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Abstract

I wrote this diploma thesis under the supervision of Prof. Teichmann in the winter term
2007/2008. The main aim of this text is the study of a new approach to the term structure
of interest rates called the potential approach.

The first chapter recalls some basic facts about Stochastic Analysis. First some defini-
tions of stochastic processes are introduced, then Markov processes and Brownian motion
are discussed. For the Markov processes the main interest is in finite state-space Markov
chains and the framework of potential operators.

In the second chapter we give some basic definitions and ideas of interest rate theory.
First technical terms like the spot-rate, forward-rate or the yield to maturity are intro-
duced, then some economic theories are presented which try to explain the different shapes
of the yield curves.

Chapter three goes along with [Rogers 1] and [Rogers 2] and shows how we can use
potential theory to build interest rate models. Some examples are given using a Markov
process with continuous state-space.

In the fourth chapter we try to simulate the stochastic processes defined in chapter three.
First we do this by using a simple Markov chain with just five states, then we use a process
with continuous state-space. Also a fit to real yield curve data is presented.

Some additional background knowledge and the code of the programmed functions in
Scilab can be viewed in the Appendix.
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1 Introduction

1.1 Preliminaries of stochastic analysis

This chapter is meant to recall the basic ideas and definitions of stochastic processes
(in particular Markov processes and Brownian motion) which are needed for better under-
standing of the following chapters. The reader with mathematical background can directly
jump to chapter 2. Most proofs of the theorems are left out but referred to literature. The
most is taken from [Bauer 1] and [Wertz].

1.1.1 Basic measure theory

Before we mention some stochastic, probabilistic framework, we introduce in short some
basics from measure theory.

Let Ω be a general set and let P(Ω) be the potential set of Ω. This is the system of
all subsets of Ω. Then for all sets (Ai)i∈I from P(Ω) also

⋃
i∈I Ai and

⋂
i∈I Ai are subsets

of P(Ω). Further P(Ω) contains the complement {A to every set A ∈ P(Ω).
In the following we are just interested in at least countable index sets I.

Definition 1.1.1 (σ-algebra) A system A of subsets of a set Ω is called a σ-algebra, if
it fulfills the following properties:
(1) Ω ∈ A
(2) A ∈ A ⇒ {A ∈ A
(3) For every sequence (An)n∈N of sets from A:

⋃∞
n=1 An ∈ A.

Clearly P(Ω) is a σ-algebra. Now we look at the definition of another system of sets quite
similar to that of a σ-algebra.

Definition 1.1.2 (Ring) A system R of subsets of a set Ω is called ring (in Ω) if it has
the following properties:
(1) ∅ ∈ R
(2) A,B ∈ R ⇒ A\B ∈ R
(3) A,B ∈ R ⇒ A ∪B ∈ R
If a ring R additionally fulfills
(4) Ω ∈ R then we call it an algebra (in Ω).

Every ring does not only contain the union, but also the intersection of two (and therefore
n < ∞) subsets. Because for A,B ∈ R we can write A ∩B = A\(A\B).
Now we use these definitions to define measures on them.

Definition 1.1.3 We call the pair (Ω,A) a measurable space if A is a σ-algebra on the
set Ω. The sets A ∈ A are called measurable sets.

For maps we have:

Definition 1.1.4 Let (Ω,A) and (Ω′,A′) be two measurable spaces and consider the map
X : Ω → Ω′. Then X is called measurable if X−1(A′) ∈ A for all A′ ∈ A′.

1



1 Introduction 1.1 Preliminaries of stochastic analysis

Definition 1.1.5 Let R be a ring in Ω and µ be a function on R with values in [0,∞).
Then we call µ a pre-measure if
(1) µ(∅) = 0.
(2) For every sequence (An)n∈N of pairwise disjuncted subsets of R with union in R:

µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An).

(σ -additivity)

The property (2) clearly also holds for finite union.

Every pre-measure µ on R fulfills the following properties:
((A,B, A1, A2, ...) are all subsets of R)
(3) µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B)
(4) A ⊂ B ⇒ µ(A) ≤ µ(B) (isotony)
(5) A ⊂ B, µ(A) ≤ +∞⇒ µ(B\A) = µ(B)− µ(A) (subtractivity)
(6) µ(

⋃n
i=1 Ai) ≤

∑n
i=1 µ(Ai) (subadditivity)

(7) For every sequence (An)n∈N of pairwise disjuncted subsets of R with union in R:

∞∑

n=1

µ(An) ≤ µ(
∞⋃

n=1

An)

If the (An) are not disjuncted in (7) we clearly have

µ(
∞⋃

n=1

An) ≤
∞∑

n=1

µ(An)

if the
⋃∞

n=1 An ∈ R. For the proofs of this properties lookup [Bauer 1].
Now we use our definition of a pre-measure to define what a measure is.

Definition 1.1.6 (Measure) Every pre-measure µ defined on a σ-algebra A in a set Ω
is called a measure on A. The value µ(A) for A ∈ A is called the µ-measure of the set A.
If µ(Ω) < ∞ (and therefore µ(A) < ∞ ∀A ∈ A) we say µ is finite.

Definition 1.1.7 (Probability measure) A measure µ on a σ-algebra A in Ω is called
a probability measure if µ(Ω) = 1. From the isotony property we can follow that for every
probability measure

0 ≤ µ(A) ≤ 1 = µ(Ω) (A ∈ A).

Definition 1.1.8 A measure λ on A is absolute continuous relative to µ if ∀A ∈ A:
µ(A) = 0 ⇒ λ(A) = 0 and we write λ ¿ µ.

Lemma 1.1.1 Suppose that λ and µ are finite measures on a measurable space. Then
λ ¿ µ ⇔ if for ε > 0 we can find a δ > 0 such that

∀A ∈ A : µ(A) < δ ⇒ λ(A) < ε.

Definition 1.1.9 We again assume λ and µ to be finite. Further λ ¿ µ and µ ¿ λ.
Then we say that λ and µ are equivalent. They have the same null-sets.

Now we use this to derive the following very important result.
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1 Introduction 1.1 Preliminaries of stochastic analysis

Theorem 1.1.1 (Radon-Nikodym) Let (Ω,A) be a measurable space and let λ and µ
be measures on (Ω,A). If µ is finite, the following statements are equivalent:
(1) λ ¿ µ
(2) λ has a density relative to µ.

From this we can follow:

Theorem 1.1.2 Let λ = fµ be a measure of the density f relative to a σ-finite measure
µ on A. Then f is almost everywhere µ, λ is σ-finite ⇔ f is µ a.e. real-valued. We write

f =
dλ

dµ
a.e.(µ)

for the Radon-Nikodym density.

Now we recall the definition of a measurable space (Ω,A) and continue to the following
definition.

Definition 1.1.10 If additionally a measure µ is defined on the σ-algebra A we call the
triple (Ω,A, µ) a measure space. If µ is a probability space, we call the triple a probability
measure.

1.1.2 Stochastic processes

After this basic introduction we can define the basic properties of a stochastic process.
First we will define the process itself.

Definition 1.1.11 Consider a probability space (Ω,A,P) a measure space (S, Σ) and an
index set T 6= ∅. We define the map Xt : (Ω,A, µ) → (S, Σ) for all t ∈ T . Then the
family X := (Xt)t∈T is called a stochastic process on (Ω,A, µ) with state space (S, Σ).

Sometimes a stochastic process is also referred to as a sequence (family) of random vari-
ables. Mostly we have T ⊆ R with T interpreted as index of time.

Definition 1.1.12 Let X be a stochastic process. Then every map π : t → Xt(ω) for fixed
ω ∈ Ω is called path (trajectory, realisation) of X.

π : t → Xt(ω) : t ∈ T, ω ∈ Ω

is called the set of paths.

Often we have assumptions about π: For example paths can be continuous (left- or right-
continuous).
Some authors use the notation X(t) instead of Xt to denote that X is a function of time.

Definition 1.1.13 (Filtration) We say that (Ft)t∈T is a filtration of a measurable space
(Ω,F) if
(1) Ft ⊆ F is a σ-algebra ∀t ∈ T .
(2) s ≤ t ⇒ Fs ⊆ Ft ∀s, t ∈ T .

In other words: (Ft)t∈T is an increasing family of σ-algebras. It carries all the information
about the process up to time t.

Remark 1.1.1 If X is a stochastic process and Ft is the σ-algebra produced by the process
itself we write Ft = σ(Xs, s ≤ t) for the natural filtration of X.

In the following we will often write (Ω,Ft,P) to state that the σ-algebra we usually had
is a filtration. If not explicitly given otherwise we take Ft to be the natural filtration.
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1 Introduction 1.1 Preliminaries of stochastic analysis

Definition 1.1.14 (Adapted process) Let X be a stochastic process on (Ω,Ft,P), then
X is Ft adapted ⇔ Xt is Ft measurable for all t ∈ T .

Definition 1.1.15 (Previsible process) The previsible σ-algebra F on (0,∞) × Ω is
defined to be the smallest σ-algebra on (0,∞) × Ω such that every adapted process is
F-measurable. A process with time-parameter set (0,∞) is called previsable if it is a
F-measurable map from (0,∞)× Ω → R.

Another useful definition is the concept of a stopping time. This is a random variable that
depends on the underlying process.

Definition 1.1.16 (Stopping Time) We say T is a stopping time (in continuous time)
with respect to the filtration (Ft)t≥0 if T is a random variable in [0,∞), such that for any
t ≥ 0

[T ≤ t] ∈ Ft.

Proposition 1.1.1 If T and S are stopping times on the same filtration (Ft)t≥0 then
also
(1) T + S, T ∧ S, T ∨ S1 are stopping times.
If (Tn)n≥1 is a sequence of stopping times on the same filtration (Ft)t≥0 then
(2) supn≥1{Tn} is a stopping time.

Most stochastic processes are in general sequences of identically independent distributed
(iid.) random variables, or sums of them. Such sequences have the fundamental property
that the distribution of the sequence not change if we remove n < ∞ elements at the
beginning. This leads to following definition:

Definition 1.1.17 A stochastic process X is called stationary if for all t1, ..., tn ∈ T and
all h the vectors (Xt1 , ..., Xtn) and (Xt1+h, ..., Xtn+h) have the same distribution.

Another class of stochastic processes:

Definition 1.1.18 A stochastic process X is called process with independent increments
if for t1 < t2 < ... < tn the random variables

(Xt1 , Xt2 −Xt1 , ..., Xtn −Xtn−1)

are independent.

Now we introduce in short some basics of martingale theory. This concept has a lot of
applications not only in mathematical finance. Also many classical theorems can be proved
with martingale theory.

Definition 1.1.19 (S-Martingales) Let X be a stochastic process on (Ω, (Ft)t≥0,P).
Then X is a martingale if it fulfills the following properties:

(1) Xt is Ft adapted ∀t ∈ T
(2) E[|Xt|] < ∞ ∀t ∈ T (X is integrable)
(3) E[Xt|Fs] = Xs ∀s ≤ t, s, t ∈ T

If we have the relation ”≤” in property (3) we say the process X is a supermartingale, if
the relation is ”≥” X is a submartingale.

1T ∧ S = min(T, S), T ∨ S = max(T, S)

4



1 Introduction 1.2 Markov processes

When the stochastic process X is a martingale we can think of a fair game. In expectation
we can neither win nor loose under the condition that we use the available information.
If we translate this idea to financial markets we have that all ”fair” prices have to be
martingales under the assumption that there is no arbitrage allowed.

Definition 1.1.20 (Local Martingale) A process (Xt)t≥0 is a local martingale if there
is a sequence of (F)t≥0 stopping times (Tn)n≥1 such that Xt∧Tn is a martingale for each
n and

P
[

lim
n→∞Tn = ∞

]
= 1.

Definition 1.1.21 (Orthogonal Martingales) Two martingales M1, M2 are called or-
thogonal if 〈M1,M1〉 = 0.

Proposition 1.1.2 A stopped martingale is again a martingale. So if we follow a strategy
in a fair game, which tells us to stop after the process hits a certain barrier, we can again
neither win nor loose in expectation.

1.2 Markov processes

1.2.1 General theory of Markov processes

In this section we will give the general definitions of a Markov process. Let (Ω,F ,P) be a
probability space, (E, E) a measurable space and T an arbitrary index set.

Definition 1.2.1 Let X = (Xt)t∈T be a stochastic process with values in (E, E). One
says that X is a Markov process with respect to a filtration (Ft)t∈T of F provided that
(1) X is adapted to Ft

(2) ∀t ∈ T the σ-algebras Ft and σ(Xs : s ≥ t) are conditionally independent given Xt:

P(A ∩B|Xt) = P(A|Xt)P(B|Xt) (1.1)

whenever A ∈ Ft, B ∈ σ(Xs : s ≥ t).

The intuitive meaning of this condition should be clear. Namely given the present, Xt,
the past σ(Xs : s ≤ t) and the future σ(Xs : s > t) are independent.

Now we give some equivalent formulations of Definition 1.2.1:

Theorem 1.2.1 (a)Let X = (Xt)t∈T be a stochastic process adapted to the family Ft.
Then the following statements are equivalent:
(1) X is a Markov process with respect to Ft

(2) for each t ∈ T and Y ∈ σ(Xs : s ≥ t) we have

E[Y |Ft] = E[Y |Xt]; (1.2)

(3) if t and s are in T and t ≤ s then

E[f(Xs)|Ft] = E[f(Xs)|Xt] (1.3)

for all f in bE.

(b) X is a Markov process (with respect to σ(Xs : s ≥ t)) if for each finite collection
t1 ≤ ... ≤ tn ≤ t from T and f ∈ bE we have

E[f(Xt)|Xt1 , ..., Xtn ] = E[f(Xt)|Xtn ]. (1.4)

Proof 1.2.1 Lookup [Blumenthal/Getoor].
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1 Introduction 1.2 Markov processes

1.2.2 Transition functions

In this section we will assume that the parameter set T is R+ = [0,∞) which is the case
of most interest to us.

Definition 1.2.2 Let (E, E) be a measurable space, then a function Pt,s(x,A) defined for
0 ≤ t < s < ∞, x in E, and A in E, is called a Markov transition function on (E, E)
provided
(1) A → Pt,s(x,A) is a probability measure on E for each t,s and x.
(2) x → Pt,s(x,A) is in E for each t, s and A.
(3) if 0 ≤ t < s < u, then

Pt,u(x,A) =
∫

Pt,s(x, dy)Ps,u(y, A) (1.5)

for all x and A.

The relationship (1.5) is called the Chapman-Kolmogorov equation.

Definition 1.2.3 A Markov transition function Pt,s(x,A) on (E, E) is said to be tempo-
rally homogeneous provided there exists a function Pt(x, A) defined for t > 0, x ∈ E, and
A ∈ E such that Pt,s(x, A) = Ps−t(x,A), 0 ≤ t < s < ∞ for all x and A.

In this case Pt(x,A) is called a temporally homogeneous Markov transition function over
(E, E) and the Chapman-Kolmogorov equation becomes

Pt+s(x,A) =
∫

Pt(x, dy)Ps(y, A) (1.6)

for all t, s, x and A.

Definition 1.2.4 Let X be a stochastic process with values in (E, E) that is adapted to Ft

and let Pt,s(x,A) be a Markov transition function on (E, E). We say that X is a Markov
process with respect to Ft having Pt,s(x,A) as transition function provided

E[f(Xs)|Ft] = Pt,s(Xt, f) (1.7)

for all 0 ≤ t < s and f in bE, where

Pt,s(x, f) =
∫

Pt,s(x, dy)f(y).

Taking conditional expectations with respect to σ(Xt) in (1.7) we obtain

E[f(Xs)|Xt] = Pt,s(Xt, f). (1.8)

The fact that a Markov process has a transition function means that it is possible to
define ”nice” conditional probability distributions for the conditional probabilities P(Xs ∈
A|Ft), 0 ≤ t < s, A ∈ E . Pt,s(x,A) is the conditional probability that Xs ∈ A, given
that Xt = x when 0 ≤ t < s.

1.2.3 The strong Markov property and potential operators

Now we will check if the Markov property will hold for stopping times as well as for fixed
times t. We develop a sufficient condition for this ”extended” or ”strong” Markov property.

Definition 1.2.5 (Strong Markov) Let X be a stochastic process, then X is strong
Markov if and only if for each stopping time T and f in bE one has

Ex[f(Xt+T )|Ft] = EXT [f(Xt)] ∀ t, x. (1.9)

6



1 Introduction 1.2 Markov processes

If f in bE we may now write

Ptf(x) =
∫

Pt(x, dy)f(y) = Ex[f(Xt)]. (1.10)

Clearly Pt is a positive linear operator from bE to bE . It follows from the Chapman-
Kolmogorow equations that (Pt)t≥0 is a semigroup of linear operators on bE .

Definition 1.2.6 (Potential Operator, Resolvent) If α > 0 and f ∈ bE we can define

Rαf(x) =
∫ ∞

0
e−αtPtf(x)dt = Ex[

∫
e−αtf(Xt)dt]. (1.11)

The operator Rα is called the α-potential operator of X and the family (Rα, α > 0) is
called the resolvent of the semi-group (Pt)t≥0.

This is just the (componentwise) Laplace transform of the semigroup. When X is a finite
state-space Markov chain2, with Pt = exp(tQ), it follows that

Rα = (α−Q)−1. (1.12)

Proof 1.2.2

Rα =
∫ ∞

0
e−αtPtdt =

∫ ∞

0
e−αt exp(tQ)dt

=
∫ ∞

0
e−t(α−Q)dt = −(α−Q)−1e−t(α−Q)

∣∣∣
∞

0

= (α−Q)−1. ¤

Remark 1.2.1 It is easy to check the following simple algebraic properties of the resolvent
for α, β > 0:
(1) ||Rα|| ≤ α−1

(2) Rα −Rβ = (β − α)RαRβ

(3) RαRβ = RβRα

1.2.4 Finite state space Markov chains

In this section we will have a look at the case when the state-space N of the Markov
process is finite, N = (0, 1, ..., N). This is a Markov chain3.
For this section let T = [0,∞) and consider a stochastic process X = (Xt)t≥0 taking values
on N = (0, 1, ..., N). The most in this subsection is taken from [Kijima].

We recall the general definitions of the general form for this special case.

Definition 1.2.7 (Markov property) If for each s ≥ 0, t > 0, each i, j ∈ N and every
history Xu, 0 ≤ u < s

P[Xt+s = j|Xs = i,Xu = x(u) : 0 ≤ u < s] = P[Xt+s = j|Xs = i], (1.13)

we call X a continuous time Markov chain. In other words the conditional distribution
of the future state of the process, given the present and the past, does only depend on the
present state and is independent of the past.

2The exact definition of this term will be given in the next section.
3Some authors use the term chain to signify that the time parameter is discrete.
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1 Introduction 1.2 Markov processes

For this special type of process we define:

Definition 1.2.8 (Transition function) Let X be a continuous time Markov chain and
define

pij(s, t) = P[Xt = j|Xs = i], 0 ≤ s < t. (1.14)

The conditional probability pij(s, t) is called the transition probability function from state i
to state j and the Matrix P (s, t) = (pij(s, t))i,j∈N is called the transition matrix function.

