
Diplomarbeit

Master’s Thesis

Migrating Business Software Applications

based on IGS (Inova Q Generator System)

from Windows/VB to Linux/Java

ausgeführt
unter der Anleitung von

A.o.Univ.Prof. DI. Dr. Franz Puntigam

am

Institut für Computersprachen

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

durch

Christian Putsche

Matr.Nr: 0025328
Ultzmanngasse 39/1/10

A - 1220 Wien

Wien, im März 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

1

Zusammenfassung

In den letzten Jahren ist vor allem im Bereich der öffentlichen Verwaltung und
Behörden die Nachfrage nach Open Source Lösungen gestiegen. Dies stellt an die
in diesem Umfeld tätigen IT-Unternehmen die Anforderung entweder neue platt-
formunabhängige Produkte zu erstellen, oder aber bereits Bestehendes zu migrieren.
Diese Diplomarbeit befasst sich mit der Migration eines bestehenden Systems zur
Generierung von Software-Applikationen. Die generierten DatenbankApplikationen
holen sich ihre Daten aus einer SQL Datenbank, sind in Visual Studio geschrieben
und laufen unter einem Microsoft Betriebssystem. Die Herausforderung an den
Migrationsprozess besteht darin, diese ”Monokultur” aufeinander bestens abge-
stimmter Komponenten in ein offenes System zu übertragen. Ausgehend von einer
Analyse der vorhandenen Techniken im Bereich Software-Migration und Reengi-
neering wird versucht, den Generator dahingehend anzupassen, dass er in Aussehen,
Verhalten und Funktionalität äquivalente Programme generiert, die mit Hilfe der
Sprache Java unter dem Betriebssystem Linux einsetzbar sind. Die Vorgehensweise
und die dabei auftretenden Probleme und Unzulänglichkeiten werden dokumentiert
und bewertet.

Abstract

In the last years the demand for Open Source solutions increased considerably, es-
pecially in the area of public management and authorities. Resulting from this,
IT enterprises active in this business segment either have to provide new platform
independent products or migrate already existing ones. This thesis deals with the
migration of an existing system that generates software applications. The gener-
ated database applications get the needed data from an SQL database, are written
in Visual Studio, and run on a Microsoft operating system. The challenge to the
migration process consists in transferring this ”monoculture” of well coordinated
components into an open system. Outgoing from an analysis of the available tech-
nologies in the area of software migration and reengineering we try to adapt the
generator in order to generate Java programs executable on Linux. The resulting
application must be equivalent in appearance, behaviour, and functionality. The
chosen migration approach and the problems and inadequacies arising hereby are
documented and evaluated.

2

Acknowledgements

First of all I want to express my sincere gratitude to my supervisor at Inova Q, Mag.
Wilhelm Pfendt, for giving me the chance to work on this interesting and challenging
project. In the beginning he taught me the principles of effective and well-structured
programming, subsequently letting me work quite independently and in charge of the
project, but always giving me the support I needed. I do appreciate the technological
aspects of this project, for I have received complete insight into an astonishing and
elaborate software generating tool named IGS. The time spent at Inova Q was both very
productive and educational and will be of great importance for my further advancement.

I am deeply indebted to my supervisor at Technical University of Vienna, Prof. DI.
Dr. Franz Puntigam, whose comments and criticism significantly contributed to the
quality of this thesis. His stimulating suggestions, his patience and encouragement guided
me through all phases of research and writing. Without his inspiration and care the
thesis would likely not have matured, and its present content reflects the influence of his
invaluable feedback.

CONTENTS 3

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Introduction to IGS . 8

1.3 Thesis overview . 10

2 Software Migration and Reengineering 12

2.1 Notions . 12

2.2 Software Migration . 13

2.2.1 Aspects of Software Migration . 13

2.2.2 Steps of Software Migration . 14

2.3 Software Reengineering . 16

2.4 Software Prototyping . 16

2.4.1 Evolutionary Prototyping . 17

2.4.2 Throw-away Prototyping . 18

2.5 Program Understanding . 18

2.6 Language Conversion . 20

2.6.1 Translation via transliteration and refinement 20

2.6.2 Translation via abstraction and reimplementation 21

3 Java 22

3.1 Why Java? . 22

3.2 Comparing GUI Toolkits for Java . 23

3.2.1 AWT . 23

3.2.2 Swing . 24

3.2.3 SWT . 24

3.2.4 Selection . 25

CONTENTS 4

3.3 The Model-View-Controller Paradigm . 25

3.4 Swing Features . 27

3.4.1 MVC in Swing . 27

3.4.2 Programmable Look and Feel . 28

3.4.3 Renderers and editors . 28

3.5 Reflection in Java . 29

3.5.1 Class Class . 29

3.5.2 Dynamic method invocation . 30

3.6 Alternatives . 31

3.6.1 .NET . 31

3.6.2 Mono . 33

4 Implementing the Connection to the DB 38

4.1 Specifications . 38

4.2 The existing Connection Layer . 39

4.3 The DAO Pattern . 40

4.4 JDBC . 42

4.4.1 What is JDBC? . 42

4.4.2 Why JDBC? . 42

4.4.3 Important JDBC features . 43

4.5 IQDAO . 43

4.5.1 Architecture . 43

4.5.2 IQJdbcWrapper . 45

4.5.3 IQConnection . 46

4.5.4 IQDataSet . 47

4.5.5 IQCommand . 47

CONTENTS 5

5 Prototyping the Application 49

5.1 Introducing IFL . 49

5.2 Prototyping approach . 53

5.3 Prototype 1: UI with Fields . 53

5.3.1 Specifications . 53

5.3.2 Architecture . 53

5.3.3 Challenging Features . 54

5.4 Prototype 2: UI with Table . 67

5.4.1 Specifications . 67

5.4.2 Architecture . 69

5.4.3 Challenging Features . 70

5.5 Prototype 3: Master/Detail UI . 80

5.5.1 Specifications . 80

5.5.2 Architecture . 81

5.5.3 Challenging Features . 82

5.6 Evaluation . 84

5.7 Concluding Remarks . 85

6 Subsystem Architecture 86

6.1 Overview . 86

6.2 Call-In-Interfaces . 87

6.2.1 Operational methods . 87

6.2.2 Get- and Set-Methods . 88

6.3 Call-Out-Interfaces . 90

7 Adapting IGS 94

7.1 Creating Templates . 94

7.1.1 Form Templates . 95

7.1.2 Subsystem Templates . 96

7.1.3 Control Templates . 97

7.2 Conditional Compilation in Java . 99

CONTENTS 6

8 Results 102

8.1 Developing GUIs with Java . 102

8.2 Statistics . 104

8.3 Future Work . 105

9 Conclusions 106

A Abbreviations 107

B List of Figures, Tables and Listings 109

C Comparison between AWT, Swing and SWT 113

D Java Prototypes 115

D.1 Prototype 1: UI with Fields . 115

D.2 Prototype 2: UI with Table . 116

D.3 Prototype 3a: Master/Detail UI . 117

D.4 Prototype 3b: Master/Detail UI with Pages 118

E Subsystem Type Specification 119

E.1 IQSubsysFormType . 119

E.2 IQSubsysUseType . 120

F IRS File for Constants 121

1 INTRODUCTION 7

1 Introduction

1.1 Motivation

With a growing market for the Linux operating system it becomes increasingly important
to software enterprises to offer their essentially Windows-based software and products also
for the Linux platform. In the field of server systems, Linux is already a popular choice
of IT experts. Today’s server market is impossible to imagine without Linux. If stability,
scalability and openness are requests to meet, there is no alternative.

In the field of business applications and desktop solutions, where Windows is still pre-
dominant, the development is just at the beginning of the possibilities. As the increasing
presence of Linux in the press and a variety of current studies on the topic of using Linux
in enterprises shows, the demand for an open source solution increased considerably over
the last few years [Brucherseifer 2004].

The two primary key factors for the change from Windows to Linux are cost saving and
freedom from licensing dominance occurring in any proprietary environment. The switch
to Linux enables large and small companies world wide to reduce their most significant
overhead costs with relative ease.

Resulting from this change, the ability to offer software for all relevant platforms is
increasing in importance, and can be achieved by either developing new platform inde-
pendent products or by migrating already existing and approved ones.

This thesis deals with the more challenging second aspect. The challenge hereby con-
sists in migrating components designed for a proprietary system like Windows to their
appropriate components for an open system (in our case Linux).

The goal of this work is to answer the following question:

Which problems arise when migrating typical business software applica-
tions developed for Windows to cross-platform applications equivalent in per-
formance, appearance and functionality, and how can we address this prob-
lems?

We will explore this topic on the basis of migrating applications generated by the IGS
system from Windows to Linux. IGS is a system generating business applications with
connection to databases, developed by Inova Q, a Viennese company producing cus-
tomised software solutions.

Furthermore we will look at the quality of existing platform independent toolkits, the use
of free software in commercial projects, the respective GUI integration, and the approach
chosen for the migration process.

1 INTRODUCTION 8

1.2 Introduction to IGS

The information about IGS outlined in this section originates from [Inova Q 2004]. IGS
(Inova Q Generator System) is a software development tool that on the basis of a data
model and well defined rules, written in the description language IFL (Inova Q Form
Language), automatically generates database applications.

IGS has the goal to make customised software development:

• more accurate,

• reasonably priced,

• faster, and

• to a large extent independent from staff skilled in programming.

IGS technology tries to meet the typical requirements in the range of client-specific ap-
plication development:

• High efforts in analysis to understand the consumer’s business.

• Relational database as foundation.

• Reuse usually not possible or only possible in a small scale.

• The resulting application must be suitable for mission critical services.

• Frequent changes and enhancements.

• Short throughput time especially after completion of the analysis.

• No proper quality assurance with real data and simulated users is possible. In
general, the product is passed directly from the software developer to the user.

IGS adresses related problems by an innovative approach. It does not generate applica-
tions to their full extend, but builds a framework for the final application. The generated
application is fully operational and can be used right from the start. The application
provides a GUI with the needed functionalities (Print, Copy, Paste, Delete, Search, and
much more). Users can manipulate data within the range of the defined application types
(see definitions later in this section). Through existing Call-In- and Call-Out-Interfaces
additional functionality can easily be added by the developer.

IGS takes over laborious and intricate work like establishing a robust and error-free
connection to the database and developing the GUI with its functionalities. We use the
term ”framework” because the generated application is standardized in its behaviour
and look-alike, and to overcome this peculiarity (of generated software in general) the
application provides interfaces for the software developer to do the final adjustments.
The great virtue is that the software developer need not develop (and basically test) the
application from scratch, but can spend his/her time doing refinements.

The currently established software development process is as follows:

1 INTRODUCTION 9

1. (Pre-)requirement analysis either by the costumer, by a corporate consultant or by
another consultant (e.g., an IT-consultant having insight in the particular business
skills).

2. Technical analysis (Conceptual Design) by the developer.

3. Realisation of the software product followed by internal testing and integration
testing (Alpha Testing).

4. Initial start up and pilot phase (Beta Testing) which leads to final application
establishment.

5. Maintenance and adaptation.

Most problems hereby arise from breaks in the information flow between the individ-
ual steps. IGS tends to eliminate such breaks between steps two and three. This is
achieved by generating a large part of the application completely automatically. Thus,
the developer’s main focus is moved to the analysis phase, and time and effort concerning
programming are reduced. In addition, maintenance and adaptation become much easier.

By the use of IGS particularly complex and intricate (but constant) development steps
can be automated. Therefore, even employees with little coding know-how are able to
produce software products in convincing quality. Since efficient software developers are
rare, IGS reduces the need of software developers in favour of analysts and consultants.

The following target groups mainly benefit from the resulting potential:

• Independent software houses that develop costumer-related software.

• IT departments of mid-sized and great companies developing for themselves and/or
other companies.

• Companies with few or not so highly skilled software developers.

The essential part of IGS is the generation of program code that can directly be translated
into an executable program. This program code implements on the one hand the user
interface and on the other hand fundamental business logic and database access routines
(3-Tier-Architecture).

At present the following target platforms and application development systems are sup-
ported:

• Microsoft Visual Studio 6.0, target platform Win32

• Microsoft Visual Studio 2005 (in progress), target platform Win32

1 INTRODUCTION 10

1.3 Thesis overview

The reason for establishing this project is to enable IGS to create platform-independent
products. This goal shall be achieved by the use of the programming language Java pro-
vided that this is technically and commercially feasible. As the project’s target platform
Linux seems to be the most suitable choice because it is not proprietary and is freely
available.

A further requirement is that the application, after being generated, shall support adjust-
ments within predefined limits and through clearly structured methods and interfaces.
Therefore, the generated code must have a consistent, well-structured design. Developers
must be able to make any necessary adjustments in a standardized way and (as far as
possible) independent from the content of the program.

Arising from these requests there will be the following steps in the project:

Step 1 - Identification and implementation of Java base classes: In this first
step we must find an adequate Java model which satisfies the functional and technical
requirements of the project. At this stage in the project the internal functionality of the
generator need not to be understood to its full extent. Only a slight insight should exist
in what is the generator’s input and what is the resulting outcome.

The automatically generated application has, based on the given input, a predetermined
appearance and functionality. The initial challenge will be to examine GUI (graphical
user interface) toolkits for Java, whether they meet the above stated requirements. GUI
widgets such as text boxes, buttons, split-panes, and tables have to be examined. In
particular the differences in behaviour and appearance between them and the currently
used Visual Studio components must be clarified. If there are some differences, we have
to check how we can customise the Java components to achieve that in the long run they
will be similar to the given Visual Basic components.

To achieve this step’s goal we will mainly make use of prototyping. The prototypes will
help us to identify inconveniencies and differences and provide a basis for the development
of templates in step three. At the end of this first step it has to be clear whether the
desired functionality can be realised with Java and which GUI toolkit has to be used.

Step 2 - Elaboration of interfaces for manual adaptations: This second step of
the project consists of elaborating the interfaces through which the interactions between
manual adaptations and automatically generated code are possible. In this connection,
interfaces for three types of subsystems have to be provided:

• Data Entry Subsystems: Data entry subsystems are subsystems for data man-
agement (input and output of data). They can access the underlying database
either in reading or in writing mode.

1 INTRODUCTION 11

• Data Browsing Subsystems: Data browsing subsystems are subsystems for data
output (display and search of data). They can access the database only in reading
mode.

• Parameter Subsystems: Parameter subsystems are subsystems which are not
coupled with an underlying database.

For each of these three subsystem types we have to create Call-in-interfaces and Call-out-
interfaces. The former define public methods and functions which can be invoked from
outside of the generated code, the latter provide methods and functions to add manually
written code to the application.

At the end of step two the fundamental architecture of the generated software shall be
identified. Figure 1 shows the software development schema of IGS.

Figure 1: IGS Software Development Schema

Step 3 - Adaptation of IGS: The last step consists of two tasks. First, the templates
for the particular Java controls and the above mentioned subsystems must be developed.
This will be done on the basis of the prototypes elaborated in step one. These templates
will be filled by IGS with the appropriate data and serve as fragments to build together
the specified application.

Subsequently the used framework must be extended. It has to produce applications
written in Visual Basic and also applications written in Java. In essence we will develop
the Java code generator in this step. This task tends not to be too elaborate because
we will only have to adapt the already existing code generator without expanding the
process logic significantly.

2 SOFTWARE MIGRATION AND REENGINEERING 12

2 Software Migration and Reengineering

This section will give an adequate overview over the most important techniques in the
field of software migration and reengineering. Subsection 2.1 provides short definitions
of the techniques whereas subsections 2.2 to 2.6 describe them in more detail.

2.1 Notions

Software Migration: The notion of software migration stands for the changing of
basic software and/or the transformation of data into new formats. Moreover, software
migration is integration of old technology into new technology by extensive use of already
existing technologies [Müller 1997].

Reverse Engineering: Reverse Engineering means identification of system compo-
nents and their correlations. The aim is to get the descriptions of the system in another
form or on a higher abstraction level [Chikofsky et al. 1990].

Reengineering: Reengineering is examination and modification of a programming sys-
tem with the goal to reestablish it in a new form and subsequently implement this form
persistently [Chikofsky et al. 1990].

Prototyping: Prototyping is the process of building a model of a system. In terms
of an information system, prototypes are employed to help system designers to build an
information system for end users intuitive and easy enough to be used. Prototyping is an
iterative process and is part of the analysis phase of the systems development life cycle
[Sauter 1999].

Restructuring: Restructuring means the transformation between representation for-
malisms without changing the functionality, respectively the behaviour which can be
observed from outside [Müller 1997]. Restructuring can either be the transformation
from unstructured programs to structured programs by eliminating Goto’s, or merging
of multiple if’s to a case construct, or the normalization of data by eliminating synonyms
and homonyms.

Application Understanding: Application understanding is the identification of struc-
tures and attributes of the particular system, and comprehends the programs, databases,
libraries and files being used. Another field of interest is the interdependences between
the particular programs of the application [Müller 1997].

2 SOFTWARE MIGRATION AND REENGINEERING 13

Program Understanding: Program understanding means the process of understand-
ing the internal technical functionality of a program. This process requires understanding
of the program’s call hierarchy and the branches in control flow [Müller 1997]. Moreover,
it should be known where data is read and where it is written, and what effects are
caused by specific modifications. When we mention the term program understanding in
this thesis we mean application understanding and program understanding together.

Language Conversion: The transformation of a program from one language to an-
other conserving the genuine semantics of the former language is called language conver-
sion [Müller 1997].

2.2 Software Migration

2.2.1 Aspects of Software Migration

Software Migration is the transformation of a software system from one into another
(target) environment. It is a pure technical transformation with a strict definition of
the specifications. The legacy system gives a well-defined characterization of the system
functionality to be achieved [Gimnich et al. 2005]. The functionality can be verified by
a regression test after the migration has been done [Sneed et al. 2004].

The gathering momentum for such migration is usually altered requirements on software
systems. Like organizational requirements on business processes, enhancement of soft-
ware functionality, and external requirements. These requirements lead to non-functional
requirements of the system environment, which are the objects to deal with in the software
migration process.

Software migration is part of comprehensive reengineering activities where the available
software will be transferred to a new environment without changing persisting function-
ality. Thereby according to [Gimnich et al. 2005] there must be paid regard to technical
aspects as well as to aspects concerning the software.

Technical aspects are:

• Changing of hardware environment (from Mainframe to Unix).

• Changing of runtime environment (changes in the system software, such as OS,
DBMS).

• Changing of software architecture (from monolithic systems to multilayered archi-
tectures [Hasselbring et al. 2004]).

• Changing of application development system (changing of programming environ-
ment).

2 SOFTWARE MIGRATION AND REENGINEERING 14

[Sneed et al. 2004] adds following points to the group of software aspects:

• Data

• Userinterfaces

• Programs

Data migration means the transfer of the stored data as well as the underlying data
structures and schematas into the new system, user interface migration includes the
transformation of the interaction components for the user, and program migration ad-
dresses transformation of executable program logic. Software migration caused by these
two groups of aspects likely involve other software migration processes since there is a
strong interdependence between the individual aspects.

Figure 2 sketches the interdependences between the particular migration types.

Figure 2: Migration Types

2.2.2 Steps of Software Migration

Regarding to [Gimnich et al. 2005] the software migration process consists of the follow-
ing steps:

• Identifying the migration strategy: Basically there are three different strategies
to transfer legacy systems into their new environment. The first strategy is complete
redevelopment, where the system is directly implemented in the new environment.
The second (possible) strategy is wrapping. Following this strategy the old system
remains in the original state and the new system contains only interfaces to gain
access to it. Last but not least there is conversion. Conversion transforms the old
system into a new one in the target environment.

2 SOFTWARE MIGRATION AND REENGINEERING 15

• Defining the target environment: Preceding the transformation we must map
out the hardware environment, the system software, the application development
system, the software architecture, as well as the affected aspects concerning inter-
faces, data, and programs.

• Analysing the differences: This step implies an accurate examination of the
differences between legacy system and system to develop with regard to use of in-
terfaces, access techniques on data, and the linking of executable programs through
batch programs. If the transformation process makes use of language conversion,
the differences between the language and the data structures have to be studied.
The validation of the legacy system regarding to its general ability to be migrated
is a substantial precondition for the realisation of a migration project.

• Defining the complexity of migration: A qualitative and quantitative analysis
of the objects concerned by migration and their interdependences, as well as com-
parisons with migration projects already made, permits us to identify guidelines for
the complexity of the planed migration project.

• Specifying the transformation: Ahead of the implementation of migration the
necessary transformations have to be mapped out and the rules for conversion have
to be defined.

• Implementing the transformation: This step performs the migration and takes
place on basis of the decisions made in the steps before. Hereby the interrelated
modules must be migrated in iterative manner. [Sneed et al. 2004] recommends
beginning with data migration, then program migration and finally user interface
migration.

• Delivering the migrated system: Basically there are two strategies for deliv-
ery of a system. The complete delivery of the whole system all at once, called
Cold Turkey or Big Bang Strategy, or the incremental, step-by-step delivery, called
Chicken Little Strategy. In the latter case there will be a temporary co-existence
of the legacy system and newly developed system. Hence adequate synchronisation
measures have to be provided.

• Migrating the staff: The software developers who implement the migration as
well as the employees who will work later on with the migrated system have to
be skilled adequately. For the software developers this means they have to learn
methods and techniques of software migration and be trained in manipulation of
the legacy and the target system.

• Assuring quality: This step guarantees the functional equivalence of legacy and
target system. [Sneed et al. 2004] points this step out to be the greatest expense
factor of a migration project.

2 SOFTWARE MIGRATION AND REENGINEERING 16

2.3 Software Reengineering

Software Reengineering consists of analysing and changing an existing system with the
aim to implement the system in a new, changed form. This adjustment of the system
results mainly from new requirements to the software. Such reengineering objectives are
facilitating the maintenance of existing software products, extracting reusable compo-
nents from existing software products for incorporation into new systems or extracting
design information from an existing system to bring it under the control of a new envi-
ronment.

There are two different approaches to reengineering. The pure reengineering approach
only restructures the system without adding new functionality. Extended reengineering
first analyses and restructures the old system in order to add new functionality or change
already existing functionality.

2.4 Software Prototyping

In the software prototyping process an incomplete model of the latter fully featured
software program is created. This model allows evaluation on behalf of the clients and
gives them a first idea of the prospective program.

The merits of software prototyping are manifold. Most important is the gain of early
feedback to expose misunderstandings between clients and users on the one hand and
developers on the other hand. It is possible to compare whether the developed software
matches the requirements. Missing services can be detected and confusing services can
be identified. Prototyping allows us to derive enhanced and more realistic software spec-
ifications. Furthermore, users receive an early available working system in the initial
stage of the software developing process. Finally, a prototype allows insight into initial
project estimates and points out whether deadlines and milestones can be met. In the
long run software prototyping helps to avoid great expenses and difficulties in changing
the finished product.

But there are some important drawbacks, too. In a software prototyping process there is
often insufficient analysis. The focus on the limited prototype leads to inadequate analysis
of the complete project. By focussing too much on the prototype, better solutions may
be overlooked, specifications are likely to be incomplete, and therefore the final product
will be poorly engineered and hard to maintain. As another drawback the user may
be confused about prototype and real application. Users may expect the prototype to
exactly model the final system and may become used to features finally being removed.
Resulting wishes made by users can lead to uncontrolled changes in the project’s scope.
Moreover, these changes can occur at a time when the scope of a project is not properly
defined, documented, or controlled. If developers produce a too complex prototype or
loose time in debates over details of the prototype, they will delay the implementation
of the final product and development time of the finished system will be raised to an
excessive amount.

2 SOFTWARE MIGRATION AND REENGINEERING 17

Figure 3: Prototyping Process

Due to Figure 3 taken from [Malone 2005] the process of prototyping involves the following
steps:

• Identify basic requirements: This means determining the basic requirements
including the input and output information desired.

• Develop Initial Prototype: The initial prototype including only the user inter-
faces is developed.

• Review: The prototype will be examined and feedback on additions or changes is
provided.

• Revise and Enhance: Using the feedback obtained on the former steps both the
specifications and the prototype can be improved.

2.4.1 Evolutionary Prototyping

Evolutionary prototyping is an approach to system development where an initial pro-
totype is produced and redefined through a number of stages until the final system is
established. [Sommerville 2000].

The major task is to make a working system available to the client/user. The develop-
ment of the prototype begins with the specification requirements most easily to manage.
Evolutionary prototyping is used for systems where specifications are not clear from the
outset, as e.g., AI systems or user interfaces. The used techniques support rapid de-
velopment of the desired output mainly through rapid system iterations. Conveniences
of this approach are the possibility of quickly handing over the product to the client
if necessary and a high familiarity of end-users with the product. This familiarity not
only facilitates that the finished product satisfies the expectations of users, but moreover

2 SOFTWARE MIGRATION AND REENGINEERING 18

causes the user to already establish a relationship to the system. Specification, design
and implementation of the prototype are developed simultaneously.

The major drawbacks are potential maintenance problems resulting from permanent
changes. These changes can corrupt the system structure and lead to an inconsistent
design of the end product.

2.4.2 Throw-away Prototyping

A prototype is usually a practical implementation of the system produced only for the
purpose of discovering requirements problems. Once the problems are located the pro-
totype is discarded. The system is then developed using other development processes
[Sommerville 2000].

Throw-away prototyping mainly provides an instrument to screen the specifications to see
whether they are feasible, and then adapt or even discard them if necessary. In contrast
to evolutionary prototyping, the development of the prototype begins with specification
requirements. They are the most difficult part to implement and therefore the risk of not
defining them properly is reduced.

The prototype is developed in favour to identify the initial specification. After delivery
to the users and evaluation and adaptation of the requirements it is thrown away. The
prototype has no affinity to the final product, since many system characteristics are not
implemented yet. This type of prototype will be poorly structured and documented and
therefore hard to maintain.

Figure 4 shows the two main approaches to prototyping.

Figure 4: The two approaches to prototyping

2.5 Program Understanding

Program understanding is an essential precondition for migration and makes use of re-
sources to a great extent. The cause is the lack of confidence with the software to migrate.

