cavities have two modes, a clockwise (CW) and a counter-
clockwise (CCW) mode, represented by the red and blue arrows. With
no coupling mechanism (g) the modes are independent of each other
and are the eigenstates of the systems. The systems are at a DP. By
introducing an asymmetric coupling from the CCW mode into the CW
mode, represented by the green arrows, the cavities are at an EP where
only the CW mode remains as eigenstate.
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2.2. OPTICAL INTERFEROMETERS

experimentally, under the aspect of phase locking of the laser modes, where the

vanishing of the coupling mode was observed12. We will study this interferometer

with our mathematical model and link this observation to EPs, and further obtain

again the behavior of the eigenvalues.

Figure 2.10: Schematic of a ring cavity. The cavity is formed by the two mirrors
and the beam-splitter, which is also responsible for the in- and out-
coupling. The blue and red arrows represent the clockwise (CW)
and counter clockwise (CCW) modes. The green and yellow arrows
at the open ports are the incoming and outgoing waves. The two
back-reflecting mirrors, BRM1 and BRM2, introduce an asymmetric
coupling between the modes, illustrated by the purple arrows.

Vanishing eigenvector

To study the occurrence of an EP in the ring cavity we again use the property of

the vanishing eigenvector. Without BRM1 and BRM2, r1 = 0 and r2 = 0, the
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CHAPTER 2. FORWARD SCATTERING PROBLEM

CW and CCW mode are independent of each other since there is no coupling.

Both propagate along the same path with opposite direction and have therefore

the same eigenfrequencies. The ring cavity is at a DP, with both the CW and

CCW mode as eigenstates. Bringing in one back-reflecting mirror, BRM1, with

an arbitrary reflectivity r1 6= 0, leads to a coupling from the CW mode into the

CCW one. The CCW mode is not effected by this mirror at all. Looking at the

Hamiltonian and eigenvector of the corresponding quantum mechanical system,

HEP and v1 with g21 = 0, g12 6= 0, we would expect that the interferometer is at

an EP with the CW mode as eigenvector. To confirm this explanation we obtain

the eigenstates with our mathematical model of interferometers. The eigenvalue

equation of the ring cavity has a very simple form:

(1 + eiklrbs)
2 = 0 (2.30)

It is particular interesting that the eigenvalues are not affected by the value of r1,

but it affects the geometric multiplicity.

r1 = 0 : gk1,2 = 2

r1 > 0 : gk1,2 = 1
(2.31)

With an arbitrary non-vanishing reflectivity r1 the system is at an EP. Solving

the eigenvector equation, Equation 2.23, reveals that the remaining eigenvector is

indeed the CW mode, which is in agreement with the explanation of the corre-

sponding quantum mechanical system. Compared to the double cavity, the ring

cavity is easily brought to an EP and does not need a gain medium or tunable

mirrors. This leads to a simple experimental setup. This ring cavity setup was

already studied in an experiment, where a high suppression of the donor (in our

case CCW) mode was observed12. The suppression was 4 to 5 orders of magni-
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2.2. OPTICAL INTERFEROMETERS

tude higher than previously reported. This observation is now explained with the

vanishing mode at an EP, and is linked to the chiral behavior of the system.

Eigenvalue splitting

Due to the simple setup of the ring cavity, which makes it suitable for experiments,

we want to look into the behavior of their eigenvalues. We already concluded that

the reflectivity of BRM1 does not lead to a splitting of the eigenvalues. We bring

in a second back-reflecting mirror, BRM2, with its reflectivity, r2 as perturbation

parameter. The additional back-reflection can for example be interpreted as re-

flection of a particle and the interferometer is therefore suitable for optical sensing.

Since both of the modes are coupling to each other, while none has gain or loss,

the interferometer can no longer be at an EP. To obtain the behavior of the inter-

ferometer we solve the eigenvalue equation with r2 as parameter. Since we need to

solve it numerically we need a fitting function to meaningfully describe its behav-

ior. We choose the function f(x) = axb with a and b as parameters, since it can

describe both, the behavior at an EP and at a DP. The eigenvalue splitting, shown

in Figure 2.11, has a square root behavior as expected for EPs. In the complex

plane the eigenvalues split along the imaginary axis. This can be obstructive since

the corresponding peaks in the scattering matrix are at the same position with a

different width, which could be difficult to distinguish.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

(a) Magnitude of the eigenvalue splitting of a ring cavity at an EP.

(b) Splitting of the eigenvalues of a ring cavity in the complex plane at
an EP.

