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Abstract: We investigate the dynamics of a few bosons in an optical lattice induced by a quantum
quench of a parameter of the many-body Hamiltonian. The evolution of the many-body wave
function is obtained by solving the time-dependent many-body Schrödinger equation numerically,
using the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). We report
the time evolution of three key quantities, namely, the occupations of the natural orbitals, that is,
the eigenvalues of the one-body reduced density matrix, the many-body Shannon information entropy,
and the quantum fidelity for a wide range of interactions. Our key motivation is to characterize
relaxation processes where various observables of an isolated and interacting quantum many-body
system dynamically converge to equilibrium values via the quantum fidelity and via the production of
many-body entropy. The interaction, as a parameter, can induce a phase transition in the ground state
of the system from a superfluid (SF) state to a Mott-insulator (MI) state. We show that, for a quench to
a weak interaction, the fidelity remains close to unity and the entropy exhibits oscillations. Whereas
for a quench to strong interactions (SF to MI transition), the relaxation process is characterized by
the first collapse of the quantum fidelity and entropy saturation to an equilibrium value. The dip and
the non-analytic nature of quantum fidelity is a hallmark of dynamical quantum phase transitions.
We quantify the characteristic time at which the quantum fidelity collapses and the entropy saturates.

Keywords: quench dynamics; Shannon information entropy; fidelity; MCTDH; MCTDHB;
MCTDH-X

1. Introduction

The non-equilibrium dynamical properties and statistical relaxation, where various observables of
an isolated and interacting quantum many-body system dynamically converge to equilibrium values,
have garnered immense interest in the last decade [1–4]. Recent experiments with cold atoms in optical
lattices have had an enormous impact in this field [5–7] because they provide a test bed for theories,
with unprecedented experimental control and perfect isolation from the surroundings. Theoretically,
it is an established fact that an isolated quantum system thermalizes; the eigenstate thermalization
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hypothesis (ETH) states that the thermalization of an isolated quantum system is approached when the
expectation values of (few-body) observables relax to an equilibrium and approach their long-time average
value given by the Gibbs ensemble [8–10]. The analysis of the time-evolution of an isolated quantum
many-body system far from equilibrium is the most fundamental way to establish its thermalization.
Flambaum and Izrailev investigated the time evolution of generic quantum many-body systems [11,12].
Many-body quantum dynamics of δ-interacting bosons confined in a one-dimensional ring have been
studied in Reference [13]. A linear increase, followed by a saturation of the many-body information
entropy, has been shown to be associated with the onset of chaos and thermalization [13]. Whereas,
in some recent works [14,15], one-dimensional spin− 1

2 lattices with two-body interactions have been
addressed. In the quench dynamics of this model, a system which is initially in an eigenstate |ψ(0)〉
of the initial Hamiltonian ĤI is suddenly quenched to a new Hamiltonian. The probability for finding
the system at a time t in initial state |ψ(0)〉 is known as the survival probability or quantum fidelity
and is given by F(t) = |〈ψ(0)|e−iĤt|ψ(0)〉|2. Here Ĥ is the final Hamiltonian, that is, after a quench.
This quantum fidelity, F(t), measures how close the two quantum states |ψ(0)〉 and |ψ(t)〉 are. In a
lattice, the power-law behavior in F(t) anticipates thermalization. This anticipation is independent of
integrability, level repulsion, and the presence or absence of disorder. The behavior of the quantum
fidelity is solely determined by the system Hamiltonian and the initial state.

A necessary condition for thermalization is statistical relaxation of various dynamical variables
to some kind of equilibrium. The Shannon information entropy is one of these basic dynamical
variables to follow such a relaxation. How entropy is produced, and on which time scale it relaxes to
an equilibrium value after a quench, in quantum many-body systems is a challenging question. In the
present work, we consider the fundamental problem of a few bosons in an optical lattice—a pioneering
experiment with many bosons was performed by Greiner et al. in 2002 [16]. A transition between a
superfluid (SF) phase (each atom spread out over the entire lattice) and a Mott-insulator (MI) phase
(with a fixed number of atoms in each lattice site) is observed at a critical lattice depth.

In this article, we report the relaxation dynamics of a few interacting bosons in a triple-well
lattice from a general many-body perspective. We initially prepare the system in the SF phase and
induce dynamics in the system by a quench to a different interaction strength. With the interaction
strength to which we quench the system, we cover the whole range from weak to strong interactions.
Here, and in the following, we use—for simplicity—the terms “phase” and “quantum phase” to
discuss the quantum states in finite systems that are only finite-size precursors of the true (quantum)
phases in the thermodynamic limit. We thus quench the system via changing its two-body interactions
and accurately measure several dynamical variables—occupations of the different natural orbitals
ni(t), the quantum fidelity F(t) and the many-body information entropy Sin f o(t). The motivation of
our present work is two-fold. First, we provide a highly accurate quantitative measure of the fidelity in
the quench dynamics of interacting bosons in optical lattices. Second, from the time-evolution of our
observables, we establish a link between the fragmented many-body state, the collapse of the quantum
fidelity and the saturation of the many-body information entropy to an equilibrium value.