Definition 1.2.9 We call the matrix P (s, t) stochastic if P (s, t) ≥ 04 and P (s, t)1 = 1.

For any fixed 0 ≤ s < t, we assume that the Matrix P (s, t) is stochastic.

For 0 ≤ s < u < t, taking a stop at u and using the Markov property we must have

pij(s, t) =
∑

k

pik(s, u)pkj(u, t), 0 ≤ s < u < t. (1.15)

This equation is called the Chapman-Kolmogorov equation. In Matrix notation this is
written as

P (s, t) = P (s, u)P (u, t), 0 ≤ s < u < t.

When the transition probability functions pij(s, t) depends only on the difference t−s, we
have

pij(t− s) = P[Xt=j |Xs = i], 0 ≤ s < t.

for all i, j ∈ N , the continuous-time Markov chain Xt is said to be homogeneous (non-
homogeneous otherwise). For any homogeneous Markov chain the Chapman-Kolmogorov
equation is expressed as

pij(s + t) =
∑

k

pik(s)pkj(t), s, t > 0, (1.16)

or in matrix form
P (s + t) = P (s)P (t), s, t > 0, (1.17)

where P (t) = (pij(t)) which satisfies P (t− s) = P (s, t) for t > s ≥ 0.
In the following we consider the homogeneous case only and assume that the transition
matrix function P (t) is stochastic for all t ≥ 0. We also assume that every transition
probability function pij(t) is continuous in t > 0.

Definition 1.2.10 A transition matrix function P (t) = (pij(t)) is called standard if, for
every i and j, limt→0+ pij(t) = δi,j or, equivalently,

lim
t→0+

P (t) = I.

In the following we assume that the transition matrix function under consideration is
standard unless stated otherwise.

Lemma 1.2.1 For every i, the transition probability function pij(t) is positive for all
t ≥ 0. If pij(s) > 0 then pij(t) > 0 for all t ≥ s.

This lemma can be sharpened into the following fundamental result, called Levy’s theorem.

Theorem 1.2.2 For every i and j, the transition probability function pij(t) is either iden-
tically zero or positive for all t > 0.

4The bold 0,1 should signify that this is a vector or matrix with all entries 0 or 1.
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1 Introduction 1.2 Markov processes

Theorem 1.2.3 For every i and j, we have

|pij(t + h)− pij(t)| ≤ 1− pii(h), h > 0, t ≥ 0.

Proof 1.2.3 Lookup [Kijima].

A consequence of this theorem is the following:

Corrolary 1.2.1 For every i and j, pij(t) is uniformly continuous in t ≥ 0.

Moreover, pij(t) is differentiable with respect to t ≥ 0 as we shall see below. (The derivative
p′ij(0+) is the right hand derivative at t = 0.) We say that the matrix P (t) = (pij(t)) is
differentiable with respect to t if each component pij(t) is differentiable with respect to t.
Also

∫
P (t)dt means the componentwise integral.

Lemma 1.2.2 There exists some h > 0 such that
∫ h
0 P (t)dt is nonsingular.

Proof 1.2.4 Lookup [Kijima].

Theorem 1.2.4 The transition matrix function P (t) is differentiable with respect to t > 0.

Proof 1.2.5 From the Chapman-Kolmogorov equation we have
∫ t+h

t
P (u)du =

∫ h

0
P (t + u)du = P (t)

(∫ h

0
P (u)du

)
=

(∫ h

0
P (u)du

)
P (t).

Fix h > 0 so that
∫ h
0 P (u)du is nonsingular. Then

P (t) =
∫ t+h

t
P (u)du

(∫ h

0
P (u)du

)−1
=

(∫ h

0
P (u)du

)−1
∫ t+h

t
P (u)du.

Since P (t) is continuous in t,
∫ t+h
t P (u)du is differentiable with respect to t > 0, whence

the theorem. ¤

From the above proof the derivative of P (t) is given by

P ′(t) = (P (t + h)− P (t))
(∫ h

0
P (u)du

)−1
=

(∫ h

0
P (u)du

)−1
(P (t + h)− P (t)), (1.18)

which shows that P (t) is infinitely differentiable with respect to t > 0. We define

Q = P ′(0+). (1.19)

The matrix Q = (qij) is called the infinitesimal generator, or generator for short. Since
P (0) = I, we have

qij =

{
limh→0+

pij(h)
h ≥ 0 , i 6= j

limh→0+
pij(h)−1

h ≤ 0 , i = j
(1.20)

or in matrix form,

Q = lim
h→0+

P (h)− I

h
. (1.21)

Also, since for any h ≥ 0
1− pii(h) =

∑

j 6=i

pij(h),

dividing both sides by h and letting h decrease to zero yields the relation

−qii =
∑

j 6=i

qij , i ∈ N . (1.22)

We define qi =
∑

j 6=i qij = −qii. From (1.20) and (1.21) the infinitesimal generator Q has
the following properties:

9



1 Introduction 1.2 Markov processes

Theorem 1.2.5 Let Q be the infinitesimal generator of a finite Markov chain. Then
Q is finite componentwise, the diagonal elements of Q are nonpositive, the off-diagonal
elements are nonnegative, and the row sums of Q are all zero, i.e., Q1 = 0.

Referring to the Chapman-Kolmogorov equation we have

P (t + h)− P (t)
h

=
P (h)− I

h
P (t) = P (t)

P (h)− I

h
, h > 0.

Since P (t) is differentiable, it follows from (1.20) that

P ′(t) = QP (t); P ′(t) = P (t)Q, t ≥ 0, (1.23)

which are systems of ordinary linear differential equations, known as the backward Kol-
mogorov equation and the forward Kolmogorov equation. The unique solution of the system
under the initial condition P (0) = I is given by

P (t) = exp(Qt) =
∞∑

n=0

Qntn

n!
, t ≥ 0. (1.24)

There is a one to one correspondence between the infinitesimal generator Q and the tran-
sition matrix function P (t). The generator Q plays a similar role as the one step transition
matrix in discrete time.
Suppose that we want to evaluate the joint probability

P[Xt0 = i0, ..., Xtn = in],

where 0 = t0 < t1 < ... < tn. Let α = (αi) be the initial distribution of X. Then the chain
rule of conditional probability together with repeated application of the Markov property
and homogeneity yields

P[Xt0 = i0, ..., Xtn = in] = αi0pi0,i1(t1)...pin−1,in(tn − tn−1). (1.25)

We see that the initial distribution α and the transition matrix function P (t), which is
determined by the generator Q, together suffice to determine every joint distribution of
the continuous time Markov chain X. Because of this property any finite Markov chain
in continuous time can be described by giving its generator and its initial distribution.

We consider a continuous time Markov chain with infinitesimal generator Q and recall
that qi = −qii =

∑
i 6=j qij .

Definition 1.2.11 (1) State i is called absorbing if qi = 0.
(2) State i is called stable if 0 < qi < ∞.

Definition 1.2.12 We define

Ti = inf{t ≥ 0 : Xt 6= i}
if the set is not empty and Ti = ∞ otherwise. When X0 = i, the random variable Ti is
called the holding time in state i. If i is an absorbing state then Ti = ∞.

We write Pi[A] for Pi[A|X0 = i].

Theorem 1.2.6 For a finite Markov chain Xt in continuous time with infinitesimal gen-
erator Q = (qij), suppose that qi > 0. Then:
(1) Pi[Ti > t] = e−qit for t ≥ 0.
(2) Pi[X(Ti) = j] = qij/qi for i 6= j.

10
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Proof 1.2.6 Lookup [Kijima].

Suppose that X0 = i. If state i is absorbing, then the chain remains there forever. If
qi > 0, then the chain stays in i for a finite but strictly positive amount of time Ti which
is exponentially distributed with parameter qi. At the end of this holding time the chain
moves to state j according to the transition law qij/qi. Now, because of homogeneity and
the strong Markov property, the future behavior of the chain after Ti is independent of
the past behavior and the chain repeats this procedure as if the initial state were j.

Just for completeness we mention some other classification of states for a continuous
time Markov chain, which can be directly followed from the properties of a discrete time
Markov chain since for every a > 0 the sequence η(n) = ξ(an) is a Markov chain in discrete
time.:(Hence: the notation is discrete! For further definitions and background information
lookup [Kijima].)

Let Tj be the first time the chain Xt visits the state j ∈ N , i.e. Tj = inf{n ≥ 1 : Xn = j}.
With the convention that the infimum of the empty set is ∞. The random variable Tj is
called the first passage time to state j and is a stopping time dependent on the realisation
of Xn. That is, given ω ∈ Ω, Tj(ω) = n if and only if Xk(ω) 6= j for k = 1, · · · , n− 1 and
Xn(ω) = j.
We define

fij(n) = Pi[Tj = n] n = 1, 2, · · · .

The distribution {fij(n)} with respect to n is called the first passage-time distribution of
Xn from state i to state j. It can be recursively calculated by

fij(n) =
{

pij , n = 1,∑
k 6=j pikfkj(n− 1), n ≥ 2.

The transition probabilities and the first-passage-time distributions are connected through
the following identity. Hence: δij is the Kronecker-delta, meaning δij = 1 if i = j and 0
otherwise.

Theorem 1.2.7 For a Markov chain with transition matrix P = (pij),

pij(n) =
{

δij , n = 0,∑
ν=1 fij(ν)pjj(n− ν), n ≥ 1.

Let Nj be the number of visits to state j for the Markov chain Xn, so that

Nj =
∞∑

n=0

I{Xn=j}.

For a given ω ∈ Ω, if Nj(ω) is finite, then the Markov chain Xn eventually leaves state j
never to return. If Nj(ω) = ∞, Xn visits state j repeatedly. Since

pij(n) = Pi[Xn = j] = Ei[I{Xn=j}],

it follows that ∞∑

n=0

pij(n) =
∞∑

n=0

Ei[I{Xn=j}] = Ei[Nj ]. (1.26)

The second equality follows from Fubini’s theorem. We then have

p?
ij = Ei[Nj ], i, j ∈ N ,

11



1 Introduction 1.2 Markov processes

the expected number of visits to state j starting from state i. Also,

f?
ij(n) =

∞∑

n=1

fij(n) = Pi[Tj < ∞] i, j ∈ N .

It follows that p?
ij = f?

ijp
?
jj or

Ei[Nj ] = Pi[Tj < ∞]Ej [Nj ], i, j ∈ N ,

otherwise we have p?
ij = (1− fjj)−1 or

Ej [Nj ] =
1

1− Pj [Tj < ∞]
, j ∈ N , (1.27)

where the right side is interpreted as ∞ if f?
jj = 1. Therefore we observe that f?

jj = 1 if
and only if the expected number of returns to state j is infinite.

Now we classify whether return is certain or not, and when return is certain, whether
the mean time of return is finite or infinite.

Definition 1.2.13 (1) State j is called recurrent if f?
jj = 1. If f?

jj < 1 then j is called
transient.
(2) A recurrent state j is said to be positive-recurrent if Ej [Tj ] < ∞. Otherwise it is called
null-recurrent.

State j is recurrent if and only if, starting from j, the probability of returning to j is unity.
Because f?

jj = 1 ⇔ p?
jj = ∞, by (1.27) the expected number of returns to j is infinite.

Thus state j is recurrent ⇔ Ej [Nj ] = ∞ ⇔ Pj [Nj = ∞] = 1. If state j is transient then
f?

jj < 1 and there is a positive probability 1− f?
jj of never returning to j. Therefore state

j is transient ⇔ Ej [Nj ] < ∞⇔ Pj [Nj < ∞] = 1.
Recurrent states can be classified further as follows:

Definition 1.2.14 A recurrent state j is said to be periodic with period d, if d ≥ 2 is the
greatest common divisor of all integers n ≥ 1 for which pjj(n) > 05. If there is no such
d ≥ 2, then j is called aperiodic.

Remark 1.2.2 There is no periodicity for continuous time Markov chains.

Definition 1.2.15 State j is said to be accessible from state i, in which case we write
i → j, if there is some integer n ≥ 0 such that pij(n) > 0. Thus, for i 6= j, i → j if and
only if p?

ij =
∑∞

n=0 pij(n) > 0 and hence if and only if f?
ij > 0.

Accessibility does not concern the actual value of the probability, but only whether or not
it is zero.

Definition 1.2.16 (1) A set of states is called closed if no state outside is accessible from
any state inside it.
(2) A state forming a closed set by itself is called absorbing.
(3) A closed set is said to be irreducible if no proper subset of it is closed.
(4) A Markov chain is called irreducible if its only closed set is the set of all states.

Some consequences of Definition (1.2.15) are the following: A state j is absorbing if and
only if pjj = 1. A Markov chain is irreducible if all states are accessible from another.
Otherwise the chain can be splitted into disjuncted classes and is reducible.
For an irreducible Markov chain we define

5If pjj(n) = 0 for all n ≥ 1, we define d = 0.
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Definition 1.2.17 An irreducible Markov chain is called positive recurrent (null recurrent
or transient respectively) if all states are positive recurrent (null recurrent or transient).
A recurrent Markov chain is called aperiodic or periodic with period d if all the states are
aperiodic or periodic with period d respectively.

If we combine some of the last definitions we get

Definition 1.2.18 A Markov chain is called ergodic if it is irreducible, positive recurrent
and aperiodic.

Then the limit of pij(n) as n →∞ exists which is positive and independent of the initial
state i. For more informations about the classification of states lookup [Kijima].

1.2.5 Time reversible Markov chains

We begin with the following definition:

Definition 1.2.19 A continuous-time Markov chain is called uniformizable if its infinites-
imal generator Q = (qij) is stable and conservative and satisfies supi qi < ∞, where
qi = −qii.

Let Xt be a uniformizable Markov chain with infinitesimal generator Q = (qij) and let
c = supi qi. For any ν ≥ c, we define

Pν = I +
1
ν

Q. (1.28)

The off-diagonal elements of Q are all nonnegative and the diagonal elements of Q/ν are
not less then -1. Further Q1 = 0 since Q is conservative. It follows that Pν is a stochastic
matrix for any ν ≥ c.

Now we assume that the state space is given by N = (1, · · · , N) where N < ∞. Since we
can always choose c = max0≤i≤N qi < ∞, any finite Markov chain in continuous time is
uniformizable.
For an ergodic Markov chain Xt with infinitesimal generator Q = (qij), let ν ≥ c =
max0≤i≤N |qii| and define Pν as in (1.28). We suppose that the following equation called
the detailed balance equation holds for Pν , i.e.,

πip
ν
ij = πjp

ν
ji, i, j ∈ N ,

where π = (πi) is the stationary distribution of Pν . Because

pν
ij = δij +

1
ν

qij , i, j ∈ N ,

the detailed balance equation can be written as

πiqij = πjqji, i, j ∈ N . (1.29)

The left side describes the transition intensity from state i to state j, the right side
describes the transition intensity from state j to state i. Let πD denote the diagonal
matrix with diagonal elements πi and define

QR = π−1
D QT πD. (1.30)

The diagonal elements of QR are negative, the off-diagonal elements of QR are nonnegative,
and since πT Q = 0T we have

QR1 = π−1
D QT π = π−1

D (πtQ)T = 0.

13
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The matrix QR can be considered as an infinitesimal generator of a continuous-time
Markov chain on N . The generator QR is called dual of Q since (QR)R = Q. Now,
in matrix notation the detailed balance equation says that πDQ is symmetric, i.e.,

πDQ = (πDQ)T = QT πD,

so that Q = QR.

Definition 1.2.20 An ergodic Markov chain or its infinitesimal generator Q is said to be
reversible in time if Q and its dual QR are identical.

Theorem 1.2.8 Suppose that the Markov chain Xt is ergodic and reversible in time, then
it follows that πDP (t) is symmetric for for all t ≥ 0:

πipij(t) = πjpji(t), i, j ∈ N ; t ≥ 0.

Theorem 1.2.9 (Kolmogorov criterion) An ergodic Markov chain with infinitesimal
generator Q = (qij) is reversible in time if and only if

qi,i1qi1,i2 · · · qik,i = qi,ikqik,ik−1
· · · qi1,i

for all k ≥ 2 and all states i, i1 · · · , ik.

Proof 1.2.7 For both theorems lookup [Kijima].

1.2.6 Calculation of transition probability functions

This section is quite useful when trying to simulate a continuous time Markov chain and
helps us to show the behavior of P (t) for t →∞.
We consider an irreducible Markov chain X in continuous time with sate space N =
(0, 1, ..., N), generator Q = (qij). The transition matrix function P (t) is given by

P (t) = exp(Qt) =
∞∑

n=0

Qntn

n!
, t ≥ 0.

Now we use some Linear Algebra.
Let λj , j = 0, 1, ..., N be the eigenvalues of Q and suppose that Q can be written as

Q = MλDM−1 (1.31)

with some nonsingular matrix M . λD is the diagonal matrix with diagonal elements λj .
If such a matrix M exists, we say that the generator Q is diagonalizable. Let vj be the
eigenvector associated with λj . i.e.,

Qvj = λjvj , j = 0, 1, · · · , N.

When we write M = (v0, ..., vN ) we have

QM = MλD.

The set of eigenvectors (vi)i=0,1,...,N is linearly independent if and only if M is nonsingular.
Thus Q is diagonalizable if and only if Q has a linearly independent set of N eigenvectors.
A sufficient condition for this is that the eigenvectors are all distinct.
If (1.31) holds then

Qn = Mλn
DM−1 n = 0, 1, · · · ,

so that

P (t) =
∞∑

n=0

Qntn

n!
= M

( ∞∑

n=0

λn
Dtn

n!

)
M−1 = MλD(t)M−1, (1.32)

where λD(t) is the diagonal matrix with diagonal elements eλjt.
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Definition 1.2.21 A quadratic matrix A is called symmetrizable if it can be written as
A = SH, with S being a positive definite matrix and H being a hermite matrix i.e. H is a
quadratic, complex matrix with H = H

T .

If Q is symmetrizable, then the eigenvalues are all real and

P (t) =
N∑

j=0

eλjtvju
T
j , t ≥ 0,

where

M−1 =




µT
0

µT
1

...
µT

N




In particular, if Xt is ergodic, then Q1 = 0 so that λ0 = 0, v0 = 1 and u0 = π the
stationary distribution of Xt.
To compute the eigenvalues we can use the simple relation

N∑

j=0

λj = −
N∑

j=0

qj = tr(Q),

the trace of Q. The eigenvalues of Qn are the n-th powers of the eigenvalues of Q. So it
follows that

tr(Qn) =
N∑

j=0

λn
j , n = 1, 2, · · · .

Therefore we can obtain the eigenvalues λj , j = 0, 1, ..., N as the solutions of the set of
equations

λn
0 + λn

1 + ... + λn
N = tr(Qn), n = 1, ..., N + 1.

If the Markov chain Xt is ergodic, we know λ0 = 0. Hence in this case N equations suffice
to determine the eigenvalues λj , j = 1, ..., N .

