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Abstract 

Rock mass falls, especially in mountain ranges like the Alps, belong to natural morphological 
phenomena. If they occur near population areas, they comprise great hazard to human life and 
to the nearby infrastructure. Thus it is very important to predict any possible occurrence and 
foresee the likely pathway of rock avalanches, so that precautions could be taken just in time. 

In order to evaluate the qualification of the numerical program PFC modified for run out 
modeling two cases were selected for comparing reality and simulation: Punta Thurwieser 
rock avalanche with a steep Fahrböschung and Frank Slide showing a gentle Fahrböschung. 

PFC3D (Particle Flow Code in 3 Dimensions) is a discontinuum mechanics program 
developed by ITASCA CONSULTING GROUP. PFC models the movements and 
interactions of stressed assemblies of spherical particles either in or getting contact with wall 
elements. The particles may be bonded together at their contact points to represent a solid that 
may fracture due to progressive bond breakage. Every particle is checked on contact with 
every other particle at every timestep. Thus PFC can simulate not only failure mechanisms of 
rock slopes but also the run out of a detached and fractured rock mass. The run out model 
using PFC consists of two basic elements: two dimensional wall elements which represent the 
non moved ground and spherical elements representing the rock mass particles in motion. 

Parameter variations showed that the parameters necessary to get results coinciding with 
observations in nature in the particular cases are completely different. The diagrams of mean 
particle velocities and kinetic energy over time clearly point out that some 30 percent of total 
kinetic energy is rotational kinetic energy in Thurwieser, whereas the contribution of 
rotational kinetic energy in Frank Slide is zero. Thus Frank run out is a real “slide” of a 
coherent mass, whilst Punta Thurwieser run out is a rock mass fall with much internal 
movement. 

Therefore, the prediction of the run out kinematics and the fixing of the parameters is a 
demanding task in each case when modeling run outs. 
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1 Landslides, Rock Mass Falls 

In geotechnical terminology the term landslide is often expressed differently. As a general 
definition, the United States Geological Survey (USGS) has introduced “Landslides” as: 

“A wide range of ground movement, such as rock falls, deep failure of slopes, and shallow 
debris flows. Although gravity acting on an over-steepened slope is the primary reason for a 
landslide, there are other contributing factors: 

• erosion by rivers, glaciers, or ocean waves create oversteepened slopes 

• rock and soil slopes are weakened through saturation by snowmelt or heavy rains 

• earthquakes create stresses that make weak slopes fail 

• earthquakes of magnitude 4.0 and greater have been known to trigger landslides 

• volcanic eruptions produce loose ash deposits, heavy rain, and debris flows 

• excess weight from accumulation of rain or snow, stockpiling of rock or ore, from 
waste piles, or from man-made structures may stress weak slopes to failure and other 
structures (USGS, 2007 )” 

On the other hand rock mass falls are special types of landslides, which occur on rock 
material as the name implies. 

1.1 Landslides and their Classification 

The landslides in general term classified by their two characters:  

• by material (e.g. rock, earth, debris) 

• by the type of movement (e.g. rock fall, debris flow) (VARNES, 1978) 

By material, landslides are divided into three categories (after VARNES), namely: rock (a hard 
or firm mass that was intact and in its natural place before the initiation of movement), earth 
(describes material in which 80 percent or more of the particles are smaller than 2 mm) and 
debris (contains a significant proportion of coarse material, 20 to 80 percent of the particles 
are larger than 2 mm and the remainder are less than 2 mm). 
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By their type of movement, landslides are classified into five types: falls, topples, slides, 
spreads and flows. VARNES has introduced a last type: complex landslides which are a 
combination of two or more of the main movement types. (See Figure 1.1) 

 

 

Figure 1.1 Classification of landslide types (VARNES, 1978) 

These categories are described in detail as follows: 

- Falling: Detachment of a mass from a steep sloppy cliff, which has little or no 
movement in tangential direction. Generally, after the detachment, the material falls in 
a free falling, rolling and/or bouncing manner. 

- Toppling: Rotation of the material around an axis horizontal and parallel to the slope 
surface. This type of movement is generally in rock falls observed. 

- Sliding: Sliding is generally defined as the downslope movement of a soil or rock 
mass occurring dominantly on rupture surfaces with intense shear strain. Movement 
can either be rotational (Figure 1.1.c.i) or translational (Figure 1.1.c.ii) 

- Spreading: Fracturing and lateral extension of coherent rock or soil materials due to 
liquefaction or plastic flow of subjacent material (GEONET, 2007) 
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- Flowing: Sequential sliding movement, which advances by viscous flow in saturated 
materials. 

- Complex slides: Combination of two or more above mentioned types. 

Naturally, it is hard to explain the complex movement behavior of soil or rock with these six 
categories. The necessity to explain the soil behavior in detail has forced the experts to divide 
the above mentioned categories into subdivisions. 

Besides movement types it is also important to know the initial failure mechanisms of 
landslides. 

1.1.1 Initial Failure Mechanisms 

The classification given by VARNES (1978) explains in fact the landslide movement types, 
but it lacks the capability of distinguishing the initial failure mechanisms with the run out 
types (e.g. rock toppling is a typical example of initial failure movement, while debris flows 
express a run out movement) 

A more detailed and up-to-date version of VARNES’ classification explaining the initial 
failure mechanism of the rockslides has been introduced by POISEL & PREH (2004). Figure 
1.2 and Figure 1.3 illustrate these initial failure mechanisms thoroughly. 

This catalogue of initial failure mechanisms takes into account the geological setting and the 
geometry of the slope, the joint structure, the habitus of the rock blocks, as well as the 
mechanical behavior of the rocks and of the rock mass (deformation and strength parameters) 
(POISEL & PREH, 2004). As in the VARNES’ case, many classifications of rock slope 
failure mechanisms do not distinguish the initial failure or detachment mechanism and the 
possible run out (e.g. rockfall, rock slide, rock avalanche). Through the catalogue of initial 
failure mechanisms given below, sophisticated diagnose and more suitable judgment of the 
rockslide initial failure mechanism could be done. 
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Figure 1.2 Rock slope initial failure mechanisms and their mechanical models - Part 1 (POISEL & 
PREH, 2004) 
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Figure 1.3 Rock slope initial failure mechanisms and their mechanical models - Part 2 (POISEL & 
PREH, 2004) 
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1.2 Rock Mass Falls 

A rock mass fall is often named as “Rock Avalanche”. The term “Rock Avalanche” has been 
first used by McCONNELL & BROCK (1904) to describe the “Frank Slide” in Alberta 
(Canada). It has been later described by CRANDELL (1968) in detail as follows: “very rapid 
downslope flowage of segments of bedrock that become shattered and pulverized during 
movement, which typically results from a very large rock fall or rockslide”. 

In order to be consistent with the terminology worldwide while dealing with rock falls, it has 
been recommended by landslide experts to use a set of definitions. Figure 1.4 illustrates some 
important parts in a rockslide. The part that loose material (e.g. rock) detaches apart is called 
detachment area or detached area. The travel course that the detached material follows named 
as run out path, and the area, where the detached mass comes into a stabile position named as 
deposit area. 

 

Figure 1.4 Denotation of different parts in a rockslide (HEIM, 1932) 

The other important parameters to differentiate in defining a rockslide are slope (gradient) 
parameters, namely: geometric gradient (slope average angle) and Fahrböschung. The 
geometric gradient defined as the obtainable angle connecting the uppermost point of the 
detachment area from which the rock mass broke away and the farthest point of the detached 
loose material along the considered profile. On the other hand “Fahrböschung” (“travel 
angle”) is defined by HEIM (1932) as the slope of a line connecting the crest (uppermost part 
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of the detached area) with the farthest point of the deposit area, measured on a straightened 
profile of the path (See Figure 1.5). 

Figure 1.6 illustrates the energy line gradient of the detached rock mass. 

 

Figure 1.5 Geometric Gradient and Fahrböschung (HEIM, 1932) 

 

Figure 1.6 Gradient of energy line of the detached rock mass (SASSA, 1988) 
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1.2.1 Motion of Rock Masses on Slopes 

Understanding and building a model of a rockslide necessitates constructing a mathematical 
model in which an actual rock block motion is explained. These motions are generalized into 
following individual movements: 

- Free fall 
- Bouncing 
- Rolling 
- Sliding 

1.2.1.1 Free Fall 

In free fall the main force acting on a rock block is gravitation and it has been observed that 
free fall occurs on slopes which are steeper than 90°, which means it can only happen in an 
overhang case. 

For the calculation of the motion of a rock block in free fall the air resistance can be 
neglected, so that the velocity and the kinetic energy of the rock block can be calculated 
easily. It has been experimentally shown that air resistance has very small effect on a rock 
block, which could be neglected (BOZZOLO, 1987). 

The velocity and the kinetic energy of the block can be written as follows: 

     आ ൌ ඥ2. ݃. ݄      (1.1) 

௞௜௡ܧ      ൌ ଵ
ଶ

. ݉.  ଶ     (1.2)ݒ

The formulas above include the following variables: 

 h… Fall height [m] 

 g… Gravitation constant [m/s2] 

 m… Weight of the block [kg] 

By impact great plastic deformations can occur and the block could loose its energy. The fall 
height indeed has great effect on the velocity and the kinetic energy of the block, but however 
it has rare implications on the motion process of the block. A bouncing motion follows 
generally the free fall action (BROILI, 1974). 
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1.2.1.2 Bouncing 

Bouncing motion occurs when the air trajectory (parabola) intersects with the slope. Rock 
blocks have tendency to break upon their first contact with the slope. Regardless whether they 
crush or not, with the block size of 0.3 m3 the energy loss is between 75% and 85%. Similar 
observations have been made with the block size of 1 to 10 m3. The deciding factors by 
bouncing are block shape, slope geometry and ground conditions. It has been observed 
experimentally that the rock blocks which have bigger geometry tend to roll rather than 
bounce. It has been also observed that small blocks bounce further than the bigger ones and 
the bouncing movement is often followed by a rolling motion (BROILI, 1974). 

 

Figure 1.7 Bouncing and Fall Motion (GERBER, BÖLL, RICKLI, & GRAF, 1995) 

Figure 1.7 illustrates the fall and bouncing motion including the potential and kinetic energy 
(rotational and translational kinetic energy) followed by rolling and/or sliding motion. 



1 Landslides, Rock Mass Falls 10 

MASTER’S THESIS  ONUR KOÇ 

1.2.1.3 Rolling 

Rolling is a motion where a rock block rotates around its axis without losing contact with the 
ground. Rolling is the prevailing way of motion with long trajectories on a moderate slope 
(EVANS & HUNGR, 1993). 

The following four conditions define the way of this motion, if we take a close look at a 
single rolling block: 

- The possibility of rolling depends to a high degree on the body shape. The ability to 
roll is asymptotically increased by the approximation of the round cross section with 
the centre of gravity (mass centre) in its geometric centre. 

- Once the body starts rolling the motions continues even under the conditions that 
would not allow starting a rolling motion (unfavorable slope angle and coefficient of 
friction). 

- Even with completely plane ground, non-circular rolling bodies start bouncing at a 
critical velocity. 

- Beside body shape, the critical velocity depends on its size: for geometrically similar 
bodies, it is proportional to the square root of the linear dimensions. (PETJE, MIKOS, 
& MAJES, 2006) 

To define the velocity of rolling, we must take a closer look at the energy equation: 

௞௜௡ܧ ൌ ௧௥௔௡௦ܧ ൅ ௥௢௧ܧ ൌ ௠.௩మ

ଶ
൅ ூ.ఠమ

ଶ
    (1.3) 

where m is the weight of the released particle [kg], v is the velocity [m/s], I is the moment of 
inertia and ω is the angular velocity [s-1]. 

For a sphere, it is possible to rewrite the equation 2.3 as follows: 

ܫ ൌ ଶ
ହ

. ݉. ;ଶݎ  ߱ ൌ ௩
௥
     (1.4; 1.5) 

௞௜௡ܧ ൌ ௧௥௔௡௦ܧ ൅ ௥௢௧ܧ ൌ ଵ
ଶ

. ݉. ଶݒ ൅ ଵ
ହ

. ݉. ଶݒ ൌ ଻
ଵ଴

. ݉.  ଶ  (1.6)ݒ

So we can deduce from equation 2.6 the fact that during the rolling motion of a particle 5/7 
(71.4%) of kinetic energy belongs to translational energy and 2/7 (28.6%) to rotational 
energy. The total energy equation of a rolling block at point A (Figure 1.8) could be redefined 
as follows: 
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Figure 1.8 Rolling motion on a slope (PETJE, MIKOS, & MAJES, 2006) 

஺ܧ ൌ ௣௢௧ܧ ൅ ௞௜௡ܧ ൌ ݉. ݃. ݄஺஻ ൅ ଻
ଵ଴

. ݉. ஺ݒ
ଶ     

ൌ ݉. ݃. sin ߚ . ஺ܵ஻ ൅ ଻
ଵ଴

. ݉. ஺ݒ
ଶ    (1.7) 

where m is the weight of the block, vA is the velocity at point A, β is the slope angle and SAB is 
the length of slope. 

During the rolling motion both the sphere and the slope surface deform to form a resistance 
against rolling. 

 

Figure 1.9 Illustration of the resistant forces during rolling motion (PREH A. , 2004) 

As seen in Figure 1.9, the normal force (FN) and the rolling resistance force (FR) act on the 
point between the deformed surface of the slope and the sphere itself. 

From equilibrium the rolling resistance could redefined as follows: 

ோܨ ൌ ௗ
௥

. ேܨ ൌ ܿோ.  ே      (1.8)ܨ
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where cR is the rolling resistance coefficient. This coefficient can be expressed in terms of 
sink depth u and radius r as follows: 

ܿோ ൌ ඥ௨.ሺଶ௥ି௨ሻ
௥

      (1.9) 

At point B the energy equation changes into: 

஻ܧ ൌ ௞௜௡ܧ ൅ ௥௘௦ܧ ൌ ଻
ଵ଴

. ݉. ஻ݒ
ଶ ൅ ܿோ. .ேܨ ஺ܵ஻    

ൌ ଻
ଵ଴

. ݉. ஻ݒ
ଶ ൅ ܿோ. ݉. ݃. cos ߚ . ஺ܵ஻    (1.10) 

where vB is the velocity at point B. 

