
Dissertation

Advanced data exploration methods
based on Self-Organizing Maps

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

ao. Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
E188 – Institut für Softwaretechnik und Interaktive Systeme

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Georg Pölzlbauer
9725498

Servitengasse 19/5
1090 Wien

Wien, am 21. 10. 2008

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

i

Zusammenfassung

Self-Organizing Maps (SOMs) sind ein wichtiges Data Mining Verfahren um
Informationen aus großen Datenmengen herauszufiltern. In dieser Arbeit werden
drei auf SOMs aufbauende Methoden vorgestellt, die beim Verständnis solcher
großer Datenmengen helfen sollen. Zwei dieser Methoden sind Visualisierungs-
verfahren für SOMs, die dritte ist eine vom SOM Trainingsalgorithmus inspirierte
Klassifizierungsmethode für Zweiklassenprobleme.

Die erste der vorgestellten Methoden zeigt den Zusammenhang zwischen dem
Datenset, auf dem eine SOM trainiert worden ist, und den Codebookvektoren, aus
denen diese SOM besteht. Ausgehend von einem Graphen, der den gegenseitigen
Abstand zwischen Datenvektoren darstellt, werden Linien auf einer SOM Visu-
alisierung gezeichnet. Dies zeigt die Dichte einzelner Bereiche der Karte, durch
den projektionsbedingten Dimensionsverlust entstandene Topologieverletzungen
und die Positionen von Ausreißern.

Die zweite Methode ist ein Visualisierungsverfahren, das die Clusterstruktur
einer SOM in verschiedenen Detailliertheitsgraden zeigt. Ein Parameter dient zur
Adjustierung der gewünschten Granularität der dargestellten Information. Zur
Darstellung der Ergebnisse wird eine Vektorfeldrepräsentation gewählt und eine
Metapher für Spezialisten mit ingenieurswissenschaftlichem Hintergrund erzeugt.
Diese Methode wird dahingehend erweitert, Gruppen von Variablen gegenüber-
stellen zu können und somit den Einfluss einzelner Dimensionen auf die Cluster-
struktur festzustellen.

Die dritte Methode ist ein Machine Learning Verfahren für binäre Klassi-
fikationsprobleme. Es besteht aus einem Ensemble linearer Klassifikatoren, die
jeweils einen Bereich des Eingaberaums abdecken. Der Trainingsalgorithmus,
der diese lokalen Klassifikatoren platziert, ist vom SOM Algorithmus abgeleitet.
Er baut auf dem von SOMs bekannten Prinzip auf, dass in einer vordefinierten
Topologiestruktur benachbarte Einheiten einander beeinflussen.

In dieser Dissertation wird der theoretische Hintergrund dieser Methoden be-
schrieben. Empirische Evaluierungen werden anhand einer Reihe künstlicher
Datensets sowie Benchmark- und Real-World-Datensets durchgeführt. Weiters
wird der Nutzen der Methoden aufzeigt, sowie deren Stärken und Schwächen
analysiert. Besonderer Wert ist auf die Erstellung aussagekräftiger, die spezifis-
chen Eigenschaften überwachter und unüberwachter Lernverfahren adressierender
Datensets gelegt worden.

ii

Abstract

Self-Organizing Maps are an important data mining method for extracting in-
formation from a data set. In this thesis, three techniques that are based on SOMs
are introduced for helping to understand large amounts of data. Two of them are
visualization techniques for SOMs, while the third is a classification method for
two-class problems inspired by the SOM training algorithm.

The first of the proposed methods is based on putting the data set a SOM
has been trained with in relation with the codebook vectors that define this SOM.
Starting from a graph that reflects the mutual distance between data vectors, a
set of lines is plotted on top of the output space visualization of the SOM. This
shows the density of the areas of the map, violations of the topology due to the
projection-induced dimensionality loss, and the location of outliers.

The second contribution is a visualization technique that shows the clustering
structure of a SOM on various levels of detail. A parameter is provided to adjust
the desired granularity of information that is to be shown. For displaying the re-
sults, a vector field representation has been chosen in order to provide a metaphor
that appeals to specialists with engineering backgrounds. This method is extended
to a setting that contrasts groups of contributing variables in order to single out
their influence on the clustering structure.

The third contribution is a machine learning method for binary classification
problems. This technique consists of an ensemble of linear classifiers that each
cover a portion of the input space. The training algorithm that actually places these
local classifiers is influenced by the SOM algorithm. It exploits the SOM principle
of aligning nearby units according to a super-imposed topology structure.

The theoretical background for these methods is described in this thesis. Em-
pirical evaluation on a series on artificial, benchmark, and real-world data sets
show their applicability, and their strengths and weaknesses are discussed. Much
effort has been dedicated at designing meaningful artificial data sets that address
specific abilities of supervised and unsupervised learning methods.

iii

To my parents.

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Organization and contributions 2
1.3 Notational conventions . 3

2 Self-Organizing Maps and related work 4
2.1 Introduction to data mining methods 4

2.1.1 Preprocessing, features, and distance 5
2.1.2 Supervised and unsupervised learning 5
2.1.3 k-means and LBG . 8
2.1.4 Vector Projection . 11

2.2 Self-Organizing Maps . 13
2.2.1 Topology of the output space 13
2.2.2 Neighborhood Kernel . 14
2.2.3 SOM Training . 16

2.3 Visualization of the SOM . 17
2.3.1 Projection of the SOM Codebook 18
2.3.2 Visualization on the SOM lattice 18
2.3.3 Visualization of correlated variables 37
2.3.4 SOM quality measures 41

2.4 Summary . 53

3 Graph based cluster visualization 55
3.1 Introduction . 55
3.2 Data sets . 56

3.2.1 Data density and cluster proximity 56
3.2.2 The Multi-challenge data set 64
3.2.3 The Ionosphere data set 67

3.3 The Graph method . 67
3.4 Experiments . 71

3.4.1 Experiments on artificial data sets 71

iv

CONTENTS v

3.4.2 Experiments on benchmark data sets 79
3.5 Systematic analysis and guidelines 83

3.5.1 Investigating density and clustering structure 83
3.5.2 Investigating connectivity and topology violations 85

3.6 Summary . 86

4 Gradient Fields 92
4.1 Introduction . 92
4.2 Gradient Field Visualization . 93
4.3 Variations and extensions to the Gradient Field visualization . . . 98

4.3.1 Borderlines representation 98
4.3.2 Extension to groups of component planes 98

4.4 Experiments of single Gradient Field and Borderline visualizations 100
4.4.1 Effects of the neighborhood radius 104
4.4.2 Smoothing sparse maps 105

4.5 Experiments of groups of component planes visualizations 106
4.5.1 Statistical dependencies between groups of variables . . . 106
4.5.2 Dual Gradient Fields on petroleum engineering data . . . 114

4.6 Analysis . 119
4.6.1 Analysis of clustering structure 119
4.6.2 Analysis of groups of component planes 126

4.7 Summary . 132

5 Decision Manifolds 135
5.1 Introduction . 135
5.2 Related work . 136

5.2.1 Non-linear dimensionality reduction methods 136
5.2.2 Supervised learning methods 138

5.3 Elementary Concepts . 139
5.3.1 Linear Classifiers . 139
5.3.2 Decision Surfaces and Topological Considerations 140

5.4 Decision Manifolds . 143
5.4.1 Training of Decision Manifolds 143
5.4.2 Classification with Decision Manifolds 147
5.4.3 Topology Estimation and Model Selection 149

5.5 Experimental Results . 154
5.5.1 Artificial Data Sets . 154
5.5.2 Benchmark Data Sets . 166
5.5.3 Underlying Classifiers 176

5.6 Summary . 176

CONTENTS vi

6 Conclusion 179

Bibliography 182

A Notational conventions 194

B Abbreviations 195

C Additional definitions and formulas 196
C.1 Definition of nearest neighbors 196

D Data sets 198
D.1 Benchmark data sets . 198

D.1.1 Iris . 198
D.1.2 Epileptics . 199
D.1.3 Phonetic . 200
D.1.4 Ionosphere . 201
D.1.5 German Credit . 202
D.1.6 Bupa Liver Disorders . 203
D.1.7 Pima Indian Diabetes . 204
D.1.8 Spam . 204
D.1.9 Heart Disease . 204
D.1.10 Sonar . 205

D.2 Artificial data sets . 205
D.2.1 Equidistant clusters data set 205
D.2.2 Fully-connected data set 206
D.2.3 Multi-challenge data set 208

List of Figures

2.1 Scatterplot matrix of Iris data . 10
2.2 PCA projection of Iris data . 12
2.3 Rectangular and hexagonal grids 14
2.4 Visualization of the training process 21
2.5 Numeric values on top of map lattice 22
2.6 Multiple numeric values on top of map lattice 22
2.7 Alternative visualization methods: Islands of Music 23
2.8 Alternative visualization methods: Cartographic maps 24
2.9 Alternative visualization methods: ReefSOM, SkySOM 25
2.10 Alternative visualization methods: Mnemonic SOMs 26
2.11 Component planes . 27
2.12 U-Matrix . 29
2.13 U-Matrices of large maps . 30
2.14 Clustering visualizations . 32
2.15 Hit Histograms . 33
2.16 Smoothed Data Histograms . 34
2.17 P-Matrix and U*-Matrix . 36
2.18 Component planes of Boston housing SOM 38
2.19 Reordered component planes . 39
2.20 Dendrogram of clustering variables: data 40
2.21 Dendrogram of clustering variables: SOM 41
2.22 Metro visualization . 42
2.23 Quantization error . 43
2.24 Topographic error, intrinsic distance 45
2.25 Topographic Product . 47
2.26 SOM Distortion . 52

3.1 Equidistant clusters data set with 3 vertices 57
3.2 Equidistant clusters data set with 5 vertices 58
3.3 Equidistant clusters data set with 8 vertices 59
3.4 Fully-connected data set with 3 vertices 60

vii

LIST OF FIGURES viii

3.5 Fully-connected data set with 5 vertices 61
3.6 Fully-connected data set with 8 vertices 62
3.7 Multi-challenge data set . 65
3.8 Ionosphere SOM density visualizations 68
3.9 Schematic outline of radius and nearest neighbors graph construc-

tion . 69
3.10 Schematic outline of graph projection 70
3.11 Graph visualization for 3-vertex Equidistant clusters data set . . . 72
3.12 Graph visualization for 5-vertex Equidistant clusters data set . . . 73
3.13 Graph visualization for 8-vertex Equidistant clusters data set . . . 74
3.14 Graph visualization for 3-vertex Fully-connected data set 75
3.15 Graph visualization for 5-vertex Fully-connected data set 76
3.16 Graph visualization for 8-vertex Fully-connected data set 77
3.17 Graph visualization for Multi-challenge data set 78
3.18 Large Ionosphere SOM density visualizations 80
3.19 Graph visualization for Ionosphere SOM 81
3.20 Graph visualization for large Ionosphere SOM 82
3.21 Graph visualization for Iris data set 88
3.22 Density and clustering of the Multi-challenge data set 89
3.23 Density and clustering of the large Ionosphere SOM 90
3.24 Connectivity and topology violation of the Multi-challenge data set 91

4.1 Notation of output space . 94
4.2 Schematic illustration of kernel function on the map 95
4.3 Schematic illustration of weight aggregation and arrow normal-

ization . 96
4.4 From Gradient Field to Borderline 98
4.5 Groups of component planes, contrast plot 99
4.6 Overview of Multi-challenge SOM 101
4.7 Gradient Field visualizations of Multi-challenge SOM 101
4.8 Overview of Phonetic SOM . 102
4.9 Phonetic SOM Gradient Field visualizations 103
4.10 Large SOM trained on the Iris data set 109
4.11 Groups of component planes of artificial data (no correlation) . . . 110
4.12 Groups of component planes of artificial data (linear relationship) 111
4.13 Groups of component planes of artificial data (non-linear relation-

ship) . 112
4.14 Groups of component planes of artificial data (XOR-like relation-

ship) . 113
4.15 SOM trained on the Fracture Optimization data set: Overview . . 114

LIST OF FIGURES ix

4.16 SOM trained on the Fracture Optimization data set: Component
planes . 115

4.17 SOM trained on the Fracture Optimization data set: Dual Gradient
Fields . 116

4.18 Fracture Optimization: Clustering of component planes, Dual Gra-
dient Field . 118

4.19 Large Ionosphere SOM: Overview 119
4.20 Large Ionosphere SOM: Overview 124
4.21 Large Ionosphere SOM: Gradient Fields 125
4.22 Boston housing SOM: Component planes 126
4.23 Boston housing SOM: Overview 127
4.24 Boston housing SOM: Reordered component planes 128
4.25 Boston housing SOM: Dendrogram of clustering variables 129
4.26 Boston housing SOM: Metro visualization 130
4.27 Boston housing SOM: Groups of component planes I 133
4.28 Boston housing SOM: Groups of component planes II 134

5.1 Decision surface by decision trees, graph of {4× 3× 2} Topology 141
5.2 Illustration of decision surfaces 142
5.3 Training of linear classifiers . 146
5.4 Training algorithm on non-linearly separable data set 152
5.5 Decision Manifolds on artificial data sets 153
5.6 Chessboard data sets . 161
5.7 Decision Manifolds on non-overlapping artificial 2D data sets . . 162
5.8 Decision Manifolds on overlapping artificial 2D data sets 163
5.9 Decision Manifolds on “2 rings” data set 164
5.10 Decision Manifolds on “Doublehelix” data set 165
5.11 Decision Manifolds on Bupa data set 166
5.12 Decision Manifolds on Pima data set 167
5.13 Decision Manifolds on Spam data set 168
5.14 Decision Manifolds on Ionosphere data set 169
5.15 Decision Manifolds on Heart data set 170
5.16 Decision Manifolds on Sonar data set 171
5.17 Decision Manifolds on Credit data set 172
5.18 Decision Manifolds on Iris data set 173
5.19 Decision Manifolds on Glass data set 174
5.20 Decision Manifolds on Contraceptives data set 175

D.1 PCA for Iris and Epileptics . 199
D.2 PCA for Phonetic and Ionosphere 200
D.3 PCA for German Credit and Bupa Liver Disorder 201

LIST OF FIGURES x

D.4 PCA for Pima Indian Diabetes and Spam 202
D.5 PCA for Heart Disease and Sonar 203
D.6 Graph of Equidistant clusters and Fully-connected data set 206
D.7 Equidistant clusters data set . 207
D.8 Fully-connected data set . 208
D.9 PCA of Multi-challenge data set 209

List of Tables

2.1 Taxonomy of supervised learning methods 7

4.1 Description Fracture Optimization data set variables 114

5.1 Dimensionality estimation for the topology of the Decision Manifold149
5.2 Model Selection . 151
5.3 Comparison of classifiers: Artificial data sets, part 1 159
5.4 Comparison of classifiers: Artificial data sets, part 2 160
5.5 Comparison of classifiers: Benchmark data sets 178

xi

Chapter 1

Introduction

1.1 Background and motivation
Exploring, understanding, and learning from large amounts of data has become in-
creasingly important across all scientific disciplines. With ever growing amounts
of data that are collected during empiric experiments and the possibilities to con-
nect existing databases, the need for methods to handle this data is evident.

This thesis consists of several contributions to various domains of data mining,
which are all based on or inspired by Kohonen’s Self-Organizing Map. SOMs
have been used extensively in unsupervised learning and data visualization. They
are unique insofar as they combine vector quantization and projection, as well as
having a two-way assignment between the feature and the output spaces. This
enables a variety of post-processing methods that aim at visualizing results or
further digging into what lies concealed somewhere within the data set.

The examples for illustrating the methods come from highly different data
sources. Data sets are collected from research in medicine, marketing, demogra-
phy, biology, and various other domains. The methods described in this thesis are
therefor indifferent to the source of the data, decoupled from the original semantic
meaning.

The contribution of this thesis lies in proposing three methods that are centered
around data mining with SOMs. The first one, the Graph visualization method, is
a visualization technique for providing deeper insights into the properties of the
data that is being investigated, and further highlights several specific defects that
inevitably occur during the creation of a SOM. The second, the Gradient Fields
method, is another visualization method that displays results suited for profession-
als with engineering rather than computing backgrounds. It shows vector fields in
an analogy to scientific flow visualizations. The third contribution are Decision
Manifolds, which transfer the unsupervised Self-Organizing Maps methodology

1

CHAPTER 1. INTRODUCTION 2

to a supervised classification setting. This method allows for an explicit represen-
tation of the decision boundary, which is often only encoded implicitly in a trained
classifier.

This PhD thesis is based on several publications that have been written dur-
ing more than three years of research at the Vienna University of Technology.
The research has been conducted in cooperation with and financed by an industry
partner working in the domain of petroleum engineering. This partner uses SOMs
for optimizing the field engineering process, i.e. the maintainance and failure-free
operation of oil fields while maximizing the output and minimizing costs. One of
the requirements has therefor been the presentation of SOM results for engineers
with less focus on computing and visualization.

1.2 Organization and contributions
This thesis is organized in accordance to the timeline of the research and the re-
sulting publications conducted.

Chapter 2 describes related work. The general data mining setting is ex-
plained, with introductions to supervised and unsupervised learning. Further, the
SOM algorithm and its properties of trained maps are explained in detail, along
with the notations that are used in the later chapters. Particular attention is de-
voted to visualization methods for Self-Organizing Maps. This sections includes
findings from a publication that surveys quality measures for SOMs [67].

Chapter 3 introduces the first of the two visualization methods that have been
developed for SOMs. This technique is suited for discovering topology violations
and for learning about the density of the data that generates the SOM. Work related
to this subject has been published at two conferences [75, 74].

Chapter 4 describes the Gradient Field and Borderline visualization techniques,
which are based on a vector field representation of displaying information. It is
used to show the clustering structure at various levels of detail. Considerable re-
search efforts have been dedicated to this subject, which has resulted in a series of
publications at conferences and a journal publication [77, 68, 76, 70, 69, 71].

Chapter 5 describes the final contribution of this thesis. It is a neural classifier
algorithm for binary problems. The algorithm itself is based on Self-Organizing
Maps. A conference paper [72] and a journal paper [73] have been published
relating to this subject.

Chapter 6 summarizes this thesis.
The appendix consists of a variety of additional material that does not fit into

the chapters forming the main part of this work without detracting the reader from
specific details. In Appendix B, the abbreviations used throughout this work are
listed. Appendix C provides definitions of formulas that have been moved to the

CHAPTER 1. INTRODUCTION 3

appendix as they are quite lenghty and would otherwise clutter the main parts of
this thesis. Appendix D provides an extensive description of the data sets used
in this work. It lists the sources and characteristics of benchmark supervised and
unsupervised data sets, as well as the construction of the artificial data sets. All
of the artificial data sets have been designed to show a specific feature or to high-
light a particular problem of supervised or unsupervised learning algorithms, and
considerable efforts have been dedicated to creating these data sets.

1.3 Notational conventions
This section covers the general style of notational and mathematical expressions
used in this thesis. Generally, mostly matrix operations and some concepts from
probability theory are used. Matrices are denoted as uppercase boldface letters,
e.g. X. Vectors are denoted as lowercase boldface letters, e.g. v. When referring
to the i-th row vector of a matrix, the lowercase letter of the matrix letter is used,
and a subscript is written to denote the row index, respectively. For example, ma-
trix X’s i-th row vector would be written as xi. Column vectors are used mainly
for component planes and are written with indices in brackets, e.g. x(j) for the
j-th column of matrix X. The notation for scalar values depends on the intended
use and context: Parameters are usually written as lowercase Greek symbols, e.g.
γ, constants and variables as lowercase italic letters, e.g. c, and calculation results
as uppercase italic letters, e.g. E. When referring to a single element of matrix
X in row i and column j, it is written as a lowercase italic letter with subscripts,
e.g. xij or xi,j . These are only rough guidelines for formulas introduced in this
thesis and some notations may differ, especially if symbols are widely used in
other literature, e.g. eigenvectors are denoted as λ despite not being parameters,
or the covariance matrix as Σ etc. Appendix A provides a tabular summary of the
notational conventions for reference purposes.

Chapter 2

Self-Organizing Maps and related
work

In order to lay the foundation for the later chapters, this chapter outlines the gen-
eral data mining setting. Further, related techniques are presented and details
of the Self-Organizing Maps training algorithm and properties of the SOM are
provided. Section 2.1 provides an introduction to Data Mining, and introduces
some of the methods and concepts that will be referred to in the later sections.
Section 2.2 describes the Self-Organizing Map algorithm. Section 2.3 contains
an overview of several SOM visualization techniques and SOM quality measures
that are used throughout this thesis.

2.1 Introduction to data mining methods
Data Mining (or Knowledge Discovery in Databases) describes the broad con-
cept of finding “interesting” patterns in large collections of data. There are var-
ious definitions what the term “Data Mining” actually refers to. Frawley and
Piatetsky-Shapiro [23] define it as “the nontrivial extraction of implicit, previ-
ously unknown, and potentially useful information from data”. Data Mining thus
describes the conceptual goals of what needs to be done, and relies upon a wide
range of different techniques to achieve them, such as artificial neural networks,
cluster analysis, regression and other statistical methods, and information theo-
retic approaches. This section serves as an introduction to the various approaches
and provides definitions to categorize them according to the domain where they
can be used.

4

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 5

2.1.1 Preprocessing, features, and distance
In typical Data Mining problems, the data collection and preprocessing phase is
usually the first step and has to be addressed with considerable attention [78].
While the task of translating real-world observations into machine-readable form
is usually attributed to the domain of information retrieval [106], this thesis is
concerned only with data sets that can be represented in a table-like structure
where the rows correspond to individual observations (also samples or patterns),
and columns refer to variables that have been measured in some way for each
observation.

Before the data is used for Data Mining, it is usually transformed and scaled.
As many of the methods that will be discussed in this thesis are not able to deal
with non-real variables, a transformation has to be applied to convert categorical
or ordinal values to an interval scale, usually by 1-to-N coding, where a variable
with N distinct values is split up into N variables. Further, as many algorithms
work by measuring the distance between points in feature space, the variables
have to be normalized to avoid difficulties that stem from variables measured in
different units. In this thesis, normalization by subtracting the variable mean and
dividing by the standard deviation is performed, unless otherwise noted. As a
result ot these preprocessing steps, the data set can now be written as a matrix
X ∈ RN×D, where N is the number of patterns and D is the number of variables.
The ith sample is denoted as vector xi ∈ R.

Most of the methods discussed in this thesis rely on measuring distances be-
tween points in this feature space. Distance is of crucial importance especially
for clustering, as points with low distance, i.e. with a high degree of proximity in
many of the variables measured, are likely to refer to similar real-world objects.
Unless otherwise noted, Euclidean Distance will be used:

dF (xi,xj) = ‖xi − xj‖ =

√√√√
D∑

k=1

(xik − xjk)2. (2.1)

Euclidean Distance is defined by the lenght of the straight line connecting
points xi and xj . This measure may not be suitable for each and every problem,
especially not for very high-dimensional ones. For a discussion of this problem
and general limitations of the Euclidean Distance, see for example [51, 2, 108, 20,
1].

2.1.2 Supervised and unsupervised learning
A fundamental distinction between learning methods is whether the data set is
labeled or not. The algorithms that deal with either situation are refered to as su-

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 6

pervised and unsupervised learning, respectively. Labeled data samples contain
a distinguished feature that has to be predicted, for example in a patient database
with features describing blood pressure, sex, whether the patient is a smoker etc.,
the predicted, or output, variable could be whether the patient has lung cancer or
not. If the output variable is categorical, this supervised learning setting is re-
ferred to as Machine Learning or classification; in the case of a continuous output
variable, this is called regression. Within unsupervised learning a core task is
clustering, i.e. the process of identifying groups of samples based on their mutual
similarity. Clustering is primarily concerned with the definition of data density,
and what makes samples similar or dissimilar. Typical problems in clustering
algorithms include handling outliers and missing values.

Supervised methods include methods based on or related to Artificial Neu-
ral Networks, Information Theory, linear discriminants, prototype vectors, ker-
nel methods, Bayesian statistics and lazy learning. Examples of Artifical Neural
Network classifiers [9] are Perceptrons [84], backpropagation multi-layer neural
networks [121, 86], and Radial Basis Function Networks [60], which all work by
presenting the input data repeatedly to a layered network of simplified neural units
that adapt to the signal presented. The non-linear variants of Artificial Neural Net-
works have been shown to be applicable to every class of learning problem [36].

Methods that are based on Shannon’s Information Theory [90] rely heavily on
the concepts of Entropy and Information Gain. The most well-known example in
Machine Learning are Decision Trees [14] and its numerous variants [80, 105, 79],
which recursively split the feature space into rectangular parts. Another more re-
cent and very effective approach are Random Forests [13], which are committees
of Decision Trees that have been trained in a certain way that introduces random-
ness to the otherwise deterministic process.

Methods based on prototype vectors rely on a set of points in feature space that
cover a portion of this space and represent the training data points that lie in these
regions. The training process consists of moving these prototype vectors to posi-
tions that minimize the classification error. The most prominent prototype based
methods are the various versions of Learning Vector Quantization [47], where
each prototype vector is assigned a class label, and is moved towards the samples
of the same class.

Support Vector Machines [107, 15] are powerful classification algorithms that
consist of two parts: A kernel function that performs a projection of the original
data in a much higher-dimensional data space, and an optimization formulation
of fitting a separating hyperplane into the data set. The major advantage of this
method lies in the combination of these two parts which allows a very efficient im-
plementation that avoids the complexity problems of other kernel based methods,
also known as the “kernel trick”. The type of kernel used determines the classes
of problems that may be solved, and typical choices are linear, polynomial, and

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 7

Table 2.1: A taxonomy of supervised learning methods
Method Stochastic lazy IT-based linear binary

Perceptron yes no no yes yes
Multi-layer Perceptron yes no no no yes
RBF Neural Network yes no no no yes

Decision Trees no no yes no no
Random Forests yes no yes no no

LVQ yes no no no no
Linear SVM no no no yes yes

Polynomial SVM no no no no yes
RBF SVM no no no no yes

LDA no no no yes yes
Naive Bayes no no no no no

k-NN no yes no no no

radial basis function kernels.
Many Machine Learning techniques are primarily inspired by statistics, like

Linear Discriminant Analysis or Naive Bayes [56]. Linear Discriminant Analy-
sis results in a separating hyperplane that is computed by solving an eigenvector
problem, while Naive Bayes relies on Bayesian statistics and computes the pos-
terior probabilities of the samples to be classified, under the assumption that the
feature dimensions are independent.

Lazy learning refers to a paradigm in Machine Learning rather than a class of
algorithms. It is opposed to the previously discussed algorithms that create mod-
els from the training data before actually classifying any unlabeled data. Lazy
learners store the input data set and do not perform any learning task during the
training step. The actual work is performed during classification and has to be
repeated each time a sample has to be labeled. The most prominent lazy learning
algorithm is k-Nearest Neighbors, which classifies samples by assigning the ma-
jority class of the k training set samples which are closest to the sample that has
to be labeled.

The learning algorithms that have been introduced in the previous paragraphs
are summarized in Table 2.1 in an attempt to classify them according to several
key characteristics. The column “stochastic” refers to algorithms that include
some sort of randomness in their computation, as opposed to deterministic ones
which always come to the same results given a training data set; “lazy” refers to
lazy learning algorithms;“IT-based” refers to techniques that rely on Information
Theory; “linear” denotes methods that produce separating hyperplanes; “binary”

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 8

refers to whether the method is restricted to two-class output variables. Apart
from the training algorithms themselves, major issues in Machine Learning in-
clude the measurement of the classification accuracy, model selection for tuning
of parameters and improvement of classifier performance, and overtraining. The
applications of supervised learning lie in virtually every domain that deals with
collection and prediction of data in any respect. Practical Machine Learning prob-
lems are often concerned with either selecting the most appropriate algorithm or
by tailoring existing methods to the particular problem. A vast number of surveys
and books have been dedicated to Machine Learning that describe these issues and
other supervised learning algorithm in greater detail [59, 34].

Among the most common unsupervised learning methods are k-means [33],
which will be discussed in more detail in the next section, and hierarchical cluster-
ing, like single, average, and complete linkage, and Ward’s clustering [118]. For
comprehensive surveys on the different unsupervised methods refer to [7, 39, 43].
One of the difficulties in clustering lies in evaluating the quality of the resulting
partitions, or to determine which of two given sets of clusterings of the same data
set is preferable [32]. Other than in the case of supervised learning, there is no
clearly defined criterion like classification error that has to be minimized. There
are several approaches to assess the quality of clustering. The DB-Index [18],
which is discussed in 2.3.4, provides a score that is better for dense, well-separated
spherical clusters. The Quantization Error, which is discussed in the next section,
emphasizes the overall distance from each sample to its cluster centroid. As the
definition of a “good” clustering solution is itself difficult, the approaches that the
different clustering techniques take are highly different.

The term “vector quantization” is sometimes used synonymously with un-
supervised learning or clustering, but actually refers only to those methods that
produce a codebook, i.e. are prototype based. Several clustering methods, such
as hierarchical clustering, do not qualify as vector quantization, since only the
given training data is clustered without the possibility to assign vectors that are
not available during training to any cluster. The goal of vector quantization is
to minimize the quantization error, it thus has a clearly defined objective. Vector
quantization is used mostly in the domains of signal processing and data compres-
sion, where the task is to replace the original high-dimensional data vectors with
a low-dimensional representation and some loss of information is allowed. As the
number of prototype vector relative to the number of data samples increases, this
becomes less of a problem.

2.1.3 k-means and LBG
One of the most prominent clustering algorithms is k-means. It is prototype based,
i.e. it contains k codebook vectors of the same dimensionality as the data set

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 9

which are used to represent the clusters. The codebook vectors are denoted as
mj ∈ RD and are initialized randomly. In the sequential training algorithm, as
described in [33], the data samples xi are presented in random order to the code-
book and one prototype vector becomes more similar to the currently selected
sample in each step. The LBG method [55] is a batch version of this algorithm
that has been shown to be equivalent in terms of convergence to the sequential
version. It is computed in two steps, first assigning each data point to its closest
prototype vector:

I(xi) = arg min
j∈{1,...,k}

‖xi −mj‖, (2.2)

where I(·) represents the index of the prototype vector the data point x is assigned
to1. Function I(·) together with the codebook defines a Voronoi tessellation over
the feature space. The set of indices of samples mapped to prototype mj is de-
noted as Sj:

Sj = {i|xi ∈ X ∧ I(xi) = j}. (2.3)

Further, the subset of samples belonging to prototype vector j is denoted as XSj
.

In the second step of the LBG algorithm, the centroids nj are computed as the
arithmetic means of the samples assigned to each partition:

nj =
1

|Sj|
∑

xi∈XSj

xi, (2.4)

where | · | denotes the cardinality of a set, i.e. in this case the number of data
points assigned to a prototype vector, and nj is the center of the data points as-
signed to node j, which becomes the new codebook vector mj := nj . The process
of updating each codebook vector by presenting all the data vectors once is called
an epoch. As the prototype vectors move in feature space after each epoch, the
assignments I(·) also change. Training is finished after a predefined number of
epochs T have been performed, or a stopping criterion is satisfied, such as mini-
mization of an energy function, or when the codebook has converged and subse-
quent epochs do not result in a change of positions anymore. Once training has
finished, the codebook vectors are sufficient to represent the clusters, as all points
in feature space can be assigned to one of the clusters according to Equation 2.2.

The quantization error measure is usually associated with vector quantization
algorithms. It is computed as the average distance between each sample and its
closest codebook vector:

EQ =
1

N

N∑
i=1

‖xi −mI(xi)‖. (2.5)

1In later chapters, the k-th best matching unit will be required, which is written as I(k)(xi).
Using this notation, the best matching unit would be denoted as I(1)(xi), but in this case, the
superscript is omitted. For a formal definition of I(k)(xi), refer to Section C.1.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 10

Figure 2.1: Scatterplot matrix of the Iris data set

The quantization error can be lowered simply by increasing the number k of pro-
totype vectors, in which case the size of the codebook increases. The tradeoff
between codebook size and quantization error has to be determined in the context
of the application domain. For data compression, the total amount of data to be
transmitted is the main consideration, but for clustering tasks, the clusters may be
analysed by humans who want to understand the output from such an algorithm
and therefore want the number of clusters to be low.

The LBG algorithm is deterministic except for the initial positions of the pro-
totype vectors. The results vary significantly for different initializations and var-
ious strategies have been proposed to deal with this problem [65, 12], e.g. by
placing the prototype vectors far away from each other.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 11

2.1.4 Vector Projection
An important field of data analysis is visualization, as quantitative data may be
effectively communicated through graphical means [100]. As the kind of data
that is discussed in this thesis is high-dimensional, visulization is not a straight-
forward task. One of the most common approaches are scatterplots, where an
orthogonal projection onto the plane spanned by two variable axes is shown. By
arranging the pairwise scatterplots in a way that each row and column in a matrix
is assigned a dimension, and a scatterplot is shown between the row’s and the col-
umn’s variable where the row and column intersect, a scatterplot matrix is created.
An example scatterplot of the Iris data set, which is described in Appendix D.1,
is shown in Figure 2.1. The characteristics of this data set are detailed in the Ap-
pendix in Section D.1.1. However, the number of scatterplots is the square of the
number of original variables, such that scatterplot matrices cease to provide an
understandable presentation as the dimension exceeds 10 or 20.

This limitation gives rise to the need for comprehensive visualizations that
combine as much information as possible in a single figure. Vector projection [28]
is the task of mapping points from a high-dimensional input space to a low-
dimensional output space while preserving as much information about the overall
shape of the data cloud as possible. Usually, this is defined as maintaining the
pairwise distances. In the process of vector projection information is necessarily
lost due to the reduction in dimensionality. The results from the projection are
used either for data preprocessing, where the number of variables is reduced to
an amount that can be handled by data mining algorithms that are sensitive to the
amount of input variables, or for visualization, in which case the dimension of
the output space is commonly two and the projection is plotted to be inspected
by a human observer. It has to be noted that the coordinate axes in such a plot
do not have any semantic meaning, as opposed to the original data axes which
correspond to a measurement. Any projection plot can be rotated and mirrored ar-
bitrarily, as the only information it carries are the relative distances and densities
that are preserved through the projection.

There are two types of vector projection algorithms, linear and nonlinear ones.
PCA is the most prominent linear projection algorithm. It is deterministic and
easy to compute. It is performed by calculating the eigenvectors and eigenvalues
λi of the covariance matrix of data set X , and by sorting the pair of eigenvalues
and eigenvectors in descending order. The data samples are mapped in an orthog-
onal way onto the subspace spanned by eigenvectors associated with the largest
eigenvalues. The ratio of the sum of eigenvalues used for projection to the sum
of all eigenvalues indicates the percentage of the variance preserved during the
projection process, which is a measure of quality of the mapping. PCA works
best if some variables show a high degree of linear correlation. In such a case, a

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 12

(a)

1 2 3 4

10%

20%

30%

40%

50%

60%

70%

80%

(b)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

(c)

Figure 2.2: Iris data set, 6× 11 SOM: (a) PCA projection, (b) Variance explained:
The horizontal axis denotes the 4 eigenvectors, ordered by importance from left
to right, the vertical axis shows the percentage of the variance explained by the
corresponding eigenvector, if taken as an axis (c) Cumulated variance explained,
the axes are the similar to (b), but the percentage reflects the sum of the variance
explained by the space spanned by the eigenvectors up to the current one

low number of axes is sufficient to depict most of the information contained in the
data set. If the input space dimension is high, or the data samples have a high in-
trinsic dimension, i.e. the data manifold is not centered around a low-dimensional
subspace of the input space, PCA projections can become very imprecise.

Nonlinear projection methods include Sammon’s Mapping [88], Curvilinear
Component Analysis [19], Multi-Dimensional Scaling [99]. All of these tech-
niques involve minimizing an energy function that is based on the difference be-
tween the pairwise distances in input and output space, and are solved with iter-
ative gradient descent algorithms. The methods differ mainly in the definition of
the cost function. Isomap [95], another non-linear projection method, relies on
nearest neighbor graphs of the input data and finding the shortest path to construct
the latent space. A drawback of these techniques over PCA is that only a given set
of points can be projected, and points that are not available in the original data set
cannot be projected unless the whole projection is recomputed. An advantage is
that nonlinear projection methods produce better mappings with input spaces of
higher dimension. Also, they are usually more stable with regard to outliers.

The PCA projection of the Iris data set is depicted in Figure 2.2(a). This pro-
jection explains more than 95% of the variance in the data set, thus the projection
is performed nearly lossless to 2 of the initial 4 axes. It can be concluded that the
Iris data set actually lives in a 2-dimensional subspace, and the remaining 2 axes
consist mostly of noise. In Figure 2.2(b), the amount of variance explained per
axis is shown. Figure 2.2(c) shows the cumulated sum of variance explained.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 13

2.2 Self-Organizing Maps
Self-Organizing Maps [46, 50] are artificial neural networks that combine the
properties of vector quantization and vector projection. SOMs are therefore an
unsupervised learning method, as no output variables have to be predicted. Sim-
ilar to k-means, the SOM consists of a number of M codebook vectors mj . In
matrix form, the codebook is written as M ∈ RM×D. In the next sections, the
basic properties of the SOM will be explained, with an emphasis on the similar-
ities and differences to the k-means algorithm. The most fundamental of these
differences is the introduction of an output space that puts the prototype vectors
into relation to each other. The topology of this output space is described in Sec-
tion 2.2.1. Neighborhood kernels, which transform the output space distance into
a measure of the degree of mutual influence, are discussed in Section 2.2.2. In
Section 2.2.3, the SOM training algorithm is described.

2.2.1 Topology of the output space
The main difference between the SOM and other prototype-based vector quan-
tization methods is that the prototype vectors are ordered and are thus not inter-
changable. The prototype vectors are put in relation to each other by their position
on a discrete output space lattice of dimension L, thus each codebook vector is as-
signed an additional set of coordinates that are not related to the feature space.
The map unit in output space is denoted as ξj ∈ NM×L and its coordinates as ξk

j ,
where k specifies the coordinate. In the two-dimensional case, the output space
is also referred to as the “map lattice”, and the horizontal and vertical coordinates
of the map units are written as ξu

j and ξv
j , respectively. For higher-dimensional

output spaces, the labels of the axes are integers 1 ≤ k ≤ L, and the indices are
written as ξjk. The index 1 ≤ j ≤ M serves as a link between the map unit and
its prototype vector. Distances can be measured between the positions in output
space, formally

dO(ξi, ξj) = ‖ξi − ξj‖ =

√√√√
L∑

k=1

(ξik − ξjk)2. (2.6)

For training purposes, the pairwise distances in output space between units
are stored in the symmetric topology matrix A, and its element aij in row i and
column j refers to the distance dO(ξi, ξj). As direct neighborhood is sometimes
of interest, the set of indices of the units adjacent to unit j is defined as

Nj = {k|dO(ξj, ξk) = 1} (2.7)

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 14

(a) (b)

Figure 2.3: Map lattices for {4×5} topologies: (a) rectangular grid, (b) hexagonal
grid

The map nodes are not placed arbitrarily but in an equidistant way, either
in a rectangular or hexagonal manner. Hexagonal maps are used for the part of
this thesis dealing with visualization, and rectangular topologies for Chapter 5.
The number of nodes for each axis is thus sufficient to fully describe the discrete
topology of the output space. The number of units along axis k is referred to as
dk, and the lattice structure of the map is denoted as L = {d1 × d2 × · · · × dL}.
For example, a map with a two-dimensional output space L = 2, a horizontal axis
of du = 5 units, and a vertical axis of dv = 4 units has a M = 5 · 4 = 20 units and
a topology structure of L = {5 × 4}. Figure 2.3 shows the output spaces for this
topology for rectangular and hexagonal grids.

2.2.2 Neighborhood Kernel
A crucial concept in the training and post-processing of SOMs is the neighborhood
kernel hσ, which is a monotonously decreasing function hσ : R+ → R+. It takes
an output space distance as an argument and thus converts a distance dO(ξi, ξj)
between two map units into a measure of relative proximity. Far apart units ξi

and ξj have low kernel values. Thus, the kernel acts as a weighting function
for the influence of nodes ξi and ξj onto each other. Kernels are used in many
fields of statistics such as probability density estimation; however, for use with
SOMs, the kernel does not have to be a probability function with unit area. The
neighborhood kernel is written as a function of the unit coordinates, such that
dO(ξi, ξj) is computed internally to make some of the equations in the later parts
of this thesis more comprehensible.