Here, “fragmentation” and “fragmented” refers to many-body states whose one-body density matrix
has more than one significant eigenvalue [17,18]; this is to be contrasted with the terms “condensation”
and “condensed”, which refer to many-body states that have a one-body density matrix with only one
significant eigenvalue [19]. Generally, many-body states in the MI phase are highly fragmented (one
significant eigenvalue per site in the lattice) and many-body states in the SF phase are condensed (only
one eigenvalue).

We observe that all the three measures—the eigenvalues ni(t), the quantum fidelity F(t), and the
entropy Sin f o(t)—are in mutual agreement. For quenches to weak interactions, the many-body
states start to fragment but a complete (ni(t) ∼ 1

S ) fragmentation (where S is the number of sites)
is not achieved. The corresponding quantum fidelity remains close to unity (F(t) ∼ 1.0) with small
fluctuations, and the information entropy oscillates. We conclude that the system does not relax
even in its long time dynamics. The quenched state does not reach the MI phase. For quenches
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to strong interactions, the many-body states exhibit 1
S fragmentation, that is, the quenched state

reaches the S-fold fragmented MI phase. The corresponding quantum fidelity exhibits a collapse
and the many-body information entropy saturates to a maximal equilibrium value. We also define a
characteristic time tc for the quench process as the unique time at which, synchronously, the many-body
states attain full fragmentation for the first time, the fidelity exhibits its first collapse and the Shannon
entropy saturates. This synchronization demonstrates the system’s relaxation for quenches to a
strong interaction.

Below, in Section 2 we first introduce the multiconfigurational time-dependent Hartree for
bosons (MCTDHB) approach, our triple-well setup, and details on the analyzed quantities of interest.
In Section 3, we discuss the obtained results and in Section 4 we conclude our work.

2. Methodology

2.1. Numerical Approach

To study the time evolution of a system of N interacting bosons, we solve the time-dependent
Schrödinger equation,

Ĥ|ψ〉 = ih̄
∂|ψ〉

∂t
, (1)

using the MCTDHB approach [20,21], open-source software available at http://ultracold.org.
The MCTDHB and MCTDHB-based approximations [22–25] were successfully applied to study
the out-of-equilibrium dynamics of bosonic systems [26–36], see Reference [37] for a review and
Reference [38] for a direct comparison of MCTDHB with experimental data using so-called single-shot
simulations [39–44]. In this work, we use the MCTDHB method as implemented in the MCTDH-X
package [45–47].

With MCTDHB, the many-body wave function is expanded as a linear combination of
time-dependent permanents, |~n; t〉, and time-dependent coefficients, C~n(t),

|ψ(t)〉 = ∑
~n

C~n(t)|~n; t〉. (2)

The summation runs over all possible configurations ~n resulting from the arrangement of N
bosons in a set of M orbitals, that is, Ncon f = (N+M−1

N ). Note that the permanents are time-dependent
because the orbitals (i.e., single-particle functions) used to build them are time-dependent, {φi(x, t)}M

i=1.
The MCTDHB approach is derived using the time-dependent variational principle to optimize both
the {C~n(t)} and {φi(x, t)}. The configurations,~n = (n1, n2, ..., nM), represent the occupation numbers
of the M orbitals with the particle-conservation constraint ∑M

i ni = N. The number of orbitals used to
describe a given system is a critical parameter, it must be sufficiently large to ensure convergence; in the
limit of M→ ∞ Equation (2) represents an exact solution to the Schrödinger equations, Equation (1),
see References [47–50] for a practical demonstration with MCTDHB. For practical computations,
M needs to be made small enough to make the numerical calculation feasible.

In the computations of the dynamics that we discuss below, the many-body wave function shows
a strong fragmentation, that is, several natural orbitals have a significant population. We tested the
convergence of all presented results by systematically increasing the number of orbitals M until no
change in the calculated quantities such as energy, relaxation time, and entropy production was
observed. Additionally, we find the occupation of the least-populated orbital to be negligible. For the
interaction quenches that we study, we find that M = 9 orbitals are sufficient to achieve convergence.

http://ultracold.org
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2.2. Setup

In this work, we consider a system of N interacting bosons in a one-dimensional optical lattice.
Such a quasi-one-dimensional (1D) system has already been realized experimentally [51,52] using a
strong transversal confinement [51–54]. The Hamiltonian of the 1D system is given by,

Ĥ(λ) =
N

∑
i=1

[
−1

2
∂2

∂x2
i
+ VOL(xi)

]
+ ∑

i<j
λδ(xi − xj). (3)

The one-body potential, VOL, represents the optical lattice, VOL(x) = V sin2 (kx), xi is the
coordinate of the i-th boson, V is the lattice depth, and k the wave-number. We use periodic boundary
conditions. The interaction between the particles is described by a pairwise contact interaction,
λδ(xi − xj), with the 1D interaction strength, λ, proportional to the s-wave scattering length of the
atoms [55,56]. The Hamiltonian Ĥ is scaled in terms of the recoil energy ER = h̄2k2/2m, where m is
the mass of the atoms. We use natural units, h̄ = m = k = 1, and all terms are dimensionless. In the
following, the unit of time and distance are h̄

ER
and k−1, respectively.