From the conservation of energy law, the energies at point A and B should be the same, which 
gives: 

஻ݒ ൌ ටݒ஺
ଶ ൅ ଵ଴

଻
. ݃. ஺ܵ஻. ሺsin ߚ െ ܿோ. cos  ሻ   (1.11)ߚ

A constant velocity course occurs when the rolling resistance coefficient cR equals the tangent 
of slope angle β. The inequality of cR < tan β starts the rolling motion, where cR > tan β ends 
it. 

1.2.1.4 Sliding 

Sliding is the motion where the block possesses only translational energy without the loss of 
contact with the slope plane. Sliding occurs only in initial or final phases of the motion. If the 
slope gradient increases, the sliding rock starts falling, rolling or bouncing (BOZZOLO, 
1987). 

As in Figure 1.8 the energies between points A and B should also be preserved. If the 
Coulomb’s law of friction is inserted in this energy equilibrium, the velocity at point B could 
be achieved as follows: 

஻ݒ ൌ ඥݒ஺
ଶ ൅ 2. ݃. ஺ܵ஻. ሺsin ߚ െ .ߤ cos  ሻ   (1.12)ߚ

where µ is the friction coefficient, which is the tangent of friction angle φ. Velocity changes 
with the relation of friction coefficient µ with the slope angle β as follows: 

- µ = β than constant velocity (vA=vB) 
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- µ < β than sliding occurs 
- µ > β than the block will be slowed down (brake) 

It is possible to deduce that when two blocks having the same weight and velocity considered, 
if one starts to slide while the other performs pure rolling, than the rolling block possesses 5/7 
of the kinetic energy of the sliding block. 

1.2.1.5 Block Interaction 

According to HEIM (1932), the movement procedure of cohesive rock masses, which have a 
volume larger than 500.000 m3 and a fall height of few hundred meters, should be defined as 
stream like falls (Strömen). The stream like motion should not necessarily happen from the 
water-soil (rock) mixture like in debris flow, it could also happen in cohesive rock falls 
without the presence of water. Although the motion process is tried to be modeled with the 
help of continuum and fluid mechanics, the actual motion process remains unexplained. 
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2 Run out Models of Rock Slope Failures 

At the moment an ideal model simulating both the initial failure mechanism of a rock slope 
and the run out does not exist. Thus rock slope failure models and run out models, based on 
the results of analyses of a particular rock slope failure have to be separated (POISEL & 
ROTH, 2004). An overview of run out models, which can be divided into empirical relations 
and into mechanical models, could be stated as follows: 

1. Experiments in the field and physical models – experimental approach 
2. Run out prediction methods – empirical approach 

- Single block 
- Rock avalanches 

3. Run out prediction methods – mechanical models (analytical approach) 
- Lumped mass 
- Continuum mechanics 
- Kinetic theory 
- Discontinuum mechanics 

2.1 Experimental Approach 

Direct field observations of catastrophic motion of avalanches are extremely difficult to make; 
in fact there is only a limited number of field observations that would permit a partial 
verification of theoretical models. Laboratory experiments permit a control of both material 
properties and bed geometries, and thus facilitate a comparison of theory with experiment. 

A satisfactory fit of a model computation with laboratory data still does not imply that the 
theory is adequate to describe large scale processes in nature. Apart from the idealizations of 
the laboratory experiment, scale effects might falsify the conclusions. However, finding 
satisfactory agreement between theory and experimental results in the small scale is still 
superior to none and it constitutes a step into the direction of treating the full problem 
(PIRULLI M. , 2005). 

RITCHIE (1963) reported on extensive field experiments, testing the effectiveness of ditches 
and fences by using artificially triggered rockfalls. SPANG & SÖNSER (1995) gave results 
of small scale rockfall tests on artificial rock slopes when examining rail and tie walls. 

BAGNOLD (1954) reported on experiments on a gravity-free dispersion of large solid 
spheres in a Newtonian fluid under shear, giving initial hints regarding the mechanisms of 
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rock avalanches. HSÜ’s (1975) experiments on bentonite suspensions suggested that the flow 
of thixotrophic liquids is kinematically similar to the run out of rock slope failures (POISEL 
& ROTH, 2004). 

Various experiments have been conducted through experts to understand the behavior of the 
mass movement during rockfalls, one of which for example experiments with about 10 m3 of 
water-saturated sand and gravel were conducted at the U.S. Geological Survey debris flow 
flume (located in H.J. Andrews Experimental Forest, Oregon), a rectangular concrete chute 95 
m long and 2 m wide that slopes 31° throughout most of its length and flattens at its base to 
adjoin an unconfined run out surface. Details are reported in IVERSON (1992), IVERSON 
(1997) and MAJOR & IVERSON (1999). 

 

Figure 2.1 a. A debris flow discharging from the gate at the head of the flume. b. Debris flow passing 
instrumented cross section. (Images courtesy of U.S. Geological Survey) 

2.2 Empirical Approach 

2.2.1 Single Blocks 

Empirical relations are, for example, rock fall tests in order to find areas of danger in a quarry. 
Based on extensive field experiments, RITCHIE (1963) gave design rules to find appropriate 
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depths and widths of ditches related to slope geometry. Artificial rock falls carried out in situ 
by BROILLI (1974) showed that the movements are mainly influenced by the size of the rock 
blocks involved. The results of these in situ tests were used as a basis in the design of 
protection devices. 

2.2.2 Rock Avalanches 

The run out distance and the deposit area of a rock avalanche can be estimated by using 
statistical relations between the volume of a detached mass and the path profile of case 
studies, and also by using mass balance methods as carried out by HEIM (1932), 
SCHEIDEGGER (1973) and HSÜ (1975). 

From empirical relations HEIM (1932) ascertained the dependence of the distance travelled 
by the rock mass upon the initial height, the regularity of terrain and the volume of the 
rockfall. He defined “Fahrböschung”, as already explained in chapter 1.2 (See Figure 1.5 and 
Figure 2.2) 

 

Figure 2.2 Profile of rock avalanche showing the definition of Fahrböschung (α) (HEIM, 1932) 

SCHEIDEGGER (1973) formalized the HEIM’s relationship by defining a correlation 
between landslide volume and the ratio of the total fall height, H, to the total run out distance, 
L, based on data from 33 prehistoric and historic rock avalanches (See Figure 2.3) 
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Figure 2.3 Correlation between rock avalanche volume and the tangent of the Fahrböschung angle 
(SCHEIDEGGER, 1973) 

The empirical methods suffer from great scatter of data, making even the limited prediction 
very unreliable. It is difficult in this method to take account of the influences of the ground 
condition, the degree of saturation of the landslide mass, and the micro-topography (PIRULLI 
M. , 2005). 

2.3 Analytical Approach 

2.3.1 Lumped Mass 

The lumped mass models idealize the motion of a slide block, by consequence they have an 
obvious limitation in being unable to account for internal deformation. 

The block represents the mass of the potential slide. Friction between the block and plane 
prevents sliding below some critical angle of inclination; above the critical angle the mass 
accelerates according to Newton’s second law. Once the mass is in motion, deceleration 
occurs at angles of inclination below the critical angle. The energy line in Figure 1.6 
illustrates the details in which the energy loss and the potential energy converted to kinetic 
energy are clearly expressed. 

Even though the lumped mass models may provide reasonable approximations to the 
movement of the centre of gravity of the landslide, they are not able to provide information as 
to the spatial and temporal properties of an avalanche such as the velocity distribution and the 
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evolution of the avalanche height and spread, aspects that are certainly not constant 
throughout the dimensions of the flowing mass and the time. 

2.3.2 Continuum Mechanics 

Continuum mechanics models for rapid landslides use techniques developed for analysis of 
the flow of fluids in open channels. There are, however, important differences between fluids 
and earth materials, even if the latter are saturated and highly disturbed. In addition, landslide 
paths are often much steeper and more varied than channels considered in most hydraulic 
calculations and landslide motion is highly unsteady. These characteristics make the analysis 
of the landslide motion exceedingly complex. 

Although granular material is a large assemblage of discrete particles, it is here treated as a 
continuum. This implies that the depth and length of the flowing mass are large compared to 
the dimensions of a typical particle. 

In this framework it becomes fundamental to find an “apparent” fluid whose rheological 
properties are such that the bulk behavior of the prototype landslide. The properties of the 
equivalent fluid do not correspond to those of any of the slide components. 

 

Figure 2.4 a. Prototype of a heterogeneous and complex moving mass; b. A homogeneous "apparent 
fluid" replaces the slide mass (HUNGR, 1995) 

A promising approach for describing unsteady and non-uniform flow on complex geometry is 
the depth averaged Saint Venant approach, in which the avalanche thickness (H) is very much 
smaller than its extent parallel to the bed (L), which is often the case for geographic flows. 
The material is assumed to be incompressible and the mass and the momentum equations are 
written in a depth averaged form. 

Depth averaging allows us to avoid a complete three dimensional description of the flow: the 
complex rheology of the granular material is incorporated in a single term describing the 
frictional stress that develops at the interface between the flowing material and the rough 
surface (POULIQUEN & FORTERRE, 2002). 
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Depth averaged equations have been introduced in the context of granular flows by SAVAGE 
& HUTTER (1989). In their model, the moving mass is supposed to be volume preserving, is 
cohesionless and obeys a Mohr-Coulomb yield criterion both inside the deforming mass as 
well as at the sliding basal surface, but with different internal, φ, and bed, δ, friction angles. 

Key elements of the work by SAVAGE & HUTTER (1989) included: 

1. derivation and scaling of depth-averaged momentum and mass conversation 
equations to obtain one-dimensional shallow flow equations approximately 
normalized to account for the finite size of avalanching masses; 

2. formulation of shallow flow equations using the Coulomb equation for basal shear 
resistance and an earth pressure equation for the influence of Coulomb friction on 
longitudinal normal stresses; 

3. numerical solution of the one-dimensional shallow flow equations using a 
Lagrangian finite difference scheme suitable for tracking propagation and 
deformation of an avalanching mass; and 

4. experimental testing that demonstrates the veracity of the model. 

HUNGR (1995) presented a numerical model for rapid landslides, e.g. debris and rock 
avalanches, called DAN. The model is based on a Lagrangian solution of equations of motion 
and allows the selection of variety of material rheologies, which can vary along the slide path 
or within the slide mass. It also allows for the internal rigidity of relatively coherent slide 
debris moving on a thin liquefied basal layer. The data required for analyzing a landslide with 
DAN includes: material rheology (frictional, Bingham fluid), slope profile geometry, top 
profile of the initial mass and path width (provided e.g. by a rockfall program). The solution is 
explicit and occurs in timesteps. An assembly of mass and boundary blocks is set up to 
approximate the initial configuration of the slide mass. The new velocity of each boundary 
block at the end of a timestep is obtained from the old velocity by numerical integration of 
Newton´s second law. A second integration is used to obtain the displacements of the 
boundary blocks. The average depth of the flow in the mass blocks is determined so as to 
maintain their constant volume (PIRULLI M. , 2004). 

2.3.3 Discontinuum Mechanics 

Discontinuum mechanics modeling is based on the relatively new science of discontinua 
introduced in geomechanics almost forty years ago (GOODMAN, TAYLOR, & BREKKE, 
1968). The run out mass is modeled as an assembly of particles moving down a surface. Its 
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structure is often called a “fabric” referring to the microstructure of the particle mass 
collection, space between particles within the mass (pore space), arrangement of particles, and 
their static and dynamic motion interaction contact laws (MITCHELL, 1976). 

Loose soils, concrete, and rock with fracture planes are all examples of discrete grain 
structures forming a discontinuum fabric formation. 

The Discrete (Distinct) Element Method (DEM) is the term given to the numerical analysis 
procedure that simulates the behavior within the discontinuum mechanics. Formulation of 
discontinua by DEM was originally developed by CUNDALL (1971). (See for details Chapter 
3.1). 

Circular disks and spherical particles are most frequently studied due to the simplified particle 
contact detection mathematical algorithms and available computer power. 

Much research has been published on the limitations of circular disks and spherical shaped 
particles. Most soils and fragmented rock particles are more angular and blocky which: 

- increases voids within the fabric of granular mass, 
- increases interlocking between particles, and 
- inhibits rolling 

Disks and spheres, unlike fragmented particles, produce a low shear resistance and induce 
rolling that dominates deformation of fabric (See Figure 4.1). Therefore, an adjustment should 
be undertaken. 

WILL & KONIETZKY (1998) used the Particle Flow Code (PFC2D) by ITASCA to analyze 
rock fall and rock avalanche problems.  

ROTH (2003) adapted the contact management in PFC3D in simulating rock avalanches in 
three dimensions (See Figure 2.5). The adjustment procedure is explained thoroughly in 
chapter 4. 



2 Run out Models of Rock Slope Failures  21 

MASTER’S THESIS  ONUR KOÇ 

 

Figure 2.5 Example of PFC applications. a. Ball-Wall model (ROTH, 2003) b. All-Ball model (PREH 
A. , 2004) 

The participants in the benchmarking exercise, which was held at the 2007 International 
Forum on Landslide Disaster Management, proposed several rock slide simulation cases 
carried through various run out programs. The Table 2.1 and 2.2 illustrate the participants and 
their simulation programs, under which only the PFC program works with the discontinuum 
mechanics idea; the other computer programs have the continuum mechanics background. 

Table 2.1 The participants and their simulation programs (LANDSLIDE FORUM, 2007) 
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Table 2.2 The matrix of the participant groups and their selected rock slide cases (LANDSLIDE 
FORUM, 2007) 
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3 Particle Flow Code in 3 Dimensions (PFC3D) 

The Particle Flow Code is a methodology to analyze complex systems with the help of 
numerical modeling on the basis of distinct element methods (DEM) (HART, 1996). With the 
Particle Flow Code, it is possible to calculate models both in two and three dimensions. The 
basics of the Particle Flow Code is detailed through PREH (2004) and ITASCA (2006), where 
in this work only three dimensions (PFC3D) will be taken into account. 