1.3 Brownian motion

A very important example for a stochastic process is Brownian motion. It is used for many
financial models, whatever we consider: stocks, currencies or interest rates. The most in
this section is taken from [Lamberton/Lapeyre] and [Rogers/Williams]. The interested
reader is referred to [Rogers/Williams] for further development of aspects of Brownian
motion.

Definition 1.3.1 (Brownian motion) A Brownian motion is a real-valued, continuous
stochastic process B = (Bt)t≥0 with independent and stationary increments. In other
words:
(1) continuity: P a.s the map s → Bs(ω) is continuous.
(2) independent increments: If s ≤ t then Bt −Bs is independent of Fs = σ(Bu, u ≤ s).
(3) stationary increments: If s ≤ t then Bt −Bs and Bt−s −B0 have the same probability
law.

This definition induces the distribution of the process B.

Theorem 1.3.1 If B is a Brownian motion, then Bt − B0 is a normal random variable
with mean rt and variance σ2t where r and σ are constant real numbers.
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Remark 1.3.1 A Brownian motion is called standard if:

B0 = 0 P a.s. E(Bt) = 0, E(B2
t ) = t.

In that case, the distribution of Xt is the following:

1√
2πt

exp(−x2

2t
)dx,

where dx is the Lebesgue measure on R.

Now we give the definition of a Brownian motion with respect to a filtration (Ft)t≥0.

Definition 1.3.2 A real-valued continuous stochastic process is an (Ft)-Brownian motion
if it satisfies:
(1) For any t ≥ 0, Xt is (Ft)-measurable.
(2) If s ≤ t then Bt −Bs is independent of the σ-algebra (Fs).
(3) If s ≤ t then Bt −Bs and Bt−s −B0 have the same law.

Remark 1.3.2 The first point of this definition shows that σ(Xu, u ≤ t) ⊂ Ft. Moreover,
it is easy to check that an Ft-Brownian motion is also a Brownian motion with respect to
its natural filtration.

Remark 1.3.3 If the process (Bt)t≥0 is a Brownian motion then
(1) the process (−Bt)t≥0 is a Brownian motion.
(2) for any a ≥ 0, the process (Bt+a −Ba)t≥0 is a Brownian motion.
(3) for any c 6= 0, (cBt/c2)t≥0 is a Brownian motion.
(4) the process (B̃t)t≥0 defined by B̃0 = 0, B̃t = tBt for t > 0 is a Brownian motion.

Lemma 1.3.1 If the process (Bt)t≥0 is a Brownian motion then we have

P(sup
t

Bt = +∞, inf
t

Bt = −∞) = 1.

Proof 1.3.1 Lookup [Rogers/Williams].

1.3.1 Brownian motion as a martingale

Proposition 1.3.1 If B = (Bt)t≥0 is a standard Ft-Brownian motion then
(1) Bt is an Ft-martingale.
(2) B2

t − t is an Ft-martingale.
(3) exp(σBt − (σ2/2)t) is an Ft-martingale.

Proof 1.3.2 ad(1) If s ≤ t then Bt − Bs is independent of the σ-algebra Fs. So E[Bt −
Bs|Fs] = E[Bt−Bs] and because B is a standard Brownian motion we have E[Bt−Bs] = 0.
ad(2)

E[B2
t −B2

s |Fs] = E[(Bt −Bs)2 + 2Bs(Bt −Bs)|Fs]
= E[(Bt −Bs)2|Fs] + 2BsE[Bt −Bs|Fs],

and since B is a martingale E[Bt −Bs] = 0, we get

E[B2
t −B2

s |Fs] = E[(Bt −Bs)2|Fs].

Because the Brownian motion has stationary and independent increments it follows that

E[(Bt −Bs)2|Fs] = E[B2
t−s] = t− s.
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Thus we get E[B2
t − t|Fs] = B2

s − s, if s < t.
ad(3) If X is a standard normal random variable we know that

E[eλX ] = eλ2/2.

If s < t
E[eσBt−σ2t/2|Fs] = eσBs−σ2t/2E[eσ(Bt−Bs)|Fs],

because Bs is Fs measurable. Since Bt −Bs is independent of Fs we get that

E[eσ(Bt−Bs)|Fs] = E[eσ(Bt−Bs)]

= E[eσBt−s ] = E[eσx
√

t−s]

= exp(
1
2
σ2(t− s)). ¤

Theorem 1.3.2 (Levy) Let (Xt)t≥0 be a continuous martingale, X0 = 0, and suppose
that X2

t − t is a martingale. Then X is a Brownian motion.

Proof 1.3.3 Lookup [Rogers/Williams]

1.3.2 Brownian motion as a Markov process

Brownian motion is a (time-homogeneous) Markov process, for any bounded Borel f :
R→ R, and s, t ≥ 0,

E[f(Bt+s)|Bs] = Ptf(Bs), (1.33)

where the transition semigroup (Pt)t≥0 is defined by

Ptf(x) =
{ ∫ x

−x pt(x, y)f(y)dy (t > 0)
f(x) (t = 0)

where

pt(x, y) = (2πt)−1/2 exp[−(x− y)2

2t
] (1.34)

is the Brownian transition density. The Markov property (1.33) is immediate from the
definition of Brownian motion. It is easy to confirm that (Pt)t≥0 is a semigroup:

Pt+s = PtPs = PsPt (s, t ≥ 0), (1.35)

the so called Chapman-Kolmogorov equations. The semigroup property suggests that we
have

d

dt
Pt = lim

s→0

1
s
(Pt+s − Pt) = PtG = GPt,

where
G = lim

s→0

1
s
(Ps − I)

is the infinitesimal Generator of (Pt)t≥0. Hence that G is not defined for all functions. We
will now work out the generator Gf of Brownian motion for suitable f by

Gf = lim
t→0

1
t
(Ptf − f),

if f ∈ C2
b (R) then

lim
t→0

(Ptf − f)(x) = lim
t→0

∫ ∞

−∞

f(x + y
√

t)− f(x)
t

exp(−1
2
y2)

dy√
2π

= lim
t→0

∫ ∞

−∞

1
t
{y
√

tf ′(x) +
1
2
y2tf ′′(x + θy

√
t)} exp(−1

2
y2)

dy√
2π

=
1
2
f ′′(x).
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1 Introduction 1.3 Brownian motion

where θ ∈ (0, 1) depends on y
√

t.
Therefore the infinitesimal generator of Brownian motion is

G =
1
2

d2

dx2
. (1.36)

1.3.3 Brownian motion as a diffusion

For the exact definition of a diffusion lookup the Appendix. Heuristically a diffusion
is a continuous time-homogeneous Markov process X that is characterised by its local
infinitesimal drift b and variance a: for small h,

E[Xt+h −Xt|Ft] = hb(Xt),
E[{Xt+h −Xt − hb(Xt)}2|Ft] = ha(Xt),

If a and b were constant functions then

Xt = σBt + bt, σ = a1/2,

would satisfy the above description. By Levy’s theorem Brownian motion is described by
b = 0, a = 1.
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2 Introduction to interest rate theory

2.1 Bond prices and interest rates

The concept of interest rates belongs to our every-day life. When depositing an amount of
money in a bank account, everybody expects that the amount grows (at some rate) with
time. Lending money must be rewarded somehow so that an amount of money today is
not equivalent to the same amount tomorrow.

2.1.1 Short-term interest rate

We will now define define such concepts in mathematical terms. Most traditional stochastic
interest rate models are based on the exogenous specification of a short-term rate of
interest.

Definition 2.1.1 (Instantaneous short-rate) On a filtered probability space (Ω,F ,P)
and for some T ∗ ≥ 0 we define a stochastic process rt to denote the instantaneous interest
rate (also referred to as a short-term interest rate or spot interest rate) for risk free bor-
rowing or lending prevailing at time t over the infinitesimal time interval [t, t + dt]. We
assume throughout that rt is an adapted stochastic process with almost all sample paths
integrable on [0, T ∗] with respect to the Lebesgue measure.

In the following we will refer to this just as spot-rate or short-rate.

Definition 2.1.2 (Bank account) We define Ct to be the value of a bank account at
time t ≥ 0, an adapted process of finite variation and with continuous sample path. We
assume C0 = 1 and that the bank account evolves according to the following differential
equation:

dCt = rtCtdt, C0 = 1, (2.1)

where rt is a function of time. It follows that for almost all ω ∈ Ω this equation can be
solved by the function Ct = Ct(ω)

Ct = exp(
∫ t

0
rs)ds, ∀t ∈ [0, T ∗]. (2.2)

In financial interpretation Ct represents the price process of a riskless asset which contin-
uously compounds in value at rate rt.

Assuming in general that rt is a stochastic process leads to the following.

Definition 2.1.3 (Stochastic discount factor) The stochastic discount factor D(t, T )
between two instants t and T is the amount at time t that is ”equivalent” to one unit
payable at time T, and given by

D(t, T ) =
Ct

CT
= exp(−

∫ T

t
rsds). (2.3)
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2 Introduction to interest rate theory 2.1 Bond prices and interest rates

2.1.2 Zero-coupon bonds

We now take our focus on a very simple financial instrument, a bond. The buyer of a
bond pays the issuer an initial price P in return for a predetermined sequence of coupon
payments. We will just refer to government bonds which are, in opposite to corporate
bonds (emitted by companies), securitized (no risk to default).

Definition 2.1.4 (Zero-Coupon Bond) Let T ∗ be a fixed time horizon for all market
activities. A zero-coupon bond (pure discount bond) is a contract that guarantees its holder
the payment of one unit of cash at time T, without intermediate coupon payments.
The price of a zero-bond at time t < T is denoted by P (t, T ). Clearly P (T, T ) = 1 for all
T ≤ T ∗

We will usually assume that for any fixed maturity T ≤ T ∗, the bond price P (·, T ) follows
a strictly positive and adapted process on a filtered probability space (Ω,F ,P).

When evaluating the price of a bond, the following is of high importance.

Definition 2.1.5 (Time to maturity) The time to maturity T−t is the amount of time
(in years) from the present time to the maturity time T > t.

There are several conventions that can be made called the year fraction and the day-count
convention. For more details lookup the Appendix.

When we consider a zero bond with a fixed time horizon T ≤ T ∗, the simple rate of
return from holding the bond over the period [t, T ] is equal to

1− P (t, T )
P (t, T )

=
1

P (t, T )
− 1.

The equivalent rate of return with continuous compounding is commonly referred to as
the yield to maturity on a bond. Formally, we have following definition.

Definition 2.1.6 An adapted process Y (t, T ) defined by

Y (t, T ) = − 1
T − t

ln P (t, T ), ∀t ∈ [0, T ) (2.4)

is called the annualized yield to maturity on a zero-bond maturing at time T.

2.1.3 Forward interest rates

Forward rates are characterized by three time instants. The time t at which the rate is
considered, its expiry T and its maturity U , with t ≤ T ≤ U . They are defined through
a prototypical Forward-rate agreement which is widely used by companies to hedge their
interest rate risk if they consider to borrow cash in the future.
Forward rates are interest rates that can be locked in today for an investment in a future
time period. Their values can be derived directly from the prices of zero-coupon bonds.

Definition 2.1.7 (Continuously compounded forward rate) We define f(t, T, U) to
be the Continuously compounded forward rate at time t for the expiry T > t and the ma-
turity U > T .

We must have
eY (t,U)(U−t) = eY (t,T )(T−t)ef(t,T,U)(U−T ) (2.5)
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2 Introduction to interest rate theory 2.1 Bond prices and interest rates

so that
f(t, T, U) =

1
U − T

(Y (t, U)(U − t)− Y (t, T )(T − t)) (2.6)

or, in terms of bond prices

f(t, T, U) =
ln P (t, T )− ln P (t, U)

U − T
(2.7)

otherwise an arbitrage would be possible.

If we take the limU→T in the last expression we get the following definition.

Definition 2.1.8 (Instantaneous forward rate) The instantaneous forward rate of ma-
turity T is

f(t, T ) = f(t, T, T ) = lim
U→T

f(t, T, U),

and, by the definition of the differential (under suitable technical assumptions) we have

f(t, T ) = −∂ ln P (t, T )
∂T

. (2.8)

The concept of an instantaneous forward rate is a mathematical idealization rather than a
quantity observable in practice. A widely accepted approach to bond prices due to Heath,
Jarrow and Morton is based on a family f(t, T ), t ≤ T ≤ U , of forward rates. Given such
a family f(t, T ), the bond prices are then defined by setting

P (t, T ) = exp(−
∫ T

t
f(t, u)du), ∀t ∈ [0, T ]. (2.9)

Remark 2.1.1 Observe that Y (t, T ) = f(t, t, T ) as expected. Investing at time t in a T -
maturity bond is clearly equivalent to lending money over the period [t,T]. The connection
to the spot-rate is then given by rt = f(t, t) = Y (t, t).

2.1.4 Arbitrage-free family of bond prices

We recall the definition of a zero-coupon bond. In our framework we assume that for any
fixed maturity T ≤ T ∗ the price process P (t, T ), t ∈ [0, T ] follows a strictly positive
and adapted process on a filtered probability space (Ω,F ,P). The first question we will
consider is the absence of arbitrage between all bonds with different maturities and a
savings account (riskless investment). An adapted process rt on (Ω,F ,P) models the
short-term interest rate, meaning that the savings account satisfies

Ct = exp(
∫ t

0
rsds), ∀t ∈ [0, T ∗].

Definition 2.1.9 (Arbitrage-free family of bond prices) A family P (t, T ), t ≤ T ≤
T ∗, of adapted processes is called an arbitrage-free family of bond prices if the following
conditions are satisfied:
(a) P (T, T ) = 1, for all T ∈ [0, T ∗] and
(b) There exists a probability measure P∗on(Ω,FT ∗) equivalent to P, such that for any
maturity T ∈ [0, T ∗] the relative bond price

Z∗(t, T ) =
P (t, T )

Ct
, ∀t ∈ [0, T ∗], (2.10)
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2 Introduction to interest rate theory 2.2 The term structure of interest rates

follows a martingale under P∗.

Any probability measure P∗ of this definition is called a martingale measure for the family
P (t, T ). Under such an assumption we trivially have Z∗(t, T ) = EP ∗(Z∗(T, T )|Ft) for
t ≤ T so that the bond price satisfies

P (t, T ) = CtEP ∗(C−1
T |Ft), ∀t ∈ [0, T ]. (2.11)

So, for any martingale measure P ∗ of an arbitrage-free family of bond prices, we have

P (t, T ) = EP ∗(e−
∫ T

t rsds|Ft), ∀t ∈ [0, T ]. (2.12)

Conversely, given any nonnegative short rate rt on a probability space (Ω,F ,P), and any
probability measure P∗ on (Ω,FT ∗) equivalent to P, the family P (t, T ) given by Equation
(2.12) is easily seen to be an arbitrage-free family of bond prices relative to r. If a family
P (t, T ) satisfies Definition (2.10), then necessarily the bond price process P (·, T ) is a P∗-
semimartingale, as a product of a martingale and a process of finite variation (that is, a
product of two P∗-semimartingales). Therefore it is also a P-semimartingale since P and
P∗ are assumed to be equivalent.

2.2 The term structure of interest rates

The term structure of interest rates, also known as the yield curve, is the function that
relates the yield Y (t, T ) to maturity T . When we look back at Definition (2.4) we have
defined a process Y (t, T ), the yield to maturity. For an arbitrary fixed maturity date
T, there is a one-to-one correspondence between P (t, T ) and Y (t, T ). Given the yield to
maturity process, the corresponding bond price is uniquely defined by

P (t, T ) = e−Y (t,T )(T−t), ∀t ∈ [0, T ]. (2.13)

The discount factor relates the discounted bond price P (t, T ) to maturity T . At a the-
oretical level the initial term structure of interest rates may be presented by the current
bond prices P(0,T), or by the initial yield curve Y (0, T ), as

P (0, T ) = e−Y (0,T )T , ∀t ∈ [0, T ∗]. (2.14)

In practice, the term structure of interest rates is derived from the prices of several actively
traded interest rate instruments, such as zero-coupon bonds, swaps and futures. The yield
curve at any given day is determined by market prices for that day. Historically the yield
curve and the yield volatilities vary over time. This shows how difficult it is to find a
reliable model for the stochastic behavior.

2.2.1 The typical shape of the yield curve

The term structure of interests is very important for economists who want to get an idea
of the future development of economy and financial markets, estimate the risk they carry
and find strategies for investment. So they are very interested in the shape of the yield
curve today to ”predict” the future because their investments are very sensitive on changes
in the interest rate.

Following shapes have been observed:

� Normal yield curve This means that the yields rise with maturity. The positive
slope reflects the expectations for economy to grow in the future and also the need
of a risk premium (liquidity premium) for longer maturities.
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2 Introduction to interest rate theory 2.2 The term structure of interest rates

� Flat yield curve A flat yield curve means that the yields are independent to the
maturity. Such a shape is a sign of uncertainty in economy. Under the assumption
that a risk premium is paid it means that yields are expected to be falling.

� Humped yield curve This shape occurs when short-term and long-term yields are
equal but medium-term yields are higher. It is also sometimes called the irregularly
shape.

� Inverted yield curve An inverted yield curve occurs when long-term yields are
lower than short-term yields. This means that the market is expecting yields to fall
sharply, so the investors prefer to invest in long-term maturities. Because of the
higher demand on the long end, long-term yields fall.
In the past this shape has often been an indicator of a recession.

Figure (2.1)-(2.4) show us the different shapes of the yield curve. There are three facts
about the term structure of interest rates that empirical studies have shown.

� Interest rates on bonds of different maturities tend to move together over time.

� Yield curves usually slope upwards.

� When short term interests are low, yield curves are more likely to have a steep
upward slope whereas when short term interest rates are high, yield curves are more
likely to be inverted.

Now we present some economic theories which try to explain this behavior.

2.2.2 Theoretical Models

There are four main economic theories attempting to explain how yields vary with matu-
rity. Two of the theories are extreme positions, while the others attempt to find a middle
ground between the former two. All of these are in general not arbitrage free.
The fifth model presents the more modern idea of an arbitrage free market.
The following should just give an introduction and oversight. For more information lookup
[Cairns] and [Mishkin].
We will now see what facts about the term structure the models are able to explain, and
in which they fail.

� The (pure) expectations hypothesis

This hypothesis assumes, that the different maturities are perfect substitutes and
suggests that the shape of the yield curve depends on the market participants ex-
pectations on future interest rates. For example, if investors have an expectation
of what 1-year interest rates will be next year, the 2-year interest rate can be cal-
culated as the compounding of this year’s interest rate by next year’s interest rate.
Information is fully available for all subjects, which all act risk averse.

This leads to following result:

– If investors expect growing yields on the market, they prefer short investments
and wait until the yields grow to invest in long-term securities. So the demand
on the short end of the yield curve increases, which reduces the yield for short
maturities. For long-term maturities the supply is higher than the demand
which leads to higher yields on the long end. The resulting yield curve is
growing with maturity (normal yield curve).
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Figure 2.1: Normal term structure
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Figure 2.2: Inverse term structure
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Figure 2.3: Flat term structure
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Figure 2.4: Humped term structure
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2 Introduction to interest rate theory 2.2 The term structure of interest rates

– If falling yields are expected the opposite effect occurs. Investors would prefer
the longer maturities which reduces the yields on the long end. The effect is
the inverted yield curve, which often occurred in the past before recessions.