Figure 2.11: Eigenvalue splitting of a ring cavity at an EP, with the parameters
rbs = 0.99, r1 = 0.01 and l = 1. The fitting function reveals the square
root behavior of the splitting. The eigenvalues in the complex plain
are only splitting along the imaginary axis, which could be difficult
to observe in the scattering properties.
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2.2. OPTICAL INTERFEROMETERS

Riemann Sheets

To reinforce the identification of the EP in the ring cavity, we again look into the

topology of the Riemann sheets. For this purpose we extend the parameter r2

into the complex plane which leads to a perturbation of the magnitude and phase

of the coupling strength. Since the phase of the coupling is also depending on

the distance between the back-reflecting mirror and the beam-splitter, it can also

be interpreted as perturbation of the position of the mirror BRM2. The Riemann

sheets, shown in Figure 2.12, have the topology of the complex square root function

which is characteristic for an EP.

(a) Real part of λ1,2 at an EP.

(b) Imaginary part of λ1,2 at an EP.

Figure 2.12: Riemann Sheets of the ring cavity interferometer, with the parameters
rbs = 0.99, r1 = 0.01 and l = 1, with the characteristic square root
topology in the vicinity of an EP.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

2.2.4 Higher order Exceptional Points

Higher order exceptional points can occur when not only two but more eigenvalues

are degenerate32,33,34. In general an EP has the order m when m degenerated eigen-

values have one corresponding eigenvector. Higher order Exceptional Points where

already studied in experiments with microcavities, where an enhanced sensitivity

was observed25,35. Generally speaking the eigenvalue splitting at an EP of order m

has an m-th root behavior. They can be used to create sensors with an extraordi-

narily high sensitivity. Since the ring cavity was easily brought to an EP we now

consider a system of two coupled ring cavities, show in Figure 2.13. This system

was also already considered by the same group as the single ring cavity.12 The two

cavities are symmetric and have the same properties. The interferometer has four

eigenmodes, a clockwise (CW) and counter clockwise (CCW) mode in each cavity.

We will refer to them as CW1, CCW1, CW2 and CCW2. Due to the geometric

placements of the ring cavities some of the modes have an intrinsic coupling, from

CCW1 into CCW2 and from CW2 into CW1. Comparing this coupling to the

single ring cavity we expect that the interferometer is already at an EP without

any back-reflection. The two tunable back-reflecting mirrors, BRM1 and BRM2,

introduce an additional coupling and the interferometer can be brought to an EP

of order four.

Vanishing eigenvector

To study the occurrence of an EP we will look into the corresponding quantum

mechanical system. This system has four coupling modes, which correspond to

CW1, CW2, CCW2 and CCW1, and is described by a 4x4 Hamiltonian. As in the

previous section the eigenfrequencies of the two modes of one ring cavity are the

same. Further assuming identical properties of the two ring cavities leads to the

same eigenfrequencies of all four modes denoted by s0. Looking at the schematic
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2.2. OPTICAL INTERFEROMETERS

Figure 2.13: Schematic of the coupled ring cavity interferometer. It consists of
two separate ring cavities as in Figure 2.10. The blue and red arrows
indicate the clockwise (CW) and counter clockwise (CCW) modes in
each cavity. The green and yellow arrows represent the in- and out-
coupling of the interferometer at the open ports. The purple arrows
indicate coupling between modes. Beside the coupling introduced by
the back-reflecting mirrors this setup has also an intrinsic coupling
from CCW1 into CCW2 and from CW2 into CW1, which can not be
eliminated.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

of the coupling ring cavities, Figure 2.13, we see an intrinsic coupling from CCW1

into CCW2 and also from CW2 into CW1, which we assign a coupling strength

of gi. The two back-reflecting mirrors, BRM1 and BRM2, introduce an additional

coupling which we neglect for now. With these considerations we can obtain the

Hamiltonian,

H =




s0 gi 0 0

0 s0 0 0

0 0 s0 gi

0 0 0 s0



. (2.32)

Since the Hamiltonian is an upper triangle matrix the eigenvalues are the diagonal

elements, and therefore all four are still equal. It is also similar to a Jordan

normal form which allows us to obtain the two eigenvectors, CW1 and CCW2. The

two remaining eigenmodes do not couple into any other mode. This Hamiltonian

describes a system with two EPs of order two. This observation was already

predicted by the Davidson group as they stated that the coupling ring cavities are

the "unfolded" versions of the single ring cavity with a back-reflecting mirror12.

Since the single ring cavity with a back-reflecting mirror is at an EP of order

two and the coupling ring cavities are at two EPs of order two this is in perfect

agreement. To study EPs of higher order we need to tune the ring cavities and

introduce an additional coupling mechanism, BRM2. By again considering all

coupling mechanisms we can obtain the Hamiltonian,

H =




s0 g12 g13 g14

0 s0 g23 g24

0 0 s0 g34

0 0 0 s0



. (2.33)
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2.2. OPTICAL INTERFEROMETERS

The form of an upper triangle matrix of the Hamiltonian lets us again conclude

that all four eigenvalues are still degenerate, and due to the similarity to a Jordan

normal form only one eigenvector, CW1 is remaining. The system is now at an

EP of order four.

We again want to compare the results described by the quantum mechanical system

to our introduced model. The eigenvalue equation of the coupled ring cavities, with

only one back-reflecting mirror BRM2, has a very similar form compared to the

single ring cavity.