There are numerous kernel functions, the one that is most commonly used is

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 15

the Gaussian kernel hG
σ , which resembles a bell-shaped curve

hG
σ (ξi, ξj) = exp

(
− dO(ξi, ξj)

2

2σ

)
. (2.8)

The kernel value for distant nodes is decreasing exponentially and is close
to zero for dO > σ. For computational reasons, the kernel can be cut off at a
threshold (“cut-off Gaussian kernel”) to reduce the number of calculations:

hG’
σ (ξi, ξj) =

{
hG

σ (dO(ξi, ξj)) if dO(ξi, ξj) ≤ σ
0 otherwise (2.9)

A very simple version of a neighborhood kernel is the bubble kernel, which is
a step function that is defined as

hb
σ(ξi, ξj) =

{
1 if dO(ξi, ξj) ≤ σ
0 otherwise (2.10)

It relies solely on the concept of cutting off outside the radius σ, weighting all
distances up to this point equally. The bubble and cut-off Gaussian kernels do not
resemble continuous functions.

Another choice is the inverse proportional kernel

hip
σ (ξi, ξj) =

{
1− dO(ξi,ξj)

2

σ2 if dO(ξi, ξj) ≤ σ
0 otherwise

(2.11)

which is similar to the Gaussian Kernel but eventually declines to zero, and is not
discontinous as the cut-off Gaussian kernel.

All of the above kernels are constructed as non-linear functions. The linear
kernel, which decreases linearly from one to zero, is an exception:

hl
σ(ξi, ξj) =

{
1− dO(ξi,ξj)

σ
if dO(ξi, ξj) ≤ σ

0 otherwise
(2.12)

In all of the above definitions of kernel functions, the parameter σ determines
the breadth of the neighborhood function, such that very high values correspond
to high influence of far-away and close units alike, and very low values emphasize
only the direct neighbors of the map unit. It is used in the visualization techniques
in Chapter 4 to control the granularity of the structures detected, serving as a
smoothing parameter.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 16

2.2.3 SOM Training
The SOM training algorithm is very closely related to the k-means training al-
gorithm in that the prototype vectors are updated by iteratively presenting data
samples. The training algorithm of the SOM moves the prototype vectors towards
their final positions with the goal of performing both vector quantization and pro-
jection. At first, the model vectors have to be initialized. The final state depends
heavily on this initialization, but to a lesser degree than k-means. To make this
process more predictible and deterministic, it is preferrable to initialize the code-
book in an orderly fashion rather than randomly. The approach applied throughout
this thesis will be to perform PCA on the data set and to initialize the prototype
vectors along the L eigenvectors associated with the largest eigenvalues. Various
other initialization methods have been proposed [4].

After initialization, the SOM is trained for a number of T epochs. In the
original sequential version of the SOM training algorithm [46] the data samples
are presented to the codebook in random order. For sample xi and current epoch
t, the codebook is updated in the following way:

mj(t + 1) = mj(t) + α(t) · hσ(t)(ξj, ξI(xi)) · [xi −mj(t)] (2.13)

This update step has to be repeated for all the mj for every xi presented. Here,
α(t) is the learning rate, which is a function that decreases monotonously during
training. The assignment function I(·) is defined in Equation 2.2, and ξI(xi) is the
best matching unit (BMU), the map unit whose prototype vector has the shortest
distance to sample xi. The kernel h is any of the neighborhood functions defined
in the previous section. As the prototype vectors are updated to a certain degree
even if they are not the best matching unit, the kernel ensures that the topology
of the output space is reflected in the ordering of the prototype vectors in feature
space. The kernel width σ(t) is itself a function that decreases monotonously with
time. This leads to the phenomenon that the map initially, as σ is relatively large,
represents the data cloud in a crude way, and each prototype vector is aligned to
even its far away neighbors in output space, while the codebook vectors increas-
ingly specialize to the sample vectors they represent at later stages. The current
epoch has finished after all the xi have been presented to the SOM.

A computational shortcut to classic sequential SOM training is the Batch SOM
training algorithm [49], which is similar in spirit to the LBG algorithm defined in
Section 2.1.3. Other than sequential training, it does not depend on the ordering
of the data samples, and does not require a learning rate parameter α(t). It is thus
deterministic in case the SOM initialization is deterministic. Further, it allows a
very efficient matrix-based implementation [113]. In the Batch SOM training al-
gorithm, the update step of epoch t is performed by calculating the new prototype

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 17

vectors mj as

mj(t + 1) =

∑M
k=1 |Sk| · hσ(t)(ξk, ξj) · nk(t)∑M

k=1 |Sk| · hσ(t)(ξk, ξj)
(2.14)

where |Sk| and nk are defined analogous to Equations 2.3 and 2.4. This last
step, which introduces a concept of smoothing over the map topology, is the only
computational difference from the LBG algorithm. As with the sequential version
of the training algorithm, depending on the width σ(t) of the neighborhood kernel,
the mutual influence of neighboring map units ensures that their topology will be
maintained to a certain degree in input space, thus placing topological neighbors
close together in feature space.

When training has finished, the map should represent both the original data
points in a vector quantization sense, and the output space topology such that pro-
totype vectors which are close in output space are also close in input space. The
width σ(T) of the very last epoch is crucial for the shape of the SOM. If σ(T)
is high, the topological relationship between the codebook vectors is emphasized,
and the quantization effect is neglected, compared to a setting with relatively low
σ(T). Thus, the value of σ(T) is indicative of the degree to which vector projec-
tion is favored over vector quantization.

2.3 Visualization of the SOM
Visualization is one of the main strenghts of the SOM [110, 109]. In this section,
a short survey of visualization techniques for the SOM is provided. Most of these
are post-processing tools to aid the observer in understanding the characteristics
of the data set.

The following sections are structured according to Vesanto’s taxonomy of
SOM visualizations [110] that groups them as codebook projections, SOM as vi-
sualization platform, and further subcategorizes them based on whether the visu-
alization uses a data set to be shown in connection with the codebook or not. Sec-
tion 2.3.1 explains the inspection of the codebook directly as a projection of input
space. In Section 2.3.2, the SOM as a visualization platform is discussed, which
means displaying information on the two-dimensional map grid. Section 2.3.2
provides an overview of methods that rely on information derived from the code-
book, disregarding the relation of the map to the data samples. Section 2.3.2
summarizes visualization techniques that take the data distribution into account.
Section 2.3.4 provides an introduction to common SOM quality measures and
quality visualization.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 18

2.3.1 Projection of the SOM Codebook
One of the most intuitive ways of inspecting the relation of the SOM to the data set
is to inspect both the prototype vectors and the data samples simultaneously. This
cannot be performed easily, since the input space is usually very high dimensional.
A possible solution is to perform a vector projection that shows both the SOM
codebook and the data vectors on a 2D plane.

Codebook projections are especially interesting for visualizing the training
process by showing the way the map folds onto the data set after each epoch and
for validating the quality of the map by verifying whether the shape of the data
cloud fits the shape of the map. Figure 2.4 shows an example of a {6× 11} SOM
training process, where a map is trained on the Iris data. In Figure 2.4(a), the map
is depicted directly after initialization. As a PCA-based linear initialization has
been performed, the initial layout of the SOM axes are parallel to the plot axis,
which is a PCA visualization based on the very same eigenvectors used to initial-
ize the map. Figure 2.4(b) shows the map after the first epoch of batch training.
The prototype vectors have moved to positions such that the map resembles the
rough overall shape of the data cloud. Figure 2.4(c) depicts the projections after 5
epochs. At later stages of training as the neighborhood radius decreases, the po-
sitions are fine-tuned and the individual codebook vectors move to the centers of
the data points in their immediate proximity. Figure 2.4(d) shows the map at the
end of the training process, and the codebook vectors are in their final positions
and ready for post-processing.

2.3.2 Visualization on the SOM lattice
The two-dimensional SOM grid can be used as a platform to display information.
The lattice defined by the topology of the SOM provides the static coordinate sys-
tem for such a plot, and information can be shown, for example, as color codes,
markers, or the size of the background nodes. The visualization techniques dis-
cussed in the rest of this chapter are based on this approach. One possible draw-
back of this method is that the axes of the map are meaningless, and this can be a
source of confusion to observers who are accustomed to crossplots that plot one
variable against another one. The analogy to a geographical map is better suited
for this kind of visualization, as relative distances are what both geographical
maps and SOMs actually show.

Before discussing the various visualizations in detail, the basic visual tools
that can be used for representing information on the SOM lattice are described:

• Printing numbers and text into the patches

• Printing graphics or symbols into the patches

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 19

• Coloring the patches

• Resizing the patches

• Coloring the map by interpolation across several units

• Drawing lines on the map and connecting patches

Single numeric values on the map

A common task is visualizing a numeric value for each map node, for example the
number of data points with a certain characteristic mapped to a each map node.
An example is given in Figure 2.5(a), where the numbers are displayed on top of
the map patches. As it is not easy to grasp the overall distribution of the values, in
most cases a different approach is taken and the numbers are shown color coded,
as depicted in Figure 2.5(b). Another possibility is showing the values by plot-
ting a marker onto the map patches, where the sizes of the markers are adjusted
accordingly, as in Figure 2.5(c).

Multiple numeric values on the map

More challenging is simultaneously displaying multiple numeric values, or link-
ing various layers of information. These complex forms of visualization are one
of the topics of this thesis, especially of Chapter 4. Several examples are shown in
Figure 2.6. Bar charts, as shown in Figure 2.6(a), display each numeric value as a
colored bar in each map patch. While there is no theoretical limit for the number
of bars that can be put into a patch, this number should be kept in a low range
as a high number of bars is hard to read. Pie charts, shown in Figure 2.6(b), can
display a number of non-negative variables as pie slices, where the size of each
piece corresponds to the relative amount as part of the total of all the values. The
total value of all values added can be shown as the size of the pie. Pie chart visual-
izations are useful for showing how an effect that can be measured on the map can
be divided into contributing factors. Multiple markes, as shown in Figure 2.6(c),
are an extension of the single markers, where the size of the marker represents a
numeric value. This form of visualization is suited for showing distributions on
the map, i.e. where samples of a certain class are located, as described for hit
histograms in Section 2.3.2.

Chernoff faces [17], as used by Vesanto [110], are another way to display
multidimensional values in the shape of a human face. They are complex param-
eterized markers and are able to display up to 10 variables as features of the face,
such as nose size or eye spacing. What makes this technique unique is that the

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 20

glyphs are designed to be easily distinguishable by the human perception, which
is very sensitive to changes in facial features and expressions.

There are numerous other ways to display multidimensional coordinates, but
not as a visualization in combination with the SOM, for example parallel axes [37].
For an in-depth survey of these methods, please refer to [110]. A problem of these
methods is overloading of a single plot with information, which makes the visu-
alization difficult to read and understand. Thus, complex visualization techniques
have to be carefully designed.

Metaphors

Other methods of displaying information on the SOM lattice exploit analogies and
metaphors. The first of these display information that looks like an aerial view on
islands. It is used in [63] to display the smoothed data histograms described in
Section 2.3.2. It displays numeric values and shows high values as islands and
low values as oceans. An interpolation is performed for the values in between the
discreet positions of the map lattice, resulting in the smooth transitions that can
be seen in Figure 2.7.

Another visualization metaphor is that of cartographic maps. In [94], the data
is displayed along with cartographical information, depicted in Figure 2.8(a). It
depicts boundaries between areas of the map that are characterized by a certain
feature, in this case the occurence of a category that many of the samples mapped
to a region have. The labels show the names of these characteristic categories.
The relief-like visualization in Figure 2.8(b) is similar to the island visualization
described in the previous paragraph.

In [29], various layers of information are presented as aquarium-like underwa-
ter scenes with fish as glyphs, depicted in Figure 2.9(a). The relief-like ground is
again an interpolation of numeric values. The fish are similar to the markers that
show numeric values and differ in size and color.

Another metaphor is the SkySOM [54], where a night-sky visualization is
shown, as depicted in Figure 2.9(b). It shows glyphs in the form of stars. These
are positioned not at the discrete positions in the map lattice, but can be placed
somewhere between these positions. The rationale for doing this is to show den-
sity not by increasing the marker or glyph size but by increasing the number of
stars. The stars actually represent data samples that are mapped to the SOM and
their position is calculated from their distance to its best-matching unit and its
surrounding units.

Finally, Mnemonic SOMs [57, 58] modify the shape of the ouput space in
order to create metaphors. The example shown in Figure 2.10 is a SOM trained
on the data extracted from audio files of Mozart’s works, and the SOM is designed
to meet the shape of Mozart’s head as a recognizable metaphor.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 21

(a) (b)

(c) (d)

Figure 2.4: Iris data, 6 × 11 SOM, PCA projections of data and map at vari-
ous stages during training: (a) after initialization, (b) after first epoch, (c) after 5
epochs, (d) after training

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 22

27

12

16

8

16

0

21

13

4

15

18

11

23

20

38

4

20

11

8

3

12

2

1

7

21

6

8

4

14

11

11

4

5

15

15

5

13

9

5

7

1

4

6

9

7

4

12

2

4

4

40

20

7

6

8

6

14

0

3

2

3

3

4

1

10

1

0

6

9

8

11

6

10

4

5

4

11

1

5

31

14

9

22

14

1

16

7

3

11

3

4

6

7

4

6

8

10

7

13

9

1

5

12

4

10

5

6

15

11

3

7

15

14

0

0

5

1

7

15

20

5

10

8

5

2

6

6

3

10

2

18

4

16

18

3

21

8

10

11

6

6

11

4

6

6

7

5

7

1

23

6

4

27

3

2

5

9

9

5

5

2

4

8

3

5

2

1

2

2

7

16

5

5

3

4

8

5

0

18

3

28

12

25

6

1

6

20

12

3

5

11

2

1

4

5

1

2

4

4

1

10

5

2

13

20

10

5

16

1

10

3

25

2

32

13

48

13

25

9

27

9

(a) (b) (c)

Figure 2.5: Visualization of numeric values on top of map lattice: (a) numbers
printed directly into the patches, (b) patch is colored according to value on color
scale, (c) marker size adjusted according to value

(a) (b) (c)

Figure 2.6: Visualization of multiple numeric values on top of map lattice: (a) Bar
charts, (b) pie charts, (c) multiple markers

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 23

Figure 2.7: Alternative visualization methods: Islands of Music

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 24

(a)

(b)

Figure 2.8: Alternative visualization methods: Visualization as cartographic map

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 25

(a)

(b)

Figure 2.9: Alternative visualization methods: (a) ReefSOM, (b) SkySOM

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 26

Figure 2.10: Alternative visualization methods: Mnemonic SOMs

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 27

(a) (b) (c) (d) (e)

Figure 2.11: Component planes of a {6 × 11} SOM on the Iris data: (a) Sepal
length, (b) sepal width, (c) petal length, (d) petal width, (e) bar-chart of component
planes

Codebook based visualization methods

The techniques in this category of visualization methods rely solely on the code-
book vectors, disregarding the data samples. The methods that fall into this cate-
gory are component planes, the U-Matrix, and clustering of the map. Considering
only the codebook implies that the trained map contains most of the characteris-
tics of the data manifold, and can thus be used as an appropriate replacement. To
ascertain that this assumtion holds, or to assess the degree to which it applies, the
quality measures described in Section 2.3.4 can be used. The methods described
in this section are:

• Component planes

• U-Matrix

• Clustering of the codebook

Component planes

The most comprehensive method for SOM visualization are component planes.
All the information contained in the codebook is displayed simultaneously. A
single component plane shows the value of a selected input space variable of the
codebook. The component plane of variable i is written as m(i), the ith row of
matrix M, formally m(i) = (m1i, . . . ,mMi). The numeric values of mi are then
displayed, for example, as shown in Figure 2.11 for the Iris data set. It can be
seen that sepal length, petal length, and petal width are strongly correlated, as the
component planes have high and low values in similar positions. Sepal width is

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 28

the only variable that differs from this pattern. Another possibility to display com-
ponent planes in a single figure is by plotting a bar-chart for each node, with a bar
for each variable, as shown in Figure 2.11(e). One disadvantage that limits the use
of component planes is that for high dimensional data the number of component
planes becomes prohibitively large for visual inspection. Most visualization tech-
niques are thus aimed at aggregating some aspect of the information contained in
the codebook into a single plot, or by clustering the individual component planes,
grouping correlated variables, as described in Section 2.3.3.

U-Matrix

The most widely used method of this sort is the unified distance matrix, or U-
Matrix [104]. It is calculated as the distance in feature space between prototype
vectors, for which the map units in output space are adjacent, formally

u(ξj, ξk) = ‖mj −mk‖ (2.15)

These values are distances between nodes ξj and ξk, and for visualization pur-
poses, the average for each node has to be computed:

ū(ξj) =
1

|Nj|
∑

k∈Nj

u(ξj, ξk), (2.16)

where Nj is the set of indices of units adjacent to j as defined in Equation 2.7. u(j)
is the average input space distance to its topological neighbors. The U-Matrix can
be depicted in two ways, either by showing the inter-node distances, or by show-
ing only the average values. The former method requires insertion of additional
patches to the map lattice between nodes, and the original positions of the nodes
are assigned the average values as in Equation 2.16. Figure 2.12(a),(b) show ex-
amples of both methods. It can be seen that high values are primarily located
horizontally below the first third of the map. When compared to the PCA pro-
jection in Figure 2.4(d), the nodes that are connected by long lines correspond to
these units with high U-Matrix values. These units are referred to as interpolating
units, as they do not represent any or only very few data samples in a vector quan-
tization sense, but serve the purpose of connecting clusters of dense areas. The
U-Matrix is thus suitable to identify possible interpolating units and outliers, as
well as dense regions, where inter-node distances are low. Figure 2.12(c) shows
another possibility for depicting the U-Matrix. The values u(·) are represented by
the size of the pies, and the pie slices indicate how much each input space variable
contributes to the distance between the prototype vectors, formally

ui(j) =
1

|Nj|
∑

k∈Nj

|mji −mki|. (2.17)

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 29

(a) (b) (c)

Figure 2.12: U-Matrix of a {6 × 11} SOM on the Iris data: (a) Inter-node dis-
tances, (b) averaged values, (c) pie-chart showing the relative contributions of the
variables (from left to right: Sepal length, sepal width, petal length, petal width)

In the example in Figure 2.12(c), the differences in the boundary region are caused
mainly by the petal variables, and least affected by the sepal length.

The U-Matrix explains much of the clustering structure of the SOM, espe-
cially in the case when the number of nodes is smaller than the number of train-
ing data samples. However, if the prototype vectors outnumber the training sam-
ples [101], the U-Matrix shows artifacts around the positions where the data sam-
ples are mapped, which overshadow the actual cluster boundaries. This effect can
be observed in Figure 2.13 for large maps for the Iris and Ionosphere data sets.

Clustering of the map

Related to the U-Matrix in what is to be shown, clustering of the codebook vec-
tors [112] hints at which areas of the map are dense and mutually similar in feature
space. Clustering is performed by using the prototype vectors as input data for any
clustering algorithm, and visualizing the results. Clustering the SOM codebook
can be regarded as a two-step vector quantization process, as the data samples
are quantized by performing the SOM training, and then the clustering step. The
results for Ward clustering at various levels are shown in Figures 2.14(a)–(c), and
k-means clustering with k = 3 in Figure 2.14(d), which also shows the proxim-
ity to the cluster centroid by the patch sizes. Ward’s clustering is an example of
hierarchical clustering, thus the partitions of higher levels, i.e. a lower number
of clusters, are calculated by joining two clusters from lower levels. Stochastic
partitional techniques, such as k-means, can result in different clusters each time

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 30

(a) (b)

Figure 2.13: U-Matrices of maps with a higher number of nodes than data sam-
ples: (a) Iris {30× 40} SOM , (b) Ionosphere {40× 60} SOM

it is performed. For practical reasons, it can be beneficial to exclude interpolat-
ing units from the codebook. The term “interpolating unit” is somewhat vague,
a possible policy that could be used is to skip all units that are not selected as
BMU at least once. Clustering results are often slightly better if this is performed,
especially for unstable methods like single and complete linkage.

The clusters can be visualized as a projection of feature space, as discussed
in Section 2.3.1, which reveals additional information on the distribution of both
the data and the prototype vectors. A PCA projection is shown in Figure 2.14(e).
The data samples are assigned the same color as their best-matching unit, and the
convex hull of each cluster is shown. This can lead to overlapping clusters even
for methods that aim at finding spherical clusters, because due to the projection
some of the information is lost; in this case, however, around 95% of the variance
is explained and thus the projection can be considered as very stable. This visual-
ization method is very sensitive to outliers and leads to overlapping polygons, but
can provide a good overview on the form of the clusters.

Visualization methods based on data samples

The visualization methods discussed in this section are concerned with showing
the relationship between the map and a data set. This data set does not necessarily
have to be the same that has been used for training, but usually it is. Depending
on what the SOM is used for, any data set can be used that lives in the same

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 31

feature space. This is actually a big advantage over other visualization methods
such as Sammon’s mapping, as an abstraction of the original data (the codebook)
is generated during the training process, which can be used for similar data sets
without losing its applicability.

The methods discussed in this section are:

• Hit histograms

• Smoothed data histograms

• P-Matrix

• U*-Matrix

• Visualizations for Generative Topographic Mapping

Hit histograms

The most basic visualization technique in this category are hit histograms. They
show the distribution of the data set by counting the number of times each map
node is the BMU for any sample, formally

b(ξj) = |{xi|I(xi) = j}| = |Sj|. (2.18)

Examples of this visualization are shown in Figures 2.15(a),(b). When com-
pared to Figures 2.12(a) and 2.14, the horizontal gap in Figure 2.15(a) is again
characteristic for an area of interpolating units, i.e. prototype vectors that occupy
a region in feature space that acts as a bridge that connects two well-defined clus-
ters. Figure 2.15(b) shows the distribution of a data set with fewer samples than
map units. The prototype vectors are arranged in such a way that each sample is
mapped to a node that has no other samples assigned to it, surrounded by nodes
without any hits. This makes it hard to identify cluster boundaries, as the data
samples are spread almost uniformly over the map, and quantization does not oc-
cur due to the large number of model vectors.

There are several similar methods that are based on the assignment of data
vectors onto the map. In case the data set is labeled, the distribution of the cate-
gories can be shown with pie-charts, for example, where each slice represents the
relative frequency of a class. Examples are shown in Figure 2.15(c), where all
the pies are equally large, and Figure 2.15(d), where the size of each pie reflects
the number of hits on the node, similar to the marker size in Figure 2.15(a). An-
other possible way of showing the distribution of classes is plotting different hit
histograms for each class, as shown in Figures 2.15(e)–(g).

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 32

(a) (b) (c)

(d) (e)

Figure 2.14: Visualization of clustering algorithms of Iris {6 × 11} SOM: (a)
Ward, 2 clusters, (b) Ward, 3 clusters, (c) Ward, 5 clusters, (d) k-means with
k = 3, (e) PCA projection of k-means with k = 3

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 33

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.15: Hit histograms for the {6 × 11} Iris SOM: (a) small map, (b) large
map; Category pie charts (black = setosa, gray = virginica, white = versicolor):
(c) equal sized pies, (d) pie size according to total hits in this node; Markers by
category level: (e) Setosa, (f) Versicolor, (g) Virginica

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 34

(a) (b) (c)

(d) (e) (f)

Figure 2.16: Smoothed Data Histograms for Iris data set and {6× 11} SOM: (a)–
(c) colored nodes, (d)–(f) smoothed contours; (a),(d) s = 3, (b),(e) s = 7, (c),(f)
s = 15

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 35

Smoothed data histograms

A similar, but more sophisticated approach are smoothed data histograms (SDH,
[64]). It is computed by increasing the counter for the BMU’s bin b(ξj) for each
sample, and increasing the counter of up to k best matching units to a lesser de-
gree. The SDH requires a spread parameter s which serves as an upper limit to k.
Setting s to higher values increases the smoothing effect. The binned values can
be calculated in various ways. One method is the Nearest Neighbors assignment,
where the bins for the k best matching units are increased by a constant value:

b(ξj) =
N∑
i

{
1 if I(k)(xi) = j ∧ k ≤ s
0 otherwise

(2.19)

where N is the number of samples, s is the spread parameter, j is the index of the
codebook vector and the map unit, and I(k)(·) is the ranking function as described
in Appendix C.1. Another calculation method is to increment the counter by 1/k
for each sample for the kth-best matching unit, resulting in declining values for
more distant units. This is formally written as

b(ξj) =
N∑
i

{
1
k

if I(k)(xi) = j ∧ k ≤ s
0 otherwise

(2.20)

Another method is the inverse ranking method, where the bins can be in-
creased by up to s − 1 points, reduced by the rank of the distance between unit
and sample:

b(ξj) =
N∑
i

{
s− k if I(k)(xi) = j ∧ k ≤ s
0 otherwise

(2.21)

The latter two calculation methods have been shown to perform better in terms
of visualization results. Examples of the SDH visualization are shown in Fig-
ure 2.16. In the upper row of this figure, the per-node values are shown, the
bottom row shows the same results with a different representation, such that the
values are interpolated as in the original publication. Lower smoothing ranges
have a similar appearance as the hit histogram, while increasing s has a blurring
effect on the visualization, such that similar nodes in feature space share the same
hit value. In Figures 2.16(d),(f) the largest spread value is shown, analyzing clus-
ters at different levels of granularity. The gap that represented the interpolating
units is still visible. The SDH visualization is thus, among other things, suitable
for visualizing clusters.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 36

(a) (b) (c) (d)

Figure 2.17: Iris data, small {6× 11} and large {30× 40} SOM: (a),(c) P-Matrix;
(b),(d) U*-Matrix

P-Matrix

Another data-based visualization technique is the P-Matrix [102] that aims at de-
picting the feature space density of a map. Magnification factors [83, 115, 31]
refers to the phenomenon that the available space on the map lattice is assigned
roughly proportionally to the number of samples it represents, such that dense ar-
eas are stretched in output space and depicted in greater detail. Due to this effect
it is not always possible to communicate the whole cluster structure through vi-
sualizations like the U-Matrix, because the density of a cluster is not sufficiently
represented. The P-Matrix is computed by counting the number of samples that
lie within a sphere of a certain radius rP around each prototype vector. This ra-
dius is not a user-specified parameter but computed as the 20% percentile of the
pairwise data sample distances. It is called the Pareto radius. The node values are
computed as

p(j) = |{xi|‖xi −mj‖ < rP}| (2.22)

Low values for p hint at either interpolating units or outliers. This visualization
tends to be more useful for larger maps. Figures 2.17(a),(c) show the P-Matrix for
a small and a large map trained on the Iris data. Both show the gap in the upper
third of the map as low values. For the large map, it can be seen that in the lower
right of the map the values are also low, which hints at outliers.

U*-Matrix

In an effort to make the U-Matrix usable for sparse, large maps, the U*-Matrix has
been introduced [103], which combines the cluster boundary information from
the U-Matrix with the density information from the P-Matrix. As discussed previ-

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 37

ously and shown in Figure 2.13(a), the U-Matrix shows high values in between the
positions where the data samples are mapped to, which do not represent cluster
boundaries. The U*-Matrix is computed from the U-Matrix by smoothing over
the boundaries that are in dense areas, which are thus likely artifacts. The values
are computed as

u∗(j) = u(j) ·
(

p(j)− p̄

p̄−maxi p(i)
+ 1

)
(2.23)

where p̄ denotes the arithmetic mean p̄ = 1
M

∑M
k=1 p(k), M denotes the number

of map units. Examples of the U*-Matrix are shown in Figures 2.17(b),(d) for the
Iris data. The U*-Matrix for the small map is almost identical to the U-Matrix.
The large map visualization shows plateaus in a similar way as the U-Matrix does
for the smaller map, which is a desired behavior. The small boundaries that have
distorted the U-Matrix have been smoothed out.

Visualizations for Generative Topographic Mapping

The Generative Topographic Mapping (GTM; [10]) has been introduced as an al-
ternative to the SOM with a continuous output space that models the probability
distribution in feature space. Visualizations for the GTM are thus relevant in the
context of SOM visualizations. The magnification factors visualization [8] de-
picts local stretching of the mapping as ellipsoids in a discrete number of latent
space centers. This method is related to the Vector Fields visualization technique
introduced in Chapter 4 as it explains directional changes. Magnification factors
can also be computed for the SOM, where a continuous interpolation of the dif-
ferences between neighboring units is applied to the discrete SOM lattice in order
to perform differential analysis. Apart from that, Vector Fields differ mainly in
the way that smoothing is applied: While magnification factors for the SOM show
similar results as the U-Matrix, a smoothing according to an adjustable parameter
is applied that defines the width of the area over which the differences are ag-
gregated and investigated. Further extensions of magnification factors for GTM
investigate their curvature [98] by investigating local geometric properties, where
local directional changes are investigated and visualized. This can be used for
detecting distortions in the geometry of the GTM projection manifold.

2.3.3 Visualization of correlated variables
Uncovering the factors that contribute to the hidden structure in the data sample
is one of the major topics of this thesis. One of the most common data analy-
sis techniques to find relationships between variables in the data sample is linear
correlation, which indicates whether the data samples are aligned on or close to

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 38

crim zn indus chas

nox rm age dis

rad tax ptratio black

lstat medv

Figure 2.18: Boston housing data set, rectangular 10× 20 SOM: Component
planes

a linear subspace of the feature space. In this section, correlation between vari-
ables, and also nonlinear relations between variables are investigated visually with
the help of the SOM. The methods presented are demonstrated with a {10 × 20}
SOM with rectangular patches trained on the Boston housing data set, which is
described in Section D.1. The component planes of this map are shown in Fig-
ure 2.18. Even as the number of variables is only 14, it is hard to spot correlation
when looking at this figure.

Component plane reordering

In [111], a method is proposed to rearrange the component planes, such that the
ones that have a high absolute correlation between component planes Mi are
grouped together. The algorithm that performs the placement given this distance
information can be any vector projection technique such as PCA or another SOM,
the latter of which is shown in Figure 2.19. The variables for which the com-
ponent planes are close on this projection are supposed to be highly correlated.
Variables with component planes that are far away are likely uncorrelated. It can
be seen from the figure that some components are placed close to each other, such
as “rad” and “tax”, “dis” and “age”, and “medv” and “rm”. The correlation values
for these variable pairs are faily high, at 0.91, -0.74, and 0.76.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 39

Figure 2.19: Reordered component planes for the 10× 20 SOM trained on the
Boston housing data

Clustering of the component planes

When clustering the transposed data or codebook matrices Xt and Mt, the result-
ing clusters relate to the feature dimensions rather than the data samples. It is
thus possible to calculate a hierarchical clustering, which requires a matrix of dis-
tances as an input. The dendrogram of clustering the variables of the data set and
the component planes with Ward’s clustering are shown in Figures 2.20 and 2.21,
respectively. It shows how the variables are similar to each other, clustering those
variables with high correlations, such as “rad” and “tax”, “indus” and “nox”, and
“zn” and “dis” at low levels. By moving up the dendrogram, the variables are
distributed into larger clusters. When comparing it to the SOM reordering in Fig-
ure 2.19, one difference is that “dis” and “age”, for example, are not joined at a
low level. This demonstrates that this method is able to provide a good overview
but can be unreliable in the details.

When comparing the dendrograms in Figures 2.20 and 2.21, which are based
on the data set as well as the codebook of a SOM trained with this data set, the
differences are marginal between these two pictures. This leads to the conclusion

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 40

 rad tax crim ptratio indus nox age lstat zn dis black chas rm medv

Figure 2.20: Boston housing data set: Dendrogram of Ward’s clustering per-
formed on the feature dimensions of the data set

that the codebook is a good proxy for the data set for investigation of intervari-
able relations. The correlation results between the original data vectors and the
prototype vectors may differ, as the data set has been subjected to the nonlinear
SOM projection and the codebook is not a perfect replacement for the data set.
However, the difference is not very big, which leads to the conclusion that the
relationship between the variables is preserved after SOM projection.

The Metro visualization

Another recent approach aims at visualizing the correlation structure in a single
plot with the metaphor of metro plans [61, 62]. This method transforms compo-
nent planes into curves that run along its gradient, which can be plotted on top of
the map lattice. Plotting all of these lines at once results in a chaotic picture, as
there are as many lines as variables, which quickly becomes confusing at higher
dimensions. Using an approach that is similar to the one described in the previous
paragraphs, the lines can be aggregated by replacing two similar lines by one that
lies between them. An example is shown in Figure 2.22, where supposedly similar
lines, which each represent a variable, are combined into a clustered view. Again,
the highly correlated pairs “rm” and “medv”, “zn” and “dis”, and “rad” and “tax”
are in the same cluster.

Local factors

Another method that is concerned with gradients investigates local factors that
contribute to the clustering structure of the SOM [42], which is related to the
method described in Chapter 4. This method looks for changes in the gradient of

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 41

rad tax crim lstat ptratio indus nox age zn dis black rm medv chas

Figure 2.21: Boston housing data set, rectangular 10× 20 SOM: Dendrogram of
Ward’s clustering performed on the feature dimensions of the codebook

the data sample density in order to identify clusters and their characteristics. The
relation between the gaps separating the clusters and the discriminating factors
contributing to this separation is revealed.

2.3.4 SOM quality measures
As the SOM is unsupervised, and as a certain trade-off between vector quanti-
zation and projection exists, the problem of assessing the quality arises. Several
quality measures have been introduced that try to answer the question of whether
a given SOM provides a good solution to either a vector projection or quantization
problem. The most important of these are described in this section from a practi-
cal point of view, using the Boston Housing data set as a baseline for comparison.
For surveys that cover the theoretical side, refer to [66, 67, 45, 25]. The methods
discussed in this section are:

• Quantization error

• Davies-Bouldin index

• Topographic error

• Intrinsic distance

• Topographic product

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 42

crim + lstat
zn + dis
indus + age + rad + tax + ptratio + black
chas + nox
rm + medv

Figure 2.22: Boston housing data set, rectangular 10× 20 SOM: Metro visualiza-
tion on top of U-Matrix

• Topographic function

• SOM distortion

Quantization error

The quantization error, as described in Section 2.1.3, is the most widely used and
most basic technique for assessing the vector quantization properties of the map.
It can be used as a single index EQ defined in Equation 2.5, or on a per-unit basis:

eQ
j =

∑

i∈Sj

‖xi −mj‖ (2.24)

ēQ
j =

eQ
j

|Sj| , (2.25)

where eQ
j is the total quantization error that is computed for each unit ξj by adding

all distances from the unit’s prototype vector to the data samples it represents, and
ēQ

j , which is the average version that is obtained by dividing by the number of sam-
ples assigned to this unit. These values can be visualized, as shown in Figure 2.23
for a SOM trained on the Boston Housing data set. The total error resembles, to
a certain degree, the hit histogram, as a higher number of hits increases the sum
of the error. On the edges of the lattice, the total error is highest due to the border

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 43

(a) (b) (c)

Figure 2.23: Boston housing data set, rectangular 10× 20 SOM: (a) Hit his-
togram, (b) total quantization errors eQ

j , (c) mean quantization errors ēQ
j

effect. The mean quantization error is spread fairly evenly across the map, apart
from a few gaps that indicate interpolating units. The equal distribution provides
evidence that the training process has been working properly. A deviation from
such an even pattern would hint at problems with training such as wrong param-
eterization or insufficient training duration. A possible use for the quantization
error is thus to serve as a stopping criterion for the SOM training algorithm. An-
other scenario for using the quantization error is as a model selection criterion,
where several maps are trained on the same data set and the one with the lowest
error is picked. A limitation to its use is that it can only compare maps of the
same size, as the quantization error usually decreases as the number of map units
increases. Further, topology-preserving properties are totally disregarded, as the
SOM is regarded solely from the vector quantization perspective. For this rea-
son, when comparing the quantization errors resulting from a k-means clustering
with a SOM with the same number of prototype vectors, both trained on the same
data set, the k-means algorithm will usually perform better, as there is a tradeoff
between projection and quantization aspects for the SOM. The quantization error
can also be used to test whether the original training data set and a different data
set have follow roughly the same distribution by calculating quantization errors
and visually inspecting the resulting visualizations, testing whether the values are
spread evenly across the lattice.

Davies-Bouldin index

The Davies-Bouldin index [18] is a prominent cluster validity measure. The way
it is computed assures that spherical, internally compact clusters are rewarded that

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 44

have high distances to the other clusters. Formally, the DB-Index is computed as

EDB =
1

c

c∑
i=1

max
j 6=i

{ 1
|Ci|

∑
k∈Ci

‖xk − ni‖+ 1
|Cj |

∑
k∈Cj

‖xk − nj‖
‖ni − nj‖

}
, (2.26)

where c denotes the number of clusters, and Ci is the set of indices for cluster i, and
ni is its centroid. The denominator investigates the separation of the clusters, and
the numerator measures whether the data samples are close to their centroids. The
DB-Index is often described as penalizing intra-cluster variance and rewarding
inter-cluster variance. A lower value for EDB indicates a better clustering.

In the context of the SOM, the DB-Index is not helpful for evaluating the
map as such. The SOM usually has more units than one would want to have
clusters. The DB-Index can be used for evaluating the quality of a clustering of
the prototype vectors, as described in Section 2.3.2. The DB-Index is not useful
for comparing partitions produced by different clustering algorithms, as it always
favors methods that result in spherical clusters over ones that find clusters of arbi-
trary shape. Single linkage, for example, is usually penalized. Further, it cannot
be used to compare different partitionings with different numbers of clusters, as
the index tends to increase with more clusters. The DB-Index can be used to
compare different similar clustering algorithms on the same data, with different
initializations, to select the partitioning with the lowest EDB.

Topographic error

The topographic error ET is a simple SOM-specific error measure that assesses
the quality of the vector projection, disregarding its quantization properties. It is
defined as the percentage of data samples for which the best matching unit is not
adjacent to the second-best matching unit, formally

T = {xi|dO(ξI(xi), ξI(2)(xi)) > 1} (2.27)

ET =
|T|
N

(2.28)

The set T contains the data samples that are considered to uncover a topology
violation when projected onto the map. The topographic error is normalized to
a range between zero and one, where values close to zero indicate few topology
violations. Usually, the topographic error is lower the more map units are used.
The topographic error should be reasonably low for a SOM, otherwise the training
process has probably been interrupted prematurely.

The topographic error can be conveniently visualized by counting the number
of violations that occur at each map unit that is best matching unit:

eT
j = |{xi ∈ T|I(xi) = j}| (2.29)

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 45

(a) (b) (c)

Figure 2.24: Boston housing data set, rectangular 10× 20 SOM: (a) Topographic
error per unit, (b) lines connecting units where topology violations occur, (c) in-
trinsic distance with 5 examples of shortest path trajectories

This per-unit error eT
j can then be plotted on the map lattice, as shown in Fig-

ure 2.24(a) for a SOM trained on the Boston housing data set. Light patches
indicate high errors. In total, for 53 out of the 506 samples the best matching unit
is not next to the second-best matching unit, resulting in ET = 0.104, or 10.4%.
Another visualization connects map nodes between which the violations occur,
such that a line is drawn from the best- to the second-best matching unit of each
xi ∈ T. An example is given in Figure 2.24(b). The rationale for these visualiza-
tions is to look for systematic irregularities, or clusters of errors. In the example
given, the errors are not spread evenly, as the lower right-hand side of the map is
occupied by many of the errors. From the U-Matrix in Figure 2.22, it can be seen
that this part of the map does not have any boundaries. It is therefore likely that
this region is a cluster. It may seem counter-intuitive that the topology violations
occur in this area, but as the dense parts in the data cloud are stretched due to
magnification factors during SOM training, data samples may be represented by
units where the second-best match is not adjacent. The topographic error is a very
simple quality measure, and in this case does not produce a good result, as the
remaining quality measures in this section will produce contradicting results.

Intrinsic distance

A quality measure that combines and extends the ideas of topographic and quan-
tization error is the intrinsic distance [41]. As with the topographic error, for each
data sample the BMU and 2nd BMU are determined. The error is computed by
adding the distance from the data sample to its BMU in feature space, which is
the quantization error, and the distance from the BMU and the 2nd BMU. The
latter distance is computed as the shortest path between these units, taking into
account the map topology, such that each path may only run along neighboring

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 46

units’ prototype vectors. Formally, the intrinsic distance is written as

eID(xi) = ‖mI(xi) − xi‖+ min
K

|K|−1∑
j=1

‖mKk
−mKk+1

‖, (2.30)

where K is an ordered set of indices of a possible path from unit I(xi) to I(2)(xi).
The subscripts denote the index of the prototype vectors, so K1 = I(xi) and
K|k| = I(2)(xi). The intrinsic distance for a map is calculated as the sum over all
individual errors of the samples:

EID =
1

N

N∑
i=1

eID(xi). (2.31)

The intrinsic distance is computationally very light despite relying on non-
trivial algorithms such as shortest path calculation. An example of the intrin-
sic distance for a SOM trained on the Boston housing data set is shown in Fig-
ure 2.24(c). Analogous to the topographic error, the errors are plotted for the map
units by aggregating each prototype vector’s assigned sample vectors eID(xi). The
light values denote units with high total topographic errors. In this figure, lines
are plotted for symbolizing the shortest path for 10 random data vectors.