– If no change of yields is expected then the long-term yields are equal to short-
term yields. The resulting yield curve is flat.

The expectations hypothesis explains why in a time of high yields the structure is
often inverted and in a time of low yields the structure is normal (increasing).
It does not consider the fact that investments in longer maturities keep a higher risk
than short ones.

� Market segmentation theory

This theory is also called the segmented market hypothesis. In this theory, financial
instruments (bonds) of different terms are not suitable because each investor has in
mind an appropriate set of bonds and maturities that are suitable for his purpose.
For example, life insurance companies require long-term bonds to match their long-
term liabilities. In contrast banks are likely to prefer short-term bonds to reflect the
needs of their costumers.
As a result, the supply and demand in the markets for short-term and long-term
instruments is determined independently. This behavior of the investors can lead to
different yields in the different segments which can lead to a humped yield curve.
The market segmentation theory can also explain the normal yield curve:
Due to the fact investors prefer their portfolio to be liquid, they will prefer short-
term instruments to long-term instruments. Therefore, the market for short term
instruments will receive a higher demand. Higher demand for the instrument implies
higher prices and lower yield. This explains why short-term yields are usually lower
than long-term yields.
The theory fails to explain the observed fact that yields tend to move together (i.e.
upward and downward shifts in the curve), because supply and demand of different
markets (for example short-term and long-term bonds) are said to be independent.

� The liquidity preference theory

The background of this theory is that investors usually prefer short-term invest-
ments to long-term investments. They do not like to tie up their capital for too
long. Investors will only invest in securities of longer maturity if they have a higher
expected return, often referred to as the risk premium or liquidity premium, to offset
the higher risk. Because of the premium for longer terms, the long-term bond yields
tend to be higher than the short-term yields, and the yield curve slopes upwards.

We can see, a combination of the expectations hypothesis and the liquidity pref-
erence theory might explain what happens on the market:

– If the term structure is slowly growing we can say that for long-term investments
only the liquidity premium is paid, and the market is not expecting increasing
yields.

– A fast growing term structure means, the market expects increasing yields.
More than only the liquidity premium is paid for long-term investments.

The liquidity preference theory on its own cannot explain an inverse term structure
of interest rates.
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2 Introduction to interest rate theory 2.2 The term structure of interest rates

� Preferred habitat theory

This theory states that, in difference to the liquidity preference theory (investors
prefer short-term investments because they do not like to tie their capital up for too
long), that investors prefer a special maturity for their investments in addition to
interest rate expectations. They will only invest in other maturities outside their
habitat if they receive an additional premium.
So, in this theory bonds of different maturities are substitutes for each other. But
this degree of substitutability is lower than that assumed by the pure expectations
theory because of the riskiness associated with leaving one’s preferred habitat. This
riskiness can be attributed not only to the possibilities of capital losses but also to
the risk associated with income losses. In this later case, an investor would need
to be compensated with a premium above the long-term rate in order to hold a
shorter-term security.
The key difference between the preferred habitat and the liquidity preference theo-
ries is that the latter assumes that the investment with minimum risk is a short-term
asset, whereas the former assumes that the least risky investment is the one whose
maturity structure the investor prefers. We can say the liquidity preference theory
is a special case of the preferred habitat theory, where the preferred habitat is in
short-term bonds. In other words, the only risk of concern is capital risk.

With the help of the preferred habitat theory any occurring shape or change in
the term structure can be explained.

These were the four main theories. Now we will just have a short look on another theory.
For more information see [Cairns].

� The arbitrage free pricing theory

We consider the pricing of bonds in a market which is free of arbitrage. This theory
(which is very extensive) pulls together the market expectations, liquidity prefer-
ence and market segmentation theories in a mathematically precise way. In this
framework we can usually decompose forward rates into three components.

– the expected future risk free rate of interest r(t);

– an adjustment for the market price of risk1;

– a convexity adjustment to reflect the fact that E(eX) ≥ eE(X).

The form of the two adjustments is not obvious. This is why we need arbitrage free
pricing theory to derive prices.
For single-factor models with just on source of randomness, for example the Va-
sicek Model, there is no place for market segmentation theory. This theory can be
incorporated in multifactor-models (more than one random factor) to some extent.

1under the ”real-world” probability measure P.
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3 The potential approach

3.1 Introduction

When we have a look at financial literature, most term structure models to date fall into
one of two classes, either one models the short (spot)-term interest rate, as in Vasicek or
Cox, Ingersoll and Ross for example, or alternatively one models the process of forward
rates, as in Ho and Lee or Heath, Jarrow and Morton.
Another class are the so-called market models which try to find suitable processes to fit
with the prices of various derivatives. For more information about this different models
look up [Musiela] or [Brigo]. Here we will discuss the considerable advantages of another
approach, called the potential approach. The key element of this approach by [Rogers 1]
is to view the state price density process ζ (a positive supermartingale) as the modeling
primitive, and to express the prices of derivatives directly in terms of this. For example
the price of a zero-coupon bond which pays 1 at time T has the simple form

P (t, T ) = Ẽt
1[ζT ]/ζt, 0 ≤ t ≤ T.

P̃ is a reference measure. Furthermore Rogers shows how easy yield curves in many
countries can be handled together with the exchange rates between them. He proves that
assuming complete markets the exchange rate between two currencies must be the ratio
of their state-price densities. Namely

Y ij
t = Y ij

0 ζj
t /ζi

t ,

where Y ij
t denotes the currency j’s value at time t in currency i.

To get a wide family of models we need to find a way of generating positive supermartin-
gales. Therefore we use classical theory of Markov processes. We take a Markov process
(Xt, t ≥ 0) with resolvent (Rα)α≥0. Then we define the state-price density to be

ζt = e−αtRαg(Xt).

This defines a positive supermartingale whenever the function g is positive and suitable
integrable. When we think of the fact that, as the maturity T of the bond tends to infinity
the price tends to zero, we get that the process ζ has to fulfill the further condition

lim
t→∞E[ζt] = 0.

A positive supermartingale satisfying this additional condition is called a potential, whence
the name of this approach.
There are a few examples where the resolvent can be written down in closed form. In the
context of a finite Markov chain with finite state space and infinitesimal generator G the
resolvent is

Rα = (α−G)−1.

When we regard the transition semigroup P (t)t≥0 as semigroup of matrices acting on the
vector space RI and P (t) = exp(tQ). Therefore we can simply build examples by choosing

1Et is short for the conditional expectation E(·|Ft)
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α ≥ 0 and a positive f = Rαg and then recover g by g = (α−G)f with the demand that
g should be non-negative because we are modeling nominal interest rates. Within this
framework prices of zero-coupon bonds can simply be written down by

P (0, t) =
Ẽ0[e−αtRαg(Xt)]

Rαg(X0)
=

e−αtẼ0[f(Xt)]
f(X0)

,

where P̃x denotes the law of the process started at x. Furthermore we can define the
spot-rate process rt by

rt =
g(Xt)

Rαg(Xt)
.

The main aim of this chapter is first to develop the basic theory and show two different
ways of an approach. Then we discuss two special Markov processes (diffusions in Rd) and
try to come up with closed form expressions for the spot-rate, the state-price density and
bond prices.
The most in this chapter is taken from [Rogers 1] and [Rogers 2].
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3 The potential approach 3.2 Pricing

3.2 Pricing

In a filtered probability space (Ω, (Ft)t≥0,P) we consider market pricing operators (πtT )0≤t≤T

for contingent claims:

πst : L∞(Ft) → L∞(Fs), (0 ≤ s ≤ t).2

If Y is some bounded, Ft-measurable, random variable, then the time-s market price of Y
is πst(Y ), again a random variable (because our observations up to time s affect what we
think the price of the claim to be.)

The pricing operators (πst)0≤s≤t should satisfy certain axioms:

� (A1) Each πst is a bounded positive linear operator from L∞(Ft) to L∞(Fs);

� (A2) If Y ∈ L∞(Ft), Y ≥ 0, then

π0t(Y ) = 0 ⇔ P(Y > 0) = 0.

(no arbitrage)

� (A3) For 0 ≤ s ≤ t ≤ u, Y ∈ L∞(Fu), X ∈ L∞(Ft),

πsu(XY ) = πst(Xπtu(Y )).

(intertemporal consistency)

� (A4) If (Yn) ∈ L∞(Ft), |Yn| ≤ 1, Yn → Y then πst(Yn) → πst(Y ). (continuity)

Remark 3.2.1 (A1) The price of a non-negative contingent claim will be non-negative,
and the price of a linear combination of claims will be the linear combination of their
prices.
(A2) No-Arbitrage: A claim that is almost surely worthless when paid, will be almost surely
worthless at all earlier times and conversely.
(A3) Intertemporal consistency: The market prices at time s for XY at time u, or for
X times the time-t market price for Y at time t, should be the same, for any X which is
known at time t.
(A4) This is a natural continuity condition which is needed for technical reasons.

Theorem 3.2.1 Under the axioms (A1)-(A4), there exists a strictly positive process (ζt)t≥0

such that the pricing operators πst can be expressed as

πst(Y ) =
Es[ζtY ]

ζs
, (0 ≤ s ≤ t). (3.1)

If we also assume

(A5) For all (0 ≤ s ≤ t), πst(1) ≤ 1,

(where 1 denotes the constant function identically equal to 1) then ζ is a positive su-
permartingale:

Es[ζt] ≤ ζs, (0 ≤ s ≤ t).

2For the exact definition of L∞ lookup the Appendix.
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The process ζ is commonly known as the state-price density.

Proof 3.2.1 First, for any T > 0, the map

A 7→ π0T (IA)

defines a non-negative measure on the σ-algebra FT . This follows from the linearity and
positivity of (A1) and the continuity property (A4). Furthermore, this measure is absolutely
continuous with respect to P, in view of (A2). There is a non-negative FT measurable
random variable ζT such that

π0T (Y ) = E[ζT Y ]

for all Y ∈ L∞(FT ). Also, P[ζt > 0] > 0, because of (A2) again. Now we use the
intertemporal consistency condition (A3): we get

π0T (XπtT (Y )) = E[XζtπtT (Y )] = π0T (Y ) = E[XY ζt].

Because Y ∈ L∞(FT ) is arbitrary, we receive that

πtT (Y ) = Et[Y ζT ]/ζt,

as claimed in theorem 3.2.1. The proof of ζ being a supermartingale under (A5) can now
be followed straight forward. ¤

Remark 3.2.2 Theorem (3.2.1) shows that if we write Yt = πtT (Y ) for some fixed Y ∈
L∞(FT ) then

ζtYt = Et[ζT Y ]

is a martingale.

3.2.1 Pricing with the spot rate

Under the assumption that the market is arbitrage free, the price of a contingent claim Y
at time-t payable at time T > t is

E[exp(−
∫ T

t
rsds)Y |Ft], (3.2)

where (rt)t≥0 is the spot rate of interest and Et = E[·|Ft] is the conditional expectation
under the filtration Ft, taken with respect to a fixed risk-neutral measure. When pricing
a zero bond, where Y = 1, we have

P (t, T ) = Et exp(−
∫ T

t
rsds). (3.3)

What we will do now is to model the state-price density process ζt directly.

Definition 3.2.1 There is some reference probability measure P̃ (equivalent to P) in terms
of which

ζt = exp(−
∫ t

0
rsds)

dP
dP̃

= exp(−
∫ t

0
rsds)Zt, (3.4)

where Zt is a positive martingale, which is interpreted as a change of measure, from the
reference measure P to some new pricing probability P̃. This is an equivalent martingale
measure to the original measure because both have the same null sets, and under P̃ the
discounted prices of all traded assets become martingales.
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3 The potential approach 3.3 The potential approach

Theorem 3.2.2 Using the process ζt we can write bond prices as

P (t, T ) =
Ẽt[ζT ]

ζt
. (3.5)

Proof 3.2.2 We use definition 3.3 of ζt to compute 3.4. We get

P (t, T ) =
Et[exp(− ∫ T

0 rsds)Zt]

exp(− ∫ t
0 rsds)Zt

=
ZtEt[exp(− ∫ t

0 rsds) exp(− ∫ T
t rsds)]

Zt exp(− ∫ t
0 rsds)

=
exp(− ∫ t

0 rsds)Et[exp(− ∫ T
t rsds)]

exp(− ∫ t
0 rsds)

= Et[exp(−
∫ T

t
rsds)]. ¤

We compare this result to Theorem (3.2.1) where we got the same result from a no-
arbitrage standpoint.

Assuming r ≥ 0 (which we always do, because we are concerned with nominal interest
rates and not real rates) the process ζt is a positive supermartingale.

3.3 The potential approach

Theorem (3.2.1) tells us how easy it is to model prices with ζ. When we use the state
price density we can write prices of zero bonds in the form

P (t, T ) =
Ẽt[ζT ]

ζt
.

When we now think about the fact that as the maturity T of the bond tends to infinity,
the current value of it tends to zero (the value of a bond which is never paid back is 0),
we find that the process ζ has to satisfy the further condition

lim
T→∞

E[ζT ] = 0.

A positive supermartingale satisfying this condition is called a potential because of the
very close links with the Markov process concept of a potential, whence the name of this
approach.
Satisfying a mild further condition, a potential can be expressed as

ζt = Et[A∞ −At] = Et[A∞]−At, (3.6)

where A is a previsible, increasing and integrable process.

When we look at (3.1) we see that prices are expressed in terms of conditional expec-
tations which we want to be as simple as possible in terms of a few variables. This leads
us to the concept of modeling with Markov processes.

3.4 Markov processes and potentials

During the whole section (Xt)t≥0 denotes a Markov process with state space X and resol-
vent (Rα)α≥0. We now show two representations of the supermartingale ζ as ζt = h(t,Xt).
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3 The potential approach 3.4 Markov processes and potentials

3.4.1 Generic approach 1

For fixed g : X → (0,∞] and α > 0, we consider the increasing process

At =
∫ t

0
e−αsg(Xs)ds. (3.7)

This is adapted and continuous (therefore previsible) and under further conditions on f
(uniform boundedness) it is also integrable. We use this to build a pricing model for the
state-price density:

ζt = E[
∫ ∞

t
e−αsg(Xs)ds] = e−αtRαg(Xt), (3.8)

where Rαg(Xt) is the resolvent of the Markov process and equation (3.8) is exactly the
definition of the resolvent. Sometimes the state price density is also represented as

ζt =
e−αtRαg(Xt)

Rαg(X0)
.

This clearly does not change the behavior of the process ζ and norms ζ0 to 1.
Equation (3.7) also shows us how simple and flexible this approach is. We can choose any
non-negative function g on X and any positive α to build a model. The decomposition
(3.6) of ζ into a martingale less an increasing process takes a very simple form. If we
interpret the state price density as

ζt = exp(−
∫ t

0
rsds)Zt,

and apply Itô’s formula we get two decompositions of ζ:

dζt = ζt(dMt − rtdt)
= dNt − e−αtg(Xt)dt,

where M and N are two local martingales, so after equating the finite variation parts we
get

rt =
g(Xt)

Rαg(Xt)
(3.9)

for the spot-rate process.

In applications it is often very difficult to specify the resolvent of a given Markov pro-
cess in a usable closed form, but there are a few examples where the resolvent of a given
Markov process can be written down in closed form by

Rα = (α−G)−1, (3.10)

where G is the generator of the Markov process. When we use this relation we can build
examples by first choosing a positive function f : X → (0,∞) and then define g by

g = (α−G)f. (3.11)

This means we have Rαg = f and if g is non-negative everywhere we have the same result
described at (3.9):

rt =
g(Xt)

Rαg(Xt)
=

g(Xt)
f(Xt)

. (3.12)

The demand that g should be non-negative arises because we are modeling nominal inter-
est rates not real ones.
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3 The potential approach 3.5 Application of Markov chain potential models

Hence: if G is a N ×N matrix the resolvent must be read as Rα = (αI − G)−1 where I
is an identity matrix of size N .

When we compute bond prices within this framework we get

P (t, T ) =
Et[ζT ]

ζt
=
Et[e−αT Rαg(XT )]

e−αtRαg(Xt)
=

e−αTEt[f(XT )]
e−αtf(Xt)

. (3.13)

3.4.2 Generic approach 2

Another approach to create examples. Let (φi)i=1,...,n be the eigenfunctions of G,

Gφi = λiφi,

where the λi are the eigenvalues with respect to φi. Further we choose g =
∑n

i=1 ciφi

nonnegative. Then if α > max(λi)

f = Rαg =
n∑

i=1

ci(α− λi)−1φi

is an example of potential type, for which bond prices can simply be written down:

P (0, T ) =
e−αt

∑n
i=1 c̃i exp(λiT )φi(X0)∑n

i=1 c̃iφi(X0)
, (3.14)

where c̃i = ci/(α− λi).
The processes rt and ζt are defined by f and g as in Generic Approach 1.

On first sight this approach seems to be much easier because we only need to find the
eigenfunctions, but do not need to compute the transition densities. But if we want to
find the price of a caplet, we will still need to know the law of Xt given starting value X0

to compute the price.

3.5 Application of Markov chain potential models

In theory we are looking for models which produce simple and closed-form expressions for
derivatives, whereas in practice (where prices are computed numerically) we are looking
for fast algorithms.

When using the potential approach we see from (3.1) that any pricing calculation is in
fact an integration. When we do this numerically we compute a finite weighted sum over
the state space of the underlying Markov process. To simplify this we work with a process
with finite state space: a Markov chain.
Assuming X to be a finite set of size N has following advantages:

� (i) The generator of the chain is an N ×N matrix Q. The transition semigroup can
be expressed as P (t) = (pt(x, y))x,y∈X = exp(tQ).

� (ii) All calculations are made with finite matrices and are therefore fast.

� (iii) Pricing an American-option is an optimal-stopping problem for a finite Markov-
chain and easy to handle.

and disadvantages:
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3 The potential approach 3.6 Hedging in the potential model

� (i) the size of the parameter space is O(N2) and so gets quite large quickly.

� (ii) The model will only admit N possible values for the price.

Point (ii) is quite restrictive. When working with an N -state chain, we can only observe
N different yield curves which is simply incompatible with daily observations.

3.6 Hedging in the potential model

Just in short some ideas of hedging. In conventional models the standard way to hedge
a derivative is to delta-hedge it. The idea here is to compute the differential of the price
of the derivative with respect to the prices of the underlying instruments. For example
in the case of a put option we differentiate with respect to the stock price. This tells us
how many units of the underlying we have to hold to be secured against moves in the
underlying. In a complete market this strategy is exact so the contingent claim can be
perfectly replicated3.
When using a Markov chain potential model differentiating has no meaning. The idea
that we want to protect our portfolio against moves in the underlying can be used here
too.
Assume we have a derivative Z and hedging instruments z(1), z(2), · · · . If the chain jumps
from state i to state j at time t the value changes by M Zij(t). What we will do now is to
hold wr(t) units of asset r so that

M Zij(t) +
m∑

r=1

wr(t) M z
(r)
ij (t) = 0 ∀j (Xt = i).