A rockslide which is modeled with PFC3D has two components, namely, rigid, finite (or 
infinite – optional) two dimensional wall elements, and spherical particles. These sphere 
shaped particles can be arranged in any order or can be combined to form a large volume 
particle. The contacts between each particle and particles with walls detected automatically at 
each step of the calculation and the contacts that have been formed due to the movement of 
each particle are also taken into account during the steps. Also the calculation algorithm 
provides every possible movement each particle can make as a result of kinematic conditions, 
during which every possible physical condition can be removed or redefined at any step. The 
particles can be bonded through their contact points and these bonds can be destructed 
through a possible hit or impact. A very fundamental and essential advantage of this program 
is that all processes can be modeled and analyzed at both macro and micro levels. The clear 
developed and formulated calculation cycle of PFC helps to handle large and complex cases 
within personal computer competency. The geometric simplicity also assists the program to 
construct and calculate nonlinear situations und physical instabilities in a tolerable time scale 
(PREH A. , 2004). 

PFC provides a particle-flow model containing the following assumptions: 

1. The particles are treated as rigid bodies. 
2. The contacts occur over a vanishingly small area (i.e., at a point). 
3. Behavior at the contacts uses a soft-contact approach whereas the rigid particles are 

allowed to overlap one another at contact points. 
4. The magnitude of the overlap is related to the contact force via the force 

displacement law, and all overlaps are small in relation to particle sizes. 
5. Bonding can be introduced at particle contacts. 
6. All particles are spherical. However new geometric complex elements can be created 

by combining spherical particles and wall elements to form new shapes. (ITASCA, 
User's Manual, PFC 3D, 2006) 
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3.1 Distinct-Element Method 

The distinct-element method (DEM) was first introduced by CUNDALL (1971) for the 
analysis of rock mechanic problems. CUNDALL and HART (1992) have proposed that 
distinct-element method should be based on algorithms allowing finite displacement and 
rotation of discrete bodies, including complete detachment, and it recognizes new contacts 
automatically as the calculation processes. PFC can be viewed as a simplified implementation 
of DEM because of the restriction to rigid spherical bodies. 

Essential characteristics of DEM: 

- Discrete elements should be geometrically approximated to form a definite object. 
Sphere shape approximation can be enough to maintain a pass trough continuums 
mechanics to particle oriented mechanics. Material behavior could be taken either 
rigid or deformable, but if a motion at contact points occurs, rigid body assumption is 
suitable, however, if an intense deformation at the contact points is expected, than the 
deformation of the elements should be provided. 

- To provide a block interaction, the contact character should be well formulated. 
Depending on the geometry of the blocks the type of contacts and block interaction 
differ (point, line or plane contact). The contact points and forces are taken into 
account with appropriate contact model (e.g. elastic force-displacement law, Coulomb 
friction law or viscose damping). 

- A capable algorithm should be existent to determine whether the blocks are in contact 
or not. Newton’s second law is used to determine the motion of each particle arising 
from the contact and body forces acting upon it, while the force-displacement law is 
used to update the contact forces arising from the relative motion at each contact. 

To minimize the calculation time and to increase the number of analyzed particles in PFC, 
several modifications in DEM have been made. These modifications are explained in 
assumptions of PFC. 

3.2 Calculation Cycle 

The calculation cycle in PFC is a timestepping algorithm that requires the repeated 
application of the law of motion to each particle, a force-displacement law to each contact, 
and a constant updating of wall positions. Contacts, which may exist between two balls, or 
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between a ball and a wall, are formed and broken automatically during the course of a 
simulation. The calculation cycle is illustrated in Figure 3.1. 

 

Figure 3.1 PFC calculation cycle (ITASCA, 2007) 

At the start of each timestep, the set of contacts is updated from the known particle and wall 
positions. The force-displacement law is then applied to each contact to update the contact 
forces based on the relative motion between the two entities at the contact and the contact 
constitutive model. Next, the law of motion is applied to each particle to update its velocity 
and position based on the resultant force and moment arising from the contact forces and any 
body forces acting on the particle. Also, the wall positions are updated based on the specified 
wall velocities (ITASCA, 2006). 

3.3 Force-Displacement Law 

The force-displacement law relates the relative displacement between two entities at their 
contact point. For both ball-ball and ball-wall contacts, this force arises from the touch point 
of the entities. 

The force-displacement law operates at the touch points and can be described in terms of a 
contact point, xi

[C], lying on a contact plane that is defined by a unit normal vector, ni. The 
contact point is within the interpenetration volume of the two entities. For ball-ball 
interaction, the normal vector is directed along the line between ball centers; for ball-wall 
contact, the normal vector is directed along the line defining the shortest distance between the 
ball center and the wall. The contact force is decomposed into a normal component acting in 
the direction of the normal vector, and a shear component acting in the contact plane. The 
force-displacement law relates these two components of force to the corresponding 
components of the relative displacement via the normal and shear stiffnesses at the contact. 
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The force-displacement law is described for both ball-ball and ball-wall contacts. For ball-ball 
contact, the relevant equations are presented for the case of two spherical particles, labeled A 
and B in Figure 3.2. For ball-wall contact, the relevant equations are presented for the case of 
a spherical particle and a wall, labeled b and w, respectively, in Figure 3.3. In both cases, Un 
denotes overlap. 

 

Figure 3.2 Illustration of ball-ball contact (ITASCA, 2006) 

 

Figure 3.3 Illustration of ball-wall contact (ITASCA, 2006) 
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For ball-ball contact, the unit normal, ni, that defines the contact plane is given by: 

݊௜ ൌ ௫೔
ሾಳሿି௫೔

ሾಲሿ

ௗ
      (ball-ball)      (3.1) 

Where xi
[A] and xi

[B] are the position vectors of the centers of the balls A and B respectively, 
and d is the distance between the ball centers: 

݀ ൌ หݔ௜
ሾ஻ሿ െ ௜ݔ

ሾ஺ሿห ൌ ඥሺݔ௜
ሾ஻ሿ െ ௜ݔ

ሾ஺ሿሻ. ሺݔ௜
ሾ஻ሿ െ ௜ݔ

ሾ஺ሿሻ   (ball-ball)   (3.2) 

For ball-wall contact, ni is directed along the line defining the shortest distance, d, between 
the ball center and the wall. This direction is found by mapping the ball center into a relevant 
portion of space defined by the wall. This idea is illustrated in Figure 3.4 for a two-

dimensional wall composed of line segments, ܤܣ and ܥܤ. All space on the active of this wall 
can be composed into five regions by extending a line normal to each wall segment at its 
endpoints. If the ball center lies in regions 2 or 4, it will contact the wall along its length, and 
ni will be normal to the corresponding wall segment. However, if the ball center lies in regions 
1, 3, or 5, it will contact the wall at one of its endpoints, and ni will lie along the line joining 
the endpoint and the ball center. 

 
Figure 3.4 Determination of normal direction for ball-wall contact (ITASCA, 2006) 

The overlap Un, defined to be relative contact displacement in the normal direction, is given 
by 
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ܷ௡ ൌ ቊ ܴሾ஺ሿ ൅ ܴሾ஻ሿ െ ݀,  ሺball‐ballሻ
ܴሾ௕ሿ െ ݀,                ሺball‐wallሻ

     (3.3) 

where R[Φ] is the radius of ball Φ. 

The location of the contact point is given by 

௜ݔ
ሾ஼ሿ ൌ ቐ

௜ݔ
ሾ஺ሿ ൅ ቀܴሾ஺ሿ െ ଵ

ଶ
ܷ௡ቁ ݊௜,   ሺball‐ballሻ

௜ݔ
ሾ௕ሿ ൅ ቀܴሾ௕ሿ െ ଵ

ଶ
ܷ௡ቁ ݊௜,    ሺball‐wallሻ

   (3.4) 

The contact force vector Fi (which represents the action of ball A on ball B for ball-ball 
contact, and represents the action of the ball on the wall for ball-wall contact) can be resolved 
into normal and shear components with respect to the contact plane as 

௜ܨ ൌ ௜ܨ
௡ ൅ ௜ܨ

௦        (3.5) 

where ܨ௜
௡ and ܨ௜

௦ denote the normal and shear component vector, respectively. 

The normal contact force vector is calculated by 

௜ܨ
௡ ൌ  ௡ܷ௡݊௜       (3.6)ܭ

where Kn is the normal stiffness [force/displacement] at the contact. 

Note that the normal stiffness, Kn, is a secant modulus in that it relates total displacement and 
force. The shear stiffness, ks, on the other hand, is a tangent modulus in that it relates 
incremental displacement and force. Motion of the contact is accounted for by updating ni and 

௜ݔ
ሾ஼ሿ every timestep. 

The relative motion at the contact, or the contact velocity Vi (which is defined as the velocity 
of ball B relative to ball A at the contact point for ball-ball contact, and the velocity of the 
wall relative to the ball at the contact point for ball-wall contact), is given by 

௜ܸ ൌ ൫ݔሶ௜
ሾ஼ሿ൯ఃమ െ ൫ݔሶ௜

ሾ஼ሿ൯ఃభ 

    ൌ ቆݔሶ௜ൣఃమ൧ ൅ ݁௜௝௞ ௝߱
ൣఃమ൧ ቀݔ௞

ሾ஼ሿ െ ௞ݔ
ൣఃమ ൧ቁቇ െ ቆݔሶ௜ൣఃభ൧ ൅ ݁௜௝௞ ௝߱

ൣఃభ൧ ቀݔ௞
ሾ஼ሿ െ ௞ݔ

ൣఃభ ൧ቁቇ (3.7) 

where ݔሶ௜ൣఃೕ൧ and ௜߱
ሾ௪ሿ are the translational and rotational velocities of entity Φj, where the 

following formula denotes it: 
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ሼߔଵ, ଶሽߔ ൌ ቊ
ሼܣ, ሽ  ሺball‐ballሻܤ
ሼܾ, ሽ   ሺball‐wallሻݓ

     (3.8) 

The contact velocity can be resolved into normal and shear components with respect to the 
contact plane. Denoting these components by ௜ܸ

௡ and ௜ܸ
௦ for the normal and shear component, 

respectively, the shear component of the contact velocity can be written as 

௜ܸ
௦ ൌ ௜ܸ െ ௜ܸ

௡         
ൌ ௜ܸ െ ௝ܸ ௝݊݊௜      (3.9) 

The shear component of the contact displacement-increment vector, occurring over a timestep 
of Δt, is calculated by 

∆ ௜ܷ
ௌ ൌ ௜ܸ

ௌ∆(3.10)      ݐ 

and is used to calculate the shear elastic force-increment vector 

௜ܨ∆
ௌ ൌ െ݇ௌ∆ ௜ܷ

ௌ     (3.11) 

where ks is the shear stiffness at the contact. The new shear contact force is found by 
summing the old shear force vector existing at the start of the timestep (after it has been 
rotated to account for the motion of the contact plane) with the shear elastic force-increment 
vector 

௜ܨ
ௌ ൌ ൛ܨ௜

ௌൟ௥௢௧.ଶ ൅ ௜ܨ∆
ௌ    (3.12) 

The values of normal and shear contact force determined by Eqs. (3.6) and (3.12) are adjusted 
to satisfy the contact constitutive relations. After this adjustment, the contribution of the final 
contact force to the resultant force and moment on the two entities in contact is given by 
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   (3.13) 

where ܨ௜
ሾఃೕሿ and ܯ௜

ሾఃೕሿ are the force and moment sums for entity Φj from Equ. (3.8) 
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3.4 Contact Constitutive Models 

The overall constitutive behavior of a material is simulated in PFC3D by associating a simple 
constitutive model with each contact. The constitutive model acting at a particular contact 
consists of three parts: 

- Stiffness model: The stiffness model provides an elastic relation between the contact 
force and relative displacement 

- Slip model: The slip model enforces a relation between shear and normal contact 
forces such that the two contacting balls may slip relative to one another. 

- Bonding model: The bonding model serves to limit the total normal and shear forces 
that the contact can carry by enforcing bond-strength limits. 

It is possible to modify these models by the implemented program language FISH. 

3.4.1 Contact-Stiffness Models 

The contact stiffnesses relate the contact forces and relative displacements in the normal and 
shear directions via Equ (3.6) and (3.11). 

 

 

Figure 3.5 Illustration of Contact-Stiffness Model (HAINBÜCHER, 2001) 

PFC3D provides two contact-stiffness models: a linear model and a simplified Hertz-Mindlin 
model. Contact between a ball with the linear model and a ball with the Hertz model is not 
allowed, since the behavior is undefined. 

3.4.1.1 The Linear Contact Model 

The linear contact model is defined by the normal and shear stiffness kn and ks 
[force/displacement] of the two contacting entities (ball-to-ball or ball-to-wall). The contact 
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stiffness for the linear contact model are computed assuming that the stiffness of the two 
contacting entities act in series. The contact normal secant stiffness is given by 

௡ܭ ൌ ௞೙
ሾಲሿ௞೙

ሾಳሿ

௞೙
ሾಲሿା௞೙

ሾಳሿ       (3.14) 

and the contact shear tangent stiffness is given by 

݇ௌ ൌ ௞ೄ
ሾಲሿ௞ೄ

ሾಳሿ

௞ೄ
ሾಲሿା௞ೄ

ሾಳሿ       (3.15) 

where the superscripts [A] and [B] denote the two entities in contact. 

3.4.1.2 The Hertz-Mindlin Contact Model 

The Hertz-Mindlin contact model is a nonlinear contact formulation based on an 
approximation of the theory of MINDLIN & DERESIEWICZ (1953). It is strictly applicable 
only to the case of spheres in contact, and does not reproduce the continuous nonlinearity in 
shear (rather, the initial shear modulus is used, but it depends on normal force). 

The model is defined by the following two parameters: shear modulus G [stress] and 
Poisson’s ratio ν [dimensionless] of the two contacting balls. 

This model is not necessarily in detail explained, just because in this work only linear contact 
model has been used. 

3.4.2 The Slip Model 

The slip model is an intrinsic property of the two entities (ball-ball or ball-wall) in contact. It 
provides no normal strength in tension and allows slip to occur by limiting the shear force. 
This model is always active, unless a contact bond is present – in which case, the contact bond 
model behavior supersedes the slip model behavior. 