2 SOFTWARE MIGRATION AND REENGINEERING 19

Most of the time in the migration process is needed for understanding where changes have
to be made to gain the desired results. The actual implementation itself is not so intri-
cate. The study made by Fjeldstad and Hamlen in [Fjeldstad et al. 1979] analyzes time
and effort of the single activities involved in the software maintenance process.

Table 1 shows the outcome of this study. The Summary of the first three values shows that
program understanding amounts to 47%, whereas modification (consisting of writing code
and documentation) makes up only 25%. The remaining part is testing with a percentage
of 28%. In other words, software professionals spend at least half of their time reading
and analysing software in order to understand it [Corbi 1990].

activity ratio

understanding request 18%
understanding documentation 6%
understanding of code 23%
implementing 19%
testing 28%
adapting documentation 6%

Table 1: Time and effort of maintenance activities

[Müller 1997] recognizes three theories to approach program understanding:

• Bottom-Up Understanding: In a bottom-up approach we first try to understand
individual base elements of the system in great detail. These elements are then
linked together to gain understanding of larger subsystems, which then in turn are
linked (sometimes in many levels) until the complete system is understood. In the
beginning the system is very small and then grows in complexity and completeness.
Thus, starting from the source code of the legacy system we get to an abstraction
on a higher level.

• Top-down Understanding: In a top-down approach program understanding
starts from the expectation we have in the behaviour of the system. From this
point of view we search for particular estimated structures and after recognizing
them we will put them together as in puzzle. A top-down approach treats the soft-
ware as a set of black boxes that can be reformulated for integration with other
systems. The black-box approach is preferred because the technology for inter-
facing and integrating is developing much faster than the technology for program
understanding [Weiderman et al. 1997]. However, black boxes can fail to illustrate
elementary mechanisms or to be detailed enough to realistically validate the model.

• Opportunistic understanding: Opportunistic understanding is a join of the
two former approaches. It uses both algorithmic and coding knowledge as well
as knowledge about domains. The term opportunistic states that everywhere in
the process of understanding the legacy program it is possible to choose the more
convenient and promising approach among the two.

2 SOFTWARE MIGRATION AND REENGINEERING 20

2.6 Language Conversion

Language conversion, or source-to-source-translation as often termed, is the translation
of a program in language L1 to a functionally equivalent program in language L2, where
L1 and L2 are generally different from each other.

The main reasons for language conversion are:

• Replacement of hardware or operating system.

• Desired enhancement in efficiency.

• Desired maintenance reduction of the new language.

There are two types of conversion schemas:

• Translation via transliteration and refinement.

• Translation via abstraction and reimplementation.

2.6.1 Translation via transliteration and refinement

This is a translation process in two steps where assignments in the source language are
converted to assignments in the target language. The source language first is literally
translated step-by-step, assignment by assignment into an intermediate program and then
refined and optimized.

Benefits are the straightforwardness of the transformation schema, and the assurance
of correctness and efficiency through a divide-and-conquer approach. Through locality
of conversion it gains correctness and through refinement it gains efficiency since this
translation makes use of optimisation techniques of the target language.

The main disadvantage hereby is missing improvement in the program code because
this conversion will not considerably make use of program language constructs of the
target language that are not available in the source language. To achieve improvements
a broader, more global perspective is needed. Figure 5 shows the two-stage translation
process.

Figure 5: Translation via transliteration and refinement

2 SOFTWARE MIGRATION AND REENGINEERING 21

2.6.2 Translation via abstraction and reimplementation

This kind of translation is like the translation reviewed above also done in two steps.
Differently from the former one this translation is not made locally but globally, and
not horizontally, from source to source, but vertically from source program to a higher
abstraction layer and then to the target program. Figure 6 shows the model of this
approach.

Figure 6: Translation via abstraction and reimplementation

The steps to be taken are:

• Global analysis of the source program.

• Setting up an abstract description.

• Mapping the description to the target language.

As an advantage, translation via abstraction and reimplementation eliminates the short-
comings of the source program, and the resulting program will rather be an improvement
of the original one. The drawback is the large complexity of implementing the abstraction
process.

According to [Terenkhov et al. 2000] the availability of constructions facilitating the ex-
pression of a solution determines how easy it is to formulate a solution for a particular
problem. If such constructions are available in the desired language, they are called na-
tive language constructions. For example if a conditional problem language construct
must be expressed, a language supporting conditional constructs is more convenient than
one that doesn’t. The latter language must simulate the conditional construct. There-
fore, these constructs are called simulated language constructs. The Language conversion
problem amounts to mapping its native and simulated constructs to hopefully only native
constructs.

Language conversion must consider who in the end will work with and has to maintain
the developed product. If these persons were familiar with the original software, the
conversion must be done in a mode ensuring the new system being as similar as possible
to the original system to achieve recognition of original code. If the users are new, the
target language idioms must be used to assure the originated code being as natural as
possible in this particular language.

3 JAVA 22

3 Java

This section outlines why we choose Java as programming language (Subsection 3.1) for
this project and which GUI toolkit (Subsection 3.2) is the best suitable for our needs. In
Subsection 3.3 we take a closer look on the Model-View-Controller paradigm because it
is fundamental when developing applications using a GUI. Subsection 3.4 explains how
MVC is solved in Swing and introduces some Swing features. Subsection 3.5 covers a
general programming mechanism called Reflection. Due to its great importance to this
project and the fact that it is a rather advanced feature, we explain the fundamentals
of reflection. In Subsection 3.6 we take a look at alternatives to Java and evaluate their
feasibility.

3.1 Why Java?

The properties making the use of the programming language Java attractive are present
in other programming languages too. Some of these languages are considered to be even
better suited for certain types of applications than Java. But the great virtue of Java is
to bring all these properties together in one language [Reilly 1999]. This benefit is the
decisive factor of using Java as programming language for this project.

The main Java virtues are in detail:

• Java is object-oriented: This means that a program is constructed from ob-
jects. Objects are reusable software components containing both the data and
the functions operating on this data. Programs using object-orientation are easier
understandable and more reliable than programs written in a procedural language.
Since the needed data and the functions using this data are part of the same object,
it is assured that all relevant information is local.

• Java is portable: The Java compiler produces machine-neutral code (the so-called
Java byte code) which on the target platform gets interpreted by the Java Virtual
Machine (JVM). Due to this mechanism Java is platform-neutral, and as result
every platform supporting the JVM can run the byte code of a Java application.
The source code of the application need not be present on the host platform. The
source code is protected from modification since only the byte code is available to
users. But more significant is the fact that Java code can be compiled once and run
on any machine and operating system combination supporting the JVM (”Write
once, run anywhere”). Thus, Java can run on Unix, Linux, Windows, Macintosh,
and even the Palm Pilot. Moreover, it can run inside a web browser, or a web server
[Reilly 1999].

• Java offers automatic garbage collection: Using Java, software developers
don’t need to allocate and reallocate memory for data and objects manually. When
memory is no longer needed reallocation is done automatically by the garbage col-
lector. Hence, programming complexity is reduced and the problem of memory
leaks is solved. By reallocating memory manually it is likely to forget some objects,
and the amount of free memory available will decrease.

3 JAVA 23

• Java is secure: Since Java was designed to support network programming, security
is of great importance in Java. At the API level there are strong security restrictions
on file and network access for applets. At the byte code level checks are made for
obvious hacks such as stack manipulation or invalid byte code [Reilly 1999].

• Java is simple and easy to use: Although Java is similar to C++ it does not
include its dangerous parts and is therefore safer and easier to use. Java provides no
memory pointers, but uses object references instead. Multiple inheritance has been
removed and replaced by a singly rooted hierarchy (with Object as the ultimate
ancestor of all classes) combined with Java interfaces.

These few points outline the main features of the Java language leading to the decision
to use Java as programming language for this project. A more detailed specification of
the Java language is given in [Gosling et al. 1996].

3.2 Comparing GUI Toolkits for Java

A fundamental decision at the beginning of this migration project is to find the appro-
priate library for the graphical user interface (GUI).

For Java there exist three main GUI libraries:

• Abstract Windows Toolkit (AWT) is the original Java GUI toolkit.

• Swing, originating from AWT, is the reference toolkit for the Java 2 Standard
Edition (J2SE).

• Standard Widget Toolkit (SWT) has been developed by IBM as part of the
Eclipse platform. Eclipse is an open source integrated development environment
(IDE) built using Java and SWT.

In addition there are some other Java toolkits like GTK+ and QTJambi not further
discussed here. The following comparison is essentially a summary of [Feigenbaum 2006]
where a well-founded overview of the topic is provided.

3.2.1 AWT

The main advantages of AWT are that it comes standard with every version of Java
technology and is very stable. It has not to be installed separately and software developers
can depend on it being available on any Java Runtime Environment (JRE).

For AWT Sun decided to use a lowest-common denominator (LCD) approach, and there-
fore AWT is very simple and limited. Only GUI components working on all host environ-
ments are used. Because of this approach we have to create some commonly used, but
not generally supported components by ourselves (e.g., tables).

3 JAVA 24

AWT components are thread-safe. Hence, some GUI update problems are eliminated,
but the application can run slower. AWT supports automatic disposal of unused GUI
components. Components can exist without a parent container or even change the parent
at runtime. With regard to automatically generate an application and its belonging GUI,
these are essential advantages.

The main problem of AWT is that it depends on host GUI peer controls to implement
the GUI. Thus, the AWT controls map directly and without modification to the host
platform’s graphic interface. According to this direct mapping the GUI looks and behaves
differently on different hosts, and a platform-independent application is really hard to
realise.

3.2.2 Swing

Swing, being built on parts of AWT, was developed by Sun to solve most of AWT’s
shortcomings. It provides more sophisticated GUI components. The components were
designed to be consistent across all platforms by minimizing their dependence on host
controls.

Swing uses peers only for top-level components like windows and frames. All other
components are emulated in pure Java code leading to a higher portability across different
platforms. Due to this emulation Swing is unfortunately no more able to take advantage
of hardware GUI accelerators and special host GUI operations. As a result applications
using Swing can be slower than applications using AWT.

Like AWT, Swing is part of the standard Java runtime environment and has not to
be installed separately. It also supports automatic disposal of GUI components, and
components can exist autonomously. Unlike AWT, the components are not thread-safe.

In contrast to AWT, Swing provides many architectural features making it more powerful
than AWT. The following features assure Swing to be the arguably best architecture of
the three toolkits:

• Separation of model, view, and controller.

• Programmable look and feel.

• Use of renderers and editors.

A more detailed description of these features is given in the sections 3.3 and 3.4

3.2.3 SWT

SWT is tightly integrated with the native host window system (especially with Windows,
but Linux and Solaris are supported as well). Nevertheless it is independent from the

3 JAVA 25

host’s operating system. The intention of designing SWT was to combine the advantages
of AWT and Swing without their disadvantages.

In concept it is comparable to AWT, because it is based on a peer implementation.
But differently from AWT, where peers can provide services to minimize the differences
between hosts, in SWT peers are only wrappers on host controls. The LCD problem
of AWT was solved by defining a set of controls based on native peers and creating
emulated controls (as in Swing) for any controls not supplied by the particular host.
Thus, SWT can be seen as a thin wrapper over the native code GUI of the host operating
system. Its great advantage over the other two toolkits is that an SWT-based GUI has
(differently from AWT and Swing) a host look and feel, and - even more important - a
host performance.

SWT does not support automatic disposal of GUI components. The software developer is
in charge of this task. Furthermore, SWT is less flexible than AWT or Swing regarding to
the fact that components cannot exist without a parent container and the parent cannot
change at runtime. As in Swing, SWT components are not thread-safe.

As major drawback SWT is not part of the Java runtime environment, but must be
installed separately. The needed libraries differ for different operation systems like Win-
dows, Unix, and Macintosh.

3.2.4 Selection

Each of the three considered toolkits has its advantages and disadvantages. The selection
of the appropriate one is a result of the given needs and the intended users.

In our case, AWT is out of the consideration, since it does not support needed components
like Tables, Trees, and Progress Bars. Thus, the decision is between Swing and SWT
which are both complete and powerful enough to build full-function GUIs. SWT would
be the proper choice if the application is to be developed only for one platform. There
it takes advantage of its better host compability including integration with host features
(like ActiveX controls under Windows). Moreover, it has better performance than Swing.
But, the decisive factors for the selection of Swing are the characteristics of Swing being
built completely onto Java technology and therefore being highly portable.

In Appendix C in Figure 25 and Figure 26, both taken from [Feigenbaum 2006], the most
important characteristics of the AWT, SWT, and Swing libraries are summarized.

3.3 The Model-View-Controller Paradigm

”The Model-View-Controller (MVC) pattern separates the modelling of
the domain, the presentation, and the actions based on user input into three
separate classes” [Burbeck 1992].

3 JAVA 26

Model-View-Controller is a fundamental design pattern for the separation of user interface
logic from business logic. The MVC architecture was introduced first in Smalltalk-80 to
construct graphical user interfaces. It provides several views for one and the same data.
Its main field of application are interactive systems where the main focus is on man-
machine communication and hence on the GUI.

In such interactive systems the functional core and presentation are separated. In gen-
eral, the functional part remains stable whereas user interfaces frequently are subject to
modifications, either by expanding the functionality, by changes in the graphical user
interface, or by migrating it to another platform with another look and feel. A tight cou-
pling between user interface and functional code complicates further development since
many areas in the system are affected. The configuration of the user interface at runtime
must be possible.

To satisfy these requirements interactive systems are being separated in three types of
components: Model, View and Controller.

The following definitions are taken from [Burbeck 1992]:

• Model
The model manages the behaviour and data of the application domain, responds to
requests for information about its state (usually from the view), and to instructions
to change the state (usually from the controller).

• View
The view manages the display of information.

• Controller
The controller interprets the mouse and keyboard inputs from the user, informing
the model and/or the view.

The model is the central component to perform operations on data. It is either indepen-
dent from the presentation of output data or from a certain behaviour of input data. The
model defines the functionality of the application and contains and encapsulates its state.
It responds to requests concerning the state of the application and informs the associated
(registered) views and controls about changes. It provides methods for evaluation and
processing of input and enables access to displayed data.

The view is the output component of the MVC architecture. One or many views represent
the model which they can consult in case of changes. Input from the user is accepted
and sent to the controller. The views present the information to the user. After changing
essential information the according view is getting informed by the model and brought
up-to-date. Every view maps to an adequate controller component.

The controller is the input component of the MVC architecture, and defines the behaviour
of the application. The functionality of the model is defined in the controller. Hence,
user actions are mapped onto modifications of the model, and the appropriate view for
the presentation of the model is choosen. Controllers are always assigned to a specific

3 JAVA 27

view. All user input accepted by this view is handled by the controller and then passed
on to the model. The controller causes its view to be updated after changes.

Figure 7 shows a detailed MVC abstraction.

Figure 7: The Model View Controller architecture

3.4 Swing Features

3.4.1 MVC in Swing

The architecture of Swing is not strictly based on the traditional model-view-controller
design, but on a common variation where controller and view are combined into a single
UI object. This so-called UI delegate object is the basis for each individual Swing UI
component whereas the typical MVC design pattern is used to construct entire user
interfaces.

Each UI object (e.g., table, button, field, ...) has its own component-specific UI-delegate
providing the group of methods for the specific component class. Since communication
between view and controller is very complex, the combination of them makes component

3 JAVA 28

design a lot easier. Furthermore, even when the component is in use the model, view,
and controller object can be replaced. These characteristics offer great flexibility to a
software developer using Swing.

Figure 8: Swing MVC Model

As seen in Figure 8, model, view, and controller are bundled within component and their
presence is masked to the observer. The component holds the three classes and hides
them from the software developer. Direct access of these classes is not favoured. Many
of the methods provided by the component class are wrappers passing along the method
invocation to either the model or the UI delegate.

3.4.2 Programmable Look and Feel

The term ”look and feel” means the appearance and the behaviour (e.g., how it reacts
to input events) of an application [Krüger 2002]. A useful characteristics of Swing is the
possibility to change the look and feel of an application. The look and feel of a GUI
is controlled by a separate and dynamically replaceable implementation allowing us to
change all or parts of it. This feature, termed pluggable or programmable look and feel,
allows software developers to choose between predefined motifs for each operating system
and even to write own look and feels. Though the decision for or against a certain look
and feel need not be made while designing or developing the application. In fact all Swing
components were designed that way giving us the possibility to change the look and feel
comfortably even at runtime.

3.4.3 Renderers and editors

Components showing model content, such as lists, tables, and trees, can process model el-
ements of almost any type. To do this a renderer or editor is mapped for each component
type and model type [Feigenbaum 2006]. For example, a table column containing a spe-
cific data type value can have different code portions to deal with either the presentation
or the editing of the value.

3 JAVA 29

3.5 Reflection in Java

”As its name suggests, reflection is the ability for a class or object to
examine itself. Reflection lets Java code look at an object (more precisely the
class of an object) and determine its structure” [Niemeyer et al. 2005].

According to [Simmons 2004] reflection is one of the least understood, but also one of
the most powerful aspects of Java. [Sun 2007] describes reflection as commonly used by
programs requiring the ability to examine or modify the runtime behaviour of applications
running in the Java virtual machine. This relatively advanced and powerful technique
can allow applications to perform operations which otherwise would be impossible.

With the aid of reflection it is possible to find out the constructors, methods, fields,
and attributes a class has. It enables the use of classes at runtime without knowing their
name beforehand. Objects of these classes can be created dynamically and access to their
methods and attributes is possible. Therefore, reflection, also known as introspection,
supports the development of high-flexible and generic applications.

The Reflection API allows us to operate on classes and objects in ways such as the
following [Darwin 2007]:

• Load a class file into memory at runtime, knowing only its name.

• Given a class, examine its methods, fields, constructors, annotations, and so on.

• Given a class, invoke constructors and methods.

• Given a class and an instance, access fields.

• Given an interface, create proxies for it dynamically.

3.5.1 Class Class

The basis for the Reflection API are the classes java.lang.object and java.lang.class. The
object class is the base class for all objects in Java, and therefore every class in Java
offers methods like toString() or getClass(). In connection with reflection especially the
latter is important because it returns the particular class of the object.

An object of class Class represents a Java class. The runtime environment creates auto-
matically an object for this class during the first loading of a class. All objects of type
class are managed internally by the runtime environment so that for any class always the
same class object is used.

The class Class provides methods to retrieve the structure of a class, to dynamically load
classes by means of their names, and to create objects.

3 JAVA 30

Table 2 lists some important methods of class Class.

Method Description

Field[] getFields() Gets all public variables, including inherited ones.
Field getField(String name) Gets the specified public variable, which can be

inherited.
Field[] getDeclaredFields() Gets all public and non-public variables.
Field[] getDeclaredField(String name) Gets the specified variable, public or non-public.
Method getMethods() Gets all public methods, including inherited ones.
Method getMethod(String name,
Class...argumentTypes)

Gets the specified public method whose arguments
match the types listed in argumentTypes.

Method getDeclaredMethods() Gets all public methods declared in this class.
Method getDeclaredMethod(String name,
Class...argumentTypes)

Gets the specified method whose arguments match
the types listed in argumentTypes, and which is
declared in this class.

Table 2: Important methods of class Class

Reflection allows us to analyse the structure of a class. Structures are returned as objects
of type field, method, and so on. Each of these classes again provides methods to further
analyse the structure or to gain access to it. As an example in the next subsection we
will illustrate the class Method.

3.5.2 Dynamic method invocation

The starting point for dynamic method invocation at runtime is an object of type Method.
We can get such an object with the methods of Class described above. An object of type
Method represents exactly one method. Method itself provides various methods, but we
will put the focus on one method. The invoke() method can be used to call the underlying
object’s method with specified arguments and acts in some way as a method pointer. In
Listing 1 inspired by [Ullenboom 2007], a method object for class java.awt.Point is created
and by means of its invoke() method the x- and y-value of two different point objects are
dynamically set.

Listing 1: Dynamic method invocation
1 import java . awt . ∗ ;
2 import java . lang . r e f l e c t . ∗ ;
3
4 c l a s s DynamicMethodInvocation
5 {
6
7 pub l i c s t a t i c void main (S t r ing args []) throws Exception
8 {
9 Point p1 ;

10 Point p2 ;
11 Method method ;
12
13 p1 = new Point (1 0 , 0) ;
14 p2 = new Point (1 0 , 0) ;
15 method = p1 . ge tC la s s () . getMethod (” se tLoca t i on ” , i n t . c l a s s , i n t . c l a s s) ;
16
17 method . invoke (p1 , 1 , 2) ;
18 System . out . p r i n t l n (p1) ; // => java . awt . Point [x=1,y=2]

3 JAVA 31

19 method . invoke (p2 , 3 , 4) ;
20 System . out . p r i n t l n (p2) ; // => java . awt . Point [x=3,y=4]
21 }
22 }

Table 3 lists the methods of class Method.

Method Description

String getName() Gets the name of the method.
int getModifiers() Gets the modifiers of the method.
Class getReturnType() Gets the return type of the method.
Class[] getParameterTypes() Gets the parameter types of the method in the order the must

be specified.
Class[] getExceptionTypes() Gets the exception types of the method, which are the types

specified in the throws clause.
Class getDeclaringClass() Gets a class object of the type declaring the method.
boolean isVarArgs() Returns whether the method allows a varying number of pa-

rameters.
Object invoke(Object obj,
Object...args)

Calls the method of Object obj with the specified parame-
ters args and returns its result. If the method expects prim-
itive types they must passed with the aid of wrapper classes.
The Reflection API converts them internally into the adequate
primitive types.

Table 3: Important methods of class Method

3.6 Alternatives

This section offers a short overview about the .NET technology. The .NET framework
was created by Microsoft (not only, but also) as an alternative to the Java platform. Next
we will deal with Mono, which builds up on .NET, but in contrast to .NET is really open
source. Since the language is still relatively new, we will describe it more detailed. With
the aid of some small examples we will demonstrate Mono’s language independence and
the power of the concept behind it.

3.6.1 .NET

.NET, what is it about? What is so interesting on this platform and what is new in this
technology? Microsoft describes .NET on its web page [Microsoft.net] as follows:

The .NET Framework is a development and execution environment that
allows different programming languages and libraries to work together seam-
lessly to create Windows-based applications that are easier to build, manage,
deploy, and integrate with other networked systems. Built on Web service

3 JAVA 32

standards, .NET enables both new and existing personal and business appli-
cations to connect with software and services across platforms, applications,
and programming languages. These connections give users access to key in-
formation, whenever and wherever you need it.

This means, confronted with a particular problem, .NET offers us the possibility to use
the most suitable technology. To satisfy the above mentioned requirements, Microsoft
offers three different solutions of realisation. These solutions concern web services, .NET
remoting services for distributed applications in LAN networks, and the .NET enterprise
services.

The latter can be viewed as a competitive product to the J2EE technology developed by
Sun. The Common Language Runtime (CLR) is the most important part of .NET. The
CLR is a just-in-time compiler that translates a .NET program into machine code. It
is comparable with Java’s virtual machine. Figure 9 (taken from [De Icaza 2005]) shows
the architecture of the CLR compiler

Figure 9: Common Language Runtime

With the .NET framework Microsoft uses a middleware concept and provides, at least
theoretically, similar conditions for the development of platform independent software as
the Java platform. Unfortunately, Microsoft uses the aspect of platform independence
primarily in it’s field of activity and only for own purposes. The .NET-Framework has
been planned to be used only for applications on Windows operating systems.

Nevertheless, Microsoft in November, 2000 revealed it’s specifications for the program-
ming language C#, the CLR and parts of the FCL (the .NET Framework Class Library)
to the standardization committees ECMA and ISO and allowed therefore at least the
basic possibility of real platform independence for the .NET-Framework (though without
own participation) [Easton et al. 2004].

Based on the ECMA specification there originated several projects with different objec-
tives. The most important project among them is Mono.

3 JAVA 33

3.6.2 Mono

Mono is an open source implementation of the Microsoft .NET framework. In opposition
to .NET, Mono is not only available for Windows, but also for the other common OS like
Linux, Unix, MacOS and Solaris [Dumbill et al. 2004].

The fact that libraries developed with Mono can be used cross-platform is only one of its
advantages. Another benefit compared to the Microsoft counterpart consists in the fact
that Mono supports not only the programming language C#, but also other important
languages like Java, Python, and some more. Therefore, a developer can use the language
appearing most appropriate to him for the particular problem, or even combine several
different languages. The possibility to combine and apply together different computer
languages makes Mono an effective and efficient platform for software architects.

However, Mono is not a full conversion of .NET. Elements like Windows.Forms and Vi-
sual Basic are (still) missing. But, it is worth mentioning that in the following versions
of Mono the missing elements shall be added. The actual version contains additional
database layers, improved XML interfaces, LDAP (Lightweight Directory Access Proto-
col) functionality, and with GTK# an graphics API that extends and improves the .NET
framework [Dumbill et al. 2004].

In Figure 10, taken from [De Icaza 2005] the various components of Mono are shown.

Figure 10: Elements of Mono

Mono tries to remain compatible with Microsoft .NET. Thus, with Mono it is possible to
develop freely available applications which do not have licence problems when running
under Windows. The porting of .NET programs from Windows to other platforms like
Linux is made easier with Mono. Mono originated in 2001 from the GNU project Gnome
that had similar difficulties with grown program interfaces like Windows. The idea of

3 JAVA 34

language independency in the Linux world was as attractive as under Windows. A major
advantage of Mono is to use programs developed for the Windows OS also under Linux.
This fact increases the attraction of Gnome and Linux [Mählmann 2005].

The Open Source project Mono was launched in June, 2001 by the Ximian company. The
ECMA standard was taken as premise to be able to develop Linux software cheaper and
of higher quality than up to now. From the company’s view in particular the amount of
interoperability features spoke for the standard and against the use of the comparable
Java platform. Unfortunately the porting of .NET to Mono is still only partially in a con-
sistent and final state, as can exemplarily be seen on the non-existence of Windows.Forms
[Easton et al. 2004].

Why Mono?

According to [Dumbill et al. 2004] there are various reasons to use Mono as programming
language for projects.

• Brings together language features of several modern programming languages.
While Mono’s technologies are present in various languages, the conjunction of them
in a single platform makes developing with Mono attractive and exciting.