One of the intentions of the original paper was to introduce a method for com-
paring SOMs, which it is well suited for as it measures both quantization and
projection quality. However, the capabilities to assess SOMs of different sizes
are limited, as both the component similar to the quantiztion error, which is the
first part of Equation 2.30, and the component that computes the shortest path
usually decrease as the number of map units increases. When compared to the
topographic error in Figure 2.24(b), the visualizations look similar as the errors
are largest where BMU and second BMU are not next to each other. However, the
error values do not peak at the same units, as the intrinsic distance adds a term
that is related to quantization effects.

Topographic product

A measure that investigates solely the vector projection quality is the topographic
product [6]. Other than the previously discussed measures, it is calculated from
the codebook only, disregarding the data set it has been trained on. The result of
calculating the topographic product indicates whether the intrinsic dimensionality
of feature and ouput space are mismatched. The algorithm relies heavily on rank-
ing the prototype vectors and their corresponding unit vectors in both feature and
output spaces according to their proximity.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 47

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

(a)

0 50 100 150 200
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

P1 − input space (always >= 1.0)
P2 − output space (always <= 1.0)
P3 − combined

(b)

Figure 2.25: Boston housing data set, rectangular 10× 20 SOM: (a) Topographic
product P per unit, (b) functions P1(k), P2(k), P3(k) of the k nearest neighbors
in feature and output spaces

The topographic product is computed based on two ratios, P1(k) and P2(k).
The distortion in feature space is measured in P1 and the distortion in output
space in P2. A distortion is defined as a mismatch in the ranking of the k closest
prototypue vectors in feature and output space, respectively. If the ranking is
perfectly equal in both spaces, P1 and P2 are equal 1. The value P3(k) is the
geometric mean of P1(k) and P2(k). The measures P1, P2 and P3 can be evaluated
for single map units only. A combined value for all map units is obtained by
summing up all values of P3 for all k, resulting in the topographic product P .
This value is convenient to read: If P < 0, the map is too small, it either has too
few map nodes, or its output space dimension is too low. In case P > 0, the map
is too big for the data space it represents. P = 0 indicates a perfect match.

An example of the topographic product of a SOM trained on the Boston hous-
ing data is shown in Figure 2.25. In 2.25(a), the per unit values of P are shown.
A unit value greater than 0 indicates that in the part of the feature space repre-
sented by this unit, the structure is locally too high-dimensional, and a value less
than 0 hints at a too low-dimensional topology. In this example, the bright area in
the center that extends to the lower right-hand part of the map has values close to
zero. This means that the output space is able to match feature space in dimen-
sionality. In the regions closer to the border, the value becomes negative, thus the
output space cannot match the feature space. The overall value for this map is
P = −0.023, which is sufficiently close to zero to conclude that both the number
of units and the dimension of the output space are appropriate.

The topographic product has several shortcomings. The data set that the SOM

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 48

should ultimately represent is not taken into account. In certain circumstances,
the topographic product penalizes folds that correctly relate to the topology of the
data manifold, especially when the shape of the data set is folded and the ends of
this shape are closer to each other than to the middle part [116]. In most cases,
increasing the output space above 2 is not an option anyway to deal with a case
where P < 0, but it can be used to measure the degree of topology violation.

Topographic function

The topographic function [116] extends the topographic product in taking the
training data set into account. Similar to the topographic product, the topographic
function measures the topology preservation quality of a SOM, from feature to
output space, and vice versa. Quantization properties are not considered. The
topographic function uses a data-based definition of connectivity between map
units in input space. Two prototype vectors are considered neighboring if there is
at least one data sample for which they are best and second best matching units.
Using this definition, it avoids classifying correct folds as errors. As another con-
sequence, however, parts of the prototype vectors may be isolated from the rest
of the map, as there may be clusters with interpolating units in between that are
not BMUs at all. This is especially problematic for interpolating units that are
never selected as BMU or second BMU, but may also happen when the data set
has clearly defined clusters that are well separated, in which case areas on the map
that represent these clusters may not be connected at all. To avoid this problem,
some additional assumptions are required. In the original publication, it is sug-
gested to use maps with at least 60 times the number of data samples as prototype
vectors. Another suggestion is to relax the definition of connectivity by using in-
formation from the training process, such that connections can be created after
each training epoch between BMU and second BMU for each sample, most likely
increasing the number of connections. Both approaches reduce the frequency that
this problem occurs, but cannot guarantee its prevention.

The topographic function requires a definition of adjacency in both feature
and output space, the one of the output space is defined by the SOM topology,
and the one for the feature space is defined by the connectivity described in the
previous paragraph. Next, two functions are computed: One is based on units that
are adjacent in output space, but the prototype vectors of which are not next to
each other in feature space; the other one counts the number of prototype vectors
that are next to each other in feature space but not adjacent on the map. The
result of the topographic function is derived from these two functions. In case this
value is 0, the topology preserving quality is perfect, for positive results, there are
topology violations present.

For the topographic function, the example using the Boston housing data set

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 49

cannot be computed as the map does not fulfill the criterion of having 60 times as
many data than prototype vectors. For this data set, the graph is not connecting all
prototype vectors and thus contains isolated areas. The topographic function can
not be computed in this case, as the distance calculation between two codebook
vectors requires the existance of a path connecting them in the graph.

SOM distortion

As opposed to k-means, the SOM has been shown not to minimize an energy
function in the general case [21]. However, for a constant radius σ such an energy
function does exist, which is called the SOM Distortion [48, 27]:

ED =
N∑

i=1

M∑
j=1

hσ(ξI(xi
), ξj) · ‖xi −mj‖2 (2.32)

The SOM Distortion equation has some similarity to the batch SOM training al-
gorithm in Equation 2.14. The SOM Distortion equation can be reshaped to show
the contribution of a single sample or prototype vector to the overall distortion,
the latter of which is more important:

eD(mj) =
N∑

i=1

hσ(ξI(x), ξj) · ‖xi −mj‖2 (2.33)

The above decomposition on a per-unit basis enables visualization of the SOM
Distortion Measure. An example is shown in Figure 2.26(a).

The SOM Distortion can be further decomposed into three terms [53, 114] that
provide insight into the cause of the distortion, whether it is caused by quantization
or projection effects:

ED = ED
Qu + ED

NB + ED
NV (2.34)

ED
Qu =

m∑
j=1

Hj ·
∑

x∈Sj

‖x− nj‖2 (2.35)

ED
NB =

m∑
j=1

|Sj| · ‖nj − m̄j‖2 (2.36)

ED
NV =

m∑
j=1

|Sj| ·
M∑

k=1

h(ξk, ξj) · ‖mk − m̄j‖2 (2.37)

where the weighting factor Hj is the cumulated influence of other map units on
unit ξj:

Hj =
M∑
i=1

hσ(ξi, ξj), (2.38)

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 50

and m̄j is the kernel-weighted mean of the prototype vectors

m̄j =
1

Hj

M∑

k=1

hσ(ξj, ξk) ·mk (2.39)

The first of these components is the quantization error term ED
Qu, which mea-

sures the distance between the prototype vector and the data samples assigned to
it. As it is weighted by the kernel factor Equation 2.38, it is not identical to the
definition of EQ in Equation 2.24. The quantization error, as the name implies, is
a measure of the quantization properties of the map. It is almost identical to the
quantization error as introduced in Formula Equation 2.5, except for the weight-
ing factor. The weighting factor reduces the distortion of units at or close to the
border of the map. This actually explains the border effect, as these units are more
densely populated than the ones in the center due to there is less penalty associated
with causing errors at the edges.

The second component, the neighborhood variance ED
NV, is a measure for the

topology preservation qualities of the SOM. It is computed as the squared devia-
tion from the centroid of prototype vectors, weighted by the neighborhood kernel
and the number of samples assigned to a prototype vector. It is lowest for stiff
maps that seldomly fold. The higher the number of map units, the lower the
neighborhood variance given the same training data set.

The last of the three components is the neighborhood bias ED
NB, which is a

hybrid measure for quantization and projection quality. It is computed as the
squared deviation of the centroid nj of the samples assigned to prototype vector
j from the centroid m̄j , which is computed over the whole data set, but weighted
by the kernel according to distance from the best-matching unit.

Examples of the SOM distortion of the Boston housing SOM are shown in
Figure 2.26. The total distortion is shown in Figure 2.26(a). The light values
indicate high distortion and coincide with the region that contains the interpolat-
ing units that occupy the gap between the well-separated clusters in this data set.
The relative contribution of each of these factors is shown in Figure 2.26(e). It
can only be shown for units that are occupied by at least one data sample, thus
some of the patches are empty. When attributed to the distinct factors, 23.2%
of the SOM distortion is caused by quantization error, 41.2% by neighborhood
bias, and 35.6% by neighborhood variance. This is a fairly normal distribution,
since neither of the components is too dominant. For maps where the number
of codebook vectors is very low when compared to the data samples, the quan-
tization error will dominate; for very high-dimensional maps, the neighborhood
variance will dominate. The neighborhood bias value is strongest for maps where
the map size is not too small or the dimension too high, thus a situation where it is
high indicates that the map is good at representing the data set, which is the case

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 51

here. From Figure 2.26(e), it would seem that the neighborhood variance, and
thus topology violation effects are dominant in the center and lower right parts of
the map; however, Figure 2.26(f) shows the same pie chart, only the sizes of the
pies are scaled to the amount of total distortion of each unit. The center and lower
right regions do not cause much of the overall error, and the main contributors are
located mostly at the borders, which is similar to the result from the topographic
product, but contradicts the topographic error.

For computation of the SOM Distortion measure, the data set is required in
addition to the trained map. As it is not originally thought to measure the quality
of a mapping as such, but the energy function that the SOM training algorithm
minimizes, it can serve as a criterion to stop training when the training iterations
do not improve the distortion any more. The SOM Distortion can be used for
selection of the best map when several maps have been trained on the same data
set in parallel to avoid suboptimal solutions, which are local minima of the SOM
distortion. If the SOM distortion is used to quantify the error of a map and visual-
ize it, the neighborhood kernel has to be selected and parameterized. It should be
the same as the kernel used in the training phase along with the final value for the
radius σ(t). For a radius of 0, the SOM Distortion equals the total quantization
error.

The SOM Distortion measure is very efficient to compute. Apart from having
a solid theoretical background, other advantages include that the SOM Distortion
can be decomposed and the contribution of each data sample can be computed,
and the SOM Distortion can be attributed to each map unit. The SOM Distortion
is well suited for model selection, but is not applicable for comparing maps of
different sizes.

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 52

(a) (b)

(c) (d)

(e)

(f)

Figure 2.26: Boston housing data set, rectangular 10× 20 SOM: (a) Total SOM
distortion, (b) Quantization Error eD

Qu, (c) Neighborhood Bias eD
NB, (d) Neighbor-

hood Variance eD
NV, (e) relative contribution (black = eD

Qu, gray = eD
NB, white = eD

NV),
(f) relative contribution, same as (e), but scaled to the size of the SOM distortion
for each unit

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 53

2.4 Summary
In this chapter, several data mining techniques have been described. First, pre-
processing of table-format data has been described, then the difference between
the supervised and the unsupervised settigs have been discussed. Finally, vector
projection and vector quantization are described, which are important features of
the methods discussed in the later chapters.

An overview of the Self-Organizing Map has been given, which is the main
data mining technique that is used in this thesis. Special emphasis is laid on the
topology of the map, which refers to the layout of the map nodes in the output
space lattice. Neighborhood kernels, which are mathematical functions that trans-
form the distance between two points into a measure of their proximity, have been
described along with the various variants of this function. The SOM training al-
gorithm, which creates the map out of the training data set, has been introduced.

The largest part of this chapter has been dedicated to an overview of post-
processing methods for trained SOMs, i.e. visualization methods. There are many
ways that information can be displayed, such as coloring the map patches, la-
belling the map, or printing markers and glyphs on top of the map. The actual
visualization methods that highlight the properties of the data set and the map
have been described, which use these visual tools. These visualization methods
include techniques that are based on the codebook only, such as U-Matrix, compo-
nent planes, and codebook clustering. They depict the variables and the clustering
structure of the codebook, where the codebook is seen as a meaningful proxy for
the data it has been trained on.

The next class of visualization techniques that has been descussed are those
that put the data and the map into relation. The most important of these is the
hit histogram, which shows how the data is distributed across the map. Smoothed
data histograms and the P-Matrix are centered around showing where data is par-
ticulary dense. The U*-Matrix is a technique for especially large maps to show
clustering structure where the U-Matrix is not applicable.

The next class of visualization methods for SOMs that has been introduced
highlights correlation between variables, including reordering of the component
planes in order to move similar ones close to each other, hierarchical clustering
of component planes, and the Metro visualization that plots the gradients of com-
ponent planes as lines and clusters similar ones, creating a plot that resembles a
subway plan.

Finally, visualizations that show the quality of the SOM in terms of quan-
tization and projection have been described. While the quantization error and
DB-Index measure the quantization properties of the map, the topographic error,
intrinsic distance, topographic product, and topographic function aim to uncover
topology violations. The former two methods thus measure the effect that comes

CHAPTER 2. SELF-ORGANIZING MAPS AND RELATED WORK 54

from the reduction of data samples to a lower number of codebook vectors, while
the latter measure the effect of reducing the number of variable dimensions to the
usual output space dimension of two. The SOM distortion has been shown to be
a combined measure for quantization and projection effects. It is the most natural
of the quality measures as its minimization is the energy function of the SOM
algorithm as a optimization problem.

Chapter 3

Graph based cluster visualization

3.1 Introduction
In this chapter, a method is introduced that combines the visualization of how
densely data is distributed within clusters with the visualization of how clusters
relate to each other. This technique requires the definition of a graph structure that
describes the pair wise proximity of data set vectors. This graph is then transferred
into the output space, where it can be visualized. Several examples are shown that
compare this visualization method to similar ones like P-Matrix and SDH. Work
on the Graph visualization has first been published in [74, 75].

Section 3.2 discusses basic concepts of density visualization and how to dis-
play topology violations. This chapter uses artificial data sets and several bench-
mark data sets for experiments, which are detailed in Section D.1 and Section D.2,
respectively. Among the benchmark data sets, the focus lies on the Ionosphere
data set because it is a good example of a data set that is almost evenly split be-
tween samples occupying dense and sparse regions. Two of the artificial data sets
are especially introduced for benchmarking how an algorithm copes with pure
clustering or dimensionality reduction scenarios. The third of the artificial data
sets is used to demonstrate how the algorithm performs when it is simultaneously
presented subclusters with different densities and shapes. Section 3.3 introduces
the graph visualization. A series of experiments is given in Section 3.4. In Sec-
tion 3.5, the method is systematically analyzed and put into context of other visu-
alization methods, and guidelines for its use are given. Section 3.6 concludes the
findings of this chapter and summarizes its results.

55

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 56

3.2 Data sets

3.2.1 Data density and cluster proximity
Data density in feature space, as described in Section 2.3.2, can be identified with
a variety of visualization methods. Providing a means for identifying which clus-
ters are close in feature space is more difficult. For demonstration of the Graph
method that is introduced in this chapter, two artificial data sets are defined, the
Equidistant clusters data set and the Fully-connected data set. Both are con-
structed from a fully connected graph structure with c vertices, where the vertices
are placed in a (c − 1) dimensional input space, such that the distance between
any pair of vertices is the same. The vertices and edges of this structure resemble
familiar geometric shapes, such as equilateral triangles in two dimensions, and
tetrahedrons in three dimensions.

The Equidistant clusters data set is constructed by using the vertices as centers
for Gaussian clusters. The resulting clusters are well separated if the standard
deviation of the normal distribution is low compared to the common inter-cluster
distance. The challenge in visualizing this data set with a projection algorithm
like the SOM or PCA lies in displaying it such that the clusters can be identified.
The Equidistant clusters data set is thus used to test the quantization properties of
an algorithm that also performs vector projection. Linear projection algorithms,
such as PCA, are expected to perform worse on this data set than non-linear ones,
due to the way that the clusters are positioned.

Examples for the Equidistant clusters data set are shown in Figures 3.1–3.3,
where data points are sampled from 3-, 5-, and 8-cluster settings, respectively. For
each cluster 100 data points are generated. The figures contain visualizations of
the U-Matrix, hit histograms, PCA projection of data set and codebook, SDH, U*-
Matrix, and P-Matrix. In the first example in Figure 3.1, there are only 3 clusters,
the centers of which lie on a two-dimensional plane. As the projection is almost
lossless, apart from the Gaussian noise around the cluster centers, the SOM visual-
izations show a clear separation of the clusters, as well as revealing the equidistant
nature of the three regions in the PCA plot. The SDH and P-Matrix visualizations
show the clusters themselves, while the U-Matrix and U*-Matrix show the gaps
between the clusters, i.e. the equidistant separation between the clusters. In Fig-
ure 3.2, the same set of visualizations is shown for 5 clusters. As in the previous
example, the clusters are well-separated, as evident from the hit histogram visu-
alization. Here, the problem of the dimensionality reduction becomes obvious.
The clusters cannot possibly be arranged on the two-dimensional output space
such that the regions appear equally distant to each other. The PCA projection
fails to discover any structure in the data set. In Figure 3.3, an Equidistant clus-
ters data set is shown with 8 clusters, thus an originally 7-dimensional structure

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 57

(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.1: Equidistant clusters data set with 3 vertices, {9 × 10} SOM: (a) U-
Matrix, (b) hit histogram, (c) PCA projection of the data set, (d) PCA projection
of the data set and the codebook vectors, with lines indicating adjacent map units,
(e) SDH with s = 10, (f) U*-Matrix, (g) P-Matrix

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 58

(a) (b)

(c)

(d) (e) (f)

Figure 3.2: Equidistant clusters data set with 5 vertices, {10 × 11} SOM: (a) U-
Matrix, (b) PCA projection of the data set, (c) hit histograms for different clusters,
(d) SDH with s = 15, (e) U*-Matrix, (f) P-Matrix

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 59

(a) (b)

(c)

(d) (e) (f)

Figure 3.3: Equidistant clusters data set with 8 vertices, {11 × 13} SOM: (a) U-
Matrix, (b) PCA projection of the data set, (c) hit histograms for different clusters,
(d) SDH with s = 18, (e) U*-Matrix, (f) P-Matrix

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 60

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Fully-connected data set with 3 vertices, {15×15} SOM: (a) U-Matrix
and hit histogram, (b) PCA projection of the data set, (c) PCA projection of the
data set and the codebook vectors, with lines indicating adjacent map units, (d)
SDH with s = 10, (e) U*-Matrix, (f) P-Matrix

is projected onto the two-dimensional map. Again, the SOM is good at finding
the cluster structure, while PCA is not. The placement of the clusters on the map
seems random, as the original distance between the cluster centers is equidistant.

The second artificial data set used in this chapter is the Fully-connected data
set. It is defined by the same graph structure as the Equidistant clusters data set,
but the data points are distributed along the edges of the graph structure rather
than around the vertices. This data set is designed to test the projection qualities
of an algorithm. After mapping to the output space, the data points that are close
to each other in feature space should be projected to nearby positions in output
space. A map unit usually does not represent different regions in input space.
While both PCA and the SOM try to ensure that points close in input space are
also close in output space, only the SOM also tries to ensure that points close in
output space are also close in input space. If, for example, two points lie along
the projection direction in the case of PCA, they will be projected onto the same
point in output space, even though their distance in feature space may have been

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 61

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Fully-connected data set with 5 vertices, {15×15} SOM: (a) U-Matrix
and hit histogram, (b) PCA projection of the data set, (c) PCA projection of the
data set and the codebook vectors, with lines indicating adjacent map units, (d)
SDH with s = 15, (e) U*-Matrix, (f) P-Matrix

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 62

(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.6: Fully-connected data set with 8 vertices, {25 × 25} SOM: (a) U-
Matrix, (b) hit histogram, (c) PCA projection of the data set, (d) PCA projection
of the data set and the codebook vectors, with lines indicating adjacent map units,
(e) SDH with s = 18, (f) U*-Matrix, (g) P-Matrix

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 63

very high. In case of the SOM, the mutual distances are always minimized on the
output space, thus such a situation is very unlikely to occur. This means that the
data points that are close on the output map are usually also close in the original
feature space, which is not ensured for linear projection algorithms. This feature
of the SOM can be seen as similar to a bijective assignment from the part of the
feature space where the data is dense to the map lattice. As the data set consists of
edges that cannot be depicted on a plane without intersecting, it is especially suited
for investigating the effects of topology violations. For details on the construction
of these two data sets, please refer to Section D.2.

Examples for the Fully-connected data set are shown in Figures 3.4–3.6 for
graphs with 3, 5, and 8 vertices, respectively. The figures contain U-Matrix, hit
histogram, PCA projections, SDH, U*-Matrix, and P-Matrix visualizations of the
data set and the codebook. In the case with 3 vertices, the graph resembles an
equilateral triangle. 500 data points are sampled from this structure. Both the
PCA projection and the SOM produce a good representation of this data, as there
is no dimensionality reduction involved: A two-dimensional structure is mapped
onto a two-dimensional plane. It can be observed from the U-Matrix and the
hit histogram that the data points are ordered on the map resembling the original
topology, continuously following the borders of the lattice in a circular way. The
center part is not populated at all. The P-Matrix also confirms the even distri-
bution across the map. The U*-Matrix is almost identical to the U-Matrix. The
SDH shows something very interesting: The vertices of the graph become visible
here, due to the fact that even though the points are sampled from the connecting
lines with equal probability, the next couple of best matches after the BMU are
more likely at the corners. The corners are thus closer to more data samples than
to the centers of the lines connecting them. In Figure 3.5, the same visualiza-
tions are shown for a graph structure with 5 vertices. The edges are projected as
series of neighboring map units that are surrounded by interpolating units. The
hit histogram illustrates this, as the edges are placed in corridors with many hits
surrounded by gaps with no or few hits and a high U-Matrix value. As the graph
structure cannot be depicted in two dimensions without intersecting edges, there
are topology violations. These are indicated in Figure 3.5(a) as circles, and de-
note discontinuities in the projection that result in dead ends and high U-Matrix
values. The P-Matrix and SDH visualizations show an interesting feature that is
more obvious here than in the case with 3 vertices: The vertices are clearly visible
here as regions with high density. A sphere around the center of an edge usu-
ally will include only one line segment. If a sphere of the same radius is placed
around a vertex, it will include 5 line segments, each with half the length of the
ones from the center of the edge, thus increasing the density of points within this
sphere by 2.5. As the number of dimensions and vertices is increased, this effect
becomes more apparent. In Figure 3.6, a SOM for a Fully-connected data set with

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 64

8 vertices is shown, where these topology violations are more frequent. The iden-
tification of the violations is fairly easy, as they are dead ends that are visible in
the U-Matrix. However, there is no straight-forward remedy to these violations,
as it is not easy to tell how the projection could be continued, i.e. how the dead
ends could be patched together. This is one of the motivations for introducing the
Graph visualization method.

The point of the discussion above is not to criticize either PCA or the SOM,
but to highlight the properties of each method. PCA cannot sensibly be expected
to solve clustering problems, because PCA simply is not a clustering algorithm.
Another goal of introducing the two artificial data sets is to use them as a bench-
mark to investigate two important characteristics that are present in each general
data set to some degree: The Equidistant clusters data set tests for the ability to
handle clusters that apparently have no connection to each other, and the Fully-
connected data set tests for the ability to handle continuous structures without any
clusters. These two concepts, density and connectivity, are opposed to each other,
where the former can be seen as a typical quantization problem, and the latter as
a typical projection problem.

3.2.2 The Multi-challenge data set
A third artificial data set that is used in this and the next chapters is the Multi-
challenge data set. The generation of this data set is outlined in this section,
while a detailed discussion is given in the appendix in Section D.2.3. The Multi-
challenge data set consists of 5 smaller data sets, each with different character-
istics. These subsets are then each normalized individually with zero-mean-unit-
variance normalization. Finally, they are placed in a 10-dimensional data space.
The data set is shown in Figure 3.7. The data set is generated with 500 samples for
each subset, and a {40× 60} SOM is trained on it. The characteristics of the data
subsets are summerized below, while the numbers in Figures 3.7(a) and 3.7(c)
refer to the subsets:

• The first subset consists of a Gaussian cluster and another cluster that is
itself divided into three Gaussian clusters, all of them living in a three-
dimensional space. This subset is used to demonstrate how an algorithm
deals with different levels of granularity in cluster structures.

• The second subset is a three-dimensional data set that consists of two over-
lapping Gaussian clusters. The distribution of points into these clusters is
skewed: While the clusters both share the same covariance matrix and thus
the same density, the first cluster has twice the amount of points than the
second one. The point of introducing this data set is to test how a data anal-
ysis method copes with clusters with different numbers of data samples.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 65

1 2

3
4

5

(a) (b)

1
2

34

5

(c) (d)

(e) (f) (g)

Figure 3.7: Multi-challenge data set, {40 × 60} SOM: (a) U-Matrix, (b) Hit his-
togram, (c) PCA projection of the data set, (d) PCA projection of the data set
and the codebook vectors, with lines indicating adjacent map units, (e) SDH with
s = 15, (f) U*-Matrix, (g) P-Matrix

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 66

• The third subset is a 10-dimensional set of two well-separated Gaussian
clusters with the same covariance matrix. It is used to contrast higher- with
lower-dimensional structures, as the other four subsets are of lower dimen-
sionality.

• The fourth subset is a classic intertwined rings data set. It lives in a three-
dimensional data space. This data set is used for showing how a method
deals with non-intersecting structures that cannot be separated in a linear
way.

• The fifth subset is sampled along a curve that consists of 4 short lines that
are patched together at the endpoints. The data points are arranged along
this curve with a level of noise that increases close to the end of the curve.
This subset lives in a four-dimensional space. It is introduced in order to
show how data analysis methods cope with piecewise linear structures that
extend to multiple dimensions.

A PCA projection of the data set is shown in Figure 3.7(c). The projection pre-
serves almost 98% of the variance in the data set. It can be seen that the subsets
are placed at considerable distances from each other. The same PCA plot with the
structure of the SOM is depicted in Figure 3.7(d), showing how the map folds onto
the data cloud. Figure 3.7(a) shows the U-Matrix of the SOM. As gaps between
the subsets are high, the U-Matrix cannot find the more fine-grained distances that
separate the subclusters. The hit histogram in Figure 3.7(b) shows the distribution
and cluster structure of some of the subsets, for example the intertwined rings,
which is labeled “4” and is located on the left hand side of the map. Several ob-
servations can be made up to this point: Although the number of points in each
subset is equal, and all the subsets have been normalized individually, the subsets
do not occupy the same amount of space on the map lattice. For example, the
high-dimensional clusters in subset “3” is spread across a considerably larger re-
gion on the map than subset “1”, the cluster-within-clusters subset. This is mainly
due to the curse of dimensionality, which describes the phenomenon that pairs
of data points sampled out of comparable distributions have higher distances in
higher dimensions. As a consequence, the samples from the seemingly less com-
pact cluster in 10 dimension are projected such that the distances are preserved
in output space, dominating the distances from the other, more compact subsets.
The number of points in cluster “1” is therefor higher, which is also evident from
the P-Matrix in Figure 3.7(g), and the SDH visualization with spread s = 15 in
Figure 3.7(e), where the peak densities all appear in subsets “1”, “2” and “4”.
The U*-Matrix is shown in Figure 3.7(f), showing the smoothed version of the U-
Matrix. A slight gap can be identified in the highdimensional subset “3” between
the clusters, but the more fine-grained clusters cannot be identified.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 67

3.2.3 The Ionosphere data set
Apart from the artificial data sets, the Ionosphere data set is used in this chapter as
the main benchmark data set for demonstration purposes, because its data samples
are separated into several dense and sparse areas. Figure 3.8 shows the P-Matrix,
U*-Matrix, and the SDH for the Ionosphere data set. The P-Matrix shows that the
samples mapped to the upper part of the map are very dense while the lower part
of the map covers sparse regions in feature space. The number of data samples is
approximately equal in both regions. The U-Matrix confirms the finding that the
data sampes in the lower part of the map are less dense and thus farther away from
each other, resulting in higher distances between model vectors.

3.3 The Graph method
Following the motivation in the previous section, the aim of the Graph method
is to show the density of a cluster, and to show which clusters are close to each
other in feature space, but possibly far apart on the map lattice due to topology
violations. The visualization is computed by defining a density graph structure
G in feature space, projecting the graph onto the map lattice, and visualizing the
edges such that the projected structure is connected visually by lines.

A definition for the notation of graphs follows: A graph G is a tuple of a set
of vertices V and a set of edges E ⊂ V × V , formally G = 〈V,E〉. The edges
can be represented by a square matrix E, where elements eij are either 1 or 0 and
refer to whether there is an edge between vertices i and j. The elements in the
diagonal represent edges connecting a vertex with itself, which is never the case
for the graphs in this chapter. If eij = eji ∀i, j, the matrix is symmetric, and the
graph is undirected.

The density graph consists of one node for each data sample, and edges repre-
senting whether the data samples are close in feature space. Closeness is a vague
term, and in this thesis, two different models are applied, both of which allow
for a parameter to interactively control the granularity of the structures analyzed.
The first way employs a simple k-nearest neighbors scheme, where edges are in-
troduced from each sample to its k closest peers in feature space. The index of
the k-th nearest neighbor of sample xi within data set X is written as N

(k)
X (xi),

following the definitions in Section C.1. Further, the set of k nearest neighbors is
denoted as

N(k)(xi) =
k⋃

j=1

N
(j)
X (xi). (3.1)

The neighborhood graph contains edges from each sample vector to its k near-

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 68

(a) (b)

(c) (d)

Figure 3.8: {7 × 13} Ionosphere SOM density visualizations: (a) P-Matrix, (b)
U-Matrix, (c) U*-Matrix, (d) SDH with s = 2

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 69

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Schematic outline of radius and nearest neighbors graph construc-
tion: (a)–(c) Graph obtained from radius method with increasing radius, (a) small
radius, (b) medium radius, (c) large radius; (d)–(f) Graph obtained from radius
method with increasing number of neighbors, (d) 1 neighbor, (e) 2 neighbors, (f)
3 neighbors

est neighbors, constructed by filling the entries of matrix ENN with

eij(k) =

{
1 xj ∈ N(k)(xi) ∨ xi ∈ N(k)(xj)
0 otherwise

(3.2)

Another possibility to construct this graph is to connect samples with a dis-
tance below a threshold value r, which is equivalent to the samples that lie within
the hypersphere of radius r around a sample. The edges Erad are defined by

eij(r) =

{
1 ‖xi − xj‖ < r
0 otherwise (3.3)

A schematic outline of how this graph is calculated is shown in Figure3.9.
Figures 3.9(a)–(c) show how the graph is constructed with the radius method at

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 70

Figure 3.10: Schematic outline of graph projection: The data points are shown in
feature space on the left, along with a graph structure that represents their proxim-
ity; the data points are projected onto the map, the assignment of the data points
to the map nodes is denoted by the thin arrows; finally, the graph is reconstructed
in output space by connecting the corresponding winner units

various levels of r. Figures 3.9(d)–(f) depict the construction of the nearest neigh-
bors graph.

The resulting graphs, defined in either of these ways, represent a concept of
proximity between the sample vectors. The parameter k or r determines the den-
sity or sparsity of the graph. The next step in the computation of the visualization
method is projecting the data set onto the map, which just means computing the
BMU for each sample. The graph structures can also be projected, now between
the prototype vectors as vertices V̂ . Edges are present between BMUs of two
samples that have been connected in input space. Ideally, the BMUs of connected
samples should either coincide or be close to each other on the map. Proximity in
feature space, as described by the graph structure, should be preserved after the
mapping. The adjacency matrix of the graph in output space can be computed as

êij =

{
1 if i 6= j ∧ ∃xk, xl : ekl = 1 ∧mi = I(xk) ∧mj = I(xl)
0 otherwise (3.4)

where êij stands for the feature space graphs, either eij(r) or eij(k). From the
definition above, the graph does not have connections from nodes to themselves,
even if connected samples are mapped to the same node. Further, the output space
graph Ĝ has at most as many edges as the feature space graph G, regardless of
whether there are more samples or map units.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 71

This projection approach is outlined in Figure 3.10. The left hand side denotes
the data samples in feature space and the right hand side denotes output space. The
graph structure is projected by first projecting the data points and then connecting
their winner units according to the original graph in feature space.

The output space graph can be visualized at this stage. This is performed by
simply plotting a line between map patches for which an edge exists. Examples
are given in the next section.

In order to produce comprehensible visulizations that do not contain too many
lines, the parameters have to be adjusted. Concerning the choice of the radius
r, experimental results have shown that it should lie within the 2–5% quantile
of all inter-data sample distances. If the number of samples is high, higher radii
should be chosen. The choice of the number of nearest neighbors is more difficult.
Experiments have shown that values for k in the range of 1 to 25 produce good
results.

3.4 Experiments
In this section, experimental results are presented on the artificial and benchmark
data sets.

3.4.1 Experiments on artificial data sets
The first set of examples is based on the Euqidistant data set. It is investigated
with varying numbers of vertices, which is depicted in Figures 3.11–3.13. These
data sets consist of a number of Gaussian clusters around a set of points that have a
constant mutual distance from each other. In each of these figures, a hit histogram
is shown where the markers are colored corresponing to the class labels.

Figure 3.11 shows the Equidistant clusters data set with 3 clusters. This can
be mapped without distorting the inter-cluster distances. The clusters are clearly
visible with the U-Matrix. In the settings with a low number of neighbors or a low
radius, which can be observed in Figures 3.11(b) and 3.11(e), the points within
the clusters are connected. This is also the most basic use of the Graph visual-
ization method, as it can be used for cluster identification. As these levels are
increased, as in Figures 3.11(d) and 3.11(g), the boundaries between the clusters
are crossed by various lines. As the clusters are all equally far apart, they should
be equally strongly connected by the lines. This is the effect that is being investi-
gated with the Equidistant clusters data set, especially in higher dimensions where
the clusters cannot be mapped such that they are all equally far apart on the output
space.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 72

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.11: Equidistant clusters data set with 3 vertices, {9 × 10} SOM, (a) hit
histogram colored according to class labels, (b)–(d) nearest neighbors method: (b)
k = 3, (c) k = 10, (d) k = 15; (e)–(g) radius method: (e) r = 0.2, (f) r = 0.4, (g)
r = 0.8

In Figure 3.12, the number of clusters is increased to 5. The nearest neighbors
method does not produce usable results anymore, which is due to the connectiv-
ity of the clusters that overloads the visualization with short lines. The clusters
are highly dense, but there is no connectivity between the clusters. The radius
method shows the clusters as densely connected areas, with an increasing number
of cross-connections as the threshold r increases. For the data set with 8 clusters,
as depicted in Figure 3.13, the results are similar. The clusters can be clearly iden-
tified, and the connections between the clusters increase as the radius is increased.
The connections between the clusters seem arbitrary, i.e. the lines connect clus-
ters regardless of the map distance. This is an intended result, as the clusters are
equidistant and their placement on the output space is almost random.

In the next set of examples, the Fully-connected data set is investigated. As
demonstrated previously in Figures 3.4–3.6, the SOM mapping is unable to cope
with such complex high-dimensional structures without introducing topology vi-

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 73

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.12: Equidistant clusters data set with 5 vertices, {10× 11} SOM, (a) hit
histogram colored according to class labels, (b)–(d) nearest neighbors method: (b)
k = 1, (c) k = 3, (d) k = 5; (e)–(g) radius method: (e) r = 0.6, (f) r = 0.7, (g)
r = 0.8

olations. Figures 3.14–3.16 shows how the Graph method is applied onto maps
trained on the Fully-connected data set with various parameterizations. The fig-
ures correspond to either 3-, 5-, or 8-vertex settings, and the subfigures show
the Graph based method with the nearest neighbors- and radius-based methods
at different levels. The lines of the Graph visualization are plotted on top of an
U-Matrix visualization. Again, a hit histogram where the labels are colored ac-
cording to class membership is included for all three data sets. The classes of the
data points are attributed according to the label of their closest vertex.

In Figure 3.14(b), the output space for a toy example with 3 vertices is shown,
which resembles an equilateral triangle in feature space. In this first example,
the 3 nearest neighbors are connected. It can be seen that only those nodes are
connected that lie on a dark region in the U-Matrix, indicating an area that is close
in feature space. The lines usually run from the edges to the center, hinting at
a distortion in these directions. For example, the left border has lines running
horizontally up to the triangular delimiting shape with high U-Matrix values. The

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 74

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.13: Equidistant clusters data set with 8 vertices, {11× 13} SOM, (a) hit
histogram colored according to class labels, (b)–(d) nearest neighbors method: (b)
k = 1, (c) k = 2, (d) k = 3; (e)–(g) radius method: (e) r = 1.1, (f) r = 1.3, (g)
r = 1.5

cause for this is that the original shape in feature space consists of a set of lines
only, but now has to fill an entire plane. The shape is projected onto the border
of the two-dimensional output space, which matches the topology of the triangle.
But the area within the rectangle of the output space also has to be filled, thus
the data is distributed in a way that similar samples are distributed between the
borders and the center, creating the pattern that can be observed in Figure 3.14(b).

By increasing the number of neighbors that are considered, more pairs of
data samples are classified as topology violating, resulting in more lines. Fig-
ures 3.14(c),(d) show graphs with 10 and 25 nearest neighbor graphs, respectively.
The resulting visualizations reveal that the topology violations are restricted to
the phenomenons described in the previous paragraph. There are no further vi-
olations. The highly connected areas especially in the middle of the upper and
lower parts of the map are very close in feature space, which is also confirmed by
the U-Matrix. One of the fundamental differences between the U-Matrix and the
Graph method is that the U-Matrix considers solely the output space, while the

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 75

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.14: Fully-connected data set with 3 vertices, {15 × 15} SOM, (a) hit
histogram colored according to class labels, (b)–(d) nearest neighbors method:
(b) k = 3, (c) k = 10, (d) k = 25; (e)–(g) radius method: (e) r = 0.1, (f) r = 0.2,
(g) r = 0.3

Graph method reveals topology violations induced by the distribution of the data
cloud in feature space. Figures 3.14(e)–(g) show the radius based Graphs at levels
0.1, 0.2, and 0.3, respectively. The results are very similar to the nearest neighbors
Graphs in this case. The differences between the two methods are highlighted in
the next set of examples.

Figure 3.15 shows the Graph visualizations for the Fully-connected data set
with 5 vertices. As highlighted previously in Figure 3.5(a), there are identifyable
topology violations. The continuation of these dead ends is performed by the
Graph based method. The figures, especially the ones with higher parameter levels
for the radius or the number of neighbors, show where the original data shape has
been broken and which parts fit together.

In Figure 3.16, the visualization of the 8 vertex Fully-connected data set is
too overloaded to be comprehensible. There are lots of topology violations, and
the picture seems chaotic. What can be seen, however, is that the lenght of the
connections is high on average for the nearest neighbors visualization, indicating

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 76

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.15: Fully-connected data set with 5 vertices, {15 × 15} SOM, (a) hit
histogram colored according to class labels, (b)–(d)nearest neighbors method: (b)
k = 4, (c) k = 10, (d) k = 15; (e)–(g) radius method: (e) r = 0.35, (f) r = 0.5,
(g) r = 0.85

many violations. The output space is not of high enough dimensionality to capture
the data structure. The radius method differs from the nearest neighbors method
as it shows cluster-like shapes. This is due to the increased density close to the
vertices of the Fully-connected data set, which becomes obvious as the dimension
is increased. As there are 7 edges connecting the vertices, the number of data
samples around the vertices is higher than in the middle of the edges. The radius
method unveils these dense areas, but obscures the connectivity of these clusters,
when compared to the nearest neighbors method.

Finally, the last of the artificial data sets is investigated, the Multi-challenge
data set. The results for the Graph method with both the nearest neighbors and
radius methods are given in Figure 3.17. It has been constructed using 500 data
samples for each subset, resulting in a total of 4500 samples for the whole data
set. The map is trained with a {40× 60} topology.