The slip model is defined by the friction coefficient at the contact µ [dimensionless], where µ 
is taken to be the minimum friction coefficient of the two contacting entities. The criterion of 
no-normal strength is enforced by checking whether the overlap is less than or equal to zero. 
The contact is checked for slip conditions by calculating the maximum allowable shear 
contact force 

௠௔௫ܨ
ௌ ൌ μ|ܨ௜

௡|      (3.16) 
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If หܨ௜
ௌห ൐ ௠௔௫ܨ

ௌ , then slip is allowed to occur (during the next calculation cycle) by setting the 

magnitude of ܨ௜
ௌ equal to ܨ௠௔௫

ௌ  via 

௜ܨ
௦ ՚ ௜ܨ

௦ ൬ி೘ೌೣ
ೞ

หி೔
ೞห

൰     (3.17) 

3.4.3 Bonding Models 

PFC3D allows particles to be bonded together at contacts. Two bonding models are supported: 
a contact-bond model and a parallel-bond model. Both bonds can be envisioned as a kind of 
glue joining the two particles. The contact-bond glue is of a vanishingly small size that acts 
only at the contact point, while the parallel-bond glue is of a finite size that acts over a 
circular cross-section lying between the particles. The contact bond can only transmit a force, 
while the parallel bond can transmit both a force and a moment. 

Both types of bonds may be active at the same time; however, the presence of a contact bond 
inactivates the slip model. Once a bond is formed at a contact between two particles contact 
continues to exist until the bond is broken. Only particles may be bonded to one another; a 
particle may not be bonded to a wall. 

3.4.3.1 The Contact-Bond Model 

 

Figure 3.6 Illustration of Contact-Bond Model (PREH A. , 2004) 

A contact bonding is a combination of a Hook (constant normal and shear stiffness) and a St. 
Venant body (constant tension and shear stiffness). If a bonding is in contact, then the bonded 
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body can neither roll nor slide. First after the shear and tension strength is exceeded, they can 
split to perform a rolling or sliding motion. 

If no overlapping occurs, then it is possible to determine the tensile force acting on the body, 
with the help of force-displacement law (see chapter 3.3). In this case, the contact bond acts to 
bind the balls together. The magnitude of the tensile normal contact force is limited by the 
normal contact bond strength. 

A contact bond is defined by the following two parameters: 

- Normal contact bond strength ܨ௖
௡ 

- Shear contact bond strength ܨ௖
௦ 

If the magnitude of the tensile normal contact force equals or exceeds the normal contact bond 
strength, the bond breaks, and both the normal and shear contact forces are set to zero. If the 
magnitude of the shear contact force equals or exceeds the shear contact bond strength, the 
bond breaks, but the contact forces are not altered, provided that the shear force does not 
exceed the friction limit and provided that the normal force is compressive.  

The constitutive behavior relating the normal and shear components of contact force and 
relative displacement for particle contact occurring at a point are shown 

 

Figure 3.7 Constitutive behavior for contact occurring at a point. Left:  Normal component of contact 
force, right: Shear component of contact force. (ITASCA, 2006) 

In this figure Fn is the normal contact force and indicates tension if it is positive; Un is the 
relative normal displacement and indicates overlap, if it is positive. Fs is the magnitude of the 
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total shear contact force; and Us is the magnitude of the total shear displacement measured 
relative to the location of the contact point when the contact bond was formed. 

3.4.3.2 The Parallel-Bond Model 

The parallel-bond model describes the constitutive behavior of a finite-sized piece of 
cementatious material deposited between two particles. These bonds establish an elastic 
interaction between particles that acts in parallel with the slip or contact-bond models 
described above. Thus, the existence of a parallel bond does not preclude the possibility of 
slip. Parallel bonds can transmit both forces and moments between particles, while contact 
bonds can only transmit forces acting at the contact point. Therefore, parallel bonds may 
contribute to the resultant force and moment acting on the two bonded particles. 

A parallel bond can be envisioned as a set of elastic springs with constant normal and shear 
stiffnesses, uniformly distributed over a circular disk lying on the contact plane and centered 
at the contact point. These springs act in parallel with the point-contact springs that are used 
to model particle stiffness at a point. Relative motion at the contact (occurring after the 
parallel bond has been created) causes a force and a moment to develop within the bond 
material as a result of the parallel-bond stiffnesses. This force and moment act on the two 
bonded particles and can be related to maximum normal and shear stresses acting within the 
bond material at the bond periphery. If either of these maximum stresses exceeds the 
corresponding bond strength, the parallel bond breaks. 

 

Figure 3.8 Parallel bond depicted as a cylinder of cementatious material. (ITASCA, 2006) 
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In Figure 3.8 parallel-bond is defined with the following parameters (MAIR am TINKHOF, 
2007): 

- Normal stiffness ݇௡തതതത [stress/displacement] 

- Shear stiffness ݇௦തതത [stress/displacement] 
- Normal stress ߪ௖ഥ  [stress] 

- Shear stress ߬௖ഥ  [stress] 

- Bond radius തܴ 

3.5 Law of Motion 

The motion of a single rigid particle is determined by the resultant force and moment vectors 
acting upon it, and can be described in terms of the translational motion of a point in the 
particle and the rotational motion of the particle. The translational motion of the center of 
mass is described in terms of its position, xi , velocity, ݔሶ௜, and acceleration, ݔሷ௜; the rotational 
motion of the particle is described in terms of its angular velocity, ωi , and angular 
acceleration, ሶ߱ ௜  . 

The equations of motion can be expressed as two vector equations, one of which relates the 
resultant force to the translational motion, and the other relates the resultant moment to the 
rotational motion. The equation for translational motion can be written in the vector form 

௜ܨ ൌ ݉ሺݔሷ௜ െ ݃௜ሻ ሺtranslational motionሻ   (3.18) 

௜ܯ ൌ ሶܪ ௜ ሺrotational motionሻ    (3.19) 

where Fi is the resultant force, the sum of all externally applied forces acting on the particle; 
m is the total mass of the particle; gi is the body force acceleration vector (e.g., gravity 

loading); Mi is the resultant moment acting on the particle; and ܪሶ௜ is the angular momentum 
of the particle. 

This relation is referred to a local coordinate system that is attached to the particle at its center 
of mass. This local system is oriented such that it lies along the principal axes of inertia of the 
particle, then Equ. (3.19) reduces to Euler’s equation of motion: 

ଵܯ ൌ ଵܫ ሶ߱ ଵ ൅ ሺܫଷ െ  ଶሻ߱ଷ߱ଶܫ
ଶܯ ൌ ଶܫ ሶ߱ ଶ ൅ ሺܫଵ െ  ଷሻ߱ଵ߱ଶ           (3.20)ܫ
ଷܯ ൌ ଷܫ ሶ߱ ଷ ൅ ሺܫଶ െ  ଵሻ߱ଶ߱ଵܫ
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where I1, I2, and I3 are the principal moments of inertia of the particle;߱ଵሶ , ߱ଶሶ , and ߱ଷሶ  are the 
angular accelerations about the principal axes; and M1, M2, and M3 are the components of the 
resultant moment referred to the principal axes. 

For a spherical particle of radius R, whose mass is distributed uniformly throughout its 
volume, the center of mass coincides with the sphere center. Any local-axis system attached 
to the center of mass is a principal-axis system, and the three principal moments of inertia are 
equal to one another. Thus, for a spherical particle, Equ (3.20) can be simplified and referred 
to the global-axis system as 

௜ܯ ൌ ܫ ప߱ሶ ൌ ሺଶ
ହ

ܴ݉ଶሻ ప߱ሶ       ሺrotational motionሻ  (3.21) 

The equations of motion, given by (3.18), (3.21) are integrated using a centered finite-
difference procedure involving a timestep of Δt. The quantities ݔపሶ  and ߱௜ are computed at the 

mid-intervals of t ± n Δt /2, while the quantities ݔ௜, ݔపሷ , ప߱ሶ  ௜ are computed at theܯ ௜ andܨ ,
primary intervals of t ± n Δt. 

The following expressions describe the translational and rotational accelerations at time t in 
terms of the velocity values at mid-intervals. The accelerations are calculated as: 

ሷ௜ݔ
ሺ௧ሻ ൌ

1
ݐ∆ ቆݔሶ௜

ቀ௧ା∆௧
ଶ ቁ

െ ሶ௜ݔ
ቀ௧ି∆௧

ଶ ቁ
ቇ 

ሶ߱ ௜
ሺ௧ሻ ൌ ଵ

∆௧
ቆ ௜߱

ቀ௧ା∆೟
మ ቁ

െ ௜߱
ቀ௧ି∆೟

మ ቁ
ቇ          (3.22) 

Inserting these expressions into (3.18) and (3.21), solving for the velocities at time (t + Δt/2), 
and using these equations to update the position of the particle as 

௜ݔ
ሺ௧ା∆௧ሻ ൌ ௜ݔ

ሺ௧ሻ ൅ ሶ௜ݔ
ሺ௧ା∆೟

మ ሻ
 (3.23)          ݐ∆

The calculation cycle for the law of motion can be summarized as follows. Given the values 

of ݔሶ௜
ሺ௧ି∆௧/ଶሻ, ௜߱

ሺ௧ି∆௧/ଶሻ, ݔ௜
ሺ௧ሻ, ܨ௜

ሺ௧ሻ and ܯ௜
ሺ௧ሻ, Equ. (3.23) is used to obtain ݔ௜

ሺ௧ା∆௧ሻ. The values of 

௜ܨ
ሺ௧ା∆௧ሻ and ܯ௜

ሺ௧ା∆௧ሻ, to be used in the next cycle, are obtained by application of the force-

displacement law. 
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3.6 Mechanical Timestep Determination 

Choosing an appropriate timestep by motion integration is crucial to achieve an accurate 
solution to a rockslide case (FRÜHWIRT, 2004). Few differential equations are sensitive to 
rounding and hence denoted as unstable, which means, a small starting or rounding error 
during the calculation would grow to a mass failure and leads the user to a totally different 
situation. For this reason they should be handled with excess care. The equations of motion 
are integrated in PFC using a centered finite-difference equation scheme as expressed by Equ. 
(3.22). The computed solution produced by these equations will remain stable only if the 
timestep value does not exceed a critical timestep that is related to the minimum eigenperiod 
of the total system. However, global eigenvalue analyses are impractical to apply to the large 
and constantly changing systems typically encountered in a PFC simulation. Therefore, a 
simplified procedure is implemented in PFC to estimate the critical timestep at the start of 
each cycle. The actual timestep used in any cycle is taken as a fraction of this estimated 
critical value. 

The estimation procedure for solution stability will be taken into account with the conception 
of a one-dimensional mass spring system described by a point mass, m, and string stiffness, k, 
with the coordinate system shown in Figure 3.9. The motion of the point mass is governed by 
the differential equation, 

െ݇ݔ ൌ ሷݔ݉       (3.24) 

 

Figure 3.9 Single mass-spring system. (ITASCA, 2006) 

The critical timestep corresponding to a second order finite-difference scheme for this 
equation is given by Bathe & Wilson (1976): 

௖௥௜௧ݐ ൌ ்
గ

;   ܶ ൌ ට௠ߨ2
௞

    (3.25) 
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where T is the period of the system. 

If infinite series of point masses and springs are considered, then the smallest period of this 
system will occur when the masses are moving in synchronized opposing motion such that 
there is no motion at the center of each spring. The motion of a single point mass can be 
described by the two equivalent systems shown in Figure 3.10. The critical timestep for this 
system is found using Equ. (3.25), to be 

௖௥௜௧ݐ ൌ 2ට௠
ସ௞

ൌ ට௠
௞

     (3.26) 

 

Figure 3.10 Multiple mass-spring system. (ITASCA, 2006) 

The above two systems (Figure 3.9 and 3.10) characterize translational motion. Rotational 
motion is characterized by the same two systems in which mass, m, is replaced by moment of 
inertia, I, of a finite-sized particle, and the stiffness is replaced by the rotational stiffness. 
Thus, the critical timestep for the generalized multiple mass-spring system can be expressed 
as 

௖௥௜௧ݐ ൌ ቊ
ඥ݉/݇௧௥௔௡,   ሺtranslational motionሻ

ඥܫ/݇௥௢௧,   ሺrotational motionሻ
  (3.27) 

where ݇௧௥௔௡ and ݇௥௢௧ are the translational and rotational stiffnesses, respectively, and I is the 
moment of inertia of the particle. 



3 Particle Flow Code in 3 Dimensions (PFC3D) 39 

MASTER’S THESIS  ONUR KOÇ 

The system modeled in PFC is a three-dimensional collection of particles and springs, each of 
which may have a different mass and stiffness. A critical timestep is found for each particle 
by applying equation (3.27) separately to each degree of freedom and assuming that the 
degrees of freedom are uncoupled. The stiffnesses are estimated by summing the contribution 
from all contacts, as described below. The final critical timestep is taken to be the minimum 
of all critical timesteps computed for all degrees of freedom of all particles. 

3.7 Mechanical Damping 

Energy supplied to the particle system is dissipated through frictional sliding. However, 
frictional sliding may not be active in a given model or, even if active, may not be sufficient 
to arrive at a steady-state solution in a reasonable number of cycles. For this reason in PFC 
three different damping models are introduced: a local non-viscous damping, a combined 
damping and a viscous damping. 

3.7.1 Local Damping 

The local damping used in PFC is similar to that described in CUNDALL (1987). A damping-
force term is added to the equations of motion, given by equations (3.18) and (3.21), such that 
the damped equations of motion can be written as 

ሺ࣠௜ሻ ൅ ሺ௜ሻܨ
ௗ ൌ ሺࣧ௜ሻࣛሺ௜ሻ;   ݅ ൌ 1 … 6 

ሺࣧ௜ሻࣛሺ௜ሻ ൌ ቊ
݅ ሷሺ௜ሻ,    forݔ݉ ൌ 1 … 3;

ܫ ሶ߱ ሺ௜ିଷሻ,   for ݅ ൌ 4 … 6       (3.28) 

where ሺ࣠௜ሻ, ሺࣧ௜ሻ, and ࣛሺ௜ሻ are the generalized force, mass, and acceleration components, 

respectively; ሺ࣠௜ሻincludes the contribution from the gravity force; and ܨሺ௜ሻ
ௗ  is the damping 

force: 

ሺ௜ሻܨ
ௗ ൌ െߙห࣠ሺ௜ሻห sign ൫ ሺࣰ௜ሻ൯;    ݅ ൌ 1 … 6 

signሺݕሻ ൌ ൝
൅1,    if ݕ ൐ 0;
െ1,    if ݕ ൏ 0;
0,      if ݕ ൌ 0

     (3.29) 

expressed in terms of the generalized velocity 
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ሺࣰ௜ሻ ൌ ቊ
݅ ሶሺ௜ሻ,          forݔ ൌ 1 … 3;
߱ሺ௜ିଷሻ,    for ݅ ൌ 4 … 6     (3.30) 

The damping force is controlled by the damping constant α, whose default value is 0.7 and 
which can be specified separately for each particle. 