(1 + eiklrbs)
4 = 0

k1,2,3,4 =
π

l
+ i

ln(rbs)

l

(2.34)

All four eigenvalues are degenerated, and we need the geometric multiplicity to

clarify whether it is an EP or a DP. Further solving the eigenvector equation leads

to the remaining modes.

r2 = 0 : gk1,2,3,4 = 2

r2 > 0 : gk1,2,3,4 = 1
(2.35)

The coupled ring cavities have only one eigenvalue. Without a back-reflecting

mirror the modes CW1 and CCW2 remain as eigenvectors and the interferometer

has two EPs of order two. Bringing in one back-reflecting mirror, BRM2, CCW2

also vanishes and the interferometer is at an EP of order four. The only remaining

eigenvector is the CW1 mode. This is in agreement with the explanation of the

corresponding quantum mechanical system.

Eigenvalue splitting

Since the interferometer is at an EP of order four we expect a fourth root behavior

of the eigenvalue splitting compared to the square root behavior at an EP of order

two. Directly at an EP the slope of the splitting is infinite in both cases, but in

its vicinity it is higher for an EP of fourth order. This enhanced sensitivity was
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CHAPTER 2. FORWARD SCATTERING PROBLEM

experimentally observed in microcavities25 and we will introduce it into optical

interferometers.

Similar to the case of the single ring cavity, we look at the coupled ring cavities with

one back-reflecting mirror, BRM2. The interferometer is at an EP of order four

and we introduce a second back-reflecting mirror, BRM1, as perturbation. The

eigenvalue splitting follows indeed a fourth root behavior, shown in Figure 2.14.

Since in both interferometers, single ring cavity and coupled ring cavities, we

use the reflectivity of a mirror as perturbation parameter, we can compare the

magnitude of the splitting. For this purpose we choose the same reflectivity of the

beam-splitter and the mirrors in both interferometers.

rbs = 0.99 r1 = 0.01 r2 = 0.001

single ring cavity: |∆λ| = 0.00012713

coupled ring cavities: |∆λ| = 0.0022679

(2.36)

The splitting of a coupled ring cavities interferometer is of larger magnitude and

the sensitivity is enhanced.

Riemann Sheets

For a better understanding of an EP of order four it is again crucial to study

the Riemann sheets. Similar to the single ring cavity we extend the perturbation

parameter r1 into the complex plane, and the interpretation of the imaginary part

as perturbation of the position of mirror BRM1 remains. Since four eigenvalues

are splitting up, the Riemann sheets consist of four surfaces rather than two.

The sheets, shown in Figure 2.15, have the topology of the complex fourth root

function and reveal that the interferometer is indeed at an EP of order four. They

are self-intersecting and have a pole-point in their derivative located at the EP.
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2.2. OPTICAL INTERFEROMETERS

(a) Magnitude of the eigenvalue splitting of coupled ring cavities.

(b) Eigenvalues splitting of coupled ring cavities in the complex plane.

Figure 2.14: Eigenvalue splitting of coupled ring cavities at an EP of order four,
with r1 as perturbation parameter. We chose the parameters rbs =
0.99, r2 = 0.01. The fitting function of the magnitude of the splitting
reveals the fourth root behavior.
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CHAPTER 2. FORWARD SCATTERING PROBLEM

(a) Real part of λ1,2,3,4 at an EP.

(b) Imaginary part of λ1,2,3,4 at an EP.

Figure 2.15: Riemann Sheets of the coupled ring cavities at an EP of order four,
plotted in the perturbation space (Re(r1), Im(r1)). We chose the
parameters rbs = 0.99, r2 = 0.01. All four sheets have the topology
of the complex fourth root.
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2.3. CONCLUSION

2.3 Conclusion

While EPs are already well-studied, their occurrence in optical interferometers was

not. They are particularly interesting systems to study EPs due to their straight-

forward setup. We introduced a mathematical model of interferometers in general

which is able to find and identify EPs. This method relies on the isomorphism

of the paraxial wave equation and the Schrödinger equation. We introduced an

interferometer, a double cavity, with a similar setup as the known microcavity

system, where EPs were already observed experimentally. We could show that one

is able to tune the system to an EP and obtain all properties linked to it, namely

the vanishing eigenvector, the characteristic splitting of the eigenvalues and the