The nearest neighbors method is evaluated at levels k = 1, 3, 5, and 10, which

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 77

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.16: Fully-connected data set with 8 vertices, {25 × 25} SOM, (a) hit
histogram colored according to class labels, (b)–(d) nearest neighbors method:
(b) k = 2, (c) k = 5, (d) k = 10; (e)–(g) radius method: (e) r = 0.6, (f) r = 0.8,
(g) r = 1.0

is shown in Figures 3.17(a)–(d). The different subsets have to be discussed sep-
arately. The clusters of the cluster-of-clusters subset in the upper left corner are
joined by grouping the three small clusters and the remaining big cluster. Al-
though the number of nearest neighbors is increased, and consequently the num-
ber of lines drawn, the 3 small clusters are never joined. The second subset is
located at the upper right corner, and is the 3-dimensional overlapping Gaussians
where one cluster has twice as many points as the other one. The cluster with the
higher number of samples is on the upper left, the other one at the lower right.
As the clusters are actually very close in feature space, the separation is barely
visible. The third subset consists of well-separated 10-dimensional Gaussians and
can be found at the right hand side and the center. The clusters become visible at
fairly low parameter values. This case is very similar to the Equidistant clusters
data set. The intertwined rings data set on the center of the left border shows the
connectivity of the two rings. Topology violations are present as the rings can-
not be projected to a two-dimensional plane without breaking one of the rings.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 78

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.17: Multi-challenge data set, {40× 60} SOM, (a)–(d) nearest neighbors
method: (a) k = 1, (b) k = 3, (c) k = 5, (d) k = 10; (e)–(h) radius method: (e)
r = 0.3, (f) r = 0.5, (g) r = 1.0, (h) r = 1.5

This break can be observed in Figure 3.7(b), where the hit histogram shows two
U-shaped structures, where the endpoints should connect in order to complete the
circles. The fifth subset on the bottom of the figure represents a sample along
curve. This curve consists of line segments that are joined at the endpoints. The
nearest neighbors method finds this structure.

To sum up, in the projection of these subsets, using nearest neighbors, no
topology violations except for the intertwined rings are apparent, as the lines do
not reach across large regions. It reveals the three subclusters of the cluster-within-
clusters subset, but is not able to join them at reasonable levels on k. Further
increasing the number of nearest neighbors would result in an overloading of the
figure with lines. Linear and circular structures can easily be identified by the
nearest neighbors method. Another finding is that the boundaries between the
subsets have never been crossed.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 79

The results with the radius method are shown in Figures 3.17(e)–(h) for 0.3,
0.5, 1.0, and 1.5. The most obvious difference to the nearest neighbors method is
that the lines are not evenly distributed among the subsets in the case of the radius
method. Although each subset is individually normalized before the subsets are
placed in the same final feature space, the density is not equal across the whole
map. This is due to the curse of dimensionality and affects the density and distri-
bution of the data across the map, and can be seen in the P-Matrix visualization
in Figure 3.7(g). As the radius method is a technique for identifying differences
in density, the dense areas such as the cluster-of-clusters subset are occupied by
lines at low threshold levels.

Looking at the subsets individually, applying the radius method to the cluster-
of-clusters data set shows the behavior of first joining each of the 3 small compact
clusters, then the larger cluster, and finally joining the small clusters to form the
second big cluster. With the second subset in the upper right, it is now easier to
identify the two Gaussians when compared to the nearest neighbors method. The
third subset on the right is connected only at high threshold levels, then showing
the two clusters. The connections for the intertwined rings subset are slightly
different from the nearest neighbors method as the two rings tend to be joined
where they are close in feature space, and the lines do not just follow the circular
structure. Finally, the piecewise linear structure at the bottom of the map is not
identified as clearly as with the nearest neighbors method. This is due to the
increased density at the inner line segments and the increased level of noise on the
outer line segments.

To summarize the empirical findings from the artificial examples, the nearest
neighbors method is better suited for the Fully-connected data set, while the ra-
dius method achieved better results for the Equidistant clusters data. It has been
demonstrated that the nearest neighbors method is suitable at uncovering the con-
nectivity structure of a data set, while the radius method is suitable for identify-
ing clusters. The limitations of the Graph visualization are approached in case
of a very high number of topology violations, as demonstrated with the Fully-
connected data with 8 vertices. Regarding the results from the Multi-challenge
data set, the findings from the Equidistant and Fully-connected data sets can be
reaffirmed, as the Gaussian clusters are identified better by the radius method, and
the nearest neighbors method performs better with the linear and circular struc-
tures, identifying connectivity.

3.4.2 Experiments on benchmark data sets
In this section, experimental results on benchmark data sets are presented. The
Ionosphere data set is shown in Figure 3.18, where standard density visualiza-
tion methods are given for a {40 × 60} map. Figures 3.19(b)–(d) show the near-

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 80

(a) (b) (c)

(d) (e)

Figure 3.18: Large {40 × 60} Ionosphere SOM density visualizations: (a) P-
Matrix, (b) U-Matrix, (c) U*-Matrix, (d) SDH with s = 100, (e) SDH with s =
200

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 81

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.19: {7× 13} Ionosphere SOM: (a) hit histogram; (b)–(d) Nearest neigh-
bors method: (b) k = 1, (c) k = 2, (d) k = 3; (e)–(g) Radius method: (e) r = 1.0,
(f) r = 2.0, (g) r = 3.0

est neighbors approach for three different numbers of neighbors, and 3.19(e)–(g)
show the radius method at different threshold levels for a {7 × 13} SOM. The
distribution of the data without any graph visualization can be seen in the hit his-
togram in Figure 3.19(a). The samples are distributed almost evenly. The graph
based visualizations are plotted on top of the U-Matrix, which hints at a homoge-
neous region in the upper half of the map.

The first level of the radius visualization in Figure 3.19(e) shows the visual-
ization of the threshold r = 1.0. At this level, only the most dense areas show
lines at all, which are mostly connections between neighboring map units. It is
thus likely that the samples mapped to the upper part of the map are also dense
in feature space and the samples projected to the lower part are not mutually con-
nected, since no lines are shown. The observation of different densities can also be

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 82

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.20: Large {40×60} Ionosphere SOM: (a) hit histogram; (b)–(d) Nearest
neighbors method: (b) k = 1, (c) k = 2, (d) k = 3; (e)–(g) Radius method: (e)
r = 1.0, (f) r = 2.0, (g) r = 3.0

made with the P-Matrix visualization in Figures 3.8(a), which clearly shows that
the upper part’s density values dominate. When the radius for the Graph method
is increased, as shown in Figures 3.19(f),(g), the graphs get increasingly stronger
connected. At these levels, longer lines become visible that connect areas that are
as far as half the map diagonal apart, which hints at topology violations, similar
to the visualization of the topographic error, as described in Section 2.3.4. The
nearest neighbors method, as depicted in Figures 3.19(b)–(d), does not yield good
results. Again, as with the artificial samples in the previous section, the distribu-
tion of the Ionosphere data set is mostly interesting because of its clusters and not
because of the shape of the data set, i.e. the connectivity of its data points. The
radius method is more suited at unveiling this cluster information than the nearest
neighbors method.

Figure 3.20 shows the Graph visualization for a larger SOM trained on the
Ionosphere data with a topology of {40× 60}. Here, the number of data samples
is smaller than the number of map units. Again, the radius method highlights the
higher density in the upper part of the map. Additionally, the small clusters in the

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 83

lower part of the map are set into relation with connections at higher threshold
parameter levels. The nearest neighbors method, however, still does not provide
any usable information.

The Graph method applied to the Iris data set is displayed in Figure 3.21. Both
the small and the large version of the map trained on the Iris data show that the
upper third part, which corresponds to the Setosa species, is densely occupied,
and the lower part is slightly less dense. There are no connections between these
two region, indicating a strong separation between these areas. The lower parts
of the smaller version of the maps, especially Figure 3.21(d), show that there is a
systematic topology violation in the diagonal direction from the lower left to the
upper right.

3.5 Systematic analysis and guidelines
In this section, the findings of the previous sections are analyzed to the point of
creating guidelines for utilizing the Graph method as a data mining tool in combi-
nation with other SOM visualizations. Three aspects of data analysis are presented
that can be investigated with the Graph method: Data density, connectivity, and
topology violations. The steps for analyzing a data set for the given criterion are
shown, and the use of Graph methods as a complementary means is shown.

3.5.1 Investigating density and clustering structure
In this section, the density and clustering structure of a data set is analyzed. The
most common visulization method, the U-Matrix, is the first step in analyzing the
clustering structure. It is shown in Figure 3.22(a). In this case, it reveals that there
are five regions and large gaps between them. Together with the hit histogram
in Figure 3.22(b), the gaps can be identified as interpolating units that do not
represent any points in the original data set. The hit histogram further reveals that
the data points are not evenly distributed across the map, as region “3” is more
sparsely populated than the others.

Next, the density of the SOM is investigated with the P-Matrix, as shown in
Figure 3.22(d). It can be observed, that some of the five regions are more dense
than others, especially subset “1”. The SDH in Figure 3.22(c) also confirms this
finding.

Using the radius method and iteratively increasing the threshold r as shown in
Figures 3.22(e)–(i), the clustering structure becomes apparent in an intuitive way.
Those areas that are filled with lines first are the most dense parts of the map. After
some steps, the map starts being filled with lines and eventually reaches the least
dense areas. As the radius is increased, the other regions are occupied with lines

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 84

according to their density. The three small subclusters are joined individually at
first in Figure 3.22(e); next, the big cluster to the left in Figure 3.22(f); then, the
three subclusters are joined in Figure 3.22(g).

Another aspect concerning clusters is how they relate to each other. This is es-
pecially of concern if clusters that are not necessarily very close, but also not very
distant, are projected to distant regions of the map. An example of such a con-
stellation is shown for the Ionosphere SOM in Figures 3.23(a)–(d), which show
the U- and P-Matrices, and Ward’s linkage at different levels. A series of Graph
visualization using the radius method is given in Figures 3.23(e)–(g). While what
can be learned from the Graph method is similar to what can be observed from hi-
erarchical clustering, the Graph method also shows how dense the clusters are and
not just whether there are clusters or not. Regions that consist of fully-connected
graph strucures are very dense clusters. Also, the Graph method provides insights
into the inter-cluster relations, as the number of lines between clusters tells about
their similarity. The dense area in the upper half of the map is connected to the
seemingly unrelated cluster in the lower right part of the map, which is something
that cannot be seen in the visualizations of Ward’s linkage.

The guidelines for using the Graph method to investigate density and cluster-
ing structure are summarized here:

• Generally, the radius method is better suited than the nearest neighbor method
to unveil density and clustering structure.

• The radius method is best used by starting with a small threshold r and then
increasing it. In this way, the most dense structures will appear first, and
then the less dense areas will be connected.

• Clustering methods and the U-Matrix visualization usually yield very deep
insights into the clusters that are present in the data set. But clusters are
not necessarily projected to adjacent regions on the map. By increasing the
radius beyond a level where basic clusters are revealed, the relations of the
clusters to each other and their hierarchy can be revealed. The results can
be compared to hierarchical clustering methods like Ward’s linkage.

• While the P-Matrix gives a first impression about the density of points
around each map node, and the U-Matrix, hit histogram and clustering vi-
sualizations tell about the clustering structure of the map, the Graph method
can be used to combine these pieces of informations, using the radius method
and plotting a series with increasing radii.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 85

3.5.2 Investigating connectivity and topology violations
In this section, the topology aspect of the SOM projection is investigated, both in
terms of topology violations and connectivity. Topology violations occur when
data points that are close in feature space are not projected next to each other in
output space due to the mismatch between the dimensionality of feature and output
space. Connectivity refers to low-dimensional manifolds that may be hidden in the
data cloud, such as points along a curve that is folded into the feature space.

One of the most straight-forward methods to check for topology violations
is the Topographic error, which is shown in Figure 3.24(b). The violations are
depicted as lines connecting the two best matching units of a sample in case these
two units are not adjacent. As the lines shown with the Topographic error are
very short, only few violations are expected. The longer lines are mostly located
in subsets “3” and “5”, which are of higher dimension than the rest. Topology
violations are more likely to happen in higher dimensional data sets, as the loss of
dimensionality is higher when projected to a two-dimensional map.

Figures 3.24(a)–(c) show the 3 components of the SOM Distortion as de-
scribed in Section 2.3.4. The quantization error in Figure 3.24(b) amounts to
only 1.4% of the total error, so its influence is neglegible. The quantization error
is highest where the higher-dimensional subsets are located. The neighborhood
bias and neighborhood variance terms, which account for 17.7% and 80.9%, re-
spectively, are very similar and are shown in Figures 3.24(c),(d). The areas close
to the transitions between the subsets are responsible for most of the distortion in
this map. This is not surprising, due to the large gaps between the subsets which
overshadow the more fine-grained distortions of the map. As a result, the SOM
Distortion does not yield any new information on topology violations. The Topo-
graphic Function cannot be computed due to the requirement of roughly 60 times
the number of data samples per map unit, which cannot be fulfilled with this data
set and map size.

The Topographic Product is shown in Figure 3.24(e). It depicts low (dark) val-
ues where the dimensionality of the output space is too low to accomodate the data
from the feature space. For the hight (light) values, the output space is too high-
dimensional for the data in feature space. The figure, which is computed solely
from the codebook, disregarding the data samples, shows that the interpolating
units are part of the too low-dimensional parts of the output space. The units close
to these borders have the highest values. The problem with this visualization is
that it is not clear what the interpolating units have to do with topology violations
at all, so the figure does not help to reveal the actual violations. Furthermore, it
is not clear why the highest dimensional subset, the 10-dimensional overlapping
Gaussians in subset “3”, has higher values when compared to lower-dimensional,
otherwise similar subsets “1” and “2”.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 86

The nearest neighbors method is shown in Figures 3.24(f)–(i) at various levels
of k. Beginning at k = 3, the clustering structure becomes visible for the Gaus-
sian clusters (“1”, “2”, “3”). Other than the radius method, the nearest neighbors
method joins clusters regardless of density, i.e. the dense clusters in “1” are not
joined before the relatively sparse clusters in “3”. Furthermore, the topology vio-
lation in subset “4” are visible as relatively long lines crossing the regions occu-
pied by the other ring. At k = 5, the connectivity of the manifolds formed by the
data points are revealed: The circles in subset “4” are visible as well as the curve
in subset “5”. No other visualization method is able to reveal the structure of the
manifold.

• Like the radius method, the nearest neighbors method is best used as a series
of visualizations at increasing parameter values.

• Universally usable methods for revealing topology violations are scarce.
The Topographic Error is a simple technique of gaining a first impression
of such violations. It can be complemented with the more sophisticated
nearest neighbor method.

• When there are lines connecting regions that are far apart in the neighbor-
hood method visualization, this is caused by topology violations.

• The nearest neighbors method does not reveal density. The radius method
shows clusters first that are more compact, while the nearest neighbors
method shows clusters without ranking them.

• If the data cloud resembles a low-dimensional manifold, the nearest neigh-
bors method is able to reveal this. It is the only technique that is able to do
so.

3.6 Summary
In this chapter, the Graph visualization method for Self-Organizing Maps has been
introduced. It is a technique for showing the data density and several aspects of
topology violations. Other than many visualization methods such as the U-Matrix,
the data samples are required for computing it. The Graph method requires the
computation of a proximity structure that can be computed either in a way based
on nearest neighbors or on the spherical distance around the data samples.

The radius method is best used in combination with other clustering and den-
sity visualization methods. By drawing a series of radius method visualizations at
increasing threshold levels, the clustering structure can be shown along with the
clusters’ relations to each other.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 87

The nearest neighbors method is used to show topology violations and to un-
veil points along low-dimensional manifolds hidden in the data set. It is best used
together with the Topographic error. No other technique is able to find structure
such as samples aligned along a curve in the data.

Another advantage of both Graph methods is that they can be combined with
any other visualization method that uses color coding on the map.

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 88

(a) (b) (c) (d)

(e) (f)

Figure 3.21: Graph visualization for maps trained on Iris data set: (a)–(d) small
{6 × 11} map: (a) nearest neighbors with k = 1, (b) k = 3, (c) radius method
with r = 0.5, (d) r = 0.8, (e)–(f) large {30× 40} Iris map: (e) nearest neighbors
with k = 3, (f) radius method with r = 0.5

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 89

1 2

3
4

5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.22: Density and clustering of the Multi-challenge data set, {40 × 60}
SOM: (a) U-Matrix, (b) Hit histogram, (c) SDH with s = 15, (d) P-Matrix, radius
method: (e) r = 0.3, (f) r = 0.5, (g) r = 1.0, (h) r = 1.5

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 90

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.23: Density and clustering of the large {40 × 60} Ionosphere SOM:
(a) U-Matrix, (b) P-Matrix; (c)–(d)Ward’s linkage: (c) 10 clusters, (d) 5 clusters;
(e)–(g) Radius method: (e) r = 1.0, (f) r = 2.0, (g) r = 3.0

CHAPTER 3. GRAPH BASED CLUSTER VISUALIZATION 91

(a) (b) (c) (d)

−150

−100

−50

0

50

100

150

200

250

300

(e)

(f) (g) (h) (i)

Figure 3.24: Connectivity and topology violation of the Multi-challenge data set,
{40×60} SOM: (a) Topographic error, (b)–(d) SOM Distortion: (b) Quantization
error, (c) neighborhood bias, (d) neighborhood variance; (e) topographic product;
(f)–(i) nearest neighbors method: (f) k = 1, (g) k = 3, (h) k = 5, (i) k = 10

Chapter 4

Gradient Fields

4.1 Introduction
Many SOM visualizaton methods suffer from the association with plots of func-
tions that many persons with engineering backgrounds have, and with their unfa-
miliarity with colored maps that are the basis for many of the SOM visualization
methods. However, trying to assign a meaning on either the vertical or the hori-
zontal axis does not make sense. Also, as only distances and not absolute positions
are of interest, the map can actually be rotated, mirrored and flipped arbitrarily
without altering its meaning. In this chapter, a visualization method is described
that imposes an analogy especially for persons with engineering backgrounds who
are familiar with vector fields. It comes in two variants which are called the Gra-
dient Field and the Borderline methods. The Gradient Field is displayed as arrows
that point to the most likely cluster center for each map unit. The Borderline
method is an alternative representation of the Gradient Field that displays lines of
varying lengths that show how clusters are separated. One property of this tech-
nique is that it can be adjusted by interactively setting a kernel smoothing parame-
ter to show the granularity of the clustering, similar to the choice of the number of
clusters in clustering algorithms, revealing the structure at various levels of detail.
Several publications describe and analyze this method [77, 68, 76, 70, 69, 71].

In Section 4.2 the Gradient Field method is explained, which is a method for
visualizing the clustering structure based on vector fields. The gradient is plotted
on top of the SOM lattice with one arrow per map unit. The length and direc-
tion of each arrow indicate where the cluster centers are located. The entirety
of the arrows forms a smooth vector field especially intended for use by profes-
sionals with engineering backgrounds, exploiting their familiarity with gradient
and flow visualizations. Two extensions to the basic Gradient Field representa-
tion are introduced in Section 4.3. The Borderline visualization is derived from

92

CHAPTER 4. GRADIENT FIELDS 93

the Gradient Field and provides an alternative view that emphasizes the cluster
boundaries, which is shown in Section 4.3.1. In Section 4.3.2, the Gradient Fields
are further extended to contrast contributing factors of the clustering structure. In
Section 4.4 experiments are provided for the regular version of the visualization
that show a single Gradient Field on top of the SOM, and in Section 4.5, exper-
iments are shown for the extended version where multiple Gradient Fields are
displayed. Section 4.6 elaborates systematic guidelines for the use of Gradient
Fields and their variants. Section 4.7 summarizes this chapter.

4.2 Gradient Field Visualization
In this section the algorithm for obtaining a vector field that shows homogeneous
areas is described. Each of its arrows ai is computed based on the prototype
vectors, the map topology, and the choice of the neighborhood kernel. The ai will
be plotted on top of their corresponding map units ξi. The vectors ai have a u and
v component, denoted as au

i and av
i , corresponding to the horizontal and vertical

coordinates, respectively. The algorithm outlined in the next paragraphs consists
of two main steps which are repeated for each map unit: In the first one, weighted
distances to all other prototype vectors are computed and separated along both
the u and v axes in positive and negative directions. In the second step, these
contributions are aggregated for each coordinate and normalized in order to avoid
border effects.

From this point, the algorithm is outlined to compute the coordinates of ai, for
map unit ξi and its associated prototype vector mi. Some of the formulas involve
pair wise comparisons to other units and models vectors, which will be denoted
with index j. These computations have to be performed for all 1 ≤ j ≤ M with
j 6= i. First the vector connecting the positions of ξi and ξj in output space needs
to be obtained, which is defined as

χij = ~ξiξj = ξj − ξi (4.1)

The angle α of this vector χij is

αij = arctan
(χv

ij

χu
ij

)
(4.2)

Figure 4.2 shows an illustration of how the output space is annotated. Using
this notation, it is now possible to apply the neighborhood kernel to the distance
between units ξi and ξj , which is the length of χij , and to split up this weight into
u and v directions:

ωu
ij = cos αij · hσ(||χij||), ωv

ij = sin αij · hσ(||χij||) (4.3)

CHAPTER 4. GRADIENT FIELDS 94

ij

ij

ij
u

ij
v

ij

ij

ij
u

ij
v

Figure 4.1: Notation of output space

The value of ωu
ij will be close to zero when either the distance between ξi and

ξj is high, resulting in a very low kernel value, or in case ξu
i = ξu

j , i.e. ξi is directly
above or below ξj with no horizontal offset. The value of σ also influences the
kernel function and thus the value of ω since high σ tend to weight far-away map
units higher than with low σ values. Note that ωu

ij will be negative in case ξj is to
the left of ξi.

In the following, formulas will only explicitly be provided for the u coordinate,
as v follows analogously. In the next step, the distances between the associated
prototype vectors mi and mj are taken into account, weighting these distances by
ω, and assigning them to either the positive or negative side of u:

δu+
ij =

{
dI(mi,mj) · ωu

ij if ωu
ij > 0

0 otherwise
(4.4)

δu−
ij =

{
dI(mi,mj) · (−ωu

ij) if ωu
ij < 0

0 otherwise
(4.5)

Dividing the weighted distance contribution of the prototype vectors along the
positive and negative directions will provide a means to find the direction where
the dissimilarity of the current vector mi is relatively low, and where the arrow
ai will ultimately point to. If, for example, ξj is next to ξi on the right side, and
the distances between the prototype vectors are high, then δu+

ij will be high, which
will contribute significantly to ai pointing to the left, away from ξj . Figure 4.2
gives a schematic overview of the weighting process to the unit in the center of
the map ξi: First, the pair wise feature space distances dI(mi,mj) are shown in
Figure 4.2(a), where the ith node is the one in the middle of the map, and nodes

CHAPTER 4. GRADIENT FIELDS 95

(a) (b)

Figure 4.2: (a) Distances to prototype of map unit in the center; dark values de-
note high distances, (b) map unit size scaled according to Gaussian neighborhood
kernel with σ = 4

are colored according to the distances in feature space, where dark colors denote
high distances; then, the sizes of the hexagons are scaled according to the kernel
value of their output space distance to the center node hσ(||χij||) in Figure 4.2(b).
The arrow in this figure points in the direction where the least weighted distances
are. Repeating this calculation for all the ξj , the δu+

ij and δu−
ij values can finally be

aggregated:

ρu+
i =

∑

j=1...M,j 6=i

δu+
ij , ρu−

i =
∑

j=1...M,j 6=i

δu−
ij (4.6)

This calculation step is illustrated in Figure 4.3(a). Each hexagon stands for a
δ, which is calculated from the distance to the node in the center and the distance
in feature space. The distance to the node in output space is shown as the size
of the hexagon, while the color of the node denotes the distance in feature space.
The values for ρ are thus computed as adding the δ values for each coordinate in
positive and negative directions.

Once ρu+
i and ρu−

i is known, it can be told whether and to which extent one
of the directions outweighs the other. For ρu+

i > ρu−
i , the accumulated distances

from the right side are bigger than the ones on the left, so the arrow will point
to the left. Close to the map borders, the distance contributions in the direction
of the border will always be lower than in the direction inside of the map since
there are simply no prototype vectors for which a distance could be computed.
The resulting arrows are thus biased to always point outside of the map. To avoid
this, a normalization has to be performed that sums the ωu

ij values in positive and

CHAPTER 4. GRADIENT FIELDS 96

(a) (b)

Figure 4.3: Schematic illustration of weight aggregation and arrow normalization:
(a) Weight aggregation, calculation of ρ , (b) arrow normalization, calculation of
ω

negative directions, i.e. counts the weights of the nodes on either side of the unit
being analyzed:

ωu+
i =

∑

j=1...M,j 6=i

{
ωu

ij if ωu
ij > 0

0 otherwise
(4.7)

ωu−
i =

∑

j=1...M,j 6=i

{ −ωu
ij if ωu

ij < 0
0 otherwise

(4.8)

This normalization scheme is illustrated in Figure 4.3(b). Other than Fig-
ure 4.3(b), only the output space distances are of interest, and not the node colors
that indicate the feature space distance, thus all hexagons are grey. For a node that
is located close to the map border, the weights ρ from the direction away from the
border will almost certainly be dominating, resulting in arrows that will always
point outside of the map. This is not a desired effect. To counter this, the sums
of the output space nodes that are present to each side of the current unit are used
to weigh the ρs of the other direction. Thus, the components of ai can finally be
determined as

au
i =

ρu−
i · ωu+

i − ρu+
i · ωu−

i

ρu+
i + ρu−

i

(4.9)

where the accumulated input space differences ρu+
i and ρu−

i are weighted by the
opposing accumulated ωu−

i and ωu+
i , respectively. In case the node ξi does not

lie close to the edge of the u axis, ωu+
i and ωu−

i will be equal, and the effect of

CHAPTER 4. GRADIENT FIELDS 97

this normalization will vanish. The most important of the computational steps
are performed in Equations 4.6 and 4.9. The roles of ρ+

i and ρ−i of either u or v
coordinates deserve special attention and will be briefly discussed:

• ρ+
i ≈ ρ−i : In this case, distances are balanced and the component of a will

be small. This happens in two cases: If the values of ρ+
i and ρ−i are small,

the prototype vectors mj of the surrounding map units of ξi are very similar
to mi and likely to be in the center of a cluster. In this case, the arrows of
neighboring units are pointing to it. In case both ρ+

i and ρ−i are large, ξi

is likely to be right in between two clusters to neither of which it belongs.
Such units are called interpolating units and are easily recognized as arrows
of neighboring units are pointing away from them.

• ρ+
i > ρ−i : The distances in positive direction outweigh distances in negative

direction. mi is more similar to its neighbors in negative direction and ai

will reflect this by pointing there.

• The length of ai is determined by the difference between ρ+
i and ρ−i . Large

differences result in long arrows and are due to a high similarity to a cluster
centroid.

This method differs from the U-Matrix in the way that it can be represented as
a field of arrows, and by the smoothing that is performed by the kernel to override
small cluster boundaries that may be artifacts that come from the choice of the
map size. The choice of the kernel width σ plays an important role in what the
visualization actually shows, since a small value of σ weights the direct neighbors
of the map unit ξi much stronger than the other units, while a large value takes the
surrounding units into account, weighting them nearly equally, and thus smooth-
ing over wide areas. The effect of choosing σ lies in whether the visualization is
a fine-grained vector field, where the neighboring arrows vary sharply, or a coarse
representation that show the global clustering structure. One of the main advan-
tages of this method is that it allows interactively setting and tuning σ to different
levels, so different kinds of clustering structures can be observed. The value of σ
has to be seen in relation to the size of the map. For usual settings, experiments
have shown that setting σ to around one sixth of the number of units along the
shorter side of the map usually results in a balanced visualization that is neither
too coarse nor too granular, which is thus the recommended parameterization.
Examples and further discussion of σ are provided in Section 4.4.1.

The computational complexity of calculating the Gradient Field is O(M2)
since it requires the pair wise distances between the map nodes and prototype
vectors. In case the kernel is cut off after a certain threshold, like hG’, hb, hip, or
hl, which is plausible since distant map nodes influence each other by negligible

CHAPTER 4. GRADIENT FIELDS 98

(a) (b) (c)

Figure 4.4: From Gradient Field to Borderline visualization: (a) Gradient Field
visualization, (b) Gradient Field and Borderline, (c) Borderline visualization

amounts, the complexity reduces to O(M). The computational cost of the U-
Matrix also scales linearly with the number of map units, thus computation of the
Gradient Field is not more expensive in terms of complexity than the U-Matrix.
The experiments in Section 4.4, which include SOMs with up to 2000 nodes, have
been computed in several seconds even for the O(M2) case, running under an im-
plementation in Matlab code, thus offering itself for interactive visualization with
different sets of σ.

4.3 Variations and extensions to the Gradient Field
visualization

4.3.1 Borderlines representation
Another representation that emphasizes cluster boundaries over vector fields point-
ing towards cluster centers can be easily derived. By depicting the orthogonal of
each ai as a line from both sides of the center instead of an arrow, the resulting
visualization shows likely cluster boundaries. A schematic illustration is shown
in Figure 4.4. The length of the arrows is preserved such that long lines hint at
a strong separation between clusters. This representation is called the Borderline
visualization. Further examples are shown in Section 4.4.

4.3.2 Extension to groups of component planes
In this section, an extension to the Gradient Field technique is described that fo-
cuses on correlations between variables on SOMs. As data mining methods usu-

CHAPTER 4. GRADIENT FIELDS 99

Figure 4.5: Groups of component planes: On the left, 2 Gradient Fields are shown,
along with the distance between the arrows; to the right, the contrast plot shows
the length of the arrows as color code

ally assume that the observed data samples follow an unknown statistical distribu-
tion, local correlations and dependencies between variables are often an interest-
ing property to assess. The clustering structure is assumed to be induced by certain
groups of variables. The variables of these distinct groups are either correlated to
a certain degree or statistically dependent in a non-linear way. This assumption
implies that the clustering structure can be decomposed into these groups of vari-
ables. The basic idea is to plot two or more groups of variables simultaneously
with the Gradient Field method. This combined visualization shows the contribut-
ing factors of the clustering.

The reliance on selected variables, i.e. component planes, rather than the
complete codebook vectors and their distances requires the introduction of some
additional formal definitions. A projection of the the codebook’s ith variable is
called the ith component plane m(i), which lies in a one-dimensional subspace of
the feature space. Component planes can be conveniently visualized on the map
lattice. Groups of component planes are defined as the combination of several
variables. The set that consists of all the indices of these variables is denoted as
S = {1, . . . , M}. Further, it is of interest to compare g subsets S1,...,g ⊆ S.
The sets must be disjoint, i.e. Si ∩ Sj = ∅, i, j ≤ g, ∀i 6= j must hold. The
union

⋃g
i=1 Si does not necessarily have to contain all the variable indices if only

a subset of the variables is of interest. By M(Si) =×k∈Si
m(k), where × refers

to the Cartesian Product, the reduced codebook is denoted, which consists of the
component planes Si. M(Si) is a “sub-SOM” with the same number of map units,
for which e.g. the U-Matrix and Gradient Field visualizations can be computed.

Interesting subsets S1,...,g can be chosen either based on correlations between
component planes [111, 35] or by grouping variables that are known to be se-

CHAPTER 4. GRADIENT FIELDS 100

mantically similar, for example variables that have a common source. The former
choice can be performed by either investigating the correlation matrix or by visual
inspection of the component planes, combining the ones that are similar. Deter-
mining the correlation of component planes can be performed by

dcomp(i, j) = abs(γ(m(i),m(j))) (4.10)
where γ(m(i),m(j)) is a suitable measure of correlation such as the Pearson

correlation coefficient on the variables m(i) and m(j). For highly similar com-
ponent planes, the absolute value is close to 1. If there is no linear correlation,
its value is close to zero. Grouping components together is then performed by
partitioning the set of component planes. The more common choice is group-
ing variables that are semantically similar, since this exploits a-priori knowledge
about the data. Next, it is investigated whether the groups provide contrasting
clustering structures.

Once the relevant variable groups have been selected, the Gradient Field method
can be applied to all g sets and visualized simultaneously. In order to adjust the
length of the arrows to negate the effect of different numbers of variables between
the sets, a normalization is performed:

â
(S1)
i = a

(S1)
i

|S1|∑g
i=1 |Si| (4.11)

where | · | denotes the cardinality of a set.
In Figure 4.3.2, an example is shown of dual component planes. It also shows

the contrast plot, which shows the distance between two vectors, depicted as color
codes. In Section 4.5.2, examples are provided that explain the relation to variable
dependence and applications on a real-world data set.

4.4 Experiments of single Gradient Field and Bor-
derline visualizations

In this section, the usefulness of the previously described techniques is investi-
gated with artificial, benchmark, and real-world data sets. The Multi-challenge
data set has already been introduced in the previous chapter. The Phonetic data
set is a benchmark data set, which describes 20 distinct phonemes from continu-
ous Finish speech, which are measured in 20 variables. It consists of 1962 data
samples. The Fracture Optimization data set comes from the domain of petroleum
engineering [123]. It has been collected from 199 gas wells in 10 dimensions. The
examples shown here outline the properties and usage of the Gradient Field and
Borderline methods, discussing the effects of the parameter σ and of the map size
on the visualization.

CHAPTER 4. GRADIENT FIELDS 101

1 2

3
4

5

Figure 4.6: Multi-challenge data, {40× 60} SOM: U-Matrix with lables for sub-
sets: 1 - cluster-of-clusters, 2 - overlapping Gaussians, 3 - high-dimensional Gaus-
sians, 4 - intertwined rings, 5 - curve consisting of line segments

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Multi-challenge data, {40 × 60} SOM, (a)–(d) Gradient Field visu-
alization: (a) σ = 0.5, (b) σ = 1, (c) σ = 3, (d) σ = 10; (e)–(h) Borderline
visualization: (e) σ = 0.5, (f) σ = 1, (g) σ = 3, (h) σ = 10

CHAPTER 4. GRADIENT FIELDS 102

(a)

N

A

U

O

I

E

S

(b)

(c) (d) (e)

Figure 4.8: Overview of Phonetic data set, {30 × 40} SOM: (a) U-Matrix, (b)
phoneme labels on top of U-Matrix, (c) hit histogram of data with label “E”, (d)
k-means clustering with 8 clusters, (e) k-means clustering with 4 clusters

CHAPTER 4. GRADIENT FIELDS 103

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Phonetic data, {30 × 40} SOM, (a)–(c) Gradient Field visualization:
(a) σ = 1, (b) σ = 5,(c) σ = 15; (d)–(f) Borderline visualization: (d) σ = 1, (e)
σ = 5,(f) σ = 15

CHAPTER 4. GRADIENT FIELDS 104

4.4.1 Effects of the neighborhood radius
At first, the effects of the kernel width σ are shown with a SOM trained on the
Multi-challenge data set with a Gaussian kernel hG. Figure 4.6 recalls the place-
ment of the subsets onto the {40 × 60} map. In Figure 4.7, the visualizations of
the Gradient Field and Borderline methods are shown. Different levels of σ are
depicted: 0.5, 1, 3, and 10. The first two are very low values, and cause the cal-
culation of the vectors to emphasize the nodes in their direct neighborhood. The
dividing boundaries that lie in between the subsets are visible along with the finer
gaps in the cluster-of-clusters subset. As the threshold σ is increased, a smooth-
ing over an extended neighborhood occurs, with the effect of eliminating the finer
gaps in subsets “1” and “3”, while preserving and strengthening the dominating
gaps between the subsets. As the radius is increased from 1 to 3, the boundaries
between the smaller clusters in the cluster-of-clusters subset vanish, and the subset
only shows two big clusters. By further increasing σ to 10, the separation between
these clusters also disappears, and only the 5 subsets can be identified as clusters.
The Gradient Field and Borderline methods are thus able to show a hierarchy of
the clustering structure when the threshold parameter σ is varied.

The same effect is investigated with the Phonetic data set. In this case, many
of the phoneme classes coincide with the homogeneous areas on the map. The U-
Matrix of this {30× 40} SOM is shown in Figure 4.8(a). Figure 4.8(b) highlights
some regions that are primarily occupied by one vowel or consonant. As an exam-
ple for a phoneme that is highly clustered, Figure 4.8(c) shows the hit histogram
for data samples of phoneme “E”. In Figure 4.9, the results for both Gradient
Field and Borderline methods for σ = 1, 5, 15 are shown. The σ values “1”, “5”,
and“15” have been chosen to represent low, medium, and high radii, respectively,
in relation to the map size of {30×40}. Low values of this parameter lead to very
granular visualizations, where only direct neighbors are taken into account for the
computation of each arrow and thus only local gradients can be observed, as vi-
sualized in Figures 4.9(a),(d). By increasing σ, the clustering structure revealed
shifts gradually from local towards global. Figures 4.9(b),(e) provide a far better
overview on the clustering structure, and individual regions can be distinguished.
In Figures 4.9(c),(f), the global structure is shown for σ = 15. It reveals that
the upper third, which is occupied by phonemes that do not correspond to a letter
from the alphabet, is most strongly separated from the rest of the map, which has
not been indicated by any of the former, more local representations.

The relation to a clustering algorithm is shown in Figures 4.8(d),(e), which
show the results of k-means of the codebook vectors with 8 and 4 clusters. The
map topology is omitted for the clustering process, so clusters can consist of non-
adjacent nodes. σ is loosely related to the number of clusters, as high values of
σ show few boundaries and are comparable to clustering with few cluster centers,

CHAPTER 4. GRADIENT FIELDS 105

while a low σ results in many local cluster boundaries and is thus comparable to
clustering with many cluster centers. When compared to Figure 4.9, it can be seen
that the k = 4 clustering reveals similar information as the Gradient Field method
with a high σ, while k = 8 is comparable to the ones with a lower smoothing
parameter.

The choice of σ has to be performed interactively and varies for the type of
kernel used, but a good starting point for the Gaussian kernel hG is 1/6th of the
shorter side of the map. σ always has to be seen in relation to the size of the
map since it is defined in absolute terms over the number of units over which the
smoothing is performed. While the choice of σ strongly influences the type of
information on the structure revealed, the results are insensitive to the choice of
the neighborhood kernel function. No significant differences between different
neighborhood kernels could be noticed. The only exception is the Bubble ker-
nel hb, which is not continuous in a mathematical sense and does not allow a
smooth convergence across the neighborhood range, and is also hardly used for
SOM training. Thus, a cut-off kernel variant may be employed, resulting in linear
complexity for calculating the Gradient Field.

4.4.2 Smoothing sparse maps
The next example shows the smoothing effect on sparse maps which are some-
times preferred if the SOM is used for visualization only and vector quantization
is not of interest. These SOMs are trained with large numbers of units [101]. A
{30 × 40} SOM is used as an example of an oversized SOM trained on the Iris
data set with a Gaussian kernel hG. Since the number of the map nodes (1200)
is 8 times higher than the number of data samples (150), the U-Matrix visualiza-
tion shown in Figure 4.10(a) shows artifacts that come from the fact that most
samples are mapped to nodes that they occupy solely. The remaining units are
merely interpolating units. The U-Matrix implies that these transitions are ac-
tually cluster boundaries, while the significant boundary between the upper and
lower parts are overshadowed. The density is depicted with the P-Matrix visual-
ization in Figure 4.10(b). Most of the map shows roughly the same density except
for the corners and the part in the center that extends to the right side of the map.
Figure 4.10(c) shows the U*-Matrix. It looks quite different from the U-Matrix
and shows that there is a big boundary in the upper third, and a smaller one in the
lower right-hand corner, while the artifacts around the samples across the rest of
the map vanish. In Figure 4.10(d), a Gradient Field with σ = 8 is visualized, the
radius being roughly one sixth of the map axes. The smoothing effect overrides
the insignificant cluster boundaries and focuses on a more global clustering struc-
ture, which consists of two big clusters on the upper and lower part of the map
and a transition region slightly right of the center. It is thus possible to adapt the

CHAPTER 4. GRADIENT FIELDS 106

visualization accordingly for sparse SOMs.