This form of damping has the following advantages: 

- Only accelerating motion is damped; therefore, no erroneous damping forces arise 
from steady-state motion. 

- The damping constant, α, is non-dimensional. 
- Since damping is frequency-independent, regions of the assembly with different 

natural periods are damped equally, using the same damping constant. 

3.7.2 Combined Damping 

The damping formulation described by equation (3.29) is only activated when the velocity 
component changes sign. In situations where there is significant uniform motion (in 
comparison to the magnitude of oscillations that are to be damped), there may be no “zero 
crossings” and, hence, no energy dissipation. An alternative (but less efficient) formulation is 
derived by noting that, for a single degree-of-freedom system executing harmonic motion, the 
derivative of the unbalanced force is proportional to negative value of the velocity. This 
alternative form of damping is called “combined damping”. 

This form of damping should be used if there is significant rigid-body motion of a system in 
addition to oscillatory motion to be dissipated. However, combined damping is found to 
dissipate energy at a slower rate compared to local damping based on velocity, and therefore 
local damping is preferred in most cases. 

3.7.3 Viscous Damping 

In viscous damping the damping force is proportional to the velocity of the elements. When 
the viscous damping is active, normal and shear dashpots are added at each contact. These 
dashpots act in parallel with the existing contact model – for example, the linear contact 
model shown in Figure 3.11. A damping force, ܦ௜ ሺ݅ ൌ ݊: normal, ݏ: shearሻ is added to the 
contact force, of which the normal and shear components are given by 

௜ܦ ൌ |௜ܥ ௜ܸ|      (3.31) 
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where ܥ௜ ሺ݅ ൌ ݊: normal, ݏ: shearሻ is the damping constant, ௜ܸ  ሺ݅ ൌ ݊: normal, ݏ: shearሻ is 
the relative velocity at the contact, and the damping force acts to oppose motion. The damping 
constant is not specified directly; instead, the critical damping ratio 
௜ ሺ݅ߚ ൌ ݊: normal, ݏ: shearሻ is specified, and the damping constant satisfies 

௜ܥ ൌ ௜ܥ௜ߚ
௖௥௜௧      (3.32) 

where ܥ௜
௖௥௜௧ is the critical damping constant, which is given by 

௜ܥ
௖௥௜௧ ൌ 2݉߱௜ ൌ 2ඥ݉݇௜    (3.33) 

where ߱௜ ሺ݅ ൌ ݊: normal, ݏ: shearሻ is the natural frequency of the undamped system, 
݇௜ ሺ݅ ൌ ݊: normal, ݏ: shearሻ is the contact tangent stiffness, and m is the effective system 
mass. In the case of ball-wall contact, m is taken as the ball mass, whereas in the case of ball-
ball contact, m is given by 

݉ ൌ ௠భ௠మ
௠భା௠మ

      (3.34) 

where ݉ଵ and ݉ଶ are mass of the ball 1 and ball 2, respectively. 

Viscous damping is characterized by the critical damping ratio β (GINSBERG & GENIN, 
1984). When β = 1, the system is said to be critically damped, meaning that the response 
diminishes to zero at the most rapid rate. Also, β =1 represents the transition from an 
oscillatory response, when β < 1, to an exponentially decaying response when β > 1. When β 
< 1, the system is said to be underdamped, or lightly damped, and when β > 1, the system is 
said to be overdamped, or heavily damped. 

 

Figure 3.11 Viscous damping activated at a contact with the linear contact (ITASCA, 2006) 
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In PFC, the timestep is reduced (critical timestep with stiffness proportional damping) for 
stability when viscous damping is active. The reduced timestep with viscous damping is 
calculated as the minimum of critical timesteps computed for normal and shear directions 
using a different stiffnesses, ݇௡

ᇱ , ݇௦
ᇱ , where n indicates normal and s shear direction. 

In rock fall programs, the rebound height of blocks touching the bedrock is calculated using 
restitution coefficients. The restitution coefficient ܴ௜ ሺ݅ ൌ ݊: normal, ݏ: shearሻ is defined as 
the ratio of the contact velocity before and after the impact and can be defined as 

ܴ௜ ൌ ௩೔
೑

௩೔
೔       (3.35) 

where ݒ௜
௙ ሺ݅ ൌ ݊: normal, ݏ: shearሻ is the velocity of the block after the impact and ݒ௜

௜ ሺ݅ ൌ

݊: normal, ݏ: shearሻ is the velocity of the object before impact. The relation between the 
restitution coefficient ܴ௜ and the critical damping ration βi can be estimated by simulation 
drop tests (see Figure 3.12) (PREH & POISEL, 2007). 

 

Figure 3.12 Relation between restitution coefficient and critical damping ratio (ITASCA, 2006) 
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4 Adjustment of PFC3D for Modeling of a Rock Fall 

4.1 Motion Mechanisms 

According to observations in nature, several kinds of movements of the rock fall process have 
to be distinguished during the computation (BOZZOLO, 1987): 

- free falling, 
- bouncing, 
- rolling and 
- sliding 

In order to achieve an appropriate simulation of these different kinds of movements by PFC, 
some modifications have been necessary using the implemented programming language FISH 
(PREH & POISEL, 2007) 

4.1.1 Free Falling 

In order to model the free falling of blocks, neither the acceleration nor the velocity (ignoring 
the air resistance) is to be reduced during fall as a consequence of mechanical damping. 

As already explained in chapter 3.7.1 PFC applies a local, non-viscous damping proportional 
to acceleration, to the movement of every single particle as a default. This damping model 
best suits for a quick calculation equilibrium. There arises, however, a disadvantage of 
movement of particles being damped as well. Therefore, the local damping has been 
deactivated for all kinds of particle movements. (PREH & POISEL, 2007) 

4.1.2 Bouncing 

Elastic and plastic deformations occur in the contact zone during the impact of a block. Both 
the kinetic energy of the bouncing block and rebound height are reduced by the deformation 
work. The reduction of the velocity caused by the impact is modeled with the help of a 
viscous damping model integrated in PFC (PREH & POISEL, 2007), which is also explained 
formerly in chapter 3.7.3. 

By modeling rock mass falls, it was shown to be necessary to distinguish between ball-ball 
contact and ball-wall contacts. This was done by using the programming language FISH 
(PREH & POISEL, 2007) 
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4.1.3 Rolling 

For a realistic modeling of rock mass falls besides viscous damping, the rolling resistance 
should also be taken into account. If the rolling resistance is neglected, then the conceptual 
model would drift away from what is observed in nature. 

The rolling resistance is caused by the deformation of the rolling body and/or the deformation 
of the ground (see Figure 4.1) and depends mostly on the ground and the block material. 

 

Figure 4.1 Deformation of the surface and distribution of contact stresses (PREH & POISEL, 2007) 

Due to these deformations, the distribution of contact stresses between the ground and the 
block is asymmetric (see Figure 4.2). Replacing the contact stresses by equivalent static 
contact forces results in normal force N, which is shifted forward by the distance of crr, and a 
friction force Frr, opposing the direction of the movement. 

 

Figure 4.2 Calculation of the rolling resistance (PREH & POISEL, 2007) 

The declaration of the angular velocity caused by the rolling resistance is calculated using the 
conservation of translational momentum (equ. 4.1) and angular momentum (equ 4.2) 
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݉. ሷ௦ݔ ൌ െܨ௥௥      (4.1) 

െܫ. ሶ߱ ௥௥ ൌ ,௥௥ܯ ௦௣௛௘௥௘ܫ ൌ ଶ
ହ

. ݉.  ଶ    (4.2)ݎ

where ܯ௥௥ is the resulting moment caused by the rolling resistance, I is the principal moment 
of inertia and ߱௥௥ is the angular deceleration. 

The kinematic link is established by the condition of pure rolling (equ 4.3) 

ሷ௦ݔ ൌ ሶ߱ .  (4.3)      ݎ

The angular acceleration is defined by a finite difference relation in order to express the 
increment of the angular velocity per time increment (equ 4.4). Thus, the friction force Frr is 
defined by the conservation of momentum. 

௥௥ܨ ൌ െ݉. ∆ఠೝೝ
∆௧

.  (4.4)     ݎ

Equation (4.2) and (4.4) yield to 

െ ଶ
ହ

. ݉. .ଶݎ ∆ఠೝೝ
∆௧

ൌ .௥௥ܨ ௥௥ݎ െ ܰ. ܿ௥௥    (4.5) 

െ ଶ
ହ

. ݉. .ଶݎ ∆ఠೝೝ
∆௧

ൌ െ݉. ∆ఠೝೝ
∆௧

. .ݎ ௥௥ݎ െ ݉. ݃. ܿ௥௥   (4.6) 

Therefore, the angular deceleration is 

∆߱௥௥ ൌ ି௚.௖ೝೝ

௥.ሺ௥ೝೝିమ
ఱ.௥ሻ

. ; ݐ∆ ௥௥ݎ       ൌ ඥݎଶ െ ܿ௥௥
ଶ     (4.7) 

The rolling resistance is implemented by adding the calculated increment of the angular 
velocity, to the angular velocity calculated by PFC at every timestep. (Equ. 4.7). 

௜߱
ሺ௧ሻ ൌ ௜߱

ሺ௧ሻ ൅ ∆߱௥௥,௝     (4.8) 

According to these considerations, the rolling resistance is an eccentricity crr or sag function 
urr. The deeper the block sags, the greater the rolling resistance, ∆߱௥௥. 

This means that spherical blocks of different sizes have the same run out for the same rolling 
resistance coefficient. In nature, however, it can be observed that large blocks generally have 
a longer run out than smaller ones. Therefore, according to the damping model described, the 
run out is calibrated by the sag urr. 
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There has been several model calculations carried out by PFC, using the model of rolling 
resistance just described. When the detached rock mass was modeled as an irregular assembly 
of two different sized particles, it became apparent that the larger particles have a longer run 
out than smaller ones (PREH & POISEL, 2007). Below Figure 4.3 demonstrates an inverse 
grading of a deposit mass simulated by PFC. 

 

Figure 4.3 Inverse grading of a deposit mass simulated by PFC (PREH & POISEL, 2007) 

4.1.4 Sliding 

Sliding is calculated by the slip model implemented in PFC (see chapter 3.4.2). No further 
adjustments are necessary. Various friction coefficients are introduced to the areas with 
different character (e.g. glacial, outcropping rock, etc.), thus it could be possible to get 
contrasting sliding behaviors of a ball, which has a trajectory lying on several areas. For a 
ball-ball interaction another friction coefficient is also introduced. The calculation selects the 
smallest value of friction coefficient, when it comes for a ball to contact with several 
elements, belonging to different characters. 

4.2 Damping Factors and Micro Parameters 

The damping factors and micro parameters that are introduced to achieve a realistic model can 
be categorized into two parts: 

1. Parameters to model the interaction between ball and wall elements: 
- Normal stiffness of wall elements [force/displacement] 
- Shear stiffness of wall elements [force/displacement] 
- Friction coefficient, ball-wall [-] 
- Rolling resistance [length, sinking depth] 
- Critical normal damping behavior, ball-wall [-] 
- Critical shear damping behavior, ball-wall [-] 

2. Parameters to model ball properties and the interaction between ball elements: 
- Normal stiffness of ball elements [force/displacement] 
- Shear stiffness of ball elements [force/displacement] 
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- Contact bonding (Normal direction) [force] 
- Contact bonding (Shear direction) [force] 
- Friction coefficient, ball-ball [-] 
- Critical normal damping behavior, ball-ball [-] 
- Critical shear damping behavior, ball-ball [-] 

4.3 The Kinetic Energy and Velocity Lines 

In order to have an idea about the motion behavior of rock mass falls, it is necessary to record 
physical properties of the mass like velocity and kinetic energy during the rock fall process. A 
FISH routine is developed manually to store the desired velocity and kinetic energy diagrams 
of the rock fall. 

The following parameters are introduced using the implemented FISH language to obtain the 
desired information about the velocity and energy situations of the total mass: 

- Average scalar and angular velocities of total mass, 
- Maximum velocity of the fastest ball in each case, 
- Kinetic energy, translational and rotational energy, 
- Maximum kinetic energy of a selected ball from total mass 

during the calculation of the parameters over the total collapse time of the mass is used 
(MAIR am TINKHOF, 2007). 

PFC has the capability of calculating the x, y and z coordinates and the scalar/angular 
velocities of any ball at each timestep. By implementing the developed FISH routine it is 
possible to calculate the translational and angular velocities of a selected ball or total mass by 
using the following equations: 

|Ԧ௕௔௟௟ݒ| ൌ ඥݒ௫
ଶ ൅ ௬ݒ

ଶ ൅ ௭ݒ
ଶ    (4.9) 

| ሬ߱ሬԦ௕௔௟௟| ൌ ඥ߱௫
ଶ ൅ ߱௬

ଶ ൅ ߱௭
ଶ    (4.10) 

The maximal angular velocity (߱௠௔௫) and translational velocity (ݒ௠௔௫) of the total mass is 
also calculated and written in a diagram showing the velocity lines and the elapsed time. The 
vectors of the total velocity unfold generally a little about the direction and the instantaneous 
situation of the falling mass, for that reason they are not included in this work. 
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The equations used in the calculation of the average scalar and angular velocities are shown 
below as: 

௔௩௘ݒ ൌ
ට൫∑ ௩ೣ,ೕ

೙
೔సభ ൯మା൫∑ ௩೤,ೕ

೙
೔సభ ൯మା൫∑ ௩೥,ೕ

೙
೔సభ ൯మ

௡
;  n…number of balls (4.11) 

߱௔௩௘ ൌ
ට൫∑ ఠೣ,ೕ

೙
೔సభ ൯మା൫∑ ఠ೤,ೕ

೙
೔సభ ൯మା൫∑ ఠ೥,ೕ

೙
೔సభ ൯మ

௡
;  n…number of balls (4.12) 

Unlike the total velocity diagram, the average velocity diagrams show a good agreement with 
the detached mass behavior. 