Riemann sheets. By further looking into an interferometer system proposed by the

Davidson group12, an optical ring cavity, we could show that their obtained results

can directly be linked to EPs. This interferometer could be tuned to an EP without

any gain medium or tunable mirrors which results in an easy experimental setup,

which could be built on an optical table. Sensors which are realized with optical

interferometers could benefit of the high sensitivity of EPs and their characteristic

eigenvalue splitting. A particular interesting sensor is the so-called Sagnac inter-

ferometer, which has the same geometry as the introduced ring cavity14,15,13. In a

rotating frame the optical wave of the clockwise and counter clockwise direction

experience different lengths of the cavity. An EP can be exploited to enhance the

response of the system to these perturbations, which leads to a better resolution

of the sensor. We further introduced higher order EPs into optical interferometers

on the example of the coupled ring cavities, where the sensitivity is even enhanced

compared to the single ring cavity. This setup is still simple and suitable for ex-

periments, with the only remaining challenge being the construction of two ring

cavities of the same geometry. In theory an arbitrary amount of ring cavities can

be coupled, which allows to create an optical interferometer at an EP of arbitrary
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CHAPTER 2. FORWARD SCATTERING PROBLEM

high order while maintaining the property of a simple setup.
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3 Inverse Scattering Problem

The inverse scattering problem36 is about obtaining the internal structure and

parameters of a system by only knowing its scattering properties. The inverse

scattering problem has a wide range of applications not only in physics but also in

medicine and many other fields37. It is a particularly hard problem to solve since

most models for forward scattering are not invertible and the solutions are not

unique in many cases38,39. We will solve the inverse scattering problem of optical

resonators containing a dielectric potential landscape. With the canonical isomor-

phism between an optical and a quantum mechanical system, see subsection 2.2.1,

the dielectric potential landscape can be transformed into a quantum mechanical

potential and it is sufficient to solve the problem for the latter one. We therefore

look into the inverse scattering problem of a one-dimensional quantum mechani-

cal system. This problem was also addressed in a different project of our group

where a machine learning approach was chosen. Machine learning is a rather new

and unconventional approach and we therefore want to compare it to conventional

approaches. The machine learning approach solves the inverse scattering problem

by training a neural network to generated samples. It can be seen as data fitting

in a high dimensional space. For comparison we choose conventional approaches

which work in a similar way. We therefore transform the inverse scattering prob-

lem into a fitting problem by introducing an error function, and minimize the error

with numerical methods. The two chosen methods for minimization are gradient
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descent and simulated annealing, which are both well-known in physics. Gradient

decent16 is a deterministic and easy-to-implement method but can suffer from poor

convergence when local minima exist. Simulated annealing40 on the other hand is

a stochastic method with a more complex implementation, but resolves the prob-

lem of local minima. In this section we will give an introduction to the inverse

scattering problem, choose a numerical model, transform it into a minimization

problem and finally solve it with the named methods.
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CHAPTER 3. INVERSE SCATTERING PROBLEM

3.1 Mathematical model

We first look into the scattering problem of quantum mechanical systems in gen-

eral. For simplicity, we restrict ourselves to one-dimensional smooth potentials

with a compact carrier. To describe the scattering properties of such system we

introduce the scattering matrix. The scattering matrix describes the transmission

and reflectivity of an incoming wave depending on its momentum. It is obtained

by solving the stationary Schrödinger equation in natural units:

(
∂2

∂x2
− 2mV (x) + k2)ψk(x) = 0 (3.1)

with the potential V (x) and the momentum of the wave k. The momentum is

directly linked to the energy with the relation E = k2

2m
, where m denotes the mass

of the particle. We choose the boundary conditions of asymptotic incoming and

outgoing plane waves:

x→ −∞ : ψk(x) = A1ke
ikx +B1ke

−ikx

x→∞ : ψk(x) = B2ke
ikx + A2ke

−ikx
(3.2)

Here A1k, B1k denotes the amplitudes of the incoming and outgoing waves on the

left side and A2k, B2k on the right one. The solution of the Schrödinger equation

links the amplitudes together and leads to the scattering matrix:


B1k

B2k


 = S(k)


A1k

A2k


 (3.3)
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3.1. MATHEMATICAL MODEL

The elements of the scattering matrix are the reflectivity of each side and the

transmission from one side to the other:

S(k) =


 r1(k) t21(k)

t12(k) r2(k)


 (3.4)

The forward scattering problem can be expressed as function which links a given

potential to its scattering matrix.

S = fFSP (V ) (3.5)

As the name suggests the inverse scattering problem can be expressed as the inverse

function of the forward scattering problem and links a given scattering matrix to

its potential.

V ∈ fISP (S) = {V ′ : fFSP (V
′) = S} (3.6)

In general the forward scattering problem is not injective, e.g. if the potential al-

lows boundary states, and therefore the solution of the inverse scattering problem

may not be unique. With only the information of the scattering matrix, we can

not decide which one of the solutions is the true potential and we therefore are

satisfied with any potential where the corresponding scattering matrix is equal to

the given one.