4.5 Experiments of groups of component planes vi-
sualizations

In this section, the extension to groups of component planes is demonstrated. The
use of this extension lies in contrasting and determining the influence of groups
of variables that are believed to contribute in different ways to the overall shape,
clustering structure, or correlation of the whole data set. The data sets used include
several artificial data sets that are selected in order to demonstrate scenarios where
typical patterns of statistical dependence or independence are present between the
data. It is shown how the SOM and multiple Gradient Field visualizations are able
to reveal such patterns. The method is also shown on the Fracture Optimization
data, the variables of which are measured from 3 distinct sources.

4.5.1 Statistical dependencies between groups of variables
Next, the effect of the Dual Gradient Field method on 4 artificial data sets is ex-
amined where the aim is to find out whether one variable is statistically dependent
on the other two. The data sets consist of 10, 000 samples. The first 3 exam-
ples are 3-dimensional, and the last one is 20-dimensional. In the 3-dimensional
examples, the first two variables x1 and x2 are uniformly distributed between 0
and 1, and are statistically independent. The set of indices forming this group is
denoted as Suniform = {1, 2}. The second group consists of the third probably
dependent variable Sprob dep = {3} for which it is desired to know whether it can
be explained by the former two variables.

In the first example, a third variable x3 is considered that is independent of
the former two and is also uniformly distributed. Scatterplots for this data set are
provided in Figure 4.11(e), which show the variables x1, x2 and x3 in rows and
columns, and pair-wise scatterplots where they intersect; the bar charts show the
distribution of each single variable. The scatterplots clearly show that there is no
correlation between any of the variables. Figure 4.11(a)–(c) shows the component
planes after training a {30× 30} SOM with a cut-off Gaussian kernel hG’ on this
data. The Dual Gradient Fields in Figure 4.11(f) show that most arrows do not
have common directions. To emphasize this, the length of the vector connecting
the two arrows ‖aSuniform

i −a
Sprob dep
i ‖O is calculated, as can be seen in Figure 4.11(d).

This value is high (light values) if the black and grey arrows point in different
directions and low (dark values) if the black and grey arrows are similar. The
figure has numerous light nodes, and thus indicates that there are no dependencies

CHAPTER 4. GRADIENT FIELDS 107

between the variable groups.
In the second setup, the third coordinate of each sample is defined as x3 =

x1+x2

2
. Scatterplots can be seen in Figure 4.12(e). Pearson’s correlation coefficient

between x1 and x3 is 0.7, and between x2 and x3 is −0.7, indicating strong linear
dependence. The component planes plots for the {30× 30} SOM on this data are
shown in Figures 4.12(a)–(c). It can be seen that the projection results in linear
ascent along diagonal lines, which are orthogonal for x1 and x2, stressing their
independence. This has not happened in the previous example. Here, the data
set is a 2-dimensional subspace embedded in the 3-dimensional feature space,
and thus equal in dimension to the map lattice. The dependent component x3

interferes with the other axes. When the Dual Gradient Field method is applied for
groups Suniform and Sprob dep, the result can be seen in Figure 4.12(f). Aside from
some deviations introduced by the SOM’s border effect, it shows that the cluster
structure of this map is caused by the same factors, since the black and grey arrows
are very similar both in angle and length. This is an expected result, since the third
variable is predictable, and it will not introduce a different clustering structure
than the one already present from the previous coordinates. Figure 4.12(d), where
again the differences of the black and grey arrows are depicted, shows that the
arrows are very similar for all parts of the map.

In the third case, the dependent variable is given as x3 = abs(x1 + x2 − 1)
which is then multiplied by a factor to normalize its variance to the other vari-
ables. Although there exists a deterministic relationship between the variables,
the correlation is zero for all pairs of variables, since there is no global linear
relationship. x3 is only piece-wise linearly dependent. Scatterplots are shown in
Figure 4.13(e), which reveal that there is some sort of dependency between x1 and
x3, and between x2 and x3. Component planes for the SOM trained on this data
are visualized in Figures 4.13(a)–(c). The component plane for x3 shows that the
peak vales are on two edges of the map, the SOM thus has adjusted properly to
this 2-dimensional manifold. By applying the Gradient Fields, the arrows in the
regions with a linear relationship are almost identical. The smoothing performed
to obtain the arrows only weights gradients within a certain radius, and the linear
relationship can be observed within this radius. In the transition region, however,
where x3 approaches zero, no linear relationship is found, resulting in high differ-
ences between the arrows. Again, in Figure 4.13(d) the lengths of the difference
vector between the arrow is depicted. This deviation shows where the linear re-
lationship is not given, but recognizing that there is a linear relationship in most
other areas of the map. When compared to Figures 4.11(d) and 4.12(d), where
the same is performed for the independent and the linearly dependent case, it can
now be shown in Figure 4.13(d) where the visualization recognizes piece-wise
linear relationships. While most statistical coefficients fail to quantify the deter-
ministic dependence of x3 in this case, the method can be used in order to identify

CHAPTER 4. GRADIENT FIELDS 108

piecewise linear portions of the data. Also, this implies that if cluster structures
of variable groups overlap in certain regions of the map, this can be learnt via
piece-wise dependencies between the variables.

The last example examines a more complex high-dimensional data set in 20
variables. Again, the data are split into two groups, and the dependence of the
second group Sprob dep = {11, . . . , 20} is investigated. The first group Suniform =
{1, . . . , 10} is further divided into two subgroups of 5 dimensions. The variables
in these subgroups are equally distributed with zero mean, and are constructed
in a way that they are highly correlated within each subgroup with correlation
coefficient of 0.9. Pairs of variables from different subgroups are not correlated.
The second group of 10 variables is dependent on the first one and is constructed
by an XOR-like function

xk = sign(xi) · sign(xj) (4.12)

with 11 ≤ k ≤ 20 the variable from the second group to be computed,
1 ≤ i ≤ 5 a variable of the first subgroup, and 6 ≤ j ≤ 10 a variable from
the second subgroup. The results for the Dual Gradient Flow can be seen in Fig-
ure 4.14. Figure 4.14(a) shows an example component plane of Sprob dep computed
by Equation 4.12. In Figure 4.14(c), the results of the Dual Gradient Flow method
are depicted. The arrows are highly divergent in the regions where the boundaries
are: The grey arrows, denoting M(Sprob dep), point away from these boundaries to-
wards their 4 cluster centers, while the black arrows are almost uniform over the
map, with a small disturbance in the middle of the map that was probably intro-
duced during training. The difference is visualized in Figure 4.14(b), which shows
the deviation of the arrows. In the dark areas, the statistical relationship between
the two groups is evident, while the light areas correspond to transitions. This
is another example of a non-linear dependency that cannot be captured by a lin-
ear correlation coefficient, which is zero for pairs of variables from Sprob dep and
Suniform.

CHAPTER 4. GRADIENT FIELDS 109

(a) (b)

(c) (d)

Figure 4.10: Iris data set, {30 × 40} SOM: (a) U-Matrix, (b) P-Matrix, (c) U*-
Matrix, (d) Gradient Field with σ = 8

CHAPTER 4. GRADIENT FIELDS 110

(a) (b) (c) (d)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
0

500

1000

1500

x
1

x
2

x
1

x
3

x
2

x
3

(e) (f)

Figure 4.11: Artificial Data SOM (no relationship): Component planes: (a) x1,
(b) x2, (c) x3; (d) length of difference vector (contrast plot), (e) scatterplots and
distribution of x1, x2, x3, (f) groups of component planes M(Suniform) vs M(Sprob dep)

CHAPTER 4. GRADIENT FIELDS 111

(a) (b) (c) (d)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
−0.5

0

0.5

0 0.5 1
0

500

1000

1500

0 0.5 1
−0.5

0

0.5

−0.5 0 0.5
0

500

1000

1500

2000

x
1

x
1

x
2

x
3

x
2

x
3

(e) (f)

Figure 4.12: Artificial Data SOM (linear relationship): Component planes: (a) x1,
(b) x2, (c) x3; (d) length of difference vector (contrast plot), (e) scatterplots and
distribution of x1, x2, x3, (f) groups of component planes M(Suniform) vs M(Sprob dep)

CHAPTER 4. GRADIENT FIELDS 112

(a) (b) (c) (d)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

1.5

0 0.5 1 1.5
0

500

1000

1500

2000

x
1

x
1

x
2

x
2

x
3

x
3

(e) (f)

Figure 4.13: Artificial Data SOM (non-linear relationship): Component planes:
(a) x1, (b) x2, (c) x3; (d) length of difference vector (contrast plot), (e) scatter-
plots and distribution of x1, x2, x3, (f) groups of component planes M(Suniform) vs
M(Sprob dep)

CHAPTER 4. GRADIENT FIELDS 113

(a) (b)

(c)

Figure 4.14: Artificial Data SOM (XOR-like relationship): (a) Component plane
x11, (b) length of difference vector (contrast plot), (c) Groups of component planes
M(Suniform) vs M(Sprob dep)

CHAPTER 4. GRADIENT FIELDS 114

(a) (b) (c)

Figure 4.15: Fracture Optimization, {7 × 10} SOM: (a) U-Matrix, (b) P-Matrix,
(c) PCA with projection of map units

Variable Name Type Description Group
1 Proppant in Formation param Amount of propp. pressed into formation (lbm) G2
2 Average Pressure geo Pressure in Reservoir (psi) –
3 Average Rate param Rate of pumping into formation (bbl/m) G2
4 Pad Fluid Vol. Pumped param Total volume required to pump proppant (bbl) G2
5 Total Volume Pumped param Total of fluids pumped (bbl) G2
6 Produced Gas out Quantity of gas obtained (MSCF) –
7 NetPay geo Depth of gas reservoir (ft) G1
8 Formation geo One of two ground formation types G1
9 Proppant Type param One of two proppant types –
10 Stimulation Costs out Total cost of operation ($) –

Table 4.1: Description Fracture Optimization data set variables

4.5.2 Dual Gradient Fields on petroleum engineering data
The combination of Gradient Fields to show how groups of component planes
influence the overall clustering structure with a {7 × 10} SOM trained on the
Fracture Optimization data is discussed. The Fracture Optimization data set used
for this experiment consists of 199 samples in 10 variable dimensions, where each
sample corresponds to a well for gas drilling. The variables are described in more
detail in Section 4.5.2, as they are categorized into several groups and these groups
are then analyzed. To present an overview of this data set, a medium sized map
trained on this data set is discussed and shown in Figure 4.15. In Figure 4.15(a),
the U-Matrix is given, which shows a gap that separates the upper from the lower
part. The P-Matrix in Figure 4.15(b) shows that the map is populated uniformly

CHAPTER 4. GRADIENT FIELDS 115

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Fracture Optimization, {7 × 10} SOM: (a) Component plane “pro-
duced gas”, (b) component plane “stimulation costs”; (c) U-Matrix, (d) U-Matrix
of M(Sgeo), (e) M(Sparam), (f) M(Soutput)

except for the horizontal gap in the middle. The PCA plot of the data set and the
map units in Figure 4.15(c), which explains 64% of the variance present in the
data set, shows that two clusters are present. The variable dimensions come from
3 types of sources: (1) Geological factors that describe properties mainly deter-
mined by the choice of the geographic position; (2) Engineering parameters set
during the gas pumping process; and (3) Output parameters that assess the suc-
cess of the operation: “Stimulation Costs” and “Produced Gas”. The variables of
this data set are described in Table 4.5.2. The data is gathered during three steps,
each corresponding to one of these groups. First, the position where to build the
well after checking the geological data is selected; then, the engineering parame-
ters are determined and proppant and other fluids are pumped into the earth; and
finally, after the gas has been obtained, the output variables can be assessed. The
index sets are denoted as Sgeo (3 dimensions), Sparam (5 dimensions), and Sout

(2 dimensions), respectively. A {7 × 10} SOM on this data set has been trained
in order to find out how these groups of variables depend on each other and how
they decompose the clustering structure. Note that the output variables are used

CHAPTER 4. GRADIENT FIELDS 116

(a)

A

B

(b) (c)

Figure 4.17: Fracture Optimization, {7×10} SOM, Dual Gradient Fields (the first
group is indicated by black, and the latter by grey vectors): (a) M(Sout) vs M(Sgeo),
(b) M(Sout) vs M(Sparam), (c) M(Sgeo) vs M(Sparam)

in the same way as the other ones for training since the SOM is an unsupervised
learning method. What is intended to do is thus related to canonical correlation
analysis rather than to regression. Data analysts are concerned with measuring the
impact of the choice of the well’s position or the fine-tuning of the engineering
parameters on the output.

Figures 4.16(c)–(f) show the U-Matrices for the SOM and the sub-SOMs
M(Sgeo), M(Sparam), and M(Sout). From these, an impression of the the cluster
boundaries can be gained. The engineering parameters seem to divide the map
horizontally, while the geological factors are responsible mainly for a vertical
boundary. The output parameters are the most interesting ones, since the aim is
to explain which regions of the map correspond to desirable outcomes, i.e. where
wells with low costs and high produced gas are located. Figures 4.16(a),(b) show
the component planes for these variables. It can be seen that the costs are high in
the lower part of the map, and low in the upper regions. The gas production is high
for wells that are mapped to the left border and slightly below the center of the
map. Thus, the most desirable position for wells is the upper left corner with both
low costs and high output. Figures 4.17(a)–(c) show the pair wise Dual Gradient
Fields of the three groups. For the arrows pointing in different directions for most
parts of the map, the underlying variable groups are likely to be statistically inde-
pendent and explain different parts of the overall clustering structure, which will
be discussed in the next example. Figure 4.17(c) shows Sgeo and Sparam, where
the arrows are orthogonal in most cases. This information can be exploited in
order to improve the fracture optimization process. The horizontal position of the

CHAPTER 4. GRADIENT FIELDS 117

sample projected onto the map is apparently determined by the geological factors
since the black arrows are parallel to the horizontal axis. The vertical position cor-
responds to the engineering parameters. Thus, once the well is physically built,
the geological factors cannot change anymore, and the horizontal position on the
SOM describes a constraint for the effect of tuning the engineering parameters.
It is desirable to shift a well towards the upper left corner to optimize output and
costs. The lengths of the arrows correspond in how much a parameter has to be
changed to achieve a change in the node that the sample is projected to. For ex-
ample, Figure 4.17(b) shows Sout (black) and Sparam (grey). Suppose a well is
mapped to position “A”, where the black arrow is short, while the grey arrow is
long, thus moving one node up would require changing the engineering parameter
by a large amount, while resulting only in small differences in output. For posi-
tion “B”, the arrows are approximately orthogonal, thus changing the parameters
would only have marginal effects on the output since the gradients do not indicate
that there is a change in output vertically.

As opposed to grouping the variables according to an external characteristic
such as the classification of the source of the measurement, the variables can be
investigated for their similarity. This can be done by examining their correlation
or by clustering of component planes, as described in Section 2.3.3. Using the
interactive approach of reorganizing component planes according to their correla-
tion, a clustering is depicted in Figure 4.18(a) on the {7×10} SOM trained on the
Fracture Optimization data set. By manual selection, two groups of variables have
been singled out, the first one consisting of 4 variables in the lower left corner of
the reorganized plane, the second one with 2 components in the upper left part.
The index sets are SG1 = {7, 8} and SG1 = {1, 3, 4, 5}; which variables these
indices refer to is shown in column “Group” of Table 4.5.2. The U-Matrix can be
applied to show the decomposition of local dissimilarities of map units on any of
the reduced SOMs, as depicted in Figures 4.18(b)–(c).

Figure 4.18(d) shows the results for a Gradient Field visualization with kernel
width σ = 2. It can be seen that the variables SG2 are responsible for the horizon-
tal division of the map, while SG1 split the map vertically. This was also visible
in the U-Matrices in Figures 4.18(b)–(c), but here it is combined in a single plot.
Orthogonal angles between arrows from different groups, as in Figure 4.18(d),
indicate that the groups are almost independent, which is not surprising as the
groups have been selected based on low correlation. Using this method, however,
helps to understand how the map is built based on the correlation structure. The
vertical position of a data sample on the map is explained mostly based on the
values of the variables of SG2, while the horizontal position is determined by the
values of SG1.

CHAPTER 4. GRADIENT FIELDS 118

(a) (b)

(c) (d)

Figure 4.18: Fracture Optimization, {7× 10} SOM: (a) Clustering of component
planes, (b) U-Matrix of G1, (c) U-Matrix of G2, (d) Gradient Field SG1 vs SG2

with σ = 2

CHAPTER 4. GRADIENT FIELDS 119

(a) (b) (c)

(d) (e)

Figure 4.19: Ionosphere data set, {40×60} SOM: (a) U-Matrix, (b) hit histogram,
(c) P-Matrix, (d) U*-Matrix, (e) Dendrogram of Ward’s clustering on map code-
book

4.6 Analysis
In this section, systematic guidelines are developed for applying Gradient Fields
for both the investigation of overall clustering structure and inspection of groups
of similar variables. The Gradient Fields are shown in context with other SOM
visualization techniques.

4.6.1 Analysis of clustering structure
The subject of investigation in this section will be a {40 × 60} SOM trained on
the Ionosphere data set. The basic visualization techniques are shown in Fig-
ure 4.19(a)–(d), where the U-Matrix, hit histogram, P-Matrix, and U*-Matrix are
depicted. From the U-Matrix, the upper half of the map appears to be very close in
input space, while the lower part is strongly fragmented. The hit histogram shows

CHAPTER 4. GRADIENT FIELDS 120

the map is sparsely, but evenly populated by data samples. The P-Matrix shows
that the upper part is indeed very dense, while the lower part is not. The U*-
Matrix shows essentially the same as the U-Matrix, as the region where density
is high also has low U-Matrix values, and thus no smooting occurs. According
to these visulization techniques, the upper part is very dense and most likely a
cluater, while not too much can be learned about the structure in the lower part.

Several visualization methods have been presented in this thesis that can iden-
tify clustering or density structure at different levels of detail, adjustable by a pa-
rameter. These are hierarchical clustering methods, where the number of clusters
can be adjusted directly; the SDH visualization, where a parameter determines
how much smoothing is applied to a hit histogram-like visualization; the Graph
method, where the threshold radius adjusts the level of density to be displayed. All
of these are intended to show the clustering or density of the map. The Borderline
method is compared to these three methods at comparable levels in Figure 4.20.
The rows refer to visualizations at comparable levels of granularity. The first
row provides the most local view, while the last one shows the visualizations at a
global view. The first column shows Ward’s hierarchical clustering, the dendro-
gram of which is shown in Figure 4.19(e). The second column shows SDH, the
third the Graph based method introduced in Chapter 3, and the last column shows
the Borderline method. Figure 4.21 shows the Gradient Fields for the same radius
values. These figures are larger than the ones for the Borderline method, as the
arrow heads need to be recognizable. The Borderline method is better suited for
large maps when depicted on a small space.

In the first row in Figures 4.20(a)–(d), a very coarse view is presented, which
shows many clusters and many boundaries. Here, the local structure is investi-
gated. Ward’s clustering with 8 clusters shows that the upper part is still a cluster
while the lower part of the map is fragmented. The cluster with the darkest color
is split into two regions of the map, one part is to the left of the center, the other
at the right border, hinting at topology violations. The SDH at s = 25 shows a
highly fragmented view, where there are small islands across the map, with the
exception of the center and lower left part of the map, which is free from any
islands. The Graph based method shows the density of the upper part most im-
pressively, as there are almost no lines in the lower part. The U-Matrix that is
shown beneath the lines shows the interpolating units in the center and lower left
parts of the map. The Borderlines method at σ = 2 shows several separations and
boundaries, mainly in the lower part of the map, but no overal conclusions can be
deducted.

The next two rows in Figures 4.20(e)–(h) and 4.20(i)–(l) show the same visu-
alization methods with parameter values that result in more global views of the
map, and could be described as “zooming out”. In Ward’s clustering, the clusters
in the center and lower right are joined and form a big cluster, with the cluster

CHAPTER 4. GRADIENT FIELDS 121

close to the left border and the one in the upper half of the map forming the other
big clusters. For SDH, the picture is similar, as a big island appears in the upper
part, a smaller one at the lower left border, and a last one that is fairly separated
from the rest in the lower right part of the map. The Graph method at higher
radii shows that the density in the upper part still dominates, while small clusters
emerge at the left border and the lower right part. The Borderlines visualization
shows that the boundary that ranges from the lower left to the center, where the
upper part is separated from the lower part. The upper part shows longer border
lines, while the lower right part appears like a plateau. This phenomenon is due to
the fact that the arrows in the upper, dense part point away from the boundary in
the middle, while the arrows in the lower part do not have a cluster center where
they all point to, as they are equally repelled from all sides.

Finally, the most global view is shown in the last row in Figures 4.20(m)–(p).
The hierarchical clustering shows that the remaining clusters contain the big one
in the upper part of the map, combined with the one on the lower left border of
the map. SDH shows a similar picture, but it is not so clear where the left part
actually belongs. The Graph method shows that the lower right part is connected
to the upper and left parts to some degree, leaving the interpolating units empty.
The Borderline method finally shows the horizontal separation in the middle, and
to a lesser degree a separation in the lower left part.

Comparing the results from the different methods, several observations can
be made. Herarchical clustering does not recommend any setting for the right
level of clusters. Given the number of clusters, the algorithm will always present
a result regardless of that number of clusters is supported or not. Getting the
number of clusters right can be achieved by inspecting the dendrogram, as shown
in Figure 4.19(e), and choosing a level where the distance to the next join is large
both in directions up and down. Another option is to evaluate the clustering with
an index such as the DB-Index described in Section 2.3.4. However, the DB-
Index, by the way it is calculated, favors several clustering methods over others,
i.e. Ward’s linkage over single linkage, and thus requires deep understanding of
the way it behaves and what it penalizes. When visualized on the map, it does
not tell anything about whether the boundaries actually indicate a strict separation
or represent a separation between to units that are actually very similar, as the
Gradient Fields and Borderline methods do.

SDH is based on the distribution of the data samples, as opposed to codebook
clustering. Therefore, regions are visually depicted as islands if their codebook
vectors are close to many data samples in feature space. The resulting island
visualization shows the clusters, and also where there are no clusters, i.e. interpo-
lating units or regions, for example, the separating canal between the main islands
in Figures 4.20(n),(n).

The Graph method is also based on the data samples and the codebook. Above

CHAPTER 4. GRADIENT FIELDS 122

all, it shows the density structure, and how the clusters relate to each other even if
not adjacent. This latter feature is unique to this method. Ward’s clustering identi-
fies disjoint regions on the map as one cluster, which can be seen in Figure 4.20(a)
as the cluster of the darkest color. These regions are not identified as adjacent at
all by the Graph method, such that the two methods provide contradicting results.
As the Graph method is based on the data samples, and not only on the proximity
of the codebook, the Graph method is more credible in this respect. Ward’s link-
age tends to identify equally large clusters, even if the data does not support this,
in this case regions of interpolating units, which are treated equally to units within
dense clusters.

The Borderlines method shows roughly the same cluster structures as the other
methods. It differs in that the gradual transitions are most visible here even when
not varying the parameter, especially when compared to crisp clustering such as
Ward’s linkage. The Borderlines method shows the strength of individual bound-
aries. For example, in Figure 4.20(p), the region along the right side ranging to
the upper part of the map shows a very smooth transition, even though these ar-
eas have been identified as clusters previously. It is similar to the U-Matrix in
this respect, which does this at the most granular level. The boundaries are very
similar at low radius levels, c.f. Figures 4.20(d) and 4.19(a). When compared
to SDH, the Borderlines methods are more stable in that clusters do not disappear
and reappear at different parameter settings, such as the island on the left border in
Figures 4.20(j), (n). While the overall picture of the Borderlines changes strongly
when the parameter is modified, cluster boundaries either become stronger or dis-
appear, but the clustering structure is mostly left unchanged.

The Graph method is different to the Borderlines method in that it solely visu-
alizes data density. The Gradient Field and Borderlines do not emphasize density,
and are not based on data samples, but on the codebook only. Density is implicitly
visualized if it is represented by the codebook, and is depicted as large regions full
of long arrows, pointing inwards, or long border lines. What the Gradient Field
and Borderlines methods are not able to visualize is regions with non-adjacent
but similar prototype vectors. The Gradient Field and Borderlines methods are
most helpful for parameter settings that is neither too local nor too global. A good
choice is one sixth of the shorter side of the map, closest to Figure 4.20(l) in this
case. It provides more information than the U-Matrix, but the view is not too
global in that the transitions between clusters become too blurred.

To sum up, the major characteristics of the Gradient Field method can be stated
as follows:

• The level of granularity of the Gradient Field is comparable to a hierarchi-
cal clustering. A difference is that hierarchical clustering results in crisp
clusters and strict boundaries while the Gradient Field does not.

CHAPTER 4. GRADIENT FIELDS 123

• The boundaries of Gradient Field visualizations at low radius levels resem-
ble the local boundaries visible with the U-Matrix.

• The Gradient Field is best used in combination with other density and clus-
tering visualizations, such as U-Matrix, hit histogram, P-Matrix, U*-Matrix,
hierarchical clustering, and Graph based methods. It is best applied if the
radius is varied interactively in order to learn about the clustering strucure
at desired levels of detail.

• The Gradient Flow method is comparable to the U-Matrix in that it com-
pares units to its neighbors, where neighbors includes a wider area depend-
ing on the radius. However, it cannot be used to identify separated clusters
or similar data samples projected to different parts of the map due to topol-
ogy violations, which the Graph method, for example, can be used for.

• A good choice for the starting point of the radius σ is one sixth of the shorter
side of the map.

• Increasing the radius results in zooming out to a more global view, resulting
in less visible clusters. By decreasing the radius, the view is becoming more
granular, showing finer cluster boundaries.

• The Borderline method is a viable alternative to the Gradient Fields that
essentially shows the same thing. For larger maps where the individual ar-
rows are not easily recognized, the Borderlines method is even better suited
to show boundaries.

CHAPTER 4. GRADIENT FIELDS 124

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.20: Ionosphere data set, {40× 60} SOM: Comparison of Ward’s cluster-
ing, SDH, Graph based method (on top of U-Matrix), and Borderline visualiza-
tions; (a)–(d) Granular view, high number of clusters, (e)–(h) less granular view,
less clusters, (i)–(l) almost global view, few clusters, (m)–(p) global view, low
number of clusters; parameters for Ward (a), (e), (i), (m): 8, 5, 3, 2 clusters; SDH
(b), (f), (j), (n): 25, 50, 200, 1000; Graph (c), (g), (k), (o): 1.0, 1.75, 2.5, 3.5;
Borderline (d), (h), (l), (p): 2, 4, 6, 8

CHAPTER 4. GRADIENT FIELDS 125

(a) (b)

(c) (d)

Figure 4.21: Ionosphere data set, {40× 60} SOM, Gradient Fields: (a) σ = 2, (b)
σ = 4, (c) σ = 6, (d) σ = 8

CHAPTER 4. GRADIENT FIELDS 126

crim zn indus chas

nox rm age dis

rad tax ptratio black

lstat medv

Figure 4.22: Boston housing data set, rectangular {10 × 20} SOM: Component
planes

4.6.2 Analysis of groups of component planes
In this section, the Boston housing data will be used to investigate the similarity
of groups of variables, and compared to the correlation visualization methods de-
scribed in Section 2.3.3. The component planes of the {10× 20} SOM are shown
in Figure 4.22, and the most common visualizations are shown in Figure 4.23.
This data set consists of 506 samples in 14 variables. The U-Matrix shows that
there is a cluster in the center ranging to the lower right corner of the map. On the
left and upper sides of the map there are cluster boundaries, but only two small
clusters in the upper part of the map. The hit histogram shows the data is fairly
evenly distributed across the map, with a small gap between the center region and
the left and upper parts, where the U-Matrix values are high. The P-Matrix sup-
ports the finding from the U-Matrix that there is one big cluster in the center and
lower right, with two minor clusters on the top. The U*-Matrix does not provide
any additional information to the U-Matrix, as this is not a sparse map.

In this section, the component planes of the codebook are regarded as a valid
proxy for the actual data, i.e. the codebook is deemed to be sufficiently similar to
the data set such that findings made by inspecting the codebook can be transferred

CHAPTER 4. GRADIENT FIELDS 127

(a) (b)

(c) (d)

Figure 4.23: Boston housing data set, rectangular {10× 20} SOM: (a) U-Matrix,
(b) hit histogram, (c) P-Matrix, (d) U*-Matrix

to the data set. All the methods compared here disregard the data set. Concep-
tually, the component planes are in the center of interest. Groups of component
planes are a method for contrasting clusters of variables and investigating their
influence on the map’s layout. To get an impression of how the component planes
are correlated, component plane reordering and clustering is performed. Then,
the groups of component planes visualization is contrasted with the metro visual-
ization, which is related as it also shows the gradient, or direction of change, of
similar component planes.

The component plane reordering approach has been demonstrated in Sec-
tion 2.3.3. It rearranges the component planes by their similarity based on the
codebook in order to create clusters of variables that are most likely correlated. In
Figure 4.24, the reordered component planes are shown, grouping variables such
as “rad” and “tax”, “dis” and “age”, and “medv” and “rm”. “crim” is placed in

CHAPTER 4. GRADIENT FIELDS 128

Figure 4.24: Boston housing, rectangular 10× 20 SOM: Reordered component
planes

the middle such that it could be correlated to any other variable.
Similarly, the component planes can be clustered directly by a clustering algo-

rithm. The dendrogram of a Ward’s linkage of the component planes is shown in
Figure 4.25. Two big clusters can be distinguished, and the variables grouped at
the lower levels is very similar to the reordering approach. By selecting clusters
of components, their influence on the map structure can be investigated with the
groups of component planes method, which does not by itself prefer any grouping.
As described in Section 4.5.2, the groups to be contrasted have to be pre-selected.
However, the results from the metro visualization technique can be compared to
the groups of component planes visualization.

The metro visualization [61], as depicted in Figure 4.26, is a visualization
method that represents component planes as piece-wise linear curves along their
gradient. These curves are aggregated according to a metric that is based on how
far apart these lines are. Based on this metric, the most similar lines, i.e. com-
ponent planes, are joined similar to a hierarchical clustering, and a new curve is
calculated from the lines that have been grouped together. The lines for single

CHAPTER 4. GRADIENT FIELDS 129

rad tax crim lstat ptratio indus nox age zn dis black rm medv chas

Figure 4.25: Boston housing data set, rectangular 10× 20 SOM: Dendrogram of
Ward’s clustering performed on the feature dimensions of the codebook

component planes run along the gradient of this component plane, from its lowest
to its highest point. The bundled lines show an aggregated gradient, i.e. running
from a point where a correlated set of component planes has similarly low values
to a region where all values are high; in case of negative correlation, the starting
points may be high for one set of variables, and low for the other one, leading to
low and high regions, respectively. In the example of the Boston housing SOM, 5
groups are formed, 4 of which consist of two component planes each, and the last
one consisting of 6 component planes. The first group that will be investigated is
the one containing “crim” and “lstat”. The component planes in Figure 4.22 reveal
that “crim” has its highest values in the upper right corner, and low values almost
everywhere else; “lstat” looks exactly the other way around, with low values in
the upper right, and high values everywhere else. There is thus a high negative
correlation between these variables. The dendrogram in Figure 4.25 also supports
this, as these variables are joined at a low level. The component plane reordering
in Figure 4.24 shows that the two variables are not too distant, but also not di-
rectly next to each other. The metro visualization shows the line running from the
center of the map to the upper right corner. It is therefore connecting the center
of the low “crim” and high “lstat” values, which is also the center of the map, to
the center of the high ‘crim” and low “lstat” values, the upper right corner. The
second group that is investigated consists of “zn” and “dis”, which both have high
values in the lower right corner, and lower values everywhere else. The metro line
also shows this gradient, but running along the lower border horizontally as “dis”
has high values there.

CHAPTER 4. GRADIENT FIELDS 130

crim + lstat
zn + dis
indus + age + rad + tax + ptratio + black
chas + nox
rm + medv

Figure 4.26: Boston housing data set, rectangular 10× 20 SOM: Metro visualiza-
tion on top of U-Matrix

These results can now be compared with the groups of component planes vi-
sualization in Figure 4.27(a) with a radius σ = 2. The black arrows denote the
group consisting of “crim” and “lstat”. It can be seen that the arrows follow the
same direction as the metro line, from the upper right to the center, continuing
to the lower left. The arrows also fill the areas the metro lines do not, e.g. in
the lower right corner, in this case away from the high values in the upper right
towards the low values in the lower right. The arrows in the left side of the map,
where there is no metro line as it ends in the center, point away from the center,
but are much less pronounced than the ones in the right part of the map. This is
due to the lower differences in the left side of the map, where “crim” values are
low and “lstat” values are high with little local differences. The group containing
“zn” and “dis” is denoted by the gray vectors. The vectors in the right side point
to the left, and the ones in the lower part are longer indicating greater differences.
Eventually, the arrows point towards the upper part, when approaching the center
of the map. This also resembles the direction of the gradient lines of the metro
visualization.

In order to actually contrast the two groups, the difference of the vectors can
be calculated, as shown in the contrast plot in Figure 4.27(b). It shows regions
where the gradients of the two groups differ. The peak difference is slightly above
and to the right of the center of the map. According to the U-Matrix, there is a

CHAPTER 4. GRADIENT FIELDS 131

gap here. Long arrows resemble large local differences in a group of component
planes. If these arrows are highly different, as measured in the contrast plot, the
two groups in question contribute to the clustering structure in opposing ways. For
example, if the SOM would consist only of the first group of component planes
“crim” and “lstat”, it would most likely have one small cluster in the upper right
corner, and a larger one containing the rest of the map. A SOM of the second
group would have a cluster in the lower right corner reaching to the center, and
another one containing the rest of the map. The contrast plot shows where these
two clusterings intersect.

A second set of variables is investigated, which are the two remaining metro
lines with two component planes each. The first group consists of “chas” and
“nox”, the second of “rm” and “medv”. Joining the first group does not receive
strong support from the dendrogram, as “chas” and “nox” are joined only at the
last step of the hierarchical clustering. However, visual inspection of the compo-
nent planes reveals that they are similar in that they both have peak values on the
upper part of the left border. “rm” and “medv” have high values on the lower left
corner, reaching to the center and the lower right part of the map, and only the
upper part of the map is occupied by low values. The groups of component planes
visualization is shown in Figure 4.28, along with the contrast plot. Again, the
arrows follow the same directions as the metro lines. Where there are no metro
lines, the gradients are generally not so pronounced, resulting in shorter arrows.
The contrast plot shows that the cluster structure differs mainly on the left side of
the map, where the first group containing “chas” and “nox” has high differences,
with a horizontal gradient, while the second group has very short arrows, as this
region is very homogeneous for these two variables.

In order to summarize this section, the following observations can been made:

• Both the metro line visualization and groups of component planes show
the gradients of clusters of variables. This is an advantage over correlation
measures, which can compare only pairs of single variables, and not groups
of them.

• Groups of component planes are a technique for contrasting sets of vari-
ables. These groups can be either based on semantic meaning or on some
pre-calculation of component plane correlation. There is no built-in mech-
anism that provides certain sets of components.

• The metro visualization provides a strongly simplified breakdown of the
subgroups of component planes, while the gradient field approach provides
more details on the contrast between the groups, especially in regions where
there are no metro lines.

CHAPTER 4. GRADIENT FIELDS 132

• The radius is not varied much in this approach, it is usually set to a sixth of
the shorter side of the side.

• The contrast plot shows where the two groups that are compared differ in
their gradients. It explains the influence of the groups on the clustering
structure, showing peaks where the cluster boundaries of each group taken
individually intersect.

4.7 Summary
In this chapter, a visualization technique for Self-Organizing Maps with vector
fields has been described that are especially aimed at professionals with engineer-
ing backgrounds. The method can be displayed either as a flow diagram where
arrows point in the direction of most likely cluster centers, or as an equivalent that
emphasizes at showing cluster boundaries. The former method is referred to as
Gradient Field, the latter as Borderline method. The arrows in the Gradient Field
method are longer close to cluster boundaries, and shorter close to the cluster cen-
ters. The lines of the Borderline are exactly as long as for the Gradient Field,
only rotated by 90 degrees. A parameter is provided that determines how much
smoothing is applied to the resulting visualization.

The Gradient Field and Borderline methods have been compared to clustering
and density visualizations and its differences, strengths and weaknesses have been
elaborated. The main difference to cluster visualizations is that the visualization is
not crisp but shows the nuances of where there are stronger and weaker boundaries
between clusters. Varying the radius can be used to finetune the visualization in
order to show local or global clustering structures. A good starting point for the
radius is one sixth of the shorter side of the map, such that the visualization is
neither too local nor too global. The Gradient Flow method is similar to the U-
Matrix at low values of σ. However, it is not able to tell about clusters that are
separated on the map, i.e. similar data projected to different parts of the map due
to topology violations, which the Graph visualization method can identify.

Furthermore, an extension to this method has been presented with the goal
of simultaneously plotting multiple groups of variables to show the decomposi-
tion of the clustering structure in contributing factors. This method has also been
shown to be able to be used to detect linear and non-linear dependencies between
variables, given the groups of the component planes are known. Another exten-
sion, the contrast plot, can be used to show where the groups that are investigated
differ most strongly, indicating at how and where they contribute to the clustering
structure, and especially to the cluster boundaries.

CHAPTER 4. GRADIENT FIELDS 133

(a)

(b)

Figure 4.27: Boston housing data set, rectangular 10× 20 SOM: (a) groups of
component planes and (b) contrast plot: “crim” and “lstat” (black) vs. “zn” and
“dis” (gray)

CHAPTER 4. GRADIENT FIELDS 134

(a)

(b)

Figure 4.28: Boston housing data set, rectangular 10× 20 SOM: (a) groups of
component planes and (b) contrast plot: “chas” and “nox” (black) vs. “rm” and
“medv” (gray)

Chapter 5

Decision Manifolds

5.1 Introduction
While the previous chapters have been concerned with the SOM as a visualization
tool seen from the perspective of unsupervised learning and clustering, where the
shape and density of the data set plays a central role, this chapter applies the SOM
algorithm to a supervised setting, where each data sample has a label, which is
known during training time, but hidden once training is completed. While the
method that is introduced in this chapter has a different goal than the visualization
methods, it is also centered around the ideas of identifying density and shape, but
aims at explaining the transitions between data of different classes rather than the
data set as a whole.

The method that is described in this chapter is a neural classifier algorithm for
binary (two-class) problems [52]. It aims at approximating the decision bound-
aries locally by linear separating hyperplanes. This estimation of decision bound-
aries is performed where the data sample is sufficiently dense by placement of
a representative that describes the decision boundary in its vicinity. The classi-
fier, which is called Decision Manifold [73], subjects the shape of the decision
boundary to topological constraints. An efficient training algorithm is provided
that iteratively updates the local classifiers by moving their positions along the
decision boundaries in a way similar to how Self-Organizing Maps (SOMs) are
trained. One of the major conceptual contributions of this chapter is that it trans-
fers self-organization to the domain of supervised learning, which has been tried
before with mediocre results, such as the Supervised SOM [50]. This chapter
thus places special emphasis on the theoretical findings, but provides experimen-
tal results by comparing the classifier algorithm to prominent machine learning
techniques on a number of artificial as well as benchmark data sets.

Further, a model selection scheme is presented to estimate the correct topol-

135

CHAPTER 5. DECISION MANIFOLDS 136

ogy. As shown in the experiments section, the Decision Manifolds classifier is
comparable in performance to modern supervised learning algorithms. Apart from
fast training, the advantage of this method lies in the exploitation of the classifier
topology, which is used during training to align the classifiers to achieve an or-
dered representation of the decision boundary, and to avoid overfitting and local
minima in the placement of the local classifiers. In the last stage of the train-
ing phase, when the positions of the individual local classifiers have converged,
the topology is used to fine-tune classification performance by determining the
optimal voting weights.

The remainder of the chapter is based upon the presentation of the algorithm
in [72, 73] and is organized as follows: As this part of the thesis deals with super-
vised learning, this chapter has its own related work in Section 5.2. In Section 5.3,
concepts that this technique is based upon are described, namely linear classifiers
and decision boundaries in general. Further, a brief introduction to topological
concepts is given that are the motivation for the Decision Manifold approach. Sec-
tion 5.4 outlines the training algorithm, optimization of classification accuracy by
adapting the voting weights of the classifiers in the committee, and a model selec-
tion framework for estimating the topology of the basic classification algorithm.
Applications to artificial and benchmark supervised learning data sets are given
in Section 5.5, as well as comparisons to state-of-the-art classifiers. Section 5.6
summarizes the Decision Manifolds algorithm.