The dynamics of the system are induced by a quantum quench, for which one parameter of the
Hamiltonian—here we use λ—is instantaneously changed. Our quench protocol follows two steps: (i) The
ground state of Ĥ(λi), obtained via imaginary time-propagation, is used as the initial wave function
|ψ(t = 0; λi)〉. (ii) The initial state evolves unitarily under the influence of a different Hamiltonian Ĥ(λ f )

for a time t. Such a quantum quench can be experimentally realized using the tuning of an external
magnetic field to change the s-wave scattering length of the atoms via a Feshbach resonance [57,58].

2.3. Quantities of Interest

The quench dynamics of the system will be investigated using three different quantities—the
eigenvalues of the reduced one-body density matrix or natural orbital occupations ni(t), the Shannon
information entropy of the natural orbital occupations Sin f o(t), and the quantum fidelity F(t). We now
define these quantities.

(a) Shannon information entropy and natural occupations. The Shannon information entropy that we
consider is defined from the natural occupations ni(t), that is, the eigenvalues ni(t) of the reduced
one-body density matrix:

ρ(x, x′, t) = 〈ψ(t)|ψ̂†(x)ψ̂(x′)|ψ(t)〉 = ∑
i

ni(t)φ
(NO)∗
i (x′, t)φ(NO)

i (x, t), (4)

with ψ̂(x) [ψ̂(x)†] the bosonic annihilation [creation] field operator [17–19], the natural orbitals φ
(NO)
i (x, t)

being the eigenfunctions of ρ(x, x′, t). See Ref. [59] for their evaluation with the MCTDHB wave function.
The occupation Shannon information entropy is defined as [60–62],

Sin f o(t) = −
M

∑
i

ni(t) ln[ni(t)]. (5)

This definition of Shannon entropy has already been considered for the MCTDHB wave
function [30,63–65]. If a single natural orbital is occupied, n1(t) = 1, the entropy is Sin f o(t) = 0 at
all times. It is, for instance, the case for the Gross-Pitaevskii (GP) mean-field theory, where a single orbital
is considered. Thus Sin f o is also a good measure of the many-body nature of the time-evolution of the
system. For a given number of orbitals M, Sin f o reaches its maximum value for identical occupations
of all natural orbitals ni = 1/M. Thus Sin f o(t) is a good measure of the dynamical fragmentation of
the system.
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(b) Fidelity. The Fidelity, F(t), measures the overlap between the time-evolving wave function
|ψ(t)〉 and the initial wave function |ψ(0)〉. It reads:

F(t) = |〈ψ(0)|ψ(t)〉|2. (6)

The evaluation of the fidelity from an MCTDHB wave function requires the evaluation of
permanents, and thus can only be performed for a small number of particles [66]. The fidelity is
the absolute value squared of the autocorrelation function, c(t) = 〈ψ(0)|ψ(t)〉. The autocorrelation
function is routinely used in molecular physics [67–69] to compute many-body excitation
spectra [70] with wave function based approaches for discernible degrees of freedom, such as the
multiconfigurational time-dependent Hartree method [71,72]. The relation between c(t) and F(t)
indicates that the time-evolution of F(t) is highly sensitive to the many-body eigenstates and energies
of the Hamiltonian that play a role in the dynamics.

3. Results

We consider N = 3 bosons in a 1D triple-well optical lattice with periodic boundary conditions
and a lattice depth of V = 3.0. We use the system to study the quantum phase transition between
a superfluid (SF) phase and a Mott-insulator (MI). Keeping the lattice depth constant, the phase
transition occurs when the interaction strength, λ, is increased. The phase diagram of the system
provides information on the static properties of the many-body state as a function of λ. The critical
interaction strength, λc, for which this phase transition occurs is λc ≈ 0.4 for our system; for a detailed
discussion of the phase diagram, see References [73,74].

We now investigate the dynamics of the system following a quantum quench. We start from
the ground state of a Hamiltonian with small interactions λi in the SF phase. We then compute
the unitary evolution under the action of a new Hamiltonian at larger interactions λ f > λi with
MCTDHB. The ground state of the Hamiltonian with interactions λ f > λc is in the MI phase.
More formally, before some quenches we have λi < λc and λ f > λc. Such an evolution is also
investigated in the field of dynamical quantum phase transitions [75,76].

The ground state is prepared for an interaction strength λi = 0.05 in Equation (3). For this
interaction strength, the system is in the SF phase and the particles are coherently delocalized over the
triple-well lattice potential. The state has a single significant occupation, n1(t = 0) ≈ 1, nk(t = 0) ≈ 0
for k > 1, and is thus well described by the mean-field GP theory. The quench increases the energy of
the system from the ground state energy Egs(λi) to a final value E(λ f ). We report the excitation energy
of the system, Eex = E(λ f )− Egs(λi), for different quenches (0.2 ≤ λ f ≤ 10) in Table 1. Note that for
λ f = 0.2, the ground state of the final Hamiltonian is also in the SF phase, while for the larger values
considered λ f ≥ 0.5, the ground state of the final Hamiltonian is in the MI phase.