To solve the inverse scattering problem numerically we introduce a finite element

model. We transform the continuous spaces of position and momentum into dis-

crete finite subspaces. We denote variables in the finite element model with a

tilde symbol (˜ ). For the position space we choose a finite interval [x̃min, x̃max]

with an equidistant grid of ñx points. This translates to a position space of

x̃ = (x̃1, . . . , x̃ñx
), where x̃1 = x̃min, x̃ñx

= x̃max and the distance of two points

is given by ∆x̃ = x̃i+1 − x̃i = x̃max−x̃min

ñx−1
. The size of the interval depends on the
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CHAPTER 3. INVERSE SCATTERING PROBLEM

compact carrier of the true potential and should be big enough to include it. The

number of grid points heavily depends on the slope of the potential and should

be chosen high enough not to lose information. The potential in this model is

represented by the potential on the finite position space Ṽ = (Ṽ1, . . . , Ṽñx
) with

Ṽi = V (x̃i). For the momentum space we choose a similar approach where we

choose an interval [0, k̃max] with an equidistant grid of ñk points, with k̃1 = 0,

k̃ñk
= k̃max and the distance ∆k̃ = k̃max

ñk−1
between two points. For the inverse scat-

tering problem the scattering matrix in the momentum space is given and therefore

the parameters of the momentum space can be chosen accordingly. The scattering

matrix in this model is again the scattering matrix on the finite momentum space

S̃ = (S̃1, . . . , S̃ñk
) with S̃i = S(k̃i). Similar to the continuous model we can express

the forward and inverse scattering problem as functions.

S̃ = f̃FSP (Ṽ )

Ṽ ∈ f̃ISP (S̃) = {Ṽ ′ : f̃FSP (Ṽ ′) = S̃}
(3.7)

While the definition of the forward scattering problem is still valid, a problem

arises for the inverse scattering problem. Due to the finite and discrete position

and momentum spaces, there may not exist a potential with a scattering matrix

equal to the given true one. We will resolve this problem in the following section,

where we define the inverse scattering problem as a minimization problem and its

solution is the potential whose scattering matrix is "nearest" to the true one.

3.2 Minimization problem

To solve the inverse scattering problem numerically we transform it into a min-

imization problem. For this purpose we introduce an error function which de-

scribes the disagreement between the scattering matrix of a potential, V , and the
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3.3. FORWARD SCATTERING PROBLEM

true scattering matrix, Strue. The error function should be positive-semidefinite,

ǫ(V, Strue) ≥ 0, and only zero if the potential is a solution to the inverse scattering

problem, ǫ(V, Strue) = 0 ⇔ fFSP (V ) = Strue. In the continuous model we define

the error function as:

ǫ(V, Strue) =

∫ ∞

k=0

||(fFSP (V ))(k)− Strue(k)||Fdk (3.8)

Here || · ||F denotes the Frobenius norm, which is the sum of the absolute squares

of all elements of the matrix. In the finite element model the integral transforms

into a sum and the error function takes the form:

ǫ̃(Ṽ , S̃true) =

ñk∑

ik=1

||(f̃FSP (Ṽ ))ik − (S̃true)ik ||F∆k̃ (3.9)

With this error function we can write the inverse scattering problem, with a given

scattering matrix S̃true, as minimization problem:

ǫ̃(Ṽ , S̃true) = min
∀Ṽ ′

(ǫ̃(Ṽ ′, S̃true)) (3.10)

with the solution Ṽ where the error is minimal. The inverse scattering problem is

now again well defined. To solve it we need two different algorithms, one for the

forward scattering problem and one for the minimization.

3.3 Forward scattering problem

Due to the nature of the finite element model we follow the divide and conquer

paradigm to solve the forward scattering problem. We will divide the potential into

small subspaces, which was already done in our finite element model, and solve the

forward scattering problem for each part (divide step). We then put the solutions
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CHAPTER 3. INVERSE SCATTERING PROBLEM

of all parts together to solve the forward scattering problem of the whole poten-

tial (conquer step). We start by obtaining the scattering properties of a subspace

[x̃i, x̃i+1]. In our finite element model we have no information of the potential be-

tween two points and we therefore need a suitable approximation, which we choose

to be the Heaviside function. For this approximation the scattering properties are

easily calculated analytically and it still offers a good approximation if the step

size ∆x̃ is chosen small enough.

x̃i ≤ x ≤ x̃i+1 : Vapprox(x) = Ṽ (x̃i)+ (Ṽ (x̃i+1)− Ṽ (x̃i))H(x− x̃i+1 + x̃i

2
) (3.11)

Here the function H denotes the Heaviside function and not the Hamiltonian.

We now introduce the transfer matrix. While the scattering matrix links the

amplitudes of the incoming waves on both sides to the outgoing ones, the transfer

matrix links the amplitudes of the incoming and outgoing waves of one side to the

ones on the other side,


b2

a2


 =


T11 T12

T21 T22





a1
b1


 . (3.12)

Both the scattering matrix and the transfer matrix lead to the same equations

and can be transformed into each other. For a potential of the form of a Heaviside

function the transfer matrix can be calculated analytically.