• Provides a controlled environment.
Programs are compiled into a bytecode known as the Common Intermediate Lan-
guage (CIL), and run as managed code in a controlled environment.

• Reuses existing code investments.
Mono makes it easy to reuse existing investment in code libraries. This feature is
especially in our case very interesting. If we decide in a near future to switch to
Mono, the work on the Java project is not lost. Moreover, we can use existing and
well proven parts of the legacy system (e.g., the ADO layer).

• Fast to write, fast to run.
Developing with Mono and C# can bring significant productivity increases, since
C# can easily be understood by developers coming either from a Java or C++
background. The runtime of Mono uses a just-in-time (JIT) compiler to translate
the bytecode, maximizing application performance.

• Presents cross-platform code and migration paths.
Unlike .NET, Mono is cross-platform, supporting Windows, Linux, MacOS, and
hardware including x86, PowerPC, and SPARC processors.

• Provides a choice of languages.
The CLR is not restricted to C# alone, but provides compilers for Java, JavaScript,
Basic, C, Phyton, and even Cobol.

The language independence mentioned in the last point of the enumeration is one of
Mono’s main advantages and increases the flexibility and expressiveness. The introduc-
tion of IKVM and the following example, taken unmodified from [Dumbill et al. 2004]
give an idea about the power of this feature.

3 JAVA 35

***** Begin of excerpt *****

IKVM is a runtime for Java that works by translating Java bytecode into CIL bytecode.
By incorporating bridging technology, IKVM enables Java programs to make calls to
Mono assemblies, and Mono code to use Java class libraries.

The follwing example demonstrates calling Mono assemblies from Java.

Listing 2 shows a C# program, which is compiled into an assembly that later on will be
invoked from Java code.

Listing 2: C# Adder Class: Adder.cs
1 us ing System ;
2
3 pub l i c c l a s s Adder
4 {
5 pub l i c i n t Add(i n t a , i n t b)
6 {
7 re turn a + b ;
8 }
9

10 // example usage from C#
11 pub l i c s t a t i c void Main (s t r i n g [] a rgs)
12 {
13 Adder a = new Adder () ;
14 Console . WriteLine (”1 + 2 = {0}” , a .Add (1 , 2)) ;
15 }
16 }

IKVM provides a tool called ikvmstub that converts the Mono assembly placed in an
*.dll file into a *.jar file needed by the Java compiler. With the following commands the
conversion takes place.

$ mcs -target:library Adder.cs
$ mono $IKVMDIR/ikvmstub.exe Adder.dll

Listing 3 shows a small Java program to invoke the Adder class. In Line 1 we see the
import of the Adder class. ikvmstub changed its notation from Adder.cs to cli.Adder,
which indicates the conversion by ikvmstub.

Listing 3: Java Adder Client Class: AddClient.java
1 import c l i . Adder ;
2
3 pub l i c c l a s s AddClient
4 {
5 pub l i c c l a s s AddClient
6 {
7 pub l i c s t a t i c void main (St r ing [] a rgs)
8 {
9 Adder adder = new Adder () ;

10 System . out . p r i n t l n (”1 + 2 = ” + In t eg e r . t oS t r i ng (adder .Add (1 , 2))) ;
11 }
12 }

The following commands then will compile and execute the program.

3 JAVA 36

$ javac -classpath Adder.jar AddClient.java
$ MONO PATH=$MONO PATH:. mono $IKVMDIR/ikvm.exe -classpath .:Adder.jar
AddClient

The setting of MONO PATH in the second command is needed to instruct Mono where to
look for the implementation of Adder from Adder.dll. At start-up time IKVM translates
the Java AddClient program and executes it inside the Mono runtime.

The contrary use of IKVM making Java class libraries available to Mono applications is
shown in a reverse implementation of the first example.

Listing 4: Java Adder Class: JAdder.java
1 pub l i c c l a s s JAdder
2 {
3 pub l i c i n t Add(i n t a , i n t b)
4 {
5 re turn a + b ;
6 }
7 }

Listing 5: C# Adder Client Class: JAddClient.cs
1 us ing System ;
2
3 pub l i c c l a s s JAddClient
4 {
5 pub l i c s t a t i c void Main (s t r i n g [] a rgs)
6 {
7 JAdder j = new JAdder () ;
8 Console . WriteLine (”1 + 2 = {0}” , j .Add (1 , 2)) ;
9 }

10 }

The program can be compiled and executed by the following commands. The reference
to IKVM.GNU.Classpath.dll makes the Java runtime APIs available to Mono.

$ javac JAdder.java
$ mono $IKVMDIR/ikvmc.exe -reference:$IKVMDIR/IKVM.GNU.Classpath.dll -target:library
JAdder.class
$ MONO PATH=$MONO PATH:.:$IKVMDIR mcs -r:JAdder.dll JAddClient.cs
$ MONO PATH=$MONO PATH:.:$IKVMDIR mono JAddClient.exe

***** End of excerpt *****

Why not Mono?

Particularly with regards to the future there exist many open questions and there is still
need for discussion. The question may be raised whether there is a desire for .NET under
Linux.

With some libraries and modules (e.g., web service and security) Mono extends and
improves the existing .NET platform. Nevertheless, Mono receives neither consideration

3 JAVA 37

nor support from Microsoft. Microsoft can change its system in such a way that Mono
is not applicable any more and many developers are forced to bind themselves further
to Microsoft instead of using a free solution (e.g., through changes in the graphical user
interface).

It will be interesting to keep track of how Microsoft positions itself to Mono in future.
Will Microsoft tolerate Mono, support or maybe even try to forbid it? Should Microsoft
change its patents, Mono would have to rewrite various components of its language. This
would basically mean that it does not correspond any more to the Microsoft standard
which, however, is not required under Linux [Mählmann 2005].

Concluding this section it must be said that at the moment the Mono platform is still
in a too early stage of development to take it actually into consideration. As long as
Microsoft’s position to Mono is insecure the risk in developing for the Mono platform is
too great.

Mono together with .NET provides some remarkable benefits, but like Java, it will suffer
from the same performance problems when trying to be completely platform independent.

In the case that applications need not to be real cross-platform but use according to the
OS the adequate API, Mono takes advantage over Java on a Linux system through its
use of GTK# (and maybe in future with Windows.Forms even on Windows).

4 IMPLEMENTING THE CONNECTION TO THE DB 38

4 Implementing the Connection to the DB

The first step of the migration process is the design of the connection between application
and database. The resulting connection layer is a very important component within this
project since the data transfer to and from the database has great influence on almost
every aspect of the project.

Subsection 4.1 provides a detailed listing of the requirements the connection layer has to
meet. Since according to this task we won’t reinvent the wheel we will take the already
existing connection layer of the legacy system as model. Subsection 4.2 sketches the
components of the legacy system. In Subsection 4.3 the DAO-pattern will be introduced.
Together with the existing layer this database access pattern will build the basis for the
architecture of our connection layer. Subsection 4.4 outlines the database access API we
choose to accomplish this task, whereas subsection 4.5 presents the resulting connection
layer called IQDAO.

4.1 Specifications

The requirements concerning this task are in detail:

• Database access shall be implemented securely with regard for availability, integrity,
and confidentiality of the data.

• The entry and update of data stored in databases shall be accomplished in accor-
dance with the business rules established in software application systems. Data
shall be entered and updated using software applications and business rules to pro-
tect the data from unauthorized or accidental access and to ensure security, data
integrity, and accurate interpretation of the data. Data access and permissions
shall be assigned within the context of the software application, ensuring the rel-
evant business rules implemented by the software application system for normal
entry and update not to be violated.

• Database access routines shall be written as independent of the platform and un-
derlying data structure as feasible. Separating database access logic from the ap-
plication logic of a software application makes it easier to relocate or restructure
the database, and to re-platform the back-end services with minimal disruption of
the software applications using the database. In a first step the connection layer
must be able to deal with Oracle databases and Microsoft SQL Server databases.
Nevertheless, for future expansions, easy access to other databases of less important
(in the sense of market penetration) providers shall be facilitated.

• The emerging data volume need not be subject to other restrictions than those
established by the underlying platform (e.g., hardware, operating system).

• Special attention shall be paid to the scalability and expandability of the connec-
tion layer. Future enhancements shall be facilitated without degradation of system
performance.

4 IMPLEMENTING THE CONNECTION TO THE DB 39

• Efficient and straightforward access to most of the current data types.

• Transparency in the development of the connection layer for the various different
databases.

• Easy adaptability and validation of entered configuration data.

4.2 The existing Connection Layer

The main goal of this task is to emulate the behaviour and functionality of the existing
system written in Visual Basic and based on ADO and OLE DB as accurately as possible.
First of all, the fact that these elements all have been developed from Microsoft and work
together well facilitates the design of a homogeneous architecture. As second great virtue,
this system is already in use by database business applications developed by Inova Q Inc.
and is well proven, secure, and efficient.

Before covering the further approach the existing components will be described in a
nutshell.

OLE DB: OLE DB (Object Linking and Embedding Database) is Microsoft’s strate-
gic low-level application program interface (API) for access to different data sources.
OLE DB includes not only the Structured Query Language (SQL) capabilities of the
Microsoft-sponsored standard data interface Open Database Connectivity (ODBC) but
also includes access to data other than SQL data. As a design from Microsoft’s Compo-
nent Object Model (COM), OLE DB is a set of methods for reading and writing data.
[SearchSQLServer.com]

ADO: Microsoft ActiveX Data Objects (ADO) is a set of Component Object Model
(COM) objects for accessing data sources. It provides a layer between programming lan-
guages and OLE DB. ADO objects can be used in any language that supports COM and
automation (i.e., Visual Basic, Visual C++, Visual Fox Pro, VBScript, etc.). ADO is able
to interface not only with relational databases, but also with non-relational databases,
folders, data files, and even e-mail messages. [msdn]

COM: Microsoft COM (Component Object Model) technology in the Microsoft Windows-
family of operating systems enables software components to communicate. COM is used
by developers to create re-usable software components, link components together to build
applications, and take advantage of Windows services. The family of COM technologies
includes COM+, Distributed COM (DCOM) and ActiveX Controls. [Microsoft.com]

4 IMPLEMENTING THE CONNECTION TO THE DB 40

ODBC: ODBC is a standardized API, developed according to the specifications of the
SQL Access Group, that allows one to connect to SQL databases. It defines a set of
function calls, error codes and data types that can be used to develop database independent
applications.[Kingsley 1993]

Whereas the existing system makes use of ADO as a high-level interface to provide ease of
access to data stored in a wide variety of database sources, for the new system to develop
no high-level Java API exists. Java offers some technologies (like JDBC, SQLJ, Java
DB, ...) to link applications to databases. For this project only JDBC will be considered
since it is the industry standard for database-independent connectivity between the Java
programming language and a wide range of databases.

4.3 The DAO Pattern

According to the given requirements we have to design an architecture for the data source
access. Sun in [Sun 2001] implemented a pattern being very suitable for these needs.
Because, despite all SQL standardization efforts, even within an RDBMS environment
the actual syntax and format of the SQL statements can vary depending on the particular
database product [Sun 2001], the so-called Data Access Object pattern was designed. Since
we must ensure that there is no direct dependency between application code and data
access code (this would make it difficult and tedious to adapt the application to new
requirements) the DAO pattern appears to be an adequate solution. The components
to be developed need to be transparent to provide easy migration to different vendor
products, storage types, and data source types. The DAO was designed to abstract and
encapsulate all access to the data source. The DAO manages the connection with the data
source to obtain and store data [Sun 2001].

The DAO provides simplified interfaces for its clients to access and work with the data
source. Hiding the implementation details of the data source from the clients this pattern
allows changes and adaptations without affecting the business object implementation of
the clients. Thus the DAO acts as an adapter between business components and the
underlying data source. Figure 11, taken from [Sun 2001] shows the class diagram for the
DAO pattern.

Figure 11: Data Access Object

4 IMPLEMENTING THE CONNECTION TO THE DB 41

[Sun 2001] specifies the needed components as follows:

• BusinessObject
The BusinessObject is the object requiring access to the data source to obtain and
store data.

• DataAccessObject
The DataAccessObject is the primary object of this pattern. The DataAccessOb-
ject abstracts the underlying data access implementation for the BusinessObject to
enable transparent access to the data source. The BusinessObject also delegates
data load and store operations to the DataAccessObject.

• DataSource
The DataSource object represents a data source implementation. A data source
can be a database such as an RDBMS, OODBMS, XML repository, flat file system,
and so forth. A data source can also be another system (legacy/mainframe), service
(B2B service or credit card bureau), or some kind of repository.

• TransferObject
This object represents a transfer object used as a data carrier. The DataAccessOb-
ject can use a transfer object to return data to the client. The DataAccessObject
can also receive the data from the client in a transfer object to update the data in
the data source.

According to [Sun 2001] the use of the DAO pattern has the following benefits:

• Enables transparency
Applications can use various data sources without knowing their internal specific
details. The implementation details are hidden inside the DAO and therefore the
access to the database is transparent.

• Enables easier migration
Since the business application objects have no knowledge of the underlying data
implementation, migration involves only changes in the DAO layer. Hence, it is
easier to migrate to a different or add a new database implementation.

• Reduces code complexity in business objects
All data access code is managed by the DAO and therefore the code complexity of
the clients using the DAO is reduced. Thus, the code readability and development
productivity is improved.

• Centralization of all data access in a separate layer
Since DAO is as a separate data access layer it isolates the rest of the application
from the data access implementation. Therefore, the application will be easier to
maintain and manage.

• Adding of an extra layer
The DAO creates an extra layer between client and data source.

4 IMPLEMENTING THE CONNECTION TO THE DB 42

4.4 JDBC

4.4.1 What is JDBC?

The JDBC API provides programmatic access to relational data from the Java program-
ming language. Using the JDBC API consisting of a set of classes and interfaces, appli-
cations written in the Java programming language can execute SQL statements, retrieve
results, and propagate changes back to an underlying data source. The JDBC API can
also be used to interact with several data sources in a distributed, heterogeneous environ-
ment. [Sun 2006]

4.4.2 Why JDBC?

The Java Database Connectivity (JDBC) API provides a call-level API for SQL-based
database access. A wide range of underlying data sources or legacy systems can be
accessed. Differences in the implementation of these systems are masked through JDBC
API abstractions. Thus, it is a valuable target platform for developers who want to create
portable tools or applications. An application written in Java can access virtually any
data source and run on any platform with a Java Virtual Machine.

Being a call-level interface it is suitable as a layer for higher-level facilities. Its intention
is to be a simple-to-use, straight forward interface upon which more complex entities can
be built.

Applications written in Java and using JDBC do not directly access the database, but
communicate with a so-called database manager. All instructions sent to the database
manager are forwarded to a database specific driver. Through this chaining of several
connectors, applications remain independent of specific databases. Figure 12, taken from
[Computerbase.de], shows database access using the four possible driver types.

Figure 12: JDBC Database Access Schema

4 IMPLEMENTING THE CONNECTION TO THE DB 43

JDBC can be used to query and update database tables using so-called dynamic SQL
statements. These are statements where, for example, the number and types of columns
in the database are not statically known. With JDBC an application can construct the
needed SQL statements at runtime. This benefit is essential in the case of program
generation.

4.4.3 Important JDBC features

Scrollability Scrollability refers to the ability to move backward as well as forward
through an existing result set. Associated with this feature is the ability to move to
any position in the result set, through either relative positioning or absolute positioning
[Oracle 2002]. The first property allows us to move a specified number of rows backward
or forward from the current row whereas the second allows us to move to a specific row
number, counting from either the begin or end of the result set.

Sensitivity Sensitivity refers to the ability to detect and reveal changes made to the
underlying database from outside the result set [Oracle 2002]. Being sensitive a result
set provides a dynamic view of the underlying database because it can see the changes
made to the database. An insensitive result set provides a static view of the underlying
database. While the result set is open no changes to the underlying database are visible.
To see changes to the database a new result set must be retrieved.

Updatability Updatability refers to the ability to update data in a result set and then
(presumably) copy the changes to the database [Oracle 2002]. Thus, updates, inserts, and
deletes can be performed on the result set and copied to the underlying database.

4.5 IQDAO

4.5.1 Architecture

On the basis of the DAO pattern described in Section 4.3 and the already existing ADO
connection layer we designed the iQDAO package. As the ADO data model it consists of
three main components (and an additional fourth important component).

• IQConnection
The IQConnection object enables the communication with the database and con-
tains the basic information about the database. It provides a basis for all possible
operations.

• IQDataSet
The IQDataSet object is an enhanced ADO Recordset providing the (extended)
methods of the record set and new methods to improve its behaviour. It serves to
display the database data as well as to edit and evaluate them.

4 IMPLEMENTING THE CONNECTION TO THE DB 44

• IQCommand
It performs SQL statements in form of simple queries or queries on stored proce-
dures.

• IQJdbcWrapper
This object is a wrapper for the needed JDBC key classes and interfaces.

Figure 13 shows the architectural framework of the iQDAO package with all classes and
the sub-package IQEnums.

Figure 13: Architecture of iQDAO

The IQMisc class is an important utility class providing general methods used by the
main classes. IQFieldInfo describes a database field and contains needed information
about it. Thus, e.g., it holds the index, the name, the type, the subtype, the maximum
length, the scale, the precision and the catalogue name of the field. Moreover, it provides
information whether the field is nullable or not and whether the field is an ID field (it
represents a primary key field in the database). The IQTypes class holds self-defined
types used by the IQDataSet class. The IQSequencer class contains the program logic to
create and use database sequences for various databases whereas IQTrace is in charge of
logging messages to files. The main classes IQConnection, IQDataSet, IQJdbcWrapper,
and IQCommand are described in more detail in the following sections.

4 IMPLEMENTING THE CONNECTION TO THE DB 45

4.5.2 IQJdbcWrapper

In essence the JDBC interface makes it possible to do the following three things:

1. Establish a connection with a data source.

2. Send queries and update statements to the data source.

3. Process the results.

The following code fragment Listing 6 gives a simple example of these three steps:

Listing 6: Simple JDBC example
1
2 Connection con = DriverManager . getConnect ion (” jdbc : Dr iver ” , ”Login ” , ”Password ”) ;
3 Statement stmt = con . createStatement () ;
4 Resu l tSet r s = stmt . executeQuery (”SELECT ID , Name, Age FROM Persons ”) ;
5
6 whi l e (r s . next ())
7 {
8 i n t iID = rs . g e t In t (” ID ”) ;
9 S t r ing sName = rs . g e tS t r i ng (”Name”) ;

10 double dAge = r s . getDouble (”Age ”) ;
11 }

This simple code fragment shows the way JDBC usually is used. With Connection,
Statement, ResultSet and DriverManager we need four different classes (respectively in-
terfaces) from the JDBC package for this simple query. If we access stored procedures we
even need the classes PreparedStatement and CallableStatement. And to get descriptive
informations about the DBMS needed by applications to adapt to its requirements and
capabilities we have to use the interface DatabaseMetaData.

Figure 14, taken from [Sun 2006] shows the interactions and relationships between the
key classes and interfaces in the JDBC API.

Another drawback resulting from Listing 6 is that method calls like getInt() and get-
String() will not work, since neither tables nor data types are known before the genera-
tion process. For such cases there are generic methods like getObject(), wich can be used
with any type, but needless to say that the type safety of the resulting application will
be poor.

Since data types used by different DBMS sometimes vary significant [Fisher et al. 2003],
JDBC defines a set of generic SQL type identifiers in the class java.sql.Types. According
to [Fisher et al. 2003] another area of difficulty is that most DBMS do not conform
to the standard SQL syntax or semantics for more advanced functionality (e.g., stored
procedures, outer joins). The portion of SQL being truly standard should expand to
include more and more functionality. Nevertheless, the JDBC API supports SQL as it is.

According to these drawbacks and incompabilities we designed the class IQJdbcWrapper
to bundle the needed functionality of these classes/interfaces in one single class and to
add some extended functionality.

4 IMPLEMENTING THE CONNECTION TO THE DB 46

Figure 14: Relationships between major classes and interfaces in the java.sql. package

4.5.3 IQConnection

The IQConnection object opens a connection to a data source and provides access to the
data. It is a basic building block in between the database and the front-end. By means
of the IQConnection object a database can be accessed several times. One IQConnection
can handle more subsidiary objects like IQDataset and IQCommand at the same time.

The main tasks of the IQConnection object are:

• Open and close the connection to the database.

• Execute queries, statements, procedure or provider specific text.

• Provide security (Identification, Authentification).

• Handle transactions.

• Return schema information about the data source.

• Manage self-defined operational modes (e.g. data accessing modes, editing modes,
...).

4 IMPLEMENTING THE CONNECTION TO THE DB 47

4.5.4 IQDataSet

The IQDataSet object holds a set of records from a database table. This object is the one
most often used since it manipulates the data in the database. It displays the records and
enables navigation through the record sets. The IQDataSet object serves to update, delete
and insert data and, therefore, is the most important object for front-end applications.

IQDataSet supports two types of updating - immediate updating and batch updating.
Using the first one all changes are immediately written to the database. The second type
caches several changes and then sends them to the database in a single step.

As another feature, IQDataSet allows us to define different cursor types. It is possible
to define dynamic and static cursors, read-only and updatable cursors, and forward-only
cursors instead of scrollable cursors. Dynamic cursors allow us to see additions, changes,
and deletions by other users whereas static cursors provide a static copy of the record
set. Read-only cursors don’t allow us to change the record set and can be used well in
case of data needed to be protected from changing. Forward-only cursors support only
scrolling forward through the record set and are faster then scrollable cursors.

The main tasks of the IQDataSet object are:

• Define cursor types.

• Add, delete and update data.

• Store information about fields and types.

• Provide information about the record set (e.g. position of cursor, record count, ...).

• Move the monitor within the record set (through First,Next,Previous,Last).

• Manage data type translation between database and application (e.g., translation
of boolean types, handling and representation of Null values).

• Provide methods to read out Inova Q-specific information from the database (e.g.,
wether a field is an id field or not).

• Enable searching and sorting of data within the record set by implementing various
methods.

4.5.5 IQCommand

The IQCommand object is the most specific object and is used to execute a single query
against the database. The major role of this object is the handling of SQL queries and
its corresponding parameters. It stores the command text, the type of the command and
its parameters.

The command text contains the SQL query string or the name of the stored procedure
or table. The type of this query distinguishes between a simple text query, a query to

4 IMPLEMENTING THE CONNECTION TO THE DB 48

invoke a stored procedure, and a query to target a table directly. According to this type
the correct method (of the various offerd by JDBC) must be invoked. The parameters are
stored together with the information about their type to assure type safety and invocation
of the adequate setObject method.

By means of the IQCommand object, parameters can be replaced and new parameters can
be appended. IQCommand provides some useful methods like a text replacement function
and a function to sort the parameters in the correct order. The second method mentioned
allows the software developer to add new parameters to a query without rewriting the
query concerning the parameter order.

5 PROTOTYPING THE APPLICATION 49

5 Prototyping the Application

The next migration step is to implement prototypes showing whether Java and Swing
are capable to meet the requirements of the project. The prototypes shall be streamlined
versions of the legacy application, reduced to the essentials. They should be equivalent
in appearance and functionality and if possible identify potential for enhancement. They
will provide the basis for automation and therefore a proper design is inevitable. In this
section we describe the development of the different prototypes and the problems arising
thereby. First, we will give a short introduction to IFL, the frame language used to
specify the properties of an application.

5.1 Introducing IFL

IFL is a proprietary language developed by Inova Q. The following notes are mainly
based on [Inova Q 2002] extended by experiences made by creating the models for the
prototypes.

An IFL file serves as definition file for components and their attributes. These definitions
are in a subsequent step processed by IGS. Listing 7 shows the IFL file for the first
prototype and gives a general idea about its capabilities and principles of usage.

Listing 7: IFL-File for prototype 1
1 [Pro j e c t]
2 Name=MUSTER1
3 Product=”MUSTER1”
4 Desc r ip t i on=”MUSTER1”
5 Company=”Inova Q Limited ”
6 IRSFi le =.\MUSTER1. IRS
7
8 [Database]
9 DataSource=.\MUSTER1.DDF

10
11 [Metr ics]
12 PixelsX=800
13 PixelsY=600
14 TwipsPerPixelX=15
15 TwipsPerPixelY=15
16
17 [Globals]
18 DBLanguage=0
19 NumLanguages=3
20 Boolean=−1;0
21
22 [Form :MUSTER1]
23 BaseTable=T MUSTER1
24 Caption=Musterprogramm Nr . 1
25 Sty l e=MDIChild
26 DataLarge=False
27 Navigate=True
28 HasSearch=False
29
30 [F i e ld :MUSTER1.MUS DATETIME]
31 Type=Datetime
32
33 [F i e ld :MUSTER1.MUS TIME]
34 Type=Time
35
36 [F i e ld :MUSTER1.MUS OPTION]

5 PROTOTYPING THE APPLICATION 50

37 ControlType=KeyPicker
38
39 [KeyPicker :MUSTER1.MUS OPTION]
40 Type=RadioButtons
41 Values=A; 0 ;B ; 1 ;C; 2

An IFL file contains sections and definitions. Definitions identify values of specific at-
tributes and are placed within sections. The definitions consist of a key, an assignment
operator and a value. The key represents the attribute being identified by the defini-
tion. Depending on the attribute (Key), Value can contain either any string or a named
enumeration constant. Sections like [Project] group the definitions into corresponding
statements and tell IGS their specific meaning. In this context we can refer to sections
as namespaces for definitions. Sections either contain zero, one or more definitions of an
object (a form or a control) or just a definition of a file to include. The ordering of the
sections is free, but following the Object Model (Project –> Forms –> Fields) increases
understanding and maintainability.

The [Project] section covers general information about the project and provides the dec-
laration of the name and the path of the IRS file to create. The abbreviation IRS denotes
Inova Q Resource String. An IRS file is an access database containing the required SQL
commands and descriptions of the various components used by the form. In this partic-
ular case, with regard to create a platform independent application, we will use simple
text files instead of the Microsoft specific access database. The content of the text file
will consist of tab delimited strings specifying the input data. Nevertheless, in the course
of this project we will use the term IRS file for this kind of text files.