We now analyze the time-evolution of the system after the quench as a function of λ f in terms
of its natural occupations, see Figure 1. Before the evolution (t = 0), only the first natural orbital is
occupied, n1(t = 0) ≈ 1, nk(t = 0) ≈ 0, as expected for the SF phase. As time evolves after the quench,
the population of the first natural orbital decreases while the population of the second and third
orbitals increases, the other occupation numbers (ni>3) remain comparatively small. The dynamics
are different if the interaction strength after the quench, λ f , is across the superfluid-to-Mott-insulator
transition that takes place in the ground state for λc ≈ 0.4. When λ f = 0.2 < λc [Figure 1a] the
populations n2 and n3 increase at first, but reach a first maximum (∼ 0.14) at t = 19 and then decrease
again back to almost zero. This oscillations repeat several times (not shown in Figure 1). We infer that
the system attempts fragmentation but fails to reach the MI phase that is characterized by a threefold
fragmentation (n1 ≈ n2 ≈ n3 ∼ 1/3).

When the quench is performed such that λ f > λc, the threefold fragmentation occurs at first at
some characteristic time tc [Figure 1b–e and Table 1] and reappears several times almost periodically
(not shown). We can thus infer that the final Hamiltonian has an MI ground state, from the dynamical
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emergence of threefold fragmentation. The characteristic time of the emergence of fragmentation
decreases when the value of λ f increases. This decrease is likely due to the higher energy pumped into
the system by the quench [Table 1].
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Figure 1. Time evolution of the natural occupations ni(t) for different interaction quenches (a) λ f = 0.2
(small). (b) λ f = 1.0. (c) λ f = 2.0. (d) λ f = 5.0. (e) λ f = 10.0. As time increases, the occupation of
the first orbital decreases and two other orbitals start to contribute. For small interactions after the
quench, λ f = 0.2, the system thus never reaches the complete fragmentation with n1 ≈ n2 ≈ n3 ≈ 1

3
that characterizes the MI state. When λ f increases, the state becomes threefold fragmented (n1 ' n2 '
n3 ' 33%). For larger interaction strengths, the time required to first observe threefold fragmentation
is smaller.
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Table 1. Values of the interaction strength of the quench λ f , the excitation energy Eex = E(λ f )− Egs(λi)

of the system and the time of the first occurrence of the MI state with a threefold fragmentation, tc.

λ f Eex tc

0.2 0.061 N.A.
1.0 0.263 4.70
2.0 0.667 2.56
5.0 1.878 1.57
10.0 3.898 1.18

We now turn to the Shannon information entropy defined from the natural occupations, Equation (5).
Of course, the time-evolution of Sin f o(t) reflects directly the dynamics of the natural occupations.

For a quench within the SF phase, λ f = 0.2 < λc, the information entropy exhibits regular oscillations
which resemble the collapse and revival dynamics observed in the experimental work of Reference [16],
see Figure 2.
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Figure 2. Plot of the Shannon information entropy Sin f o(t) as a function of time. For smaller λ f , Sin f o(t)
oscillates with time and does not saturate. When λ f increases, the oscillations reduce and the system
tries to attend a saturation value. At a sufficiently large value of λ f , the oscillations vanish and the
entropy saturates to a maximum entropy state. The larger the interaction strength, the smaller the time
to reach the saturation value (inset). See the text for further discussion.
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For quenches that cross the superfluid-to-Mott-insulator transition value λc, the information
entropy exhibits a sharp linear increase at short time (t ≤ tc), inset in Figure 2. This short-time entropy
production indicates that an exponentially growing number of many-body states participate in the
dynamics. The production of information entropy, Sin f o(t), reflects that the evolution of the system
includes an MI state. Importantly, the first maximum of the information entropy is reached at the
characteristic time determined by the natural occupations, Table 1. At longer time (t > tc), the entropy
exhibits oscillations in time for quenches to λ f = 1 and 2. These oscillations indicate that the system
undergoes a periodic dynamical transition between a threefold fragmented MI state at maximal
(Sin f o(t) ∼ ln (3) ∼ 1.1) and a condensed state with minimal entropy (Sin f o(t) → 0). In the case of
quenches to larger interaction strength, λ f > 5, the occupation entropy reaches maximal values that
are larger than the one expected for a threefold fragmentation [Sin f o > ln(3) = 1.099]. This results
from the occupations of more than three natural orbitals that can bee seen in Figure 1d,e at short times.
Moreover, at longer times, we observe that the oscillations of the entropy become aperiodic and their
amplitudes decrease and even disappear almost for λ f = 10. Thus, we conclude that the entropy
relaxes to some equilibrium value for the quantum quenches to large interaction strength. We note that
this equilibrium value is close to the value 1.099 expected for the MI state and significantly smaller
than the maximal entropy Sin f o

max = −∑9
i=1

1
9 ln( 1

9 ) = 2.197 that our M = 9 basis can support.
We have shown that the time-evolution of the natural occupations and the Shannon information

entropy illustratively characterizes the quantum nature of the time-evolution of the quenched
triple-well system. We now address the role of the many-body eigenstates involved in the dynamics
by considering the time evolution of the fidelity, Equation (6), see Figure 3. The fidelity provides
a measure of the magnitude of the autocorrelation function, that is, the overlap between the initial
|ψ(t = 0)〉 and the time-evolved state |ψ(t)〉.