Now we are immune against any jumps that occur in the chain. Of course we are not able
to know Xt in practice, but this does not change our strategy. We just have to make a
portfolio of more hedging assets to be sure that

M Zij(t) +
M∑

r=1

wr(t) M z
(r)
ij (t) = 0 ∀i, j. (3.15)

Applying this to a n-state chain would lead us to hold n!
(n−2)! instruments4. So we see that

practice is not as simple as theory because we cannot be sure if that many instruments
are available on the market.

3.6.1 Mini-example

For illustration we use a Markov chain with just two states, therefore N = {1, 2}. We
suppose that Z(t) = 0.9 if we are in state 1 and Z(t) = 1.1 if we are in state 2 for simplicity.
Then the hedging instruments are z(1)(t) = −0.2 and z(2)(t) = 0.2. From (3.15) we get

0 = 4Z12(t) + w1(t)4z(1)(t) + w2(t)4z(2)(t)
0 = 0.2 + 1 · (−0.2) + 0 · 0.2

and

0 = 4Z21(t) + w1(t)4z(1)(t) + w2(t)4z(2)(t)
0 = −0.2 + 0 · (−0.2) + 1 · 0.2.

3A replicating strategy means we can build a portfolio to receive a value h at time T .
4This is a variation without repetition. Using a 9-state chain would lead us to hold 72 different instru-

ments!
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3.7 Examples

Now we present some examples with continuous state-space which will illustrate some of
the points we discussed before. For the first four examples we take as the underlying
Markov process the Gaussian diffusion in Rd given by

dXt = dWt −BXtdt, (3.16)

where B is a general dÖd Matrix. The distribution of Xt is given by N(e−TBX0, VT ),
where we define:

VT =
∫ T

0
e−sB(e−sB)T ds.

For this special process the generator5 is given by:

Gf(x) =
1
2

d∑

i=1

∂2f

∂xi
(x)−

d∑

i=1

(Bx)i
∂f

∂xi
(x). (3.17)

Before we use this special process in examples let us just have a short look on the results
we have already seen.
Given a positive function f : X → (0,∞) and taking the resolvent

Rλ = (α−G)−1,

where G is the generator of the Markov process, we can define g by

g = (α−G)f.

So we have Rαg = f , and, provided that g is nonnegative we now get:

rt =
(α−G)f(Xt)

Rαg(Xt)
=

g(Xt)
f(Xt)

.

Using the state price density, we have seen, that we can compute bond prices in the
following way:

P (0, t) = Ẽt[ζt]/ζ0,

where ζt = e−αRαg(Xt).

3.7.1 Exponential-linear example

For this example we take f(x) = exp(a·x) 6 as the function in Generic Approach 1, where
a is some fixed, non zero element in Rd. First we compute the generator.

The summed product of the first partial derivatives with (Bx)i:

d∑

i=1

(Bx)i
∂f

∂xi
(x) = (Bx)1a1e

a·x + ... + (Bx)dade
a·x

= ((Bx)1a1 + ... + (Bx)dad)ea·x = (a·Bx)ea·x.

5Lookup the Appendix for the exact definition.
6”·”stands of course for the scalar product
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The summed product of the second partial derivatives:

d∑

i=1

∂2f

∂x2
i

(x) = ea·x(a2
1 + ... + a2

1) = |a|2ea·x.

so
Gf(x) =

1
2
|a|2ea·x − (a·Bx)ea·x = ea·x(

1
2
|a|2 − a·Bx).

Now we can compute

g(x) = αf(x)−Gf(x) = αea·x − ea·x(
1
2
|a|2 − a·Bx)

= ea·x(α− 1
2
|a|2 + a·Bx).

The spot rate process is given by

rt =
g(Xt)
f(Xt)

=
ea·Xt(α− 1

2 |a|2 + a·BXt)
ea·Xt

= α− 1
2
|a|2 + a·BXt.

This is a multifactor Gaussian model. Such models are often used because they can easily
be fitted to data. We reject such models, because here nominal interest rates can become
negative.

3.7.2 Exponential-quadratic example

Here we use Generic Approach 1 again with following function f:

f(x) = exp(
1
2
(x− c)T Q(x− c)),

where c ∈ Rd and Q is a dÖd positive-definite and symmetric matrix. Now we have:

g(x) = f(x)
[1
2
(x− S−1v)T S(x− S−1v) + α− 1

2
trQ− 1

2
|Qc|2 − 1

2
vT S−1v

]
,

where S = BT Q + QB −Q2, v = (BT −Q)Qc. We shall take Q small enough to ensure
that S is positive-definite, and take

α =
1
2
trQ +

1
2
|Qc|2 +

1
2
vT S−1v,

which reduces g(x) to

g(x) = f(x)
1
2
(x− S−1v)T S(x− S−1v).

Then the spot-rate process is simply

rt =
1
2
(Xt − S−1v)T S(Xt − S−1v),

which is a squared Gaussian process. For the bond-prices we have

P (0, T ) = e−αt det(I −QVT )−1/2 exp
(1

2
µT

T (I −QVT )−1QµT − 1
2
µT

0 Qµ0

)
,

where µT = e−TBX0 − c.
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3.7.3 Quadratic example

Again we use Generic Approach 1 and now we take the function

f(x) = γ +
1
2
(x− c)T Q(x− c),

for fixed c, γ ∈ Rd and Q is again a dÖd positive-definite, symmetric matrix. Then

g(x) = αγ − 1
2
trQ +

1
2
αcT Qc +

1
2
(x− v)T S(x− v)− 1

2
vT Sv,

where S = αQ + BT Q + QB and v = S−1(αQc + BT Qc). When we choose γ so that

γ =
trQ + vT Sv

2α
− 1

2
ctQc,

then the spot-rate process is given by

rt =
(Xt − v)T S(Xt − v)

2γ + (Xt − c)T Q(Xt − c)
.

The zero-coupon bond prices are given by

P (0, T ) =
e−αT

f(X0)
(γ +

1
2
(tr(QVT ) + µT

T QµT )),

where µT = e−TBX0 − c.

3.7.4 cosh example

For this example we assume B = βI, and choose f to be

f(x) = cosh γ · (x + c),

for fixed c, γ ∈ Rd. We now take d = 1 (without loosing generality) for notional simplicity.
Here the generator of the Markov process is

Gf(x) =
1
2
γ2 cosh(γ(x + c))− βγx sinh(γ(x + c)),

so

g(x) = α cosh(γ(x + c))− 1
2
γ2 cosh(γ(x + c)) + βγx sinh(γ(x + c))

= α cosh(γ(x + c))− 1
2
γ2 cosh(γ(x + c)) + βγx sinh(γ(x + c))

= (α− 1
2
γ2) cosh(γ(x + c)) + βγx sinh(γ(x + c)),

which will be nonnegative if and only if α is large enough. The spot rate process is

rt =
g(Xt)
f(Xt)

=
(α− 1

2γ2) cosh(γ(Xt + c)) + βγXt sinh(γ(Xt + c))
cosh(γ(Xt + c))

= βγXt tanh(γ(Xt + c)).

We can compute bond prices by

P (0, T ) =
cosh γ(X0e

−βT + c)
cosh γ(X0 + c)

exp
[
− αT +

γ2

2
1− e−2βT

2β

]
.
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For the next two examples we take the following d-dimensional diffusion as the underlying
Markov process :

dXt = 2
√

XtdWt + (a + BXt)dt, (3.18)

where ai > 0 for all i, B = bij ≥ 0 for i 6= j, and bii ≤ 0 for all i.

For this special process the generator is defined by

Gf(x) =
d∑

i=1

(a + Bx)i
∂f

∂xi
(x) +

1
2

d∑

i=1

4xi
∂2f

∂x2
i

(x).

3.7.5 Exponential-linear example 2

Here we take (3.18) as the underlying Markov process and some γ ∈ Rd fixed and consider

f(x) = eγT x,

which leads to

g(x) = f(x)
[
α− 2

d∑

i=1

γ2
i xi − γT (a + Bx)

]
.

For non-negativity we need
(BT γ)i + 2γ2

i ≤ 0 ∀i.
In the case where this inequality is strict for some i, we have that the spot-rate process is
an affine function of the diffusion.
For this example bond-prices can seldom be written down in closed form.

3.7.6 Multi-type branching diffusion example

Again we take (3.18) as the underlying Markov process, but now we choose

f(x) = γT x,

where γ ∈ Rd, and γi > 0 for all i. This time we get

g(x) = −γT a + xT (a−BT )γ.

We need for γ that (α−BT )γ ≥ 0 and −γT a ≥ 0 for non-negativity of the spot-rate which
is given by

rt =
−γT a + xT (a−BT )γ

γT x
.

This can take very large values if −γT a > 0 and small values if γT (α− B)i = 0 for some
i. The case −γT a = 0 results in a bounded function r.
This time the bond prices can be computed more easily and are given by

P (0, T ) =
e−αtγT (−B−1a + etB(X0 + B−1a))

γT X0
.
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3.7.7 Rational Log-normal Model

For the final example we use Generic Approach II and take the underlying Markov process
to be Brownian motion. For any θ, φ(x) = exp(θx) is an eigenfunction of the generator
1
2D2 with eigenvalue 1

2θ2. Therefore we take

g(x) =
n∑

i=1

ciφi =
n∑

i=1

ci exp(θix),

if this is everywhere positive. For α > max(1
2θ2

i )

f(x) =
n∑

i=1

ci(α− λi)−1φi =
n∑

i=1

ci(α− 1
2
θ2
i )
−1 exp(θix).

We set c̃i = ci(α− 1
2θ2

i )
−1 and get a simple expression for bond prices:

P (0, t) =
e−αt

∑n
i=1 c̃ie

λitφi(X0)∑n
i=1 c̃iφi(X0)

=
e−αt

∑n
i=1 c̃ie

1
2
θ2
i t+θiX0

∑n
i=1 c̃ieθiX0

. (3.19)

3.8 Foreign Exchange in the Potential approach

Now we consider the pricing of assets in many countries at once and each asset’s price is
expressed in the currency of its home country. We are often confronted with this problem
in practice.
For example: We are asked to price a swap which swaps floating USD interest payments
for fixed EUR interest payments. In the conventional approach (This is how pricing and
hedging is mostly done today) we would first build a model for the interest rates in the
US, then a model for the interest rates in Europe, and then try to model the exchange rate
USD/EUR. Even using an extremely simple model, we would need one driving Brownian
motion for the USD yield curve, one for the EUR yield curve and one for the exchange
rate. So we need three Brownian motions in total.
In our example we have to integrate over three dimensions, and for example the pricing
of an American style option is an optimal stopping problem in three dimensions.
The next problem we have to consider is, that no-one would use a one factor model for
the yield curves and the exchange rate between them, because they might not be very
tractable. But when using multi-factor models we are again beginning to hit problems of
dimensionality, so we see the pricing of such an asset gets very complex.

At least it does in the conventional approach. Now we will see how easy it becomes
in the potential approach when we consider a complete market7.

3.8.1 Foreign Exchange in complete markets

First we introduce some notation. We suppose that

1 unit of currency j = Y ij
t units of currency j.

Now if Sj
t is a traded asset in country j, then

ζj
t S

j
t is a martingale.

When we convert its currency-j price into currency i, it becomes a traded asset in country
i, and so

7∃! martingale measure
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ζi
tY

ij
t Sj

t is a martingale.

Now we set

N ij
t =

ζi
tY

ij
t

ζj
t

.

This is a martingale orthogonal to the space of martingales of the form ζjSj. With the
help of N ij

t we can express the exchange rate Y ij
t as

Y ij
t =

N ij
t ζj

t

ζi
t

.

When we consider a complete market, N ij
t must be constant. This is the very simple and

”nice” result, that in a complete market the exchange rate between two countries is the
ratio of the state-price densities of the two countries. In general we can say, that there is
the possibility of some exchange risk not hedgeable through other assets, represented by
the martingale N ij

t .

The biggest advantage of the potential approach based on a Markov process is that adding
another country does not mean adding more sources of randomness. We just have to
build another state-price density over the same Markov process. In fact we just have to
choose a new f and α. So adding new countries to our model does not cause problems of
dimensionality.

3.8.2 Example

The exchange rate between two currencies is given as the ratio of their state-price densities.
In Section (3.7) of this chapter we described general methods for creating examples. Here
we will discuss the exponential-quadratic example.
Given the process

dXt = dWt −BXtdt,

and taking

fi(x) = exp(
1
2
(x− ci)T Qi(x− ci)),

where i is the country (currency) index. As before

αi =
1
2
trQi +

1
2
|Qici|2 +

1
2
vT
i S−1

i vi,

where S = BT Qi + QiB −Q2
i , v = (BT −Qi)Qici, and we get

gi(x) = (αi −G)fi(x)

= f(x)· 1
2
(x− ai)T Si(x− ai),

where ai = S−1
i vi. This gives us a spot rate for country i which is again a squared Gaus-

sian process.

To illustrate our results, we will now have a detailed look at two cases:

(a)Qi = Q ∀i (b)ci = 0 ∀i.
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Case (a)

Qi = Q for all i. By applying a rotation to X we can suppose that Q is diagonal. We
recall that

ζt =
e−αtRαg(Xt)

Rαg(X0)
=

e−αtf(Xt)
f(X0)

.

So taking f from above the state-price density in country i is

ζi
t =

exp(−αit + 1
2(Xt − ci)T Q(Xt − ci))

exp(1
2(X0 − ci)T Q(X0 − ci))

(3.20)

= exp(−αit +
1
2
(Xt − ci)T Q(Xt − ci)− 1

2
(X0 − ci)T Q(X0 − ci)). (3.21)

Picking the same Q for all i and computing the exchange rate leads us to

Y ij
t

Y ij
0

=
ζj
t

ζi
t

. (3.22)

Now we insert the ζt from above for each country. Because Q = (qij)i,j=1,...,d is diagonal
we only have the quadratic terms left after multiplying. We can write the last fraction as

exp[t(αi − αj) +
d∑

k=1

1
2
qkk((Xt,k − cj,k)2 − (X0,k − cj,k)2 − (Xt,k − ci,k)2 + (X0,k − ci,k)2)].

Simplifying this term (the quadratic terms all vanish) leads to

exp[t(αi − αj) +
d∑

k=1

qkk(−Xt,kcj,k + X0,kcj,k + Xt,kci,k −X0,kci,k)] =

exp[t(αi − αj)
d∑

k=1

qkk((ci,k − cj,k)(Xt,k −X0,k))],

where Xt,k, ci,k denotes the k-th component of the vector Xt, respectively ci.
The last result written in matrix form leads us to

Y ij
t

Y ij
0

= exp[t(αi − αj) + (ci − cj)T Q(Xt −X0)]. (3.23)

In this example we have a structure where the exchange rates between two countries are
log-brownian motions, and all spot rates are squared-gaussian. In section 7 we computed
bond prices for this example, so the yield curve in country i is

yi
t = −1

t
log P (0, t)

= αi +
1
2t

log det(I −QVt) +
1
2t

[(x− ci)T Q(x− ci)− ξT
t (I −QVt)−1Qξt],

where ξt = e−tBx− ci, and we write x instead of X0.

Case (b)

ci = 0 for all i. This simplification centers all the quadratic forms which appear to 0. So
we get

fi(x) = exp[
1
2
xT Qix].
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3 The potential approach 3.8 Foreign Exchange in the Potential approach

Si does not change, vi = 0 and clearly ai = Sivi = 0, so αi = 1
2 tr(Qi) and

gi(x) = fi(x)xT S−1
i x.

The state-price density in country i is

ζi
t =

e−αtf(Xt)
f(X0)

= exp[−αit +
1
2
(XT

t QiXt −XT
0 QiX0)]. (3.24)

For the exchange rate we get

ζj
t

ζi
t

=
exp[−αjt + 1

2(XT
t QjXt −XT

0 QjX0)]
exp[−αit + 1

2(XT
t QiXt −XT

0 QiX0)]

= exp[t(αi − αj) +
1
2
(XT

t (Qj −Qi)Xt + XT
0 (Qi −Qj)X0)].

The resulting yield curve in country i at time t is

yi
t = αi +

1
2t

log(det(I −QiVt)) +
1
2t

[xT Qix− (e−tBx)T (I −QiVt)−1Qie
−tBx].
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4 Simulation

Now we arrived at a point where we want to get results and see if the theory we discussed
before really works. At first we will ”choose” some parameters and ”play” around to get
some basic results. Then we will try a fit on some real data and see if we are able to come
up with results close to reality . I used the open source program scilab-4.1.2 which you can
get at ”www.scilab.org”. Scilab is a free Matlab ”clone”. The code of the programmed
functions can be viewed in the Appendix.

4.1 Simulation of a finite Markov chain

At first we are trying to simulate the process our framework is all about: a Markov process.
We simulate a finite Markov chain in continuous time with state space N = {1, 2, · · ·N}.
All that we have to do to simulate a continuous-time Markov chain is to choose a generator
Q and an initial distribution α1, the distribution of X0.
This can be determined by setting X0 = i. Therefore the initial distribution
α = (0, · · · , 1, · · · , 0) with 1 being the i-th component of the vector α. Otherwise, if the
distribution of α is given then X0 is a random variable generated after the law of α. For
my simulations i used the discrete uniform distribution. Thus α = ( 1

N , · · · , 1
N ) of size N .

To generate an X0 of this distribution α we can use the following algorithm:

Algorithm 4.1.1 (Generating X0) (1a) X0 = i is determined. Therefore
α = (0, · · · , 1, · · · , 0) as described above and we are finished.
(1b) Otherwise: α = ( 1

N , · · · , 1
N ), and we we set β = (α1, α1 +α2, · · · , 1) = ( 1

N , 2
N , · · · , 1).

(2) We use the implemented generator of Scilab to generate an U(0, 1) random variable z.
(3) We make a loop from 1 to N to check if z ≤ βi. We set β0 = 0 and if z ≤ βi then z is
in the interval (βi−1, βi] and we set X0 = i.
(4) Return: the value of X0.
Hence: P(βi−1 < z ≤ βi) = 1

N .

Clearly any other distribution can be taken for α. For generating an Xi for i > 0 we
use that the transition densities at time t are given by Pt = (pij(t))i,j∈N = exp(tQ) and
clearly we use the Markov property (1.13). The simulation of a continuous-time Markov
chain with finite state space can be summed in following algorithm:

Algorithm 4.1.2 (Generation of a continuous-time Markov chain) (1) We choose
a generating Matrix Q that fulfills the properties of Theorem (1.2.5).
(2) If state 0 ∈ {1, 2 · · · , N} then X0 = state 0 else if state 0 = 0, then X0 is generated
using Algorithm 4.1.1.
(3) We set n > 0 to be the maximum time of our simulation and choose a discretisation
d ≥ 12. For the beginning we set the time t = 0.
(4) We set t = t + 1/d and compute Pt = exp(tQ). The conditional distribution of Xt

given Xt−1/d = i is given by the i-th row of Pt which we set γ.
(5) We set β = (γ1, γ1 + γ2, · · · , 1).