The [Database] section tells IGS where the data source defining the connection to the
database is to be found. As container for these informations Data Dictionary Files
(DDFs) are used. They describe the data in the database in terms of tables, columns,
and indexes.

Within the [Globals] section in particular the definition of booleans is worth closer ex-
amination. The definition illustrates the database representation of boolean data. T/F
defines boolean fields as 1-byte character fields where logical True corresponds to ”T”
and logical False corresponds to ”F”. 1/0 defines boolean fields as 1-digit numeric fields
where logical True corresponds to 1 and logical False corresponds to 0, whereas -1/0
defines boolean fields as 1-digit numeric fields where logical True corresponds to -1 and
logical False corresponds to 0. To deal with these different representations the iQDao
package (explained in Section 4) provides various methods.

The [Form] section contains definitions regarding the user interface (UI), e.g., the defi-
nition of the database table (table or updatable view) to which the form is bound. The
BaseTable definition is obviously the most important definition since the information con-
cerning the UI, the IRS files, and much more will be generated from the data provided
by the database table.

5 PROTOTYPING THE APPLICATION 51

The [Field] section provides additional information about controls. The term controls
in this context denotes either fields in UI forms (like JTextField) or cells in tables (like
JTable). For example, in lines 30 to 34 the fields MUS DATETIME and MUS TIME get
values of another type than the one specified in the database. There they are declared as
timestamp (just like MUS DATE which doesn’t change and therefore has not to be rede-
fined here). In the UI, MUS DATE will display only the date portion, MUS DATETIME
the date and the time portion, and MUS TIME only the time portion of the database
timestamp value.

Field MUS OPTION is defined to be a KeyPicker. A KeyPicker is an I/O element to
access, input, and update data using a key selection mechanism. If a control is declared
to be of control type KeyPicker, then there has to be a [KeyPicker] section defining the
type of the KeyPicker. The type of a KeyPicker can be one of the following: Listbox,
Combobox, Search or RadioButtons. Listbox is a multiple column dropdown list box,
Combobox a multiple column dropdown combo box, and Search a read-only text box of
given data type plus button control (displays a toolbox-like search dialog used to pick the
record). The Values definition is needed especially for KeyPicker of type RadioButtons
to translate the values being present in the database to values that will be displayed in
the UI.

Based on these definitions IGS automatically generates the required classes. These classes
together with other (non-generated) basic classes and the IRS files make up the UI.
According to the above made explanations Figure 15 shows a more detailed software
development schema compared to the one shown in Section 1.3.

Figure 15: Detailed IGS Software Development Schema

Concluding this section two final remarks have to be made. First, the depicted sections
and definitions represent only a small subset of the complete language specification of IFL.
For the purpose of sketching out the basic functionality they will meet the requirements.
Second, for mainly all values there exist default values being used by IGS if no explicit
definition exists or an empty definition is created (e.g., Caption =). For instance, in the

5 PROTOTYPING THE APPLICATION 52

[Form] section we have the possibility to define the appearance of the UI defining either
Presentation = Fields or Presentation = Grid. The default value for this definition is
Fields. Together with the other definitions such settings specify the UI for the first
prototype shown in Figure 16.

Figure 16: Prototype 1: UI with Fields

5 PROTOTYPING THE APPLICATION 53

5.2 Prototyping approach

Using IGS together with the IFL file specifiations tailored for our needs we will generate
three Visual Basic (VB) applications and try to convert them to equivalent Java appli-
cations using the techniques depicted in Section 2. We will make use of the VB code
resulting from the generation process. Where possible we will apply simple language
conversion of existing VB code. Where not possible we will treat the application as black
box and try to establish the desired appearance and behaviour.

5.3 Prototype 1: UI with Fields

5.3.1 Specifications

The first prototype to develop is a UI containing fields for all columns in the particular
database table and provides features to carry out operations on the supplied data. The
user shall be able to move within the data tuples, updating, deleting, and adding data.

The specific requirements regarding this task are:

• All label, format, and type specifications have to be initiated at runtime, taken
from information provided by the IRS files.

• The different fields have to be typed and be in responsibility for their appearance
and behaviour.

• Data must be bound to a database table or result set.

• Navigation must be performed on the ResultSet received from the database.

• The application must support several languages and formats.

5.3.2 Architecture

The application starts by launching IQApplicationMain which subsequently invokes IQ-
MainFrame – a container holding the various forms. In this example we have only one
form, IQForm1 – an inner frame with several fields of different data types. Since the
final application shall be capable to contain several forms, there has to be a common
class used by all possible forms. This class implementing and providing general-purpose
methods will be called IQCommon. To extract data out of the IRS files we created a class
called IQNLSString. To assure each field being bound to the correct data type and being
responsible for its appearance and behaviour, we designed a package named IQUserEn-
try. IQCommon makes use of these classes and packages and hands over the edited data
and information to the particular forms. Beside these main classes there are some utility
classes not mentioned here to keep the focus on the important classes. Figure 17 shows
a class diagram describing the interaction of the main classes. Based on settings in the
IFL file, IGS generates the main frame and the form and sets the specific values in the
main class of the application.

5 PROTOTYPING THE APPLICATION 54

Figure 17: Architecture of prototype 1

5.3.3 Challenging Features

Typed fields. To support typed fields the enumeration class IQValueSubType from the
IQDAO package has been extended. It got so-called constant-specific methods to facilitate
the typing of the particular fields. According to [Sun 2004a] constant-specific methods are
reasonably sophisticated. The best way to give each enum constant a different behaviour
for some method is to declare the method abstract in the enum type and override it
with a concrete method in each constant. The two new methods getValueFieldType and
getJavaClass provide a static mapping between the data types defined in the IQDAO
package and the Java internal types. Since we use the Swing class JTextField for the
implementation of the different fields and JTextField treats all input as text, we need a
method to convert the text string to an object of the specific value. This conversion will
be done concerning the designated type of the particular field.

Listing 8 shows the use of such constant-specific methods in connection with the different
Java date types. The Java date types are in the end all of the same IQDAO type, namely
date, and we are in need of their distinction only in matters of appearance. In Listing 8,
lines 45 and 46, we added definitions for two new classes simply by extending the existing
java.util.Date class without providing new functionality.

Listing 8: ValueSubType enum with constant specific methods
1 pub l i c enum IQValueSubType
2 {
3 .
4 .
5 .
6 DATE
7 {
8 pub l i c f i n a l IQValueFieldType getValueFieldType ()
9 {

10 re turn IQValueFieldType .DATE;
11 }
12 pub l i c f i n a l Class<?> getJavaClass ()
13 {
14 re turn Timestamp . c l a s s ;
15 }

5 PROTOTYPING THE APPLICATION 55

16 } ,
17 DATETIME
18 {
19 pub l i c f i n a l IQValueFieldType getValueFieldType ()
20 {
21 re turn IQValueFieldType .DATE;
22 }
23 pub l i c f i n a l Class<?> getJavaClass ()
24 {
25 re turn Datetime . c l a s s ;
26 }
27 } ,
28 TIME
29 {
30 pub l i c f i n a l IQValueFieldType getValueFieldType ()
31 {
32 re turn IQValueFieldType .DATE;
33 }
34 pub l i c f i n a l Class<?> getJavaClass ()
35 {
36 re turn Time . c l a s s ;
37 }
38 } ,
39 .
40 .
41 .
42 pub l i c ab s t r a c t IQValueFieldType getValueFieldType () ;
43 pub l i c ab s t r a c t Class<?> getJavaClass () ;
44
45 pub l i c f i n a l c l a s s Datetime extends Date {}
46 pub l i c f i n a l c l a s s Time extends Date {}
47 }

Supporting several natural languages and formats. Several languages have to
be supported by the application and according to the choosen language the appropriate
date/time format and number format must be defined.

The business applications created by IGS must support the following languages:

• German

• Italian

• English

• French

• Spanish

• Portuguese

For this reason we created an enum class called IQNLSLanguage. Once again we use the
formerly mentioned constant-specific methods to realize the intended behaviour. That
way every enum constant has methods to return the language-specific date, time or
datetime format.

Whereas the number format can easily be defined by

5 PROTOTYPING THE APPLICATION 56

NumberFormat.getNumberInstance(m enLanguage.getDefaultLocale());

for the date/time formats it was necessary to implement our own methods.

Java provides the two classes DateFormat and SimpleDateFormat to format dates. Date-
Format has many class methods to obtain the default date/time formatters based on
the default or a given locale, and a number of formatting styles. The formatting styles
include FULL, LONG, MEDIUM, and SHORT [Sun 2004].

But while the invocation

DateFormat.getDateInstance(DateFormat.DEFAULT, Locale.GERMAN);

returns the desired result 09.08.2007 the following one

DateFormat.getDateInstance(DateFormat.DEFAULT, Locale.ENGLISH);

returns Aug 9, 2007, being completely insufficient for our needs because it is not a numeric
date format.

Indeed it is possible to slightly affect the output of the method getDateInstance by varying
the format style parameter. Unfortunately, the results for the six supported languages
differ in such way that it is not possible to reduce them to a common denominator (as is
seen easily on the example shown above).

For our intention the class SimpleDateFormat is more suitable. According to [Sun 2004]
SimpleDateFormat is a class for formatting and parsing dates in a locale-sensitive manner.
It supports formatting (date -> text), parsing (text -> date), and normalization. Sim-
pleDateFormat allows us to choose any user-defined patterns for date/time formatting.
Date and time formats are specified by date and time pattern strings.

We define these date and time pattern strings conforming to the windows region and
language options. First, because they were used already by the original VB application
and, second, because through the popularity of the windows OS these settings became a
standard to a certain extent. Through the fixed coding of these date and time pattern
strings in the constant-specific methods of the particular enum, the desired consistency
for the three date display formats (date, time and datetime) is realisable in an easy,
reliable, and independent manner. With the aid of the language property defined in the
IFL-File the language, the format of date and time, and the format of numbers can be
controlled globally.

Listing 9 gives an overview of the class IQNLSLanguage by showing the definitions for
the languages German and Italian. Besides the particular constant-specific methods the
class provides two common class methods to return the defined possible separators for
date and time strings.

5 PROTOTYPING THE APPLICATION 57

Listing 9: IQNLSLanguage enum
1 pub l i c enum IQNLSLanguage
2 {
3 .
4 .
5 .
6 GERMAN
7 {
8 pub l i c Loca le ge tDe fau l tLoca l e ()
9 {

10 re turn Loca le .GERMAN;
11 }
12
13 pub l i c S t r ing getDateSeparator ()
14 {
15 re turn DOT;
16 }
17
18 pub l i c S t r ing getTimeSeparator ()
19 {
20 re turn COLON;
21 }
22
23 pub l i c S t r ing getDefau l tDatePattern ()
24 {
25 re turn ”dd .MM. yyyy ” ;
26 }
27
28 pub l i c S t r ing getDefaultTimePattern ()
29 {
30 re turn ”HH:mm: s s ” ;
31 }
32
33 pub l i c S t r ing getDefaultDateTimePattern ()
34 {
35 re turn ”dd .MM. yyyy HH:mm: s s ” ;
36 }
37 }
38 ,
39 ITALIAN
40 {
41 pub l i c Loca le ge tDe fau l tLoca l e ()
42 {
43 re turn Loca le . ITALIAN ;
44 }
45 pub l i c S t r ing getDateSeparator ()
46 {
47 re turn SLASH;
48 }
49
50 pub l i c S t r ing getTimeSeparator ()
51 {
52 re turn DOT;
53 }
54 pub l i c S t r ing getDefau l tDatePattern ()
55 {
56 re turn ”dd/MM/yyyy ” ;
57 }
58 pub l i c S t r ing getDefaultTimePattern ()
59 {
60 re turn ”H.mm. s s ” ;
61 }
62 pub l i c S t r ing getDefaultDateTimePattern ()
63 {
64 re turn ”dd/MM/yyyy H.mm. s s ” ;
65 }
66 }
67 ,
68 .
69 .
70 .

5 PROTOTYPING THE APPLICATION 58

71 pub l i c Vector<Str ing> getDateSeparators ()
72 {
73 Vector<Str ing> vDateSep = new Vector<Str ing >() ;
74
75 vDateSep . add (SLASH) ;
76 vDateSep . add (DOT) ;
77 vDateSep . add (MINUS) ;
78
79 re turn vDateSep ;
80 }
81
82 pub l i c Vector<Str ing> getTimeSeparators ()
83 {
84 Vector<Str ing> vTimeSep = new Vector<Str ing >() ;
85
86 vTimeSep . add (DOT) ;
87 vTimeSep . add (COLON) ;
88
89 re turn vTimeSep ;
90 }
91
92 pub l i c ab s t r a c t Loca le ge tDe fau l tLoca l e () ;
93 pub l i c ab s t r a c t S t r ing getDateSeparator () ;
94 pub l i c ab s t r a c t S t r ing getTimeSeparator () ;
95 pub l i c ab s t r a c t S t r ing getDefau l tDatePattern () ;
96 pub l i c ab s t r a c t S t r ing getDefaultTimePattern () ;
97 pub l i c ab s t r a c t S t r ing getDefaultDateTimePattern () ;
98 }

Listing 10 gives a general idea about use and functionality of the IQNLSLanguage meth-
ods. Representative for the different date, time, and datetime editors we take the IQDa-
teEditor class as example. Each field of a specific form (or in case of a table each column)
gets its own editor even if there are several fields of the same data type. It is possible,
as is seen in line 11, to pass a date format differing from default to the constructor.
This possibility gives us the flexibility to define a different date or time format for every
individual field (if desired). If this situation arises the method setFormat is invoked.
This method verifies and consequently sets the format string by means of the designated
separators. The class variable m DateSep (defined either in line 18, in line 44 or in line
53) will be used to provide the desired functionality of date, time, and datetime fields
by getting the separator string value from one of the earlier mentioned common methods
in IQNLSLanguage. These fields are able to autonomously correct incomplete or even
permuted inputs. We do so by examining the date or time lexically using the particular
separator (either the separator for date or the separator for time, or even both in case of
datetime fields) and subsequently setting the correct value following given rules for the
specific fieldtype.

For example, assuming today’s date to be 09.08.2007, the following corrections and/or
completions are made:

1.1 to 01.01.2007 (date) or 01.01.2007 00:00:00 (datetime)
1.31 to 31.01.2007 (date) or 31.01.2007 00:00:00 (datetime)
45.12 to 01.12.1945 (date) or 01.12.1945 00:00:00 (datetime)
1.1.19 to 01.01.2019 (date) or 01.01.2019 00:00:00 (datetime)
1:12 to 01:12:00 (time) or 09.08.2007 01:12:00 (datetime)
1.31 13:6 to 31.01.2007 13:06:00 (datetime)

5 PROTOTYPING THE APPLICATION 59

At a first glance these corrections and completions seem error prone, but if users get used
to the logic behind, every-day work will be easier and faster.

Listing 10: Setting the format in editor
1
2 pub l i c f i n a l c l a s s IQDateEditor implements IQDefaultEditor
3 {
4 p r i va t e SimpleDateFormat m Format ;
5 p r i va t e St r ing m sFormat ;
6 p r i va t e IQNLSLanguage m enLanguage ;
7 p r i va t e St r ing m sDateSep ;
8 .
9 .

10 .
11 pub l i c IQDateEditor (IQUserEntry ucEntry , S t r ing sFormat)
12 {
13 m enLanguage = ucEntry . getUserLanguage () ;
14
15 i f (sFormat == nu l l)
16 {
17 m sFormat = m enLanguage . getDefau l tDatePattern () ;
18 m sDateSep = m enLanguage . getDateSeparator () ;
19 }
20 e l s e
21 setFormat (sFormat) ;
22
23 m Format = new SimpleDateFormat (m sFormat) ;
24 .
25 .
26 .
27 }
28
29 .
30 .
31 .
32
33 p r i va t e void setFormat (S t r ing sFormat)
34 {
35 Vector<Str ing> vDateSep = m enLanguage . getDateSeparators () ;
36 St r ing sDateSep ;
37
38 f o r (i n t i = 0 ; i < vDateSep . s i z e () ; i++)
39 {
40 sDateSep = vDateSep . elementAt (i) ;
41
42 i f (sFormat . conta in s (sDateSep))
43 {
44 m sDateSep = sDateSep ;
45 m sFormat = sFormat ;
46 break ;
47 }
48 }
49
50 // i f Format St r ing i s not c o r r e c t s e t De fau l t s
51 i f (m sDateSep == nu l l)
52 {
53 m sDateSep = m enLanguage . getDateSeparator () ;
54 m sFormat = m enLanguage . getDefau l tDatePattern () ;
55 }
56 }
57
58 .
59 .
60 .
61
62 }

The support of the above mentioned languages results in showing all captions (Labels,

5 PROTOTYPING THE APPLICATION 60

Menus, MenuItems, Tooltips, ...) as well as all messages (Error messages, Warning mes-
sages, Question messages, ...) in the specific language.

In Visual Basic this differentiation can easily be done with resource files. These resource
files are mainly used in larger software projects, which will be released in various language
versions. As main advantage of resource files language-specific elements (captions, grafics)
are not placed in program code, but are stored externally. Thus, for example, it is
sufficient to link the resource file containing the resource-strings for another language to
the project and all captions in the already compiled program will be adapted.

The original VB application loads the needed resource strings directly within code by
means of the LoadResString(Integer idx) function. This function does nothing else than
loading a character string from a *.res resource file. A required index idx of type integer
identifies the declared data in the resource file. The LoadResString function can be used
in code instead of character string constants. Storing and accessing long character strings
in resource files reduces the loading time because elements can be loaded one by one, if
required, instead of loading all simultaneously when loading the form object.

In this project we simulated this functionality using a class named IQRes. This class,
shown in extracts in Listing 11, is initialized when launching the application and writes
character strings in all needed languages to a data structure m sRessourceStrings of type
Hashmap<Integer,String>. At runtime the required string can be loaded. The Hashmap-
Keys of the various languages differ only on the most significant digit. In application code
it is possible to always language-independently use the same key for the same purpose.
This key will later on (in the IQCommon class) be mapped correctly to the according
language setting (line 99).

IQRes provides several methods to return the needed character string. LoadResString
(Integer lID) in line 11 is used for standard captions (Labels, Tooltips,...) and reads entries
like those illustrated in lines 63 to 71. LoadResString(String sFormName, Integer lID)
in line 16 and LoadResString(String sFormName, String sFieldName, Integer lID) in line
24 send messages (Error-, Warning-, Info- and Questionmessages) to the user specifying
the particular form and the field. In applications with several forms (Master/Detail
applications described in Section 5.5, for example, can contain several forms) this fact
makes it easier to identify the origin of the message. The Hashmap entries for this type of
character strings are shown in lines 75 to 81. The method LoadResMenuString (Integer
lID) in line 37 is designed for Menus and MenuItems and returns a string array of length
two. The first field contains the caption for the menu whereas the second field contains
the mnemonic to be defined for the menu. Lines 85 to 90 show the character string entries
for Menus and MenuItems. On the basis of the &-symbol the mnemonic is defined. This
&-symbol will be cut and the remaining character string will be the menu caption (shown
in lines 106 to 108).

The Hashmap values in IQRes correspond exactly to the entries in the original *.res file.
The methods to read out the character strings are named according to the VB method
described above. As main difference between the original and the converted approach the
objective in one case is a system file and in the other case a java class.

Listing 11: Ressource strings for different languages

5 PROTOTYPING THE APPLICATION 61

1 pub l i c c l a s s iQRes
2 {
3 p r i va t e f i n a l HashMap<Integer , Str ing> m sRessourceStr ings ;
4
5 pub l i c iQRes ()
6 {
7 m sRessourceStr ings = new HashMap<Integer , Str ing >() ;
8 I n i t () ;
9 }

10
11 pub l i c S t r ing LoadResString (i n t lID)
12 {
13 re turn m sRessourceStr ings . get (lID) ;
14 }
15
16 pub l i c S t r ing LoadResString (S t r ing sFormName , i n t lID)
17 {
18 i f (sFormName . toUpperCase () . sub s t r i ng (0 , 3) . equa l s (”FRM”))
19 sFormName = sFormName . sub s t r i ng (3 , sFormName . l ength ()) ;
20
21 re turn m sRessourceStr ings . get (lID) . r ep l a c e (”$FORMNAME$” , sFormName) ;
22 }
23
24 pub l i c S t r ing LoadResString (S t r ing sFormName , S t r ing sFieldName , i n t lID)
25 {
26 St r ing s ;
27
28 i f (sFormName . toUpperCase () . sub s t r i ng (0 , 3) . equa l s (”FRM”))
29 sFormName = sFormName . sub s t r i ng (3 , sFormName . l ength ()) ;
30
31 s = m sRessourceStr ings . get (lID) . r ep l a c e (”$FORMNAME$” , sFormName) ;
32 s = s . r ep l a c e (”$FIELDNAME$” , sFieldName) ;
33
34 re turn s ;
35 }
36
37 pub l i c S t r ing [] LoadResMenuString (i n t lID)
38 {
39 St r ing [] sArray = new St r ing [2] ;
40 St r ing sMenuName ;
41 St r ing sMenuMnemonic ;
42 St r ing RessourceSt r ing ;
43 i n t lPos ;
44
45 RessourceSt r ing = m sRessourceStr ings . get (lID) ;
46 lPos = RessourceSt r ing . indexOf (”&”);
47 sMenuMnemonic = RessourceSt r ing . sub s t r i ng (lPos + 1 , lPos + 2) ;
48 sMenuName = RessourceSt r ing . r ep l a c e (”&” , IQConstants .EMPTY) ;
49 sArray [0] = sMenuName ;
50 sArray [1] = sMenuMnemonic ;
51
52 re turn sArray ;
53 }
54
55 p r i va t e void I n i t ()
56 {
57 /∗∗/
58 /∗ ∗/
59 /∗ DEFAULT (= ENGLISH) ∗/
60 /∗ ∗/
61 /∗∗/
62
63 m sRessourceStr ings . put (10001 , ”Save ”) ;
64 m sRessourceStr ings . put (10002 , ” Pr int ”) ;
65 m sRessourceStr ings . put (10003 , ”Page preview ”) ;
66 m sRessourceStr ings . put (10004 , ”Cut ”) ;
67 m sRessourceStr ings . put (10005 , ”Copy ”) ;
68 m sRessourceStr ings . put (10006 , ”Paste ”) ;
69 m sRessourceStr ings . put (10007 , ”Undo ”) ;
70 m sRessourceStr ings . put (10008 , ”Go to f i r s t r ecord ”) ;
71 m sRessourceStr ings . put (10009 , ”Go to prev ious record ”) ;
72 .

5 PROTOTYPING THE APPLICATION 62

73 .
74 .
75 m sRessourceStr ings . put (10027 , ”$FORMNAME$: No record may be added cu r r en t l y . ”) ;
76 m sRessourceStr ings . put (10028 , ”$FORMNAME$: Error t r a n s f e r i n g Data to Database . ”) ;
77 m sRessourceStr ings . put (10029 , ”$FORMNAME$: Error moving to f i r s t r ecord . ”) ;
78 .
79 .
80 .
81 m sFixedStr ings . put (10040 , ”$FORMNAME$: $FIELDNAME$ i s r equ i r ed . ”) ;
82 .
83 .
84 .
85 m sRessourceStr ings . put (10101 , ”&F i l e ”) ;
86 m sRessourceStr ings . put (10102 , ”&In fo . . . ”) ;
87 m sRessourceStr ings . put (10103 , ”E&x i t ”) ;
88 m sRessourceStr ings . put (10104 , ”&Window”) ;
89 m sRessourceStr ings . put (10105 , ” T i l e &ho r i z o n t a l l y ”) ;
90 m sRessourceStr ings . put (10106 , ” T i l e &v e r t i c a l l y ”) ;
91
92 .
93 .
94 .
95 }
96 }
97
98 // c l a s s IQCommon
99 pub l i c S t r ing [] LoadRESMenuString (IQNLSLanguage enLanguage , i n t lID)

100 {
101 lID = lID + 10000 ∗ (enLanguage . o rd i na l ()) ;
102 re turn m Res . LoadResMenuString (lID) ;
103 }
104
105 // c l a s s IQMainFrame
106 sMenuArray = m Common. LoadRESMenuString (m enLanguage , 10103) ;
107 mnuFileExit = new JMenuItem(sMenuArray [0]) ;
108 mnuFileExit . setMnemonic (sMenuArray [1] . toCharArray () [0]) ;

Visibility of inserted data. The main problem concerning this task is that after an
insert operation the inserted data is not available in the JDBC ResultSet. According to
the official Sun Java documentation [Sun 2004] the insertRow method of the ResultSet
class

”Inserts the contents of the insert row into this ResultSet object and into
the database.”

Relying upon this statement, the inserted data should be visible both in the ResultSet
and in the database. But [Bruce 1999] says:

”The ResultSet object uprs is updatable, scrollable, and sensitive to changes
made by itself and others. Even though it is TYPE SCROLL SENSITIVE, it
is possible that the getXXX methods called after the insertions will not retrieve
values for the newly-inserted rows. Finally it depends on driver and DBMS.”

As recommendation he suggests:

5 PROTOTYPING THE APPLICATION 63

To be absolutely sure that the getXXX methods include the inserted row
values no matter what driver and DBMS is used, we can close the result
set and create another one, reusing the Statement object stmt with the same
query. A result set opened after a table has been changed will always reflect
those changes.”

This suggestion can work fine with some smaller databases and custom software solutions
tailored to fit their needs. But in our case we have to set up a system being able to handle
database tables with data sizes unknown in advance. Thus,we cannot solve the problem
in that way. If we think of database tables with several thousands of data tuples (which
is usual in overall business projects) doing like suggested would lead to an unacceptable
degradation of performance. If we bring to mind the objectives of IGS, referred to in
Section 1.2, we will notice such a degradation to be just the opposite of our intention.

Analyzing [Oracle 2001] we finally find the statement:

”Internal INSERT operations are never visible, regardless of the result set
type (neither forward-only, scroll-sensitive, nor scroll-insensitive).”