(T̃i,i+1)j = Ti,i+1(k̃j) =
1

2


 (1 + k̃′i

k̃′i+1

)ei(k̃
′
i+k̃′i+1)

∆x̃
2 (1− k̃′i

k̃′i+1

)ei(k̃
′
i−k̃′i+1)

∆x̃
2

(1− k̃′i
k̃′i+1

)e−i(k̃′i−k̃′i+1)
∆x̃
2 (1 + k̃′i

k̃′i+1

)e−i(k̃′i+k̃′i+1)
∆x̃
2




k̃′i =
√
k̃2j − 2mṼi

(3.13)

(T̃i,i+1)j denotes the transfer matrix between the points x̃i, x̃i+1, with an wave of

momentum k̃j. The transfer matrix of the whole potential can be easily obtained
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3.3. FORWARD SCATTERING PROBLEM

and is the product of the transfer matrices of each subspace.

T̃i = (T̃1,n)i =
ñx−1∏

j=1

(T̃j,j+1)i (3.14)

Finally we can transform the transfer matrix into the scattering matrix.


bn

an


 =


T11 T12

T21 T22





a1
b1





b1
bn


 =


S11 S12

S21 S22





a1
an




S =


S11 S12

S21 S22


 =


−

T21

T22

1
T22

1
T22

T12

T22




S̃i = S(k̃i) =


(S̃11)i (S̃12)i

(S̃21)i (S̃22)i


 =


−

(T̃21)i
(T̃22)i

1
(T̃22)i

1
(T̃22)i

(T̃12)i
(T̃22)i




(3.15)

This is only valid for transfer matrices with det(T ) = 1 and is not fulfilled by each

individual transfer matrix, but since we demand a potential with compact support,

and therefore Ṽ1 = Ṽñx
= 0, this condition is fulfilled for T̃ if x̃min and x̃max are

chosen accordingly. With the introduced transfer matrix method we are now able

to solve the forward scattering problem of our potentials. To solve the inverse

scattering problem we additionally need an algorithm for the minimization. We

chose two popular algorithms, gradient descent and simulated annealing, which

will be discussed in the following sections.
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CHAPTER 3. INVERSE SCATTERING PROBLEM

3.4 Gradient descent

The first algorithm for minimization is gradient descent16. Gradient descent is a

widely used heuristic approach for general optimization problems. It is therefore

also used for data fitting, which makes it a good candidate to compare it to the

machine learning approach. It is deterministic and works best for high dimensional

spaces41. It follows the greedy paradigm, which means that it chooses the locally

best option in each step, which may not lead to the global optimum. This problem

can be partially eliminated by choosing an parameter space with a high dimension,

where the occurrence of local optima is unlikely. However this will in return then

require a higher computational power. Further the starting point has a high impact

on the quality of this method. A good starting point will lead to faster and better

results, while a bad one can lead to a high number of iterations or a solution of

low quality.

The goal of this algorithm is to find a potential Ṽ for a given scattering matrix,

Strue, where the error function ǫ̃(Ṽ , S̃true) is at least at a local minimum. In every

step of this algorithm we have a current potential, denoted by Ṽact, which represents

the best solution so far. At the beginning this potential is initialized with a starting

point, Ṽinit. In every step we want to modify this potential to lower the error. For

this purpose we look at how a small modification of the potential, Ṽact → Ṽact+∆Ṽ ,

impacts the error,

ǫ̃(Ṽact +∆Ṽ , S̃true)− ǫ̃(Ṽact, S̃true) = ∇ǫ̃(Ṽact, S̃true)∆Ṽ +O((∆Ṽ )2). (3.16)

Here ∇ǫ̃(Ṽact, S̃true) = ( ∂ǫ̃

∂Ṽi
)(Ṽact, S̃true) is the gradient of the error function evalu-

ated at Ṽact. In order to obtain a smaller error the inner product of the gradient

of the error function and the modification of the potential should be negative. We
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3.4. GRADIENT DESCENT

therefore choose a modification of:

∆Ṽ = −α∇ǫ̃(Ṽact, S̃true). (3.17)

where α is a step size which should be chosen small to not leave the linear range of

the approximation. This step is repeated until we reach a local minimum and the

gradient of the error function is theoretically vanishing. Since it will numerically

never be exactly zero, we introduce an additional parameter Dǫ̃min, which is the

lower bound of the gradient of the error function. The algorithm terminates when

||∇ǫ̃(Ṽact, S̃true)|| < Dǫ̃min (3.18)

In pseudo code the gradient descent algorithm is written as:

function gradient_descent(S̃true, Ṽinit, α, Dǫ̃min)

Ṽact ← Ṽinit

while ||∇ǫ̃(Ṽact, S̃true)|| ≥ Dǫ̃min do

Ṽact ← Ṽact − α∇ǫ̃(Ṽact, S̃true)

end while

return Ṽact

end function
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CHAPTER 3. INVERSE SCATTERING PROBLEM

For a better understanding of the method we illustrated its convergence, shown

in Figure 3.1, on the example of a Gaussian peak potential. The reconstructed

potential is plotted after a various number of steps, and we started with a constant

potential of Vinit = 0. In each step the gradient descent method chooses a slightly

better potential until the gradient of the error function falls below a threshold.