1I go along with the notation of the initial distribution in [Kijima]. Do not change this α with the α used
in the potential framework.

2This was chosen for more comfort when working with the functions. In the code we set d = 1/d.
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4 Simulation 4.1 Simulation of a finite Markov chain

(6) We generate an U(0, 1) random variable z.
(7) We make a loop from 1 to N to check if z ≤ βj. We set β0 = 0 and if z ≤ βj then z
is in the interval (βj−1, βj ] and we set Xt = j.
Hence: P(βj−1 < z ≤ βj) = pij(t).
(8) We go back to point (4) until t = n is reached.
(9) Return: a vector of size nd + 1 with the states of (Xt)t≥0 as entries.

These two algorithms are implemented in the Scilab function ”markov.sci”. The function
markov has the parameters Q (the generator), state 0 (the state of X0, can be chosen from
1 to N , if chosen 0, then X0 is generated as in 4.1.1 point (1b)-(2)), n (the maximum time
of the simulation) and d (the step size of discretisation).
For the first simulations i choose a matrix

Q =




−3 1 0 1 1
0 −2 0.5 0.5 1
1 2 −4 0 1

0.25 0 0.25 −1 0.5
0 1 1 3 −5




,

which fulfills the properties of Theorem (1.2.5). Clearly our Markov chain has state space
N = {1, 2, 3, 4, 5}. The eigenvalues λi of Q rounded to 3 steps after comma are

λi = 0,−5.656,−3.435,−4.23,−1.679

and the matrix of the eigenvectors φi to eigenvalue λi (again rounded) is

V =




−0.447 −0.236 0.724 −0.11 0.231
−0.447 −0.223 −0.187 0.303 0.618
−0.447 −0.149 0.648 −0.893 0.655
−0.447 −0.079 −0.144 0.122 −0.365
−0.447 0.93 0.017 −0.29 0.053




.

We recall Section (1.2.6) and especially that Q can be diagonalized by

Q = V DV −1,

and we can compute Pt by

Pt = exp(tQ) = V D(t)V −1.

where D is a matrix with the eigenvalues of Q as the diagonal entries and D(t) is the
matrix with diagonal entries eλi . The eigenvalues of Q are quite big negative and so the
convergence of Pt against

lim
t→∞Pt =




0.073 0.185 0.087 0.533 0.122
0.073 0.185 0.087 0.533 0.122
0.073 0.185 0.087 0.533 0.122
0.073 0.185 0.087 0.533 0.122
0.073 0.185 0.087 0.533 0.122




is rather fast. We see that the conditional distribution of Xt for great t given Xt−d = i is
independent from i. This means that there is no more dynamic in the Markov chain and
we will see later how this especially influences the behavior of the yield curves.

For illustration we look at two trajectories of the Markov chain produced by the Scilab-
function ”markov.sci” both starting with X0 = 1, with parameters markov(Q,1,30,2):
Figure (4.1) and (4.2).
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4 Simulation 4.1 Simulation of a finite Markov chain
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Figure 4.1: Trajectory of a finite Markov chain
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Figure 4.2: Trajectory of a finite Markov chain
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4 Simulation 4.2 Calculation of bond-prices and yields

4.2 Calculation of bond-prices and yields

In this section we will calculate prices of zero-coupon bonds P (0, t) and the yield to
maturity Y (0, t) by the two approaches shown in Section (3.4).

4.2.1 Generic approach 1

From Section (3.4.1) we know that

P (0, t) =
e−αtE0[f(Xt)]

f(X0)
.

In the case of a finite state space Markov chain the conditional expectation is a finite
weighted sum over the state space of the Markov chain, so that

P (0, t) =
e−αtPtfX0

fX0

, (4.1)

where clearly Pt = exp(tQ). For a Markov chain with finite state space, f is a vector of
size N and the term PtfX0 means that we take the i-th component of the vector Ptf when
X0 = i, i ∈ N . In this case the price is a weighted sum of exponential functions.

After having chosen a generator Q we just have to choose an α > 0 and a positive function
f = (α−Q)−1g. We use following theorem:

Theorem 4.2.1 If α > 0 and Q is of the form (1.2.5) then (α−Q)−1 ≥ 0.

Proof 4.2.1 When we calculate (α−Q)−1 we can do this by transforming



α + q11 · · · −q1n
...

...
...

−qn1 · · · α + qnn

1 · · · 0
...

...
...

0 · · · 1




, to




1 · · · 0
...

...
...

0 · · · 1

(α−Q)−1




.

The upper matrix is transformed to identity and we do the same transformation for the
lower matrix which is identity at the beginning. The non-diagonal elements (−qij)i 6=j in
row i can be transformed to 0 by adding positive multiplies of (α + qii). Therefore we just
have adding of positive multiplies and therefore (α−Q)−1 ≥ 0. ¤

So when we pick a positive vector g we can be sure that f = (α−Q)−1g ≥ 0.
For the first simulations i picked a vector

g = [2, 3, 1, 1, 4]

and α = 0.05. Therefore

f = [36.483, 36.938, 36.528, 35.756, 36.581].

The calculation of bond-prices is implemented in the Scilab-function ”bond.sci”. This
function has the parameters Q for the generator, state 0 (the state of X0), α, n for the
maximum maturity of simulation and d as the step size (again d ≥ 1 and set to d = 1/d
in code). We use following algorithm to compute the prices for the different maturities of
a zero-bond.
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4 Simulation 4.2 Calculation of bond-prices and yields

Algorithm 4.2.1 (Bond-prices) (1) We choose the parameters Q, g,
state 0, α, n, d as described above.
(2) If state 0 ∈ {1, 2 · · · , N} then X0 = state 0 else if state 0 = 0, then X0 is generated
using Algorithm 4.1.1.
(3) We set P (0, 0) = 1, f = (α−Q)−1g and t = 0.
(4) We set t=t+1/d.
(5) We calculate Pt = exp(tQ).
(6) We compute P (0, t) using (4.1).
(7) We go back to (4) until t = n is reached.
(8) Return: a vector of size nd + 1 with the values of P (0, t) for 0 ≤ t ≤ n as entries.
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Figure 4.3: P(0,t) for bond(Q, g, 1, 0.05, 30, 360)

We are much more interested in the different yield curves that occur. When we look at
Equation (4.1) we see that in our case we can have 5 different values for P (0, t) for fixed
t ∈ [0, n] depending on X0. From (2.4) we know that the yield to maturity is

Y (t, T ) = − ln(P (t, T ))
T − t

. (4.2)

So if using a 5-state chain, only 5 different yield curves can occur. When we look at (4.2)
we see that in this case the yield to maturity is −1/t times the ln of a weighted sum
of exponential functions. The calculation of yields is implemented in the short Scilab-
function ”yield.sci” and has the same parameters as ”bond.sci”. We use (4.1) and (4.2) to
compute the yield by following algorithm:

Algorithm 4.2.2 (Yields) (1) We choose the parameters Q, g,
state 0, α, n, d as described above.
(2) If state 0 ∈ {1, 2 · · · , N} then X0 = state 0 else if state 0 = 0, then X0 is generated
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4 Simulation 4.2 Calculation of bond-prices and yields

using Algorithm 4.1.1.
(3) We set f = (α−Q)−1g, Y (0, 0) = gX0/fX0 and t = 0.
(4) We calculate a vector of size nd + 1 of bond-prices P (0, t) using Algorithm (4.2.1).
(4) We set t=t+1/d.
(5) We use P (0, t) to compute Y (0, t) with (4.2).
(6) We go back to (4) until t = n is reached.
(7) Return: a vector of size nd + 1 with the values of Y (0, t) for 0 ≤ t ≤ n as entries.

Remark 4.2.1 Point (3): Y (0, 0) = gX0/fX0 is the spot-rate at time 0.

Proof 4.2.2

Y (0, 0) = lim
t→0

Y (0, t) = lim
t→0

− lnP (0, t)
t

= ”
0
0
”

and we use de L’Hospital’s Rule to get

= lim
t→0

−
1

P (0,t)P (0, t)′

1
= lim

t→0
−P (0, t)′

as P(0,0)=1. So we need to find what P (0, t)′ is. We start from (4.1) and use Pt = exp(tQ)
and receive

P (0, t)′ =
1

fX0

[−α exp(tQ)fX0 + e−αtQ exp(tQ)fX0 ]

When we now compute − limt→0 of this term where limt→0 exp(tQ) = I we get

− 1
fX0

[−αIfX0 + QIfX0 ] =
(αI −Q)fX0

fX0

=
gX0

fX0

. ¤

Hence: In General we clearly have Y (t, t) = rt.

In Figure (4.4) we see a plot for yield(Q,g,1,0.05,30,360). The structure is sharply humped
because of the fact that the eigenvalues of the generating matrix Q are quite big negative
and therefore the convergence of limt→∞ Pt = limt→∞ exp(tQ) is fast. Lets see what
happens if we take G = Q/5 which causes that the eigenvalues µi of G are 1/5λi the
eigenvalues of Q. In Figure (4.5) we can see that the structure is also humped but not as
sharply as before.
The other yield curves that are possible for X0 = 2, 3, 4, 5 can be seen from Figure (4.6)
to (4.9). Again we use G = Q/5.

Remark 4.2.2 As we see a matrix with eigenvalues close to 0 produces flat yield curves.
The parameter α shifts the curve up and down.
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4 Simulation 4.2 Calculation of bond-prices and yields
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Figure 4.4: Yield curve for yield(Q, g, 1, 0.05, 30, 360)
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Figure 4.5: Yield curve for yield(Q/5, g, 1, 0.05, 30, 360)
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Figure 4.6: Yield curve for yield(Q/5, g, 2, 0.05, 30, 360)
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Figure 4.7: Yield curve for yield(Q/5, g, 3, 0.05, 30, 360)

0 5 10 15 20 25 30
0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

Maturity

Y
ie

ld

Figure 4.8: Yield curve for yield(Q/5, g, 4, 0.05, 30, 360)
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Figure 4.9: Yield curve for yield(Q/5, g, 5, 0.05, 30, 360)
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4 Simulation 4.2 Calculation of bond-prices and yields

4.2.2 Generic approach 2

Now we look at the results when we use Generic approach 2. We recall Section (3.4.2). In
this case the price of a zero-bond is written as

P (0, t) =
e−αt

∑n
i=1 c̃i exp(λit)φi(X0)∑n

i=1 c̃iφi(X0)
, (4.3)

in matrix notation we can write this as

P (0, t) =
e−αtV exp(tD)c̃X0

V c̃X0

, (4.4)

where g = V c is nonnegative, α > max(λi) and f = V c̃ with c̃ = c(α − D)−1. D is a
diagonal matrix with the eigenvalues λi as diagonal entries, V is the matrix of the eigen-
vectors φi of the generating matrix Q.
In difference to Generic Approach 1 we only need to find the eigenvectors, but do not need
to compute the transition densities.

For a first simulation we choose the generating Matrix as in Generic Approach 1, and

g = [1, 3, 5, 2, 1].

Then we recover c by solving V c = g. Therefore we receive

c = [−5.031,−2.708,−3.679,−4.37, 1.261].

Choosing α = 0.05 again (all λi ≤ 0 so 0.05 > max(λi)) leads to

f = [44.629, 45.445, 45.776, 44.799, 44.875].

Now we can use (4.4) to compute P (0, t).
For simplicity i computed the bond-prices and the yields to maturity in one Scilab-function
implemented in ”bond yield gen2.sci”. Following algorithm is implemented:

Algorithm 4.2.3 (Bond-prices and Yields for Generic Approach 2) (1) We choose
the parameters Q, c, state 0, α, n, d as described above.
(2) If state 0 ∈ {1, 2 · · · , N} then X0 = state 0 else if state 0 = 0, then X0 is generated
by Algorithm 4.1.1.
(3) We compute the matrices V and D using the Scilab-function [V,D]=spec(Q).
(4) We set g = V c, f = V (α−D)−1c, c̃ = (α−D)−1c and t = 0.
(5) We set P (0, 0) = 1 and Y (0, 0) = gX0/fX0.
(6) We set t=t+1/d.
(7) We calculate P (0, t) by (4.4) and Y (0, t) by (4.2).
(8) We go back to (6) until t = n is reached.
(9) Return: 2 vectors of size nd + 1 with the values of P (0, t) and Y (0, t) for 0 ≤ t ≤ n as
entries.

In Scilab you can call this function in the workspace by
[b, y] = bond yield gen2(Q, c, state 0, α, n, d). Then the vector of bond prices is stored in
b, the vector of yields is stored in y.

Again we are more interested in the yield curves than in the bond-prices. As in Generic
Approach 1 we get the same result when we choose a generating matrix G with eigenvalues
close to 0. The curve becomes flatter. We compare the plots for bond yield gen2(Q,c,1,0.05,30,360)
to choosing G=Q/5 in Figure (4.10) and (4.11).
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4 Simulation 4.2 Calculation of bond-prices and yields

The other yield curves that occur for X0 = 2, 3, 4, 5 can be seen from Figure (4.12) to
(4.15). Again with G = Q/5, the other parameters stay the same.
Now we will discuss what would have happened if we used the same vector g as in Generic
approach 1.

Remark 4.2.3 If we choose c as the solution of V c = g for the vector g used in Generic
approach 1, then P (0, t) of the two approaches is the same for all t ∈ [0, n].

Proof 4.2.3 We are going to show that (4.4) is equal to (4.1). The denominator of (4.4)
is fX0 per definition, so all that is left to show is that

V exp(tD)c̃X0 = PtfX0 .

We recall that we can write Pt = exp(tQ) = V λD(t)V −1 where λD(t) = exp(tD) as
described in Section (1.2.6). From Generic Approach 2 we write f = V c̃. Then we get

V λD(t)c̃X0 = V λD(t)V −1V c̃X0 ,

and clearly
V λD(t)c̃X0 = V λD(t)c̃X0 . ¤

When we look at the resulting yield curves we see that we have some interesting shapes in
the Figures (4.5), (4.6) and (4.14). We now try to work the occurring humps more sharply
by just manipulating the vector g. The other parameters (Q/5, α, n, d) stay the same. As
shown in (4.2.3) the two approaches are equal using the same g. For Generic Approach 1
we had

g = [2, 3, 1, 1, 4],

for Generic Approach 2 we had
g = [1, 3, 5, 2, 1].

If X0 = i, i ∈ {1, · · · , N} then we try to get a more irregular, humped structure by using
a vector k = g and changing the i-th component of this vector. The results can be seen in
Figure (4.16) to (4.21). Using special parameters we can get some really ”nice” irregular
shapes.
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Figure 4.10: bond yield gen2(Q, c, 1, 0.05, 30, 360)
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Figure 4.11: bond yield gen2(Q/5, c, 1, 0.05, 30, 360)
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Figure 4.12: bond yield gen2(Q/5, c, 2, 0.05, 30, 360)
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Figure 4.13: bond yield gen2(Q/5, c, 3, 0.05, 30, 360)
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Figure 4.14: bond yield gen2(Q/5, c, 4, 0.05, 30, 360)
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Figure 4.15: bond yield gen2(Q/5, c, 5, 0.05, 30, 360)
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Figure 4.16: k = [1, 3, 5, 2.2, 1], X0 = 4
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Figure 4.17: k = [1, 3, 5, 2.35, 1], X0 = 4
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Figure 4.18: k = [1, 3, 5, 2.5, 1], X0 = 4
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Figure 4.19: k = [1.8, 3, 1, 1, 4], X0 = 1
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Figure 4.20: k = [2.2, 3, 1, 1, 4], X0 = 1
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Figure 4.21: k = [2, 3, 1.3, 1, 4], X0 = 3
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4.3 Simulation of spot-rates and state-price densities

Now we simulate the positive supermartingale ζ known as state price density and the
spot-rate process rt. We recall their definitions in Section (3.4):

ζt =
e−αtRαg(Xt)

Rαg(X0)
=

e−αtf(Xt)
f(X0)

, (4.5)

when we take the standardisation of ζ0 = 1, and

rt =
g(Xt)

Rαg(Xt)
=

g(Xt)
f(Xt)

, (4.6)

where f = (α−Q)−1g.

So all we have to do to simulate the two processes is to pick a generating matrix Q,
a positive vector g and α > 0. The calculation was implemented in the functions ”state-
price.sci” and ”spot-rate.sci”. Both have the same parameters namely Q, g, state 0, α, n, d
which have the same characteristics as in ”bond.sci” or ”yield.sci”. We use following
algorithms:

Algorithm 4.3.1 (State-price density) (1) We choose the parameters
Q, c, state 0, α, n, d as described above.
(2) We use Algorithm (4.1.2) with parameters Q, state 0, n, d to simulate a Markov chain
of size nd + 1.
(3) We set t = 0 and f = (α−Q)−1g.
(4) We calculate ζt by (4.5).
(5) We set t=t+1/d.
(6) We go back to (4) until t = n is reached.
(7) Return: a vector of size nd + 1 with the values of ζt for 0 ≤ t ≤ n as entries.

Algorithm 4.3.2 (Spot-rate) (1) We choose the parameters
Q, c, state 0, α, n, d as described above.
(2) We use Algorithm (4.1.2) with parameters Q, state 0, n, d to simulate a Markov chain
of size nd + 1.
(3) We set t = 0 and f = (α−Q)−1g.
(4) We calculate rt by (4.6).
(5) We set t=t+1/d.
(6) We go back to (4) until t = n is reached.
(7) Return: a vector of size nd + 1 with the values of rt for 0 ≤ t ≤ n as entries.

Now we will look at some plots. We choose Q and g to be the same as for Generic approach
1. First we see two trajectories of the state-price density process with
state price(Q,g,1,0.05,30,2). The step size is only taken 2 for better visibility of the results.
In Figure (4.22) the generator is Q in Figure (4.23) the generator is Q/5. The fact that the
second plot has bigger jumps can also be explained by the faster convergence of exp(tQ)
than exp(tQ/5) for t → ∞. The value of state 0 does not influence the behavior of the
process.