Table 4 taken from [Oracle 2001] shows a summary of the visibility of internal and external
changes made in an Oracle database. The term Internal Changes means the ability of a
result set to see its own changes (DELETE, UPDATE, or INSERT operations within the
result set) whereas External Changes are changes made from elsewhere (either from our
own transaction outside the result set or from other committed transactions). The other
terms used in this table are explained in Section 4.

ResultSet
Type

Int.
Delete

Int.
Update

Int. In-
sert

Ext.
Delete

Ext.
Update

Ext.
Insert

forward-only No Yes No No No No
scroll-sensitive Yes Yes No No Yes No
scroll-insensitive Yes Yes No No No No

Table 4: Visibility of Internal and External Changes

This behaviour leads to the conclusion that we have to regard a ResultSet as kind of
snapshot. The ResultSet is actually not being updated by an Insert operation and there-
fore we will get inconsistencies between the data in the database and the data shown
by the UI. Since we want to develop a platform independent software system, we cannot
afford to depend on any driver implementations. Therefore, at this step in the project we
have to adapt the implementation of the prototype in order to take care of these changed
requirements. Using IGS the adaptation can simply be made by changing the definition
in Listing 7, line 26 from DataLarge=False to DataLarge=True and add the statement
LargeKeys=MUS DECIMAL. These changes tell IGS to write code loading the data tu-
ples one by one on the basis of the primary key identified by the LargeKeys definiton
made above.

5 PROTOTYPING THE APPLICATION 64

Since we aren’t at this point yet, to achieve this behaviour we have to change the proto-
type’s code manually. The application shall not load the whole data at the initialization
of the particular form, but only the first data tuple. Then, while performing the various
move operations being implemented (DoFirst, DoLast, DoNext, DoPrevious) only the
requested data tuple is loaded to the system.

Therefore, we change the so-called Master SQL Statement used by the application. In-
stead of the previous simple SQL statement

”Select tblColumn1,...,tblColumnN from tbl”

loading the whole bunch of data at once we use now

”Select tblColumn1,...,tblColumnN from tbl where LARGEKEY $LargeOps$
$1”.

The two parameters marked by the $-symbol are placeholders for the particular move
operation and the requested primary key. This master statement will be used to create a
so-called derived table. [Wells 2001] defines a derived table to be a table being created on-
the-fly by a SELECT statement inside another SQL statement. It can be referenced as a
regular table or view, but this referencing is possible only from the outer SQL statement.
The difference between a base table and a derived table is that a base table is actually
existing in the database whereas the derived table results of any table sub-queries. The
following two listings, Listing 12 and Listing 13, show the differences between the old and
the new version by means of the DoNext operation.

Listing 12: DoNext operation without DataLarge option
1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ Class IQForm1 ∗
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 / pub l i c boolean DoNext ()
5 {
6 In t eg e r lPos ;
7 .
8 .
9 .

10 lPos = IQDataSet . getRow () ;
11 IQDataSet . GotoNext () ;
12
13 i f (IQDataSet . getEOF ())
14 {
15 IQDataSet . GotoRow(lPos) ;
16 re turn f a l s e ;
17 }
18 .
19 .
20 .
21 RecordToForm () ;
22
23 re turn true ;
24 }

5 PROTOTYPING THE APPLICATION 65

Listing 13: DoNext operation with DataLarge option
1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ Class IQForm1 ∗
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 pub l i c boolean DoNext ()
5 {
6 boolean blnOK = f a l s e ;
7 Vector<Object> v = new Vector<Object >() ;
8 In t eg e r lPos ;
9 .

10 .
11 .
12 blnOK = IQCommon. GetLargeKeyValues (th i s , IQRecordSetOps .DONEXT, v) ;
13
14 i f (blnOK)
15 {
16 CreateRecordSets (v) ;
17 RecordToForm () ;
18 }
19
20 re turn true ;
21 }
22
23 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
24 ∗ Class IQCommon ∗
25 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
26 pub l i c boolean GetLargeKeyValues (IQForm1 oForm , IQRecordSetOps enRsoOp ,
27 Vector<Object> vKey)
28 {
29 boolean blnRetVal = f a l s e ;
30 St r ing sSq l = oForm . getMasterSql () ; ;
31 Vector<Object> v = new Vector<Object >() ;
32 i n t lCnt = oForm . getLargeKeyCount () ; ;
33 St r ing sS e l ;
34 IQDataSet ds = new IQDataSet () ;
35 IQConnection cn = oForm . getConnect ion () ;
36
37 switch (enRsoOp)
38 {
39 case DOFIRST:
40 .
41 .
42 .
43 break ;
44 case DONEXT:
45
46 sSq l = sSq l . r ep l a c e (”$LARGEOP$” , ”>”);
47
48 f o r (i n t i = 0 ; i < lCnt ; i++)
49 v . add (oForm . ge tC la s s () . getMethod (oForm . getLargeKeys (i) + ” GetValue ” ,
50 new Class [] { }) . invoke (oForm , new Object [] { })) ;
51
52 sS e l = EMPTY;
53
54 f o r (i n t i = 0 ; i < lCnt ; i++)
55 {
56 i f (s S e l . l ength () > 0)
57 sS e l = sS e l + ” , ” ;
58 sS e l = sS e l + oForm . getLargeKeys (i) ;
59 }
60
61 sS e l = ”SELECT MIN(” + sSe l + ”) AS LARGEKEY FROM (” + sSq l + ”) DERIVEDTBL” ;
62 ds = cn . CreateDataReader (sSe l , v) ;
63
64 i f (ds . getEOF ())
65 blnRetVal = f a l s e ;
66 e l s e
67 {
68 i f (I sNu l l (ds . getValue (0)))
69 {
70 blnRetVal = GetLargeKeyValues (oForm , IQRecordSetOps .DOLAST, vKey) ;

5 PROTOTYPING THE APPLICATION 66

71 }
72 e l s e
73 blnRetVal = true ;
74 }
75 break ;
76 case DOPREV:
77 .
78 .
79 .
80 break ;
81 case DOLAST:
82 .
83 .
84 .
85 break ;
86 d e f au l t :
87 break ;
88 }
89 .
90 .
91 .
92 re turn blnRetVal ;
93 }

Due to the fact that we cannot move within a loaded ResultSet and have to send a query
to the database for each data tuple, this solution will inevitably suffer from performance
degradation, too. Furthermore, as we see in Listing 13, more time-consuming operations
are required now in the Java code.

The old version shown in Listing 12 used the method GotoNext to move to the next
tuple. The GetRow method in line 10 served only to store the actual row to assure that
in case the next operation moves beyond the last row of the ResultSet the cursor can be
positioned on the previous row. The RecordToForm method then displayed the choosen
tuple in the UI form.

In contrast, the new version (where DataLarge option is set to true) is more complex.
To correct the behaviour of the application we need the assistance of the IQCommon
class, which leads to increased communication between the involved classes. In line 50
we have to use the Reflection mechanism described in Section 3 to invoke the adequate
XXX getValue method (again positioned in IQForm1). To avoid moving beyond range
we even require recursion as we can see in line 70.

Despite the slowdown due to increasing complexity, this adjustment is still considerably
faster than the suggestion already discussed earlier in this section.

As another slight drawback of the new version we now have database access logic in our
application code. As described in Section 4, to ease maintenance all database related stuff
shall be managed by the IQDAO package. That way re-platforming of back-end services
could be made with minimal disruption to the application using the database. But now,
having hard-coded SQL Strings in our application code, when changes are made these
strings and the corresponding classes have to be adjusted.

Another challenge is caused by the fact that after an insert operation the database cursor
is still positioned on the Insert Row. The Insert Row is defined in [Sun 2004] as:

5 PROTOTYPING THE APPLICATION 67

”The insert row is a special row associated with an updatable result set.
It is essentially a buffer where a new row can be constructed by calling the
updater methods prior to inserting the row into the result set.”

After saving, we see in the UI the currently inserted data, but the database cursor is still
positioned on the Insert Row buffer and not on the data tuple referring to the currently
shown UI data. If we try to update this data now (maybe because we inserted incorrect
data and want to correct it immediately), we will get a database error, since we are in a
undefined state for performing updating or deleting operations. At the end of each Saving
operation the application must be aware of whether an Insert operation was performed
or not. If so, the application must simulate moving by going back and forth in the record
set to ensure that the database cursor is positioned on the same data as shown in the UI.

Listing 14 shows the workaround for this issue.

Listing 14: Simulating Movement to leave the Insert Row
1 pub l i c boolean DoSave ()
2 {
3 Vector<Object> v ;
4 .
5 .
6 ∗∗∗ Here the Saving i s done ∗∗∗
7 .
8 .
9 i f (m blnAdding)

10 {
11 // Simulat ing DoPrev () and DoNext () to move away from the InsertRow
12 v = new Vector<Object >() ;
13 m Common. GetLargeKeyValues (th i s , IQRecordSetOps .DOPREV, v) ;
14 CreateRecordSets (v) ;
15 RecordToForm () ;
16 v = new Vector<Object >() ;
17 m Common. GetLargeKeyValues (th i s , IQRecordSetOps .DONEXT, v) ;
18 CreateRecordSets (v) ;
19 RecordToForm () ;
20
21 m blnAdding = f a l s e ;
22 }
23 .
24 .
25 .
26 re turn true ;
27 }

5.4 Prototype 2: UI with Table

5.4.1 Specifications

The second prototype is a UI where the data is placed in a table. The basic process logic
remains the same as in Prototype 1, but will be adapted to comply with new or changed
requirements. Move operations are not required any more since the whole data is loaded
and shown at once. The user again must be able to update, delete, and insert data.

The main specific requirements regarding this task are:

5 PROTOTYPING THE APPLICATION 68

• Data must be unbound now (unaffected from the database model of the underlying
data source).

• The columns of the table have to be typed.

• Columns can be hidden at runtime.

• Columns must be able to support KeyPicker components.

• Changes must not be written to the database straight away. They have to be
retained and sent to the database only when a Saving operation is performed.
Nevertheless, the table model and the model of the underlying database must be
kept consistent.

• Undo of changes must be possible.

• The system performance must be satisfying.

Since the data is not bound to a database table or result set, the handling of the system
is more efficient and flexible. We are able to display a column of data not originating
from the data source, we can fill the UI table with data from different sources or even
hide columns of data not to be viewed. Thus, we have several ways to display data.
Several result set fields can be mapped to one form control. In the opposite direction we
gain advantage of having complete control over the data being added to the database.
As price for this flexibility unbound UI components have to be synchronized with the
underlying database programmatically, and vice versa.

Through appropriate typing of the particular columns we have full control over their
formatting. This characteristic includes control of text formats (such as Dates, percent,
currency), word wrapping, alignment, borders, checking of boundaries for input values,
and much more.

By means of the KeyPicker component the table provides multi-column ComboBoxes
displaying a collection of objects. The ComboBox dropdown list can be formatted as a
table with the power to define style attributes on each column independently or make
each column share the same attributes.

Figure 18 shows the generated VB prototype for this task.

5 PROTOTYPING THE APPLICATION 69

Figure 18: Prototype 2: UI with Table

5.4.2 Architecture

The architectural framework consists essentially of the same classes as in Section 5.3.2.
The IQCommon class has got new methods to initialize the UI table’s naming and typing
declarations. But, in contrast to the former approach it makes no longer use of the
IQUserEntry package mainly because the behaviour of the table cells differs from the fields
implemented in Prototype 1. As we see in Figure 19 the particular form (here IQForm2)
is now connected with its IQTable class doing the main part of the view process logic.
Corresponding to Swing’s UI-Delegate paradigm (see Section 3.4.1) the table object uses
a table model object to manage the actual table data. For performance reasons the cells
in Swing tables are not implemented as stand-alone components [Geary 2002]. Instead,
for all cells containing data of the same type a given cell renderer is designated. The
cell renderer performs the task to appropriately format the data in each cell. As soon
as the user starts to edit a specific cell the predefined cell editor takes control over the
cell and monitors its editing. In our case, if needed, the editor makes use of a document
class. Due to [Sun 2004] this class serves as a container for text, supporting editing and
providing notification of changes. For each type of column we provide the particular
renderer, editor, and document class. Figure 19 shows the architecture of Prototype 2.

5 PROTOTYPING THE APPLICATION 70

Figure 19: Architecture of Prototype 2

5.4.3 Challenging Features

Initializing the table automatically. All information concerning the table must be
taken from a tab-delimited text file and the UI view must generate itself dynamically.
Table 5 shows a shortened version of the IRS file containing the most important param-
eters to build the UI of the application. Each row in the file stands for a tuple in the
database and will be mapped to a column of the table. The information is used to define
the data type, the table header’s name, if a value is required in the particular column,
the alignment and format of the viewed values, and the length of the column.

FORMNAME GRIDNAME COLUMNID IGSTYPE FIELDNAME REQUIRED ALIGNMENT LENGTH FORMAT

IQFORM2 GRID00 0 3 MUS STRING 0 0 20

IQFORM2 GRID00 1 2 MUS DATE -1 1 10

IQFORM2 GRID00 2 7 MUS DATETIME 0 1 18

IQFORM2 GRID00 3 8 MUS TIME 0 1 8

IQFORM2 GRID00 4 0 MUS CARDINAL 0 1 6 ####0

IQFORM2 GRID00 5 1 MUS DECIMAL -1 1 10 #####0.00

IQFORM2 GRID00 6 6 MUS BOOLEAN -1 1 1 0

IQFORM2 GRID00 7 0 MUS OPTION -1 1 3 #0

Table 5: IRS File for Table Definitions

The extracting and storing of the information from the text file is done by the class
IQNLSString. The following method InitializeGrid is stated in IQCommon and is invoked

5 PROTOTYPING THE APPLICATION 71

by IQForm2. As parameter it gets the specific IQTable and the name of the Form. The
name is needed to allow us to locate the adequate text file, since there can be more than
one form in the final business application. In Listing 15 line 12, m NLS is the IQNLSString
object providing the extracted data. With this data a vector of type IQStructuredStorage
is filled. The IQStructuredStorage class is a user defined type designed to hold the data
in a structured way and provide methods to easy access the data. In lines 17 to 54, the
specification of each column in the database table is mapped to the conforming column
in the application.

Assigning column editors. In listing 15 beginning with line 33, we try to define the
desired editor on basis of the type and subtype set by the IQDAO package. Here we run
into a remarkable pitfall caused by the fact that when in Java a fireTableStructure event
is fired the table column model is recreated from the data model. This recreation clears
any existing columns before creating the new columns based on information from the
model. The DefaultTableModel we are extending by our IQTableModel does not support
adding of columns directly. Instead, it notifies its listeners of its complete change. This
information causes the table to throw away the old table columns and create new ones.
All the information stored in this table columns is lost. To turn this behaviour off we have
to call JTable.setAutoCreateColumnsFromModel(false). The slight drawback we have to
bear is that modifications concerning table columns must be defined explicitly by hand
now. In turn we will have full control over the behaviour of the columns.

Listing 15: Initializing the table
1 protec ted void I n i t i a l i z e G r i d (IQTable tTable , S t r ing sFormName)
2 {
3 i n t lColCnt ;
4 Vector<IQStructuredStorage> vCol ;
5 S t r ing sTableName = tTable . getName () ;
6 i n t lColumnType ;
7 St r ing sFormat = nu l l ;
8 i n t lLength ;
9

10 sTableName = sTableName . tr im () . toUpperCase () ;
11
12 vCol = m NLS . getGridDef (sTableName) ;
13 lColCnt = m NLS . getGridFie ldCount () ;
14 tTable . setColumnCount (lColCnt) ;
15
16
17 f o r (i n t i = 0 ; i < lColCnt ; i++)
18 {
19 tTable . setColumnHeader (i , vCol . elementAt (i) . getValue (”FIELDNAME”) . t oS t r i ng ()) ;
20 tTable . setTableColumn (i , getTableColumnSizeFactor ((In t eg e r) vCol .
21 elementAt (i) . getValue (”IGSTYPE”))) ;
22
23 tTable . setColumnClass (i , getValueSubType ((In t eg e r) vCol . elementAt (i) .
24 getValue (”IGSTYPE”)) . getJavaClass ()) ;
25
26 lColumnType = (In t eg e r) vCol . elementAt (i) . getValue (”COLUMNTYPE”) ;
27
28 i f (! m Misc . isEmptyNull (vCol . elementAt (i) . getValue (”FORMAT”) . t oS t r i ng ()))
29 sFormat = vCol . elementAt (i) . getValue (”FORMAT”) . t oS t r i ng () ;
30
31 lLength = (In t eg e r) vCol . elementAt (i) . getValue (”LENGTH”) ;
32
33 i f (lColumnType == IQControlType .USERENTRY. o rd i na l ())
34 {
35 tTable . setControlType (i , IQControlType .USERENTRY) ;
36 tTable . setColumnEditor (i , sFormat , lLength , getValueFieldType ((In t eg e r) vCol .

5 PROTOTYPING THE APPLICATION 72

37 elementAt (i) . getValue (”IGSTYPE”)) , getValueSubType ((In t eg e r) vCol .
38 elementAt (i) . getValue (”IGSTYPE”))) ;
39 }
40 e l s e i f (lColumnType == IQControlType .CHECKBOX. o rd i na l ())
41 {
42 tTable . setControlType (i , IQControlType .CHECKBOX) ;
43 tTable . setColumnEditor (i , sFormat , lLength , getValueFieldType ((In t eg e r) vCol .
44 elementAt (i) . getValue (”IGSTYPE”)) , getValueSubType ((In t eg e r) vCol .
45 elementAt (i) . getValue (”IGSTYPE”))) ;
46 }
47 e l s e i f (lColumnType == IQControlType .KEYPICKER. o rd i na l ())
48 {
49 tTable . setControlType (i , IQControlType .KEYPICKER) ;
50 tTable . setColumnEditor (i , sFormat , lLength , getValueFieldType ((In t eg e r) vCol .
51 elementAt (i) . getValue (”IGSTYPE”)) , getValueSubType ((In t eg e r) vCol .
52 elementAt (i) . getValue (”IGSTYPE”))) ;
53 }
54 }
55 }

Varying column widths

”By default, all columns in a table start out with equal width, and the
columns automatically fill the entire width of the table.”[Sun 2004]

This behaviour is not what we really want. Our intention is that the width of each col-
umn conforms to the values within the column. Unfortunately, this is not possible since
the only way to fit each column to its greatest value requires a walk through all of its
values. For performance reasons we reject this solution. But again we can make use of
the dedicated type of a column. As we see in Listing 15 line 20, we create a method get-
TableColumnSizeFactor returning an integer factor depending on the type of the column.
On setting the table column we call the TableColumnModel.setPreferredWidth method
with a defined basic size multiplied with the regarding factor. Once again, this approach
is only possible if the automatic recreation of the table is turned off.

Storing the data. One of the most important considerations regarding this task is
to define the place where the data shall be stored. The application must be able to
deal with a great bunch of data and still show sufficient performance. For this reason
a Vector (which usually is the first structure to come into mind) is no proper container
to store the data into. A Vector is basically a thread-safe array (it is synchronized)
and grows dynamically to allow us to add new elements. This synchronization overhead
makes access to vectors very slow [Dale et al. 2002]. Because of that an ArrayList is
the better alternative. An ArrayList is a non-synchronized Vector. It is faster than a
Vector and cleaner to use since it need not support the legacy methods of the Vector
class. The following Listing will give an idea of the performance gap between a Vector
and an ArrayList.

5 PROTOTYPING THE APPLICATION 73

Listing 16: Performance comparison between Vector and ArrayList
1 import java . u t i l . ∗ ;
2
3 pub l i c c l a s s PerformanceTest
4 {
5 pub l i c s t a t i c void main (St r ing args [])
6 {
7 ArrayList<Object> oArrayList = new ArrayList<Object >(1000000);
8 Vector<Object> oVector = new Vector<Object >() ;
9 I t e r a t o r i t e r a t o r ;

10 long startTime = 0 ;
11 long endTime = 0 ;
12
13 startTime = System . cur r entT imeMi l l i s () ;
14
15 f o r (i n t i = 0 ; i <= 999999; i++)
16 {
17 oVector . add (new Object ()) ;
18 }
19
20 endTime = System . cur r entT imeMi l l i s () ;
21 System . out . p r i n t l n (
22 ”Load Vector with 1 . 000 . 000 ob j e c t s : ” + (endTime − startTime)) ;
23
24 startTime = System . cur r entT imeMi l l i s () ;
25 i t e r a t o r = oVector . i t e r a t o r () ;
26
27 whi l e (i t e r a t o r . hasNext ())
28 {
29 Object o = i t e r a t o r . next () ;
30 }
31
32 endTime = System . cur r entT imeMi l l i s () ;
33 System . out . p r i n t l n (
34 ” I t e r a t e through Vector with 1 . 000 . 000 ob j e c t s : ” + (endTime − startTime)) ;
35
36 startTime = System . cur r entT imeMi l l i s () ;
37
38 f o r (i n t i = 0 ; i <= 999999; i++)
39 {
40 oArrayList . add (new Object ()) ;
41 }
42
43 endTime = System . cur r entT imeMi l l i s () ;
44 System . out . p r i n t l n (
45 ”Load ArrayList with 1 . 000 . 000 ob j e c t s : ” + (endTime − startTime)) ;
46
47 startTime = System . cur r entT imeMi l l i s () ;
48 i t e r a t o r = oArrayList . i t e r a t o r () ;
49
50 whi l e (i t e r a t o r . hasNext ())
51 {
52 Object o = i t e r a t o r . next () ;
53 }
54
55 endTime = System . cur r entT imeMi l l i s () ;
56 System . out . p r i n t l n (
57 ” I t e r a t e through ArrayList with 1 . 000 . 000 ob j e c t s : ” + (endTime − startTime)) ;
58 }
59 }

The test shown in Listing 16 was performed on a 2,8 GHz Pentium 4 processor under
Windows XP SP 2 using java build 5.0. Comparing the outputs (showing the mean
times of running this program a hundred times) in Table 6 demonstrates that loading
the elements from an ArraList is quite three times faster than loading them from an
Vector. The performance difference concerning the iteration is even greater. Iterating
through the elements of an ArrayList is almost four times faster than iterating through

5 PROTOTYPING THE APPLICATION 74

the elements of a Vector.

Description Time

Load Vector with 1.000.000 objects 445
Iterate through Vector with 1.000.000 objects 213
Load ArrayList with 1.000.000 objects 153
Iterate through ArrayList with 1.000.000 objects 57

Table 6: Mean output after running program 100 times

Identifying operational modes. According to the requirement that consistency has
to be guaranteed although data must be written to the database only at particular times
we introduce different operational modes. We have to distinguish between original rows
in the UI table, updated rows, and newly inserted or deleted rows. We obtain this distinc-
tion by implementing appropriate data structures handling this challenge. The IQEvent
enum denotes the type of operation to perform and sets the IQRowOperationMode enum
to mark the state of the row. The user defined data structure IQRowOperation is a
container for the the row’s actual state and its corresponding database index. The appli-
cation undergoes a remarkable change from its VB counterpart. Due to Swings inherent
UI-Delegate logic we need only three events, namely AddNew, Change, and BeforeDelete
to perform this task compared to the various events the VB application needs. Each time
a table cell looses the focus Swing fires an event to invoke the method setValue of the
specified table model and to cause repainting of the view. Thus, in this method imple-
mented in our IQTableModel class, we put the whole logic concerning state validation
and setting of appropriate modes.

Deleting data. The main difficulty was the implementation of deleting. The complex-
ity hereby arises from the different indices between the data in the model and the data
in the database. Since the model is responsible to provide the data for the view, the data
index of the model must always be the same as the data index of the view. After perform-
ing several deletes there will be no more compliance between the indices of the database
on the one hand and the indices of model and view. To solve this problem each row
in the UI table (view) is linked with two different data structures. First, the ArrayList
holding the data of the row, and, second, a Vector of type IQRowOperation holding the
mode and the index of the row. The final delete of such a row in the database will be
put into effect by the index of the particular IQRowOperation value and be uncoupled
from model and view.

The fact that each row is aware of its state and index is again of great value when
executing a saving operation. There will be an iteration over all rows (and conforming to
the actual state) the affected rows (all rows no more being original state) will be stored
in ascending order. The deletes performed in the database will be added to a counter
variable and subtracted on subsequent database accesses within this operation to ensure
correct indexing.

Listing 17 demonstrates the just mentioned features on basis of a shortened version of
SaveGrid. This method (stated in the IQCommon class) gets the specific IQTable object,

5 PROTOTYPING THE APPLICATION 75

the IQDataSet object to perform the operations on, and a Vector of type IQRowOper-
ation that is used to get the original indices of rows already deleted from the model.
The AffectedRecords method invoked in Line 13 is responsible for some important pre-
work to be done. It clears out the unnecessarily deleted rows. Those rows have been
added and then deleted, and therefore shall be ignored further on. After the cleaning
it merges the remaining deleted rows with the other affected rows (updated or inserted
rows) and sorts them in ascending order. The required operation to accomplish then
depends on the IQRowOperationMode of the particular row. Line 26 shows the mapping
of the different indices between model/view and database by using the lIndex value of the
IQRowOperation value and incorporating indices of database rows already being deleted.