PFC provides a possibility of calculating the kinetic energy of the total mass without further 
implementation of any routine. This possibility is used to cross-check the manually calculated 
energy histories. 

The translational energy of a falling mass is calculated by 

௧௥௔௡ܧ ൌ ଵ
ଶ

. ݉.  Ԧ௕௔௟௟|ଶ     (4.13)ݒ|

and the rotational energy by 

௥௢௧ܧ ൌ ଵ
ଶ

. .ܫ | ሬ߱ሬԦ௕௔௟௟|ଶ     (4.14) 

where I is the mass moment of inertia of the block and calculated as follows 

௦௣௛௘௥௘ܫ ൌ ଶ
ହ

. ݉.  ଶ     (4.15)ݎ

So the kinetic energy of a particle is calculated by 

௞௜௡ܧ ൌ ௧௥௔௡ܧ ൅  ௥௢௧     (4.16)ܧ

The total kinetic energy, translational kinetic energy and rotational kinetic energy are a 
summation of the relevant particle energy calculations and given as follows 

௞௜௡,௧௢௧ܧ ൌ ∑ ௞௜௡,௝ܧ
௡
௜ୀଵ  ;   n…number of balls  (4.17) 

௧௥௔௡,௧௢௧ܧ ൌ ∑ ௧௥௔௡,௝ܧ
௡
௜ୀଵ  ;   n…number of balls  (4.18) 

௥௢௧,௧௢௧ܧ ൌ ∑ ௥௢௧,௝ܧ
௡
௜ୀଵ  ;   n…number of balls  (4.19) 
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During a simulation it is probable that a single block can fall outside the monitored rockslide 
area to start an endless free fall. This situation will certainly disturb/falsify the velocity and 
energy diagrams, for that reason a FISH routine is written to delete these balls to prevent the 
falsification of the diagrams. Because the balls, which fell out of raster, are not that much 
(generally in magnitude ~5%) compared to the total generated ball-mass, it could be assumed 
without any hesitation that the deletion of these particles would not disturb the simulation. 

4.4 Abort Criterion 

Any abort criterion is not predefined in PFC. As a result of this, an abort criterion should be 
assigned to stop the simulation after a satisfied solution is gathered. This stoppage could be 
done by introducing a certain number of calculation steps or a tolerance criterion. Introducing 
a certain number of calculation steps requires the knowledge of the development of the rock 
fall process in advance, but this information is in general not available (FRÜHWIRT, 2004). 

For that reason a tolerance criterion is introduced as an abort criterion. A small “if-loop” is 
introduced by a FISH routine, that if the maximal velocity of the total mass falls under 0.1 
m/s, then it is assumed that the falling process has come to an end, so the program aborts the 
process. The calculation is limited also with a certain number of calculation steps, so if the 
calculation does not yield an equilibrium state, then it indicates that the selected parameters, 
which were defined in chapter 4.2, do not reflex a suitable solution and should be rearranged. 

.



5 Case 1: Punta Thurwieser Rock Avalanche (Italy) 50 

MASTER’S THESIS  ONUR KOÇ 

5 Case 1: Punta Thurwieser Rock Avalanche (Italy) 

5.1 Introduction 

The first case investigated was the rock avalanche that took place on September 18th, 2004 on 
the southern flank of the Punta Thurwieser (Italian designation for Peak Thurwieser) with 
peak elevation of 3,641 m above the sea level, located at the closing of the Zebrù Valley, in 
the Central Italian Alps (SOSSIO & CROSTA, 2007). 

The Zebrù Valley is a part of the Ortler Alps (in Italian Ortles) in the central Alps of Italy. 
They are considered to be a part of Central-Eastern Alps or the Southern Limestone Alps 
(WIKIPEDIA, 2007). The table below shows the main peaks that belong to the Ortler Alps. 

Table 5.1 The Main Peaks of the Ortler Alps (WIKIPEDIA, 2007) 

 

 

5.2 Geological Conditions, Morphological Characteristics and 
Geomechanical Interpretations 

The Zebrù valley is a 10 km long valley of glacial origin, with a NE-SW trend. The 
morphology of the valley has been sculpted by glacial and hydraulic processes. The valley 
traces the tectonic Zebrù line, separating the Palaeozoic Campo Alps, to the south, and the 
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Mesozoic Ortler Alps, to the north. The lithology of the Campo Alps mainly consists of 
phyllite and paragneiss, with intercalations of marble, amphibolite and porphyry, whereas 
lithology of the Ortler Alps consists of dolostone with intercalations of limestone. 

The detachment area is located at an approximate elevation of 3600 m a.s.l. on the east face of 
Punta Thurwieser, just below its peak. The estimated overall volume of the landslide is 2.5 x 
106 m3. The rock avalanche dropped and partly moved on the surface of the underlying Zebrù 
Glacier; after crossing a high rock step (named as “outcropping rock” below), the rock mass 
flew along the narrow Rin Mare valley stopping at an elevation of about 2235 m a.s.l. The 
overall run out length was about 3000 m. (PIRULLI, et al., 2006). The detachment area (in 
green dots) and the flowing region of the detached rock (in white dots) are shown in Figure 
5.1. 

 

Figure 5.1 Thurwieser Peak, before (left) and after (right) the rock avalanche (SOSSIO & CROSTA, 
2007) 

As seen in Figure 5.1, the upper part of the glacial floor is covered with ice (i.e. Zebrù 
Glacier), and then glacial deposits and exposed rock (outcropping rock). In particular, the 
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lateral moraines due to the ancient glaciers and the outcropping rocks confined the landslide 
spreading. 

The detachment of the rock avalanche exposes a reddish surface due to the weathering 
processes undergone by the fissured rock. This fracturing system and the action of 
tectonization processes throwing over cataclastic and mylonitic rock contributed to the 
weakening of the mass. (SOSSIO & CROSTA, 2007) 

The permafrost degradation is supposed to be the most probable triggering factor. Similar 
phenomena, even with lower volumes, have been occurring since summer 2003 in the Alps 
(Bernina, Matterhorn, Mont Blanc) following periods of exceptionally high temperatures 
(PIRULLI, et al., 2006) 

 

Figure 5.2 The velocities of the detached mass at several regions acquired from the movie shot on 
actual event (SOSSIO & CROSTA, 2007) 
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The rock avalanche is the first video recorded rock avalanche ever. The recorded movie 
revealed the timing and the evolution of the landslide. The measurements from the available 
movie indicated the relevant velocities at particular regions of the slope (see Figure 5.2). 

The landslide propagation lasted less than 75-80 seconds, while the mean front velocity was 
about 40 m/s, with the highest velocities reached along the glacier and down the outcropping 
rock (Figure 5.2). The main deposit stopped few hundreds meters far from the Zebrù main 
valley, but the dust cloud extended up to 4 km far from the source area (SOSSIO & CROSTA, 
2007). 

5.3 Model Setup 

Two steps have to be fulfilled for an adequate model build-up with PFC3D, namely: 

1. The modeling of the non-moved bed rock surface 
2. The modeling of the detached rock mass 

5.3.1 Modeling of the Surface 

Generating a digitalized model of a surface requires a digital elevation model (DEM) or a 
digital terrain model (DTM) of the surface. A DEM is a digital representation of the ground, it 
is also widely known as DTM. DEM’s can be represented as a raster (a grid of squares) or a 
triangular irregular network. They are commonly built using remote sensing techniques; 
however, they may also be built from land surveying. 

Assessing a DEM requires a digitalized measurement of the region, which needs to be 
modeled. The committee of International Landslide Forum provided such data. The data 
folder consisted of mainly three spreadsheets: 

1. DEM path Thurwieser Surface 
2. DEM source Thurwieser Solid Rock 
3. DEM source Thurwieser Expanded 

The surface data was used to generate the non-moved bed rock surface in general, whereas the 
solid rock file represents the surface of the detached mass. The Thurwieser Expanded file 
represents the surface of the detached loose rock (h’ = h x 1.5). All three files consisted of 
three dimensional coordinates (x, y and z) of a field in 10 m raster. Based on these raster 
coordinates a digitalized field was constructed using AUTODESK LAND DESKTOP 3 (See 
Figure 5.3). 
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Figure 5.3 Axonometric view of the rockslide area with 10 m contour lines and the red marked raster 
points (50 x 50 m) 

Although a smaller raster field could be generated, a 50 x 50 m raster was selected, because a 
smaller raster would have caused extremely long PFC simulations. 

In the next step, separate regions with different frictional coefficients were defined using the 
ground plans provided by Landslide Forum. Figure 5.4 illustrates the position of the glacier, 
and of the detachment area and the final depth (thickness) of the rockslide material at its end 
position. 

In order to simulate a rock mass fall coinciding with the actual behavior of the detached mass, 
different parameters had to be introduced which would be relevant for a real rockslide run out 
(e.g. small friction coefficient for glacial areas, whereas higher value for rocky, rough areas). 
These different areas in terrain surface are as follows: 

1. The detachment area 
2. Glacier 
3. Outcropping rock 
4. Surface (Normal terrain – Glacial deposits) 
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Figure 5.4 The ground plans provided from Landslide Forum, left: the initial position and the run out 
path of the detached mass; right: the position and final thickness of the deposit. 

Finally, the raster points from the digitalized model were written in a text document, so that it 
could be possible for PFC to generate a terrain model based on these raster points later. The 
terrain model generated by PFC is demonstrated in Figure 5.5 and 5.6, where blue indicates 
the glacier, brown the outcropping rock, red the detachment area, and black regions the glacial 
deposits. 
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Figure 5.5 Different homogeneous regions of the constructed model by PFC 

 

Figure 5.6 The surface model (right) and the actual photo shot (left) (SOSSIO & CROSTA, 2007) 
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5.3.2 Modeling of the Detached Rock Mass 

The generation of the detached particles as well as the build up of the wall elements defining 
the surface were simulated by PFC. First the surface points were read from the DEM file and 
rearranged as a 50 m raster as an input file for the PFC program. After the reading of these 
points by PFC, the program constructed triangulated wall elements (See Figure 5.5 and 5.6). 
The triangulation was done by a FISH routine designed by PREH (2004). The allocation of 
the run out relevant parameters (e.g. rolling resistance, friction and damping coefficients) 
were carried out after the particle generation of the detached rock volume. 

The initial positions of the particles were modeled in a form such that the generated balls 
would be placed in a closed cap form, which was sealed with a cover element. Consequently 
the detached rock mass that should stay at rest at the beginning could be modeled. This cover 
was designed as a cap-like structure of wall elements which were also created by PFC to hold 
the particles in their initial position. The generated balls were randomly placed between the 
cover and the predefined detachment area. The definition of the detachment area was carried 
out according to the provided ground plans (Figure 5.7). 

 

Figure 5.7 The determination of the different areas in PFC 
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The modeling of the detachment and the start of the run out were initiated by the deletion of 
the cover wall elements to release the particles. At the initial position, the particles must have 
zero velocity, thus zero kinetic energy. However, after the random radius expansion of the 
particles during their generation between the detachment surface and cover surface and after 
the deletion of the cover surface, the particles hurled in different directions due to the initial 
energy they possess. Thus 500 steps were conducted at the beginning of the run out, so that a 
better distribution of particles was achieved without having any initial velocity. 

 

 

Figure 5.8 Flowchart of particle generation and construction of the surface model 

Import of the surface point data gathered from Land 
Desktop

Model build‐up of the surface by PFC wall elements, 
triangulation with FISH routine (PREH, 2004)

Creation of the cover wall elements to enable the detached 
mass generation

Generation of the particles between cover and surface to 
model the detached mass

Allocation of the parameters to the relevant surface areas

Consolidation of the particles with the necessary initial steps

Resetting the initial translational and rotational velocities of 
the particles to zero
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Figure 5.9 Flowchart of the run out simulation 

5.4 Run out Modeling 

The digital elevation model provided by the Int. Landslide Forum in Hong Kong was used to 
generate the terrain surface model by wall elements, explained already in chapter 5.3. The 
terrain was generated by 3,348 wall elements, simulating both the detachment and the surface 
terrain itself. The detached, mostly dolomite, rock was modeled by 2,632 particles (balls) with 
random generated balls, radius length ranging between rmin = 6 m and rmax = 11 m. After 
starting the run out process by deleting the wall elements above the detached rock volume, 
250.000 timesteps were calculated (POISEL, PREH, & KOÇ, 2007). 

5.4.1 Initial Position 

 

Figure 5.10 Punta Thurwieser, three dimensional view of the initial position of the particles 

Deletion of the cover wall elements to trigger the 
detachment of the particles (initial position)

Simulation of the runout process until abort criteruim is 
fulfilled (end position)
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Figure 5.11 Punta Thurwieser, initial position, plan view 
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5.4.2 Parameter Study 

A parameter study was carried out in order to evaluate the best fit parameters for simulation 
of the Punta Thurwieser rock avalanche corresponding with reality. Achieving the best fit 
parameters could only be managed by conducting several run out experiments, in which the 
parameters were redefined each time depending on the simulation results. 

The experiments were planned generally in two branches: the detached rock volume as loose 
material (Expanded Rock) and as solid material (Solid Rock) (See chapter 5.3.1). The 
experiments carried out on loose material (expanded rock) certainly provide more particles 
and consequently a run out simulation closer to the observations (height and depth distribution 
of the deposit) than the solid material would do, but it would eventually lead to a higher 
calculation time. On the other hand, experiments which were conducted on solid material 
(solid rock) would generate fewer particles but ensure a favorable computational time. The 
experiments were also categorized by their friction angle. The chart below shows the 
experiment branches in detail with the relevant experiment numbers beneath. 