The final obtained potential is well reconstructed with only a minimal error.

Figure 3.1: A Gaussian peak potential reconstructed with the gradient descent
method. We used an initial potential of Vinit = 0 and a step size of
α = 0.1. The algorithm terminates when the gradient of the error
function falls below Dǫ̃min = 10−8, which is achieved after 2027 steps.
The plot shows the true potential and the reconstructed ones after 0,
10, 100, 1000 and 2027 steps.
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3.5. SIMULATED ANNEALING

3.5 Simulated Annealing

Another algorithm we look into is simulated annealing17. Similar to gradient de-

scent it is widely used for minimization problems and therefore also suitable to

compare it to machine learning. It is specially used in physics and is able to find

the global minimum of a function. As the name suggests it simulates the annealing

process of solids, where the energy states are distributed according to Boltzmann

statistics. At the thermal equilibrium for a given temperature T the probability

that the system has a microscopic configuration with an energy greater or equal

than Ei is given by:

p(Ei) ∝ e
−Ei−E0

kBT (3.19)

where E0 is the ground state (minimum energy) and therefore Ei − E0 ≥ 0. By

cooling the solid and decreasing the temperature the probability to encounter the

ground state increases and is 1 at T = 0. We simulate this process where the error

function takes the role of the energy and the potential the role of the microscopic

configuration.

We start with a temperature of T = Tinit and an initial potential Ṽact = Ṽinit which

is generated randomly. In every step we bring the system to thermal equilibrium.

For this purpose we use the Metropolis algorithm42 where we perturb the current

potential Ṽact slightly and generate a new potential Ṽnew = Ṽact +∆Ṽ , where ∆Ṽ

is a small perturbation generated randomly. We then look into the change of

the error function ∆ǫ̃ = ǫ̃(Ṽnew, S̃true)− ǫ̃(Ṽact, S̃true) and accept the new potential

with a probability of p = min(1, e−
∆ǫ̃
T ). Better potentials, with a smaller error,

are always accepted while potentials with higher error can be rejected with a

probability depending on the temperature. Repeating this step nsweeps times will

lead to the thermal equilibrium. We further decrease the temperature by a factor

of λ and repeat the whole step until the temperature reaches a lower bound of
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CHAPTER 3. INVERSE SCATTERING PROBLEM

Tmin. The potential Ṽact is then our approximation of the global minimum. We

again illustrated this algorithm by its pseudo code:

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.6. COMPARISON AND CONCLUSION

function simulated_annealing(S̃true, Tinit, Tmin, λ, nsweeps)

Ṽact ← random_potential()

T ← Tinit

while T ≥ Tmin do

for 1 . . . nsweeps do

∆Ṽ ← random_perturbation()

Ṽnew ← Ṽact +∆Ṽ

∆ǫ̃← ǫ̃(Ṽnew, S̃true)− ǫ̃(Ṽact, S̃true)

if random_number(0, 1) ≤ e−
∆ǫ̃
T then

Ṽact ← Ṽnew

end if

end for

T ← T
λ

end while

return Ṽact

end function

3.6 Comparison and Conclusion

We now compare the three methods and look into their abilities to solve the

inverse scattering problem. For this purpose we solved the problem for three

different randomly generated sample potentials. The potentials were taken from

the machine learning project. It is worth to mention that the sample potentials

are subject to the same statistics as the potentials which were used to train the

neural network. The true and reconstructed potentials by the methods are shown

in Figure 3.2, Figure 3.3 and Figure 3.4. We first want to compare the quality of

the methods. We therefore introduce an error function of the potential and the
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CHAPTER 3. INVERSE SCATTERING PROBLEM

scattering matrix:

errV =

∫ ∞

x=−∞
|(Vm(x)− Vtrue(x))|2dx

errS =

∫ ∞

k=0

||Sm(k)− Strue(k)||Fdk
(3.20)

where Vm, Vtrue are the reconstructed and true potential, and Sm, Strue their scat-

tering matrices. For all methods and potentials the errors, shown in Table 3.1, are

fairly low and of the same scale. The machine learning method has the smallest

error of the potential (errV ) and therefore best solutions in all three samples. For

the second potential the error was even one order of magnitude smaller compared

to gradient descent and simulated annealing. It is likely that the neural network

was trained to a very similar potential and therefore was able to reconstruct it

very well. Except for the second potential the error of the scattering matrix (errS)

was lower for gradient descent and simulated annealing compared to the machine

learning method. The machine learning method was trained to potentials of the

same statistic as the sample potentials and was therefore biased, while gradient

descent and simulated annealing had no information of the potentials at all and

only had the information of the scattering matrix.

Not only the quality is interesting to compare, but also the properties of the meth-

ods itself. While the machine learning approach needs a higher computational

power, all work is done by training the neural network. After the training it is

able to solve an instance of the inverse scattering problem with minimal computa-

tional power and in a short time. It is therefore suitable for real-time applications.