For a quench to a weak interaction strength, λ f = 0.2 < λc Figure 3a the fidelity remains
close to unity. In this situation, the system is only weakly fragmented and thus the time-evolved
wave function strongly overlaps with the initial one. For quenches to larger interaction strengths,
λ f = 1 and 2, pronounced dips in the fidelity (F(t) < 10−2) are observed, first at the characteristic
time tc and repeatedly thereafter. At the times where F(t) is small, the time-evolved wave function
|ψ(tc)〉 has a small, finite overlap with the initial state. The dips in the fidelity mark times, where the
ground state of the initial Hamiltonian has almost no contribution to the time-evolved state; due to the
synchronization with our observation from the natural occupations in [Figure 1], we interpret the dips
as a hallmark of the dynamical transition to the MI state. For the quenches to the largest interaction
strengths that we consider, λ f > 5, the shape of the dips transforms into “spikes”; a non-analytical
point in the fidelity function at t = tc that we term collapse point. The overlap with the initial state
is strongly suppressed when the MI state is reached. This non-analytical behavior is reminiscent of
the non-analyticity of the Loschmidt echo rate function in dynamical quantum phase transitions as
described in References [75,76].
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Figure 3. Quantum fidelity for different interaction quenches in logarithmic scale. For a quench to
weak interactions, λ f = 0.2, the fidelity F(t) remains close to unity at all times. For stronger interaction
quenches λ f = 1 and 2, the quantum fidelity exhibits prominent but smooth dips. When the interaction
is quenched to a large value, i.e., λ f ≥ 5, the dips transform into non-analytical “spikes”; the first spike
in time is termed collapse point.

4. Summary and Conclusions

In this paper, we studied the quench dynamics of interacting bosons in a 1D triple-well optical
lattice from a general many-body perspective utilizing the MCTDHB method to obtain highly accurate
numerical solutions of the time-dependent Schrödinger equation. We described the process of
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relaxation by the dynamical evolution of the three key quantities, namely the natural occupations,
the Shannon information entropy, and the fidelity. We studied quantum quenches and covered
the whole range of final interaction strengths from weak to strong interactions. We addressed the
fundamental question of whether, and on which time-scale, the signatures of the relaxation of the
system are seen. We found that quenches to weak or moderate interactions do not lead to a complete
relaxation of the system. In contrast, quenches to strong interactions lead to a relaxation of the
isolated quantum system solely determined by the interaction strength after the quench. Our three
observables characterize this relaxation in mutual agreement—a threefold-fragmented many-body
state, a saturation of the Shannon information entropy, and a collapse of the fidelity function. All three
features of relaxation in the time-evolution of our observables emerge—in synchronization—for the
first time at the characteristic relaxation time tc.

We thus exhibited the features of relaxation for an isolated quantum system and its relation to a
dynamical quantum phase transition characterized by a collapse point in the quantum fidelity.

Author Contributions: Conceptualization, R.R. and B.C.; methodology, R.R., A.U.J.L. and C.L.; software, R.R.,
A.U.J.L. and C.L. ; validation R.R., A.U.J.L., and C.L.; formal analysis, R.R. and C.L.; investigation, B.C., A.U.J.L.
and A.G. ; data curation, R.R., B.C. and C.L.; writing—original draft preparation, R.R., B.C., C.L., A.G. and A.U.J.L.;
writing—review and editing, R.R., B.C., C.L., A.U.J.L. and A.G.; visualization, R.R., B.C., C.L., A.U.J.L. and A.G.;
supervision, B.C., A.U.J.L. and C.L.

Funding: This research was funded by the Austrian Science Foundation (FWF) under grant No. P-32033 and
M-2653.Rhombik Roy acknowledges the University Grant Commission (UGC) India for the financial support
as a junior research fellow. Arnaldo Gammal thanks Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP-grant No. 2016/17612-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Barnali Chakrabarti acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-grant No.
2016/19622-0) for financial support.

Acknowledgments: The authors would like to thanks University Grant Commission (UGC),India; Austrian
Science Foundation (FWF); Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. Barnali Chakrabarti acknowledges
ICTP support where a portion of the work has been done.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SF Superfluid
MI Mott-insulator
GP Gross-Pitaevskii
MCTDHB Multiconfigurational time-dependent Hartree for bosons

References

1. Cazalilla, M.A.; Rigol, M. Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems.
New J. Phys. 2010, 12, 055006. [CrossRef]

2. Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys.
2008, 80, 885–964.

3. Collura, M.; Kormos, M.; Calabrese, P. Quantum quench in a harmonically trapped one-dimensional Bose
gas. Phys. Rev. A 2018, 97, 033609. [CrossRef]

4. Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed
interacting quantum systems. Rev. Mod. Phys. 2011, 83, 863–883. [CrossRef]

5. Greif, D.; Uehlinger, T.; Jotzu, G.; Tarruell, L.; Esslinger, T. Short-Range Quantum Magnetism of Ultracold
Fermions in an Optical Lattice. Science 2013, 340, 1307–1310. [CrossRef]

6. Fukuhara, T.; Schauß, P.; Endres, M.; Hild, S.; Cheneau, M.; Bloch, I.; Gross, C. Microscopic observation of
magnon bound states and their dynamics. Nature 2013, 502, 76–79.

http://dx.doi.org/10.1088/1367-2630/12/5/055006
http://dx.doi.org/10.1103/PhysRevA.97.033609
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1126/science.1236362


Quantum Rep. 2019, 1 314

7. Trotzky, S.; Chen, Y.A.; Flesch, A.; McCulloch, I.P.; Schollwöck, U.; Eisert, J.; Bloch, I. Probing the relaxation
towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 2012, 8, 325–330.
[CrossRef]

8. Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Long-time behavior of macroscopic quantum systems.
Eur. Phys. J. H 2010, 35, 173–200. [CrossRef]

9. Pozsgay, B.; Mestyán, M.; Werner, M.A.; Kormos, M.; Zaránd, G.; Takács, G. Correlations after Quantum
Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble. Phys. Rev. Lett.
2014, 113, 117203. [CrossRef]

10. Ilievski, E.; De Nardis, J.; Wouters, B.; Caux, J.S.; Essler, F.H.L.; Prosen, T. Complete Generalized Gibbs
Ensembles in an Interacting Theory. Phys. Rev. Lett. 2015, 115, 157201. [CrossRef]

11. Flambaum, V.V. Time Dynamics in Chaotic Many-body Systems: Can Chaos Destroy a Quantum Computer?
Aust. J. Phys. 2000, 53, 489. [CrossRef]

12. Flambaum, V.V.; Izrailev, F.M. Entropy production and wave packet dynamics in the Fock space of closed
chaotic many-body systems. Phys. Rev. E 2001, 64, 036220. [CrossRef] [PubMed]

13. Berman, G.P.; Borgonovi, F.; Izrailev, F.M.; Smerzi, A. Irregular Dynamics in a One-Dimensional Bose System.
Phys. Rev. Lett. 2004, 92, 030404. [CrossRef] [PubMed]

14. Távora, M.; Torres-Herrera, E.J.; Santos, L.F. Inevitable power-law behavior of isolated many-body quantum
systems and how it anticipates thermalization. Phys. Rev. A 2016, 94, 041603. [CrossRef]

15. Távora, M.; Torres-Herrera, E.J.; Santos, L.F. Power-law decay exponents: A dynamical criterion for
predicting thermalization. Phys. Rev. A 2017, 95, 013604. [CrossRef]

16. Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.; Bloch, I. Quantum phase transition from a superfluid to a
Mott insulator in a gas of ultracold atoms. Nature 2002, 415, 39–44. [CrossRef]

17. Spekkens, R.W.; Sipe, J.E. Spatial fragmentation of a Bose-Einstein condensate in a double-well potential.
Phys. Rev. A 1999, 59, 3868–3877. [CrossRef]

18. Mueller, E.J.; Ho, T.L.; Ueda, M.; Baym, G. Fragmentation of Bose-Einstein condensates. Phys. Rev. A
2006, 74, 033612. [CrossRef]

19. Penrose, O.; Onsager, L. Bose-Einstein Condensation and Liquid Helium. Phys. Rev. 1956, 104, 576–584.
[CrossRef]

20. Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Multiconfigurational time-dependent Hartree method for bosons:
Many-body dynamics of bosonic systems. Phys. Rev. A 2008, 77, 033613. [CrossRef]

21. Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Unified view on multiconfigurational time propagation for
systems consisting of identical particles. J. Chem. Phys. 2007, 127, 154103. [CrossRef] [PubMed]

22. Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Multiorbital mean-field approach for bosons, spinor bosons, and
Bose-Bose and Bose-Fermi mixtures in real-space optical lattices. Phys. Rev. A 2007, 76, 013611. [CrossRef]

23. Cao, L.; Krönke, S.; Vendrell, O.; Schmelcher, P. The multi-layer multi-configuration time-dependent Hartree
method for bosons: Theory, implementation, and applications. J. Chem. Phys. 2013, 139, 134103. [CrossRef]
[PubMed]

24. Lévêque, C.; Madsen, L.B. Time-dependent restricted-active-space self-consistent-field theory for bosonic
many-body systems. New J. Phys. 2017, 19, 043007. [CrossRef]

25. Lévêque, C.; Madsen, L.B. Multispecies time-dependent restricted-active-space self-consistent-field theory
for ultracold atomic and molecular gases. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 155302. [CrossRef]

26. Mistakidis, S.I.; Schmelcher, P. Mode coupling of interaction quenched ultracold few-boson ensembles in
periodically driven lattices. Phys. Rev. A 2017, 95, 013625. [CrossRef]

27. Koutentakis, G.M.; Mistakidis, S.I.; Schmelcher, P. Quench-induced resonant tunneling mechanisms of
bosons in an optical lattice with harmonic confinement. Phys. Rev. A 2017, 95, 013617. [CrossRef]

28. Neuhaus-Steinmetz, J.; Mistakidis, S.I.; Schmelcher, P. Quantum dynamical response of ultracold few-boson
ensembles in finite optical lattices to multiple interaction quenches. Phys. Rev. A 2017, 95, 053610. [CrossRef]

29. Streltsov, A.I.; Alon, O.E.; Cederbaum, L.S. Role of Excited States in the Splitting of a Trapped Interacting
Bose-Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 2007, 99, 030402. [CrossRef]

30. Roy, R.; Gammal, A.; Tsatsos, M.C.; Chatterjee, B.; Chakrabarti, B.; Lode, A.U.J. Phases, many-body entropy
measures, and coherence of interacting bosons in optical lattices. Phys. Rev. A 2018, 97, 043625. [CrossRef]