 

Figure 5.12 Types of experiments and the total number conducted 

Table 5.2 shows all parameters used. As seen in this table, the critical damping ratios (See 
chapter 3.7.3) for all regions were taken as 0.8. This was due to the excessive bouncing 
motion of the balls over the region “Outcropping Rock”. To prevent this action, the damping 
ratios were taken at their limits, so that the excessive bouncing movement of the particles was 
clearly decreased (See Figure 3.12). 
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Table 5.2 Best fit parameters for simulating Punta Thurwieser Rock Avalanche 

Thurwieser Experiment for Expanded Rock (Glacier 15 Grad) Best Fit - Exp. 9
Common Parameters for all Regions   
Number of Timesteps [-] 250.000
Volume [m3] 2,2*106

Number of Wall Elements (Surface) 3.348
Number of Wall Elements (Cover) 122
Number of Particles (Balls) 2.632
Range of Ball Radius [m] 6,0 - 11,0
Porosity [%] 35
Parameters for Region "Detachment Area"   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Friction Coeff. (ball-wall) [-] tan 40° = 0,839
Rolling Resistance [m] 0,5
Critical Damping Ratio (Normal Direction) (ball-wall) [-]  0,8
Critical Damping Ratio (Shear Direction) (ball-wall) [-]  0,8
Parameters for Region "Glacier"   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Friction Coeff. (ball-wall) [-] tan 15° = 0,268
Rolling Resistance [m] 0,6
Critical Damping Ratio (Normal Direction) (ball-wall) [-]  0,8
Critical Damping Ratio (Shear Direction) (ball-wall) [-]  0,8
Parameters for Region "Outcropping Rock"   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Friction Coeff. (ball-wall) [-] tan 45° = 1
Rolling Resistance [m] 0,4
Critical Damping Ratio (Normal Direction) (ball-wall) [-]  0,8
Critical Damping Ratio (Shear Direction) (ball-wall) [-]  0,8
Parameters for Region "Glacial Deposits"   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Friction Coeff. (ball-wall) [-] tan 60° = 1,732
Rolling Resistance [m] 0,4
Critical Damping Ratio (Normal Direction) (ball-wall) [-]  0,8
Critical Damping Ratio (Shear Direction) (ball-wall) [-]  0,8
Parameters for Particles (Balls)   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Contact Bond (Normal Direction) [kN] -
Contact Bond (Shear Direction) [kN] -
Material Density [kg/m³] 2700
Friction Coeff. (ball-ball) [-] tan 60° = 1,732
Critical Damping Ratio (Normal Direction) (ball-ball) [-]  0,5
Critical Damping Ratio (Shear Direction) (ball-ball) [-]  0,5
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An overview of the best fit parameters is also presented below in Table 5.3. 

Table 5.3 Overview of the best fit parameters (POISEL, PREH, & KOÇ, 2007) 

Parameter Description Detachment 
Area 

Glacial 
deposits 

Glacier Outcropping 
Rock 

Particle 
interaction 

ϕ [°] friction angle 40 60 15 45 60
urr [m] rolling resistance 0,5 0,4 0,6 0,4 -
βn[-] critical damping ratio, 0,8 0,8 0,8 0,8 0,5

normal direction 
βs[-] critical damping ratio, 0,8 0,8 0,8 0,8 0,5

shear direction 

5.4.3 Results and Interpretations 

The position of the particles after 25.000 and 50.000 computation steps and their final 
position agree with the documented rock avalanche spreading. (See Figure 5.13 and 5.14) 

 

Figure 5.13 Particle postions after 63 secs (25.000 steps) 
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The numerical analyses showed that a small rock portion fell in east direction, which 
coincides with the actual rockslide. The run out distance of this portion was much too large 
than the actual situation, which is indicated with the long green arrow in Figure 5.13. 
Presumably the roughness of the glacier in this area due to crevasses caused the blocks to stop 
at 3.100 m above see level (POISEL, PREH, & KOÇ, 2007). 

 

Figure 5.14 Particle positions after 124 seconds (50.000 timesteps, left) and after complete stoppage at 
555 seconds (225.000 timesteps, right) 

The final particle position and also deposit thickness agree fairly well with the real values 
(See Figure 5.15). Nevertheless an exact terrain surface model, which means a finer grid of 
wall elements, would have brought an even better coincidence with the observed rock 
avalanche. This is also true for the particles running out of the chute in the south-east of 
outcropping rock area (short arrow in Figure 5.13) (POISEL, PREH, & KOÇ, 2007). 

Figure 5.16 and 5.17 show the particle positions at the relevant simulated timesteps. 
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Figure 5.15 Particle positions after stoppage and thickness of the deposit in reality 
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Figure 5.16 Particle positions after 30 seconds 

 

Figure 5.17 Particle positions after 100 seconds 
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5.4.3.1 Velocity and Kinetic Energy Diagrams 

As mentioned above the velocity (Figure 5.18) and energy (Figure 5.19) diagrams reveal the 
actual behavior of the detached rock mass (See chapter 4.3). 

 

Figure 5.18 Mean particle velocity [m/s] over time [s] 

 

Figure 5.19 Rotational kinetic energy (red line), translational kinetic energy (black line), total kinetic 
energy (blue line) [J] over time [s] 
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After 30 seconds (Figure 5.16) the particle velocity and kinetic energy reach a minimum value 
just after all the particles leave the detachment area and move along the glacier. After 100 
seconds the maximum travel distance of the rock avalanche is reached and after that only 
internal movements occur before the mass comes to final rest (See Figure 5.17) (POISEL, 
PREH, & KOÇ, 2007). 

The kinetic energy diagram indicates that the motion of the Thurwieser Rock Avalanche is a 
pure rolling motion. As in chapter 1.2.1.3, equation 1.6 shown, pure rolling motions are 
comprised of a certain percentage of rotational (2/7) and translational (5/7) kinetic energy. 
This phenomenon can be observed in the Thurwieser case. Figure 5.20 show that the kinetic 
energy of the particles at different timesteps (15, 30, 63 and 125 sec) has a ratio of 
translational to rotational energy as in pure rolling phenomenon. 

 

Figure 5.20 Kinetic energy at several simulation timesteps (15, 30, 63 and 125 sec), red line showing 
the rotational kinetic energy, black the translational kinetic energy and blue the total kinetic energy 

The following figures (5.21 – 5.24) show the position of particles at the relevant timestep. 
These figures indicate the extreme kinetic energy values at the given timesteps (15, 30, 63 and 
125 seconds) showing maxima und minima. 
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Figure 5.21 Particle position after 15 seconds (Complete detachment of the rock mass) 

 

Figure 5.22 Particle position after 30 seconds (Rock mass over the glacier) 
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Figure 5.23 Particle position after 63 seconds 

 

Figure 5.24 Particle position after 125 seconds 
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Figure 5.25 Front velocities; (left, observed velocities) (SOSSIO & CROSTA, 2007), (right, result of 
the simulation) 

As seen in Figure 5.25, the calculated velocity vectors coincide with the observed velocity 
vectors digitally analyzed from the movie taken on the actual scene, fairly well. 
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6 Case 2: Frank Slide (Canada) 

6.1 Introduction 

The landslide from the east face of Turtle Mountain that destroyed the southern end of the 
town of Frank in the Crow’s-nest Pass area of southwestern Alberta, Canada, has become a 
classic example of a mass movement because it is one of the largest landslides for which 
eyewitness accounts and a contemporary scientific examination exists (CRUDEN & KRAHN, 
1978). 

With a rock mass volume of 36.5 x 106 m3, Frank Slide was the deadliest landslide disaster of 
Canadian history, having destroyed not only a portion of the town of Frank, but also took the 
lives of 70 people with it (McCONNELL & BROCK, 1904). The landslide occurred on April 
29, 1903, at 4:10 a.m. Frank, a coal mining town, was 21 km east of the border with British 
Columbia and 56 km north of the United States border in the Front Ranges of the Canadian 
Rockies. The present town of Frank is about 2 km north of the old town site. 

 

Figure 6.1 Aerial view of the Frank Slide from northeast 
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6.2 Geological Conditions, Morphological Characteristics and 
Geomechanical Interpretations 

The structure of Turtle Mountain was described as a monocline of Paleozoic limestones 
dipping to the west at about 50°. The limestone which formed the north-trending ridge of the 
Blairmore Range, of which Turtle Mountain is a part, had been thrust eastwards over vertical 
Mesozoic sandstones, shales, and coals on the Turtle Mountain fault. The slide mass was 
reported to have moved eastwards down the dip of a set of strike joints perpendicular to 
bedding (CRUDEN & KRAHN, 1978). 

 

Figure 6.2 Bedrock geological map of the Turtle Mountain Area (CRUDEN & KRAHN, 1978) 
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The oldest rocks exposed on Turtle Mountain are Mississippian and belong to the Banff 
Formation. The uppermost 120 m of this formation crop out and are medium, crystalline, and 
shaly limestones containing many dark grey, pale brown weathering chert stringers. The basal 
bed of the overlying Livingstone Formation is 7.5 m thick, and consists of coarse-grained 
medium to dark grey limestone with a little chert. Above this are about 92 m of massive, grey, 
crystalline limestones with interbeds of argillaceous and cherty limestone. The uppermost 
beds of the Livingstone Formation, which is about 336 m thick here, are dark grey crystalline 
dolomitic limestones (CRUDEN & KRAHN, 1978). 

 

Figure 6.3 Cross-section through Turtle Mountain along line A-A' shown in Figure 6.2 (CRUDEN & 
KRAHN, 1978) 

 

Figure 6.4 Cross-section along line B-B' shown in Figure 6.2 (CRUDEN & KRAHN, 1978) 
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Figure 6.5 Cross-section along line C-C’ shown in Figure 6.2 (CRUDEN & KRAHN, 1978) 

Figure 6.2 is a geological map of the vicinity of the slide based on CRUDEN &KRAHN 
(1978) detailed mapping in the summers of 1971 and 1972. Figures 6.3 – 6.5 show the 
relevant cross-sectional details on Figure 6.2. As clearly interpreted from the above plan view 
of the vicinity, the detached area lies mainly on Livingstone Formation, which consists of 
limestone. (For legends of Figures 6.3 – 6.5 see Figure 6.2) 

The disturbed rock mass at the top of Turtle Mountain is not suitable for a detailed survey of 
the rock fabric, but according to CRUDEN &KRAHN (1978) the main elements of the fabric 
are obvious; two joint sets, both perpendicular to bedding, are developed, one parallel to the 
strike of the beds and the other parallel to their dip. 

6.3 Model Setup 

As explained in Case 1 (Thurwieser), the Frank Slide case included also two phases of 
simulation modeling, namely: 

1. The modeling of the non-moved bed rock surfaces 
2. The modeling of the detached rock mass 

6.3.1 Modeling of the Surface 

As in the Thurwieser Case, the committee of International Landslide Forum provided three 
digitalized elevation data files, namely: DEM path Frank Slide Surface (Surface elevation 
data without detached mass elevations), DEM source Frank Slide Solid Rock (Surface 
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elevation plus detached rock mass elevations), DEM source Frank Slide Expanded Rock 
(Surface elevation plus detached rock mass elevation in fragmented and loose condition, for 
details see chapter 5.3.1) 

Based on these raster coordinates a digitalized field was constructed using AUTODESK LAND 

DESKTOP 3 (See Figure 6.6). 

 

Figure 6.6 Axonometric view of the rockslide area with 10 m contour lines and the red marked raster 
points (100 x 100 m) 

Unlike Thurwieser case, in Frank Slide a 100 x 100 m raster had been chosen. Due to the 4000 
x 4000 m model area of the Frank Slide, it was aimed to reduce the time span of the total 
simulation run out. The probable reason for a slow simulation speed was the huge. 

In Frank Slide only two regions had to be introduced (Figure 6.7 and 6.8): 

1. The detachment area 
2. Normal terrain (Non moved bed rock surface) 
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Figure 6.7 The outline of the run out path and source area of the detached rock mass (LANDSLIDE 
FORUM, 2007) 

 

Figure 6.8 Aerial photo of the Frank Slide and the run out area (LANDSLIDE FORUM, 2007) 
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As a conclusion in surface modeling, the raster points from digitalized model was written in a 
text document, so that it could be possible later for PFC to generate a terrain model based on 
these raster points. The terrain model generated by PFC is demonstrated in Figure 6.9, where 
blue indicates normal terrain area (surface) and red, the detachment area. 

 

Figure 6.9 Southwest view of the PFC model, red indicating the detachment area and blue the 
normal terrain (surface) 

6.3.2 Modeling of the Detached Rock Mass 

The generation of the detached particles and also the build up of the surface model were 
carried out by PFC, as in the Thurwieser case. Firstly the points which were read from DEM 
file and rearranged as a 100 m raster, were prepared as an input file for PFC program. After 
the reading of these points by PFC, the program built up triangulated wall elements. The 
triangulation was done by a FISH routine, which was previously designed by PREH (2004). 
The allocation of the rockslide and surface parameters (e.g. rolling resistance, friction and 
damping coefficients) were carried out after the particle generation of the detached area. 

The generation of the particles to simulate the detached rock mass was carried out just as in 
the Thurwieser case, so a lid-like cover element was introduced to the model in order to 
enable the particle generation. 
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Figure 6.10 The different Frank Slide regions rendered over the path map of the rockslide provided by 
the Landslide Committee 

Further details were carried out just as in the Thurwieser case (see chapter 5.3.2). Figure 5.8 
and 5.9 show the flowchart of the particle generation, the construction of the surface model 
and the simulation of the run out. 

6.4 Run out Modeling 

The terrain was generated by 3,372 wall elements, simulating both the detachment area and 
the terrain itself. The detached limestone rock was modeled by 19,691 particles (balls) with 
random generated balls radius length ranging between rmin = 10 m and rmax = 15 m. After 
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starting the run out process by deleting the wall elements above the detached rock volume, 
30,000 timesteps were calculated (POISEL, PREH, & KOÇ, 2007). 

6.4.1 Initial Position 

 

 

Figure 6.11 Frank Slide, three dimensional view of the initial position of the particles 

Figure 6.11 illustrates the initial position of the generated particles over the detachment area. 