For both, the gradient descent and simulated annealing method, no preparation is

needed, and every instance of the problem needs nearly the same computational

power. While the machine learning methods needs to be trained to similar poten-

tials, gradient descent and simulated annealing are generic solutions and work for
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3.6. COMPARISON AND CONCLUSION

all potentials equally well.

We can conclude that the machine learning method compares very well and can

even outperform conventional methods, and is specially useful if the form of the

potential is known or if a single instance needs to be solved fast. It would be

further interesting how these methods compare in a higher dimensional space or

at other physical problems.

Method
Potential 1 Potential 2 Potential 3
errV errS errV errS errV errS

Machine Learning 0.549 0.0539 0.042 0.0014 1.544 0.132
Gradient Descent 1.242 0.042 0.314 0.044 0.627 0.054

Simulated Annealing 1.637 0.0413 0.809 0.044 1.555 0.053

Table 3.1: Comparison of machine learning, gradient descent and simulated an-
nealing on three sample potentials shown in Figure 3.2, Figure 3.3 and
Figure 3.4. errV , errS are the errors of the potential and scattering
matrix.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 3. INVERSE SCATTERING PROBLEM

(a) Potential 1, reconstructed with machine learning.

(b) Potential 1, reconstructed with gradient descent.

(c) Potential 1, reconstructed with simulated annealing.

Figure 3.2: Potential 1 reconstructed with the different approaches. For gradient
descent and simulated annealing we chose x̃min = −5, x̃max = 5, ñx =
100 and k̃max = 10, ñk = 200. For gradient descent we chose the
parameters α = 0.5, Dǫ̃min = 10−10, Ṽinit = 1. For simulated annealing
we chose Tinit = 10−4, Tmin = 10−6, λ = 1.2, nsweeps = 5000.
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3.6. COMPARISON AND CONCLUSION

(a) Potential 2, reconstructed with machine learning.

(b) Potential 2, reconstructed with gradient descent.

(c) Potential 2, reconstructed with simulated annealing.

Figure 3.3: Potential 2 reconstructed with the different approaches. For gradient
descent and simulated annealing we chose x̃min = −5, x̃max = 5, ñx =
100 and k̃max = 10, ñk = 200. For gradient descent we chose the
parameters α = 0.5, Dǫ̃min = 10−10, Ṽinit = 1. For simulated annealing
we chose Tinit = 10−4, Tmin = 10−6, λ = 1.2, nsweeps = 5000.
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CHAPTER 3. INVERSE SCATTERING PROBLEM

(a) Potential 3, reconstructed with machine learning.

(b) Potential 3, reconstructed with gradient descent.

(c) Potential 3, reconstructed with simulated annealing.

Figure 3.4: Potential 3 reconstructed with the different approaches. For gradient
descent and simulated annealing we chose x̃min = −5, x̃max = 5, ñx =
100 and k̃max = 10, ñk = 200. For gradient descent we chose the
parameters α = 0.5, Dǫ̃min = 10−10, Ṽinit = 1. For simulated annealing
we chose Tinit = 10−4, Tmin = 10−6, λ = 1.2, nsweeps = 5000.
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4 Summary and Outlook

We introduced a method to find and identify EPs in interferometers, and showed

their properties, such as the vanishing eigenvector, the characteristic eigenvalue

splitting, the characteristic topology of the Riemann sheets and their impact into

the scattering problem. We gave an example of an interferometer, consisting of

two coupled cavities, which is similar to the coupled microcavity setup and could

show that all properties of EPs occur. We further looked into interferometers at

an EP with a very simple setup, only consisting of a ring cavity, without any gain

or loss media. Due to their simple setup these system are very suitable to study

EPs. For the ring cavity interferometer, where a high suppression of one mode

was already experimentally observed, we could link this observation to an EP. We

further looked into higher order EPs and could show that they can occur in inter-

ferometers and also enhance the sensitivity compared to EPs of second order. A

particular interesting interferometer which could use the properties of an EP is the

Sagnac interferometer, which measures the angular velocity. The root behavior of

the eigenvalue splitting can be used to lower the detection limit and enhance the

resolution.

We solved the inverse scattering problem with two fitting methods, gradient de-

scent and simulated annealing, and compared it to a machine learning approach,

where a neural network was trained to generated samples. The machine learning

approach compares very well to our methods and can even outperform them. It
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has the advantage that it can be biased by choosing specific training data, which

is useful when the general form of the potential is known. Further it only needs a

high computational power to train the network, while solving a single instance of

the inverse scattering problem is done in a short time. For completely unknown

potentials the gradient descent and simulated annealing method are more suitable

since they do not rely on a specific training set. They do not need any preparation

work, but need higher computational power to solve a single instance. It would

be interesting how machine learning compares to gradient descent and simulated

annealing in higher dimensions. Due to the generic nature of those methods they

can additionally be compared with other physical problems.
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