31. Mistakidis, S.I.; Cao, L.; Schmelcher, P. Interaction quench induced multimode dynamics of finite atomic
ensembles. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 225303. [CrossRef]

http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1140/epjh/e2010-00007-7
http://dx.doi.org/10.1103/PhysRevLett.113.117203
http://dx.doi.org/10.1103/PhysRevLett.115.157201
http://dx.doi.org/10.1071/PH99091
http://dx.doi.org/10.1103/PhysRevE.64.036220
http://www.ncbi.nlm.nih.gov/pubmed/11580435
http://dx.doi.org/10.1103/PhysRevLett.92.030404
http://www.ncbi.nlm.nih.gov/pubmed/14753854
http://dx.doi.org/10.1103/PhysRevA.94.041603
http://dx.doi.org/10.1103/PhysRevA.95.013604
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevA.59.3868
http://dx.doi.org/10.1103/PhysRevA.74.033612
http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1103/PhysRevA.77.033613
http://dx.doi.org/10.1063/1.2771159
http://www.ncbi.nlm.nih.gov/pubmed/17949128
http://dx.doi.org/10.1103/PhysRevA.76.013611
http://dx.doi.org/10.1063/1.4821350
http://www.ncbi.nlm.nih.gov/pubmed/24116548
http://dx.doi.org/10.1088/1367-2630/aa6319
http://dx.doi.org/10.1088/1361-6455/aacac6
http://dx.doi.org/10.1103/PhysRevA.95.013625
http://dx.doi.org/10.1103/PhysRevA.95.013617
http://dx.doi.org/10.1103/PhysRevA.95.053610
http://dx.doi.org/10.1103/PhysRevLett.99.030402
http://dx.doi.org/10.1103/PhysRevA.97.043625
http://dx.doi.org/10.1088/0953-4075/47/22/225303


Quantum Rep. 2019, 1 315

32. Mistakidis, S.I.; Wulf, T.; Negretti, A.; Schmelcher, P. Resonant quantum dynamics of few ultracold bosons
in periodically driven finite lattices. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 244004. [CrossRef]

33. Mistakidis, S.I.; Cao, L.; Schmelcher, P. Negative-quench-induced excitation dynamics for ultracold bosons
in one-dimensional lattices. Phys. Rev. A 2015, 91, 033611. [CrossRef]

34. Plaßmann, T.; Mistakidis, S.I.; Schmelcher, P. Quench dynamics of finite bosonic ensembles in optical lattices
with spatially modulated interactions. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 225001. [CrossRef]

35. Lode, A.U.J.; Diorico, F.S.; Wu, R.; Molignini, P.; Papariello, L.; Lin, R.; Lévêque, C.; Exl, L.; Tsatsos, M.C.;
Chitra, R.; et al. Many-body physics in two-component Bose–Einstein condensates in a cavity: Fragmented
superradiance and polarization. New J. Phys. 2018, 20, 055006. [CrossRef]

36. Weiner, S. E.; Tsatsos, M. C. ; Cederbaum, L. S; Lode, A. U. J. Phantom vortices: hidden angular momentum
in ultracold dilute Bose-Einstein condensates. Sci. Rep. 2017, 7, 40122. [CrossRef]

37. Lode, A.U.J.; Lévêque, C.; Madsen, L.B.; Streltsov, A.I.; Alon, O.E. Multiconfigurational time-dependent
Hartree approaches for indistinguishable particles. arXiv 2019, arXiv:1908.03578.

38. Nguyen, J.H.V.; Tsatsos, M.C.; Luo, D.; Lode, A.U.J.; Telles, G.D.; Bagnato, V.S.; Hulet, R.G. Parametric
Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation. Phys. Rev. X 2019, 9, 011052.
[CrossRef]

39. Sakmann, K.; Kasevich, M. Single-shot simulations of dynamic quantum many-body systems. Nat. Phys.
2016, 12, 451–454, doi:10.1038/nphys3631. [CrossRef]

40. Lode, A.U.; Bruder, C. Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity.
Phys. Rev. Lett. 2017, 118, 13603, doi:10.1103/PhysRevLett.118.013603. [CrossRef]

41. Mistakidis, S.I.; Katsimiga, G.C.; Kevrekidis, P.G.; Schmelcher, P. Correlation effects in the quench-induced
phase separation dynamics of a two species ultracold quantum gas. New J. Phys. 2018, 20, 043052,
doi:10.1088/1367-2630/aabc6a. [CrossRef]

42. Erdmann, J.; Mistakidis, S.I.; Schmelcher, P. Correlated tunneling dynamics of an ultracold Fermi-Fermi
mixture confined in a double well. Phys. Rev. A 2018, 98, 053614, doi:10.1103/PhysRevA.98.053614.
[CrossRef]

43. Chatterjee, B.; Lode, A.U. Order parameter and detection for a finite ensemble of crystallized one-dimensional
dipolar bosons in optical lattices. Phys. Rev. A 2018, 98, 053624. [CrossRef]

44. Chatterjee, B.; Schmiedmayer, J.; Lévêque, C.; Lode, A.U.J. Unveiling Emergent Crystal Orders of
Incommensurate Dipolar Bosons in One-Dimensional Lattices using Full Distribution Functions. arXiv 2019,
arXiv:1904.03966.

45. Lode, A.U.J.; Tsatsos, M.C.; Fasshauer, E.; Lin, R.; Papariello, L.; Molignini, P.; Lévêque, C.; Weiner, S.E.
MCTDH-X: The Time-Dependent Multiconfigurational Hartree for Indistinguishable Particles Software.
Available online: http://ultracold.org (accessed on 13 July 2018).