6.4.2 Parameter Study 

After the generation of the triangulated mesh a parameter study was conducted in order to 
achieve the assembly of the best fit variables of surface and particle interaction which would 
in turn reflect a reasonable run out of a rockslide. Achieving the best fit variables could only 
be managed by conducting several run out experiments, in which the parameters were 
redefined each time depending on the simulation results. 
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As in the Thurwieser case, the experiments were planned generally in two branches: the 
detached rock volume as loose material (Expanded Rock) and as solid material (Solid Rock) 
(See chapter 5.3.1). The experiments carried out on loose material (expanded rock) certainly 
provide more particles and consequently a run out simulation closer to the observations 
(height and depth distribution of the deposit) than the solid material would do, but it would 
eventually lead to a higher calculation time. On the other hand, experiments which were 
conducted on solid material (solid rock) would generate fewer particles but ensure a favorable 
computational time. Unlike Thurwieser case, in Frank Slide an additional branching in 
experiment chart was introduced to see whether it was necessary to generate fewer balls or a 
higher number of balls for an exact rockslide behavior. Therefore two kinds of detachment 
area were introduced to the program, namely: a small detachment area and a large detachment 
area. The chart below shows the experiment branches in detail with the relevant experiment 
numbers beneath. 

 

Figure 6.12 Types of experiments and the total number conducted 

The simulation experiment conducted on Frank Slide with fragmented material (Expanded 
Rock) on large detachment area produced the best particle end positions within the given path 
region. The best fit parameters are stated in Table 6.1. A quick overview could be found in 
Table 6.2. Unlike Thurwieser, in Frank case the critical damping ratios were set to a normal 
value (0.5), because the results of the experiments did not show any anomalies of extreme 
bouncing motion like in the Thurwieser case. 
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Table 6.1 Best fit parameters for simulating Frank Slide 

Frank Slide Exp. for Expanded Rock (Large Det. Area) Parameter
Common Parameters for all Regions   
Number of Timesteps [-] 30.000
Volume [m3] 35*106

Number of Wall Elements (Surface) 3.372
Number of Wall Elements (Cover) 172
Number of Particles (Balls) 19.691
Range of Ball Radius [m] 10,0 - 15,0
Porosity [%] 35
Parameters for Region "Detachment Area"   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Friction Coeff. (ball-wall) [-] tan 15° = 0,268
Rolling Resistance [m] 0,05
Critical Damping Ratio (Normal Direction) (ball-wall) [-]  0,5
Critical Damping Ratio (Shear Direction) (ball-wall) [-]  0,5
Parameters for Region "Normal Terrain (Surface)"   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Friction Coeff. (ball-wall) [-] tan 8° = 0,141
Rolling Resistance [m] 0,1
Critical Damping Ratio (Normal Direction) (ball-wall) [-]  0,5
Critical Damping Ratio (Shear Direction) (ball-wall) [-]  0,5
Parameters for Particles (Balls)   
Normal Stiffness [kN/m²] 1*106

Shear Stiffness [kN/m²] 1*106

Contact Bond (Normal Direction) [kN] -
Contact Bond (Shear Direction) [kN] -
Material Density [kg/m³] 2700
Friction Coeff. (ball-ball) [-] tan 30° = 0,577
Critical Damping Ratio (Normal Direction) (ball-ball) [-]  0,5
Critical Damping Ratio (Shear Direction) (ball-ball) [-]  0,5
 

Table 6.2 Overview of the best fit parameters (POISEL, PREH, & KOÇ, 2007) 

Parameter Description Detachment 
Area 

Normal Terrain 
(Surface) 

Particle 
interaction 

ϕ [°] friction angle 15 8 30 
urr [m] rolling resistance 0,05 0,1 - 
βn[-] critical damping ratio, 0,5 0,5 0,3 

normal direction 
βs[-] critical damping ratio, 0,5 0,5 0,3 

shear direction 
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6.4.3 Results and Interpretations 

The particle positions of the simulation showed clearly that the simulation coincided with the 
documented path and rockslide deposit. Picture shots from the numerical analysis were 
rendered over the aerial photo to demonstrate the simulation accuracy. Figure 6.13 shows the 
particle position after 25 seconds (5.800 timesteps), where the particles were colored in red to 
emphasize them on the rendered picture. 

 

Figure 6.13 Particle positions after 25 seconds (5.800 steps) 
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Figure 6.14 Particle positions after 36 seconds (10.000 steps) 

 

Figure 6.15 Particle positions after 65 seconds (15.000 steps) 
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Figure 6.16 Final distribution of the particles 

Figure 6.14 and 6.15 show the particle positions after 36 and 65 seconds. It was observed that 
after approximately 70 seconds the main particle motion came to an end. This coincided well 
with reality. After that time a backwards motion at the north side of the deposit occurred. It 
was assumed that this motion could be a cause of a ridge formation, which came originally 
from the DEM terrain but could not be noticed from the aerial photo. Therefore a slight 
deviation from the given deposit path occurred (POISEL, PREH, & KOÇ, 2007) 

The final positions (Figure 6.16 and 6.17) of the particles in the PFC model show no particles 
at rest in the floodplain. This corresponds well with the observation in reality that only minor 
damming of the Crowsnest River (indicating that the landslide eroded some material from the 
floodplain) was observed after the landslide. 
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Figure 6.17 Final distribution of the particles rendered over the given run out path 
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6.4.3.1 Velocity and Energy Diagrams 

 

Figure 6.18 Mean particle velocity [m/s] over time [s] 

 

Figure 6.19 Rotational kinetic energy (red line), translational kinetic energy (black line), total kinetic 
energy (blue line) [J] over time [s] 

The development of the mean particle velocity over time (Figure 6.18) and of kinetic energy 
over time (Figure 6.19) reveals that both reach a maximum value after 25 seconds. As in 
Figure 7.20 shown, the centre of gravity of the rockslide mass is passing through the river at 
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that time. The small amount of rotational energy in kinetic energy figure also reveals that a 
coherent mass is sliding downslope (POISEL, PREH, & KOÇ, 2007) 

 

Figure 6.20 The position of particles at their maximum velocity 

Happened due to the height of 18 m deposit and the particle size varying between 10 to 15 m, 
an inverse grading of the deposit observed in reality could not be identified from the PFC 
simulation (CRUDEN & KRAHN, 1978). But from the theoretical background and necessary 
adaptations, it is possible to deduce that PFC can produce an inverse grading as a natural 
outcome.  
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7 Comparison of the Cases 

A comparison between the cases Thurwieser and Frank reveals: 

1. The parameters necessary to achieve the best run out results are completely different 
(see Table 5.3 and Table 6.2). In the Thurwieser case the viscous damping parameters 
should have to be set to highest values (see Figure 3.12) to achieve a better run out 
behavior coinciding with natural rock avalanche phenomenon. On the other hand, in 
the Frank case a normal value of 0.5 meet the appropriate rockslide motion conditions. 
The other parameters are also set far away from each other for an appropriate solution. 

2. The developments of the mean particle velocities as well as of kinetic energy are 
completely different (See Figure 5.19 and Figure 5.20). In the Thurwieser case there is 
an internal movement of particles, where in the Frank case there is no sign of any 
internal movement. 

3. The kinetic energy histograms illustrate clearly that some 30 percent of kinetic energy 
goes to rotational energy in the Thurwieser case, whereas in Frank there is no 
indication of rotational energy. 

From the above stated factors it can be deduced that the Frank Slide is a real “slide” of a 
coherent mass (CRUDEN & KRAHN, 1978) whilst Punta Thurwieser run out is a rock mass 
fall with much internal movement. Therefore the parameters for a run out simulation have to 
be adjusted in such a way that the simulation gives a rock mass fall in one particular case and 
a slide of a coherent mass in the corresponding to the real conditions (POISEL, PREH, & 
KOÇ, 2007). 

 

Figure 7.1 The Fahrböschung angle (13°) in Frank case 
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Figure 7.2 The Fahrböschung angle (26°) in Thurwieser case 

 

Figure 7.3 The Fahrböschung angle (40°) in Randa Rock Fall case (WAGNER, 1991) 

It is known that smaller volumes reach steeper “Fahrböschungen” and vice versa 
(SCHEIDEGGER, 1973). Punta Thurwieser rock avalanche as well as Frank slide fit well into 
the data of this kind of mass movements (See Figure 7.1 and Figure 7.2). However, it cannot 
be assumed that the volume is the only influencing parameter for run out kinematics. Frank 
Slide and Randa Rock Fall had both approximately the same volume, but very different 
“Fahrböschungen”. The detachment mechanisms (sliding, toppling, etc.; See Figure 1.2 and 
Figure 1.3), the morphology of the detachment surface (more or less flat, undulated surface 
etc.) have significant influence on the degree of loosening of the moving mass and on the 
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trigger mechanism of the run out. The morphology of the pathway of the run out also has a 
great influence on run out kinematics (POISEL, PREH, & KOÇ, 2007). Thus finding the best 
fit parameters and an approximation of a real rockslide run out behavior are a demanding task 
and require in both cases numerous trial and error experiments. 

 



8 Summary and End Notes  92 

MASTER’S THESIS  ONUR KOÇ 

8 Summary and End Notes 

Rock mass falls, especially in mountain ranges like the Alps, belong to natural morphological 
phenomenon. If they occur near population areas, they comprise great hazard to the human 
life and to the nearby infrastructure. Thus it is very important to predict any possible 
occurrence and foresee the likely pathway of the rockslide, so that all precautions can be 
taken just in time. 

The run out of a rock slope failure is a complex process (e.g. dust production, transformation 
of kinetic energy in heat etc.) (POISEL & ROTH, 2004) and they seldom possess only one 
reason for their occurrence. Geological conditions, relief, exposition to other effects and even 
permafrost are the basic parameters, which affect the instability (LATELTIN, 1997). 

Modeling rock avalanche run out and predicting their intensity can provide a guidance to 
estimate the extent of the potential impact area and to design mitigation strategies. A reliable 
replication of the landslide dynamics requires a good description of the event characteristics 
to minimize the uncertainty associated to the trial and error calibration of the input parameters 
to be used in the model (CROSTA, HUNGR, SOSIO, & FRATTINI, 2007). 

The Thurwieser rock avalanche is a good example of a rock mass movement for which a large 
amount of quantitative data has been gathered. The Thurwieser case is the first example of a 
large-scale rock avalanche which has been recorded on video. Thus the exact value of total 
duration, from initial position to final position, is available. Also the front velocities of the 
rock movement on its course in several sectors could be estimated. The landslide involved 2.5 
M m3 of dolomite and shale and traveled over 2.9 km from its original source partially in a 
glacial environment (CROSTA, HUNGR, SOSIO, & FRATTINI, 2007). The final geometry 
and characteristics of the deposit have been obtained by GPS measurements and aerial photos 
and field observations, which were documented by the Landslide Committee in Hong Kong 
for the attention of Benchmarking Exercise. 

On the other hand the Frank Slide case was maybe the first rock avalanche in history, which 
triggered, due to massive loss of lives and structures, a detailed documentation and 
examination of possible causes of rock avalanches. The loss was great: a portion of the town 
was demolished with the moving mass, taking 70 lives with it and maybe because of that the 
landslide was named after the demolished town: Frank. McCONNELL and BROCK (1904) 
estimated the original rock mass volume from the deposit as 36.5 M m3. Later it was reported 
by CRUDEN and KRAHN (1978) that the formation of the Turtle Mountain, in which the 
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detached rock mass belong to, as dark grey limestone with a little chert. There also existed 
argillaceous and cherty layers of limestone. The aerial photos of the pathway, deposit margins 
and the detached rock mass origin has been reported by Landslide Committee for 
Benchmarking Exercise as in Thurwieser case. 

The numerical analysis of the cases were carried out by the program PFC (developed by 
ITASCA CONSULTING GROUP), which is based on the basis of discontinuum mechanics 
and the distinct element method. A PFC-model is composed of two basic elements: two 
dimensional wall elements, which form in our case the pathway, the surface of the rock 
avalanche; three dimensional spherical particles (balls), which are used to model the detached 
rock mass in motion. These ball shaped particles can be positioned arbitrarily. The superiority 
of PFC from other simulation programs could be stated as follows: The program possesses an 
implemented language tool called FISH, which enables the user to calculate run out problems 
assigning contact models like rolling resistance. Second of all, the program provides at the 
end of the simulation a movie file, in which the camera view angle could be predefined also 
by the user. This movie feature of the program allows the user to investigate the constructed 
simulation thoroughly and makes possible for him to understand whether the model reflects a 
reasonable run out coinciding with the actual events. 

With PFC, it is possible to model a rock avalanche, in which all the particle-wall interactions 
meaning motion types like free falling, bouncing, rolling and sliding are taken into account by 
the program (PREH & POISEL, 2007). However some adjustments should be taken to adapt 
the PFC model to a real rockslide motion. This adaptation was carried through the 
implemented FISH language, so that the existent contact and damping models could be 
modified and the requirements for a rockslide modeling could be fulfilled. The primary 
adaptations were for instance: the viscous (velocity proportional) damping and rolling 
resistance models. 

In order to construct the surface wall elements, on which the running out of the simulation 
occurs, the digitalized data gathered from the Landslide Forum was used. With the help of the 
surveying program AUTODESK LANDDESKTOP 3 the predefined terrain points were 
reconstructed to assist and simplify the triangulation process of PFC. 

Detecting the best fit parameters required a series of variation of parameters in both cases. 
The run outs were carried out over the final surface models, which were also divided into 
several regions according to the surface conditions of the terrain. 
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At the end it was possible to construct a close resemblance between the designed model and 
the real rockslide occurrence in both cases. Although the cases showed totally different 
behaviors, PFC successfully simulated the run outs, coinciding with reality. 

The run out of a rock slope failure is a complex process (e.g. dust production, transformation 
of kinetic energy in heat). There is no method taking into account every aspect studied so far. 
Simulation of the run out of a particular rock slope failure by more than just one model is 
therefore strongly recommended. For example, PFC is not yet able to model the influence of 
water on the run out. Only analyses through a combination of methods make a comprehensive 
assessment of the run out close to reality possible (POISEL & ROTH, 2004). 
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