Figures (4.24) and (4.25) show two trajectories of the spot-rate process for
spot rate(Q,g,1,0.05,30,2).
In (4.24) the generator is Q in (4.25) the generator is Q/5. The difference between the
results can be seen, but not as obviuos as before. Again the value of state 0 does not
influence the behavior of the process.
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Figure 4.22: state price(Q, g, 1, 0.05, 30, 2)
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Figure 4.23: state price(Q/5, g, 1, 0.05, 30, 2)
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Figure 4.24: spot rate(Q, g, 1, 0.05, 30, 2)
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Figure 4.25: spot rate(Q/5, g, 1, 0.05, 30, 2)
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4 Simulation 4.4 Yields in calendar time

4.4 Yields in calendar time

In Section (4.2) we calculated the yields Y (t, T ) for fixed t = 0. From (4.1, Generic
Approach 1) and (4.4, Generic Approach 2) we know that this calculation is only dependent
on the state of X0 and so using an N -state chain only N yield curves can ever occur.
Now we try a simulation of yields over calendar time. Therefore we compute Y (t, T ) for
0 ≤ t ≤ kal, with kal being the time horizon of calendar time and therefore get a yield
curve for every 0 ≤ t ≤ kal.
When we look at the history of yield curves we know that the yields of the different
maturities vary over time depending on the economic development described in Section
(2.2.2). For example we take the yield curves of US-treasury bonds3 from 2002 to 2007 and
get following plot in Figure (4.26). The maturities are [1/12, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20]. I
left out the yields for maturity 30 years because there was so much data missing. We see
that at the beginning the structure is normal whereas at the end the structure gets flat or
even inverted.
We will now simulate such structure with the help of a continuous time Markov chain.
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Figure 4.26: US-Dollar Yields 2002-07

Again we first choose a generating matrix Q and state 0 for the state X0 is in. We set kal
to be the calendar time of how long we want the simulation of the chain to be. Choosing
kal = 1 and d = 360 for example would mean that we do a daily simulation over 1 year.
Starting form X0 we now simulate Xt with Algorithm (4.1.2) until the maximum calendar-
time kal is reached by taking step size d. So we now know which state our Markov chain
is in for each point of simulation. Then we use (4.1) and (4.4) again to calculate Y (t, T )
depending on Xt for 0 ≤ t ≤ kal.
Again we differentiate between Generic Approach 1 and Generic approach 2.

3The data was taken from
”http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml”.
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4 Simulation 4.4 Yields in calendar time

4.4.1 Generic Approach 1

The generator Q and state 0, the state of X0 have already been chosen. For Generic
Approach 1 we additionally need parameters g, α as in Section (4.2) as well as param-
eters for the maximum of calendar time and time to maturity. In this case we have
to be a bit careful because a rather large amount of data is produced. So in con-
flict to Section (4.2), where we had a maximum time to maturity and worked with
discretisation d, we restrict the maturities Ti, we want to calculate Y (t, T ) for, to a
given vector, for example T ∈ mat = [1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 20Y, 30Y ] =
[1/12, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30]. This is also plausible as long as no bonds with ma-
turity 5.36 years are traded on the market. When we now take the maximum calendar
time kal and the step size d the matrix of the values Y (t, T ), 0 ≤ t ≤ kal has size
(kal*d+1)*length(mat).

Remark 4.4.1 Hence the notation: T is the time to maturity and not the absolute time,
so we compute Y(0,T) for all Ti ∈ mat, depending on X0 = Xt, 0 ≤ t ≤ kal.

These ideas are implemented in the Scilab-function ”data3d gen1..sci” which has param-
eters Q, state 0, g, α, mat, kal, d as described above. Following algorithm is implemented
to calculate Y (t, T ), 0 ≤ t ≤ kal, T ∈ mat:

Algorithm 4.4.1 (Y (t, T ) in Generic Approach 1) (1) We choose the parameters
Q, g, state 0, α,mat, kal, d as described above.
(2) We use Algorithm (4.1.2) with parameters Q, state 0, kal, d to simulate a Markov chain
of size kal ∗ d + 1 and store it in vector v.
(3) We set i = 1 and j = 1 and f = (α−Q)−1g.
(4) We set X0 = vi.
(5) We set T = matj and PT = exp(TQ).
(6) We compute Y(0,T) by using (4.1) and (4.2).
(7) We set j=j+1 and go back to (5) until length(mat) is reached.
(8) We set i = i + 1 and go back to (4) until i=kal*d+1.
(9) Return: a matrix of size (kal∗d+1)∗ length(mat) with the values of Y (0, T ), T ∈ mat,
depending on X0 = Xt for 0 ≤ t ≤ kal, as entries.

4.4.2 Generic Approach 2

We use the same ideas as in Generic Approach 1. The only thing that is different is that
we use a vector c that fulfills V c = g ≥ 0, where V is the matrix of eigenvectors of Q.
The calculation that uses Generic Approach 2 is implemented in the Scilab-function
”data3d gen2.sci”. Following Algorithm is implemented:

Algorithm 4.4.2 (Y (t, T ) in Generic Approach 2) (1) We choose the parameters
Q, c, state 0, α,mat, kal, d as described above.
(2) We use Algorithm (4.1.2) with parameters Q, state 0, kal, d to simulate a Markov chain
of size kal ∗ d + 1 and store it in vector v.
(3) We compute the matrices V and D using the Scilab-function [V,D]=spec(Q).
(4) We set c̃ = (α−D)−1c.
(5) We set i = 1 and j = 1.
(6) We set X0 = vi.
(7) We set T = matj.
(8) We compute Y(0,T) by using (4.4) and (4.2).
(9) We set j=j+1 and go back to (7) until length(mat) is reached.
(10) We set i = i + 1 and go back to (6) until i=kal*d+1.
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4 Simulation 4.4 Yields in calendar time

(11) Return: a matrix of size (kal∗d+1)∗length(mat) with the values of Y (0, T ), T ∈ mat,
depending on X0 = Xt for 0 ≤ t ≤ kal, as entries.

4.4.3 Results

In Figures (4.27) and (4.28) we see two plots for the two functions. Q, g and c where
chosen as before, the other parameters are

α 0.05
kal 3

d 50

mat = [1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 20Y, 30Y ].

For both plots we start with X0 = 1.
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Figure 4.27: Term Structure for Generic Approach 1.

We see that for both plots the structure is very rough especially on the short end al-
though we choose d = 50 which is rather big when we think of a daily simulation which
means d = 360. We can also see that with this parameters an inverse structure can follow
a normal term structure directly (or in reverse) which is not likely to occur on the market.
Choosing such a simple Markov chain with just 5 states it will perhaps we possible to fit
a single initial yield curve, but never a structure of yield curves for more than one day.
For such a fit we would need a fine tuned Markov chain with more states (we always keep
in mind that the parameter space gets large quickly), and the chain should not change
state that often. Another possibility would be to use a Markov process with continuous
state space.
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Figure 4.28: Term Structure for Generic Approach 2.

4.5 A continuous example

We recall the cosh-example of Section (3.7.4) in one dimension. Here we choose a function

f(x) = cosh γ(x + c),

and get

g(x) = (α− 1
2
γ2) cosh(γ(x + c)) + βγx sinh(γ(x + c)),

which is non-negative if α is big enough. The price of a zero-bond can be written down
in closed form by

P (0, t) =
cosh γ(X0e

−βt + c)
cosh γ(X0 + c)

exp
[
− αt +

γ2

2
1− e−2βt

2β

]
. (4.7)

So all that is left to do is to simulate the diffusion

dXt = dWt −BXtdt, (4.8)

in one dimension. We can do this by using the Euler-Approximation4 of an SDE. We use
following theorem:

Theorem 4.5.1 Given an Itô-diffusion

dx = a(x, t)dt + b(x, t)dWt,

4For a full account lookup [Seydel].
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4 Simulation 4.5 A continuous example

we can calculate approximations xj of x(tj) by choosing t0, x0, a step size 4t,W0 = 0,
and setting

tj+1 = tj +4t, and, 4W = Z
√
4t with Z:N (0, 1).

Then we define the approximation xj of x(tj) by

xj+1 = xj + a(xj , tj)4t + b(xj , tj)4W. (4.9)

In our case where the diffusion is given by (4.8) we can write (4.9) as

xj+1 = xj(1− β4t) + Z
√
4t. (4.10)

For this special example i computed the Markov-process together with the spot-rate pro-
cess, the state-price density process and the yield curves Y (t, T ) together in the Scilab-
function ”example4.sci”. This function has the parameters state0 (the value of X0),
α, β, γ, c, as the parameters needed to compute (4.7), mat as the vector of maturities we
want to calculate Y (t, T ) for, the maximum time of simulation kal (therefore 0 ≤ t ≤ kal)
and the step-size of discretisation d. We can use following algorithm:

Algorithm 4.5.1 (Simulation of Example (3.7.4)) (1) We choose the parameters
state0, α, β, γ, c,mat, kal, d as described above.
(2) We set X0 = state0.
(3) We set i = 1.
(4) We calculate Xi by (4.10) and set X0 = Xi.
(5) We compute ri by (4.6) and ζi by (4.5).
(6) We set j = 1.
(7) We set T = matj.
(8) We compute Y(0,T) by using (4.7) and (4.2).
(9) We set j=j+1 and go back to (7) until length(mat) is reached.
(10) We set i = i + 1 and go back to (4) until i=kal*d+1.
(11) Return: a matrix of size (kal∗d+1)∗length(mat) with the values of Y (0, T ), T ∈ mat,
depending on X0 = Xt for 0 ≤ t ≤ kal, as entries. 3 Vectors of size kal ∗ d + 1 with
Xj , rj , ζj ; 0 ≤ j ≤ kal ∗ d + 1, as entries.

In Figure (4.29) to (4.32) we see a realisation of this special case to an underlying Markov-
process with continuous state-space. The parameters are:

state0 1
α 0.05
β 0.1
γ 0.2
c 2
n 3
d 360

mat = [1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 20Y, 30Y ].

When we compare Figure (4.32) to (4.26), we see that using this framework we can get
results very close to reality.

60



4 Simulation 4.5 A continuous example

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Time

X
_t

Figure 4.29: Trajectory of a continuous state-space process.
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Figure 4.30: Spot-rate process, continuous case.
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Figure 4.31: State-price density process, continuous case.
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Figure 4.32: Term-structure, continuous case.

4.6 A trial fit to real data

In this section we try a short and simple fit to some data shown in Figure (4.26). We
do a day-by-day calibration and simply ignore all the earlier information. Given the
observations yn on day n, we just compute

min
θ

b(yn − Y (x; Θ)). (4.11)

Therefore we use the implemented Scilab-function ”datafit”5to compute the solution in
the least square sense.
We do the calibration for Period 1: day 1 to 100 and Period 2: day 1300 to 1399. In the
first period the structure is normal, for the second the yields are more volatile.

We do not fit the parameters for every day, but make an initial fit on day 1 for each
observation period and then minimize by just changing Xt, the value of the Markov pro-
cess on day t. With the solutions for the parameters of the ”datafit” function we again
compute the prices for the different maturities and compare it to the real data. We com-
pute the errors per day of observation and per maturity over the whole period in the sense
of the supremum norm6. The errors in the figures are all given in basis-points7 (bp).
For further information about calibration lookup [Rogers 4].

5For an exact description lookup the Scilab Online-Help.
6In the case of the vector space Rn, n < ∞ this is ||x||∞ = max{|xi| : x ∈ Rn}.
71bp=10−4.
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4 Simulation 4.6 A trial fit to real data

4.6.1 Fit with a Markov chain

Here we make the convention that x is some distinguished state (say, the first) in the
state space. The labeling of sates is irrelevant under this simplifying assumption. When
fitting a Markov chain with state-space N = (1, · · · , N) we have N2 + 1 parameters to
fit. Hence: the diagonal entries of the matrix Q are determined by qii = −∑

i6=j qij by
Theorem (1.2.5). So we have N2 −N parameters for the matrix Q, N -parameters for the
vector f and one parameter for α. We can simplify the problem to time reversible chains8.
Then for some positive vector m we have

miqij = mjqji ∀i, j.

Then we have N(N − 1)/2 entries for the above diagonal elements of Q and N − 1 pa-
rameters of m because the last entry is fixed by the fact that the entries have to sum to
1. With f and α we have in total N2+3N

2 parameters to estimate. By restricting to time
reversible chains we can also be sure that the eigenvalues of Q are all real.

In Figure (4.33) to (4.36) we see the plots by choosing a chain with 10 states which
is not reversible. The result is not very satisfying because the errors are quite big, and
we might better use another routine for minimization than the ”datafit” function (After
some experience i can say that datafit” is very sensitive on the starting value, the initial
guess, and given bounds.). Another problem is, that, in this case, we do not minimize
the parameters directly to approximate Y (0, t) but have to extract the generator Q out of
the parameter vector and then calculate Pt = exp(tQ). Using more states than 10 would
surely improve the fit, but the time of computation will grow potentially. For Period 2 i
received smaller errors than for Period 2 by choosing other values for the initial guess and
the bounds. I also tried to improve the fit for Period 1, but did not get a better result.
The fit is done in the Scilab-script ”Fit chain.sci”.

4.6.2 Continuous case

At first we have a look at Example (3.7.4). Here the bond-price was given by

P (0, t) =
cosh γ(X0e

−βt + c)
cosh γ(X0 + c)

exp
[
− αt +

γ2

2
1− e−2βt

2β

]
. (4.12)

Including X0 we have 5 parameters to fit. When we look at (4.12) we see that we have
some restrictions to make. Of course β 6= 0, but also γ 6= 0 because otherwise (4.12) would
be totally independent of X0. The parameters after the initial fit are:

Parameters Period 1 Period 2
α 0.064 0.048
β 0.217 0.135
γ 0.315 0.03
c 1 1

The fit is done in the script ”Fit example4.sci”. Figure (4.37) to (4.42) show the results.
The errors for the more volatile Period 2 are higher than for Period 1.
When we compare the results to using a 10-state chain we see that, although we only
have 5 parameters to estimate, the result is a lot better than using the chain with 101
parameters in total and also the algorithm runs faster.

8See Section (1.2.5) for the exact definition.
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Figure 4.33: Error per maturity, Period 1
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Figure 4.34: Error per maturity, Period 2
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Figure 4.35: Error per day, Period 1
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Figure 4.36: Error per day, Period 2
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Figure 4.37: Error per maturity, Period 1
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Figure 4.38: Error per maturity, Period 2
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Figure 4.39: Error per day, Period 1
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Figure 4.40: Error per day, Period 2
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Figure 4.41: Underlying Markov process, Period 1
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Figure 4.42: Underlying Markov process, Period 2
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A Appendix

A.1 Year fraction, Day-count convention

In the following, by slight abuse of notation, t and T will denote both times, as mea-
sured by a real number from an instant chosen as time origin 0, and dates expressed as
days/months/years.
In Definition (2.1.5) we defined the time to maturity T −t as the amount of time (in years)
from the present time t to the maturity time T > t.
This definition makes sense, as long as t and T are real numbers associated to two time
instants. If they denote two dates expressed as day/month/year, say D1 = (d1,m1, y1),
D2 = (d2,m2, y2), we need to define the amount of time as the number of days between.
This choice is not unique and the market has several conventions, which tell us how to
count and especially how to deal with holidays and weekends (non-trading days).

Definition A.1.1 (Year fraction, Day-count convention) We denote by τ(t, T ) the
chosen time measure between t and T , which is usually referred to as year fraction between
the dates t and T. When t and T are less than one-day distant (typically when dealing with
limit quantities involving time to maturities tending to zero), τ(t, T ) is to be interpreted as
the time difference T−t (in years), the year fraction according to the day-count convention.
The particular choice that is made to measure the time between two dates reflects what is
known as the day-count convention.

To give an introduction, we now mention some examples of the day-count convention. We
will then compute the year fraction between 4.1.2000 and 4.7.2000 (a leap year) and see
the differences.

� Actual/365
With this convention a year is 365 days long and the year fraction between two dates
is

τ(D1, D2) =
D2 −D1

365
,

if we denote D2−D1 the actual number of days between the two dates, D1 included
and D2 excluded.
In our example we get 182/365 = 0.49863.

� Actual/360 A year is assumed to be 360 days long. The corresponding year fraction
is

τ(D1, D2) =
D2 −D1

360
.

No we have 182/360 = 0.50556.

� Actual/Actual It counts the number of whole calendar days between two dates
and adds on the fractions of the year at the start and end of a period. Leap years
count for 366 days, non-leap years count for 365 days.

τ(D1, D2) =
f2 −D1

f2 − f1
+ (n− 3) +

D2 − fn−1

fn − fn−1
,

where fi are year end dates, and f1 ≤ D1 ≤ f2 < ... < fn−1 ≤ D2 ≤ fn. When we
apply this to our example we get 182/366 = 0.49727.
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� 30/360 With this convention, months are assumed to be 30 days long and years
are 360 days long. In this case the year fraction between D1 and D2 is given by the
following formula:

τ(D1, D2) =
max(30− d1, 0) + min(d2, 30) + 360(y2 − y1) + 30(m2 −m1 − 1)

360
.

In our example this is
(30− 4) + 4 + 150

360
= 0.5.

As already mentioned, several adjustments may be included, in order to leave out holi-
days and weekends. If D2 is a non-trading day, it can be replaced with the first following
business day. This convention is called Modified Following and changes the evaluation of
the year fractions.

A.2 The Lp-spaces

Let M be a set and µ a positive measure on M. Further p ∈ [1,∞) is a constant. Then
we call Lp(µ) to be the set of all (equivalence-classes µ a.e. equal) measurable functions
f : M → C, which fulfill

||f ||p =
(∫

M
|f |pdµ

) 1
p

< ∞.

Then
|| · ||p : Lp(µ) → [0,∞)

is a norm and (Lp(µ), || · ||p) is a Banach space.

For a measurable function f : M → C we call ||f ||∞ the essential supremum of |f |

||f ||∞ = inf{α ∈ R : µ(f−1(α,∞] = 0)}

and L∞(µ) the set of all (equivalence-classes µ a.e. equal) measurable functions f with
||f ||∞ < ∞. Again (L∞(µ), || · ||∞) is a Banach space.
If M ⊆ Rn and µ is the Lebesgue-measure on M we can also write Lp(M) for Lp(µ).
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A.3 Generator of an Itô-diffusion

Before we define what an Itô-diffusion is, we define the Itô-process and then develop Itô-
formula.

Definition A.3.1 Let (Ω, (Ft)t ≥ 0,P) be a filtered probability space and (Wt)t≥0 an Ft-
Brownian motion. (Xt)0≤t≤T is an R-valued Itô-process if it can be written as

P a.s. ∀t ≤ T Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdWs, (A.1)

where
(1) X0 is F0- measurable.
(2) (Kt)0≤t≤T and (Ht)0≤t≤T are Ft-adapted processes.
(3)

∫ T
0 |Ks|ds < +∞ P a.s.

(4)
∫ T
0 |Hs|2ds < +∞ P a.s.

When we set u(s, ω) = Ks and v(s, ω) = Hs then, if Xt is an Itô-process of the form (A.1),
it is often written in the shorter differential form

dXt = udt + vdBt.

This notation is also the same for a multidimensional Itô-process, where

u =




u1
...

un


 , v =




v11 · · · v1n
...

...
...

vn1 · · · vnn


 ,

and also

Xt =




X1(t)
...

Xn(t)


 , dBt =




dB11(t) · · · dB1n(t)
...

...
...

dBn1(t) · · · dBnn(t)


 .

Theorem A.3.1 Let (Xt)0≤t≤T be an Itô-process

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdWs,

and f be a twice continuously differentiable function, then

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d〈X,X〉s,

where, by definition

〈X, X〉t =
∫ t

0
H2

s ds,

and ∫ t

0
f ′(Xs)dXs =

∫ t

0
f ′(Xs)KsdXs +

∫ t

0
f ′(Xs)HsdWs.