5.2 Related work
The related work section is split into two parts, as Decision Manifolds are concep-
tually related to two approaches: The first one is the mostly unsupervised domain
of non-linear projection methods. In the second part, classification methods are
discussed. The Decision Manifolds algorithm is inspired by topology preservation
from the first part, while it competes with supervised learning techniques from the
second part.

5.2.1 Non-linear dimensionality reduction methods
Decision Manifolds are inspired by topology preservation, hence the first part
of the related work is concerned with comparable unsupervised methods usu-
ally applied in visualization settings, or for pre-processing and feeding the lower-
dimensional outputs to a supervised algorithm. Some of the approaches described
in this section take this a step further and perform the projection in a way that
explicitly prepares the classification.

CHAPTER 5. DECISION MANIFOLDS 137

There are several methods for learning manifolds. These consider the shape
of the data cloud when calculating the projection from feature to output space.
Among the most important of these algorithms are Isomap [95], Self-Organizing
Maps, and Locally Linear Embedding [89]. The specific features of Self-Organizing
Maps have been discussed in more detail in Section 2.2.

Isomap works by initially computing a graph structure that replaces the orig-
inal distance function in feature space. Each data point is a vertex in this graph,
and egdes exist only for data points which are close in feature space, and are
weighted by their original distance. Closeness in input space can be determined
either by a k-nearest neighbors scheme or by a threshold distance. The distance
between two points is then defined as the shortest path connecting the vertices of
two data points. The distance thus depends on the manifold, such that its path has
to follow the distribution of the data cloud. This distance matrix is subsequently
subjected to a Multi-Dimensional Scaling [99] algorithm that performs the actual
dimensionality reduction.

Several approaches have been made to extend the standard Isomap to a super-
vised setting. WeightedIso [117] performs this by increasing the distance mea-
sured through the graph structure by introducing a penalty for data samples with
different labels. This is taken a step further by the Supervised Isomap [24], where
the distance penalty is computed in a more sophisticated way by subjecting the
Euclidean distance to one of two transformation functions, based on whether the
distance is measured between samples with different labels or not. After the sam-
ples are projected, a generalized regression network [119] is performed to com-
plete the model for non-learning set data points. Data point labels are predicted
by projection and subsequent labeling through a k-nearest neighbors algorithm.

An approach that is similar to Isomap is Locally Linear Embedding (LLE).
While the former finds a global geodesic mapping solution, LLE is, as its name
implies, more local in its focus. It is performed by first finding the best least-
squares approximation by a linear combination of a data sample by its nearest
neighbors. The coefficients of this approximations are stored in a matrix, which is
then used to perform a reconstruction of the data samples in the low-dimensional
output space. A supervised LLE variant exists [82], which also tweaks the dis-
tance measure by introducing a penalty for distances between samples of differing
classes.

The advantages of both LLE and Isomap lie in convergence, globally optimal
solutions, and low numbers of parameters. LLE is also computationally very ef-
ficient, while Isomap in its original form has complexity issues, which have been
solved with more recent developments [30, 120, 92]. The problem of global pa-
rameterization of the resulting manifolds has also been addressed in various ways,
such as through the generalized regression network mentioned above, or by global
coordination methods [85].

CHAPTER 5. DECISION MANIFOLDS 138

The fundamental difference between both Isomap and LLE and the Decision
Manifolds method is that Supervised Isomap performs the classification after the
projection into a subspace that is of a lower dimension than the original feature
space has occurred. The topology-related part of these algorithms is thus utilized
in the projection. Decision Manifolds perform the separation in the original fea-
ture space. The topology-related part, which is inspired by how SOMs arrange the
prototype vectors, is restricted to positioning the separating hyperplanes which ul-
timately perform the classification.

The similarities between Self-Organizing Maps and Decision Manifolds lie
generally in the algorithm, as only the principle of aligning vectors within some
measure of neighborhood is borrowed. The algorithmic similarities will become
obvious in Section 5.4.1. However, the original SOM and Decision Manifolds
differ fundamentally as the SOM is purely an unsupervised visualization method,
while Decision Manifolds are a pure classification technique.

5.2.2 Supervised learning methods
Supervised learning algorithms [34], such as Support Vector Machines [107],
Random Forests [13], k-Nearest Neighbors, and Decision Trees [14], are the pri-
mary methods that the Decision Manifolds algorithm is competing with. Some of
these algorithms have been described in Section 2.1.2. Each classifier estimates
the separating manifold in some way, which lies between adjacent regions with
opposing labels. This estimation can be either explicit, where the shape of the
decision boundary can be extracted, like SVMs, or implicit, where it is not eas-
ily possible to find a representation of the decision boundary, like with k-Nearest
Neighbors and Random Forests.

There has been a lot of effort in the past two decades to design and imple-
ment piecewise linear classifiers, starting with the work of Sklansky [93]. In this
approach, a number of hyperplanes is created and the feature space is split into
partitions. However, the algorithm has severe complexity problems, as the num-
ber of partitions grows exponentially with the number of hyperplanes, as opposed
to linear complexity in terms of number of hyperplanes with Decision Manifolds.

A lazy learning algorithm that is conceptionally similar to the Decision Man-
ifolds approach is proposed in [11], where for each pattern that is to be classified
k training samples from its vicinity are selected and a classifier is trained on this
data set. The results have been shown to be very good in terms of classifica-
tion performance, however, computationally this approach is very expensive, as
a new classifier has to be trained with every pattern to be classified. The Deci-
sion Manifolds algorithm is similar in terms of classification accuracy, but is not
a lazy learner as it takes advantage of local representatives that cover an area of
the feature space, thus speeding up the learning and classification process consid-

CHAPTER 5. DECISION MANIFOLDS 139

erably. In Section 5.4.1, the non-trivial task of training and positioning these local
representatives is elaborated.

As Decision Manifolds consist of several local classifiers that perform the ac-
tual classification task by a voting scheme, ensembles of classifiers [16] are related
to this technique. Mixtures of local experts [38] train a committee of multi-layer
perceptrons in a competitive learning approach where each MLP covers a region
of the feature space. The final classification is performed by a selector that as-
signs the samples to be classified to the local experts. Recently, ensembles of
biased classifiers [44] have been introduced to increase classification performance
by training several classifiers that minimize the error each for a different class.

SVMs deserve special attention in this context, as the shape of the decision
boundary is directly influenced by the kernel function. In case of linear kernels,
the boundary is simply a hyperplane, while in the case of e.g. a cubic kernel and
a two-dimensional input space, the decision boundary is a cubic polynomial. The
Decision Manifolds method differs in that it approximates this decision boundary
with a number of hyperplanes, which are connected by a static topology. This
topology is an input parameter in the same sense as the kernel function is an
input parameter for SVMs. As the dimension of the discrete topology has to be
estimated, a model selection technique is proposed in Section 5.4.3 that applies a
linear dimensionality reduction method, but not for actual pre-processing of the
data samples, but for coming up with rough estimates for candidate topologies.

5.3 Elementary Concepts
In this section, several concepts that the Decision Manifolds algorithm is based
upon and which will serve as building blocks are discussed. Further, the relevant
notations used in the later sections are defined. Section 5.3.1 describes general
properties of linear classifiers that are used as the building blocks of the algorithm.
As a motivation for Decision Manifolds, decision boundaries in general, their
topological properties, and linear approximation are described in Section 5.3.2.

5.3.1 Linear Classifiers
In this section, the notation for linear classifiers which is required for the Decision
Manifold method is described. What linear classifiers generally have in common
is that their result are separating hyperplanes. These can be extracted and are used
by Decision Manifolds. Data samples xi ∈ R with binary labels y ∈ {−1, +1}
are presented to the classifier algorithm. The whole data set without the labels is
written as matrix X , where rows correspond to patterns and columns to features,
and a vector of labels y. After training the classifier, the normal vector w̃(X,y)

CHAPTER 5. DECISION MANIFOLDS 140

to the separating hyperplane pointing in the direction of class +1 is obtained.
As the affine hyperplane is characterized by the pair of its normal vector and an
arbitrary point that lies on this hyperplane, homogeneous coordinates are adopted
that include the offset- or bias-term in an artificial coordinate in the first position
of the vector to avoid the cumbersome notation of pairs of vectors and points. In
the rest of this chapter, homogeneous coordinates are referred to by a tilde over
the letter symbolizing vectors and matrices, which are obtained by insertion of
“1” as a first coordinate. Non-homogeneous coordinates are written without the
tilde, and refer to the vector without the bias term.

Using this notation, classification of datum x is performed by estimating label
ŷ, formally

ŷ(x) = sign(x̃ · w̃) (5.1)

Rosenblatt’s Perceptron [84] is a well-known example for an iterative classifier
that starts with a randomly initialized hyperplane, which is then updated as the
data vectors are presented during several epochs. The Perceptron algorithm has
been shown to converge to an optimal solution with no misclassification in case
the data set is linearly separable. In this chapter, however, the Moore-Penrose
Pseudoinverse is used, where the separating hyperplane can be computed in a
single step, thus not requiring multiple iterations. This way of calculating the
normal vector is defined as

w̃(X,y) = (X̃>X̃)−1X̃>y (5.2)

This method solves the linear least squares problem. One drawback is that the re-
sults deteriorate in case the data distribution is skewed or contains outliers. How-
ever, it is deterministic and computationally cheap, so it will be used in most of
the experiments.

Another choice for a classifier is the linear Support Vector Machine (SVM, [107]).
This method is computationally rather expensive, and will thus only be used for
performance experiments with Decision Manifolds in Section 5.5.3.

5.3.2 Decision Surfaces and Topological Considerations
Every classification algorithm explicitly or implicitly performs an estimation of
a decision surface which partitions the feature space into disjoint regions that are
assigned a label. Mathematically, a decision surface is a hypersurface (i.e. of di-
mension D−1, and of arbitrary shape). This decision boundary is assumed to con-
sist of a finite number of topological manifolds, thus the possibly non-contiguous
hypersurface can be decomposed into contiguous subsets. Bounded topological
manifolds, i.e. ones that do not extend to infinity, can be categorized according
to their dimensionality. For example, a line segment is topologically equivalent to

CHAPTER 5. DECISION MANIFOLDS 141

(a) (b)

Figure 5.1: (a) Example of a decision surface by decision trees, (b) graph of {4×
3× 2} topology with connections for Aij = 1

an arc of a circle since both are one-dimensional manifolds. Further, a topological
manifold has a surface that is locally Euclidean and can thus be approximated by
a patchwork of hyperplanes.

For example, Decision Trees are recursively constructed by splitting the fea-
ture space perpendicular to a coordinate axis. Figure 5.1(a) shows partitions for a
decision tree, where dashed lines denote splitting decisions, and the solid line de-
notes the parts of the the actual decision hypersurface, which is one-dimensional
in this case. In the rest of this chapter, it is assumed that the decision surface con-
sists of a finite number of topological manifolds, thus the possibly non-contiguous
hypersurface can be decomposed into contiguous subsets. In the Decision Tree ex-
ample, there are two disjoint lines that delimit regions corresponding to different
classes.

Figure 5.2(a) shows a possible decision boundary in three dimensions of the
form f(x, y) = 1/x. Figure 5.2(b) shows a linear approximation of this surface
by three hyperplanes aligned along a one-dimensional manifold, i.e. a curve. The
approximation shows one important concept that can be exploited: As the func-
tion value is constant along the y coordinate, the patchwork can be aligned along a
one-dimensional manifold. There is no need to introduce additional hyperplanes
along the y-coordinate as this is already covered by the linearity of the hyper-
planes that extend to infinity in the y direction. The two-dimensional decision
manifold can thus be represented by a one-dimensional topology, along which
the hyperplanes are patched together. If their number is increased, the manifold
can be approximated at arbitrary precision. In Section 5.5, the experiments show
that the required topology dimension is usually very much lower than the feature
space dimension. Figure 5.2(b) also gives an outline of the goal of Decision Man-

CHAPTER 5. DECISION MANIFOLDS 142

0.5 1 1.5 2 2.5 3 3.5 4 0

2

4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

Figure 5.2: Illustration of decision surfaces: (a) decision hypersurface in 3-
dimensional space, (b) approximation by 3 local hyperplanes aligned along a 1-
dimensional manifold

ifolds: A set of points that represent the center of a classifier hyperplane (square
markers) and their topologically correct order (dashed lines). Following this mo-
tivation, the algorithm that is described in the next section aims to estimate a local
approximation of the decision hypersurface with the following characteristics:

• The decision surface is estimated reliably where data density is sufficiently
high, otherwise extrapolation is used by extending the decision hyperplanes
to infinity.

• The decision surface can be approximated locally by linear classifiers that
are ordered along a topology that is as low-dimensional as possible.

The Decision Manifolds classifier consists of a set of local linear classifiers
that are subjected to a given topology. In this chapter, rectangular topologies of
various dimensions are considered. This is referred to the classifier’s topology as
the number of local linear classifiers along the axis in each dimension; the topol-
ogy of the classifier in Figure 5.2(b) would be {3}. An example of a topology with
{4× 3× 2} local classifiers is shown in Figure 5.1(b) where each dot at the inter-
sections of the grid’s edges represents a local linear classifier. These are similar to
the units of a Self-Organizing Map of according dimensionality, i.e. in this case
a 3-dimensional SOM. However, the major difference to SOMs is that prototype
vectors are placed where data density is high, and the Decision Manifolds method
places hyperplanes between dense areas of samples with different labels.

CHAPTER 5. DECISION MANIFOLDS 143

Algorithm 1 Training Algorithm
1: randomly initialize cj and vj

2: for t = 1 to T do
3: for j = 1 to M do
4: find set of samples Sj assigned to classifier j
5: compute weight γj

6: if γj > 0 then
7: compute separating hyperplane w̃j

8: compute projection c′j of center point nj to w̃j

9: compute normal v′j from w̃j

10: end if
11: end for
12: compute new cj according to topology A, c′, and σ(t)
13: compute new vj according to topology A, v′, and σ(t)
14: end for
15: compute σfinal

5.4 Decision Manifolds
In this section, the Decision Manifolds classification algorithm for two-class

decision problems is introduced. Section 5.4.1 introduces the training algorithm
for this supervised learning method. Section 5.4.2 discusses how to classify unla-
beled data with a trained Decision Manifold, along with optimization approaches
for classification accuracy. In Section 5.4.3, a framework for estimating a suitable
topology for the Decision Manifold is proposed.

5.4.1 Training of Decision Manifolds
For supervised learning, as opposed to the unsupervised setting described in Sec-
tion 2.1.2, the training samples xi are each associated with a class label yi ∈
{−1, 1}. The Decision Manifold consists of M local classifiers, each specified by
a pair of a representative point cj ∈ RD and a classification vector vj ∈ RD that
is orthogonal to the decision hyperplane of the local classifier. Both cj and vj are
initialized randomly. cj determines the position of the classifier in feature space,
while vj is relevant for performing the classification. Samples to be classified
are assigned to their closest representative and classified by the local hyperplane
defined by vj . The goal of the training algorithm is to put the representatives cj

in the adequate positions and to let vj point in the correct direction for classifica-
tion. When training has finished, the Decision Manifold is described by the tuple
{C, V, σfinal, A}, where A is the given topology, C and V are the sets of representa-

CHAPTER 5. DECISION MANIFOLDS 144

tives and classification vectors, respectively, and σfinal is the optimal classification
width, which will be defined in Section 5.4.2. An example of a trained classi-
fier can be seen in Figure 5.4(g). The thin lines delimit the areas where samples
are assigned to the respective classifier, and thick lines and arrows represent the
separating hyperplane. The dashed lines refer to the topology of the Decision
Manifold. Note that the connected classifiers are actually next to each other. This
ordering is induced by the imposed one-dimensional topology in this example,
which will be explained in the course of this section. Further, an iterative algo-
rithm is provided, that aims at placing the representatives in a way such that the
predefined topology of the classifiers is preserved, i.e. that neighboring classifiers
are responsible for neighboring areas of the data space. The adjacency matrix A
that defines the topology, and thus the shape of the decision boundary, is assumed
to be given throughout this section. Selection of a suitable topology is dealt with
in Section 5.4.3, since training with a topology that does not match the shape of
the decision boundary will result in suboptimal classification performance.

Training is performed for a predefined number of epochs T . The experiments
have shown that this parameter is non-critical to the performance of the classi-
fier, and T = 5 is assumed in the rest of this chapter. An outline of the training
algorithm is given in Algorithm 1, and is referred to by the line numbers when
explaining each step. In the first step of each epoch, the data samples are assigned
to the closest local classifier representative (line 4), as in Equations 2.2 and 2.3.
Again, the set of indices of samples mapped to the j th local classifier is denoted as
Sj , and the sets of samples and labels assigned to it as XSj

and ySj
, respectively.

Note, that other than in the case of the unsupervised SOM, the representatives
cj are not true prototype vectors placed where data density is high, but rather in
positions where there is a transition between two neighboring areas of different
classes, which will be explained in detail in the next paragraphs. Further, the cen-
ters nj of the partitions are of interest, which do not necessarily have to coincide
with cj .

Once all the samples have been assigned, a linear classifier is trained for each
partition to obtain a separating hyperplane. Since this can only be performed if
samples of both classes are present, and the number of training samples will be of
interest in a later step, the weighting factor (line 5) can be computed as follows:

γj =

{ |Sj| if (−1 ∈ ySj
) ∧ (+1 ∈ ySj

)
0 otherwise (5.3)

This means that classifier positions that are located in areas of high data den-
sity and contain data samples of both classes will receive higher weights. More
complex estimates, based e.g. on the relative frequency of both classes, may be
used but the simple estimate has shown to perform equally well. If γj > 0, a linear
classifier is trained (line 7) on the subset XSj

from which the separating hyper-

CHAPTER 5. DECISION MANIFOLDS 145

plane w̃j(XSj
,ySj

) can be extracted, as defined in Section 5.3.1. This hyperplane
must pass through the convex hull of the training samples XSj

and thus partly lies
within the Voronoi region of representative cj . The next step to be performed is
updating the representative cj such that it lies on the separating hyperplane and
does not drastically change the Voronoi partition for consecutive epochs. As all
the points that lie on the hyperplane are equivalent to describe it along with the
normal vector, a new preliminary representative c′j is computed. It lies on the
hyperplane by projection of the data centroid nj and stores the information for
classification in the normalized vector v′j:

c′j = πw̃j
(nj) (5.4)

v′j =
wj

‖wj‖ (5.5)

where πw̃(·) denotes orthogonal projection onto the hyperplane specified by w̃.
This projection ensures that the representative is placed on the decision boundary
and is the point closest to the centroid of the Voronoi partition. A schematic
overview of this update step (from partitioning in Voronoi sets to calculation of
c′j and v′j) is shown in Figure 5.3(a). For the set of points delimited by the thin
lines that represent the borders of the Voronoi region, the separating hyperplane
obtained by linear classification is shown as a dashed line (“B”). The centroid nj

(“A”) is projected along the normal (“C”) to its position c′j (“D”).
At this point, the topology that puts the representatives into relation comes

into play. As the local classifiers should be ordered such that they resemble a con-
tinuous decision surface, a smoothing step is performed that takes care of ordering
the local representatives to obey the topology induced by matrix A. This step is
very similar to the update process used in the training of SOMs. The neighbor-
hood kernel weighted by the number of samples in each Voronoi partition is used
to calculate smoothed versions along the topology of both the classification vec-
tors vj and representatives cj . The idea behind this is to make them more similar
to their topological neighbors in order to achieve a smooth representation of the
decision boundary and to avoid overfitting. Using a formula similar to the Batch
SOM training defined in Equation 2.14, the updated local classifiers (lines 12, 13)
are

cj =

∑M
k=1 hσ(t)(k, j) · γk · c′k∑M

k=1 hσ(t)(k, j) · γk

(5.6)

vj =

∑M
k=1 hσ(t)(k, j) · γk · v′k∑M

k=1 hσ(t)(k, j) · γk

(5.7)

The new representatives cj and classification vectors vj are derived from the pre-
liminary versions c′j and v′j defined in Equation 5.4 and subjected to the kernel

CHAPTER 5. DECISION MANIFOLDS 146

DC

A

B

(a) (b)

Figure 5.3: (a) Training of a linear classifier; thin lines indicate borders of Voronoi
set, “+” and “-” denote samples, “A” center point n, “B” separating hyperplane,
“C” normal v′, “D” projected center: c′, (b) smoothing over neighborhood topol-
ogy: the upper part shows the local classifiers before smoothing step, the lower
part after the smoothing step where the representatives and classification vectors
are made more similar according to the topology

smoothing according to Equation 2.8. Further, cj and vj are weighted according
to topological distance and by the number of data points γj they represent. Thus,
a local classifier that represents many data points will pull its neighbor that rep-
resents relatively few samples in its direction. Also, an effect known in vector
quantization as magnification factors [115] occurs that concentrates representa-
tives in dense areas. During the first few epochs, a high value of σ ensures that
the local classifiers are aligned according to the topology. As σ declines, the lo-
cal classifiers specialize and reach their final positions. The influence through
topological proximity thus vanishes. Figure 5.3(b) explains how this smoothing
happens over a possibly overtrained situation, and shows how the representatives
and classification vectors are realigned to be more similar to their neighbors. After
this step, the current epoch is finished.

Figure 5.4(a)–(h) shows an example of training 5 local classifiers with a one-
dimensional topology, referred to as {5}, on a simple non-linearly separable data
set. It consists of 200 samples that are distributed along a sine-wave with Gaussian
noise, where the class “+” is offset by a small vertical margin. In the figures, data
points are represented as “+” and “o”. The classification vectors vj are shown as
the arrows pointing to the direction of the “+” class, and the hyperplanes as thick,
solid lines. The positions of the representatives cj are denoted as small squares
where hyperplane and classification vector intersect. The topology of the local

CHAPTER 5. DECISION MANIFOLDS 147

classifiers is visualized by dashed lines connecting adjacent local classifiers (i.e.
where Aij = 1). In Figure 5.4(a), the randomly initialized Decision Manifold is
shown. After the first training epoch, depicted in Figure 5.4(b), the local classi-
fiers are arranged in a more orderly fashion as a result of smoothing according
to Equation 5.6, yet do not classify well after this iteration. Figures 5.4(c)–(e)
show the consecutive stages of training as σ, the parameter controlling the mutual
influence between topological neighbors, is decreased. The purpose of the earlier
epochs is to roughly align the representatives along the topology, while the later
epochs are for fine-tuning the individual areas of each classifier. The finished De-
cision Manifold is shown in Figures 5.4(f),(g) with and without the data points.
It can be seen in Figure 5.4(h), which shows the Bayes decision boundary as a
thick line along with the decisions over the whole feature space, that the optimal
decision boundary has been approximated very reliably. Figures 5.4(i),(j) show a
trained Decision Manifold of topology {1} that consists of only a single classifier,
and is thus equivalent to performing a simple linear classification. This topology
is not capable of approximating the decision boundary sufficiently. Selecting the
(unknown) correct topology in the first place is thus very important and will be
dealt with in Section 5.4.3.

The complexity of the training algorithm can be calculated as the sum of the
sample assignment to representatives O(N ·M), training of the M linear classifiers
O(M ·Ol(N)), where Ol denotes the classifier complexity, and the complexity of
the SOM update step O(M2). For T epochs, this results in O(T · (N ·M + M ·
Ol(N) + M2)). The training algorithm can be implemented very efficiently. In
the current experiments running on a 1.60 GHz computer and a Matlab imple-
mentation of the algorithm, the training duration for a data set with N = 400 and
D = 50, and training parameters T = 5,M = 20 is less than a second.

5.4.2 Classification with Decision Manifolds
When the local classifiers are in their final positions, the training algorithm enters
its last phase where the classification performance is fine-tuned on the training
data set. In its most simple form, classification is performed by assigning a data
sample to its closest linear classifier in the same way as during training, and then
classifying it according to its position relative to the hyperplane, and is defined
analogous to Equation 5.1 in non-homogeneous coordinates:

ŷ(x) = sign
(
(x− cI(x))

> · vI(x)

)
(5.8)

A more sophisticated approach takes advantage of the topology: Since neigh-
boring representatives are expected to form a smooth decision boundary, voting
of the local classifier ensemble according to the topological proximity of every

CHAPTER 5. DECISION MANIFOLDS 148

classifier to the representative closest to x, i.e. cI(x), can significantly increase
accuracy [122]:

ŷ(x, σ) = sign
(M∑

j=1

Kσ(I(x), j) · ŷ(x)
)

(5.9)

where σ is the smoothing width, with higher values increasing the influence of
distant classifiers in terms of the topology. Effectively, the datum x is classified by
all the hyperplanes, and the final decision is performed as weighted voting where
neighboring classifiers receive a higher weight. In the last step of the algorithm
(line 15), the training set accuracy (the percentage of correctly classified samples)
of the classifier is maximized with respect to σ. This is done by sampling several
values of 0 < σ ¿ M and by setting

σfinal(C, V,X,y) = arg max
σ

accuracy(C, V,X,y, σ) (5.10)

Next, five data sets representing typical non-linearly separable supervised learn-
ing problems are discussed, each consisting of 200 samples. They are shown in
Figure 5.5 together with the trained Decision Manifold. Note that the dashed lines
again do not determine the classification boundaries, but indicate the topological
neighborhood of the local classifiers.

The first example, shown in Figure 5.5(a), consists of samples divided by a
boundary along a quadratic polynomial. The Bayes decision boundary is non-
linear in this case. 6 local linear separators are trained, resulting in the ordered
approximation visualized in the figure.

In Figure 5.5(b), both classes are normally distributed with the same center,
but class “+” has a higher variance. In this case, there is considerable overlap
between the two classes in all regions. The Bayes optimal boundary runs along
a circle where the class conditional probability density functions intersect. As
Figure 5.5(b) shows, the Decision Manifolds algorithm is capable of finding this
border. Within this circle, there will likely be some misclassifications of class “+”,
but class “o” is still more common there.

In a related example shown in Figure 5.5(c), class “o” is distributed uniformly
on a circle, and class “+” is normally distributed around its center. A Bayes opti-
mal classifier would assign label “o” to any point on the circle and “+” otherwise.
The Decision Manifold consists of 5 local classifiers along a one-dimensional
bounded topology. This is a mismatch to the topology of the actual decision
boundary, which is also one-dimensional but circular. However, most of the clas-
sification boundary can still be captured. Due to the sparsity of samples outside
the circle, the decision boundary does not identify these samples correctly as “+”.

Figure 5.5(d) shows the results for a data set where the Bayes decision bound-
ary is not contiguous. The decision hypersurface is split into two linear manifolds

CHAPTER 5. DECISION MANIFOLDS 149

Table 5.1: Eigenvalues of PCA, Dimensionality estimation for the topology con-
necting the local classifiers

i λi Topology for dmax = i without 0,1 Graph
1 0.2618 {10} {10}
2 0.2164 {5× 4} {5× 4}
3 0.1287 {4× 3× 2} {4× 3× 2}
4 0.1094 {3× 3× 1× 1} {3× 3}
5 0.0953 {3× 2× 1× 1× 1} {3× 2}
6 0.0853 {2× 2× 1× 1× 1× 0} not valid
7 0.0525 {2× 2× 1× 1× 1× 0× 0} not valid
8 0.0506 {2× 2× 1× 1× 0× 0× 0× 0} not valid

(parallel lines). After training of 6 local classifiers with a one-dimensional topol-
ogy, the result shows that the Decision Manifolds method is capable of dealing
with this problem. It could have been solved with only 2 linear classifiers, but it
has been chosen as a demonstration of how the representatives are aligned in case
of a topology breach. Further, it is demonstrated in this example that the Decision
Manifolds’ performance does not deteriorate in case of over-specification in terms
of the number of classifiers.

In Figure 5.5(e), separation of the XOR-problem is demonstrated with four lo-
cal classifiers. Here, the feature space is split along the diagonals, and the neigh-
borhood relations are disregarded for classification, i.e. σfinal is close to zero and
no voting is performed.

5.4.3 Topology Estimation and Model Selection
It has been mentioned above that selection of a suitable topology is critical for the
performance of the Decision Manifolds algorithm, as the topology constrains the
shape of the decision boundary. In this section, a scheme for topology estimation
is presented, and a model selection approach that trains several Decision Mani-
folds with different topologies and selects the best one. Training over a number of
topologies can be afforded due to the computational inexpensiveness of training a
Decision Manifold. The topology connecting the representatives can have at most
dimension D − 1. If it is assumed that each axis of the topology grid contains 5
local classifiers, and the dimension of the data set is 50, this would result in 549

classifiers, which clearly cannot be handled. As the dimension of the topology is
likely to be much lower, a reasonable estimation of the intrinsic dimensionality

CHAPTER 5. DECISION MANIFOLDS 150

of the data set has to be performed. This task has been addressed previously [5].
In the context of Decision Manifolds, a simple PCA-guided scheme is applied.
From the data set X , the ordered set of eigenvalues λ1, . . . , λD is extracted, which
is normalized to add up to one. Note that PCA is not used for dimensionality
reduction of the data set, just for estimation of the topology. For the approximate
desired number m of classifiers distributed along all discrete axes, the topology is
constructed as follows:

di =
⌊ m · λi∑dmax

j=1 λj

⌋
, (5.11)

where di is the number of classifiers along the rectangular topology’s ith axis,
and b·c denotes rounding down to the closest integer. The topology is then {d1 ×
· · · × ddmax}. dmax is the dimension of the topology, at most the data set dimension
D. di = 1 can be omitted, since an axis that only holds one discrete coordinate
does not provide any information, and if any di = 0, the topology is not valid.
Further, the topology is constructed as a ratio of the up to D eigenvalues λ1 :
λ2 : · · · : λdmax . For example, the Pima Indian Diabetes data set, which will be
discussed in the next section, consists of 8 variables. Its ordered eigenvalues are
0.26, 0.21, 0.12, 0.10, 0.09, 0.08, 0.05, 0.05; for m = 10 the candidate topologies
are shown in Table 5.1. This procedure is repeated by iterating m = 1 . . . 10,
thereby a set of 17 distinct topologies is obtained, the smallest of which is {1},
the largest is {4 × 3 × 2}. 10 has been chosen as a reasonable upper limit for
m as real-world problems rarely require large numbers of separating hyperplanes.
For estimation of the performance of the Decision Manifold with each topology,
X is split into training and test set. After each classifier has been trained, σfinal is
estimated on the training set. The resulting Decision Manifolds are then evaluated
on the test set, and the best model is selected.

For estimation of the generalization accuracy, 10-fold cross-validation [87]
is performed. The remaining 90 % of the data set are divided into training and
test set by the ratio 80 to 20. The topologies for the models are then estimated
by the PCA approach described in the previous paragraphs and the models are
trained, and σfinal is estimated. The resulting classifiers are then evaluated on the
test set, and the best model is selected for validation, resulting in the final accuracy
measurement. This Training-Test-Validation approach is summarized in Table 5.2
for one fold.

To summarize the methodological part of this chapter, the properties of the
Decision Manifolds method are recapitulated:

• The algorithm is a stochastic supervised learning method for two-class prob-
lems.

CHAPTER 5. DECISION MANIFOLDS 151

Table 5.2: Model Selection

Training Test Validation

Classifier Topology
Estimate

 σ

 Test Set

Accuracy

Validation Set

 Accuracy

1

4

3

2

.

.

.

0.66

2.14

1.19

0.27 87 %

88 %

77 %

82 %

Best Model 85 %

• Computation of a Decision Manifold is computationally very efficient.

• The topology induced by adjacency matrix A defines the ordering and align-
ment of the local classifiers; it is also exploited for optimizing classification
accuracy by a weighted voting scheme.

• As the topology of the decision hypersurface is not known in advance, a
heuristic model selection is applied that trains several classifiers with dif-
ferent topologies.

• The classifier performs well in case of multiple non-contiguous decision
surfaces and non-linear classification problems such as XOR.

CHAPTER 5. DECISION MANIFOLDS 152

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 5.4: Training algorithm on non-linearly separable data set: (a) after ini-
tialization, (b)–(f) after 1st–5th epoch, (g) after training (without data samples),
(h) classification results and Bayes decision boundary, (i) only one classifier, (j)
classification with one classifier

CHAPTER 5. DECISION MANIFOLDS 153

(a) (b)

(c) (d) (e)

Figure 5.5: Decision Manifolds on artificial data sets: (a) quadratic decision sur-
face, (b) 2 Gaussians with different variances, (c) ring and Gaussian, (d) 2 linear
separations, (e) XOR

CHAPTER 5. DECISION MANIFOLDS 154

5.5 Experimental Results
The experiments that have been conducted are categorized into tests with artificial
data sets, benchmark data sets, and different linear classifiers. The artificial data
sets in Section 5.5.1 are designed to test a specific capability of the classifier.
The strengths and weaknesses of the classifiers become obvious with these data
sets. The benchmark data in Section 5.5.2 sets show the applicability of Decision
Manifolds in real-world settings. The final experiment in Section 5.5.3 tests which
linear classifier should be used.

The results of the Decision Manifolds are compared to Random Forests, lin-
ear, polynomial, and radial basis function SVMs, k-Nearest Neighbors, and De-
cision Trees, by averaging the out-of-bag error for 10-fold crossvalidation. The
experiments of these classification algorithms have been performed with R, a com-
putational statistics environment 1, using the libraries “nnet”, “ipred”, “Random-
Forests”, “e1071”, and “rpart”. The parameters have been estimated according to
the following model selection schemes by sampling the parameter in question in
15 steps: For polynomial SVMs, the degree of the kernel has been tuned in the
range of 2–5, and for RBF kernels, the radius has been tuned in the range of 0.2 –
4. k-NN was performed with 1 ≤ k ≤ 29, where k are only the odd numbers in
order to avoid ties. For Random Forests, 500 trees have been trained and random
splitting with 30% of the variables has been used. In this case, no model selection
has been performed, as Random Forests are generally very robust with respect to
the choice of parameters. For Decision Trees, different pruning thresholds have
been tried, a parameter that influences the size of the tree grown. Decision Man-
ifolds have been trained with T = 5 epochs, and with Moore-Penrose-Inverse as
underlying linear classifier. All the experiments have been performed on a 1.60
GHz computer, and a Matlab implementation of the Decision Manifold algorithm
has been used.

5.5.1 Artificial Data Sets
In this section, certain properties of Decision Manifolds are investigated and com-
pared to other machine learning methods. The data sets are low-dimensional and
are specifically designed to address a characteristic classification problem. Each
data set is generated from a hidden probability density function. Three samples
of different sizes are taken from each generating function in order to show the
scalability and convergence of the classifiers. Tables 5.3 and 5.4 summarize the
results.

The first class of problems are the chessboard family of data sets, depicted in

1R can be obtained at http://cran.r-project.org.

CHAPTER 5. DECISION MANIFOLDS 155

Figure 5.6. The XOR is the simplest of these, with 2 fields of either class. The
other data sets are bigger, with 4 × 4 and 8 × 8 fields. The XOR problem can be
easily solved by any classifier except for the linear SVM, and the other algorithms
achieve error rates of 0 – 5%. Random Forests perform best for 500 and 1000
samples, with 0.6 and 0.0% error rates, respectively.

For the 4× 4 chessboard, the error rates are significantly higher, even though
a Bayes decision boundary with 0% error rate exists. As the number of XOR-
like fields increases, the number of points may appear deceptively high: For this
data set, there are 4 × 4 = 16 fields, so the number of points per field is only
12.5 on average for the 200 data points setting, making this data set much more
difficult than the XOR. Decision Manifolds achieve errors 18.0, 10.2, and 9.0 %,
for data set sizes of 200, 500, and 1000 points, respectively, and perform slightly
worse than RBF SVM, k-NN, and Random Forest, while outperforming the other
3 classifiers. Decision Manifolds can solve this problem by aligning the local clas-
sifiers row by row between the fields of opposing classes. The setup of the local
classifiers works with both one- and two-dimensional topologies. However, this
category of problems is particularly challenging for Decision Manifolds, which
perform best in case of continuous boundaries of arbitrary shape, or continuous
boundaries with a low number of breaks. An example of how this problem can
be solved with Decision Manifolds is presented in Figure 5.6(b), where a {5× 5}
topology is selected, resulting in an error as low as 2.5%. However, such a topol-
ogy is rarely selected for such a low-dimensional data set, due to the fact that the
whole concept of Decision Manifolds assumes that the data set’s complexity is
much lower than the original data space. Thus, the errors reported in Table 5.3 are
significantly higher than the 2.5%.

For the 8 × 8 chessboard, the error rates are once again higher. There are
8× 8 = 64 different fields, resulting in 3.125 points per field for the 200 samples
data set, and 15.625 points per field for the 1000 samples data set. These are very
low numbers and make prediction very difficult. Decision Manifolds generally
perform bad on this data set. In order to correctly classify this example, a linear
classifier would have to be placed between all adjacent fields. The number of
such transitions is n · (n− 1) · 2, thus for the classical XOR, 4 local classifiers are
required, for the 4× 4 chessboard, the number is 24, and for the 8× 8 chessboard,
112 linear classifiers are required. The model selection scheme typically does
not test such a high number of linear classifiers. Even if such a high number
of local classifiers is provided, they are rarely placed in the correct positions. A
Decision Manifold with a topology of {11× 11} is shown in Figure 5.6(b), which
is not trained under the model selection scheme. It achieves an error of 23.0 %,
but there is no clearly perceivable structure of how the Decision Manifold folds
onto the data set and the boundaries. A data set of this complexity obviously
cannot be handled by the Decision Manifolds algorithm. Random Forests and k-

CHAPTER 5. DECISION MANIFOLDS 156

NN show the best performance as the number of samples is increased, with less
than half of the error rates of all other classifiers at 1000 data samples. k-NN are
at an advantage as the chessboard does not alter densities, but only increases the
complexity of the boundaries.

The next class of problems are also non-overlapping, crisp data sets where the
separating boundary has a special, non-linear shape. The data points are sampled
from a uniform, quadratic area, and the label of the sample is derived from its po-
sition. Three data sets are generated in this category: The “Circle”, “2 linear”, and
“sine” data sets. All of these data sets are two-dimensional and could be separated
without any error if the Bayes decision boundary was known. The point of intro-
ducing these data sets here is to show the performance of non-linear separating
boundaries.

The “Circle” data set has a circular boundary, with opposing labels inside and
outside of the circle. When compared to the other algorithms, Decision Manifolds
achieve good results, with 7.0, 4.4 and 2.9 % for the three data set sizes. Only
polynomial and RBF kernel SVM perform better on all three sizes, and Random
Forests and k-NN achieve similar results as Decision Manifolds. A trained De-
cision Manifold is shown in Figure 5.7(a) with 500 data points and 5 local linear
classifiers. It can be seen that the 5 hyperplanes provide a good approximation of
the circular boundary, but the approximation is not perfect: At the corners where
two of the hyperplanes meet, there are several misclassifications.

The “2 linear” data set consists of two parallel linear boundaries, such that one
class is in the middle, and the other one is split between the first class’ left and
right. This data set has been introduced previously, for example in Figure 5.7(b).
All the classifiers except for the linear SVM perform very good on this data set.
Decision Manifolds have error rates between 0.5 and 1.5 %, outperforming the
SVMs and k-NN with all data set sizes. Random Forests and Decision Trees pro-
duce almost no errors with this data set, as the fact that the boundaries are parallel
to the coordinate axes puts these information theoretic algorithms at an advan-
tage. The data set is shown in Figure 5.7(b) with a trained Decision Manifold
with a topology of {2}, which is sufficient to approximate the two boundaries.

The “sine” data set has a boundary that resembles a sine wave. An approxi-
mation is shown in Figure 5.7(c) with 4 linear classifiers. It can be seen that the
boundary can be approximated to some degree, but there are still some misclassi-
fications close to the high and low points of the sine wave. The Decision Manifold
achieves error rates between 6.0 and 4.2 %, which is worse than Random Forests,
RBF SVM, and k-N. Still, Decision Manifolds are better than Decision Trees,
linear SVMs, and polynomial SVMs.

The next 4 artificial data sets are also two-dimensional but have overlapping
class distributions, thus a Bayes optimal classifier will fail to correctly classify
all the samples. The data sets in this category are the “polynomial”, “2 Gauss I”,

CHAPTER 5. DECISION MANIFOLDS 157

“2 Gauss II”, and the “ring, Gauss” data sets. Examples for these data sets with
trained Decision Manifolds are given in Figure 5.8.

The first in the overlapping category is the “polynomial” data set where the
boundary resembles a quadratic function. The samples of the two classes are ar-
ranged above and below the decision boundaries, with a small amount of Gaussian
noise that allows for some degree of overlap across the boundary. Here, Decision
Manifolds outperform all the other algorithms, achieving error rates between 2.5
and 7.5 for 1000 and 200 points, respectively. An example with a {6} topology is
shown in Figure 5.8(a).