46. Lode, A.U.J. Multiconfigurational time-dependent Hartree method for bosons with internal degrees of
freedom: Theory and composite fragmentation of multicomponent Bose-Einstein condensates. Phys. Rev. A
2016, 93, 063601. [CrossRef]

47. Fasshauer, E.; Lode, A.U.J. Multiconfigurational time-dependent Hartree method for fermions:
Implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 2016, 93, 033635.
[CrossRef]

48. Lode, A.U.; Streltsov, A.I.; Sakmann, K.; Alon, O.E.; Cederbaum, L.S. How an interacting many-body system
tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 2012, 109, 13521–13525.
[CrossRef]

49. Lode, A.U.; Sakmann, K.; Alon, O.E.; Cederbaum, L.S.; Streltsov, A.I. Numerically exact quantum
dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 2012, 86, 63606,
doi:10.1103/PhysRevA.86.063606. [CrossRef]

50. Lode, A.U.J. Tunneling Dynamics in Open Ultracold Bosonic Systems; Springer International Publishing: Cham,
Switzerland, 2015; doi:10.1007/978-3-319-07085-8. [CrossRef]

51. Fallani, L.; De Sarlo, L.; Lye, J.E.; Modugno, M.; Saers, R.; Fort, C.; Inguscio, M. Observation of Dynamical
Instability for a Bose-Einstein Condensate in a Moving 1D Optical Lattice. Phys. Rev. Lett. 2004, 93, 140406.
[CrossRef]

52. Fertig, C.D.; O’Hara, K.M.; Huckans, J.H.; Rolston, S.L.; Phillips, W.D.; Porto, J.V. Strongly Inhibited
Transport of a Degenerate 1D Bose Gas in a Lattice. Phys. Rev. Lett. 2005, 94, 120403. [CrossRef]

http://dx.doi.org/10.1088/0953-4075/48/24/244004
http://dx.doi.org/10.1103/PhysRevA.91.033611
http://dx.doi.org/10.1088/1361-6455/aae57a
http://dx.doi.org/10.1088/1367-2630/aabc3a
http://dx.doi.org/10.1038/srep40122
http://dx.doi.org/10.1103/PhysRevX.9.011052
http://dx.doi.org/10.1038/nphys3631
http://dx.doi.org/10.1103/PhysRevLett.118.013603
http://dx.doi.org/10.1088/1367-2630/aabc6a
http://dx.doi.org/10.1103/PhysRevA.98.053614
http://dx.doi.org/10.1103/PhysRevA.98.053624
http://ultracold.org
http://dx.doi.org/10.1103/PhysRevA.93.063601
http://dx.doi.org/10.1103/PhysRevA.93.033635
http://dx.doi.org/10.1073/pnas.1201345109
http://dx.doi.org/10.1103/PhysRevA.86.063606
http://dx.doi.org/10.1007/978-3-319-07085-8
http://dx.doi.org/10.1103/PhysRevLett.93.140406
http://dx.doi.org/10.1103/PhysRevLett.94.120403


Quantum Rep. 2019, 1 316

53. Greiner, M.; Bloch, I.; Mandel, O.; Hänsch, T.; Esslinger, T. Bose–Einstein condensates in 1D- and 2D optical
lattices. Appl. Phys. B 2001, 73, 769–772. [CrossRef]

54. Stöferle, T.; Moritz, H.; Schori, C.; Köhl, M.; Esslinger, T. Transition from a Strongly Interacting 1D Superfluid
to a Mott Insulator. Phys. Rev. Lett. 2004, 92, 130403. [CrossRef] [PubMed]

55. Olshanii, M. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable
Bosons. Phys. Rev. Lett. 1998, 81, 938–941. [CrossRef]

56. Salasnich, L.; Parola, A.; Reatto, L. Effective wave equations for the dynamics of cigar-shaped and
disk-shaped Bose condensates. Phys. Rev. A 2002, 65, 043614. [CrossRef]

57. Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of
Feshbach resonances in a Bose-Einstein condensate. Nature 1998, 392, 151–154. [CrossRef]

58. Courteille, P.; Freeland, R.S.; Heinzen, D.J.; van Abeelen, F.A.; Verhaar, B.J. Observation of a Feshbach
Resonance in Cold Atom Scattering. Phys. Rev. Lett. 1998, 81, 69–72. [CrossRef]

59. Sakmann, K.; Streltsov, A.I.; Alon, O.E.; Cederbaum, L.S. Reduced density matrices and coherence of trapped
interacting bosons. Phys. Rev. A 2008, 78, 023615. [CrossRef]

60. Collins, M.D. Entropy Maximizations on Electron Density. Z. Nat. A 1993, 48, 68. [CrossRef]
61. Ziesche, P. Correlation strength and information entropy. Int. J. Quantum Chem. 1995, 56, 363–369. [CrossRef]
62. Esquivel, R.O.; Rodríguez, A.L.; Sagar, R.P.; Hô, M.; Smith, V.H. Physical interpretation of information

entropy: Numerical evidence of the Collins conjecture. Phys. Rev. A 1996, 54, 259–265. [CrossRef]
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