Listing 17: Saving operation
1 protec ted boolean SaveGrid (IQTable oTable , IQDataSet ds ,
2 Vector<IQRowOperation> udtDeletedRows)
3 {
4 IQRowOperationMode enStatus ;
5 i n t lNumAffectedRows ;
6 boolean blnOK = true ;
7 i n t lDeletedRows ;
8 i n t lActualRow = −1;
9 Vector<IQRowOperation> udtAffectedRows = new Vector<IQRowOperation >() ;

10 IQRowOperation udt = new IQRowOperation () ;
11
12 enStatus = IQRowOperationMode .NONE;
13 lNumAffectedRows = AffectedRecords (oTable , udtDeletedRows , udtAffectedRows) ;
14
15 lDeletedRows = 0 ;
16
17 i f (lNumAffectedRows > 0)
18 {
19 f o r (i n t i = 0 ; i < lNumAffectedRows ; i++)
20 {
21 switch (udtAffectedRows . elementAt (i) . enMode)
22 {
23 case DELETED:
24 udtDeletedRows . c l e a r () ;
25 enStatus = IQRowOperationMode .DELETED;
26 lActualRow = udtAffectedRows . elementAt (i) . l Index − lDeletedRows ;
27 ds . GotoRow(lActualRow) ;
28 ds . DeleteRec () ;
29 lDeletedRows++;
30 enStatus = IQRowOperationMode .NONE;
31 break ;
32 case UPDATED:
33 enStatus = IQRowOperationMode .UPDATED;
34 lActualRow = udtAffectedRows . elementAt (i) . l Index − lDeletedRows ;
35 ds . GotoRow(lActualRow) ;
36 ds . EditRec () ;
37
38 blnOK = (Boolean) oTable . InvokeCheckRules (lActualRow) ;
39
40 i f (blnOK)
41 {
42 oTable . InvokeFormToRecord (enStatus , lActualRow) ;
43 ds . UpdateRec () ;
44 enStatus = IQRowOperationMode .NONE;
45 }
46 e l s e
47 {
48 enStatus = IQRowOperationMode .UPDATED;
49 re turn f a l s e ;
50 }
51
52 udt . enMode = enStatus ;
53 udt . l Index = lActualRow ;
54 udt . lRow = udtAffectedRows . elementAt (i) . lRow ;

5 PROTOTYPING THE APPLICATION 76

55 oTable . ChangeRowData (udtAffectedRows . elementAt (i) . lRow , udt) ;
56 break ;
57 case INSERTED:
58 .
59 .
60 .
61 .
62 }

Inserting data. For insertion of data we append an additional empty row to the UI
table view. Analogously to the JDBC buffer for inserting we name this additional row
InsertRow. To create the InsertRow we provide a method called MakeInsertRow that
gets called in the beginning when the table is being populated and every time when the
user wants to insert a new row. Anytime the users inserts a value in the InsertRow a new
InsertRow is created. Since every insert into a table cell invokes the setValue method of
the table model, to obtain the desired behaviour we only have to check in this method if
the user is on the actual insert row and create a new InsertRow if necessary. Thus, we
obtain the equivalent behaviour as the sample application. This insertion logic allows us
to easily distinct between ”old” (coming from database) and ”new” (newly inserted) rows.
Respectively we can define the proper operational mode (either Change or AddNew).

Explicitly invoking setValue. The table model defines the data to be viewed in the
table and writes successfully edited data back to the model using the already mentioned
method setValue(Object value). This writing is done every time the cell looses the focus
in the table. At first glance this behaviour seems satisfactory. Nevertheless, it is the
cause for many problems arising in the field of implementing application logic in user
interfaces containing a table. For instance, the invocation of setValue doesn’t work if
the user clicks somewhere outside of the table, e.g., a button or the table header (is
not part of the table). If we want to save the modifications by clicking on the button
performing the saving operation, the table-related cursor is still positioned in the cell.
Hence, setValue was not invoked and the table model has still the old value for this cell.
The value actually being saved to the database is not the value viewed in the table, but
the value in the model.

Another pitfall is described by the following example. A cell in the last row of the
table view has the focus. Now we decide to delete another row. We can do this by
choosing the row in the row header (is not part of the table, too) and pushing the Delete
button. Though we moved around in our application we didn’t click somewhere in the
table and therefore the cell in the last row still owns the table focus. Now we want
resume editing this particular row and click in another cell of the row. We will get an
ArrayOutOfIndexException since setValue is invoked now with the former row index not
existing anymore. To avoid such inconveniences the application logic must be analyzed
and the methods JTable.editCellAt and AbstractCellEditor.fireEditingStopped have to be
implemented in the table and editors to explicitly force the table model to write data to
the model and, therefore, guarantee consistency with the view.

5 PROTOTYPING THE APPLICATION 77

Update of newly inserted data. Once again we have the problem that newly inserted
data is not visible in the current result set. The solution introduced in Section 5.3.3 on
page 62 can’t be adopted for the table prototype, since the table must show all result
tuples at once and moreover navigation by means of buttons (DoFirst, DoNext,...) is
not realised. Therefore, we need a different solution of this problem. Refreshing the
table data with the actual data from the database will not work - not only because of
performance reasons, but mainly because the position of the newly inserted data depends
on database inherent logic and, therefore, it is not possible to bring it in accordance with
the position in the table view. The newly inserted data always must remain at the end
of the table. Since JDBC offers nothing to add a new record to the existing result set,
we have to build our own ”result set” for newly inserted data. We do so by creating a
new class named IQInsertedData as inner class of IQRecordSet. The data structure to
simulate a result set will be an ArrayList<HashMap<String,Object>> with the name of
the database table field (corresponds to the UI table column name) as key. Any operation
on database data performing not on the original result set will be directed to the database
by means of this data structure, as shown in Figure 20.

Figure 20: Simulating a ResultSet

First, we have to make preparations in the application data to be able to distinguish
between original data and new data. We introduce three new row operation modes,
namely SavedInsert, UpdatedAfterInsert and DeletedInsert. The first one, SavedInsert is
used to differ between data being only inserted and data being already saved. For updates
and deletes we need these extra operation modes since the application must know the
adequate path to the database to use. The usual one for operations concerning original
data or the one through IQInsertedData.

As long as data have not been saved they exists only in the UI view and model and
operations on these data take place only there. After being saved the data exist in the
database and every operation must be performed there, too. A table row holding new
data is in Inserted mode. When this data must be saved it is written to JDBC’s Insertrow
buffer and to a temporary buffer in IQInsertedData. Only when the data were saved to
the database and thereby were checked to be correct, they are written in the ArrayList
and the mode is changed to SavedInsert. If then these data must be updated, we not
only have to change the values in the ArrayList, but also the values in the database.
Otherwise we would miss the verification of the data on the part of the database (primary
key violations, not null values,...). To find the currently inserted row in the databases
again we need LargeKeys (see Section 5.3.3 on page 62). Using the primary key value(s)
we create a new jdbc PreparedStatement

5 PROTOTYPING THE APPLICATION 78

Update sTableName set values.... where sPrimaryKey1 = pkValue1 [...
and sPrimaryKeyN = pkValueN]

to update the particular row. Again we must not write the update to our data structure
until the database update succeeds.

Listing 18 shows the used methods to insert data in the database. The method Form-
ToRecord (stated in the particular Form class) gets the index of the row to manipulate
and its designated IQRowOperationMode. Depending on the mode it performs the de-
sired operation. As we see in line 11 and in line 42 before an insert or update (after insert)
operation is done the data is stored in a temporary buffer. In case of the insert operation
the method Insert (stated in IQRecordSet) stores the data written to the jdbc InsertRow
buffer to the database (line 76). If no exception occurs in line 77 the method InsertRow
stated in IQInsertedRow is invoked. However, the index of the row in the UI is not the
same as in the ArrayList, which holds only the currently inserted data. Therefore, we
defined a class variable m lInsertedRowCount initialized to zero and being incremented
every time an insert operation is to be performed. The method InsertRow finally does
nothing else then copying the values from the temporary buffer to the ArrayList.

Listing 18: Inserting data to the database
1 pub l i c boolean FormToRecord (IQRowOperationMode enFlag , I n t eg e r lRow) throws IQException
2 {
3 boolean blnRetVal = true ;
4 Object oValue ;
5
6 t ry
7 {
8 // I n s e r t
9 i f (enFlag . o rd i na l () == 1)

10 {
11 m oMasterRecordSet .AddTempRow() ;
12
13 oValue = MUS STRING tf GetValue (lRow) ;
14 m oMasterRecordSet . setValue (”MUS STRING” , oValue) ;
15 m oMasterRecordSet . InsertTempData (”MUS STRING” , oValue) ;
16 .
17 .
18 .
19 oValue = MUS OPTION tf GetValue (lRow) ;
20 m oMasterRecordSet . setValue (”MUS OPTION” , oValue) ;
21 m oMasterRecordSet . InsertTempData (”MUS OPTION” , oValue) ;
22 }
23
24 // Update rows from the o r i g i n a l r e c o rd s e t
25 e l s e i f (enFlag . o rd i na l () == 0)
26 {
27 i f (lRow < m oMasterRecordSet . ge t In i t i a lRecordCount ())
28 {
29 m oMasterRecordSet . setValue (”MUS STRING” , MUS STRING tf GetValue (lRow)) ;
30 .
31 .
32 .
33 m oMasterRecordSet . setValue (”MUS OPTION” , MUS OPTION tf GetValue (lRow)) ;
34 }
35 }
36
37 //Update newly i n s e r t e d rows
38 e l s e i f (enFlag . o rd i na l () == 5)
39 {
40 i f (lRow >= m oMasterRecordSet . ge t In i t i a lRecordCount ())
41 {
42 m oMasterRecordSet .AddTempRow() ;

5 PROTOTYPING THE APPLICATION 79

43
44 m oMasterRecordSet . InsertTempData (”MUS STRING” , MUS STRING tf GetValue (lRow)) ;
45 .
46 .
47 .
48 m oMasterRecordSet . InsertTempData (”MUS OPTION” , MUS OPTION tf GetValue (lRow)) ;
49
50 m oMasterRecordSet . UpdateInsertedRow (FORM2 TBLNAME, lRow) ;
51 }
52 }
53
54 // Delete newly i n s e r t e d rows
55 e l s e i f (enFlag . o rd i na l () == 6)
56 {
57 i f (lRow >= m oMasterRecordSet . ge t In i t i a lRecordCount ())
58 {
59 m oMasterRecordSet . DeleteInsertedRow (FORM2 TBLNAME, lRow) ;
60 }
61 }
62 }
63 catch (IQException e)
64 {
65 blnRetVal = f a l s e ;
66 throw (e) ;
67 }
68
69 re turn blnRetVal ;
70 }
71
72
73
74 protec ted void I n s e r t () throws SQLException
75 {
76 m rs . insertRow () ;
77 m udtInsertedData . InsertRow (m lInsertedRowCount) ;
78 m lInsertedRowCount++;
79 }
80
81
82
83 p r i va t e void InsertRow (In t eg e r lPos)
84 {
85 m InsertData . add (lPos , new HashMap<Str ing , Object > ()) ;
86
87 f o r (i n t i = 0 ; i < m TempData . s i z e () ; i++)
88 {
89 m InsertData . get (lPos) . putAl l (m TempData . get (0)) ;
90 }
91 }

Listing 19 shows the update of inserted data. Here we get the correct index by subtracting
the original record count stored in IQRecordset class variable m lRecordCount from the
UI row index. In opposition to the requirement that no SQL code must appear hard coded
(see Section 4.1) here we must make an exception to meet the needs of this application.
We create a new PreparedStatement object used only to perform the update operation.
We take the values to update from the temporary buffer and again do not write the data
to the ArrayList (line 51) until the database update has succeeded.

Listing 19: Updating inserted data
1 protec ted void UpdateInsertedRow (St r ing sTableName , i n t lPos)
2 throws SQLException , IQException
3 {
4 // to get the po s i t i o n in the m InsertData udt
5 i n t l Index = lPos − m lRecordCount ;
6
7 // to update the value in the DB

5 PROTOTYPING THE APPLICATION 80

8 PreparedStatement pstmt = nu l l ;
9 S t r ing sUpdateStr ing = ”UPDATE ” + sTableName + ” SET ” ;

10 i n t lLa s t = m TempData . get (0) . s i z e () − 1 ;
11
12 f o r (i n t i = 0 ; i < l La s t ; i++)
13 {
14 sUpdateStr ing = sUpdateStr ing + m vFieldNames . elementAt (i) + ” = ? , ” ;
15 }
16
17 sUpdateStr ing = sUpdateStr ing + m vFieldNames . elementAt (lLa s t) + ” = ? ” ;
18 sUpdateStr ing = sUpdateStr ing + ” WHERE ” + m vPrimaryKeys . elementAt (0) + ” = ?” ;
19
20 f o r (i n t i = 1 ; i < m vPrimaryKeys . s i z e () ; i++)
21 {
22 sUpdateStr ing = sUpdateStr ing + ” AND ” + m vPrimaryKeys . elementAt (i) + ” = ?” ;
23 }
24
25 pstmt = m ActiveConnection . prepareStatement (sUpdateStr ing) ;
26
27 f o r (i n t i = 0 ; i <= lLas t ; i++)
28 {
29 Object oValue = m TempData . get (0) . get (m vFieldNames . elementAt (i)) ;
30 i n t lType = m Misc . getValueType (oValue) ;
31 t h i s . s e tObjec t (pstmt , i +1, lType , oValue) ;
32 }
33
34 f o r (i n t i = 0 ; i < m vPrimaryKeys . s i z e () ; i++)
35 {
36 Object oValue = m InsertData . get (l Index) . get (m vPrimaryKeys . elementAt (i)) ;
37 i n t lType = m Misc . getValueType (oValue) ;
38 t h i s . s e tObjec t (pstmt , lLa s t + 2 + i , lType , oValue) ;
39 }
40
41 // Update value in DB
42 pstmt . executeUpdate () ;
43
44 i f (pstmt != nu l l)
45 {
46 pstmt . c l o s e () ;
47 pstmt = nu l l ;
48 }
49
50 // Update row in ArrayList
51 m InsertData . get (l Index) . putAl l (m TempData . get (0)) ;
52
53 }

5.5 Prototype 3: Master/Detail UI

5.5.1 Specifications

A so-called Master/Detail UI is an application having a master form that can be linked
to several detail forms. The IFL-file specifies the database tables needed for this purpose
and the values of the master table to which the details are linked. There can be more
than one detail since every one can be linked to another value. As another specific
feature the appearance of the individual forms (components) can be configured. By
means of a fraction parameter it is fixed how much vertical place each form gets when
the application starts. Moreover, it is possible to place the different forms on different
pages. These pages can be choosen by clicking on the page header. In such a case some
fields of the master form can be displayed in an exposed way and are therefore visible

5 PROTOTYPING THE APPLICATION 81

even when the remaining master data is covered (e.g., by selecting another page). This
approach eases the assignment of detail data to the appropriate master data. The master
form by definition can contain only fields, but no grid (due to the 1-to-many relation
between master and details).

The requirements regarding to these specifications are:

• It must be possible to define the fraction of each form.

• Placing one (or more) forms on different pages.

• The source of an error (e.g., by writing data to the database) must be definitely
identifiable.

• The focus behaviour must be adapted/expanded.

Figure 21 shows the generated Master/Detail VB prototype.

Figure 21: Prototype 3: Master/Detail UI

5.5.2 Architecture

There is not much to say about the architecture of this prototype. The Master- and
Detailforms are mainly made up of the two forms developed before. Each form (besides
the master form that can only be a form with fields) is either a form with fields or a form

5 PROTOTYPING THE APPLICATION 82

with a table. These already designed forms can be taken without modifications from
the previous prototypes and altered to a slight extend to satisfy the above mentioned
requirements. The only architectural change to be made is an internal one that affects
the class IQForm. The container layout has to be changed because it was not designed to
be used with more than one form and misses the flexibility to arrange the various forms
according to the stated fraction.

5.5.3 Challenging Features

Handling multiple details. Until now the application logic of the IQForm class was
designed for only one form. Now this class must manage and deal with multiple (n) forms.
In the case of forms with fields this is not a great problem, since these fields are only
created with the aid of the IQCommon class, but are handled entirely in the IQForm class.
Regarding forms with tables the whole thing gets more complicated because the IQTable
class in collaboration with its table model manages the data by itself and forwards only
the needed information to the IQForm class.

Figure 22 shows the object diagram of a master/detail form. To build forms with fields
oForm invokes oCommon where the specific IQUserEntry objects (here oUserEntry1 to
oUserEntryN) are instantiated. Everything else concerning these generated fields is later
on handled in oForm itself. The IQUserEntry objects need not know anything about
oForm. In case of the IQTable forms (here oTable1 to oTableN) the application logic is
split between oForm and the oTable objects (directly accessed by oForm and vice versa).

Figure 22: Handling multiple tables

Some methods in oForm, which will be invoked by various occurrences of the oTable
objects, are designed to cope with requirements of one particular oTable object. As
solution of this problem oForm provides the methods for each oTable in a separate specific
occurrence. All the methods needed by oTable objects are named in a consistent way
as method name + two-digit numeric ending. The ending is used to declare the detailed
index of the method. The constructor of the IQTable class is changed to that effect that it
now gets besides the IQForm object parameter a String sDetailsIdx as second parameter
assigning the detail index of the IQTable object. That way each IQTable object gets

5 PROTOTYPING THE APPLICATION 83

its unique name consisting of GRID + sDetailsIdx. This solution ensures a well defined
one-to-one relationship between a IQTable object and its methods in IQForm.

Listing 20 shows the changed constructor of IQTable and the method InvokeCheckRules
which invokes, as the name says, the method CheckRules in IQForm. This invocation is
done by using the reflection mechanism described in Section 3.

Listing 20: Reflection in IQTable
1 pub l i c c l a s s IQTable extends JTable
2 {
3 p r i va t e St r ing m sTableName ;
4 p r i va t e St r ing m sDeta i l s Idx ;
5 p r i va t e boolean m blnI sDeta i l ;
6 .
7 .
8 .
9

10 pub l i c IQTable (IQDefaultForm frmParent , S t r ing sDe ta i l s I dx)
11 {
12 m oForm = frmParent ;
13 m sDeta i l s Idx = sDe ta i l s I dx ;
14 m bln I sDeta i l = f a l s e ;
15 .
16 .
17 .
18
19 i f (! m sDeta i l s Idx . equa l s (”00”))
20 m bln I sDeta i l = true ;
21
22 m sTableName = ”GRID” + m sDeta i l s Idx ;
23 t h i s . setName (m sTableName) ;
24 }
25
26 pub l i c boolean InvokeCheckRules (i n t lRow) throws IQException
27 {
28 boolean blnRetVal = f a l s e ;
29
30 try
31 {
32 blnRetVal = (Boolean) (m oForm . ge tC la s s () . getMethod (” CheckRules” + m sDeta i l s Idx ,
33 new Class [] { I n t eg e r . c l a s s }) . invoke (m oForm , new Object [] {lRow })) ;
34 }
35 catch (Exception e)
36 {
37 // should never be caught
38 }
39
40 re turn blnRetVal ;
41 }
42 }

Identify error source / set focus correctly. These two tasks are closely related
since when an error occurs the form containing the particular error source needs to
gain the focus. Focus handling in Java is to my regards (mainly based on experiences
made in the course of this project) a very intricate field. Therefore, we tried to follow
a different path in this matter. The identification of the error source (and the form
containing this source) is due to the specification explained above (each form has its own
methods) the least problem. Errors should occur only in methods checking predefined
rules (like CheckRulesXX, where XX stands for the form index) or methods trying to write
data to the database (like FormToRecordXX). To enable the focussing of the particular
form the IQCommon class provides a special data structure of type Hashtable<Integer,

5 PROTOTYPING THE APPLICATION 84

JComponent>. Every time a form or container is created its HashValue is stored as
Key in the Hashtable and the corresponding parent container is stored as value. This
way the focus can easily be defined top-down in recursive manner without depending on
sophisticated Swing focus handling mechanisms.

5.6 Evaluation

The major task in creating the prototypes was the development of basic controls as well
as testing and debugging the database connection layer.

The connection layer is in an almost final evolution state. The first real applications will
presumably show some inadequacies, but to my opinion they will not be vital. By now
the development of the connection layer is completed in a satisfactory manner.

The controls represent the basic components for the generation of applications. Due to
this reason much effort was taken to develop them as sophisticated as possible. At this
point in project the evaluation of the controls with regard to their capability to be used in
challenging business software applications is a very important task. The outcome of this
evaluation will be decisive for the continuation of the project. The developed controls
are namely Textbox, Datebox, Numberbox, RadioButton, Checkbox and Grid. Except
of the last one they are structurally sound and show the desired performance at runtime.
The grid control in form of JTable and its model forms the weak point of this matter.

Apart from the fact that Java GUI controls are emulated (see Section 3.2.2 for details)
and therefore will never reach the performance of native VB controls, JTable suffers
additionally from its overloaded design and its high abstraction.

With ”overloaded design” we mean that JTable has the capacity to do almost everything,
but its features are established only to a small extend. First, this provides too much
overhead in proportion to the task to accomplish, and, second, it takes much effort to
develop satisfactory solutions. Standard functionality must be implemented manually
and laborious whereas the VB grid offers many features implicitely (e.g., Clipboard,
Datepicker, ...). Another major difference is that the VB Grid is more restricted in its
use, but therefore it is also more target-oriented and faster.

The second drawback regarding performance it the high abstraction of the Java approach.
Due to the UI-Delegate paradigm (Section 3.4.1), which separates the view (JTable) and
the data model(JTableModel), there is a communication overhead leading to performance
degradation.

Although the grid is not state-of-the-art regarding performance and behaviour of highly
sophisticated business applications we continue proceedings as intended, but keep at
the back of our mind that subsequent to this migration process an improvement of the
actual solution must take place. To try it in the course of this project would exceed the
predetermined project time frame and is therefore out of scope. By now the methods and
interfaces needed by the generator are developed and well established and therefore the
subsystem architecture and the adaptation of IGS can be done without inconveniences.

5 PROTOTYPING THE APPLICATION 85

5.7 Concluding Remarks

The development of the prototypes was the main effort of this project. With the controls
being present in the IQUserEntry package and the grid control consisting of IQTable, its
model IQTableModel and the corresponding editors, renderers, and documents we now
have all the controls needed by IGS. For each of the prototypes we used the same form
class with the effect that this class has been extended and refined for the prototyping
process and is now general enough to meet the requirements of the different subsystem
types. On the basis of the controls and the form in a next step we can develop the
templates required for the generation process.

Moreover, during this task we developed and refined general (not to be generated) classes
each application will have to make use of (e.g., IQCommon, IQNLSString,...), and we
already designed a container layout that meets the requirements for use with IGS. Apart
from small refinements according to requested changes in the controls and forms these
classes and the architectural design are almost in a final development stage.

Appendix D shows the Java prototypes for the different subsystems developed during
this task.

6 SUBSYSTEM ARCHITECTURE 86

6 Subsystem Architecture

6.1 Overview

All of the generated UI form-classes will share significant parts of the overall application
functionality. Thus, we divided the entire application into subsystems that are already
strongly encapsulated. Each subsystem consists of a form class plus a convenient support
class.

With the aid of the prototypes we designed so far we will build templates of each control
(e.g. DateField, Table,...) in the next section. These templates serve as fragments for
IGS and will be put together to build up the generated container class (form) of the
appropriate type (SearchForm, Master/Detail-Form,...). Together with a generated form
IGS will provide an EventHandler class as support class. The support class contains
method bodies for the predefined events and can be expanded by own methods if needed.
If a new run of IGS is necessary, e.g., because an additional control is needed, IGS
overwrites only the form classes and leaves the support classes in their original state.
This approach offers the flexibility of generating the application as often as we want until
we are convinced of the result without loosing the modifications we made.

Each form provides call-in-interfaces in form of public methods and public ”getters” and
”setters” which are methods to assign or read the value of a property. These interfaces
are designed to be used by handler classes of other subsystems within the application and
give the developer the flexibility to gain access to other subsystems if needed. However,
the access is restricted to the setting of property values and ordinary execution of some
defined methods. With ”ordinary execution” we mean that the developer can enforce their
execution without changing the ordinary behaviour of the method. Well directed and
more flexible modifications are only possible by means of the call-out-interfaces. At well
defined points the form class invokes particular methods in the supporting EventHandler
class. All parameters are passed by reference to allow their modification or to set the
appropriate value (e.g. if the parameter acts as flag).

Figure 23: Subsystem architecture

Figure 23 shows the architecture of a subsystem. As we can see the call-in-interfaces
can be invoked from outside the subsystem by handler of other subsystems, whereas the
call-out-interfaces reach only the handlers assigned to the form.

6 SUBSYSTEM ARCHITECTURE 87

6.2 Call-In-Interfaces

As we already mentioned in the previous section the call-in-interfaces consist of public
methods and public ”getters” and ”setters”. Though they are all methods we make
this semantic separation to distinct between methods that perform operational code and
methods that only set or get properties in form of class variables.

6.2.1 Operational methods

All of these methods are public and return a boolean value indicating whether they were
successful or not. In the latter case the cause can be a failure during the execution of
the method, or cancelling the execution by means of the designated handler. Cancelling
is possible since each method triggers an OnBeforeXXX event in the beginning of the
method body and an OnAfterXXX event in the end (XXX stands for the name of the
method) where a flag to cancel the execution of the method can be set to the appropriate
value. The following enumeration lists the methods choosen to establish the call-in-
interfaces and gives a short explanation of their purpose or usage.

• DoSave
Saves the data of the subsystem persistently.

• DoPrint
Invokes the subsystem’s printing functionality. It gets an integer indicating the
print mode (either Print or Page Preview) as parameter.

• DoAddNew
Puts the subsystem in add new mode. This method is used in subsystems containing
a functionality to add new Data objects.

• DoSearch
Invokes the subsystem’s search functionality. Used only if applicable, i.e., if there
are search dialogues.

• DoDelete
Deletes the data of the subsystem.

• DoRefresh
Refreshes (mass) data (mainly in tables). Used only if there is a query or refresh
button on the toolbar.

• DoPick
Performs all functionality that is required when the user selects the item from a
search form.

• DoUnload
Performs cleanup if necessary.

6 SUBSYSTEM ARCHITECTURE 88

• FormToRecord
Puts all data being visible in the form into a batch job to the record set.

• RecordToForm
Loads all data prevailing in the record set to the form. This is done when the form
is loaded for the first time or an operation like DoNext is performed.

• CreateRecordSets
Creates the record set by querying the database.

Listing 21 shows the DoAddNew method as example for a call-in-interface. In line 19 the
OnBeforeAddNew event is triggered and according to the boolean flag the code from line
22 to line 29 will be executed.