The “2 Gauss I” data set consists of two Gaussian bell-shaped curves with the
same center and different covariance matrices, as shown in Figure 5.8(b). Due to
the differences in the covariance matrix, one Gaussian has higher density around
the center, but lower density further away from the center. The Bayes optimal
decision boundary lies along a circle around the center. Decision Manifolds are
outperformed by SVMs by a small margin at all three data set sizes. E.g. at 1000
points, Decision Manifolds achieve an error of 24.8% and RBF SVMs 23.3%.

The “2 Gauss II” data set consists of two Gaussians with different centers
but equal covariance matrices. This data set is shown in Figure 5.8(c). The Bayes
optimal decision boundary is simply a line that is orthogonal to the line connecting
the cluster centers. The boundary is not parallel to a coordinate axis, making
it harder for the information theory based classifiers (Random Forests, Decision
Trees) to find them when the number of points is low. Decision Manifolds perform
best on this data set for point numbers greater than 200.

The “Ring and Gaussian” data set has also been explained previously in Sec-
tion 5.4.1. It consists of a Gaussian and samples of the other category distributed
along a circle with the same center as the Gaussian. An example of a Decision
Manifold with 5 local classifiers is shown in Figure 5.5(c). When compared with
the other classifiers, Decision Manifolds perform better than the other ones on all
three data set sizes.

In this category of low-dimensional overlapping problems, Decision Mani-
folds frequently outperform the other classifier algorithms. Decision Manifolds
are good at finding complex, non-linear boundaries as long as they are continu-
ous.

The last category of data sets cover typical machine learning problems related
to intertwined, non-overlapping shapes. These are the the intertwined rings data
set and the doublehelix data set, both of which are three-dimensional. In order
to visualize the Decision Manifolds on data sets which have a dimension of more
than two, a PCA projection is shown along with a SOM projection.

The “2 rings” data set consists of two intertwined rings. A PCA projection of
a data set sampled from this distribution is shown in Figure 5.9(a), where the data
samples and the classifier positions and their classification vectors are projected

CHAPTER 5. DECISION MANIFOLDS 158

onto the two-dimensional plane spanned by the most important eigenvectors. In
Figure 5.9(c)–(d), the hit histograms of samples from both classes on a SOM
trained on this data set is shown. The classifier positions are also mapped onto
this map and are depicted as large triangles. In this figure, a {2 × 2} Decision
Manifold is shown, which achieves an error of 2.0 %. The PCA projection shows
a problem inherent in such a linear projection, as it is not perceivable where the
arrows are actually pointing and where the local classifiers are actually placed.
The SOM visualization is better at showing the positions of the local classifiers,
but it is not possible to show the classification vectors. However, if the triangles
are placed between samples from opposing classes, this is a hint that the classifier
is placed correctly.

The second data set in this category is the “Doublehelix” data set. It consists
of two curves along which the data points are generated. The curves resemble
intertwined spirals that spin twice around their middle axis. A {5} Decision Man-
ifold on this data set is shown in Figure 5.10. While the PCA plot shows what
the data set looks like, it does not show the shape of the Decision Manifold in
an understandable way. The SOM visualization shows the distribution of the data
samples across the map. It can be seen that the triangles are positioned close to
the transition areas between the two classes.

Decision Manifolds achieve error rates between 0.1 and 4.0 % for both data
sets and all three sizes. However, the density based classifiers RBF SVM and
k-NN result in no misclassifications at all. This is due to the fact that there is
no overlap between the classes, and that the shapes of the samples form either
class are continuous. Linear and polynomial kernel SVMs are both worse than
Decision Manifolds, and Random Forests and Decision Trees are better on the “2
rings” and similar on the “Doublehelix” data sets.

To summarize this section, Decision Manifolds have been shown to perform
well in terms of execution time and classification performance. The chessboard
family of data sets are examples where the Decision Manifold has problems find-
ing the decision boundaries. Compared to density-based classifiers such as k-NN,
Decision Manifolds perform worse in cases like the chessboard since it has to
approximate each transition between different classes, while the complexity does
not increase for density based classifiers. In the non-overlapping category of data
sets, Decision Manifolds achieve good results, but are outperformed by Random
Forests and RBF SVMs. Decision Manifolds perform much better in the overlap-
ping class of problems, as long as there are not too many breaks in the shape of
the decision boundary, even if the decision boundary assumes complex non-linear
shapes. Decision Manifolds dominate most of the examples from this category,
as they are primarily designed to approximate non-linear shapes of continuous
decision boundaries. Finally, in the intertwined category of problems, Decision
Manifolds achieve low error rates but are beaten by density-based classifiers.

CHAPTER 5. DECISION MANIFOLDS 159

Ta
bl

e
5.

3:
A

rt
ifi

ci
al

da
ta

se
ts

,p
ar

t1
:C

om
pa

ri
so

n
of

av
er

ag
e

10
-f

ol
d

cr
os

s-
va

lid
at

io
n

er
ro

r(
in

%
)a

nd
tr

ai
ni

ng
tim

e

D
at

a
Sa

m
pl

es
D

ec
.M

f.
lin

.S
V

M
po

l.
SV

M
R

B
F

SV
M

R
.F

.
D

ec
.T

r.
k

-N
N

X
O

R
20

0
2.

5
(3

.0
s)

41
.0

(0
.3

s)
6.

0
(1

.4
s)

2
.0

(3
.6

s)
2.

5
(3

.1
s)

8.
0

(0
.2

s)
2.

5
(0

.8
s)

X
O

R
50

0
2.

8
(1

0.
7s

)
44

.0
(0

.8
s)

7.
6

(3
.5

s)
2.

6
(8

.8
s)

0
.6

(6
.1

s)
1.

6
(0

.3
s)

4.
8

(1
.1

s)
X

O
R

10
00

0.
9

(1
5s

)
46

.7
(2

.0
s)

3.
0

(1
0.

5s
)

1.
6

(2
1.

7s
)

0
.0

(1
3.

8s
)

1.
4

(0
.3

s)
2.

0
(2

.1
s)

C
he

ss
(4

x4
)

20
0

18
.0

(4
.7

s)
46

.5
(0

.3
s)

39
.5

(1
.6

s)
1
6
.0

(4
.8

s)
20

.0
(3

.3
s)

36
.0

(0
.2

s)
17

.5
(0

.7
s)

C
he

ss
(4

x4
)

50
0

10
.2

(8
.4

s)
51

.0
(0

.7
s)

40
.8

(4
.1

s)
9.

0
(2

3.
9s

)
7
.4

(9
.9

s)
11

.2
(0

.3
s)

8.
4

(1
.2

s)
C

he
ss

(4
x4

)
10

00
9.

0
(1

5.
6s

)
50

.2
(1

.7
s)

44
.9

(1
1.

8s
)

6.
4

(5
5.

3s
)

3
.5

(1
4.

7s
)

7.
5

(0
.4

s)
7.

3
(2

.1
s)

C
he

ss
(8

x8
)

20
0

4
4
.5

(5
.0

s)
56

.0
(0

.3
s)

49
.5

(1
.5

s)
50

.0
(6

.1
s)

49
.0

(4
.2

s)
50

.0
(0

.3
s)

50
.5

(0
.8

s)
C

he
ss

(8
x8

)
50

0
42

.8
(8

.0
s)

46
.6

(0
.9

s)
45

.0
(4

.2
s)

39
.2

(2
9.

9s
)

28
.2

(1
0.

3s
)

43
.0

(0
.3

s)
2
1
.0

(1
.2

s)
C

he
ss

(8
x8

)
10

00
38

.2
(1

5.
4s

)
45

.0
(2

.4
s)

46
.5

(1
2.

5s
)

34
.4

(9
2.

5s
)

17
.4

(2
0.

9s
)

30
.8

(0
.5

s)
1
6
.8

(2
.3

s)
C

ir
cl

e
20

0
7.

0
(3

.9
s)

50
.5

(0
.3

s)
7.

0
(1

.2
s)

5
.5

(3
.9

s)
7.

0
(2

.8
s)

9.
5

(0
.2

s)
8.

5
(0

.6
s)

C
ir

cl
e

50
0

4.
4

(8
.6

s)
46

.8
(0

.7
s)

2.
4

(2
.7

s)
0
.8

(8
.7

s)
3.

4
(6

.1
s)

7.
2

(0
.3

s)
2.

8
(1

.0
s)

C
ir

cl
e

10
00

2.
9

(1
5.

6s
)

46
.1

(1
.6

s)
1
.3

(6
.3

s)
1.

5
(2

1.
4s

)
2.

9
(1

2.
8s

)
5.

0
(0

.3
s)

1.
7

(2
.1

s)
2

lin
ea

r
20

0
0.

8
(3

.1
s)

53
.0

(0
.3

s)
4.

0
(1

.1
s)

3.
0

(3
.5

s)
0.

5
(2

.5
s)

0
.0

(0
.2

s)
3.

0
(0

.6
s)

2
lin

ea
r

50
0

1.
4

(8
.6

s)
51

.0
(0

.7
s)

1.
4

(2
.9

s)
1.

4
(7

.9
s)

0
.4

(5
.4

s)
0
.4

(0
.2

s)
1.

8
(1

.0
s)

2
lin

ea
r

10
00

0.
5

(1
5.

8s
)

47
.5

(2
.0

s)
1.

0
(9

.0
s)

1.
3

(2
1.

4s
)

0.
5

(1
1.

0s
)

0
.4

(0
.3

s)
2.

3
(2

.0
s)

Si
ne

20
0

6.
0

(2
.5

s)
19

.5
(0

.3
s)

22
.5

(1
.2

s)
1
.5

(3
.5

s)
4.

5
(2

.8
s)

9.
5

(0
.2

s)
1
.5

(0
.7

s)
Si

ne
50

0
4.

2
(8

.0
s)

16
.4

(0
.5

s)
24

.6
(3

.0
s)

2.
0

(7
.8

s)
3.

8
(6

.1
s)

8.
0

(0
.3

s)
1
.8

(1
.1

s)
Si

ne
10

00
4.

2
(1

5.
2s

)
19

.4
(1

.4
s)

24
.5

(8
.3

s)
2
.3

(2
0.

4s
)

2.
5

(1
3.

1s
)

5.
3

(0
.4

s)
2.

4
(2

.1
s)

Po
ly

no
m

ia
l

20
0

7
.5

(3
.0

s)
46

.5
(0

.3
s)

48
.0

(1
.2

s)
15

.5
(5

.2
s)

21
.0

(3
.4

s)
29

.5
(0

.2
s)

15
.0

(0
.7

s)
Po

ly
no

m
ia

l
50

0
4
.6

(8
.9

s)
42

.4
(0

.7
s)

38
.2

(3
.6

s)
5.

2
(1

7.
9s

)
8.

2
(8

.6
s)

15
.8

(0
.3

s)
5.

0
(1

.1
s)

Po
ly

no
m

ia
l

10
00

2
.5

(1
5.

0s
)

38
.1

(1
.9

s)
42

.0
(1

0.
8s

)
3.

9
(5

5.
2s

)
4.

2
(1

6.
2s

)
14

.3
(0

.4
s)

2
.5

(2
.1

s)

CHAPTER 5. DECISION MANIFOLDS 160

Ta
bl

e
5.

4:
A

rt
ifi

ci
al

da
ta

se
ts

,p
ar

t2
:C

om
pa

ri
so

n
of

av
er

ag
e

10
-f

ol
d

cr
os

s-
va

lid
at

io
n

er
ro

r(
in

%
)a

nd
tr

ai
ni

ng
tim

e

D
at

a
Sa

m
pl

es
D

ec
.M

f.
lin

.S
V

M
po

l.
SV

M
R

B
F

SV
M

R
.F

.
D

ec
.T

r.
k

-N
N

2
G

au
ss

Ia
20

0
28

.5
(4

.8
s)

51
.5

(0
.3

s)
2
5
.0

(1
.9

s)
25

.5
(4

.6
s)

29
.5

(3
.3

s)
33

.5
(0

.2
s)

27
.5

(0
.7

s)
2

G
au

ss
I

50
0

26
.8

(8
.8

s)
41

.0
(0

.7
s)

26
.8

(8
.6

s)
2
4
.2

(1
7.

1s
)

31
.0

(8
.8

s)
26

.4
(0

.3
s)

29
.0

(1
.0

s)
2

G
au

ss
I

10
00

24
.8

(1
5.

0s
)

44
.4

(2
.1

s)
23

.7
(2

8.
0s

)
2
3
.3

(5
9.

1s
)

27
.8

(1
6.

7s
)

27
.7

(0
.4

s)
27

.4
(2

.0
s)

2
G

au
ss

II
b

20
0

6.
0

(2
.5

s)
5.

5
(0

.2
s)

7.
0

(1
.1

s)
4
.5

(3
.6

s)
6.

5
(2

.6
s)

6.
0

(0
.2

s)
5.

5
(0

.8
s)

2
G

au
ss

II
50

0
5
.9

(8
.4

s)
7.

0
(0

.4
s)

8.
6

(2
.6

s)
6.

8
(9

.3
s)

6.
8

(6
.3

s)
8.

4
(0

.3
s)

7.
4

(1
.1

s)
2

G
au

ss
II

10
00

5
.8

(1
5.

6s
)

7.
1

(0
.8

s)
8.

4
(1

0.
0s

)
7.

0
(2

8.
8s

)
8.

5
(1

3.
0s

)
8.

2
(0

.4
s)

7.
5

(2
.1

s)
R

in
g,

G
au

ss
20

0
7
.0

(4
.8

s)
45

.5
(0

.3
s)

43
.5

(1
.4

s)
16

.5
(4

.9
s)

11
.0

(3
.3

s)
13

.5
(0

.3
s)

18
.5

(0
.7

s)
R

in
g,

G
au

ss
50

0
6
.4

(8
.4

s)
57

.0
(0

.7
s)

27
.0

(3
.9

s)
14

.4
(1

8.
3s

)
10

.8
(7

.7
s)

17
.6

(0
.3

s)
14

.4
(1

.1
s)

R
in

g,
G

au
ss

10
00

5
.2

(1
5.

5s
)

52
.0

(2
.0

s)
31

.5
(1

3.
2s

)
9.

3
(5

9.
3s

)
5.

3
(1

5.
0s

)
10

.8
(0

.4
s)

8.
0

(2
.1

s)
In

t.t
w

.r
in

gs
20

0
3.

0
(3

.5
s)

35
.0

(0
.3

s)
10

.5
(1

.2
s)

0
.0

(5
.0

s)
0
.0

(2
.3

s)
0.

5
(0

.2
s)

0
.0

(0
.8

s)
In

t.t
w

.r
in

gs
50

0
0.

8
(8

.1
s)

34
.0

(0
.6

s)
5.

6
(2

.3
s)

0
.0

(1
3.

0s
)

0
.0

(5
.7

s)
0.

4
(0

.3
s)

0
.0

(1
.1

s)
In

t.t
w

.r
in

gs
10

00
0.

1
(1

5.
5s

)
34

.5
(1

.6
s)

3.
7

(5
.2

s)
0
.0

(2
7.

9s
)

0
.0

(1
0.

4s
)

0
.0

(0
.3

s)
0
.0

(2
.4

s)
D

ou
bl

eh
el

ix
20

0
4.

0
(4

.5
s)

45
.5

(0
.3

s)
21

.0
(1

.3
s)

0
.0

(6
.0

s)
6.

0
(3

.6
s)

23
.5

(0
.2

s)
0
.0

(0
.8

s)
D

ou
bl

eh
el

ix
50

0
1.

8
(8

.3
s)

57
.0

(0
.8

s)
14

.8
(3

.1
s)

0
.0

(1
9.

8s
)

1.
6

(8
.5

s)
5.

8
(0

.3
s)

0
.0

(1
.2

s)
D

ou
bl

eh
el

ix
10

00
1.

1
(1

5.
6s

)
44

.8
(2

.6
s)

14
.7

(8
.6

s)
0
.0

(5
2.

5s
)

0.
1

(1
5.

8s
)

2.
5

(0
.4

s)
0
.0

(2
.3

s)

a T
he

G
au

ss
ia

ns
of

th
is

da
ta

se
ts

ha
re

th
e

sa
m

e
m

ea
n

(c
en

te
rp

oi
nt

),
bu

th
av

e
di

ff
er

en
tc

ov
ar

ia
nc

e
m

at
ri

ce
s

b T
he

G
au

ss
ia

ns
of

th
is

da
ta

se
th

av
e

di
ff

er
en

tm
ea

ns
(c

en
te

rp
oi

nt
s)

,a
nd

ha
ve

th
e

sa
m

e
co

va
ri

an
ce

m
at

ri
x

CHAPTER 5. DECISION MANIFOLDS 161

(a) (b)

(c)

Figure 5.6: Artificial data sets from the chessboard family, and trained Decision
Manifolds: (a) XOR = 2 × 2 chessboard, {2 × 2} Decision Manifold; (b) 4 × 4
chessboard, {5×5} Decision Manifold; (c) 8×8 chessboard, {11×11} Decision
Manifold

CHAPTER 5. DECISION MANIFOLDS 162

(a) (b)

(c)

Figure 5.7: Artificial, non-overlapping, two-dimensional data sets with non-linear
decision boundaries, and trained Decision Manifolds: (a) “Circle”, (b) “2 Linear”,
(c) “Sine”

CHAPTER 5. DECISION MANIFOLDS 163

(a) (b)

(c) (d)

Figure 5.8: Decision Manifolds on overlapping artificial data sets: (a) quadratic
decision surface (“polynomial”), (b) 2 Gaussians with different variances (“2
Gauss I”), (c) 2 Gaussians with different centers (“2 Gauss II”), (d) ring and Gaus-
sian (“Ring, Gauss”)

CHAPTER 5. DECISION MANIFOLDS 164

(a) (b)

(c) (d)

Figure 5.9: Projections of Decision Manifolds on “2 rings” (intertwined rings)
data set: (a) PCA projection, (b)–(d) hit histogram of 2 classes onto {12 × 13}
SOM: (b) both classes, (c),(d) only one class

CHAPTER 5. DECISION MANIFOLDS 165

(a) (b)

(c) (d)

Figure 5.10: Projections of Decision Manifolds on “Doublehelix” data set: (a)
PCA projection, (b)–(d) hit histogram of 2 classes onto {12× 13} SOM: (b) both
classes, (c),(d) only one class

CHAPTER 5. DECISION MANIFOLDS 166

(a) (b)

(c) (d)

Figure 5.11: Projections of Decision Manifolds on Bupa liver disorders data set:
(a) PCA projection, (b)–(d) hit histogram of 2 classes onto {7 × 13} SOM: (b)
both classes, (c),(d) only one class

5.5.2 Benchmark Data Sets
The benchmark experiments are performed on 7 binary and 3 multi-class super-
vised learning benchmark data sets taken from the UCI Machine Learning Repos-
itory, which are described in Appendix D: Bupa Liver Disorders, Pima Indian
Diabetes, Spam, Ionosphere, Statlog Heart Disease, Sonar, and Statlog German
Credit binary data sets, and Iris, Contraceptives, and Glass data sets. In case of
categorical features, 1-to-N encoding has been applied, otherwise the data has
been normalized with a zero-mean-unit-variance transformation.

The number of samples and dimensions are summarized in the first column of
Table 5.5, which also summarizes the classification results. In column “Topol.”,

CHAPTER 5. DECISION MANIFOLDS 167

(a) (b)

(c) (d)

Figure 5.12: Projections of Decision Manifolds on Pima Indian Diabetes data set:
(a) PCA projection, (b)–(d) hit histogram of 2 classes onto {11 × 13} SOM: (b)
both classes, (c),(d) only one class

an example of the most frequently selected topology over different folds is shown.
PCA and SOM projections of the data set and trained Decison Manifold are shown
for the data sets. As the PCA and SOM projections are unsupervised, they do
not distinguish between labeled samples. Thus, the samples of different classes
are shown in different places only if the classes also happen to form a cluster
that is preserved after the projection, which is increasingly unlikely for higher
dimensions. Furthermore, PCA tends to explain less of the variance at higher
dimensions. While the visualizatons provide some insight into the shape of the
data set, they do not necessarily have to explain why a particular data set is easily
separable or not. If the classes are projected to clearly distinguishable areas, then
a separation with a high accuracy should be possible for a classifier, but if the

CHAPTER 5. DECISION MANIFOLDS 168

(a) (b)

(c) (d)

Figure 5.13: Projections of Decision Manifolds on Spam data set: (a) PCA pro-
jection, (b)–(d) hit histogram of 2 classes onto {11× 13} SOM: (b) both classes,
(c),(d) only one class

classes are highly overlapping after the projection, this does not mean the data set
is not separable. Rather, it is an indication, but not a proof, for the difficulty of
classifying such a data set.

A visualization of the Bupa Liver Disorder data set is shown in Figure 5.11.
This data set is 6-dimensional, and has 345 samples with highly overlapping
classes. The Decision Manifold has a topology of {5 × 2}, which is the most
frequently selected topology during the crossvalidation, as indicated in Table 5.5.
In the SOM projection, one class tends to be clustered slightly above the cen-
ter, while the other one is clustered on the bottom, both with a high degree of
noise. The local classifiers are scattered across the whole map. Decision Man-
ifolds achieve classification errors of 29.4%, and are beaten by Random Forests

CHAPTER 5. DECISION MANIFOLDS 169

(a) (b)

(c) (d)

Figure 5.14: Projections of Decision Manifolds on Ionosphere data set: (a) PCA
projection, (b)–(d) hit histogram of 2 classes onto {7×13} SOM: (b) both classes,
(c),(d) only one class

and Decision Trees with 27.2 and 29.3 %, respectively.
The Pima Indian Diabetes data set is visualized in Figure 5.12. It is 8-dimensional

and consists of 768 samples. From the PCA and SOM plots a slight separation
between the two classes is visible. The center part of the SOM is occupied by
samples from both classes, indicating that there is a high degree of overlap in the
data set. Decision Manifolds outperform the other classifiers by a margin of 2.4
percentage points.

The Spam data set is 57-dimensional and has 4601 samples, which is visual-
ized in Figure 5.13. Despite the high number of dimensions, the classes can be
distinguished even after the projection, especially in case of the SOM projection.
The PCA shows a shape that is typical for text data sets which are calculated by

CHAPTER 5. DECISION MANIFOLDS 170

(a) (b)

(c) (d)

Figure 5.15: Projections of Decision Manifolds on Statlog heart disease data set:
(a) PCA projection, (b)–(d) hit histogram of 2 classes onto {7 × 12} SOM: (b)
both classes, (c),(d) only one class

bag-of-words, and shows a cluster with two tails. This data set can also be classi-
fied by most algorithms with high accurracy. Random Forests perform best with
4.7%, and Decision Manifolds achieve an error of 7.7 %.

The Ionosphere data set is 34-dimensional with 351 samples. It is depicted
in Figure 5.14. It can be seen that the classes are fairly well separated. Decision
Manifolds are beaten by both RBF SVM and Random Forests, which achieve
almost half the error rates of Decision Manifolds, which misclassifies 12.8 % of
the data.

The Statlog Heart Disease data set is 13-dimensional and has 270 samples.
Figure 5.15 shows this data set with a {4} Decision Manifold. Like the previous
example, the classes are well separated, which can be seen from both the PCA and

CHAPTER 5. DECISION MANIFOLDS 171

(a) (b)

(c) (d)

Figure 5.16: Projections of Decision Manifolds on Sonar data set: (a) PCA pro-
jection, (b)–(d) hit histogram of 2 classes onto {8 × 9} SOM: (b) both classes,
(c),(d) only one class

SOM visualizations. Linear SVMs perform best with this data set at an error rate
of 17.0 %, which indicates that there is a linear separation. The other algorithms,
including Decision Manifolds, are only slightly worse.

The Sonar data set has only 208 samples but has a high dimension of 60, mak-
ing it the sparsest data set that is investigated here. It is visualized in Figure 5.16.
The PCA and SOM plots show that there is a large amount of overlap between
the classes. The most frequently selected topology of {3 × 3} is relatively big
compared to the others and is another indicator that the data set is complicated to
separate. Decision Manifolds beat the other classifier algorithms with an error of
14.3 % by a small margin.

The German Credit data set, shown in Figure 5.17, is 20-dimensional with

CHAPTER 5. DECISION MANIFOLDS 172

(a) (b)

(c) (d)

Figure 5.17: Projections of Decision Manifolds on German Credit data set: (a)
PCA projection, (b)–(d) hit histogram of 2 classes onto {11× 14} SOM: (b) both
classes, (c),(d) only one class

1000 samples. From the PCA plot, the classes do not seem clustered. The SOM
visualization shows a slight separation, but still significant overlap. The algo-
rithms have errors between 23 and 28 %, with Decision Manifolds in the middle.

The non-binary data sets have been encoded as one-against-the-rest, thus cre-
ating several binary data sets. The data sets in this category are the Iris, Glass
and Contraceptives data sets. The data sets created out of these are denoted by
their respective numbers, i.e. “Iris Setosa” refers to the data set where the Setosa
class is classified against Versicolor and Virginica, which are combined to form
the second class.

The Iris data set consists of 3 classes, each with 50 samples. The version where
Versicolor is classified against Setosa and Virginica is depicted in Figure 5.18.

CHAPTER 5. DECISION MANIFOLDS 173

(a) (b)

(c) (d)

Figure 5.18: Projections of Decision Manifolds on Iris data set (Versicolor vs.
rest): (a) PCA projection, (b)–(d) hit histogram of 2 classes onto {6× 11} SOM:
(b) both classes, (c),(d) only one class

The Versicolor class is between the Virginica and Setosa classes. This problem
is solved with a Decision Manifold with 3 classifiers, where one local classifier
separates the Setosa class, which is located in the upper third of the map, from
Versicolor, and two classifiers separate Versicolor from Virginica. For this data
set, Decision Manifolds achieve very good results. While the Setosa class can be
separated at perfect accuracy by all classifier algorithms, Virginica and Versicolor
are harder to separate, with the classifiers achieving error rates between 4 and 8
%, except for linear SVM, where error rates are higher. Decision Manifolds are
best with the Virginica data set, ex aequo with RBF SVMs.

The Glass data set consists of 214 samples in 10 dimensions. There are 7
different classes in this data set, which leads to 7 different data sets. An example

CHAPTER 5. DECISION MANIFOLDS 174

(a) (b)

(c) (d)

Figure 5.19: Projections of Decision Manifolds on Glass data set: (a) PCA pro-
jection, (b)–(d) hit histogram of 2 classes onto {8 × 9} SOM: (b) both classes,
(c),(d) only one class

of one of the classes is depicted in Figure 5.19. As there are 7 different classes,
the number of samples in each class for the two-class data sets is highly skewed.
The PCA and SOM plots show that the smaller class is concentrated in one spot.
The Glass data sets are fairly easy to classify, with most of the error rates under
3 %. Random Forests always achieve the best results, with Decision Manifolds
reaching the same performance at 3 out of 7 data sets.

The Contraceptives data set lives in a 9 dimensional space and consists of 1473
samples in 3 classes. The PCA and SOM visualizations for one of the classes
in Figure 5.20 do not show any easily identifyable separating boundary, but the
classes appear more clustered with the SOM plot. The Decision Manifold per-
forms especially good at this group of data sets, achieving the best results on all

CHAPTER 5. DECISION MANIFOLDS 175

(a) (b)

(c) (d)

Figure 5.20: Projections of Decision Manifolds on Contraceptives data set: (a)
PCA projection, (b)–(d) hit histogram of 2 classes onto {12× 16} SOM: (b) both
classes, (c),(d) only one class

three of them. The classes are not very well separated, resulting in high errors for
all algorithms in the range of 20 – 35 %.

To summarize these findings, Decision Manifolds outperform the other al-
gorithms on the Pima, Sonar, and Contraception data sets. Random Forests and
linear SVMs each perform better than Decision Manifolds on 5 of the 10 data sets.
k-NN, Decision Trees, and polynomial SVMs perform worse in most cases. RBF
SVMs are better on 3, and worse on 3 data sets. Overall, there is no algorithm that
outperforms every other on all the data sets, and the Decision Manifolds technique
yields good classification results.

There is no clear trend on whether Decision Trees perform better than other
classifier algorithms when the number of data samples is either high or low. As the

CHAPTER 5. DECISION MANIFOLDS 176

number of dimensions increases, Decision Manifolds seem to be outperformed by
Random Forests more often, for example on Ionosphere and Spam. An exception
to this are the results from the Sonar data set, which has the highest dimension,
but also a very low number of points, which makes it atypical.

The total training times of the classifiers for all 10 folds including parameter
tuning can also be seen in Table 5.5 as the numbers in brackets. In terms of
training and classification time, the polynomial and RBF SVM models and k-NN
are significantly slower at higher sample counts than the remaining algorithms.
Decision Manifolds perform better than Random Forests, but worse than linear
SVMs and Decision Trees in most cases. Overall, Decision Manifolds perform
similar to the best performing classifiers in terms of accuracy, but are slightly
faster than these. On the other hand, the Decision Manifolds algorithm is slower
than algorithms with higher generalization errors.

5.5.3 Underlying Classifiers
Another experiment that has been conducted was comparing the performance of
Decision Manifolds with different underlying linear classifiers. As any linear clas-
sifier can be used, the point of this experiment is to investigate the speed and ac-
curacy differences between them. The classifiers that are tested in this section are
described in Section 5.3.1. Moore-Penrose Pseudoinverse and Perceptron have
performed almost equally in terms of classification accuracy, but training time
was roughly twice as high with Perceptrons. For linear SVMs as underlying clas-
sifiers, Decision Manifolds have performed better, as one of the models tested is
always topology {1} which is equivalent to training a simple linear SVM, leading
to a performance at least as good as shown in column “lin. SVM” in Table 5.5.
However, the computational overhead is considerable as multiple models are es-
timated that involve repeatedly training linear classifiers, which are thus required
to be fast. As a result, Decision Manifolds with SVMs are slower than any other
model tested by a factor of up to four, rendering the choice of Decision Manifolds
with SVMs infeasible. Further, apart from speed constraints, due to the fact that
Perceptrons are stochastic and the Moore-Penrose Pseudoinverse is deterministic,
choosing it as linear classifier renders the training algorithm deterministic apart
from initialization, which is therefore recommended to be used with Decision
Manifolds.

5.6 Summary
In this chapter, a classification algorithm for two-class problems by local approx-
imation of the decision boundaries with a given topology has been proposed. It

CHAPTER 5. DECISION MANIFOLDS 177

consists of a number of nodes that can be represented by its position and a vector
that indicates the classification direction of one of the classes. The nodes, or local
classifiers, are arranged along the given topology structure. The training algorithm
that moves the classifiers into the correct positions is inspired by the unsupervised
SOM algorithm.

The Decision Manifold classifier has been shown to fit various low-dimensional
non-trivially separable data sets. The examples have demonstrated its ability to
approximate continuous non-linear boundaries, but have also highlighted that the
algorithm has problems with decision boundaries that are split into many non-
adjacent segments.

As the topology has to be given before training starts, a model selection scheme
has been proposed. The topology is seen as the hyperparameter that can be tuned
by trying different topology configurations that are determined by a PCA-guided
approach. Thus, the model evaluates many different topologies, which is feasible
due to the fast training time of a single Decision Manifold. Experiments on artifi-
cial and benchmark data sets have shown that the classifier performs comparable
to state-of-the-art supervised learning algorithms.

CHAPTER 5. DECISION MANIFOLDS 178

Ta
bl

e
5.

5:
B

en
ch

m
ar

k
da

ta
se

ts
:C

om
pa

ri
so

n
of

av
er

ag
e

10
-f

ol
d

cr
os

s-
va

lid
at

io
n

er
ro

r(
in

%
)a

nd
tr

ai
ni

ng
tim

e

D
at

a
To

po
l.

D
ec

.M
f.

lin
.S

V
M

po
l.

SV
M

R
B

F
SV

M
R

.F
.

D
ec

.T
r.

k
-N

N
B

up
a

(3
45
×

6)
{5
×

2}
29

.4
(4

s)
29

.6
(1

s)
40

.0
(4

s)
30

.1
(1

1s
)

27
.2

(1
0s

)
29

.3
(1

s)
33

.9
(2

s)
Pi

m
a

(7
68
×

8)
{3
×

2}
20

.9
(1

3s
)

23
.3

(2
s)

25
.3

(1
1s

)
23

.0
(5

0s
)

23
.3

(1
9s

)
25

.5
(1

s)
25

.0
(4

s)
Sp

am
(4

60
1
×

57
)

{7
}

7.
7

(2
07

s)
7.

2
(2

94
s)

21
.7

(2
50

7s
)

6.
8

(1
10

92
s)

4.
7

(7
25

s)
8.

6
(1

5s
)

9.
2

(1
98

6s
)

Io
no

(3
51
×

34
)

{3
}

12
.8

(4
s)

11
.7

(2
s)

12
.8

(9
s)

6.
0

(3
2s

)
6.

3
(1

3s
)

14
.0

(1
s)

14
.8

(5
s)

H
ea

rt
(2

70
×

13
)

{4
}

18
.5

(3
s)

17
.0

(1
s)

17
.8

(5
s)

18
.5

(1
5s

)
20

.0
(9

s)
19

.6
(1

s)
18

.1
(3

s)
So

na
r(

20
8
×

60
)

{3
×

3}
14

.3
(3

s)
26

.4
(3

s)
18

.3
(1

0s
)

16
.3

(2
9s

)
14

.8
(1

2s
)

29
.3

(2
s)

16
.8

(6
s)

C
re

di
t(

10
00
×

20
)

{5
}

26
.5

(3
1s

)
24

.8
(4

6s
)

26
.6

(1
99

s)
23

.1
(6

07
s)

23
.1

(8
5s

)
27

.1
(4

s)
26

.5
(9

1s
)

Ir
is

Se
t.

(1
50
×

4)
{1
}

0.
0

(1
s)

0.
0

(1
s)

0.
0

(1
s)

0.
0

(3
s)

0.
0

(2
s)

0.
0

(1
s)

0.
0

(1
s)

Ir
is

V
er

.(
15

0
×

4)
{3
}

4.
0

(1
s)

25
.3

(1
s)

4.
7

(1
s)

3.
3

(3
s)

4.
0

(2
s)

6.
0

(1
s)

4.
0

(1
s)

Ir
is

V
ir.

(1
50
×

4)
{4
}

3.
3

(1
s)

4.
0

(1
s)

6.
7

(1
s)

3.
3

(3
s)

6.
0

(2
s)

8.
0

(1
s)

4.
7

(1
s)

G
la

ss
1

(2
14
×

10
)

{3
}

0.
5

(3
s)

0.
5

(1
s)

15
.0

(2
s)

0.
9

(7
s)

0.
0

(4
s)

0.
5

(1
s)

1.
9

(1
s)

G
la

ss
2

(2
14
×

10
)

{3
×

3}
1.

4
(7

s)
26

.2
(1

s)
11

.2
(2

s)
9.

3
(7

s)
0.

9
(4

s)
1.

4
(1

s)
9.

8
(1

s)
G

la
ss

3
(2

14
×

10
)

{3
}

0.
9

(5
s)

3.
3

(1
s)

7.
5

(2
s)

4.
2

(6
s)

0.
9

(3
s)

0.
9

(1
s)

4.
2

(1
s)

G
la

ss
5

(2
14
×

10
)

{5
}

2.
3

(5
s)

7.
0

(1
s)

4.
2

(1
s)

3.
3

(2
6s

)
2.

3
(1

8s
)

5.
6

(3
s)

5.
1

(4
s)

G
la

ss
6

(2
14
×

10
)

{3
×

2}
2.

3
(4

s)
0.

9
(1

s)
3.

7
(4

s)
1.

9
(1

6s
)

0.
5

(7
s)

2.
3

(1
s)

1.
9

(3
s)

G
la

ss
7

(2
14
×

10
)

{5
}

0.
0

(5
s)

3.
3

(1
s)

3.
3

(4
s)

3.
3

(1
6s

)
0.

0
(7

s)
0.

0
(1

s)
2.

8
(3

s)
C

on
tr

ac
.n

o
(1

47
3
×

9)
{3
×

2}
29

.7
(6

3s
)

32
.2

(1
5s

)
32

.9
(6

1s
)

29
.8

(4
27

s)
30

.5
(6

8s
)

29
.7

(2
s)

35
.0

(1
5s

)
C

on
tr

ac
.l

.(
14

73
×

9)
{3
×

2}
21

.0
(5

8s
)

22
.6

(7
s)

22
.6

(4
2s

)
22

.2
(3

45
s)

21
.3

(7
5s

)
22

.5
(2

s)
25

.3
(1

3s
)

C
on

tr
ac

.s
h.

(1
47

3
×

9)
{5
}

32
.1

(6
0s

)
34

.7
(9

s)
34

.7
(4

7s
)

32
.3

(3
36

s)
33

.6
(6

2s
)

33
.5

(1
s)

36
.6

(1
3s

)

Chapter 6

Conclusion

In this thesis, three contributions related to data mining with Self-Organizing
Maps have been presented.

The first contribution, the Graph visualization method, helps in understanding
the relation between the data samples and the map. The method is computed by
introducing a measure of similarity between the data samples. A graph structure
is constructed that represents this proximity, with one vertex per data vector, and
an edge connecting data vectors that are close. This graph is then transferred onto
the map by projection in the same way that the usual SOM mapping is performed.
The resulting patterns on the map reveal much about the clustering structure and
the connections of the data cloud. Specifically, the Graph method is useful for
identifying

• the density of clusters and other regions, which can differ widely across
different regions of the feature space.

• topology violations, which occur due to the dimensionality reduction by
mapping the feature space to the output space. The method also tells, to a
certain degree, where the neighborhood on the map is insufficient to depict
the topological features of the data cloud.

• the connectivity of data samples large maps, where the data samples are
outnumbered by the map units, and for revealing outliers.

Two different methods for calculating the proximity graph have been pro-
posed. The radius method is based on the spherical distance around the data
samples, and the nearest neighbors method is based on ranking of the nearest
neighbors. Both approaches require parameterization and are best used by pro-
viding a series of visualizations of this kind at increasing parameter values.

179

CHAPTER 6. CONCLUSION 180

The usefulness of the Graph method has been demonstrated with the help of
a series of artificial, benchmark, and real-world data sets. This method can be
combined with other SOM visualizations, such as the U-Matrix, hit histograms,
and component planes. By drawing a series of radius method visualizations at
increasing threshold levels, the clustering structure can be shown along with the
clusters’ relations to each other. The nearest neighbors method is used to show
topology violations and to unveil points along low-dimensional manifolds hidden
in the data set. It is best used together with the Topographic error. No other
technique is able to find structure such as samples aligned along a curve in the
data.

The second contribution of this thesis has been the Gradient Field method and
its dual representation, the Borderline method. This method has been developed
to satisfy the need for SOM visualization methods designed for specialists with
engineering rather than computing backgrounds. It shows the SOM in a way that
the beholder is not tempted to mistake the axes of the map as being significant.
The information within the map is communicated through the analogy of the vi-
sualization of vector fields, with arrows pointing towards the interiors of clusters.
The length of the vectors is related to a map units position relative to the cluster
centers.

An important advantage of the Gradient Field method is that it is able to dis-
play the clustering structure that underlies the SOM at various levels of detail.
This level can be parameterized by setting the width of the kernel function. The
kernel is used for smoothing over the region in the vicinity of each map unit.
Units within regions that are highly similar to each other are identified as cluster
centers. The clusters roughly correspond to the results of hierarchical clustering
algorithms, where the threshold distance for the clustering is inversely related to
the kernel width parameter.

Further, an extension has been proposed for dealing with groups of variables,
or component planes. This grouping can either be based on similarity or on se-
mantic meaning. As subsets of the component planes are themselves SOMs, the
Gradient Field method can be calculated and displayed simultaneously for various
groups of variables. The reason for doing this is to learn about the mutual depen-
dencies of variable dimensions. As not all mutual dependencies can be captured
by measures such as the linear correlation, this technique is useful for uncover-
ing where and how a variable or a group of variable explains another variable.
Another use of this method is to explain the contributing factors for each cluster.

The third major contribution of this thesis is the Decision Manifolds method
for binary classification. This technique exploits the SOM training algorithm’s

CHAPTER 6. CONCLUSION 181

ability to align neighboring units according to a super-imposed topology struc-
ture. The units from the traditional SOM algorithm are replaced by local linear
classifiers that classify the data samples within their proximity. The feature space
is thus partitioned into several disjoint regions, each of which is divided into its
two classes by separating hyperplanes.