Likewise, if (t, x) → f(t, x) is a function which is twice differentiable with respect to x
and once with respect to t, and if these partial derivatives are continuous with respect to
(t, x)(i.e. f is a function of class C1,2), Itô formula becomes

f(t,Xt) = f(0, X0) +
∫ t

0
f ′s(s,Xs)ds +

∫ t

0
f ′x(s,Xs)dXs +

1
2

∫ t

0
f ′′xx(s,Xs)d〈X, X〉s.
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Now we define the Itô-diffusion:

Definition A.3.2 A (time-homogeneous) Itô-diffusion is a stochastic process Xt(ω) =
X(t, ω) : [0,∞)× Ω → Rn satisfying a stochastic differential equation of the form

dXt = b(Xt)dt + σ(Xt)dBt, t ≥ s; Xs = x,

where Bt is a m-dimensional Brownian motion and b : Rn → Rn, σ : Rn → Rnxm satisfy
the condition

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|; x, y ∈ Rn,

for some constant D.

For many applications it is important that we can associate a second order partial differ-
ential operator A to an Itô-diffusion Xt. The basic connection between A and Xt is that
A is the generator of the process Xt:

Definition A.3.3 Let Xt be a (time-homogeneous) Itô diffusion in Rn. The (infinitesi-
mal) generator A of Xt is defined by

Af(x) = lim
t→0

Ex[f(Xt)]− f(x)
t

; x ∈ Rn.

The set of functions f : Rn → R such that the limit exists at x is denoted by DA(x) while
DA denotes the set of functions for which the limit exists for all x ∈ Rn.

After some calculation (lookup [Øksendal]) we can define the generator A of an Itô diffu-
sion.

Theorem A.3.2 Let Xt be the Itô diffusion

dXt = b(Xt)dt + σ(Xt)dBt.

If f ∈ C2
0 (Rn) then f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi
+

1
2

∑

i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
. (A.2)

Proof A.3.1 Lookup [Øksendal]
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A.4 Code

//++++++++++++++++++++ pstart.sci ++++++++++++++++++++++//
//Input: stochastic vector v
//Return: vector (v_1,v_1+v_2, ... , 1)
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function vert=pstart(v)

summe=0;
for i=2:length(v)

summe=v(i)+v(i-1);
v(i)=summe;

end
vert=v;

endfunction

//++++++++++++++++++++ checkq.sci ++++++++++++++++++++++//
//Input: matrix Q
//Return: checks Theorem 1.2.5, 1 if true, 0 if false,
// -1 no quadratic matrix
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function gen_check =checkq(a)

s=size(a);
if s(1)==s(2) then

for i=1:s(1)
for j=1:s(1)

if i~=j then
if a(i,j)<0 then//nondiagonal elements>=0

gen_check=0;
return

end
else

if a(i,j)>=0 then//diagonalelements <0
gen_check=0;
return

end
end

end
if abs(sum(a(i,:)))>0.0001 then//row sum=0 (rounding errors!)

gen_check=0;
return

end
end
gen_check=1;

else// no quadratic matrix
gen_check=-1;

end
endfunction

//++++++++++++++++++++ markov.sci ++++++++++++++++++++++//
//Input: matrix Q,int state_0,int n, int d (d=1/d in code!)
//Return: vector of size nd+1 with values of X_t as entries
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function sim=markov(Q,state_0,n,d)

select checkq(Q)//checks matrix Q
case 0

disp(’Check matrix Q entries!’);
return

case -1
disp(’Check matrix Q dimension!’);
return

end
z=size(Q);
z=z(1);
start=zeros(1,z);
anzahl=n*d+1;
sim=zeros(1,anzahl);
d=1/d;
if state_0==0 then

for i=1:z
start(i)=i/z;

end
beginn=1;
t=0;

else
if state_0<0|state_0>z then

disp(’Wrong starting state!’);
return

end
beginn=2;
t=d;
sim(1)=state_0;
P=expm(d*Q);
start=pstart(P(state_0,:));

end

zven=rand(1,anzahl);
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for j=beginn:anzahl
for k=1:z

if zven(j)<=start(k) then
sim(j)=k;
break

end
end
t=t+d;
P=expm(t*Q);
start=pstart(P(k,:));

end
endfunction

//+++++++++++++++++++++ bond.sci +++++++++++++++++++++++//
//Input: matrix Q, vector g, int state_0, double a,
// int n, int d (d=1/d in code!)
//Return: vector of size nd+1 with values of P(0,t)
// calculated with Gen.Approach 1 as entries
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function price=bond(Q,g,state_0,a,n,d)

select checkq(Q)//checks matrix Q
case 0

disp(’Check matrix Q entries!’);
return

case -1
disp(’Check matrix Q dimension!’);
return

end
z=size(Q);
z=z(1);
if state_0==0 then

zven=rand(1,1);
for i=1:z

if zven<i/z then
x_0=i;
break

end
end

else
if state_0<0|state_0>z then

disp(’Wrong starting state!’);
return

end
x_0=state_0;

end
anzahl=n*d+1;
price=zeros(1,anzahl);
price(1)=1;
f=inv(a*eye(z,z)-Q)*g;
f_0=f(x_0);
d=1/d;
t=0;

for i=2:anzahl
t=t+d;
P=expm(t*Q);
product=P*f;
price(i)=exp(-a*t)*product(x_0)/f_0;

end
endfunction

//+++++++++++++++++++++ yield.sci ++++++++++++++++++++++//
//Input: matrix Q, vector g, int state_0, double a,
// int n, int d (d=1/d in code!)
//Return: vector of size nd+1 with values of Y(0,t)
// calculated with Gen.Approach 1 as entries
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function zins=yield(Q,g,state_0,a,n,d)

bond_vector=bond(Q,g,state_0,a,n,d);
l=length(bond_vector);
zins=zeros(1,l);
z=size(Q);
z=z(1);
if state_0<0|state_0>z then

disp(’Wrong starting state!’)
return

end
f=inv(a*eye(z,z)-Q)*g;
zins(1)=g(state_0)/f(state_0);//Y(0,O)=r_0
d=1/d;
t=0;
for i=2:l

t=t+d;
zins(i)=-log(bond_vector(i))/t;

end
endfunction
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//++++++++++++++++ bond_yield_gen2.sci ++++++++++++++++++//
//Input: matrix Q, vector c, int state_0, double a, int n,
// int d (d=1/d in code!)
//Return: 2 vectors of size nd+1 with values of P(0,t) and Y(0,t)
// calculated by Gen.Approach 2 as entries
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function [gen2_b,gen2_y]=bond_yield_gen2(Q,c,state_0,a,n,d)

select checkq(Q)
case 0

disp(’Check matrix Q entries!’);
return

case -1
disp(’Check matrix Q dimension!’);
return

end

z=size(Q);
z=z(1);
start=zeros(1,z);
anzahl=n*d+1;
gen2_b=zeros(1,anzahl);
gen2_b(1)=1;
gen2_y=zeros(1,anzahl);
[V,D]=spec(Q);
t=0;
d=1/d;

if state_0==0 then
zven=rand(1,1);
for i=1:z

if zven<i/z then
x_0=i;
break

end
end

else
if state_0<0|state_0>z then

disp(’Wrong starting state!’);
return

end
x_0=state_0;

end

c=c*inv(a*eye(z,z)-D);//c snail
phi=V(x_0,:)’;
gen2_y(1)=(c*(a*eye(z,z)-D))*phi/(c*phi);//Y(0,0)=r_0

for j=2:anzahl
t=t+d;
gen2_b(j)=exp(-a*t)*(c*expm(t*D))*phi/(c*phi);
gen2_y(j)=-log(gen2_b(j))/t;

end
endfunction

//+++++++++++++++++++ spot-rate.sci ++++++++++++++++++++//
//Input: matrix Q, int state_0, double a,int n,
// int d (d=1/d in code!)
//Return: vector of size nd+1 with values of r_t
// using 4.6 as entries
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function rate=spot_rate(Q,g,state_0,a,n,d)

anzahl=n*d+1;
process=zeros(1,anzahl);
process=markov(Q,state_0,n,d);
rate=zeros(1,anzahl);
z=size(Q);
z=z(1);
f=inv(a*eye(z,z)-Q)*g;

for i=1:anzahl
rate(i)=g(process(i))/f(process(i));

end
endfunction

//+++++++++++++++++++ state_price.sci ++++++++++++++++++++//
//Input: matrix Q, int state_0, double a,int n,
// int d (d=1/d in code!)
//Return: vector of size nd+1 with values of zeta_t
// using 4.5 as entries
//++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function zeta=state_price(Q,g,state_0,a,n,d)

anzahl=n*d+1;
process=zeros(1,anzahl);
process=markov(Q,state_0,n,d);
zeta=zeros(1,anzahl);
zeta(1)=1;
z=size(Q);
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z=z(1);
f=inv(a*eye(z,z)-Q)*g;
d=1/d;
t=0;

for i=2:anzahl
t=t+d;
zeta(i)=exp(-a*t)*f(process(i))/f(process(1));

end
endfunction

//+++++++++++++++++++++ data3d_gen1.sci +++++++++++++++++++++++//
//Input: matrix Q, vector g, int state_0, double a,vector mat,
// int kal, integer d (d=1/d in code!)
//Return: 1)data = matrix of size size(mat)*(kal*d)+1 with values of Y(t,T)
// calculated with Gen.Approach 1 as row entries
// 2)kal_vec= vector of size kal*d+1 with calendar times as entries
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function [kal_vec,data]=data3d_gen1(Q,g,state_0,a,mat,kal,d)

kal_zeit=kal*d+1;
process=zeros(1,kal_zeit);
process=markov(Q,state_0,kal,d);
len=length(mat);
data=zeros(kal_zeit,len);
yield_v=zeros(1,len);
z=size(Q);
z=z(1);
f=inv(a*eye(z,z)-Q)*g;
m=max(mat);
kal_vec=zeros(1,kal_zeit);
kal_vec=0:1:kal_zeit-1;

for i=1:kal_zeit
for j=1:len

t=mat(j);
P=expm(t*Q);
product=P*f;
yield_v(j)=a-log(product(process(i))/f(process(i)))/t;

end
data(i,:)=yield_v;

end

endfunction

//+++++++++++++++++++++ data3d_gen2.sci +++++++++++++++++++++++//
//Input: matrix Q, vector c, int state_0, double a,vector mat,
// int kal, int d (d=1/d in code!)
//Return: 1)data = matrix of size size(mat)*(kal*d)+1 with values of Y(t,T)
// calculated with Gen.Approach 2 as row entries
// 2)kal_vec= vector of size kal*d+1 with calendar times as entries
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function [kal_vec,data]=data3d_gen2(Q,c,state_0,a,mat,kal,d)
z=size(Q);
z=z(1);
kal_zeit=kal*d+1;
process=zeros(1,kal_zeit);
process=markov(Q,state_0,kal,d);
[V,D]=spec(Q);
len=length(mat);
m=max(mat);
kal_vec=zeros(1,kal_zeit);
kal_vec=0:1:kal_zeit-1;
data=zeros(kal_zeit,len);
yield_v=zeros(1,len);
c_sl=c*inv(a*eye(z,z)-D);

for i=1:kal_zeit
phi=V(process(i),:)’;
f_0=V*c_sl’;
g_0=V*c’;
for j=1:len

t=mat(j);
yield_v(j)=a-log((c_sl*expm(t*D)*phi)/(c_sl*phi))/t;

end
data(i,:)=yield_v;

end

endfunction
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//+++++++++++++++++++++ example4.sci ++++++++++++++++++++++++++//
//Input: double \textsf{state0},a,b,g,c,vector mat, int n, int d (d=1/d in code!)
//Return: 1)yields = matrix of size size(mat)*(n*d)+1 with values of Y(t,T)
// calculated with Gen.Approach 1 as row entries
// 2)3 Vectors of size n*d+1 with X_j,r_j and zeta_j as entries
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
function [proc,r,zeta,yields,anz]=example4(\textsf{state0},a,b,gam,c,mat,n,d)

anzahl=n*d+1;
proc=zeros(1,anzahl);//vector of the X_t
r=zeros(1,anzahl);//vector of the r_t
zeta=zeros(1,anzahl);//vector of the zeta_t
yields=zeros(anzahl,length(mat));// matrix of the Y(t,T)
anz=zeros(1,anzahl);//timestamp
anz=0:1:anzahl-1;
d=1/d;
t=0;
f_0=cosh(gam*(\textsf{state0}+c));
proc(1)=\textsf{state0};

for i=1:anzahl
rve=rand(1,1,’normal’);
if i==1 then

proc(i)=\textsf{state0};
else

proc(i)=proc(i-1)*(1-b*d)+rve*sqrt(d);
end
f=cosh(gam*(proc(i)+c));
g=cosh(gam*(proc(i)+c))*(a-1/2*gam^2)+sinh(gam*(proc(i)+c))*b*gam*proc(i);

if g<0|f<=0 then//f>=0,g>0!!
disp(’Wrong parameters, negative f,g!!’);
return

end

r(i)=g/f;//spot-rate
zeta(i)=exp(-a*t)*f/f_0;//state-price density
t=t+d;

for j=1:length(mat)//calculate the yield curve for Y(t,T)
yields(i,j)=-(log(cosh(gam*(proc(i)*exp(-b*mat(j))+c))/cosh(gam*(proc(i)+c)))

-a*mat(j)+gam^2/2*(1-exp(-2*b*mat(j)))/(2*b))/mat(j);
end

end
endfunction

//++++++++++++++++++ Fit_example4.sci +++++++++++++++++++++//
//Fits example 4 to real data
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++//

//initalize the used functions
function yy=exmp4(x,p)//pricing function for example 4, Initial fit

yy=-(log(cosh(p(4)*(p(1)*exp(-p(3)*x)+p(5)))/cosh(p(4)*(p(1)
+p(5))))-p(2)*x+(p(4)^2/2)*(1-exp(-2*p(3)*x))/(2*p(3)))/x;

endfunction

function e=Gg(p,z)//criterion function, Inital case
y=z(1),x=z(2);
e=y-exmp4(x,p);

endfunction

//load the data
load(’C:\Programme\scilab-4.1.2\Diplom\data.sav’);disp(’file loaded’);
//choose period
M=y_data(1:100,:);
Z=[zeros(1,length(mat));mat];//maturities vector
//errors
total_error=zeros(1,100);//error for yield curve on day i
mat_error=zeros(1,length(mat));//error per maturity
//bounds
xinf=[-20,0,0.0000000001,0.03,-20]’;//beta and gamma ~=0!!
xsup=[20,10,10,10,20]’;
//initial guess
p0=[0,0.05,0.1,0.05,1]’;

Z(1,:)=M(1,:);//Initial fit for all parameters
[p,err]=datafit(Gg,Z,"b",xinf,xsup,p0);
disp(p);
//define parameters ~=x_0
alpha=p(2);
bet=p(3);
gamm=p(4);
c_=p(5);

function y=x0_fit(x,p)//fit x0
y=-(log(cosh(gamm*(p(1)*exp(-bet*x)+c_))/cosh(gamm*(p(1)+c_)))
-alpha*x+(gamm^2/2)*(1-exp(-2*bet*x))/(2*bet))/x;
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endfunction

function e=Ggg(p,z)//criterion function for fitting x_0
y=z(1),x=z(2);
e=y-x0_fit(x,p);

endfunction

//bounds and guess for x_0
p0=[p(1)];
xinf=[-50];
xsup=[50];

x_t=zeros(1,100);//vector of the fitted x_t

for i=1:100
Z(1,:)=M(i,:);
[x_0,err]=datafit(Ggg,Z,’b’,xinf,xsup,p0);
x_t(i)=x_0;
for j=1:length(mat)
err=abs(Z(1,j)-x0_fit(mat(j),x_0));
if err>total_error(i) then//take sup_norm for the errors

total_error(i)=err;
end
if err>mat_error(j) then

mat_error(j)=err;
end

end
p0=x_0;//take new parameter values as new initial guess
disp(i);

end

//error in basis points!!
total_error=total_error*10000;
mat_error=mat_error*10000;
disp(’successfull !!’);

//++++++++++++++++++++ Fit_chain.sci ++++++++++++++++++++++//
//Fits continous time Markov chain to real data
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
number_of_states=10;//set number of states
anz_par=number_of_states^2+1;//set parameter size

//initalize the used functions
function fit=gen1(x,p)
dim=sqrt(length(p)-1);//choose size of generating matrix!
Q=zeros(dim,dim);
f=zeros(1,dim);
for i=1:dim//extract Q and f from parameter vector

l=(i-1)*(dim-1)+1;
r=i*(dim-1);
Q(i,i)=-sum(p(l:r));
f_s=dim*(dim-1)+i;
f(i)=p(f_s);
count=1;
for j=1:dim

if i~=j then
q_j=(i-1)*(dim-1)+count;
Q(i,j)=p(q_j);
count=count+1;

end
end

end
a_s=dim^2+1
a=p(a_s);//extract alpha
product=expm(x*Q)*f’;
fit=-log(exp(-a*x)*product(1)/f(1))/x;//we postulate we are in state 1

endfunction

function e=Gc(p,z)//criterion function
y=z(1),x=z(2);
e=y-gen1(x,p);

endfunction

//load the data
load(’C:\Programme\scilab-4.1.2\Diplom\data.sav’);disp(’file loaded’);
//choose period
M=y_data(1300:1399,:);
Z=[zeros(1,length(mat));mat];//
//errors
total_error=zeros(1,100);//error for yield curve on day i
mat_error=zeros(1,length(mat));//error per maturity over 100 days
//bounds
xinf=0.01*ones(1,anz_par)’;
xsup=20*ones(1,anz_par)’;//P1: 50
xsup(anz_par)=0.5;//max alpha=0.5//P1: 0.2
//initial guess
p0=0.1*ones(1,anz_par)’;//P1: 0.4
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Z(1,:)=M(1,:);//initial fit for all parameters
[p,err]=datafit(Gc,Z,"b",xinf,xsup,p0);

function [a,g,q]=extract(v)//extracts Q,f,alpha from parameter vector
dim=sqrt(length(v)-1);
a=v(length(v));
g=zeros(1,dim);
q=zeros(dim,dim);
count=1;
for i=1:dim

s=dim*(dim-1)+i;
g(i)=v(s);
for j=1:dim

if i~=j then
q(i,j)=v(count);
count=count+1;

end
end
q(i,i)=-sum(q(i,:));

end
endfunction

[alpha,f,Q]=extract(p);
x_t=zeros(1,100);//vector of the fitted x_t

function w=price(Q,f,alpha,t,state)
product=expm(t*Q)*f’;
w=-log(exp(-alpha*t)*product(state)/f(state))/t;

endfunction

materrs=zeros(number_of_states,length(mat));

for i=1:100
Z(1,:)=M(i,:);//take data row i
ma=1000;
for z=1:number_of_states

for j=1:length(mat)
err=abs(Z(1,j)-price(Q,f,alpha,mat(j),z));
materrs(z,j)=err;

end
sup=max(materrs(z,:));
if sup<ma then

ma=sup;
opti=z;

end
end
total_error(i)=ma;
x_t(i)=opti;
for j=1:length(mat)
if materrs(opti,j)>mat_error(j) then

mat_error(j)=materrs(opti,j);
end

end
end

//error in basis points!!
total_error=total_error*10000;
mat_error=mat_error*10000;
disp(’successfull !!’);
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