Listing 21: Public method DoAddNew
1
2 pub l i c boolean DoAddNew() throws IQException
3 {
4 boolean [] blnCancel = { f a l s e } ;
5
6 i f (m blnAdding)
7 {
8 ShowErrorMessage (m Common. LoadRESString (m sFormName , m enLanguage , 10035)) ;
9 re turn f a l s e ;

10 }
11
12 i f (! m blnNoRecord)
13 Va l idateContro l s () ;
14
15 i f (m blnChanged)
16 i f (! ShowQuestionMessage (m Common. LoadRESString (m sFormName , m enLanguage , 10030)))
17 re turn f a l s e ;
18
19 raiseOnBeforeAddNew (blnCancel) ;
20
21 i f (! blnCancel [0])
22 {
23 m blnAdding = true ;
24 UnlockAl lContro l s () ;
25 m oMasterRecordSet . AddRec () ;
26 DefaultsToForm () ;
27
28 raiseOnAfterAddNew () ;
29 }
30
31 re turn ! blnCancel [0] ;
32 }

6.2.2 Get- and Set-Methods

The job description of these methods is to write or read values being assigned to a
property (class variable) of the form object. Depending on their usage properties can
have one of the following modes:

• Write only (WO)
Only the Set-method of the property is public.

6 SUBSYSTEM ARCHITECTURE 89

• Read only (RO)
Only the Get-method of the property is public.

• Read/Write (RW)
Both the Set-method and the Get-method are public.

Table 7 gives an overview over the properties with assigned public methods. These
properties must be provided by each form object.

Property Type Mode Description

vConnections Vector of
IQConnection
objects

WO The Database connections of the sub-
system.

oNLSString IQNLSString
object

WO The Strings (NLS Strings and SQL
Statements) associated to the applica-
tion.

The NLSString object contains the
user information including the user’s
calendar. Only this calendar can be
used to perform calendar calculations.

enFormType IQSubsys-
FormType

RO Defines the type of the form. See Ap-
pendix E for details.

enUseType IQSubsys-
UseType

RO Defines the use type of the form. See
Appendix E for details.

iRequestedWidth Integer RO The width in twips requested by the
subsystem’s visible area. See Appendix
E for details.

iRequestedHeight Integer RO The height in twips requested by the
subsystem’s visible area. See Appendix
E for details.

iConnectionCount Integer RO The number of connections requested
by the subsystem.

sCaption String RO String containing the form’s caption to
display at runtime.

vFields Vector of
controls

RO

iFieldCount Integer RO Number of items in the controls vector.

Table 7: Public methods for properties

6 SUBSYSTEM ARCHITECTURE 90

6.3 Call-Out-Interfaces

The aim of the call-out-interfaces is to provide a possibility for the software developer to
change the generic behaviour of the generated application. As we already mentioned this
functionality is realised with the aid of a self designed event handling mechanism. At
well defined points of the application events will be fired and the assigned support class
(event handler) will catch the event and invoke the appropriate method. After initial
generation of the application the bodies of these event handler methods are empty. The
software developer is in charge of filling them with code to achieve the desired results if
needed.

For each of the following events (referred to as <Event>) there is an according On-
Before<Event> and an according OnAfter<Event>. The events have the same param-
eters with the exception that the OnBefore<Event> always has an additional boolean
parameter (boolean[] blnCancel) which is set to ”False”’ when the event is raised by the
subsystem. If set to ”True” by the handler of the event, any follow-up action may not
take place.

To enable their modification the according parameters must be passed as reference vari-
ables. In Java all types except scalar primitive types are reference types. To allow
notification of change we make use of flags represented by such primitive types. Though
for these types there exist wrapper classes that encapsulate the value of the primitive type
internally and represents it as object, in this connection the wrappers are of no use for us.
Due to various reasons (e.g., thread-safety, speed, usage in hashtables,...) such wrappers
are immutable. To deal with this restriction instead of a primitive type we use an array
of this type having length 1. Since an array is an object and , therefore, a reference in
the support class, we can change the value of its only field and read the changed value in
the form class. Unfortunately, this immutability holds also for the String type. Instead
of String we must use StringBuffer which implements a mutable sequence of characters.
The length and the content of the sequence can be changed through certain method calls.

This approach is closely related to the programming paradigms of aspect-oriented pro-
gramming (AOP). The first and most popular general-purpose AOP language, AspectJ
is described in [Xerox 1998].

Table 8 shows the events that are handled in the support class.

6 SUBSYSTEM ARCHITECTURE 91

<Event> Parameters Description

Save N/A Before and after saving the data of the subsystem.
Print int iPrintMode Before and after the subsystem’s printing functionality

is invoked.

Print = 0, Page Preview = 1
AddNew N/A Before and after the subsystem is put into add new

mode.
Search Object oWhich Before and after the subsystem’s search functionality is

invoked.

This parameter is meaningful only in cases where
the subsystem contains more then one search form. In
other cases, Null is passed.

Delete N/A Before and after Data deletion.

Mandatory for DM use type (see Appendix E) if
applicable, i.e. if there is a functionality to delete data.

Query StringBuffer sSQL,
Vector<Object>
vParams

Mandatory for DM use type (see Appendix E) if
applicable, i.e., if there is a query or refresh button on
the toolbar.

sSql is a parameterized SQL command. vParams
is an array containing the needed paramters.

Refresh N/A Before and after mass refresh.

Mandatory for DM Use Type (see Appendix E) if
applicable, i.e. if there is a query or refresh button on
the toolbar.

Pick N/A Before and after a search result is picked
GotoFirst N/A Before and after data has been retrieved from the

database to the subsystem.
UserToolbar-
ButtonClick

String sKey When the user presses the toolbar item, the OnBe-
foreUserToolbarButtonClick is raised.

sKey = The key of the toolbar item that has been
clicked.

Show N/A OnBeforeShow is raised at the very initialization of the
subsystem.

OnAfterShow is raised when initialization of the
subsystem is finished, i.e., the subsystem is ready to
react on any method.

Table 8: Subsystem Events

6 SUBSYSTEM ARCHITECTURE 92

As example for a call-out-interface event handler in Listing 22 we show the method
OnBeforeSave. Its only parameter is a boolean flag indicating if the method DoSave in
the according form class shall be executed. This example is based on the assumption that
we have a UI with values coming from a database view. The data of the database view
consists of data taken from the two tables PERSONS and STUDENTS. Since Oracle
database views cannot be updated, the generated DoSave method in the form class will
fail due to the fact that IGS always takes the data source as target of the Save operation.
Thus, we have to write our own save logic and set blnCancel to true (see line 90 and line
94). In line 19 we retrieve the value studpersid which is the primary key for both, the
PERSONS and STUDENTS table, and links together this two tables. With the aid of
this value we create two IQDataSet objects, one for each table. According to the prefix
of each control (either ”PERS” or ”STUD”) we save its value in the corresponding table.
In line 86 we load the updated record set to the form to ensure that the data in the UI
is bound again to data in the database.

Listing 22: Method OnBeforeSave
1 pub l i c void OnBeforeSave (boolean [] blnCancel)
2 {
3 IQNLS n l s = new IQNLS () ;
4 IQConnection con = new IQConnection () ;
5 IQDataSet dsStud = new IQDataSet () ;
6 IQDataSet dsPers = new IQDataSet () ;
7 Vector<Object> vParams = new Vector<Object >() ;
8 Vector<Object> v = new Vector<Object >() ;
9 double PERSPERSID SEQ;

10 Object oBuf f e r ;
11 St r ing sControlName ;
12
13 try
14 {
15 i f (m frmForm . CheckRules ())
16 {
17 con = m frmForm . getConnect ions (0) ;
18
19 vParams . add (0 , m frmForm . MUS STUDPERSID GetValue ()) ;
20 dsStud = (IQDataSet) con . CmdExecute (n l s . GetSqlCmd(SQL STUD SAVE) , vParams) ;
21 dsPers = (IQDataSet) con . CmdExecute (n l s . GetSqlCmd(SQL PERS SAVE) , vParams) ;
22
23 i f (m frmForm . getAdding ())
24 {
25 PERSPERSID Seq = con . SeqNextVal (”PERSONENDATEN”) ;
26 dsPers . AddRec () ;
27 dsPers . setValue (”PERSPERSID” , PERSPERSID SEQ) ;
28 }
29 e l s e
30 dsPers . EditRec () ;
31
32 f o r (i n t i = 0 ; i < m frmForm . getControlCount () ; i++)
33 {
34 sControlName = m frmForm . getContro l (i) . getName () ;
35
36 i f (sControlName . sub s t r i ng (0 , 3) . equa l s (”PERS”))
37 {
38 oBuf f e r = m frmForm . getContro l (i) . getValue () ;
39
40 i f (m Common. i sDate (oBuf f e r . t oS t r i ng ()))
41 {
42 oBuf f e r = m Common. Date2Number (oBuf f e r) ;
43 }
44
45 dsPers . setValue (sControlName , oBuf f e r) ;
46 }
47 }
48

6 SUBSYSTEM ARCHITECTURE 93

49 dsPers . UpdateRec () ;
50 dsPers . DoClose () ;
51
52 i f (m frmForm . getAdding ())
53 {
54 dsStud . AddRec () ;
55 dsStud . setValue (”STUDPERSID” , PERSPERSID SEQ) ;
56 }
57 e l s e
58 dsStud . EditRec () ;
59
60 f o r (i n t i = 0 ; i < m frmForm . getControlCount () ; i++)
61 {
62 sControlName = m frmForm . getContro l (i) . getName () ;
63
64 i f (sControlName . sub s t r i ng (0 , 3) . equa l s (”STUD”))
65 {
66 oBuf f e r = m frmForm . getContro l (i) . getValue () ;
67
68 i f (m Common. i sDate (oBuf f e r . t oS t r i ng ()))
69 {
70 oBuf f e r = m Common. Date2Number (oBuf f e r) ;
71 }
72 i f (!m Common. getContro l (i) . getName . equa l s (”STUDPERSID”)
73 {
74 dsStud . setValue (sControlName , oBuf f e r) ;
75 }
76 }
77 }
78
79 dsStud . UpdateRec () ;
80 dsStud . DoClose () ;
81
82 v . add (0 , m frmForm . getContro l (”STUDPERSID”) . getValue ()) ;
83
84 i f (m frmForm . CreateRecordSets (v))
85 {
86 m frmForm . RecordToForm () ;
87 }
88 }
89
90 blnCancel [0] = true ;
91 }
92 catch (IQException e)
93 {
94 blnCancel [0] = true ;
95 ShowErrorMessage (m Common. LoadRESString (m frmForm . getName () ,
96 m Common. getLanguage () , 1 0035)) ;
97 }
98 }

7 ADAPTING IGS 94

7 Adapting IGS

The main task of the last step in our project is the development of templates for the
particular subsystems and controls. This task will be rather straightforward since the
prototypes developed so far are reproductions of generated applications. Therefore, they
already cover the requirements concerning design, functionality, and method of applica-
tion pretty good. So the effort will consist mainly of extracting the parts needed for the
templates and converting them to generalizations. These generic templates will finally be
filled by IGS with appropriate data and serve as fragments of the specified application.

Subsection 7.1 shows the process of creating such templates by means of an example
covering the whole area of application. Subsection 7.2 overviews briefly the topic of
conditional compilation because this technique is essential for generating programs saving
time and memory.

The completion of the generator adaptation process will be the enhancement of the gen-
erator itself, concerning its ability to ”talk” Java. To gain this functionality small adapta-
tions to the generator have to be made without expanding the process logic significantly.
These slight changes affect mainly the syntactical differences on invocations of methods,
written either in Java or in VB, and will not be further discussed here. Figure 24 shows
the different layers of IGS. The layers for the database connection and for the positioning
and building of controls remain untouched, whereas within the code generation layer the
method calls have to be adapted for to work with Java.

Figure 24: IGS Layers

7.1 Creating Templates

IGS makes use of various templates to put together the final application. These templates
consist of generic code fragments in which the appropriate information will be inserted
by means of simple textual substitution. The $ symbol acts as identification mark for
the generator to recognize positions where replacements have to take place, either by
insertion of another template or the insertion of constants (e.g., names). In the latter
case IGS will scan the created IRS file to find the according entry. For each application
three IRS files are generated - one for the grid definitions (see Section 5 for details), one

7 ADAPTING IGS 95

for the SQL commandos, and one for the constants (names, captions, tooltips, ...). In
Appendix F the IRS file for the constants of prototype 1 is shown.

To build the application IGS uses three different types of templates:

• Form templates

• Subsystem templates

• Control templates

7.1.1 Form Templates

Each application consists of one MainForm and one or more (sub)forms. MainForm is
of type JFrame and the forms are either of type JInternalFrame (incorporated within a
JDesktopPane) or JDialog. For each of these three java window classes a specific template
exists since their behaviour differs slightly from each other.

• JFrame
is a window with decorations such as a border, a title, and button components to
close or iconify the window. Applications with a GUI usually include at least one
frame [Sun 2004].

• JInternalFrame
Most commercial business applications are Multiple Document Interface (MDI) ap-
plications. This means that there is one large desktop pane that holds all other win-
dows. The other windows can be iconified (minimized) and moved around within
this desktop pane, but not moved outside of it. Furthermore, minimizing the desk-
top pane hides all windows it contains as well. Swing introduced MDI support by
means of two main classes. The first, JDesktopPane serves as a holder for the other
windows. The second, JInternalFrame acts mainly like JFrame, except that it is
constrained to stay inside JDesktopPane. JInternalFrame is a lightweight object
that provides many of the features of a native frame, including dragging, closing, be-
coming an icon, resizing, title display, and support for a menu bar [Hall et al. 2001].

• JDialog
is an independent sub window meant to carry temporary notice apart from the main
Swing Application Window. Most Dialogs present an error message or warning to a
user, but Dialogs can present images, directory trees, and anything compatible with
the main Swing Application that manages them. A Dialog can be modal. When
a modal Dialog is visible, it blocks user input to all other windows in the program
[Sun 2004].

The following listing is taken from the form template. Together with listings 24 and 25 it
shows a continguous example for the functionality of the generator. The excerpt contains
the definition of the two methods DoLoad and DoShow. In lines 6 and 19 code of the
appropriate subsystem templates (and subsequently the according control templates) is
included, whereas in lines 7 and 28 simple name substitution will take place.

7 ADAPTING IGS 96

Listing 23: Form Template
1 // frmSubsystemTemplate . IFT DoLoad Method Code Begin
2 p r i va t e void DoLoad(IQDefaultForm oForm) throws IQException
3 {
4 St r ing sCaption = m Common. LoadIRSString (”$FORMNAME$” , $STRIDCAPTION$) ;
5 // frmSubsystemTemplate . IFT #INITIALIZE# Code Begin
6 $INITIALIZE$
7 $USERCONTROL$. Res i ze () ;
8 // frmSubsystemTemplate . IFT #INITIALIZE# Code End
9 }

10 // frmSubsystemTemplate . IFT DoLoad Method Code End
11 // frmSubsystemTemplate . IFT DoShow Method Code Begin
12 p r i va t e void DoShow()
13 {
14 boolean blnCancel = f a l s e ;
15
16 try
17 {
18 // frmSubsystemTemplate . IFT #SHOW# Code Begin
19 $SHOW$
20 // frmSubsystemTemplate . IFT #SHOW# Code End
21 }
22 catch (IQException e)
23 {
24 i n t lEr r = e . getErr () ;
25 St r ing sSource = e . getSource () ;
26 St r ing sDesc = e . g e tDe s c r i p t i on () ;
27
28 St r ing sErrMsg = m Common. LoadRESString (”$FORMNAME$” , m enLanguage , 10054) ;
29 St r ing sEr rDeta i l = lEr r + ”\n” + sSource + ”\n” + sDesc ;
30 t ry
31 {
32 ShowErrorMessage (sErrMsg , sEr rDeta i l) ;
33 }
34 catch (IQException e1)
35 {
36 //doNothing
37 }
38 }
39 }
40 // frmSubsystemTemplate . IFT DoShow Method Code End

7.1.2 Subsystem Templates

Each form of the application is assigned to exactly one subsystem type. As specified
in Section 6 there are three types of subsystems. According to the definition of the
application type (done in the IFL file) at the positions pointed out in Listing 23 the
appropriate code of the (type-)consistent subsystem template will be included. Therefore,
the subsystem template (as well as the control template) is divided into sections. These
sections enable the identification and qualification of the code so that the generator always
knows how to address this code.

The subsystem template is classified into the following sections:

• [Events]

• [Variables]

• [Initialize]

7 ADAPTING IGS 97

• [Show]

• [Routines]

In [Events] the according event handler class for the particular subsystem is constituted.
[Variables] holds the declaration of all variables (variables of form object and of all needed
control objects). [Initialize] will be used (as seen in listing 23) to implement the method
that initializes the form and all corresponding controls. [Show] creates the method to
show the form. In [Routines] all other methods of the form and the control classes are
defined.

Listing 24 shows the [Initialize] section of a subsystem template. The section definition
tells IGS to include also the code of the [Initialize] section of all controls specified for the
according application.

Listing 24: Subsystem Template
1 [I n i t i a l i z e]
2 i f ($FORMNAME$ LARGE)
3 {
4 $INITLARGEKEYS$
5 }
6
7 $INITMASTERSQL$
8
9 i f ($FORMNAME$ NUMDETAILS > 0)

10 {
11 m Common. IGSSetupDataEntryToolbar (tbTB , imgToolBar , f a l s e , t rue) ;
12 }
13 e l s e
14 m Common. IGSSetupDataEntryToolbar (tbTB , imgToolBar , f a l s e , f a l s e) ;
15
16 i f (!$FORMNAME$ NAVIGATE)
17 {
18 tbTB . get (TBB FIRST) . s e tV i s i b l e (f a l s e) ;
19 tbTB . get (TBB PREV) . s e tV i s i b l e (f a l s e) ;
20 tbTB . get (TBB NEXT) . s e tV i s i b l e (f a l s e) ;
21 tbTB . get (TBB LAST) . s e tV i s i b l e (f a l s e) ;
22 }

7.1.3 Control Templates

IGS creates an application of the appropriate type according to the specifications, and
controls for the fields/grids of the application according to the used database tables.
The types of the database fields define the types of the controls. Nevertheless, in the
specification (in IFL file) a different type can be assigned to a control.

Controls are:

• Textbox

• Datebox

• Numberbox

7 ADAPTING IGS 98

• Radio

• Checkbox

• Grid

For each of these controls there are templates which are classified into the following
sections:

• [Variables]

• [Initialize]

• [Routines]

• [GetValue]

• [SetValue]

• [GetCaption]

• [Lock]

• [SetFocus]

The first three sections will be included in the subsystem sections of the same name. The
other sections are defined explicitly (not in the [Routines] section) because they will be
included several times.

Listing 25 shows the code of the [Initialize] section of a textbox control.

Listing 25: Control Template
1 [I n i t i a l i z e]
2 I n i t i a l i z eTex t b ox ($PANEL$, $FIELDNAME$, $LBLNAME$, $ALIGNMENT$, $FORMNAME$,
3 $STRIDCAPTIONS$, $STRIDCOMMENTS$, $HASBROWSEFORM$,
4 $TOUPPERCASE$, m vLabels , m s$FIELDNAME$ Nm) ;
5
6 I f $FIELDNAMES$ HASBROWSEFORM
7 {
8 m $FIELDNAME$SF = new IQCFSearch () ;
9 m $FIELDNAME$SFLoaded = f a l s e ;

10 }

Listing 26 shows the generated code resulting from the substitution steps explained above.

Listing 26: Generated Code
1 // frmMDIChildTemplate . IFT DoLoad Method Code Begin
2 pub l i c void DoLoad () throws IQException
3 {
4 St r ing sCaption = m Common. LoadIRSString (”frmMUSTER1” , 2 3) ;
5 // frmMDIChildTemplate . IFT #INITIALIZE# Code Begin
6 m Common. I n i t i a l i z eTex t b ox (m UserEntryPane , m MUS STRING tf ,
7 m MUS STRING lbl , m sFormName , 14 , 0 , f a l s e , f a l s e , m vLabels ,
8 m sMUS STRING Nm) ;
9 //Datebox . ICT I n i t i a l i z e Code Begin

7 ADAPTING IGS 99

10 m Common. In i t i a l i z eDa t eBox (m UserEntryPane , m MUS DATE uc ,
11 m MUS DATE lbl , m sFormName , 15 , 1 , m vLabels , m sMUS DATE Nm) ;
12 //Datebox . ICT I n i t i a l i z e Code End
13 //Datetimebox . ICT I n i t i a l i z e Code Begin
14 m Common. In i t ia l i zeDateTimeBox (m UserEntryPane , m MUS DATETIME uc,
15 m MUS DATETIME lbl , m sFormName , 16 , 2 , m vLabels , m sMUS DATETIME Nm) ;
16 //Datetimebox . ICT I n i t i a l i z e Code End
17 //Datebox . ICT I n i t i a l i z e Code Begin
18 m Common. In i t i a l i z eT imeBox (m UserEntryPane , m MUS TIME lbl ,
19 m sFormName , 17 , 3 , m vLabels , m sMUS TIME Nm) ;
20 //Datebox . ICT I n i t i a l i z e Code End
21 //CardinalBox . ICT I n i t i a l i z e Code Begin
22 m Common. I n i t i a l i z eCa rd i n a lBox (m UserEntryPane , m MUS CARDINAL tf ,
23 m MUS CARDINAL lbl , m sFormName , 18 , 4 , m vLabels , m sMUS CARDINAL Nm) ;
24 //CardinalBox . ICT I n i t i a l i z e Code End
25 //DecimalBox . ICT I n i t i a l i z e Code Begin
26 m Common. In i t i a l i z eDec ima lBox (m UserEntryPane , m MUS DECIMAL tf ,
27 m MUS DECIMAL lbl , m sFormName , 19 , 5 , m vLabels , m sMUS DECIMAL Nm) ;
28 //Decimalbox . ICT I n i t i a l i z e Code End
29 //CheckBox . ICT I n i t i a l i z e Code Begin
30 m Common. I n i t i a l i z e C o n t r o l (m UserEntryPane , m MUS BOOLEAN chk,
31 m MUS BOOLEAN lbl , m sFormName , 20 , 6 , m vLabels , m sMUS BOOLEAN Nm) ;
32 //CheckBox . ICT I n i t i a l i z e Code End
33 //RadioButtons . ICT I n i t i a l i z e Code Begin
34 m vRadioButtons . add (m MUS OPTION rb1) ;
35 m vRadioButtons . add (m MUS OPTION rb2) ;
36 m vRadioButtons . add (m MUS OPTION rb3) ;
37 m Common. I n i t i a l i z eR a d i o (m UserEntryPane , m vRadioButtons ,m MUS OPTION bg ,
38 m MUS OPTION lbl , m sFormName , 10 , 21 , 13 , m vLabels , m sMUS OPTION Nm) ;
39 //RadioButtons . ICT I n i t i a l i z e Code End
40
41 boolean [] blnCancel = { f a l s e } ;
42
43 raiseOnBeforeShow (blnCancel) ;
44
45 i f (FRMMUSTER1 LARGE)
46 m sLargeKeys . add (”MUS DECIMAL”) ;
47
48 m sMasterSQL = m Common. GetSqlCmd (1) ;
49
50 i f (FRMMUSTER1 LARGE)
51 {
52 i f (FRMMUSTER1 NAVIGATE)
53 {
54 ra i seOnBeforeGotoFir s t (blnCancel) ;
55
56 i f (! blnCancel [0])
57 {
58 DoFirst (f a l s e) ;
59 ra i seOnAfterGotoFi r s t () ;
60 }
61 }
62 }
63 e l s e
64 CreateRecordSets () ;
65
66 raiseOnAfterShow () ;
67 // frmMDIChildTemplate . IFT #INITIALIZE# Code End
68 }
69 // frmMDIChildTemplate . IFT DoLoad Method Code End

7.2 Conditional Compilation in Java

The code in the templates makes use of conditional compilation. It selects particular
sections of code to compile, while excluding other sections. These conditional compilation
statements are designed to run at compile time, not at run time.

7 ADAPTING IGS 100

We designed the templates this way to save memory capacity and fasten execution time
of the final program. Moreover, we are able to compile several different versions of our
program with different features present in the different versions.

Since Java has no pre-processor and hence no construct like #ifdef can be used, there
is a constricted form of conditional compilation. The following program fragment will
not be compiled because the result of the if-statement is always false. This behaviour
is urgently recommended in the Java language specification, but not obligatory for the
compiler manufacturer.

Listing 27: Conditional Compilation in Java
1 i f (f a l s e)
2 {
3 //doSomeThing
4 }

This behaviour of the java compiler is in opposition to its postulation to accept only
reachable assignments. According to the java language specification the compiler should
reject all assignments that are not reachable and signal an error.

In technical sense assignments are not reachable in loops whose condition is false at
compile time, and assignments lying after break, continue, throw or return assignments
that are accessed unconditionally. The only exception of this rule is the above mentioned
option of a constantly false branch which can be used for conditional compilation.

Listing 28 shows a small Java program to test the behaviour of the compiler according to
conditional compiling. We made use of the dissassembler javap to examine the resulting
compiled CompileTest.class file. Javap takes the class and dumps information about its
methods to standard out. It doesn’t decompile the code into Java source code, but it
disassembles the byte code into the byte code instructions defined by the Java Virtual
Machine specification.

The output shown in Listing 29 is a little cryptic, but we can easily see that there’s no
assembly code for the method Donothing() and, therefore, the compiler acts as required.