As the Decision Manifold’s capability to approximate the decision hypersur-
face is dependent on the matching between the topological structure of both the
hypersurface and the Decision Manifold, a model selection scheme has been pro-
posed in order to estimate the correct topology of the separating border. This
model estimation is guided by PCA, which is a heuristic for guessing the upper
bound of the number of relevant dimensions for describing the structure of the
data cloud.

There are several features that make the Decision Manifolds unique. The sep-
arating hypersurface is approximated linearly, resulting in an explicit functional
representation of the classifier. Further, similar to SOMs, there is a kernel func-
tion that steers the degree of mutual influence between neighboring classifiers.
The width of this kernel decreases monotonously as training progresses. After
training is finished, this parameter can be used to optimize classification perfor-
mance.

Extensive testing has been performed to benchmark the Decision Manifold
classifier against comparable methods. Decision Manifolds are found to perform
favorably both in classification performance and computational efficiency in com-
parison to state-of-the-art machine learning methods such as Support Vector Ma-
chines or Random Forests.

In order to bring this thesis to an end, I hope that these contributions have
advanced the area of data mining. Finally, I hope that the data sets that have been
carefully designed to be characteristic for specific data mining problems will find
their way into the general repository of the machine learning community.

Bibliography

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the sur-
prising behavior of distance metrics in high dimensional spaces. In ICDT
’01: Proceedings of the 8th International Conference on Database Theory,
pages 420–434, London, UK, 2001. Springer-Verlag.

[2] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional
data. SIGMOD Rec., 30(2):37–46, 2001.

[3] Edgar Anderson. The irises of the gaspe peninsula. Bulletin of the American
Iris Society, 59:2–5, 1935.

[4] Mohammed Attik, Laurent Bougrain, and Frédéric Alexandre. Self-
organizing map initialization. In Artificial Neural Networks: Biological
Inspirations ICANN 2005, pages 357–362, 2005.

[5] H.-U. Bauer and T. Villmann. Growing a hypercubical output space in
a self-organizing feature map. IEEE Transactions on Neural Networks,
8(2):218–226, 1997.

[6] Hans-Ulrich Bauer and Klaus R. Pawelzik. Quantifying the neighborhood
preservation of self-organizing feature maps. IEEE Transactions on Neural
Networks, 3(4):570–579, July 1992.

[7] Pavel Berkhin. Survey of clustering data mining techniques. Technical
report, Accrue Software, 2002.

[8] C. Bishop, M. Svensen, and C. Williams. Magnification factors for the
GTM algorithm. In Workshop on Self-Organizing Maps (WSOM’97), pages
333–338, 1997.

[9] Christopher M. Bishop. Neural networks for pattern recognition. Oxford
University Press, Oxford, UK, 1996.

[10] C.M. Bishop, M. Svensen, and C. Williams. GTM: The generative topo-
graphic mapping. Neural Computation, 10(1):215–234, 1998.

182

BIBLIOGRAPHY 183

[11] L. Bottou and V. Vapnik. Local learning algorithms. Neural Computation,
4:888–900, 1992.

[12] P. S. Bradley and U. M. Fayyad. Refining initial points for k-means cluster-
ing. In Proceedings of the International Conference on Machine Learning
(ICML’99), pages 91–99, 1999.

[13] Leo Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

[14] Leo Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
regression trees. Wadsworth & Brooks-Cole Advanced Books & Software,
Monterey, CA, 1984.

[15] Christopher J. C. Burges. A tutorial on Support Vector Machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[16] J. Cerquides and R. López de Mántaras. Robust Bayesian linear classifier
ensembles. In European Conference on Machine Learning (ECML’05),
pages 72–83, 2005.

[17] H. Chernoff and M. H. Rizvi. Effect on classification error or random
permutations of features in representing multivariate data by faces. Journal
of American Statistical Association, 70:548–554, 1975.

[18] D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE Trans-
actions on Pattern Recognition and Machine Intelligence, 1(2):224–227,
1979.

[19] Pierre Demartines and Jeanny Hérault. Curvilinear component analysis: A
self-organizing neural network for nonlinear mapping of data sets. IEEE
Transactions on Neural Networks, 8(1):148–154, January 1997.

[20] D. L. Donoho. High-dimensional data analysis: The curses and blessings of
dimensionality. Lecture on August 8, 2000, to the American Mathematical
Society “Math Challenges of the 21st Century”, 2000.

[21] Edgar Erwin, Klaus Obermayer, and Klaus Schulten. Self-organizing maps:
Ordering, convergence properties and energy functions. Biological Cyber-
netics, 67(1):47–55, 1992.

[22] Ronald A. Fisher. The use of multiple measurements in taxonomic prob-
lems. The Annals of Eugenics, 7:179–188, 1936.

[23] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge dis-
covery in databases – an overview. AI Magazine, 13:57–70, 1992.

BIBLIOGRAPHY 184

[24] Xin Geng, De-Chuan Zhan, and Zhi-Hua Zhou. Supervised nonlinear di-
mensionality reduction for visualization and classification. IEEE Transac-
tions on Systems, Man and Cybernetics – Part B: Cybernetics, 35(6):1098–
1107, 2005.

[25] Geoffrey J. Goodhill and Terrence J. Sejnowsky. Quantifying neighborhood
preservation in topographic mappings. In Proceedings of the 3rd Joint Sym-
posium on Neural Computation, pages 61–82, University of California, San
Diego and California Institute of Technology, 6, Pasadena, CA: California
Institute of Technology, 1996. Springer, Berlin.

[26] R. P. Gorman and T. J. Sejnowski. Analysis of hidden units in a layered
network trained to classify sonar targets. Neural Networks, 1:75–89, 1988.

[27] Thore Graepel, Matthias Burger, and Klaus Obermayer. Phase transitions
in stochastic selforganizing maps. Physical Review E, 56:3876–3890, 1997.

[28] Georges Grinstein, Marjan Trutschl, and Urska Cvek. High-dimensional
visualizations. In Data Mining Conference KDD Workshop 2001, pages
7–19, San Francisco, CA, USA, 2001. ACM Press, New York.

[29] Harmen grosse Deters, Wiebke Timm, and Tim Wilhelm Nattkemper. Reef-
som - a metaphoric data display for exploratory data mining. Brains, Minds
and Media, 2, Apr 2006.

[30] Jun Wen Guihua Wen, Lijun Jiang and Nigel R. Shadbolt. Clustering-based
nonlinear dimensionality reduction on manifold. In Pacific Rim Interna-
tional Conference on Artificial Intelligence (PRICAI 2006), LNAI 4099,
pages 444–453. Springer, 2006.

[31] M. Herrmann H.-U. Bauer, R. Der. Controlling the magnification factor of
self-organizing feature maps. Neural Computation, 8(4):757–771, 1996.

[32] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On clustering
validation techniques. Journal of Intelligent Information Systems, 17(2–
3):107–145, 2001.

[33] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied
Statistics, 28:100–108, 1979.

[34] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer-
Verlag, 2001.

BIBLIOGRAPHY 185

[35] J. Himberg. Enhancing SOM-based data visualization by linking different
data projections. In International Symposium on Intelligent Data Engineer-
ing and Learning (IDEAL’98), 1998.

[36] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[37] A. Inselberg and B. Dimsday. Parallel coordinates: A tool for visualizing
multidimensional geometry. In Proceedings of IEEE Conference on Visu-
alization, pages 361–378, 1990.

[38] R. A. Jacobs and M. I. Jordan. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6:181–214, 1994.

[39] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Comput-
ing Surveys, 31(3):264–323, 1999.

[40] W.C. Dickson W.C. Knowler R.S. Johannes J.W. Smith, J.E. Everhart. Us-
ing the adap learning algorithm to forecast the onset of diabetes mellitus. In
Symposium on Computer Applications and Medical Care, pages 261–265,
1988.

[41] Samuel Kaski and Krista Lagus. Comparing SelfOrganizing Maps. In
Proceedings of the International Conference on Artifical Neural Networks
(ICANN’96), pages 809–814. Springer, Berlin, 1996.

[42] Samuel Kaski, Janne Nikkilä, and Teuvo Kohonen. Methods for ex-
ploratory cluster analysis. In International Conference on Advances in
Infrastructure for Electronic Business, Science, and Education on the In-
ternet, L’Aquila, Rome, Italy, 2000.

[43] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, Inc., 1990.

[44] R. Khoussainov, A. Hess, and N. Kushmerick. Ensembles of biased classi-
fiers. In International Conference on Machine Learning (ICML’05), pages
425–432, 2005.

[45] J. Kiviluoto. Topology preservation in selforganizing maps. In Proceed-
ings of the International Conference on Neural Networks (ICNN’96), pages
296–299, Piscataway, New Jersey, USA, 1996.

[46] Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43:59–69, 1982.

BIBLIOGRAPHY 186

[47] Teuvo Kohonen. Improved versions of learning vector quantization. In
Proceedings of the International Joint Conference on Neural Networks
(IJCNN’90), pages 545–550, 1990.

[48] Teuvo Kohonen. Self-Organizing Maps, chapter “Optimization Ap-
proaches”, pages 981–990. Elsevier Science Publishers, 1991.

[49] Teuvo Kohonen. The Self-Organizing Map. Neurocomputing, 21:1–6,
1998.

[50] Teuvo Kohonen. Self-Organizing Maps, 3rd edition. Springer, 2001.

[51] Petri Kontkanen, Jussi Lahtinen, Petri Myllymäki, Tomi Silander, and
Henry Tirri. Supervised model-based visualization of high-dimensional
data. Intelligent Data Analysis, 4:213–227, 2000.

[52] Sanjeev Kulkarni, Gabor Lugosi, and Santosh Venkatesh. Learning pat-
tern classification – a survey. IEEE Transactions on Information Theory,
44(6):2178–2206, 1998.

[53] Jouko Lampinen and Erkki Oja. Clustering properties of hierarchical
self-organizing maps. Journal of Mathematical Imaging and Vision, 2(2–
3):261–272, 1992.

[54] Khalid Latif and Rudolf Mayer. Sky-metaphor visualisation for self-
organising maps. In Proceedings of the 7th International Conference on
Knowledge Management (I-KNOW’07), Graz, Austria, September 5 - 7
2007.

[55] Yoseph Linde, Andres Buzo, and Robert M. Gray. An algorithm for vector
quantizer design. IEEE Transactions on Communications, 28(1):84–95,
1980.

[56] M. E. Maron. Automatic indexing: An experimental inquiry. Journal of
the ACM, 8(3):404–417, 1961.

[57] Rudolf Mayer, Thomas Lidy, and Andreas Rauber. The map of mozart.
In Proceedings of the 7th International Conference on Music Information
Retrieval (ISMIR), pages 351–352, October 8-12 2006.

[58] Rudolf Mayer, Dieter Merkl, and Andreas Rauber. Mnemonic soms:
Recognizable shapes for self-organizing maps. In Marie Cottrell, editor,
Proceedings of the Fifth Workshop on Self-Organizing Maps (WSOM’05),
pages 131–138, Paris, France, September 5–8 2005.

BIBLIOGRAPHY 187

[59] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[60] J. Moody and C. J. Darkin. Fast learning in networks of locally-tuned
processing units. Neural Computation, 1(2):281–294, 1989.

[61] Robert Neumayer, Rudolf Mayer, Georg Pölzlbauer, and Andreas Rauber.
The metro visualisation of component planes for self-organising maps. In
Proceedings of the International Joint Conference on Neural Networks
(IJCNN’07), Orlando, FL, USA, August 12 - 17 2007. IEEE Computer
Society.

[62] Robert Neumayer, Rudolf Mayer, and Andreas Rauber. Component se-
lection for the metro visualisation of the som. In Proceedings of the 6th
International Workshop on Self-Organizing Maps (WSOM’07), Bielefeld,
Germany, September 3 - 6 2007.

[63] E. Pampalk, A. Rauber, and D. Merkl. Content-based Organization and
Visualization of Music Archives. In Proceedings of the ACM Multimedia,
pages 570–579, Juan les Pins, France, December 1-6 2002. ACM.

[64] E. Pampalk, A. Rauber, and D. Merkl. Using smoothed data histograms
for cluster visualization in self-organizing maps. In Proceedings of the In-
ternational Conference on Artifical Neural Networks (ICANN’02), Madrid,
Spain, 2002. Springer.

[65] J. M. Pena, J.A. Lozano, and P. Larranaga. An empirical comparison of
four initialization methods for the k-means algorithm. Pattern Recognition
Letters, 20:1027–1040, 1999.

[66] Daniel Polani. Measures for the organization of self-organizing maps. In
Udo Seiffert and Lakhmi C. Jain, editors, Self-Organizing Neural Net-
works: Recent Advances and Applications, pages 13–44. Physica-Verlag,
2002.

[67] Georg Pölzlbauer. Survey and comparison of quality measures for self-
organizing maps. In Ján Paralič, Georg Pölzlbauer, and Andreas Rauber,
editors, Proceedings of the Fifth Workshop on Data Analysis (WDA’04),
pages 67–82, Sliezsky dom, Vysoké Tatry, Slovakia, June 24–27 2004. Elfa
Academic Press.

[68] Georg Pölzlbauer. Visualization of data from the petroleum industry with
vector fields on top of self-organizing maps. In Peter Bednár, Tomáš
Horváth, Ján Paralič, and Andreas Rauber, editors, Proceedings of the Sixth

BIBLIOGRAPHY 188

Workshop on Data Analysis (WDA’05), pages 42–49, Abaújszántó, Tokaj-
region, Hungary, June 20–22 2005. Elfa Academic Press.

[69] Georg Pölzlbauer, Michael Dittenbach, and Andreas Rauber. Gradient vi-
sualization of grouped component planes on the som lattice. In Marie Cot-
trell, editor, Proceedings of the Fifth Workshop on Self-Organizing Maps
(WSOM’05), pages 331–338, Paris, France, September 5–8 2005.

[70] Georg Pölzlbauer, Michael Dittenbach, and Andreas Rauber. A visual-
ization technique for self-organizing maps with vector fields to obtain the
cluster structure at desired levels of detail. In Proceedings of the Inter-
national Joint Conference on Neural Networks (IJCNN’05), pages 1558–
1563, Montreal, Canada, July 31 – August 5 2005. IEEE Computer Society.

[71] Georg Pölzlbauer, Michael Dittenbach, and Andreas Rauber. Advanced
visualization of self-organizing maps with vector fields. Neural Networks,
19(6–7):911–922, July–August 2006.

[72] Georg Pölzlbauer, Thomas Lidy, and Andreas Rauber. Decision mani-
folds: Classification inspired by self-organization. In Proceedings of the
Sixth Workshop on Self-Organizing Maps (WSOM’07), Bielefeld, Germany,
September 3–6 2007.

[73] Georg Pölzlbauer, Thomas Lidy, and Andreas Rauber. Decision manifolds
– a supervised learning algorithm based on self-organization. accepted for
publication in IEEE Transactions on Neural Networks, 19(9):1518–1530,
September 2008.

[74] Georg Pölzlbauer, Andreas Rauber, and Michael Dittenbach. Advanced
visualization techniques for self-organizing maps with graph-based meth-
ods. In Zhang Yi Jun Wang, Xiaofeng Liao, editor, Proceedings of the
Second International Symposium on Neural Networks (ISNN’05), pages
75–80, Chongqing, China, May 30 – June 1 2005. Springer-Verlag.

[75] Georg Pölzlbauer, Andreas Rauber, and Michael Dittenbach. Graph pro-
jection techniques for self-organizing maps. In Michel Verleysen, editor,
Proceedings of the European Symposium on Artificial Neural Networks
(ESANN’05), pages 533–538, Bruges, Belgium, April 27–29 2005. d-side
publications.

[76] Georg Pölzlbauer, Andreas Rauber, and Michael Dittenbach. A SOM-
view of oilfield data: A novel vector field visualization for self-organizing
maps and its applications in the petroleum industry. In Klaus Tochtermann

BIBLIOGRAPHY 189

and Hermann Maurer, editors, Proceedings of the Fifth International Con-
ference on Knowledge Management (I-KNOW’05), pages 502–509, Graz,
Austria, June 29 – July 1 2005. J.UCS - Journal of Universal Computer
Science.

[77] Georg Pölzlbauer, Andreas Rauber, and Michael Dittenbach. A vector field
visualization technique for self-organizing maps. In Huan Li Tu Bao Ho,
David Cheung, editor, Proceedings of the Ninth Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’05), pages 399–409,
Hanoi, Vietnam, May 18–20 2005. Springer-Verlag.

[78] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.

[79] J. R. Quinlan. Discovering rules by induction from large collections of
examples. In D. Michie, editor, Expert Systems in the Micro-Electronic
Age, pages 168–201. Edinburgh University Press, Edinburgh, 1979.

[80] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[81] W. Steinbrunn M. Pfisterer J. Schmid S. Sandhu K. Guppy S. Lee
V. Froelicher R. Detrano, A. Janosi. International application of a new
probability algorithm for the diagnosis of coronary artery disease. Ameri-
can Journal of Cardiology, 64:304–310, 1989.

[82] D. De Ridder, O. Kouropteva, O. Okun, M. Pietikainen, and R. Duin. Su-
pervised locally linear embedding. In Joint International Conference on
Artificial Neural Networks ICANN/ICONIP, LNCS 2714, pages 333–341,
2003.

[83] Helge Ritter and Klaus Schulten. On the stationary state of Kohonen’s self-
organizing sensory mapping. Biological Cybernetics, 54:99–106, 1986.

[84] Frank Rosenblatt. The Perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408, 1958.

[85] Sam T. Roweis, Lawrence K. Saul, and Geoffrey E. Hinton. Global coor-
dination of local linear models. In Neural Information Processing Systems,
pages 889–896, 2001.

[86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representa-
tions by back-propagating errors. Nature, 323(9):533–536, 1986.

BIBLIOGRAPHY 190

[87] S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recom-
mended approach. Data Mining and Knowledge Discovery, 1(3):317–328,
1997.

[88] John W. Sammon. A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C-18(5):401–409, May 1969.

[89] L.K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learn-
ing of low dimensional manifolds. Journal of Machine Learning Research,
4:119–155, 2003.

[90] Claude Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 1948.

[91] V. Sigillito, S. Wing, L. Hutton, and K. Baker. Classification of radar re-
turns from the ionosphere using neural networks. Johns Hopkins APL Tech-
nical Digest, 10:262–266, 1989.

[92] V.D. Silva and J. B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Neural Information Processing Systems, pages
705–712, 2003.

[93] Jack Sklansky and Leo Michelotti. Locally trained piecewise linear clas-
sifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2(2):101–111, 1980.

[94] André Skupin. A picture from a thousand words. Computing in Science
and Engineering, 6(5):84–88, 2004.

[95] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[96] Jari Kangas Jorma Laaksonen Teuvo Kohonen, Jussi Hynninen and Kari
Torkkola. Lvq pak: The learning vector quantization program package.
Technical report, Helsinki University of Technology, Laboratory of Com-
puter and Information Science, FIN-02150 Espoo, Finland, 1996.

[97] P. F. Thall and S. C. Vail. Some covariance models for longitudinal count
data with over-dispersion. Biometrics, 46:657–671, 1990.

[98] P. Tino, I. Nabney, and Y. Sun. Using directional curvatures to visualize
folding patterns of the GTM projection manifolds. In International Confer-
ence on Artificial Neural Networks (ICANN’01), pages 421–428. Springer,
2001.

BIBLIOGRAPHY 191

[99] W.S. Torgerson. Multidimensional scaling: I. Theory and method. Psy-
chometrika, 17:401–419, 1952.

[100] Edward Tufte. The visual display of quantitative information. Graphics
Press, 2001.

[101] Alfred Ultsch. Data mining and knowledge discovery with emergent self-
organizing feature maps for multivariate time series. In Erkki Oja and
Samuel Kaski, editors, Kohonen Maps, pages 33–46. Elsevier Science,
1999.

[102] Alfred Ultsch. Maps for the visualization of high-dimensional data spaces.
In Proceedings of the Workshop on Self organizing Maps, Kyushu, Japan,
2003.

[103] Alfred Ultsch. U*-matrix: a tool to visualize clusters in high dimensional
data. Technical report, Departement of Mathematics and Computer Sci-
ence, Philipps-University Marburg, 2003.

[104] Alfred Ultsch and H. Peter Siemon. Kohonen’s self-organizing feature
maps for exploratory data analysis. In Proceedings of the International
Neural Network Conference (INNC’90), pages 305–308. Kluwer, 1990.

[105] Paul E. Utgoff. Incremental induction of decision trees. Machine Learning,
4:161–186, 1989.

[106] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of Com-
puter Science, University of Glasgow, 1979.

[107] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[108] Michel Verleysen. Limitations and future trends in neural computation,
chapter Learning high-dimensional data, pages 141–162. IOS Press, 2003.

[109] J. Vesanto. SOM-based data visualization methods. Intelligent Data Anal-
ysis, 3(2):111–126, 1999.

[110] J. Vesanto. Data Exploration Process Based on the Self-Organizing Map.
PhD thesis, Helsinki University of Technology, 2002.

[111] Juha Vesanto and Jussi Ahola. Hunting for correlations in data using the
self-organizing map. In International ICSC Congress on Computational
Intelligence Methods and Applications (CIMA’99), pages 279–285. ICSC
Academic Press, 1999.

BIBLIOGRAPHY 192

[112] Juha Vesanto and Esa Alhoniemi. Clustering of the self-organizing map.
IEEE Transactions on Neural Networks, 11(3):586–600, 2000.

[113] Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankangas.
Self-organizing map in Matlab: The SOM toolbox. In Proceedings of the
Matlab DSP Conference 1999, pages 35–40, 1999.

[114] Juha Vesanto, Mika Sulkava, and Jaakko Hollmén. On the decomposi-
tion of the self-organizing map distortion measure. In Proceedings of the
Workshop on Self organizing Maps (WSOM’03), pages 11–16, Hibikino,
Kitakyushu, Japan, 2003.

[115] Thomas Villmann and Jens Christian Claussen. Investigation of magnifica-
tion control in Self-Organizing Maps and Neural Gas. Neural Computation,
18(2):446–469, 2006.

[116] Thomas Villmann, Ralf Der, Michael Herrmann, and Thomas M. Mar-
tinetz. Topology preservation in self-organizing feature maps: Exact defini-
tion and measurement. IEEE Transactions on Neural Networks, 8(2):256–
266, 1997.

[117] M. Vlachos, C. Domeniconi, D. Gunopulos, G. Kollios, and N. Koudas.
Non-linear dimensionality reduction techniques for classification and visu-
alization. In 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 645–651, 2002.

[118] J. H. Ward. Hierarchical grouping to optimize a bijective function. Journal
of the American Statistical Association, 58:236–244, 1963.

[119] P.D. Wasserman. Advanced Methods in Neural Computing. New York: Van
Nostrand Reinhold, 1993.

[120] Guihua Wen, Lijun Jiang, and Nigel R. Shadbolt. Using graph algebra
to optimize neighborhood for isometric mapping. In Proceedings of the
International Joint Conference of Artificial Intelligence, pages 2398–2403,
2007.

[121] Paul John Werbos. The roots of backpropagation: From ordered deriva-
tives to neural networks and political forecasting. Wiley-Interscience, New
York, NY, USA, 1994.

[122] K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple
classifiers using local accuracy estimates. IEEE Transactions on Pattern
Analalysis and Machine Intelligence, 19(4):405–410, 1997.

BIBLIOGRAPHY 193

[123] Georg Zangl and Josef Hannerer. Data Mining: Applications in the
Petroleum Industry. Round Oak Publishing, 2003.

Appendix A

Notational conventions

‖ · ‖ Euclidean norm
S a set
|S| cardinality of S, i.e. the number of elements of a set
x a vector
x̃ a homogeneous vector with bias coordinate
xi i-th element of vector x
X a matrix
xi i-th row vector of matrix X
x(j) j-th column vector of matrix X
Xt transpose of matrix X

X̃ a matrix in homogeneous coordinates, i.e. with bias coordi-
nates in the first row

194

Appendix B

Abbreviations

ANN Artificial Neural Network
BMU Best-Matching Unit
DB-Index Davies Bouldin Index
k-NN k-Nearest Neighbors
LBG Linde-Buzo-Gray Batch k-means algorithm
LDA Linear Discriminant Analysis
MDS Multi-Dimensional Scaling
PCA Principal Component Analysis
pdf probability density function
RBF Radial Basis Function
SOM Self-Organizing Map
SVM Support Vector Machine
SDH Smoothed Data Histograms

195

Appendix C

Additional definitions and formulas

C.1 Definition of nearest neighbors
For a strictly formal definition that fits into the framework of the rest of this thesis,
the k-th nearest neighbor is defined in this section, along with abbreviations for
commonly used calculations. The index of the k-th nearest vector, contained in a
set of vectors denoted as matrix X, of vector v is written as

N (k)(v,X) = arg min
i∈S(k)(v,X)

‖v − xi‖, (C.1)

where the set S(k) contains the indices of the available vectors, which is defined
recursively by removing the vectors from the pool of possible candidates:

S(1)(v,X) = {i |xi ∈ X}, (C.2)

S(k)(v,X) = S(k−1)(v,X) \ {N (k−1)(v,X)}. (C.3)

A special case is the nearest neighbor, denoted by omitting the superscript

N(v,X) = N (1)(v,X) = argi min
xi∈X

‖v − xi‖. (C.4)

To provide a less cumbersome notation for the most commonly needed cal-
culations, shortcuts are defined for the best-matching unit, the k-th best matching
unit, and the k-th nearest neighbor of a vector out of a set that contains the vector
itself. The index of the k-th best matching unit I(k)(xi), and the best matching
unit I(xi) of sample xi and codebook M are abbreviated as

I(k)(xi) = N (k)(xi,M), (C.5)

I(xi) = I(1)(xi). (C.6)

196

APPENDIX C. ADDITIONAL DEFINITIONS AND FORMULAS 197

The k-nearest prototype vector within the codebook, and the k-nearest data
sample within the data set are written as

N
(k)
X (xi) = N (k)(xi,X \ {xi}) (C.7)

N
(k)
M (mj) = N (k)(mj,M \ {mj}) (C.8)

Appendix D

Data sets

D.1 Benchmark data sets
In this section, the benchmark data sets used in this thesis are listed and their
characteristics explained, along with a PCA projection for each of them. The first
couple of data sets are unlabeled and are therefore solely used for unsupervised
learning. These are used in Chapters 2, 3, and 4 for visualization and clustering.
In the latter part of this section, the data sets for supervised learning are described.
Each of them has 2 levels, and they are used in Chapter 5 for classification, but
are also used for visualization.

D.1.1 Iris
Reference Originally collected by Anderson [3], this data set has

been introduced by Fisher [22] to the statistics commu-
nity.

Number of samples 150
Attributes 4 (sepal length, sepal width, petal length, petal width)

Labels Setosa, Versicolor, Virginica; each of these classes has
50 samples.

Description The Iris data set is maybe the best known data set in
the data mining community. The Setosa class is linearly
separable from the others, while the Virginica and Versi-
color classes are overlapping to some degree. The PCA
plot in Figure D.1(a) explains 95% of the variance.

198

APPENDIX D. DATA SETS 199

setosa
versicolor
virginica

(a) (b)

Figure D.1: PCA for (a) Iris (95% of variance explained), (b) Epileptics (56% of
variance explained)

D.1.2 Epileptics
Reference The epileptics data set has been collected in 1990 by

Thall and Vail [97].
Number of samples 236

Attributes 8
Labels Several categorical variables, for example “treatment”:

Placebo (47.5%), Progabide (52.5%)
Description This data set describes the seizure count of 59 epilep-

tics over periods of 2 weeks. The experiments have been
conducted over 4 such periods, resulting in 236 measure-
ments. The data set has been originally intended for pre-
diction of the number of seizures in a regression setting.
In this thesis, the predicted variable is omitted, and the
data set is used for unsupervised methods only. The vari-
ables include binary and integer variables, such as the
subject’s age and an indicator of whether a placebo has
been used. Figure D.1(b) shows a PCA plot of the data.
The first two axes explain 56% of the variance in this
data set.

APPENDIX D. DATA SETS 200

(a)

Bad

Good

(b)

Figure D.2: PCA for (a) Phonetic (29% of variance explained), (b) Ionosphere
(39% of variance explained)

D.1.3 Phonetic
Reference The phonetic data set is bundled with the LVQ-PAK soft-

ware [96].
Number of samples 1962 (for each of 2 data sets)

Attributes 20
Labels 20 different phonemes from Finnish language.

Description The data set consists of 1962 cepstral-coefficient vec-
tors picked up from continuous Finnish speech from the
same speaker. The samples are labeled into 20 classes.
Phonemes of the same label are usually clustered in fea-
ture space. The PCA plot is shown in Figure D.2(a) and
explains 29% of the variance in the data set, making it
rather unsuitable for visualiztion.

APPENDIX D. DATA SETS 201

bad
good

(a)

healthy
liver disorder

(b)

Figure D.3: PCA for (a) German Credit (11% of variance explained), (b) Bupa
Liver Disorder (57% of variance explained)

D.1.4 Ionosphere
Reference The data has been collected in Goose Bay, Labrador, by

Sigillito, Wing, Hutton, and Baker [91].
Number of samples 351

Attributes 34 (all numeric)
Labels Good (64.1%) and Bad (35.9%)

Description The data set describes the results from a radar system.
The attributes correspond to a phased array of 16 high-
frequency antennas. The targets are free electrons in the
ionosphere, and samples labeled as “good” correspond
to evidence of structure in the ionosphere. Figure D.2(b)
shows the PCA plot of the Ionosphere data. It explains
39% of the variance in the data set. This hints at a data
space where the attributes are stronger correlated than for
example the phonetic data set. The phonetic data con-
sisted of 20 attributes and the PCA of the two most im-
portant eigenvectors explained only 29% of the variance
in the data, compared to the 34-dimensional ionosphere
data set where the PCA explains 39%.

APPENDIX D. DATA SETS 202

negative
positive

(a)

nospam
spam

(b)

Figure D.4: PCA for (a) Pima Indian Diabetes (48% of variance explained), (b)
Spam (17% of variance explained)

D.1.5 German Credit
Reference The German Credit data set has been collected by Hans

Muller and published in 1994. It is available at the UCI
Machine Learning Repository.

Number of samples 1000
Attributes 20

Labels Good (70%) and Bad (30%)
Description The German Credit data set describes 1000 people ac-

cording to their credit-worthiness based on 20 attributes.
These variables are either categorical or integer. Fig-
ure D.3(a) shows a PCA projection of this data set, which
explains only 11% of the variance in this data set, an un-
usually low number. This is due to the low correlation
between the variables.

APPENDIX D. DATA SETS 203

healthy
heart disorder

(a)

Mine
Rock

(b)

Figure D.5: PCA for (a) Heart Disease (32% of variance explained), (b) Sonar
(39% of variance explained)

D.1.6 Bupa Liver Disorders
Reference The Liver Disorders data set has been published by

Richard Forsyth of the BUPA Medical Research Ltd.
Number of samples 345

Attributes 6
Labels Healthy (58%) and Liver Disorder (42%)

Description This data set contains the results from 5 blood tests
for 345 male patients. The last attribute describes the
amount of alcohol drunk per day. The predicted variable
describes whether the patient suffers from liver disorder.
In Figure D.3(b), a PCA plot of the Bupa Liver Disorders
data is shown, revealing 57% of the variance.

APPENDIX D. DATA SETS 204

D.1.7 Pima Indian Diabetes
Reference The Pima data set has been collected by the National In-

stitute of Diabetes and Digestive and Kidney Diseases.
It has been published by Smith et al [40].

Number of samples 768
Attributes 8

Labels Negative (65.1%) and Positive (34.9%)
Description This data set describes female adult patients who are of

Pima Indian heritage. The predicted variable is whether
the patient is tested positive of diabetes. In Figure D.4(a)
the PCA projection is given, explaining 48% of the vari-
ance.

D.1.8 Spam
Reference The Spam data set has been created by Hopkins, Reeber,

Forman, and Suermondt.
Number of samples 4601

Attributes 57
Labels Spam (39.4%) and No Spam (60.6%)

Description The samples in this data set correspond to email mes-
sages, which have manually been labeled as Spam or
No Spam. The variables describe various features calcu-
lated for the emails, for example word frequencies, char-
acter frequencies, or percentage of capitals used. Fig-
ure D.4(b) shows the PCA projection. It explains 17% of
the variance.

D.1.9 Heart Disease
Reference The Heart Disease data set has been assembled in 4 clin-

ics by Janosi, Steinbrunn, Pfisterer, and Detrano [81].
Number of samples 270

Attributes 13
Labels Healthy (55.6%) and Heart Disease (44.4%)

Description This data set contains relevant data of patients’ medical
records. The predicted variable tells whether the patient
suffers from heart disease. As the original data set con-
tains missing values, it has been reduced such that only
full records are remaining. Figure D.5(a) shows a PCA
plot that explains 32% of the variance.

APPENDIX D. DATA SETS 205

D.1.10 Sonar
Reference The Sonar data set has been first used by Gorman and

Sejnowski [26].
Number of samples 208

Attributes 60
Labels Mine (53.4%) Rock (46.6%)

Description This data set consists of measurements of cylindrical
objects from a sonar device. The attributes describe
frequency-related information over different bands. The
target variable is an indicator of whether the object is
a metal cylinder, and thus potentially a mine, or a rock
with roughly cylindrical shape. In Figure D.5(b), a PCA
projection is shown, explaining 39% of the variance in
this data set.

D.2 Artificial data sets
The artificial data sets are generated to show a particular feature of a specific data
analysis method, or to empirically show that an algorithm is able to cope with a
particular problem. For these data sets, there is no constant data sample, but the
generating probability density function is given. The data sets are referred to by
specifying the number of samples and any parameters required by the process of
creating it.

D.2.1 Equidistant clusters data set
The Equidistant clusters data set consists of c clusters, the cluster centers of which
have a common distance d from each other. The data set is (c − 1) dimensional.
Examples are shown in Figure D.2.1, where the layouts for c = 3 and c = 4 are
displayed. The gray vertices denote the cluster centers, and the lines symbolize
the distances between the clusters, which is the same between any two cluster
centers. In the two-dimensional case, the resulting shape is that a of an equilateral
triangle, and in three dimensions, it is a tetrahedron.

The most simple way to construct the coordinate vectors of the graph is to
initially use the unit vectors in a c dimensional space and project it to a (c − 1)
dimensional space. The unit vectors in a Cartesian coordinate system are always
equidistant. The set of unit vectors is the identity matrix when written in matrix
form. When performing a linear projection along the vector (1, 1, . . . , 1) onto the
hyperplane spanned by the unit vectors, the dimension of the space can be reduced
by 1 to (c−1). As the SOM and other projection methods only work with pairwise

APPENDIX D. DATA SETS 206

(a) (b) (c)

Figure D.6: High dimensional graph structure of Equidistant clusters and Fully-
connected data sets. For the Equidistant clusters data set, the data points are
clustered around the vertices. In case of the Fully-connected data set, the sam-
ples are equally distributed along the edges: (a) 3 vertices in 2 dimensions, (b) 4
vertices in 3 dimensions, displayed as a linear projection, (c) construction of two-
dimensional data set by projection of the unit vectors of the three-dimensional
space

distances, and the data set is normalized by dividing by the standard deviation, the
exact coordinates are not relevant for describing this data set, the only property
that is of interest is that the centers are equally far apart.

Once the cluster centers have been computed, the actual data points are sam-
pled from a multivariate normal distribution around each cluster center. The co-
variance matrix for each of these distributions is Σ = diag(σ2, . . . , σ2). As the
data set is normalized before the SOM is trained on it, the absolute value of the
variance is not important, only its relative size to d. Therefor, it is useful to in-
troduce a spread ratio parameter s = σ

d
that expresses the standard deviation as a

percentage of the inter-cluster distance. The Equidistant clusters data set is speci-
fied by the spread parameter s, the number of cluster centers c, and the number of
samples per cluster.

Examples of the Equidistant clusters data sets are shown in Figure D.2.1 with
s = 20% and 200 samples per cluster. The PCA projection fails to reveal the
individual clusters at higher dimensional problems, although the clusters are well
separated. The Equidistant clusters data set serves as a benchmark to assess the
vector quantization capabilities of a projection algorithm.

D.2.2 Fully-connected data set
The Fully-connected data set is also created from the high-dimensional graph in-
troduced in the previous section. The difference lies in the data points are dis-

APPENDIX D. DATA SETS 207

(a) (b)

(c) (d)

Figure D.7: PCA projections of Equidistant clusters data sets with 200 data points
per cluster and spread ratio s = 20%: (a) 3 vertices, (b) 4 vertices, (c) 5 vertices,
(d) 8 vertices

tributed along the edges rather than clustered around the vertices. This data set is
similar to a fully connected graph where the vertices are equidistant. The resulting
data set can not be represented by a SOM without major topology violations for 5
or more vertices, as the edges of the graph would intersect if projected onto a two
dimensional plane.

PCA projections of Fully-connected data sets are shown in Figure D.2.2. For
this data set, PCA is very good at revealing the graph structure of the data, because
the intersections of the edges do not distort the projection. Other than the SOM,
the figures do not reveal that nearby points in ouptut space can be actually far
apart, as is the case with these intersections. The rationale for using the Fully-
connected data set is to test whether a projection algorithm is able to place points
that are close in feature space next to each other in output space. It can be used as
a benchmark for a certain aspect of a technique’s vector projection capabilities.

APPENDIX D. DATA SETS 208

(a) (b)

(c) (d)

Figure D.8: PCA projections of Fully-connected data sets with 700 data points:
(a) 3 vertices, (b) 4 vertices, (c) 5 vertices, (d) 8 vertices

D.2.3 Multi-challenge data set
The Multi-challenge data set consists of several sub-data sets that are placed in
a 10-dimensional space. The subsets themselves may live in spaces of lower di-
mensions. This data set is used to demonstrate how a data analysis method deals
with clusters of different densities and shapes when these different characteristics
are present in the same data set.

A PCA projection of this data set is shown in Figure D.2.3. Each subset con-
sists of the same number of sample points. The subsets are described in the order
of their numeric label:

The first subset consists of a Gaussian cluster and another cluster that is itself
divided into three Gaussian clusters, all of them living in a three-dimensional
space. This subset is used to demonstrate how an algorithm deals with different
levels of granularity in cluster structures. The distance between the centers of the

APPENDIX D. DATA SETS 209

1
2

34

5

Figure D.9: PCA of Multi-challenge data set

two main clusters, i.e. the the big cluster and the cluster that consists of the three
smaller ones, is 5 times the standard deviation d of the first main cluster. The three
smaller clusters are arranged around the center of the second cluster, which they
themselves form, on a circle of radius 5·d

3
equidistantly from each other. The three

small cluster centers and the center of the large cluster lie in the same plane. The
small clusters each have a standard deviation of d

3
and one third of the number of

data points of the large cluster.
The second subset is a three-dimensional data set that consists of two overlap-

ping Gaussian clusters. The distribution of points into these clusters is skewed:
While the clusters both share the same covariance matrix and thus the same den-
sity, the first cluster has twice the amount of points than the second one. The point
of introducing this data set is to test how a data analysis method copes with clus-
ters with different numbers of data samples. The distance between the centers is
3 times the standard deviation of the clusters.

The third subset is a 10-dimensional set of two well-separated Gaussian clus-
ters with the same covariance matrix. It is used to contrast higher- with lower-
dimensional structures, as the other four subsets are of lower dimensionality. The
distance between the clusters is again 3 times their standard deviation.

The fourth subset is a classic intertwined rings data set. It lives in a three-
dimensional data space. This data set is used for showing how a method deals
with non-intersecting structures that cannot be separated in a linear way. The
rings are circles that run through each others centers. The planes on which they
are located are orthogonal to each other. The data points are sampled from these
rings with no additional noise.

The fifth subset is sampled along a curve that consists of 4 short lines that are

APPENDIX D. DATA SETS 210

patched together at the endpoints. The data points are arranged along this curve
with a level of noise that increases close to the end of the curve. This subset lives
in a four-dimensional space. It is introduced in order to show how data analysis
methods cope with piecewise linear structures that extend to multiple dimensions.
In detail, the four parts of this subset are line segments each parallel to one of
the axis. The data points are sampled from this structure with a small amount of
Gaussian noise with standard deviation of 1

20
of the length of the line segments.

The subsets are normalized individually to zero mean and unit variance. They
are then arranged on a plane, which can be seen in Figure D.2.3. The distance
between the data sets is 10 times their standard deviation.