Listing 28: CompileTest
1 pub l i c c l a s s CompileTest
2 {
3
4 p r i va t e f i n a l boolean $LARGEKEYS$ = f a l s e ;
5
6 pub l i c void Donothing ()
7 {
8 i f ($LARGEKEYS$)
9 System . out . p r i n t l n (” This shouldn ’ t happen ! ! ”) ;

10 }
11
12 pub l i c s t a t i c void main (S t r ing [] args0)
13 {
14 CompileTest t = new CompileTest () ;
15 t . Donothing () ;
16 }
17 }

7 ADAPTING IGS 101

Listing 29: Dissasembled CompileTest
1 Compiled from ”CompileTest . java ”
2 pub l i c c l a s s CompileTest extends java . lang . Object{
3 pub l i c CompileTest () ;
4 Code :
5 0 : a load 0
6 1 : i n vok e sp e c i a l #12; //Method java / lang /Object .”< i n i t >”:() v
7 4 : a load 0
8 5 : i c o n s t 0
9 6 : p u t f i e l d #14; // F i e ld $LARGEKEYS$: Z

10 9 : r e turn
11
12 pub l i c void Donothing () ;
13 Code :
14 0 : r e turn
15
16 pub l i c s t a t i c void main (java . lang . S t r ing []) ;
17 Code :
18 0 : new #1; // c l a s s CompileTest
19 3 : dup
20 4 : i n vok e sp e c i a l #23; //Method ”< i n i t >”:() v
21 7 : a s t o r e 1
22 8 : a load 1
23 6 : i n vok ev i r t u a l #24; //Method Donothing : () v
24 9 : r e turn

8 RESULTS 102

8 Results

The objective of this project was to check the general feasibility of migrating the IGS
generator. In the long run the generator shall produce Java applications that are equiva-
lent in appearance, behaviour, functionality, and performance to the VB applications. It
is evident that in the course of this project such a complex task can only provide a proof
of concept and a basis for a commercial product.

The porting/migration of an existing well proven application cannot be compared with
a complete new product development. Java, which we have chosen as target language to
migrate the system, is a completely object-oriented programming language allowing the
same program to be executed on multiple operating systems. Although not designed as
a successor for successful languages like C++ or Delphi, it offers astonishingly efficient
language elements and a great variety of tools to work with. On account of the fact that
the Java compiler generates byte code which is translated by a Interpreter on all systems
and every hardware in the same way, Java programs are theoretically executable on every
operating system. Thereby, Java remains architecture-neutral and, hence, independent
of the platform.

However, mainly because of platform independence, graphical user interfaces pose a con-
siderable problem in Java. A user interface can look quite differently and moreover behave
different on different operating systems. Since the intention of this project was to migrate
business software applications, the graphic user interface is a very important component,
and the success of the migration will be measured by its quality.

Therefore we can say:

The central issue of this project was to develop portable and platoform-
indedpendent graphic user interface components that comply with the defined
requirements.

In this section we discuss, above all, the question whether porting IGS is practicable
and appropriate. Thus, in Subsection 8.1 we will look whether and to which extend the
above mentioned issue can be solved. Subsection 8.2 gives a brief overview of the time
the particular project segments took and tries to bring them in relation to the insights
we made throughout this project. Subsection 8.3 summarizes open work.

8.1 Developing GUIs with Java

We recall the four properties to be kept in the migration process:

• Appearance

• Behaviour

8 RESULTS 103

• Functionality

• Performance

To keep appearance, behaviour, and functionality was no big problem. Thereby we
understand ”appearance and behaviour” to mean that users get the same information
and the same kinds of interaction on each operating system. We do not require the
same ”look and feel”. A company that uses, e.g., Linux as operating system, will be
used to the fact that its applications look different than those on a Windows operating
system. With the change of programming languange from VB6 to Java the emulation of
functionality is pretty easy to realise, since the complexity and power of the fully object-
oriented language Java exceeds the possibilities of VB6 to a great extent. Consequently,
the system performance remained as the only unsolved problem.

According to [Steyer 2003] there are several approaches to realise GUIs:

• We take a look at all platforms that should be supported, identify the common
components, and then use the smallest common denominator.

• The second approach again examines all relevant platforms and then uses an API
which encloses all possibilities of the base UIs (a sort of the union amount of all
possibilities of the base UIs).

• We use the prevailing API on the according platform.

• We implement the components completely in pure Java code. The appearance and
the behaviour of the GUI components adapt themselves automatically to every
supported system platform.

All mentioned attempts have their advantages and disadvantages. The first solution is
relatively easy to implement and can be supported easily on all platforms. Neverthe-
less this approach will lead to considerable restrictions compared to the base UI of the
particular platforms.

Indeed, with the set union of all possibilities of the base UIs (as in the second alternative)
there are no restrictions of efficiency, but it can come to conflicts within the chosen
realisation. The system will be much more complicated and perhaps not to be realised
adequately on all platforms.

The third idea brings the least changes for users. Using the Java UI would provide the
same performance as with applications using the system or native API. The disadvantage
of this approach (and, actually, also of the first two) is that it is not really independent of
the used platform. We can not take into consideration all possible UIs (under Linux there
exist several). If we want to be really platform independent, we must provide a solution
to this fact. Even more unfavourable is the fact that this approach is very inflexible to
innovations and, in addition, constrained to the host API. When there are changes of the
host API our components must be adapted.

8 RESULTS 104

The fourth approach is the one we have chosen by the use of Swing. As already mentioned
Swing extends AWT considerably. However, the use of Swing causes also problems, in
particular bad performance and the need of many resources. Swing applications are
generally slower than comparable applications based on the pure AWT API. As mentioned
in Subsection 3.2.2, Swing uses peers only for top-level components like windows and
frames. All other components are emulated in pure Java code and therefore Swing does
not make use of hardware GUI accelerators and special host GUI operations. In addition,
Swing applications also need more resources from the processor and main memory.

To conclude this section it must be said that the slogan ”Write once, run anywhere”,
created by Sun Microsystems to illustrate the cross-platform benefits of Java, does not
really hold, especially for graphical user applications. Java’s main drawback is that
developers are often restricted to using the lowest common denominator subset of features
which are available on all platforms. This may hinder the application’s performance or
prohibit developers from using platforms’ most advanced features.

8.2 Statistics

This section is intended to give the reader an overview of the efforts we made in the
project. We do this on basis of the time we took for each particular project segment.
The project duration was in sum 1430 hours (or 36 weeks, or 9 months). Table 9 shows
time and effort of the particular segments of the project.

activity hours ratio

orientation 70 4,9%
implementing data transfer 280 19,6%
implementing user interface 390 27,2%
implementing subsystem architecture 140 9,80%
adapting IGS 90 6,30%
testing 200 14,00%
documentation 260 18,20%

sum 1430 100,00%

Table 9: Time and effort of project activities

For reasons of better measurement we divided the implementation into four different
segments. The first of these segments is the implementation of the data transfer. The
basic connection layer was done in about half the time stated, but finally took about 20%
of total time because of many refinements and corrections we had to do in the prototyping
step. The second segment is the implementation of the UI. The time we took for this
segment covers mainly the time we spent for prototyping without the adaptions we had
to make on the connection layer. As we can easily see with about a third of the total
time this was the major task of the project. Nevertheless the UI is still (in opposition to
the connection layer) not in a sufficient state of development, due to performance reasons
and some open tasks (described in Subsection 8.3). This fact helps to undermine the
conclusion we made in the former section that UI development is the central issue of this

8 RESULTS 105

project. The third implementation segment is the development of subsystem architecture.
The last segment is the adaption of IGS which consisted mainly in the development of
generalised templates. These last two tasks were rather straightforward and therefore
the effort was small compared with the former two. The orientation phase was a short
pre-work where we examined if Java and JDBC are generally able to satisfy the functional
and technical requirements of the project. Testing and documentation was done during
every step of the project and made up about 30% of project effort.

8.3 Future Work

To be ready for every day use several important and elaborate functionalities are still
missing. Their implementation was never scheduled for this work. They will be the topic
of future adaptions.

The print and page preview functionalities take great effort to implement due to their
complexity. To realise printing we can make use of an existing JDK framework. Regret-
tably it is not really highly evolved and therefore does not offer many features. Page
preview in Java is even worse. Because JKD offers nothing in this application area, page
preview functionality has to be designed from scratch.

Another open task for the future is the implementation of reporting (mainly in XML)
which is an essential property for business applications. Here Java reveals its full strength.
It provides a bundle of Java XML programming APIs (e.g., JAXP) or implements direct
support of XML parsers like Xerces with its Xerces2 Java Parser.

The third open task to accomplish is the revision and refinement of the Grid control
consisting of JTable, JTableModel, and its renderers, editors, and documents. As already
mentioned in Section 5.6 the Grid control in its actual state is not practicable for real
world solutions.

Apart of these three major tasks there remain some smaller refinements to be done.
Examples are designing and implementing further controls providing specific (relevant,
but not vital to functionality) features (e.g., Clipboard, Datepicker, multi-column Combo-
and Listboxes).

9 CONCLUSIONS 106

9 Conclusions

In the course of this project we tried to show the possibility to migrate business software
applications designed for proprietary systems to equivalent cross-platform applications.
With continuing advance in project it became more and more evident that if the UI plays
an important role, the migration can’t be done without loss of performance.

We showed that this is not a particular problem of the chosen platform or language,
but a general problem lying in the nature of things. At the moment and with actual
prevailing software technologies UI applications designed for a particular system will be
reasonable faster than applications designed for several different systems. Since in this
project performance is a key factor of the resulting software products, the migration was
not able to meet the requirements.

Java applications generated with IGS will be developed and distributed by Inova Q in the
future. Due to the (yet) existing performance handicap of GUI applications written in
Java, their application area will be restricted to specific business segments. Applications
dealing with the maintenance of data, common order entry solutions, and user manage-
ment applications are likely to be realised, whereas complex applications in the field of
logistics or CRM (Costumer Relationship Management) solutions are not feasible at the
moment.

A ABBREVIATIONS 107

A Abbreviations

Abbreviations

ADO ActiveX Data Objects
AI Artificial Intelligence
AOP Aspect Oriented Programming
API Application Program Interface
AWT Abstract Windows Toolkit
B2B Business 2 Business
CIL Common Intermediate Language
CLR Common Language Runtime
COM Component Object Model
CRM Costumer Relationship Management
DAO Data Access Object
DBMS Database Management System
DDF Data Dictionary Files
ECMA European Computers Manufacturers Association
FCL Framework Class Library
GNU Gnu is not Unix
GTK Gimp Toolkit
GUI Graphical User Interface
ID Identification
IDE Integrated Development Environment
IFL Inova Q Frame Language
IGS Inova Q Generator System
IRS Inova Q Ressource String
ISO International Standards Organization
IT Information Technology
J2EE Java2 Enterprise Edition
J2SE Java2 Standard Edition
JDBC Java Database Connectivity
JIT Just-in-time
JRE Java Runtime Environment
JVM Java Virtual Machine
LAN Local Area Network
LCD Lowest Common Denominator
LDAP Lightweight Directory Access Protocol
MDI Multiple Document Interface
MVC Model View Controller
ODBC Open Database Connectivity
OLE DB Object Linking and Embedding Database
OODBMS Object Oriented Database Management System
OS Operating System
RDBMS Relational Database Management System
SPARC Scalable Processor Architcture

A ABBREVIATIONS 108

SQL Structured Query Language
SWT Standard Widget Toolkit
UI User Interface
VB Visual Basic
XML Extensible Markup Language

B LIST OF FIGURES, TABLES AND LISTINGS 109

B List of Figures, Tables and Listings

List of Figures

1 IGS Software Development Schema . 11

2 Migration Types . 14

3 Prototyping Process . 17

4 The two approaches to prototyping . 18

5 Translation via transliteration and refinement 20

6 Translation via abstraction and reimplementation 21

7 The Model View Controller architecture 27

8 Swing MVC Model . 28

9 Common Language Runtime . 32

10 Elements of Mono . 33

11 Data Access Object . 40

12 JDBC Database Access Schema . 42

13 Architecture of iQDAO . 44

14 Relationships between major classes and interfaces in the java.sql. package 46

15 Detailed IGS Software Development Schema 51

16 Prototype 1: UI with Fields . 52

17 Architecture of prototype 1 . 54

18 Prototype 2: UI with Table . 69

19 Architecture of Prototype 2 . 70

20 Simulating a ResultSet . 77

21 Prototype 3: Master/Detail UI . 81

22 Handling multiple tables . 82

23 Subsystem architecture . 86

B LIST OF FIGURES, TABLES AND LISTINGS 110

24 IGS Layers . 94

25 Comparing AWT, Swing and SWT(1) . 113

26 Comparing AWT, Swing and SWT(2) . 114

27 Prototype 1 Java: UI with Fields . 115

28 Prototype 2 Java: UI with Table . 116

29 Prototype 3A Java: Master/Detail UI . 117

30 Prototype 3B Java: Master/Detail UI with Pages 118

B LIST OF FIGURES, TABLES AND LISTINGS 111

List of Tables

1 Time and effort of maintenance activities 19

2 Important methods of class Class . 30

3 Important methods of class Method . 31

4 Visibility of Internal and External Changes 63

5 IRS File for Table Definitions . 70

6 Mean output after running program 100 times 74

7 Public methods for properties . 89

8 Subsystem Events . 91

9 Time and effort of project activities . 104

10 IQSubsysFormType . 119

11 IQSubsysUseType . 120

12 IRS File for Constants . 121

B LIST OF FIGURES, TABLES AND LISTINGS 112

Listings

1 Dynamic method invocation . 30

2 C# Adder Class: Adder.cs . 35

3 Java Adder Client Class: AddClient.java 35

4 Java Adder Class: JAdder.java . 36

5 C# Adder Client Class: JAddClient.cs 36

6 Simple JDBC example . 45

7 IFL-File for prototype 1 . 49

8 ValueSubType enum with constant specific methods 54

9 IQNLSLanguage enum . 57

10 Setting the format in editor . 59

11 Ressource strings for different languages 60

12 DoNext operation without DataLarge option 64

13 DoNext operation with DataLarge option 65

14 Simulating Movement to leave the Insert Row 67

15 Initializing the table . 71

16 Performance comparison between Vector and ArrayList 73

17 Saving operation . 75

18 Inserting data to the database . 78

19 Updating inserted data . 79

20 Reflection in IQTable . 83

21 Public method DoAddNew . 88

22 Method OnBeforeSave . 92

23 Form Template . 96

24 Subsystem Template . 97

25 Control Template . 98

26 Generated Code . 98

27 Conditional Compilation in Java . 100

28 CompileTest . 100

29 Dissasembled CompileTest . 101

C COMPARISON BETWEEN AWT, SWING AND SWT 113

C Comparison between AWT, Swing and SWT

Figure 25: Comparing AWT, Swing and SWT(1)

C COMPARISON BETWEEN AWT, SWING AND SWT 114

Figure 26: Comparing AWT, Swing and SWT(2)

D JAVA PROTOTYPES 115

D Java Prototypes

D.1 Prototype 1: UI with Fields

Figure 27: Prototype 1 Java: UI with Fields

D JAVA PROTOTYPES 116

D.2 Prototype 2: UI with Table

Figure 28: Prototype 2 Java: UI with Table

D JAVA PROTOTYPES 117

D.3 Prototype 3a: Master/Detail UI

Figure 29: Prototype 3A Java: Master/Detail UI

D JAVA PROTOTYPES 118

D.4 Prototype 3b: Master/Detail UI with Pages

Figure 30: Prototype 3B Java: Master/Detail UI with Pages

E SUBSYSTEM TYPE SPECIFICATION 119

E Subsystem Type Specification

E.1 IQSubsysFormType

Enumeration Value Description

IQSFT GENERIC 0 The subsystem can handle all form types.

The caller will call the resize handler as the callers
client area size is changed for the subsystem.

The iRequestedWidth and iRequestedHeight prop-
erties are honoured, if possible, by the caller.

IQSFT MDICHILD 1 The subsystem is targeted to an MDI Child Form.

The caller will call the resize handler as the callers
client area size is changed for the subsystem.

The iRequestedWidth and iRequestedHeight prop-
erties are honoured, if possible, by the caller.

IQSFT DIALOG 2 The subsystem is targeted to a fixed-sized dialogue.

The caller will not resize the object as the callers
client area size is changed for the subsystem.

The iRequestedWidth and iRequestedHeight properties
are either honoured by the caller or the subsystem will
not be loaded.

IQSFT TOOLBOX 3 The subsystem is targeted to a fixed-sized toolbox
window.

The caller will not resize the object as the callers
client area size is changed for the subsystem.

The iRequestedWidth and iRequestedHeight properties
are either honoured by the caller or the subsystem will
not be loaded.

Table 10: IQSubsysFormType

E SUBSYSTEM TYPE SPECIFICATION 120

E.2 IQSubsysUseType

Enumeration Value Abbrev. Description

IQSUT OTHER -1 O The subsystem is used for other pur-
poses (e.g., a dialog asking for parame-
ters for a report to be created).

IQSUT DATAMANAGEMENT 0 DM The subsystem is used for entry and
maintenance of data.

IQSUT DATABROWSE 1 DB The subsystem is used to browse for
data.

Table 11: IQSubsysUseType

F IRS FILE FOR CONSTANTS 121

F IRS File for Constants

FORMNAME STRINGID STRINGDATA FIELDNAME

frm$APPLICATION$ 0 Copyright c© Inova Q Limited 2007 - All rights reserved. $COPYRIGHT$

frm$APPLICATION$ 1 MUSTER1 $DESCRIPTION$

frmAPPLICATIONMAIN 0 Ansicht ANSICHT

frmAPPLICATIONMAIN 1 ApplicationMain $CAPTION$

frmMUSTER1 0 String MUS STRING$TOOLTIP$

frmMUSTER1 1 Date MUS DATE$TOOLTIP$

frmMUSTER1 2 Datetime MUS DATETIME$TOOLTIP$

frmMUSTER1 3 Time MUS TIME$TOOLTIP$

frmMUSTER1 4 Cardinal MUS CARDINAL$TOOLTIP$

frmMUSTER1 5 Decimal MUS DECIMAL$TOOLTIP$

frmMUSTER1 6 Boolean MUS BOOLEAN$TOOLTIP$

frmMUSTER1 7 Alle MUS BOOLEANV00

frmMUSTER1 8 Ja MUS BOOLEANV01

frmMUSTER1 9 Nein MUS BOOLEANV02

frmMUSTER1 10 A MUS OPTION0

frmMUSTER1 11 B MUS OPTION1

frmMUSTER1 12 C MUS OPTION2

frmMUSTER1 13 Radio MUS OPTION$TOOLTIP$

frmMUSTER1 14 String MUS STRING

frmMUSTER1 15 Date MUS DATE

frmMUSTER1 16 Datetime MUS DATETIME

frmMUSTER1 17 Time MUS TIME

frmMUSTER1 18 Cardinal MUS CARDINAL

frmMUSTER1 19 Decimal MUS DECIMAL

frmMUSTER1 20 Boolean MUS BOOLEAN

frmMUSTER1 21 Radio MUS OPTION

frmMUSTER1 22 Musterprogramm Nr. 1 $CAPTION$

Table 12: IRS File for Constants

REFERENCES 122

References

[Bruce 1999] Jonathan Bruce, Jon Ellis, and Maydene Fisher. JDBC API Tutorial and
Reference(Java Series).Addison Wesley, 1999

[Brucherseifer 2004] Eva Brucherseifer. Softwaremigration Linuxtag 2004. Whitepaper
basysKom GbR, 2004

[Burbeck 1992] Steve Burbeck, Application Programming in Smalltalk-80: How to use
Model-View-Controller (MVC),

[Chikofsky et al. 1990] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering
and Design Recovery: A Taxonomy. IEEE Software, 7(1), January 1990.

[Computerbase.de] http://www.computerbase.de/lexikon/Java Database Connectivity

[Corbi 1990] T. Corbi. Program understanding: Challenge for the 1990’s. IBM Systems
Journal, 28(2):294-306, 1989.

[Dale et al. 2002] Nell B. Dale, Daniel T. Joyce, Chip Weems. Object-Oriented Data
Structures Using Java. Jones and Bartlett Publishers, 2002.

[Darwin 2007] Darwin Ian, Java’s Reflection API (Article on Beautiful Code),
http://beautifulcode.oreillynet.com/2007/08/javas reflection api.php, August 2007

[De Icaza 2005] Miguel de Icaza. Mono at ApacheCon Novell. Jan 2005. Research Report

[Dumbill et al. 2004] Dumbill Ed, Bornstein Niel M., Mono: A Developers NotebookTM.
O’Reilly , July 2004

[Easton et al. 2004] Easton M., King J. Cross-Platform .NET Development: Using Mono,
Portable.NET and Microsoft .NET, Heidelberg 2004

[Feigenbaum 2006] Barry Feigenbaum. SWT, Swing or AWT:
Which is right for you?. Article on IBM DeveloperWorks
(http://www.ibm.com/developerworks/grid/library/os-swingswt/), February
2006

[Fisher et al. 2003] Maydene Fisher, Jon Ellis, and Jonathan Bruce. JDBC API Tutorial
and Reference, Third Edition, June 2003

[Fjeldstad et al. 1979] R.K.Fjeldstad and W.T.Hamlen. Application Program Mainte-
nance Study - Report to our Respondents. In Proc. GUIDE 48, Philadelphia, 1979.

[Geary 2002] David M. Geary. Graphic Java 2.0: die JFC beherrschen. Prentice Hall,
München, 2002.

[Gimnich et al. 2005] Rainer Gimnich und Andreas Winter. Workflows der Softwaremi-
gration. http://www.uni-koblenz.de/ winter/papers/gimnichwinter2005.pdf.

[Gosling et al. 1996] James Gosling and Henry McGilton. The Java Language Environ-
ment, Sun Microsystems Whitepaper, May 1996

REFERENCES 123

[Hall et al. 2001] Marty Hall and Larry Brown. Core Web Programming (2nd Edition),
Chapter 14(Basic Swing). Prentice Hall, 2001

[Hasselbring et al. 2004] W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T.
Teschke, S. Krieghoff. The Dublo Architecture Pattern for Smooth Migration of
Businees Information Systems: An Experience Report. 26th ICSE, 117 - 126, Edin-
burgh, 2004.

[Inova Q 2002] IGS - Inova Q Generator System. Inova Q Technology White Paper TD-
02.450, August 2002

[Inova Q 2004] Erneuerung des Entwicklungsprozesses mit IGS. Inova Q Technology
White Paper TD-04.300,January 2004

[Kingsley 1993] Kingsley Idehen. Open Database Connectivity Without Compromise.
ODBC Technical Whitepaper, 1993

[Krüger 2002] Guido Krüger. Handbuch der Java-Programmierung, 3. Auflage. Addison-
Wesley,Deutschland, 2002

[Malone 2005] Thomas Malone. Managing Software Development, Slides to Lec-
ture Information Technology Essentials, 2005, ocw.mit.edu/.../15-561Spring-
2005/5CC9E1B4-1703-40E9-928E-35C3342C143A/0/lecture12.pdf

[Mählmann 2005] Mählmann Lars. Untersuchung von Mono als Plattform für Web-
services auf mobilen Endgeräten. Diplomarbeit, Hochschule für Angewandte Wis-
senschaften Hamburg. April 2005

[Microsoft.com] Component Object Model Technologies
http://www.Microsoft.com/com/default.mspx

[msdn] Ado Programmer Guide, http://msdn2.Microsoft.com/en-
us/library/ms805098.aspx

[Microsoft.net] Microsoft .NET Oveview http://www.microsoft.com/net/Overview.aspx

[Müller 1997] Bernd Müller. Reengineering - Eine Einführung. Teubner, Stuttgart, 1997.

[Niemeyer et al. 2005] P. Niemeyer, J. Knudsen. Learning Java - Third Edition. O’Reilly
, May 2005

[Oracle 2001] Oracle Corporation. Oracle9i JDBC Developer’s Guide and Refer-
ence,Release 1 (9.0.1),Part Number A90211-01, 2001

[Oracle 2002] Oracle Corporation. Oracle9i JDBC Developer’s Guide and Refer-
ence,Release 2 (9.2),Part Number A96654-01, 2002

[Reilly 1999] David Reilly. Inside Java: The Java Pro-
gramming Language. Article on Java Coffee Break
(http://www.javacoffeebreak.com/articles/inside java/index.html)

[Sauter 1999] http://www.umsl.edu/ sauter/analysis/prototyping/proto.html

REFERENCES 124

[SearchSQLServer.com] http://searchsqlserver.techtarget.com/sDefinition/0,,sid87
gci214419,00.html

[Simmons 2004] Robert Simmons jr. Hardcore Java, Secrets of Java Masters. O’Reilly
2004

[Sneed et al. 2004] H. Sneed, H. Hasitschka, M. Teichmann. Software Produktmanage-
ment, Wartung und Weiterenwicklung bestehender Anwendungssysteme. Dpunkt,
Heidelberg, 2004.

[Sommerville 2000] Ian Sommerville. Software Engineering, 6th Edition, Addison Wesley,
2000

[Steyer 2003] Ralph Steyer, Java 2 - M+T Pocket, Das Programmier-Handbuch, ISBN:
PDF-3-8272-6106-6, Markt&Technik, 2003

[Sun 2001] Sun Microsystems, Inc. Core J2EE Patterns - Data Access Objects,
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

[Sun 2004] Sun Microsystems, Inc. JavaTM 2 Platform Standard Edition 5.0 API Specifi-
cation, http://java.sun.com/j2se/1.5.0/docs/API/, 2004.

[Sun 2004a] Sun Microsystems, Inc.
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

[Sun 2006] Sun Microsystems, Inc. JDBC 4.0 Specification, JSR 221, Lance Andersen,
November 7, 2006

[Sun 2007] Sun Microsystems, Inc. The JavaTM Tutorials - Trail: The Reflection API.
https://cis.med.ucalgary.ca/http/java.sun.com/docs/books/tutorial/reflect/index.html,
1995 - 2007

[Terenkhov et al. 2000] Andrey A. Terenkhov, Chris Verhoef. The Realities of Language
Conversion. IEEE Software 17(6), 2000

[Ullenboom 2007] Christian Ullenboom, Java ist auch eine Insel. Programmieren mit der
Java Standard Edtition 6, 6. aktualisierte und erweiterte Auflage, Gallileo Comput-
ing, 2007

[Weiderman et al. 1997] N. Weiderman, J. Bergey, D. Smith, S. Tilley. Approaches to
Legacy System Evolution, Technical Report CMU/SEI-97-TR-014, Software Engi-
neering Institute, Carnegie Mellon University,Pittsburgh, 1997

[Wells 2001] Garth Wells, Code-centric: T-SQL programming with stored procedures
and triggers, Apress, Berkely, CA, 2001

[Xerox 1998] Xerox Corporation, The AspectJTM Programming Guide.1998-
2001 Xerox Corporation, 2002-2003 Palo Alto Research Center,
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

